WorldWideScience

Sample records for surface effective emissivity

  1. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    Science.gov (United States)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  2. Surface-electronic-state effects in electron emission from the Be(0001) surface

    International Nuclear Information System (INIS)

    Archubi, C. D.; Gravielle, M. S.; Silkin, V. M.

    2011-01-01

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  3. Surface-electronic-state effects in electron emission from the Be(0001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C. D. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Gravielle, M. S. [Instituto de Astronomia y Fisica del Espacio, casilla de correo 67, sucursal 28, C1428EGA, Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (Argentina); Silkin, V. M. [Donostia International Physics Center, E-20018 San Sebastian (Spain); Departamento de Fisica de Materiales, Facultad de Ciencias Quimicas, Universidad del Pais Vasco, Apartado 1072, E-20080 San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao (Spain)

    2011-07-15

    We study the electron emission produced by swift protons impinging grazingly on a Be(0001) surface. The process is described within a collisional formalism using the band-structure-based (BSB) approximation to represent the electron-surface interaction. The BSB model provides an accurate description of the electronic band structure of the solid and the surface-induced potential. Within this approach we derive both bulk and surface electronic states, with these latter characterized by a strong localization at the crystal surface. We found that such surface electronic states play an important role in double-differential energy- and angle-resolved electron emission probabilities, producing noticeable structures in the electron emission spectra.

  4. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    International Nuclear Information System (INIS)

    Wang, Fuyuan; Cheng, Laifei; Zhang, Qing; Zhang, Litong

    2014-01-01

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density

  5. Effect of surface morphology and densification on the infrared emissivity of C/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fuyuan, E-mail: wangfy1986@gmail.com; Cheng, Laifei; Zhang, Qing, E-mail: zhangqing@nwpu.edu.cn; Zhang, Litong

    2014-09-15

    Highlights: • The cauliflower-like microstructure improved the infrared emissivity multiply. • The infrared emissivity decreased continually with the improving surface flatness. • The densification process boosted the infrared emissivity. - Abstract: The effects of surface morphology and densification on the infrared emissivity of 2D C/SiC composites were investigated in 6–16 μm from 1000 °C to 1600 °C. As the sample surface was polished, the reflection and scattering for the electromagnetic waves of thermal radiation were reduced, causing a sustained decrease in the infrared emissivity. The space-variant polarizations caused by the cauliflower-like microstructure were enervated in the smooth surface, which enhanced the reduction trendy in the infrared emissivity. In densification process, the increasing SiC content and the growing amount of the cauliflower-like microstructure on sample surface improved the infrared emissivity of C/SiC composites, while the decreasing porosity decreased it. Due to the greater positive effects on the thermal radiation during the densification process, the infrared emissivity of C/SiC composites increased successively with density.

  6. Effects of fibre-form nanostructures on particle emissions from a tungsten surface in plasmas

    International Nuclear Information System (INIS)

    Takamura, S.; Miyamoto, T.; Ohno, N.

    2012-01-01

    The effects of fibre-form nanostructure of a tungsten surface on both electron emission and sputtering in helium/argon plasmas are represented. Generally, a nano-fibre forest, the so-called ‘fuzz’, made of tungsten with helium gas inside is found to have the tendency of suppressing the particle emission substantially. The electron emission comes from the impact of high-energy primary electrons. In addition, a deeply biased tungsten target, which inhibits the influx of even energetic primary electrons, seems to produce an electron emission, and it may be suppressed on the way to nanostructure formation on the surface of the W target. Such an emission process is discussed here. The sputtering yield of the He-damaged tungsten surface with the fibre-form nanostructure depends on the surface morphology while the sputtering itself changes the surface morphology, so that the time evolutions of sputtering yield from the W surface with an originally well-developed nanostructure are found to show a minimum in sputtering yield, which is about a half for the fresh nanostructured tungsten and roughly one-fifth of the yield for the original flat normal tungsten surface. The surface morphology at that time is, for the first time, made clear with field emission scanning electron microscopy observation. The physical mechanism for the appearance of such a minimum in sputtering yield is discussed. (paper)

  7. Effect of surface contaminants on the light emission spectrum of LiF TLDs

    International Nuclear Information System (INIS)

    Abhold, M.E.

    1987-01-01

    Recent results show the differences between the light emissions spectra from LiF Thermoluminescent Dosimeters (TLDs) for gamma vs. alpha irradiations to be due to contaminants on the surface of the TLD. The light emission spectrum for thermal neutron irradiations was observed to be identical to that for a Cs-137 gamma irradiation in Harshaw TLD-100. Further experiments with surface treatments on TLD-100 indicate trace contaminants introduced by the standard methanol cleansing rinse in reagent grade methanol to have a substantial effect on the light emission spectrum for Am-241 alpha irradiations

  8. Effect of metallic and hyperbolic metamaterial surface on electric and magnetic dipole emission

    DEFF Research Database (Denmark)

    Ni, Xingjie; Naik, Gururaj V.; Kildishev, Alexander V.

    2010-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different material surfaces were studied numerically and experimentally. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces.......Spontaneous emission patterns of electric and magnetic dipoles on different material surfaces were studied numerically and experimentally. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces....

  9. Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions

    DEFF Research Database (Denmark)

    Ni, X.; Naik, G. V.; Kildishev, A. V.

    2011-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular......-dependent emission spectra of europium ions on top of different films. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces. The results of numerical calculations agree well with experimental data....

  10. Effect of localized surface-plasmon mode on exciton transport and radiation emission in carbon nanotubes.

    Science.gov (United States)

    Roslyak, Oleksiy; Cherqui, Charles; Dunlap, David H; Piryatinski, Andrei

    2014-07-17

    We report on a general theoretical approach to study exciton transport and emission in a single-walled carbon nanotube (SWNT) in the presence of a localized surface-plasmon (SP) mode within a metal nanoparticle interacting via near-field coupling. We derive a set of quantum mechanical equations of motion and approximate rate equations that account for the exciton, SP, and the environmental degrees of freedom. The material equations are complemented by an expression for the radiated power that depends on the exciton and SP populations and coherences, allowing for an examination of the angular distribution of the emitted radiation that would be measured in experiment. Numerical simulations for a (6,5) SWNT and cone-shaped Ag metal tip (MT) have been performed using this methodology. Comparison with physical parameters shows that the near-field interaction between the exciton-SP occurs in a weak coupling regime, with the diffusion processes being much faster than the exciton-SP population exchange. In such a case, the effect of the exciton population transfer to the MT with its subsequent dissipation (i.e., the Förster energy transfer) is to modify the exciton steady state distribution while reducing the equilibration time for excitons to reach a steady sate distribution. We find that the radiation distribution is dominated by SP emission for a SWNT-MT separation of a few tens of nanometers due to the fast SP emission rate, whereas the exciton-SP coherences can cause its rotation.

  11. Effect of sequential surface irrigations on field-scale emissions of 1,3-dichloropropene.

    Science.gov (United States)

    Yates, S R; Knuteson, J; Ernst, F F; Zheng, W; Wang, Q

    2008-12-01

    A field experiment was conducted to measure subsurface movement and volatilization of 1,3-dichloropropene (1,3-D) after shank injection to an agricultural soil. The goal of this study was to evaluate the effect of sprinkler irrigation on the emissions of 1,3-D to the atmosphere and is based on recent research that has shown that saturating the soil pore space reduces gas-phase diffusion and leads to reduced volatilization rates. Aerodynamic, integrated horizontal flux, and theoretical profile shape methods were used to estimate fumigant volatilization rates and total emission losses. These methods provide estimates of the volatilization rate based on measurements of wind speed, temperature, and 1,3-D concentration in the atmosphere. The volatilization rate was measured continuously for 16 days, and the daily peak volatilization rates for the three methods ranged from 18 to 60 microg m(-2) s(-1). The total 13-D mass entering the atmosphere was approximately 44-68 kg ha(-1), or 10-15% of the applied active ingredient This represents approximately 30-50% reduction in the total emission losses compared to conventional fumigant applications in field and field-plot studies. Significant reduction in volatilization of 1,3-D was observed when five surface irrigations were applied to the field, one immediately after fumigation followed by daily irrigations.

  12. Electron emission at the rail surface

    International Nuclear Information System (INIS)

    Thornhill, L.; Battech, J.

    1991-01-01

    In this paper the authors examine the processes by which current is transferred from the cathode rail to the plasma armature in an arc-driven railgun. Three electron emission mechanisms are considered, namely thermionic emission, field-enhanced thermionic emission (or Schottky emission), and photoemission. The author's calculations show that the dominant electron emission mechanism depends, to a great extent, on the work function of the rail surface, the rail surface temperature, the electric field at the rail surface, and the effective radiation temperature of the plasma. For conditions that are considered to be typical of a railgun armature, Schottky emission is the dominant electron emission mechanism, providing current densities on the order of 10 9 A/m 2

  13. Effect of the local morphology in the field emission properties of conducting polymer surfaces

    International Nuclear Information System (INIS)

    De Assis, T A; Borondo, F; Benito, R M; Losada, J C; Andrade, R F S; Miranda, J G V; De Souza, Nara C; De Castilho, C M C; De B Mota, F

    2013-01-01

    In this work, we present systematic theoretical evidence of a relationship between the point local roughness exponent (PLRE) (which quantifies the heterogeneity of an irregular surface) and the cold field emission properties (indicated by the local current density and the macroscopic current density) of real polyaniline (PANI) surfaces, considered nowadays as very good candidates in the design of field emission devices. The latter are obtained from atomic force microscopy data. The electric field and potential are calculated in a region bounded by the rough PANI surface and a distant plane, both boundaries held at distinct potential values. We numerically solve Laplace’s equation subject to appropriate Dirichlet’s condition. Our results show that local roughness reveals the presence of specific sharp emitting spots with a smooth geometry, which are the main ones responsible (but not the only) for the emission efficiency of such surfaces for larger deposition times. Moreover, we have found, with a proper choice of a scale interval encompassing the experimentally measurable average grain length, a highly structured dependence of local current density on PLRE, considering different ticks of PANI surfaces. (paper)

  14. FTIR Emission spectroscopy of surfaces

    Science.gov (United States)

    Van Woerkom, P. C. M.

    A number of vibrational spectroscopic techniques are available For the study of surfaces, such as ATR, IR reflection-absorption, IR emission, etc. Infrared emission is hardly used, although interesting applications are possible now due to the high sensitivity of Fourier transform IR (FTIR) spectrometers. Two examples, where infrared emission measurements are very fruitful, will be given. One is the investigation of the curing behaviour of organic coatings, the other is the in situ study of heterogeneously catalyzed reactions. Undoubtedly, infrared emission measurements offer a number of specific advantages in some cases. Especially the less critical demands on the sample preparation are important.

  15. Surface effects during exoelectron-emission of BeO ceramics

    International Nuclear Information System (INIS)

    Siegel, V.; Kirchner, H.H.

    1979-01-01

    Studying the behaviour of the two thermally stimulated exoelectron emission (TSEE) maxima of BeO ceramics at about 270 0 C und 325 0 C it can be shown that the TSEE maximum at 270 0 C is closely connected with adsorption and desorption processes occuring on the surface of the samples. In particular, this TSEE maximum is strongly influenced as well by donor-like behaviour of adsorbed hydrogen and lithium as by acceptor-like behaviour of alcohols and nitrides of the lithium. The detailed surface processes leading to the apperance or disapperance of the TSEE maximum at 270 0 C are discussed. (orig.) [de

  16. An assessment of surface emissivity variation effects on plasma uniformity analysis using IR cameras

    Science.gov (United States)

    Greenhalgh, Abigail; Showers, Melissa; Biewer, Theodore

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device operating at Oak Ridge National Laboratory (ORNL). Its purpose is to test plasma source and heating concepts for the planned Material Plasma Exposure eXperiment (MPEX), which has the mission to test the plasma-material interactions under fusion reactor conditions. In this device material targets will be exposed to high heat fluxes (>10 MW/m2). To characterize the heat fluxes to the target a IR thermography system is used taking up to 432 frames per second videos. The data is analyzed to determine the surface temperature on the target in specific regions of interest. The IR analysis has indicated a low level of plasma uniformity; the plasma often deposits more heat to the edge of the plate than the center. An essential parameter for IR temperature calculation is the surface emissivity of the plate (stainless steel). A study has been performed to characterize the variation in the surface emissivity of the plate as its temperature changes and its surface finish is modified by plasma exposure.

  17. Molecular effects in ion-electron emission from clean metal surfaces

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Alonso, E.V.; Auciello, O.; Ferron, J.; Lantschner, G.; Oliva Florio, A.

    1978-01-01

    The authors have measured electron emission yields from clean Al, Cu and Ag under 2-50 keV H + , D + , H 2 + impact. It is found that molecular ion yields are lower than twice the yield of atomic ions. No isotope effects are observed for equal-velocity ions. (Auth.)

  18. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    Energy Technology Data Exchange (ETDEWEB)

    West, B.; Green, J.B. [Oak Ridge National Lab., TN (United States)

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  19. Natural emissions under future climate condition and their effects on surface ozone in the Yangtze River Delta region, China

    Science.gov (United States)

    Xie, Min; Shu, Lei; Wang, Ti-jian; Liu, Qian; Gao, Da; Li, Shu; Zhuang, Bing-liang; Han, Yong; Li, Meng-meng; Chen, Pu-long

    2017-02-01

    The natural emissions of ozone precursors (NOx and VOCs) are sensitive to climate. Future climate change can impact O3 concentrations by perturbing these emissions. To better estimate the variation of natural emissions under different climate conditions and understand its effect on surface O3, we model the present and the future air quality over the Yangtze River Delta (YRD) region by running different simulations with the aid of the WRF-CALGRID model system that contains a natural emission module. Firstly, we estimate the natural emissions at present and in IPCC A1B scenario. The results show that biogenic VOC emission and soil NOx emission over YRD in 2008 is 657 Gg C and 19.1 Gg N, respectively. According to climate change, these emissions in 2050 will increase by 25.5% and 11.5%, respectively. Secondly, the effects of future natural emissions and meteorology on surface O3 are investigated and compared. It is found that the variations in meteorological fields can significantly alter the spatial distribution of O3 over YRD, with the increases of 5-15 ppb in the north and the decreases of -5 to -15 ppb in the south. However, only approximately 20% of the surface O3 increases caused by climate change can be attributed to the natural emissions, with the highest increment up to 2.4 ppb. Finally, Ra (the ratio of impacts from NOx and VOCs on O3 formation) and H2O2/HNO3 (the ratio between the concentrations of H2O2 and HNO3) are applied to study the O3 sensitivity in YRD. The results show that the transition value of H2O2/HNO3 will turn from 0.3 to 0.5 in 2008 to 0.4-0.8 in 2050. O3 formation in the YRD region will be insensitive to VOCs under future climate condition, implying more NOx need to be cut down. Our findings can help us understand O3 variation trend and put forward the reasonable and effective pollution control policies in these famous polluted areas.

  20. Secondary electron emission from textured surfaces

    Science.gov (United States)

    Huerta, C. E.; Patino, M. I.; Wirz, R. E.

    2018-04-01

    In this work, a Monte Carlo model is used to investigate electron induced secondary electron emission for varying effects of complex surfaces by using simple geometric constructs. Geometries used in the model include: vertical fibers for velvet-like surfaces, tapered pillars for carpet-like surfaces, and a cage-like configuration of interlaced horizontal and vertical fibers for nano-structured fuzz. The model accurately captures the secondary electron emission yield dependence on incidence angle. The model shows that unlike other structured surfaces previously studied, tungsten fuzz exhibits secondary electron emission yield that is independent of primary electron incidence angle, due to the prevalence of horizontally-oriented fibers in the fuzz geometry. This is confirmed with new data presented herein of the secondary electron emission yield of tungsten fuzz at incidence angles from 0-60°.

  1. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission

    International Nuclear Information System (INIS)

    De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell'Aglio, M.; De Pascale, O.

    2014-01-01

    In this paper the use of metallic nanoparticles (NPs) for improving Laser Induced Breakdown Spectroscopy (LIBS) is discussed. In the case of conductors an emission signal enhancement up to 1–2 orders of magnitude was obtained depositing NPs on the sample surface by drying a micro-drop of colloidal solution. The basic mechanisms of Nanoparticle Enhanced LIBS (NELIBS) were studied and the main causes of this significantly large enhancement were found to be related to the effect of NPs on the laser ablation process, in terms of a faster and more efficient production of seed electrons with respect to conventional LIBS. The characteristics of NELIBS-produced plasma were investigated by emission spectroscopy and spectrally resolved images. In spite of similar plasma parameters, the NELIBS plasma was found to have larger emission volume and longer persistence than the LIBS one. A method to determine NP concentration and size was also proposed, which involved depositing NPs on non-interacting substrates, and proved the feasibility of LIBS as a fast detection tool for a preliminary characterization of NPs. - Highlights: • Effect of NPs on sample surface enables instantaneous field emission. • More efficient ablation • LIBS emission enhancement up to 1–2 orders of magnitude • Possibility of NP characterization in terms of concentration and size

  2. Indirect global warming effects of ozone and stratospheric water vapor induced by surface methane emission

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Grossman, A.S.; Tamaresis, J.S.; Patten, K.O. Jr.; Jain, A.; Grant, K.A.

    1994-07-01

    Methane has indirect effects on climate due to chemical interactions as well as direct radiative forcing effects as a greenhouse gas. We have calculated the indirect, time-varying tropospheric radiative forcing and GWP of O 3 and stratospheric H 2 O due to an impulse of CH 4 . This impulse, applied to the lowest layer of the atmosphere, is the increase of the atmospheric mass of CH 4 resulting from a 25 percent steady state increase in the current emissions as a function of latitude. The direct CH 4 radiative forcing and GWP are also calculated. The LLNL 2-D radiative-chemistry-transport model is used to evaluate the resulting changes in the O 3 , H 2 O and CH 4 atmospheric profiles as a function of time. A correlated k-distribution radiative transfer model is used to calculate the radiative forcing at the tropopause of the globally-averaged atmosphere profiles. The O 3 indirect GWPs vary from ∼27 after a 20 yr integration to ∼4 after 500 years, agreeing with the previous estimates to within about 10 percent. The H 2 O indirect GWPs vary from ∼2 after a 20 yr integration to ∼0.3 after 500 years, and are in close agreement with other estimates. The CH 4 GWPs vary from ∼53 at 20 yrs to ∼7 at 500 yrs. The 20 year CH 4 GWP is ∼20% larger than previous estimates of the direct CH 4 GWP due to a CH 4 response time (∼17 yrs) that is much longer than the overall lifetime (10 yrs). The increased CH 4 response time results from changes in the OH abundances caused by the CH 4 impulse. The CH 4 radiative forcing results are consistent with IPCC values. Estimates are made of latitude effects in the radiative forcing calculations, and UV effects on the O 3 radiative forcing calculations (10%)

  3. Vicinage effects in energy loss and electron emission during grazing scattering of heavy molecular ions from a solid surface

    International Nuclear Information System (INIS)

    Song Yuanhong; Wang Younian; Miskovic, Z.L.

    2005-01-01

    Vicinage effects in the energy loss and the electron emission spectra are studied in the presence of Coulomb explosion of swift, heavy molecular ions, during their grazing scattering from a solid surface. The dynamic response of the surface is treated by means of the dielectric theory within the specular reflection model using the plasmon pole approximation for the bulk dielectric function, whereas the angle-resolved energy spectra of the electrons emitted from the surface are obtained on the basis of the first-order, time-dependent perturbation theory. The evolution of the charge states of the constituent ions in the molecule during scattering is described by a nonequilibrium extension of the Brandt-Kitagawa model. The molecule scattering trajectories and the corresponding Coulomb explosion dynamics are evaluated for the cases of the internuclear axis being either aligned in the beam direction or randomly oriented in the directions parallel to the surface. Our calculations show that the vicinage effect in the energy loss is generally weaker for heavy molecules than for light molecules. In addition, there is clear evidence of the negative vicinage effect in both the energy loss and the energy spectra of the emitted electrons for molecular ions at lower speeds and with the axis aligned in the direction of motion

  4. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    Science.gov (United States)

    Madas, Saibabu; Mishra, S. K.; Upadhyay Kahaly, Mousumi

    2018-03-01

    In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base) material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler's mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K), whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  5. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    Directory of Open Access Journals (Sweden)

    Saibabu Madas

    2018-03-01

    Full Text Available In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler’s mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K, whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  6. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    International Nuclear Information System (INIS)

    Cernusca, S.; Winter, H.P.; Aumayr, F.; Diez Muino, R.; Juaristi, J.I.

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials

  7. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    CERN Document Server

    Cernusca, S; Aumayr, F; Diez-Muino, R; Juaristi, J I

    2003-01-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy <10 keV) on atomically clean surfaces of carbon-fiber inforced graphite used as first-wall armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to 'projectile molecular effects' (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  8. Surface renewal as a significant mechanism for dust emission

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2016-12-01

    Full Text Available Wind tunnel experiments of dust emissions from different soil surfaces are carried out to better understand dust emission mechanisms. The effects of surface renewal on aerodynamic entrainment and saltation bombardment are analyzed in detail. It is found that flow conditions, surface particle motions (saltation and creep, soil dust content and ground obstacles all strongly affect dust emission, causing its rate to vary over orders of magnitude. Aerodynamic entrainment is highly effective, if dust supply is unlimited, as in the first 2–3 min of our wind tunnel runs. While aerodynamic entrainment is suppressed by dust supply limits, surface renewal through the motion of surface particles appears to be an effective pathway to remove the supply limit. Surface renewal is also found to be important to the efficiency of saltation bombardment. We demonstrate that surface renewal is a significant mechanism affecting dust emission and recommend that this mechanism be included in future dust models.

  9. Effects of hot electron emission on a low-conductivity tetracyanoethylene polymer layer including studies of the corrugation of the film surface

    International Nuclear Information System (INIS)

    Lorenz, K.L.; Mousa, M.S.

    2003-01-01

    The effect of strong field electron emission (FEE) on a tetracyanoethylene (TCNE) polymer layer was studied by Field Ion Microscopy (FIM) using TCNE and Ne as the imaging gases. The TCNE polymer was formed on each tungsten tip by radical polymerisation before FEE. The FIM images show field emission spots all over the surface of the tip. The FEM images show a random distribution of several field emission areas at the onset of FEE. After sometime at a current of about 1 μA, there is a transition to higher currents at the same voltage, in which the electron emission pattern changes to have only one emitting area. After this transition, two different types of FIM images were observed, depending on the imaging gas that was used. Neon FIM images at low tip voltages show spots in the areas where the electron emission current was greatest, and at much higher voltages these images show emission from other areas with lower surface corrugation. However, the FIM images with TCNE as the imaging gas do not show any differences between the areas with and without electron emission. The FIM images remain as before FEE, which can be explained by the formation of a new polymer by the reaction of the surface layer with the imaging gas. It is assumed that chemically reactive fragments at the polymer/vacuum interface, which are needed for the polymerisation reaction, are formed by pyrolysis and sputtering processes during FEE

  10. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    Science.gov (United States)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  11. The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface

    Directory of Open Access Journals (Sweden)

    Dhan Prasad Gautam

    2016-06-01

    Full Text Available Abstract Background Dietary manipulation is a common practice to mitigate gaseous emission from livestock production facilities, and the variation of fat level in the diet has shown great influence on ruminal volatile fatty acids (VFA and enteric methane generation. The changes in dietary fat levels influence rumen chemistry that could modify manure nutrient composition along with odor and gaseous emissions from manure management facilities. Methods A field experiment was carried out on beef cattle feedlots to investigate the effect of four levels of dietary fat concentrations (3 to 5.5 % on the manure composition and gaseous emissions (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO2 and hydrogen sulfide-H2S from the feedlot pen surface. The experiment was carried out over a 5-month period from June to October during North Dakota’s summer-fall climatic condition. Air and manure sampling was conducted five times at a 20–30 day intervals. Results Overall, this research indicated that fat levels in diet have no or little effect on the nutrient composition of manure and gaseous emission from the pens with cattle fed with different diet. Though significant variation of gaseous emission and manure composition were observed between different sampling periods, no effect of high fat diet was observed on manure composition and gaseous emission. Conclusions It can be concluded that addition of fat to animal diet may not have any impact on gaseous emission and manure compositions.

  12. The effect of feeding high fat diet to beef cattle on manure composition and gaseous emission from a feedlot pen surface.

    Science.gov (United States)

    Gautam, Dhan Prasad; Rahman, Shafiqur; Borhan, Md Saidul; Engel, Chanda

    2016-01-01

    Dietary manipulation is a common practice to mitigate gaseous emission from livestock production facilities, and the variation of fat level in the diet has shown great influence on ruminal volatile fatty acids (VFA) and enteric methane generation. The changes in dietary fat levels influence rumen chemistry that could modify manure nutrient composition along with odor and gaseous emissions from manure management facilities. A field experiment was carried out on beef cattle feedlots to investigate the effect of four levels of dietary fat concentrations (3 to 5.5 %) on the manure composition and gaseous emissions (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO2 and hydrogen sulfide-H2S) from the feedlot pen surface. The experiment was carried out over a 5-month period from June to October during North Dakota's summer-fall climatic condition. Air and manure sampling was conducted five times at a 20-30 day intervals. Overall, this research indicated that fat levels in diet have no or little effect on the nutrient composition of manure and gaseous emission from the pens with cattle fed with different diet. Though significant variation of gaseous emission and manure composition were observed between different sampling periods, no effect of high fat diet was observed on manure composition and gaseous emission. It can be concluded that addition of fat to animal diet may not have any impact on gaseous emission and manure compositions.

  13. Field emission from the surface of highly ordered pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Knápek, Alexandr, E-mail: knapek@isibrno.cz [Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, Brno (Czech Republic); Sobola, Dinara; Tománek, Pavel [Department of Physics, FEEC, Brno University of Technology, Technická 8, Brno (Czech Republic); Pokorná, Zuzana; Urbánek, Michal [Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, Brno (Czech Republic)

    2017-02-15

    Highlights: • HOPG shreds were created and analyzed in the UHV conditions. • Current-voltage measurements have been done to confirm electron tunneling, based on the Fowler-Nordheim theory. • Surface was characterized by other surface evaluation methods, in particular by: SNOM, SEM and AFM. - Abstract: This paper deals with the electrical characterization of highly ordered pyrolytic graphite (HOPG) surface based on field emission of electrons. The effect of field emission occurs only at disrupted surface, i.e. surface containing ripped and warped shreds of the uppermost layers of graphite. These deformations provide the necessary field gradients which are required for measuring tunneling current caused by field electron emission. Results of the field emission measurements are correlated with other surface characterization methods such as scanning near-field optical microscopy (SNOM) or atomic force microscopy.

  14. Field emission from the surface of highly ordered pyrolytic graphite

    International Nuclear Information System (INIS)

    Knápek, Alexandr; Sobola, Dinara; Tománek, Pavel; Pokorná, Zuzana; Urbánek, Michal

    2017-01-01

    Highlights: • HOPG shreds were created and analyzed in the UHV conditions. • Current-voltage measurements have been done to confirm electron tunneling, based on the Fowler-Nordheim theory. • Surface was characterized by other surface evaluation methods, in particular by: SNOM, SEM and AFM. - Abstract: This paper deals with the electrical characterization of highly ordered pyrolytic graphite (HOPG) surface based on field emission of electrons. The effect of field emission occurs only at disrupted surface, i.e. surface containing ripped and warped shreds of the uppermost layers of graphite. These deformations provide the necessary field gradients which are required for measuring tunneling current caused by field electron emission. Results of the field emission measurements are correlated with other surface characterization methods such as scanning near-field optical microscopy (SNOM) or atomic force microscopy.

  15. 3 MeV proton irradiation effects on surface, structural, field emission and electrical properties of brass

    Science.gov (United States)

    Ali, Mian Ahsan; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Faizan-ul-Haq; Hayat, Asma; Mutaza, G.; Chishti, Naveed Ahmed; Khan, M. Asad; Ahmad, Shahbaz

    2018-05-01

    Ion-induced modifications of brass in terms of surface morphology, elemental composition, phase changes, field emission properties and electrical conductivity have been investigated. Brass targets were irradiated by proton beam at constant energy of 3 MeV for various doses ranges from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2 using Pelletron Linear Accelerator. Field Emission Scanning Electron Microscope (FESEM) analysis reveals the formation of randomly distributed clusters, particulates, droplets and agglomers for lower ion doses which are explainable on the basis of cascade collisional process and thermal spike model. Whereas, at moderate ion doses, fiber like structures are formed due to incomplete melting. The formation of cellular like structure is observed at the maximum ion dose and is attributed to intense heating, melting and re-solidification. SRIM software analysis reveals that the penetration depth of 3 MeV protons in brass comes out to be 38 μm, whereas electronic and nuclear energy losses come out to be 5 × 10-1 and 3.1 × 10-4 eV/Å respectively. The evaluated values of energy deposited per atom vary from 0.01 to 1.5 eV with the variation of ion doses from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2. Both elemental analysis i.e. Energy Dispersive X-ray spectroscopy (EDX) and X-ray Diffraction (XRD) supports each other and no new element or phase is identified. However, slight change in peak intensity and angle shifting is observed. Field emission properties of ion-structured brass are explored by measuring I-V characteristics of targets under UHV condition in diode-configuration using self designed and fabricated setup. Improvement in field enhancement factor (β) is estimated from the slope of Fowler-Nordheim (F-N) plots and it shows significant increase from 5 to 1911, whereas a reduction in turn on field (Eo) from 65 V/μm to 30 V/μm and increment in maximum current density (Jmax) from 12 μA/cm2 to 3821 μA/cm2 is observed. These enhancements

  16. Surface spectral emissivity derived from MODIS data

    Science.gov (United States)

    Chen, Yan; Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Young, David F.

    2003-04-01

    Surface emissivity is essential for many remote sensing applications including the retrieval of the surface skin temperature from satellite-based infrared measurements, determining thresholds for cloud detection and for estimating the emission of longwave radiation from the surface, an important component of the energy budget of the surface-atmosphere interface. In this paper, data from the Terra MODIS (MODerate-resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 10.8, 12.0 micron are used to simultaneously derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of the clear-sky temperatures that are determined by the CERES (Clouds and Earth's Radiant Energy System) scene classification in each channel during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7 micron data. A set of simultaneous equations is then solved to derive the emissivities. Global results are derived from MODIS. Numerical weather analyses are used to provide soundings for correcting the observed radiances for atmospheric absorption. These results are verified and will be available for remote sensing applications.

  17. Spectral emissivity of surface blackbody calibrators

    DEFF Research Database (Denmark)

    Clausen, Sønnik

    2007-01-01

    The normal spectral emissivity of commercial infrared calibrators is compared with measurements of anodized aluminum samples and grooved aluminum surfaces coated with Pyromark. Measurements performed by FTIR spectroscopy in the wavelength interval from 2 to 20 mu m and at temperatures between 5...

  18. Dependence of secondary electron emission on surface charging in sapphire and polycrystalline alumina: Evaluation of the effective cross sections for recombination and trapping

    International Nuclear Information System (INIS)

    Said, K.; Damamme, G.; Si Ahmed, A.; Moya, G.; Kallel, A.

    2014-01-01

    Highlights: • A novel approach for the analysis of the secondary electron emission in connection with the surface density of trapped charges. • Experimental estimation of the effective cross section for electron–hole recombination and electron trapping in defects. • A simplified charge transport and trapping model which corroborates qualitatively the interpretation of the results. - Abstract: The evolution of the secondary electron emission from sapphire and polycrystalline alumina during electron irradiation, achieved in a scanning electron microscope at room temperature, is derived from the measurement of the induced and the secondary electron currents. The semi-logarithmic plot of the secondary electron emission yield versus the surface density of trapped charges displays a plateau followed by a linear variation. For positive charging, the slope of the linear part, whose value is of about 10 −9 cm 2 , is independent of the primary electron energy, the microstructure and the impurities. It is interpreted as an effective microscopic cross section for electron–hole recombination. For negative charging of sapphire, the slope is associated with an effective electron trapping cross section close to 10 −11 cm 2 , which can be assigned to the dominant impurity trap. These effective values reflect the multiple interactions leading to the accumulation of charges. The yield corresponding to the plateau is controlled by the initial density of impurity traps. A charge transport and trapping >model, based on simplifying assumptions, confirms qualitatively these inferences

  19. Molecular projectile effects for kinetic electron emission from carbon- and metal-surfaces bombarded by slow hydrogen ions

    Science.gov (United States)

    Cernusca, S.; Winter, HP.; Aumayr, F.; Díez Muiño, R.; Juaristi, J. I.

    2003-04-01

    Total yields for kinetic electron emission (KE) have been determined for impact of hydrogen monomer-, dimer- and trimer-ions (impact energy armour in magnetic fusion devices. The data are compared with KE yields for impact of same projectile ions on atomically clean highly oriented pyrolytic graphite and polycrystalline gold. We discuss KE yields for the different targets if bombarded by equally fast molecular and atomic ions in view to "projectile molecular effects" (different yields per proton for equally fast atomic and molecular ions), which are expected from calculated electronic projectile energy losses in these target materials.

  20. Nitrogen removal and nitrous oxide emission in surface flow constructed wetlands for treating sewage treatment plant effluent: Effect of C/N ratios.

    Science.gov (United States)

    Li, Ming; Wu, Haiming; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Kong, Qiang

    2017-09-01

    In order to design treatment wetlands with maximal nitrogen removal and minimal nitrous oxide (N 2 O) emission, the effect of influent C/N ratios on nitrogen removal and N 2 O emission in surface flow constructed wetlands (SF CWs) for sewage treatment plant effluent treatment was investigated in this study. The results showed that nitrogen removal and N 2 O emission in CWs were significantly affected by C/N ratio of influent. Much higher removal efficiency of NH 4 + -N (98%) and TN (90%) was obtained simultaneously in SF CWs at C/N ratios of 12:1, and low N 2 O emission (8.2mg/m 2 /d) and the percentage of N 2 O-N emission in TN removal (1.44%) were also observed. These results obtained in this study would be utilized to determine how N 2 O fluxes respond to variations in C/N ratios and to improve the sustainability of CWs for wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Electron emission from tungsten surface induced by neon ions

    International Nuclear Information System (INIS)

    Xu, Zhongfeng; Zeng, Lixia; Zhao, Yongtao; Liu, Xueliang; Xiao, Guoqing; Li, Fuli; Cheng, Rui; Zhang, Xiaoan; Ren, Jieru; Zhou, Xianming; Wang, Xing; Lei, Yu; Li, Yongfeng; Yu, Yang

    2014-01-01

    The electron emission from W surface induced by Ne q+ has been measured. For the same charge state, the electron yield gradually increases with the projectile velocity. Meanwhile, the effect of the potential energy of projectile has been found obviously. Our results give the critical condition for ''trampoline effect''

  2. Electron emission from tungsten surface induced by neon ions

    Science.gov (United States)

    Xu, Zhongfeng; Zeng, Lixia; Zhao, Yongtao; Cheng, Rui; Zhang, Xiaoan; Ren, Jieru; Zhou, Xianming; Wang, Xing; Lei, Yu; Li, Yongfeng; Yu, Yang; Liu, Xueliang; Xiao, Guoqing; Li, Fuli

    2014-04-01

    The electron emission from W surface induced by Neq+ has been measured. For the same charge state, the electron yield gradually increases with the projectile velocity. Meanwhile, the effect of the potential energy of projectile has been found obviously. Our results give the critical condition for "trampoline effect".

  3. Variability of emissivity and surface temperature over a sparsely vegetated surface

    International Nuclear Information System (INIS)

    Humes, K.S.; Kustas, W.P.; Moran, M.S.; Nichols, W.D.; Weltz, M.A.

    1994-01-01

    Radiometric surface temperatures obtained from remote sensing measurements are a function of both the physical surface temperature and the effective emissivity of the surface within the band pass of the radiometric measurement. For sparsely vegetated areas, however, a sensor views significant fractions of both bare soil and various vegetation types. In this case the radiometric response of a sensor is a function of the emissivities and kinetic temperatures of various surface elements, the proportion of those surface elements within the field of view of the sensor, and the interaction of radiation emitted from the various surface components. In order to effectively utilize thermal remote sensing data to quantify energy balance components for a sparsely vegetated area, it is important to examine the typical magnitude and degree of variability of emissivity and surface temperature for such surfaces. Surface emissivity measurements and ground and low-altitude-aircraft-based surface temperature measurements (8-13 micrometer band pass) made in conjunction with the Monsoon '90 field experiment were used to evaluate the typical variability of those quantities during the summer rainy season in a semiarid watershed. The average value for thermal band emissivity of the exposed bare soil portions of the surface was found to be approximately 0.96; the average value measured for most of the varieties of desert shrubs present was approximately 0.99. Surface composite emissivity was estimated to be approximately 0.98 for both the grass-dominated and shrub-dominated portions of the watershed. The spatial variability of surface temperature was found to be highly dependent on the spatial scale of integration for the instantaneous field of view (IFOV) of the instrument, the spatial scale of the total area under evaluation, and the time of day

  4. Rough surface mitigates electron and gas emission

    International Nuclear Information System (INIS)

    Molvik, A.

    2004-01-01

    Heavy-ion beams impinging on surfaces near grazing incidence (to simulate the loss of halo ions) generate copious amounts of electrons and gas that can degrade the beam. We measured emission coefficients of η e (le) 130 and η 0 ∼ 10 4 respectively, with 1 MeV K + incident on stainless steel. Electron emission scales as η e ∝ 1/cos(θ), where θ is the ion angle of incidence relative to normal. If we were to roughen a surface by blasting it with glass beads, then ions that were near grazing incidence (90 o ) on smooth surface would strike the rims of the micro-craters at angles closer to normal incidence. This should reduce the electron emission: the factor of 10 reduction, Fig. 1(a), implies an average angle of incidence of 62 o . Gas desorption varies more slowly with θ (Fig. 1(b)) decreasing a factor of ∼2, and along with the electron emission is independent of the angle of incidence on a rough surface. In a quadrupole magnet, electrons emitted by lost primary ions are trapped near the wall by the magnetic field, but grazing incidence ions can backscatter and strike the wall a second time at an azimuth where magnetic field lines intercept the beam. Then, electrons can exist throughout the beam (see the simulations of Cohen, HIF News 1-2/04). The SRIM (TRIM) Monte Carlo code predicts that 60-70% of 1 MeV K + ions backscatter when incident at 88-89 o from normal on a smooth surface. The scattered ions are mostly within ∼10 o of the initial direction but a few scatter by up to 90 o . Ion scattering decreases rapidly away from grazing incidence, Fig. 1(c ). At 62 deg. the predicted ion backscattering (from a rough surface) is 3%, down a factor of 20 from the peak, which should significantly reduce electrons in the beam from lost halo ions. These results are published in Phys. Rev. ST - Accelerators and Beams

  5. Negative secondary ion emission from oxidized surfaces

    International Nuclear Information System (INIS)

    Gnaser, H.; Kernforschungsanlage Juelich G.m.b.H.

    1984-01-01

    The emission of negative secondary ions from 23 elements was studied for 10 keV O 2 + and 10 keV In + impact at an angle of incidence of 45 0 . Partial oxidation of the sample surfaces was achieved by oxygen bombardment and/or by working at a high oxygen partial pressure. It was found that the emission of oxide ions shows an element-characteristic pattern. For the majority of the elements investigated these features are largely invariant against changes of the surface concentration of oxygen. For the others admission of oxygen strongly changes the relative intensities of oxide ions: a strong increase of MO 3 - signals (M stands for the respective element) is accompanied by a decrease of MO - and M - intensities. Different primary species frequently induce changes of both the relative and the absolute negative ion intensities. Carbon - in contrast to all other elements - does not show any detectable oxide ion emission but rather intense cluster ions Csub(n) - (detected up to n=12) whose intensities oscillate in dependence on n. (orig./RK)

  6. Field Measurements of PCB emissions from Building Surfaces Using a New Portable Emission Test Cell

    DEFF Research Database (Denmark)

    Lyng, Nadja; Haven, Rune; Gunnarsen, Lars Bo

    2016-01-01

    The purpose of the study was to measure PCB-emission rates from indoor surfaces on-site in contaminated buildings using a newly developed portable emission test cell. Emission rates were measured from six different surfaces; three untreated surfaces and three remediated surfaces in a contaminated...

  7. The effect of MAO processing time on surface properties and low temperature infrared emissivity of ceramic coating on aluminium 6061 alloy

    Science.gov (United States)

    Al Bosta, Mohannad M. S.; Ma, Keng-Jeng; Chien, Hsi-Hsin

    2013-09-01

    MAO ceramic coatings were prepared on aluminium 6061 surfaces at different treating durations (10, 20, ... 60 min), using alkali silicate electrolyte and pulsed bipolar current mode. The surface microstructures and properties were studied using SEM, XRD, EDX and a surface roughness tester. Image-Pro Plus and MATCH! softwares were used to analyze SEM micrographs and XRD results, respectively. The infrared emissivities of the ceramic coatings were measured at the 70 °C using FTIR spectrometer. We found a linear correlation between the volcano-like area and the surface roughness. The compositions and phases were associated with the volcano-like population and area. The curve of IR spectral emissivity was influenced by surface roughness, γ-alumina, sillimanite and cristobalite phases. The emissivity was enhanced by the surface roughness in the ranges 4.0-9.6 μm and 10.5-14.8 μm. In the range 7.0-8.0 μm, α-alumina and sillimanite phases enhanced the emissivity, while the cristobalite has a negative impact to the emissivity. A negative contributions were found for α-alumina in the region 9.6-16.0 μm and for the surface thickness in the region 15.0-16.0 μm. Overall, the average of long wave infrared (LWIR) emissivity ranged from 87.05% to 91.65%.

  8. Effects of emission reductions at the Hayden powerplant on precipitation, snowpack, and surface-water chemistry in the Mount Zirkel Wilderness Area, Colorado, 1995-2003

    Science.gov (United States)

    Mast, M. Alisa; Campbell, Donald H.; Ingersoll, George P.

    2005-01-01

    Precipitation, snowpack, and surface-water samples collected during 1995-2003 were analyzed to evaluate the effects of emission reductions at the Hayden powerplant on water chemistry in the Mount Zirkel Wilderness Area. The Hayden powerplant, one of two large coal-fired powerplants in the Yampa Valley, was retrofitted with control systems during late 1998 and 1999 to reduce emissions of sulfur dioxide and nitrogen oxide--the primary precursors of haze and acidic precipitation. The U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, evaluated three water-chemistry data sets: wet-only precipitation chemistry from the National Atmospheric Deposition Program, snowpack chemistry from the Rocky Mountain snowpack network, and surface-water chemistry from a U.S. Geological Survey long-term lakes monitoring program. Concentrations and deposition rates of selected constituents were compared for the periods before and after emission reductions at the Hayden powerplant. Data collected during 1995-98 were used to represent the pre-control period, and data collected during 2000-2003 were used to represent the post-control period. Ten stations in the National Atmospheric Deposition Program were evaluated including two that were directly downwind from the Hayden powerplant (Dry Lake and Buffalo Pass) and eight that were upwind or more distant (more than 100 kilometers) from the powerplant. Precipitation amount at all 10 precipitation stations was lower in the post-control period than the pre-control period as a result of a regional drought that persisted during the post-control period. In contrast to precipitation amount, there was no consistent pattern of change in sulfate concentrations between periods, indicating that the drought did not have a concentrating effect on sulfate or that trends in regional sulfur dioxide emissions masked its influence. Sulfate concentrations increased at three stations between periods, remained the

  9. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission

    KAUST Repository

    Hola, Katerina

    2014-04-01

    We present a simple molecular approach to control the lipophilic/ hydrophilic nature of photoluminescent carbon dots (CDs) based on pyrolysis of alkyl gallate precursors. Depending on the gallic acid derivative used, CDs with different alkyl groups (methyl, propyl, lauryl) on the surface can be obtained by isothermal heating at 270 C. This precursor-derived approach allows not only the control of lipophilicity but also the length of the particular alkyl chain enables the control over both the size and photoluminescence (PL) of the prepared CDs. Moreover, the alkyl chains on the CDs surface can be readily converted to carboxylate groups via a mild base hydrolysis to obtain water dispersible CDs with a record biocompatibility. The observed differences in PL properties of CDs and time-resolved PL data, including contributions from carbogenic cores and surface functional group, are rationalized and discussed in detail using time-dependent density functional theory (TD-DFT) calculations. © 2013 Elsevier Ltd. All rights reserved.

  10. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO− induced red-shift emission

    KAUST Repository

    Hola, Katerina; Bourlinos, Athanasios B.; Kozak, Ondrej; Berka, Karel; Siskova, Karolina M.; Havrdova, Marketa; Tucek, Jiri; Safarova, Klara; Otyepka, Michal; Giannelis, Emmanuel P.; Zboril, Radek

    2014-01-01

    We present a simple molecular approach to control the lipophilic/ hydrophilic nature of photoluminescent carbon dots (CDs) based on pyrolysis of alkyl gallate precursors. Depending on the gallic acid derivative used, CDs with different alkyl groups (methyl, propyl, lauryl) on the surface can be obtained by isothermal heating at 270 C. This precursor-derived approach allows not only the control of lipophilicity but also the length of the particular alkyl chain enables the control over both the size and photoluminescence (PL) of the prepared CDs. Moreover, the alkyl chains on the CDs surface can be readily converted to carboxylate groups via a mild base hydrolysis to obtain water dispersible CDs with a record biocompatibility. The observed differences in PL properties of CDs and time-resolved PL data, including contributions from carbogenic cores and surface functional group, are rationalized and discussed in detail using time-dependent density functional theory (TD-DFT) calculations. © 2013 Elsevier Ltd. All rights reserved.

  11. Effect of calcium hydroxide application to feedlot pen surface material on ammonia, odor, and greenhouse gas emissions

    Science.gov (United States)

    Calcium hydroxide (lime) is used to reduce microorganisms and odors in human biosolids, animal and poultry manures, and abattoir wastes. In the cattle industry, lime has been used as a disinfectant and is spread on the pen surface to control infections such as diarrhea and foot rot. The increase in ...

  12. Laser method of acoustical emission control from vibrating surfaces

    Science.gov (United States)

    Motyka, Zbigniew

    2013-01-01

    For limitation of the noise in environment, the necessity occurs of determining and location of sources of sounds emitted from surfaces of many machines and devices, assuring in effect the possibility of suitable constructional changes implementation, targeted at decreasing of their nuisance. In the paper, the results of tests and calculations are presented for plane surface sources emitting acoustic waves. The tests were realized with the use of scanning laser vibrometer which enabled remote registration and the spectral analysis of the surfaces vibrations. The known hybrid digital method developed for determination of sound wave emission from such surfaces divided into small finite elements was slightly modified by distinguishing the phase correlations between such vibrating elements. The final method being developed may find use in wide range of applications for different forms of vibrations of plane surfaces.

  13. Is X-ray emissivity constant on magnetic flux surfaces?

    International Nuclear Information System (INIS)

    Granetz, R.S.; Borras, M.C.

    1997-01-01

    Knowledge of the elongations and shifts of internal magnetic flux surfaces can be used to determine the q profile in elongated tokamak plasmas. X-ray tomography is thought to be a reasonable technique for independently measuring internal flux surface shapes, because it is widely believed that X-ray emissivity should be constant on a magnetic flux surface. In the Alcator C-Mod tokamak, the X-ray tomography diagnostic system consists of four arrays of 38 chords each. A comparison of reconstructed X-ray contours with magnetic flux surfaces shows a small but consistent discrepancy in the radial profile of elongation. Numerous computational tests have been performed to verify these findings, including tests of the sensitivity to calibration and viewing geometry errors, the accuracy of the tomography reconstruction algorithms, and other subtler effects. We conclude that the discrepancy between the X-ray contours and the magnetic flux surfaces is real, leading to the conclusion that X-ray emissivity is not exactly constant on a flux surface. (orig.)

  14. Radiation damages of material surfaces by plasma emission in thermonuclear devices. Methods of study of surface phenomena and simulation effect of thermonuclear plasma

    International Nuclear Information System (INIS)

    Rybalko, V.F.

    1978-01-01

    Phenomena that can introduce a controlling contribution into the erosion of the first wall surface in thermonuclear reactor are reviewed. Considered are the main characteristics of the physical disintegration: dependence of the disintegration coefficient upon the energy and the incidence angle of the bombarding particles, upon the atomic number of the material of the target and the type of bombarding particles. Stressed is the lack of reliable data on the disintegration of materials by light ions, which are of a maximum interest in relation to the controlled thermonuclear synthesis. The chemical disintegration and some regularities of it for the carbon-hydrogen and carbon-oxygen systems are discussed briefly. Listed are the main properties of blistering and its contribution to the erosion of crystalline surfaces

  15. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    Science.gov (United States)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  16. Current in heavy-current planar diode with discrete emission surface

    International Nuclear Information System (INIS)

    Belomyttsev, S.Ya.; Korovin, S.D.; Pegel', I.V

    1999-01-01

    Dependence of current in a high-current planar diode on the size of emission centres was studied. Essential effect of emission surface microstructure on the current value in the planar diode was demonstrated. It was determined that if the distance between the emitter essentially exceeded their size then current dependence on the ratio of size to the value of the diode gap was an exponential function with 3/2 index. Current dependence on voltage obeyed the exponential law with 3/2 index up to higher voltage values in the planar diode with discrete emission surface in contrast to the case of a planar diode with homogeneous emission surface [ru

  17. Electron emission during multicharged ion-metal surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Hughes, I.G.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    The electron emission during multicharged ion-metal surface interactions will be discussed. The interactions lead to the emission of a significant number of electrons. Most of these electrons have energies below 30 eV. For incident ions with innershell vacancies the emission of Auger electrons that fill these vacancies has been found to occur mainly below the surface. We will present recently measured electron energy distributions which will be used to discuss the mechanisms that lead to the emission of Auger and of low-energy electrons

  18. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States

    Directory of Open Access Journals (Sweden)

    Y. F. Lam

    2011-05-01

    Full Text Available Simulations of present and future average regional ozone and PM2.5 concentrations over the United States were performed to investigate the potential impacts of global climate change and emissions on regional air quality using CMAQ. Various emissions and climate conditions with different biogenic emissions and domain resolutions were implemented to study the sensitivity of future air quality trends from the impacts of changing biogenic emissions. A comparison of GEOS-Chem and CMAQ was performed to investigate the effect of downscaling on the prediction of future air quality trends. For ozone, the impacts of global climate change are relatively smaller when compared to the impacts of anticipated future emissions reduction, except for the Northeast area, where increasing biogenic emissions due to climate change have stronger positive effects (increases to the regional ozone air quality. The combination effect from both climate change and emission reductions leads to approximately a 10 % or 5 ppbv decrease of the maximum daily average eight-hour ozone (MDA8 over the Eastern United States. For PM2.5, the impacts of global climate change have shown insignificant effect, where as the impacts of anticipated future emissions reduction account for the majority of overall PM2.5 reductions. The annual average 24-h PM2.5 of the future-year condition was found to be about 40 % lower than the one from the present-year condition, of which 60 % of its overall reductions are contributed to by the decrease of SO4 and NO3 particulate matters. Changing the biogenic emissions model increases the MDA8 ozone by about 5–10 % or 3–5 ppbv in the Northeast area. Conversely, it reduces the annual average PM2.5 by 5 % or 1.0 μg m−3 in the Southeast region.

  19. Electron emission from insulator surfaces by ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Acuna, M; Gravielle, M S, E-mail: mario@iafe.uba.a, E-mail: msilvia@iafe.uba.a [Institutes de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2009-11-01

    Photoelectron emission from insulator surfaces induced by ultra-short laser pulses is studied within a time-dependent distorted wave method. The proposed approach combines the Volkov phase, which takes into account the laser interaction, with a simple representation of the unperturbed surface states, given by the Tight-binding method. The model is applied to evaluate the photoelectron emission from a LiF(001) surface, finding effects of interference produced by the crystal lattice.

  20. Atmospheric/climatic effects of aircraft emissions

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1996-01-01

    Exhaust emissions from aircraft include oxides of nitrogen (NO x ), water vapor (H 2 O), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), hydrocarbons (HC) and particles (soot and sulfates). These emissions are small compared to industrial/urban surface emissions. However, because (1) atmospheric residence times of exhaust constituents are longer at altitude, particularly in the stratosphere, than they are in the boundary layer, (2) their background concentrations at altitude are lower than those near the surface, (3) the radiation balance is the more sensitive to atmospheric trace constituents the colder the temperature aloft and (4) inter-hemispheric mixing of aircraft effluents is inhibited, aircraft emissions near and above the tropopause and polewards of 40 degrees latitude can be environmentally critical. That's why atmospheric/climatic effects of aircraft emissions have again received scientific, economic and political scrutiny in the last few years, motivated by growth of subsonic traffic at about 5% per year over the past two decades and the advent of a technologically feasible operation of a supersonic high speed commercial transport (HSCT) fleet

  1. Greenhouse effects of aircraft emissions

    International Nuclear Information System (INIS)

    Fortuin, J.P.F.; Wauben, W.M.F.; Dorland, R. van; Kelder, H.

    1996-01-01

    Ranges for direct and indirect greenhouse effects due to present day aircraft emissions are quantified for northern midlatitudes, using the concept of fixed temperature (FT) radiative forcing as calculated with a radiative transfer model. The direct greenhouse effects considered here are from emissions of carbon dioxide, water vapor, and nitrogen dioxide. To calculate the concentration increases of carbon dioxide and stratospheric water vapor, an analytical expression is developed based on a linear approximation of global fuel burn versus time. Unlike the expressions currently used in the literature, the authors' expression does not account for emission rates only, but also for a loss term--hence making it more suitable for shorter lived emittants. For midlatitude summer conditions, a total radiative forcing ranging from 0.04 to 0.09 Wm -2 is calculated for the direct greenhouse effects, whereas for midlatitude winter the range is 0.07 to 0.26 Wm -2 . The indirect greenhouse effects considered here are sulfate aerosol formation from sulfur dioxide emissions, contrail formation from emitted water vapor and condensation nuclei, and ozone formation from NO x emissions. The total radiative forcing coming from these indirect effects range from -0.67 to 0.25 Wm -2 in summer a/nd from -0.36 to 0.21 Wm -2 in winter. Further, the global distribution of NO x and ozone increases from aircraft emissions world-wide are simulated with a three-dimensional chemistry transport model for January and July. The geographical distribution of the radiative forcing associated with the simulated ozone increases is also calculated for these months

  2. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Directory of Open Access Journals (Sweden)

    A. Sharma

    2017-12-01

    Full Text Available We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem with the second-generation Regional Acid Deposition Model (RADM2 chemical mechanism: the Emissions Database for Global Atmospheric Research – Hemispheric Transport of Air Pollution (EDGAR-HTAP, the Intercontinental Chemical Transport Experiment phase B (INTEX-B and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS. Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30–16:30 IST – Indian Standard Time – UTC +5:30, are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10–30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP, central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  3. WRF-Chem simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and chemical mechanisms

    Science.gov (United States)

    Sharma, Amit; Ojha, Narendra; Pozzer, Andrea; Mar, Kathleen A.; Beig, Gufran; Lelieveld, Jos; Gunthe, Sachin S.

    2017-12-01

    We evaluate numerical simulations of surface ozone mixing ratios over the south Asian region during the pre-monsoon season, employing three different emission inventories in the Weather Research and Forecasting model with Chemistry (WRF-Chem) with the second-generation Regional Acid Deposition Model (RADM2) chemical mechanism: the Emissions Database for Global Atmospheric Research - Hemispheric Transport of Air Pollution (EDGAR-HTAP), the Intercontinental Chemical Transport Experiment phase B (INTEX-B) and the Southeast Asia Composition, Cloud, Climate Coupling Regional Study (SEAC4RS). Evaluation of diurnal variability in modelled ozone compared to observational data from 15 monitoring stations across south Asia shows the model ability to reproduce the clean, rural and polluted urban conditions over this region. In contrast to the diurnal average, the modelled ozone mixing ratios during noontime, i.e. hours of intense photochemistry (11:30-16:30 IST - Indian Standard Time - UTC +5:30), are found to differ among the three inventories. This suggests that evaluations of the modelled ozone limited to 24 h average are insufficient to assess uncertainties associated with ozone buildup. HTAP generally shows 10-30 ppbv higher noontime ozone mixing ratios than SEAC4RS and INTEX-B, especially over the north-west Indo-Gangetic Plain (IGP), central India and southern India. The HTAP simulation repeated with the alternative Model for Ozone and Related Chemical Tracers (MOZART) chemical mechanism showed even more strongly enhanced surface ozone mixing ratios due to vertical mixing of enhanced ozone that has been produced aloft. Our study indicates the need to also evaluate the O3 precursors across a network of stations and the development of high-resolution regional inventories for the anthropogenic emissions over south Asia accounting for year-to-year changes to further reduce uncertainties in modelled ozone over this region.

  4. Surface magnetism studied by polarized light emission after He+ scattering

    NARCIS (Netherlands)

    Manske, J; Dirska, M; Lubinski, G; Schleberger, M; Narmann, A; Hoekstra, R

    Surface magnetism is studied by means of an ion beam of low energy (2-15 keV) scattered off the surface under grazing incidence conditions. During the scattering, a small fraction of the ions is neutralized into excited states which decay subsequently by light emission. The circular polarization of

  5. An experimental study of electron transfer and emission during particle-surface interactions

    International Nuclear Information System (INIS)

    McGrath, C.T.

    2000-09-01

    A new coincidence technique has been developed and used to study the secondary electron emission that arises during the interaction of ions with surfaces. This coincidence technique allows the secondary electron emission statistics due to the impact of singly, doubly and multiply charged ions on surfaces to be measured in coincidence with reflected particles, in specific charge states and with specific post-collision trajectories. This system has been used to study the impact of 8 keV H + ions on polycrystalline copper and aluminium targets. Under these conditions the potential emission contribution is negligible and the electron emission is almost entirely due to kinetic emission processes. The sub-surface contribution to the observed electron emission has been isolated using two newly developed models. These models provide valuable information about the depth and amount of surface penetration and on the probability for subsequent electron transport to the surface. The impact of 2 - 100 keV Xe q+ (q = 1 - 10) ions on polycrystalline copper has also been studied using this system. From the subsequent data the potential and kinetic contributions to secondary electron emission have been separated using a previously established model for potential emission. The resulting kinetic emission yield increases with increasing ion impact energy, consistent with current concepts on quasimolecular ionisation. For ions impacting at large incident angles evidence for sub-surface emission has also been observed. The degree of penetration increases with ion impact energy, consistent with current concepts on this effect. The formation of H - ions from incident H + ions has also been studied by measuring the secondary electron emission statistics in coincidence with reflected particles in specific final charge states. This preliminary data is consistent with a two-step process of Auger neutralisation followed by resonant electron capture to the affinity level. However this mechanism

  6. Photoelectron emission from metal surfaces by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Faraggi, M. N.; Gravielle, M. S.; Silkin, V. M.

    2006-01-01

    Electron emission from metal surfaces produced by short laser pulses is studied within the framework of the distorted-wave formulation. The proposed approach, named surface-Volkov (SV) approximation, makes use of the band-structure based (BSB) model and the Volkov phase to describe the interaction of the emitted electron with the surface and the external electric field, respectively. The BSB model provides a realistic representation of the surface, based on a model potential that includes the main features of the surface band structure. The SV method is applied to evaluate the photoelectron emission from the valence band of Al(111). Angular and energy distributions are investigated for different parameters of the laser pulse, keeping in all cases the carrier frequency larger than the plasmon one

  7. Surface charge compensation for a highly charged ion emission microscope

    International Nuclear Information System (INIS)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-01-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed

  8. Ion induced optical emission for surface and depth profile analysis

    International Nuclear Information System (INIS)

    White, C.W.

    1977-01-01

    Low-energy ion bombardment of solid surfaces results in the emission of infrared, visible, and ultraviolet radiation produced by inelastic ion-solid collision processes. The emitted optical radiation provides important insight into low-energy particle-solid interactions and provides the basis for an analysis technique which can be used for surface and depth profile analysis with high sensitivity. The different kinds of collision induced optical radiation emitted as a result of low-energy particle-solid collisions are reviewed. Line radiation arising from excited states of sputtered atoms or molecules is shown to provide the basis for surface and depth profile analysis. The spectral characteristics of this type of radiation are discussed and applications of the ion induced optical emission technique are presented. These applications include measurements of ion implant profiles, detection sensitivities for submonolayer quantities of impurities on elemental surfaces, and the detection of elemental impurities on complex organic substrates

  9. Global Occurrence and Emission of Rotaviruses to Surface Waters

    Directory of Open Access Journals (Sweden)

    Nicholas M. Kiulia

    2015-05-01

    Full Text Available Group A rotaviruses (RV are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

  10. Redeposition of etch products on sidewalls during SiO2 etching in a fluorocarbon plasma. I. Effect of particle emission from the bottom surface in a CF4 plasma

    International Nuclear Information System (INIS)

    Min, Jae-Ho; Hwang, Sung-Wook; Lee, Gyeo-Re; Moon, Sang Heup

    2002-01-01

    The effect of etch-product redeposition on sidewall properties during the etching of step-shaped SiO 2 patterns in a CF 4 plasma was examined using a Faraday cage located in a transformer coupled plasma etcher. Sidewall properties were observed for two cases: with and without particles emitted from the bottom surface in normal contact with the sidewall. Particles sputtered from the bottom surface were redeposited on the sidewall, which contributes to the formation of a passivation layer on the surface of the latter. The passivation layer consisted of silicon oxide, Si x O y , and fluorocarbon, C x F y , the latter comprising the major species. Ar plasma experiments confirmed that C x F y or a fluorocarbon polymer must be present on the sidewall in order for the Si x O y species to be deposited on the surface. The redeposited particles, which were largely F-deficient fluorocarbon species, as evidenced by x-ray photoelectron spectroscopy analyses, functioned as precursors for fluorocarbon polymerization, resulting in a rough sidewall surface. The chemical etch rates of SiO 2 were retarded by the redeposition of particles, which eventually formed a thick layer, eventually covering the bulk SiO 2 . Auger electron spectroscopy analyses of the sidewall surface affected by the emission from the bottom suggest that the surface consists of three distinct layers: a surface-carbon layer, a redeposition-etch combined layer, and bulk SiO 2

  11. Temporal Arctic longwave surface emissivity feedbacks in the Community Earth System Model

    Science.gov (United States)

    Kuo, C.; Feldman, D.; Huang, X.; Flanner, M.; Yang, P.; Chen, X.

    2017-12-01

    We have investigated how the inclusion of realistic and consistent surface emissivity in both land-surface and atmospheric components of the CESM coupled-climate model affects a wide range of climate variables. We did this by replacing the unit emissivity values in RRTMG_LW for water, fine-grained snow, and desert scenes with spectral emissivity values, and by replacing broadband emissivity values in surface components with the Planck-curve weighted counterparts. We find that this harmonized treatment of surface emissivity within CESM can be important for reducing high-latitude temperature biases. We also find that short-term effects of atmospheric dynamics and spectral information need to be considered to understand radiative effects in higher detail, and are possible with radiative kernels computed for every grid and time point for the entire model integration period. We find that conventional climatological feedback calculations indicate that sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Furthermore, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice response to climate forcing between the Arctic and the Antarctic. In the Arctic, this seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity radiative response in a warming climate. While the sea-ice emissivity feedback and seasonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially and temporally localized feedback analysis can give insight into the mechanisms at work on those scales which differ in amplitude and sign from conventional climatological analyses. We note that the inclusion of this realistic physics leads to improved agreement between CESM model results and Arctic surface

  12. Dynamic Inversion of Global Surface Microwave Emissivity Using a 1DVAR Approach

    Directory of Open Access Journals (Sweden)

    Sid-Ahmed Boukabara

    2018-04-01

    Full Text Available A variational inversion scheme is used to extract microwave emissivity spectra from brightness temperatures over a multitude of surface types. The scheme is called the Microwave Integrated Retrieval System and has been implemented operationally since 2007 at NOAA. This study focuses on the Advance Microwave Sounding Unit (AMSU/MHS pair onboard the NOAA-18 platform, but the algorithm is applied routinely to multiple microwave sensors, including the Advanced Technology Microwave Sounder (ATMS on Suomi-National Polar-orbiting Partnership (SNPP, Special Sensor Microwave Imager/Sounder (SSMI/S on the Defense Meteorological Satellite Program (DMSP flight units, as well as to the Global Precipitation Mission (GPM Microwave Imager (GMI, to name a few. The emissivity spectrum retrieval is entirely based on a physical approach. To optimize the use of information content from the measurements, the emissivity is extracted simultaneously with other parameters impacting the measurements, namely, the vertical profiles of temperature, moisture and cloud, as well as the skin temperature and hydrometeor parameters when rain or ice are present. The final solution is therefore a consistent set of parameters that fit the measured brightness temperatures within the instrument noise level. No ancillary data are needed to perform this dynamic emissivity inversion. By allowing the emissivity to be part of the retrieved state vector, it becomes easy to handle the pixel-to-pixel variation in the emissivity over non-oceanic surfaces. This is particularly important in highly variable surface backgrounds. The retrieved emissivity spectrum by itself is of value (as a wetness index for instance, but it is also post-processed to determine surface geophysical parameters. Among the parameters retrieved from the emissivity using this approach are snow cover, snow water equivalent and effective grain size over snow-covered surfaces, sea-ice concentration and age from ice

  13. Mechanism of negative ion emission from surfaces of ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Zdeněk

    2012-01-01

    Roč. 606, 15-16 (2012), s. 1327-1330 ISSN 0039-6028 Institutional support: RVO:67985882 Keywords : Surface of ferroelectrics * Ion emission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.838, year: 2012 http://www.sciencedirect.com/science/article/pii/S0039602812001525#gts0005

  14. Application of a sawtooth surface to accelerator beam chambers with low electron emission rate

    International Nuclear Information System (INIS)

    Suetsugu, Y.; Tsuchiya, M.; Nishidono, T.; Kato, N.; Satoh, N.; Endo, S.; Yokoyama, T.

    2003-01-01

    One of the latest problems in positron or proton accelerators is a single-beam instability due to an electron cloud around the beam. The instability, for an example, causes a beam size blow up of the positron beam and deteriorates the performance of the electron-positron collider. the seed of the electron cloud is the electrons emitted from the surface of the beam chamber, which consists of electrons due to the synchrotron radiation (photoelectrons) and sometimes those multiplied by the multipactoring. Suppressing the electron emission from the surface is, therefore, an essential way to cure the instability. Here a rough surface with a sawtooth structure (sawtooth surface) is proposed to reduce the electron emission from the surface of the beam chamber. A new rolling-tap method is developed for this study to make the sawtooth surface in a circular beam chamber with a length of several meters. The first experiment using a test chamber at a photon beam line of the KEK Photon Factory verifies its validity. The photoelectron emission from the sawtooth surface reduces by one order of magnitude compared to the usual smooth surface. In the second experiment under a bunched positron beam in the KEK B-Factory, however, the electron emission is comparable to that of a smooth surface and the behavior is quite different from the previous one. The reason is that the beam field excites the multipactoring of electrons and the decrease of the photoelectron emission by the sawtooth surface is wiped out. The sawtooth surface will be effective to reduce the electron emission under the situation with external magnetic fields or without strong beam fields where the electron multipactoring hardly occurs

  15. Multimodel Surface Temperature Responses to Removal of U.S. Sulfur Dioxide Emissions

    Science.gov (United States)

    Conley, A. J.; Westervelt, D. M.; Lamarque, J.-F.; Fiore, A. M.; Shindell, D.; Correa, G.; Faluvegi, G.; Horowitz, L. W.

    2018-03-01

    Three Earth System models are used to derive surface temperature responses to removal of U.S. anthropogenic SO2 emissions. Using multicentury perturbation runs with and without U.S. anthropogenic SO2 emissions, the local and remote surface temperature changes are estimated. In spite of a temperature drift in the control and large internal variability, 200 year simulations yield statistically significant regional surface temperature responses to the removal of U.S. SO2 emissions. Both local and remote surface temperature changes occur in all models, and the patterns of changes are similar between models for northern hemisphere land regions. We find a global average temperature sensitivity to U.S. SO2 emissions of 0.0055 K per Tg(SO2) per year with a range of (0.0036, 0.0078). We examine global and regional responses in SO4 burdens, aerosol optical depths (AODs), and effective radiative forcing (ERF). While changes in AOD and ERF are concentrated near the source region (United States), the temperature response is spread over the northern hemisphere with amplification of the temperature increase toward the Arctic. In all models, we find a significant response of dust concentrations, which affects the AOD but has no obvious effect on surface temperature. Temperature sensitivity to the ERF of U.S. SO2 emissions is found to differ from the models' sensitivity to radiative forcing of doubled CO2.

  16. Study of electronic field emission from large surfaces under static operating conditions and hyper-frequency

    International Nuclear Information System (INIS)

    Luong, M.

    1997-09-01

    The enhanced electronic field emission from large area metallic surfaces lowers performances of industrial devices that have to sustain high electric field under vacuum. Despite of numerous investigations in the past, the mechanisms of such an emission have never been well clarified. Recently, research in our laboratory has pointed out the importance played by conducting sites (particles and protrusions). A refined geometrical model, called superposed protrusions model has been proposed to explain the enhanced emission by local field enhancement. As a logical continuation, the present work aims at testing this model and, in the same time, investigating the means to suppress the emission where it is undesirable. Thus, we have showed: the cause of current fluctuations in a continuous field regime (DC), the identity of emission characteristics (β, A e ) in both radiofrequency (RF) and DC regimes, the effectiveness of a thermal treatment by extern high density electronic bombardment, the effectiveness of a mechanical treatment by high pressure rinsing with ultra pure water, the mechanisms and limits of an in situ RF processing. Furthermore, the electronic emission from insulating particles has also been studied concurrently with a spectral analysis of the associated luminous emission. Finally, the refined geometrical model for conducting sites is reinforced while another model is proposed for some insulating sites. Several emission suppressing treatments has been explored and validated. At last, the characteristic of a RF pulsed field emitted electron beam has been checked for the first time as a possible application of such a field emission. (author)

  17. Carbon dioxide emission from raised bog surface after peat extraction

    Directory of Open Access Journals (Sweden)

    Turbiak Janusz

    2017-12-01

    Full Text Available Research on CO2 emission from a raised bog after completion of peat extraction was performed in 2011–2013. CO2 emissions were determined by the chamber method. Twenty years after the termination of peat extraction, the bog surface was almost entirely devoid of plants. CO2 emission from the bog varied depending on temperature and water conditions and was 418 mg·m−2·h−1 on average during the research period. CO2 losses on the raised bog were on average 19.7 Mg·ha−1·year−1 during the research period which corresponded to a carbon loss of 5.37 Mg·ha−1·year−1 or mineralisation of 9.6 Mg·ha−1·year−1 of organic mass of 56% carbon content. It is possible to reduce organic mass losses and CO2 emission to the atmosphere from the bog surface after peat extraction has been terminated by reconstruction of initial water conditions, i.e. retaining a high ground water level and restoration of aquatic plant communities.

  18. Photon emission produced by particle-surface collisions

    International Nuclear Information System (INIS)

    White, C.W.; Tolk, N.H.

    1976-02-01

    Visible, ultraviolet, and infrared optical emission results from low-energy (20 eV-10 keV) particle-surface collisions. Several distinct kinds of collision induced optical radiation are discussed which provide fundamental information on particle-solid collision processes. Line radiation arises from excited states of sputtered surface constituents and backscattered beam particles. This radiation uniquely identifies the quantum state of sputtered or reflected particles, provides a method for identifying neutral atoms sputtered from the surface, and serves as the basis for a sensitive surface analysis technique. Broadband radiation from the bulk of the solid is attributed to the transfer of projectile energy to the electrons in the solid. Continuum emission observed well in front of transition metal targets is believed to arise from excited atom clusters (diatomic, triatomic, etc.) ejected from the solid in the sputtering process. Application of sputtered atom optical radiation for surface and depth profile analysis is demonstrated for the case of submonolayer quantities of chromium on silicon and aluminum implanted in SiO 2

  19. Electron emission during multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Meyer, F.W.; Zehner, D.M.

    1990-01-01

    Recent measurements of electron spectra for slow multicharged N ion-surface collisions are presented. The emphasis is on potential emission, i.e. the electron emission related to the neutralization of the ions. When using N ions that carry a K shell vacancy into the collision, characteristic K Auger electron emission from the projectiles is observed, as well as, for specific surfaces, target atom Auger transitions (resulting from vacancy transfer). Measurements of the intensity of these Auger transitions as a function of the time the ions spend above the surface can serve as a useful probe of the timescales characterizing the relevant neutralization processes. This technique is elucidated with the help of some computer simulations. It is shown that neutralization timescales required in the atomic ladder picture, in which neutralization takes place by resonant capture followed by purely intra-atomic Auger transitions, are too long to explain our experimental results. The introduction of additional neutralization/de-excitation mechanisms in the simulations leads to much better agreement with the experiments

  20. Tunable surface plasmon instability leading to emission of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii, E-mail: aiurov@chtm.unm.edu [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Pan, Wei [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2015-08-07

    We propose a new approach for energy conversion from a dc electric field to tunable terahertz emission based on hybrid semiconductors by combining two-dimensional (2D) crystalline layers and a thick conducting material with possible applications for chemical analysis, security scanning, medical (single-molecule) imaging, and telecommunications. The hybrid nano-structure may consist of a single or pair of sheets of graphene, silicene, or a 2D electron gas. When an electric current is passed through a 2D layer, we discover that two low-energy plasmon branches exhibit a characteristic loop in their dispersion before they merge into an unstable region beyond a critical wave vector q{sub c}. This finite q{sub c} gives rise to a wavenumber cutoff in the emission dispersion of the surface plasmon induced instability and emission of radiation (spiler). However, there is no instability for a single driven layer far from the conductor, and the instability of an isolated pair of 2D layers occurs without a wavenumber cutoff. The wavenumber cutoff is found to depend on the conductor electron density, layer separation, distances of layers from the conductor surface, and the driving-current strength.

  1. Emissions of Photonic Crystal Waveguides with Discretely Modulated Surfaces

    International Nuclear Information System (INIS)

    Dong-Hua, Tang; Li-Xue, Chen; Yan, Liu; Xiu-Dong, Sun; Wei-Qiang, Ding

    2009-01-01

    Transmission properties of photonic crystal (PC) waveguides with discretely modulated exit surfaces are investigated numerically using the unite-difference time-domain (FDTD) method. Unlike the case of periodically modulated surfaces, where the transmission beam tends to be a single and directional beam, when the exit surfaces are modulated only at several discrete points, the emission power tends to split into multiple and directional beams. We explain this phenomenon using a multiple point source interference model. Based on these results, we propose a 1-to-N beam splitter, and numerically realized high efficiency coupling between a PC sub-wavelength waveguide and three traditional dielectric waveguides with a total efficiency larger than 92%. This simple, easy fabrication, and controllable mechanism may find more potential applications in integrated optical circuits. (fundamental areas of phenomenology(including applications))

  2. Inverse compton emission of gamma rays near the pulsar surface

    International Nuclear Information System (INIS)

    Morini, M.

    1981-01-01

    The physical conditions near pulsar surface that might give rise to gamma ray emission from Crab and Vela pulsars are not yet well understood. Here I suggest that, in the context of the vacuum discharge mechanism proposed by Ruderman and Sutherland (1975), gamma rays are produced by inverse Compton scattering of secondary electrons with the thermal radiation of the star surface as well as for curvature and synchotron radiation. It is found that inverse Compton scattering is relevant if the neutron star surface temperature is greater than 10 6 K or of the polar cap temperature is of the order of 5 x 10 6 K. Inverse Compton scattering in anisotropic photon fields and Klein-Nishina regime is here carefully considered. (orig.)

  3. Terahertz emission from semi-insulating GaAs with octadecanthiol-passivated surface

    International Nuclear Information System (INIS)

    Wu, Xiaojun; Xu, Xinlong; Lu, Xinchao; Wang, Li

    2013-01-01

    Terahertz (THz) emission from octadecanthiol (ODT) passivated (1 0 0) surface of the semi-insulating GaAs was measured, and compared with those from the native oxidized and the fresh surfaces. It was shown that the self-assembled ODT monolayer can stabilize the GaAs (1 0 0) surface, and maintain a THz surface emission 1.4 times as efficient as the native oxidized surface under equal conditions. Surface passivation can reduce the built-in electric field in the depletion region of the GaAs (1 0 0), resulting in the suppression of the THz radiation to a different extent. Oxidation of GaAs surface reduces the THz amplitude mainly in the low-frequency region. These results indicate that GaAs can be made a more effective THz source by choosing molecular passivation technique. Conversely, the THz emission features such as polarity, amplitude, and phase from molecule-passivated surfaces may be used to characterize the attached molecules.

  4. Trace moisture emissions from heated metal surfaces in hydrogen service

    International Nuclear Information System (INIS)

    Funke, Hans H.; Yao Jianlong; Raynor, Mark W.

    2004-01-01

    The formation of trace moisture by exposure of dry heated surfaces of 316 L stainless-steel, Restek Silcosteel registered , and nickel 1/8 in. outer diameter line segments to purified Ar and H 2 was studied using atmospheric pressure ionization mass spectrometry at flow rates of 2 slpm. Prior to H 2 exposure, adsorbed moisture was removed by heating incrementally to 500 deg. C in an argon matrix, where the Restek Silcosteel registered material released a maximum of 50 ppb moisture at 300 deg. C and moisture spikes from the Ni and stainless-steel surfaces reached several 100 ppb. Upon exposure to H 2 , persistent low ppb moisture emissions due to the reduction of surface oxide species were observed at temperatures as low as 100 deg. C. Spikes at 300-500 deg. C ranged from ∼100 ppb for the stainless-steel lines to 400 ppb for the Restek Silcosteel registered material. The observed moisture emissions have to be considered as a potential contamination source for high-purity processes utilizing H 2 purge at elevated temperatures

  5. Diesel exhaust emissions : health effects

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, M. [Natural Resources Canada, Sudbury, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-07-01

    Despite modern day ventilation, underground miners are exposed to diesel particulate matter (DPM) composed of elemental carbon, organic carbon, sulphates, metals and ashes. Diesel exhaust contains over 40 air contaminants that have been recognized as toxic, carcinogenic or reproductive and developmental hazards. Nearly all components of diesel exhaust interact with the human body at the bloodstream or tissue level. This presentation discussed the following 4 potential levels of threat posed by the physical and chemical nature of diesel exhaust: (1) cancer of the lungs and bladder, (2) toxins that affect the nervous, endocrine, reproductive and immune system as well as the liver and kidneys, (3) fine particulate matter that can cause premature death and an increase in respiratory illness, and (4) nitrogen oxides that contribute to increased ozone and smog. Non-cancer health effects from short-term exposure include acute irritation and respiratory symptoms. This presentation also referred to cancer risk assessments of diesel exhaust by national, state, and world health organizations. Particulate exposure standards for Canada, Quebec, Ontario and the United States were listed along with the percentage of DPM samples in excess of various exposure limits in 2008 according to Canadian underground mine data. DPM concentration levels in mines are in the range that environmental agencies would consider high for general population exposure. Solutions for underground mines include pollution control at the source; use of modern engines with certification for underground mining; emissions based maintenance; exhaust treatment; use of clean or alternative fuels such as hydrogen; regular sampling and monitoring; ventilation; training and technology transfer; and regulations. tabs., figs.

  6. Economic effects on taxing CO2 emissions

    International Nuclear Information System (INIS)

    Haaparanta, P.; Jerkkola, J.; Pohjola, J.

    1996-01-01

    The CO 2 emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO 2 taxation. First one was the economic effects of increasing CO 2 tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  7. Optical emission from low-energy ion-surface collisions

    International Nuclear Information System (INIS)

    White, C.W.; Thomas, E.W.; Van der Weg, W.F.; Tolk, N.H.

    1977-01-01

    Impact of energetic heavy particles on surfaces gives rise to emission of optical radiation from reflected particles, sputtered particles and also from excited states of the solid. The present status of research in this area is reviewed with emphasis on understanding the basic mechanisms which give rise to formation of excited states. The spectral line shape from ejected atoms may be analyzed to provide information on the distribution of speeds and directions of the excited species; the line intensity provides a measure of the probability for creating the state. Formation of excited species is related both to the collision processes within the solid and also to the interaction of the recoiling ejected species with the target surface. Most ejected species are atomic but important examples of ejected molecules are also discussed. Luminescence induced in the solid itself is related to recombination of electron hole pairs and is related significantly to the presence of defects

  8. Qualitative internal surface roughness classification using acoustic emission

    International Nuclear Information System (INIS)

    Mohd Hafizi Zohari; Mohd Hanif Saad

    2009-04-01

    This paper describes a novel new nondestructive method of qualitative internal surface roughness classification for pipes utilizing Acoustic Emission (AE) signal. Two different flowrate are introduced in a pipe obstructed using normally available components (e.g.: valve). The AE signal at suitable location from the obstruction are obtained and the peak amplitudes, RMS amplitude and energy of the AE signal are obtained. A dimensionless number, the Bangi Number, AB, is then calculated as a ratio of the AE parameters (peak amplitude, RMS amplitude or energy) in low flowrate measurement compared to the AE parameters in high flowrate measurement. It was observed that the Bangi Number, AB obtained can then be used to successfully discriminate between rough and smooth internal surface roughness. (author)

  9. Seasonal Surface Spectral Emissivity Derived from Terra MODIS Data

    Science.gov (United States)

    Sun-Mack, Sunny; Chen, Yan; Minnis, Patrick; Young, DavidF.; Smith, William J., Jr.

    2004-01-01

    The CERES (Clouds and the Earth's Radiant Energy System) Project is measuring broadband shortwave and longwave radiances and deriving cloud properties form various images to produce a combined global radiation and cloud property data set. In this paper, simultaneous data from Terra MODIS (Moderate Resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 11.0, and 12.0 m are used to derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of clear sky temperature in each channel determined by scene classification during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7- m radiances. A set of simultaneous equations is then solved to derive the emissivities. Global monthly emissivity maps are derived from Terra MODIS data while numerical weather analyses provide soundings for correcting the observed radiances for atmospheric absorption. These maps are used by CERES and other cloud retrieval algorithms.

  10. Fluxon induced surface resistance and field emission in niobium films at 1.5 GHz

    CERN Document Server

    Benvenuti, Cristoforo; Darriulat, Pierre; Peck, M A; Valente, A M; Van't Hof, C A

    2001-01-01

    The surface resistance of superconducting niobium films induced by the presence of trapped magnetic flux, presumably in the form of a pinned fluxon lattice, is shown to be modified by the presence of a field emitting impurity or defect. The modification takes the form of an additional surface resistance proportional to the density of the fluxon lattice and increasing linearly with the amplitude of the microwave above a threshold significantly lower than the field emission threshold. Such an effect, a precursor of electron emission, is observed for the first time in a study using radiofrequency cavities operating at their fundamental 1.5 GHz frequency. The measured properties of the additional surface resistance severely constrain possible explanations of the observed effect. (23 refs).

  11. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    Science.gov (United States)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  12. Modification of spontaneous emission from nanodiamond colour centres on a structured surface

    International Nuclear Information System (INIS)

    Inam, F A; Gaebel, T; Bradac, C; Withford, M J; Rabeau, J R; Steel, M J; Stewart, L; Dawes, J M

    2011-01-01

    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for the development of efficient single-photon sources having high collection efficiency. A number of groups have achieved an enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. In this paper, we characterize in detail the spontaneous emission rates of nitrogen-vacancy centres at various locations on a structured substrate. We found a factor of 1.5 average enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observed changes in the lifetime distribution. We present a model for explaining these observations and associate the lifetime properties with dipole orientation and polarization effects.

  13. Modification of spontaneous emission from nanodiamond colour centres on a structured surface

    Energy Technology Data Exchange (ETDEWEB)

    Inam, F A; Gaebel, T; Bradac, C; Withford, M J; Rabeau, J R; Steel, M J [Centre for Quantum Science and Technology, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Stewart, L; Dawes, J M, E-mail: james.rabeau@mq.edu.au, E-mail: michael.steel@mq.edu.au [MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia)

    2011-07-15

    Colour centres in diamond are promising candidates as a platform for quantum technologies and biomedical imaging based on spins and/or photons. Controlling the emission properties of colour centres in diamond is a key requirement for the development of efficient single-photon sources having high collection efficiency. A number of groups have achieved an enhancement in the emission rate over narrow wavelength ranges by coupling single emitters in nanodiamond crystals to resonant electromagnetic structures. In this paper, we characterize in detail the spontaneous emission rates of nitrogen-vacancy centres at various locations on a structured substrate. We found a factor of 1.5 average enhancement of the total emission rate when nanodiamonds are on an opal photonic crystal surface, and observed changes in the lifetime distribution. We present a model for explaining these observations and associate the lifetime properties with dipole orientation and polarization effects.

  14. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam; Zhao, Jiajun; Prather, Wayne E.; Wu, Ying; Zhang, Likun

    2018-01-01

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  15. Acoustic Purcell Effect for Enhanced Emission

    KAUST Repository

    Landi, Maryam

    2018-03-13

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi’s golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  16. Economic effects of restricting carbon dioxide emissions

    International Nuclear Information System (INIS)

    Haaparanta, P.; Jerkkola, J.; Pohjola, J.

    1994-01-01

    The aim of this study is to evaluate the economy-wide effects of reducing CO 2 emissions. NO x and SO 2 emissions can also be included. The policy questions can be approached either by estimating the emission taxes needed to achieve the given levels of emissions or by estimating the level of emissions given the level of taxes. A computable general equilibrium (CGE) is used in this analysis. The general equilibrium models deal with long-run effects, after all markets have equilibrated and all resources are optimally used. They are particularly well-suited to analyze long-run resource allocation, welfare losses and income distribution, beyond the short-run macroeconomic disturbances and business cycle phenomena. As the general equilibrium framework integrates all main economic sectors, the feedbacks and interrelationships between the various sectors are taken into account

  17. Surface Effects in Magnetic Nanoparticles

    CERN Document Server

    Fiorani, Dino

    2005-01-01

    This volume is a collection of articles on different approaches to the investigation of surface effects on nanosized magnetic materials, with special emphasis on magnetic nanoparticles. The book aims to provide an overview of progress in the understanding of surface properties and surface driven effects in magnetic nanoparticles through recent results of different modeling, simulation, and experimental investigations.

  18. Nonclassical polarization effects in fluorescence emission spectra from microdroplets

    Science.gov (United States)

    Arnold, S.; Goddard, N. L.; Hill, S. C.

    1999-12-01

    We report a pronounced nonclassical polarization effect on the shape of fluorescence emission spectra from isolated microdroplets containing a dilute solution of soluble fluors or a dilute layer of surfactant fluors. We see different spectral shapes for 90° scattering when comparing between IVV, IVH, IHH, IHV. However, we measure the largest difference in spectral shape in the surfactant case, with the incident polarization directed toward the detector (IHV vs IHH). Imaging reveals that the emission in this case principally arises from two distinct regions near the surface of the droplet, which are diametrically opposed and along the axis of the incident laser beam. The effect appears to be the direct result of coupling between molecular emission moments and electromagnetic modes of the droplet. It is not the molecule which radiates but the molecule microvessel. Directional emission is sensitive to the polarization of the electromagnetic mode which is stimulated by the coupling.

  19. Field-emission from parabolic tips: Current distributions, the net current, and effective emission area

    Science.gov (United States)

    Biswas, Debabrata

    2018-04-01

    Field emission from nano-structured emitters primarily takes place from the tips. Using recent results on the variation of the enhancement factor around the apex [Biswas et al., Ultramicroscopy 185, 1-4 (2018)], analytical expressions for the surface distribution of net emitted electrons, as well as the total and normal energy distributions are derived in terms of the apex radius Ra and the local electric field at the apex Ea. Formulae for the net emitted current and effective emission area in terms of these quantities are also obtained.

  20. Surface emission of quark gluon plasma at RHIC and LHC

    International Nuclear Information System (INIS)

    Xiang Wenchang; Wan Renzhou; Zhou Daicui

    2008-01-01

    Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au-Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor P AALHS ∼0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC. (authors)

  1. Surface effects in controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1975-08-01

    During the operation of large size plasma facilities and future controlled thermonuclear fusion reactors the surfaces of such major components as container walls, beam limiters, diverter walls and beam-dump walls of the injector region will be exposed to particle and photon bombardment from primary plasma radiations and from secondary radiations. Such radiations can cause, for example, physical and chemical sputtering, blistering, particle- and photon-impact induced desorption, secondary electron and x-ray emission, backscattering, nuclear reactions, photo-decomposition of surface compounds, photocatalysis, and vaporization. Such effects in turn can (a) seriously damage and erode the bombarded surface and (b) release major quantities of impurities which will contaminate the plasma. The effects of some of the major surface phenomena on the operation of plasma facilities and future fusion reactors are discussed

  2. Photoelectric emission from negative-electron-affinity diamond (111) surfaces: Exciton breakup versus conduction-band emission

    International Nuclear Information System (INIS)

    Bandis, C.; Pate, B.B.

    1995-01-01

    We have recently reported that bound electron-hole pairs (Mott-Wannier excitons) are the dominant source of photoelectron emission from specially prepared [''as-polished'' C(111)-(1x1):H] negative-electron-affinity diamond surfaces for near-band-gap excitation up to 0.5 eV above threshold [C. Bandis and B. B. Pate, Phys. Rev. Lett. 74, 777 (1995)]. It was found that photoexcited excitons transport to the surface, break up, and emit their electron. In this paper, we extend the study of exciton-derived emission to include partial yield (constant final-state) analysis as well as angular distribution measurements of the photoelectric emission. In addition, we find that exciton-derived emission does not always dominate. Photoelectric emission properties of the in situ ''rehydrogenated'' (111)-(1x1):H diamond surface are characteristically different than emission observed from the as-polished (111)-(1x1):H surface. The rehydrogenated surface has additional downward band bending as compared to the as-polished surface. In confirmation of the assignment of photoelectric yield to exciton breakup emission, we find a significant enhancement of the total electron yield when the downward band bending of the hydrogenated surface is increased. The functional form of the observed total electron yield demonstrates that, in contrast to the as-polished surface, conduction-band electrons are a significant component of the observed photoelectric yield from the in situ hydrogenated (111)-(1x1):H surface. Furthermore, electron emission characteristics of the rehydrogenated surface confirms our assignment of a Fan phonon-cascade mechanism for thermalization of excitons

  3. Spectral characterization of surface emissivities in the thermal infrared

    Science.gov (United States)

    Niclòs, Raquel; Mira, Maria; Valor, Enric; Caselles, Diego; García-Santos, Vicente; Caselles, Vicente; Sánchez, Juan M.

    2015-04-01

    Thermal infrared (TIR) remote sensing trends to hyperspectral sensors on board satellites in the last decades, e.g., the current EOS-MODIS and EOS-ASTER and future missions like HyspIRI, ECOSTRESS, THIRSTY and MISTIGRI. This study aims to characterize spectrally the emissive properties of several surfaces, mostly soils. A spectrometer ranging from 2 to 16 μm, D&P Model 102, has been used to measure samples with singular spectral features, e.g. a sandy soil rich in gypsum sampled in White Sands (New Mexico, USA), salt samples, powdered quartz, and powdered calcite. These samples were chosen for their role in the assessment of thermal emissivity of soils, e.g., the calcite and quartz contents are key variables for modeling TIR emissivities of bare soils, along with soil moisture and organic matter. Additionally, the existence of large areas in the world with abundance of these materials, some of them used for calibration/validation activities of satellite sensors and products, makes the chosen samples interesting. White Sands is the world's largest gypsum dune field encompassing 400 km^2; the salt samples characterize the Salar of Uyuni (Bolivia), the largest salt flat in the world (up to 10,000 km^2), as well as the Jordanian and Israeli salt evaporation ponds at the south end of the Dead Sea, or the evaporation lagoons in Aigües-Mortes (France); and quartz is omnipresent in most of the arid regions of the world such as the Algodones Dunes or Kelso Dunes (California, USA), with areas around 700 km2 and 120 km^2, respectively. Measurements of target leaving radiance, hemispherical radiance reflected by a diffuse reflectance panel, and the radiance from a black body at different temperatures were taken to obtain thermal spectra with the D&P spectrometer. The good consistency observed between our measurements and laboratory spectra of similar samples (ASTER and MODIS spectral libraries) indicated the validity of the measurement protocol. Further, our study showed the

  4. Emissivity Measurements of Foam-Covered Water Surface at L-Band for Low Water Temperatures

    Directory of Open Access Journals (Sweden)

    En-Bo Wei

    2014-11-01

    Full Text Available For a foam-covered sea surface, it is difficult to retrieve sea surface salinity (SSS with L-band brightness temperature (1.4 GHz because of the effect of a foam layer with wind speeds stronger than 7 m/s, especially at low sea surface temperature (SST. With foam-controlled experiments, emissivities of a foam-covered water surface at low SST (−1.4 °C to 1.7 °C are measured for varying SSS, foam thickness, incidence angle, and polarization. Furthermore, a theoretical model of emissivity is introduced by combining wave approach theory with the effective medium approximation method. Good agreement is obtained upon comparing theoretical emissivities with those of experiments. The results indicate that foam parameters have a strong influence on increasing emissivity of a foam-covered water surface. Increments of experimental emissivities caused by foam thickness of 1 cm increase from about 0.014 to 0.131 for horizontal polarization and 0.022 to 0.150 for vertical polarization with SSS increase and SST decrease. Contributions of the interface between the foam layer and water surface to the foam layer emissivity increments are discussed for frequencies between 1 and 37 GHz.

  5. Transition absorption as a mechanism of surface photoelectron emission from metals

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Protsenko, Igor E.; Ikhsanov, Renat Sh

    2015-01-01

    Transition absorption of a photon by an electron passingthrough a boundary between two media with different permit-tivities is described both classically and quantum mechani-cally. Transition absorption is shown to make a substantialcontribution to photoelectron emission at a metal....../semicon-ductor interface in nanoplasmonic systems, and is put forth asa possible microscopic mechanism of the surface photoelec-tric effect in photodetectors and solar cells containing plas-monic nanoparticles....

  6. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir.

    Science.gov (United States)

    Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain

    2018-01-15

    To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Surface-plasmon-enhanced lasing emission based on polymer distributed feedback laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dingke, E-mail: dingke.zhang@gmail.com, E-mail: shijianchen@gmail.com [School of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331 (China); Chen, Shijian, E-mail: dingke.zhang@gmail.com, E-mail: shijianchen@gmail.com; Huang, Yingzhou; Zhang, Zhen [School of Physics, Chongqing University, Chongqing 401331 (China); Wang, Yanping; Ma, Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-01-14

    Optical losses associated with the metallic contacts necessary for charge injection are an obstacle to the development of electrically pumped organic lasers. In this work, we show that it is possible to overcome these losses by introducing surface plasmons (SPs) in a distributed feedback laser to enhance the lasing emission. We perform a detailed study of the SPs influence on the lasing emission. We experimentally show that enhanced lasing emission has been successfully achieved in the presence of a metal electrode. The laser emission is strongly dependent on the thickness of Ag layer. By optimizing the thickness of Ag layer, surface-plasmon-enhanced lasing emission has been achieved with much reduced thresholds and higher intensity. When the thickness of the Ag layer increases to 50 nm, the device exhibits ten-fold emission intensity and a fifth of excitation threshold comparing with Ag-free one. The finite-difference time-domain (FDTD) results show that large field intensity is built at the 4-(dicyanomethylene)-2-i-propyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran:/poly(9-vinylcarbazole)Ag interface, which could lead to a strong coupling between lasing and SPs, and consequently a much enhanced laser emission at the photon energy of around 2.02 eV (615 nm). Our FDTD simulations gave an explanation of the effects of the SPs on lasing operation in the periodic structures. The use of SPs would lead to a new class of highly efficient solid-state laser sources and provide a new path to achieve electrically pumped organic lasers.

  8. Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses

    International Nuclear Information System (INIS)

    Acuna, M. A.; Gravielle, M. S.

    2011-01-01

    Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, while the influence of the crystal orientation was found to be negligible.

  9. Predamage threshold electron emission from insulator and semiconductor surfaces

    International Nuclear Information System (INIS)

    Siekhaus, W.J.; Kinney, J.H.; Milam, D.

    1985-01-01

    Predamage electron emission shows a dependence on fluence, bandgap and wavelength consistent with multiphoton excitation across the bandgap and inconsistent with avalanche ionization and thermionic emission models. The electron emission scales with pulselength as 1/√T. 6 references, 8 figures, 1 table

  10. Carbon dioxide: emissions and effects

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I M

    1982-01-01

    This review provides a comprehensive guide to work carried out since 1978 in the many disciplines involved in this complex issue. Possible scenarios for carbon dioxide emissions, sources and sinks in the carbon cycle and for climatic changes are examined. The current concensus (by no means unanimous) of specialists on this issue appears to be that a continuation of reduced trends in energy consumption since 1973 is likely to double the atmospheric carbon dioxide concentration to 600 ppmv during the latter part of the next century. However, a higher demand scenario, requiring an upper limit of coal production, would bring forward the doubling to about the middle of the next century. Current climatic models predict that such a concentration of carbon dioxide would cause an average global warming of from 1.0 to 4.5/sup 0/C which might be delayed by the thermal inertia of the oceans. A warming due to estimated increases in carbon dioxide should, if the model results are correct, become apparent at the end of this century. Regional climatic changes are likely to vary considerably and prove disadvantageous to some regions and beneficial to others. Different strategies for dealing with the carbon dioxide issue are considered: no response, alleviation, countermeasures and prevention. It is concluded that uncertainties do not justify either the use of carbon dioxide disposal and other technical fixes at present or a policy of no further growth in fossil fuel consumption. On the other hand, major efforts to conserve energy would give more time to adapt to changes. The alleviation of climatic impacts and other desirable dual-benefit measures are advocated in addition to continuing international, interdisciplinary research on all aspects.

  11. An assessment of the land surface emissivity in the 8 - 12 micrometer window determined from ASTER and MODIS data

    Science.gov (United States)

    Schmugge, T.; Hulley, G.; Hook, S.

    2009-04-01

    The land surface emissivity is often overlooked when considering surface properties that effect the energy balance. However, knowledge of the emissivity in the window region is important for determining the longwave radiation balance and its subsequent effect on surface temperature. The net longwave radiation (NLR) is strongly affected by the difference between the temperature of the emitting surface and the sky brightness temperature, this difference will be the greatest in the window region. Outside the window region any changes in the emitted radiation by emissivity variability are mostly compensated for by changes in the reflected sky brightness. The emissivity variability is typically greatest in arid regions where the exposed soil and rock surfaces display the widest range of emissivity. For example, the dune regions of North Africa have emissivities of 0.7 or less in the 8 to 9 micrometer wavelength band due to the quartz sands of the region, which can produce changes in NLR of more than 10 w/m*m compared to assuming a constant emissivity. The errors in retrievals of atmospheric temperature and moisture profiles from hyperspectral infrared radiances, such as those from the Atmospheric Infrared Sounder (AIRS) on the NASA Aqua satellite result from using constant or inaccurate surface emissivities, particularly over arid and semi-arid regions here the variation in emissivity is large, both spatially and spectrally. The multispectral thermal infrared data obtained from the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer and MODerate resolution Imaging Spectrometer (MODIS) sensors on NASA's Terra satellite have been shown to be of good quality and provide a unique new tool for studying the emissivity of the land surface. ASTER has 5 channels in the 8 to 12 micrometer waveband with 90 m spatial resolution, when the data are combined with the Temperature Emissivity Separation (TES) algorithm the surface emissivity over this wavelength region

  12. Auger emission from solid surfaces bombarded with ions

    International Nuclear Information System (INIS)

    Grizzi, Oscar.

    1986-01-01

    The Auger electron emission from Be, Na, Mg, Al and Si bombarded with 0,5-20 KeV noble gas ions is studied. Sharp structures of the Auger electron spectra of Na and Be were identified. A Monte Carlo program was adapted to simulate the colision cascade in the solid, inner shell excitations and Auger decays. From the comparision of experimental and simulated Auger intensities, the relative role of symmetric and asymmetric collisions in Be K- and Al L-shell excitation were evaluated. In the case of Be, the discussion of the exciting processes to higher projectile energies was extended. To this end, the simulation to early measurements of Be K X-ray yields was applied. From this analysis, information about the variations of the fluorescence yield and outer-shell occupation numbers of Be with projectile energy was obtained. The study of the shape of the sharp Auger structures and their dependence with the energy and incidence projectile angle gives information about the collisional processes, inner hole lifetimes and Auger decays. From the evaluation of the energy and angular distribution of the excited sputtered atoms and the interaction between them and the metallic-surface, the energy shift distributions in the Auger energies were obtained. From the comparison of these distributions with the experimental atomic peaks, the main causes of the broadening of these peaks were determined. (M.E.L.) [es

  13. Analytical Retrieval of Global Land Surface Emissivity Maps at AMSR-E passive microwave frequencies

    Science.gov (United States)

    Norouzi, H.; Temimi, M.; Khanbilvardi, R.

    2009-12-01

    Land emissivity is a crucial boundary condition in Numerical Weather Prediction (NWP) modeling. Land emissivity is also a key indicator of land surface and subsurface properties. The objective of this study, supported by NOAA-NESDIS, is to develop global land emissivity maps using AMSR-E passive microwave measurements along with several ancillary data. The International Satellite Cloud Climatology Project (ISCCP) database has been used to obtain several inputs for the proposed approach such as land surface temperature, cloud mask and atmosphere profile. The Community Radiative Transfer Model (CRTM) has been used to estimate upwelling and downwelling atmospheric contributions. Although it is well known that correction of the atmospheric effect on brightness temperature is required at higher frequencies (over 19 GHz), our preliminary results have shown that a correction at 10.7 GHz is also necessary over specific areas. The proposed approach is based on three main steps. First, all necessary data have been collected and processed. Second, a global cloud free composite of AMSR-E data and corresponding ancillary images is created. Finally, monthly composting of emissivity maps has been performed. AMSR-E frequencies at 6.9, 10.7, 18.7, 36.5 and 89.0 GHz have been used to retrieve the emissivity. Water vapor information obtained from ISCCP (TOVS data) was used to calculate upwelling, downwelling temperatures and atmospheric transmission in order to assess the consistency of those derived from the CRTM model. The frequent land surface temperature (LST) determination (8 times a day) in the ISCCP database has allowed us to assess the diurnal cycle effect on emissivity retrieval. Differences in magnitude and phase between thermal temperature and low frequencies microwave brightness temperature have been noticed. These differences seem to vary in space and time. They also depend on soil texture and thermal inertia. The proposed methodology accounts for these factors and

  14. SECONDARY EMISSION FROM NON-SPHERICAL DUST GRAINS WITH ROUGH SURFACES: APPLICATION TO LUNAR DUST

    International Nuclear Information System (INIS)

    Richterová, I.; Němeček, Z.; Beránek, M.; Šafránková, J.; Pavlů, J.

    2012-01-01

    Electrons impinging on a target can release secondary electrons and/or they can be scattered out of the target. It is well established that the number of escaping electrons per primary electron depends on the target composition and dimensions, the energy, and incidence angle of the primary electrons, but there are suggestions that the target's shape and surface roughness also influence the secondary emission. We present a further modification of the model of secondary electron emission from dust grains which is applied to non-spherical grains and grains with defined surface roughness. It is shown that the non-spherical grains give rise to a larger secondary electron yield, whereas the surface roughness leads to a decrease in the yield. Moreover, these effects can be distinguished: the shape effect is prominent for high primary energies, whereas the surface roughness predominantly affects the yield at the low-energy range. The calculations use the Lunar Highlands Type NU-LHT-2M simulant as a grain material and the results are compared with previously published laboratory and in situ measurements.

  15. AMSR-E/Aqua Monthly Global Microwave Land Surface Emissivity

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer - Earth Observing System...

  16. Directional and dynamic modulation of the optical emission of an individual GaAs nanowire using surface acoustic waves.

    Science.gov (United States)

    Kinzel, Jörg B; Rudolph, Daniel; Bichler, Max; Abstreiter, Gerhard; Finley, Jonathan J; Koblmüller, Gregor; Wixforth, Achim; Krenner, Hubert J

    2011-04-13

    We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.

  17. The surface emissions trap: a new approach in indoor air purification.

    Science.gov (United States)

    Markowicz, Pawel; Larsson, Lennart

    2012-11-01

    A new device for stopping or reducing potentially irritating or harmful emissions from surfaces indoors is described. The device is a surface emissions trap prototype and consists of an adsorbent sheet with a semipermeable barrier surrounded by two thin nonwoven layers. The trap may be applied directly at the source of the emissions e.g. at moisture-affected floors and walls, surfaces contaminated by chemical spills etc. This results in an immediate stop or reduction of the emitting pollutants. The trap has a very low water vapor resistance thus allowing drying of wet surfaces. In laboratory experiments typically 98% reduction of air concentrations of volatile organic compounds and a virtually total reduction of mold particle-associated mycotoxins was observed. The surface emissions trap may represent a convenient and efficient way of restoring indoor environments polluted by microbial and other moisture-associated emissions. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Surface emission of InxGa1-xN epilayers under strong optical excitation

    International Nuclear Information System (INIS)

    Jiang, H.X.; Lin, J.Y.; Khan, M.A.; Chen, Q.; Yang, J.W.

    1997-01-01

    Effects of strong optical excitation on the properties of surface emission from an InGaN/GaN heterostructure grown by metal-organic chemical-vapor deposition have been investigated. An intriguing feature observed was that as the excitation intensity increased the surface emission spectrum evolved abruptly from a single dominating band to two dominating bands at a critical intensity. This phenomenon has a sharp phase transition or a switching character and can be accounted for by (i) the formation of an electron endash hole plasma state in the InGaN vertical cavity under strong optical excitation, (ii) the photoreflectance effect (variation of index of refraction with excitation intensity), and (c) the Fabry endash Pacute erot interference effect in the InGaN vertical cavity. These findings are expected to have impact on the design of the laser structures, in particular on the design of the vertical-cavity surface-emitting laser diodes based on III-nitride wide-band-gap semiconductors. copyright 1997 American Institute of Physics

  19. Measurement of surface temperature and emissivity by a multitemperature method for Fourier-transform infrared spectrometers

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Morgenstjerne, Axel; Rathmann, Ole

    1996-01-01

    Surface temperatures are estimated with high precision based on a multitemperature method for Fourier-transform spectrometers. The method is based on Planck's radiation law and a nonlinear least-squares fitting algorithm applied to two or more spectra at different sample temperatures and a single...... of blackbody sources are estimated with an uncertainty of 0.2-2 K. The method is demonstrated for measuring the spectral emissivity of a brass specimen and an oxidized nickel specimen. (C) 1996 Optical Society of America...... measurement at a known sample temperature, for example, at ambient temperature. The temperature of the sample surface can be measured rather easily at ambient temperature. The spectrum at ambient temperature is used to eliminate background effects from spectra as measured at other surface temperatures...

  20. Using satellite data to guide emission control strategies for surface ozone pollution

    Science.gov (United States)

    Jin, X.; Fiore, A. M.

    2017-12-01

    Surface ozone (O3) has adverse effects on public health, agriculture and ecosystems. As a secondary pollutant, ozone is not emitted directly. Ozone forms from two classes of precursors: NOx and VOCs. We use satellite observations of formaldehyde (a marker of VOCs) and NO2 (a marker of NOx) to identify areas which would benefit more from reducing NOx emissions (NOx-limited) versus areas where reducing VOC emissions would lead to lower ozone (VOC-limited). We use a global chemical transport model (GEOS-Chem) to develop a set of threshold values that separate the NOx-limited and VOC-limited conditions. Combining these threshold values with a decadal record of satellite observations, we find that U.S. cities (e.g. New York, Chicago) have shifted from VOC-limited to NOx-limited ozone production regimes in the warm season. This transition reflects the NOx emission controls implemented over the past decade. Increasing NOx sensitivity implies that regional NOx emission control programs will improve O3 air quality more now than it would have a decade ago.

  1. Characterizing the effects of regolith surface roughness on photoemission from surfaces in space

    Science.gov (United States)

    Dove, A.; Horanyi, M.; Wang, X.

    2017-12-01

    Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.

  2. Influence of Local Airflow on the Pollutant Emission from Indoor Building Surfaces

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter Vilhelm; Heiselberg, Per Kvols

    2001-01-01

    This article reports the results of an investigation, based on fundamental fluid dynamics and mass transfer theory, carried out to obtain a general understanding of the mechanisms involved in the emissions from building materials in ventilated rooms. In addition, a generally applicable method...... for the prediction of surface emissions is proposed. The work focused on the emission of vapours and gases and no particulate emissions were considered. The methods used were numerical calculations by computational fluid dynamics (CFD) and full-scale laboratory experiments. It was found that the emissions...

  3. Rear surface light emission measurements from laser-produced shock waves in clear and Al-coated polystyrene targets

    Science.gov (United States)

    McLean, E. A.; Deniz, A. V.; Schmitt, A. J.; Stamper, J. A.; Obenschain, S. P.; Lehecka, T.; Mostovych, A. N.; Seely, J.

    1999-08-01

    The Nike KrF laser, with its very uniform focal distributions, has been used at intensities near 10 14 W/cm 2 to launch shock waves in polystyrene targets. The rear surface visible light emission differed between clear polystyrene (CH) targets and targets with a thin (125 nm) Al coating on the rear side. The uncoated CH targets showed a relatively slowly rising emission followed by a sudden fall when the shock emerges, while the Al-coated targets showed a rapid rise in emission when the shock emerges followed by a slower fall, allowing an unambiguous determination of the time the shock arrived at the rear surface. A half-aluminized target allowed us to observe this difference in a single shot. The brightness temperature of both the aluminized targets and the non-aluminized targets was slightly below but close to rear surface temperature predictions of a hydrodynamic code. A discussion of preheat effects is given.

  4. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    International Nuclear Information System (INIS)

    Tong Wang

    2002-01-01

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radio frequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ∼140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ∼140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ∼140 MV

  5. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  6. Temperature effect on surface oxidation of titanium

    International Nuclear Information System (INIS)

    Vaquilla, I.; Barco, J.L. del; Ferron, J.

    1990-01-01

    The effect of temperature on the first stages of the superficial oxidation of polycrystalline titanium was studied using both Auger electron spectroscopy (AES) and emission shreshold (AEAPS). The number of compounds present on the surface was determined by application of the factor analysis technique. Reaction evolution was followed through the relative variation of Auger LMM and LMV transitions which are characteristic of titanium. Also the evolution of the chemical shift was determined by AEAPS. The amount of oxygen on the surface was quantified using transition KLL of oxygen. It was found that superficial oxidation depends on temperature. As much as three different compounds were determined according to substrate temperature and our exposure ranges. (Author). 7 refs., 5 figs

  7. Effect of organic materials used in the synthesis on the emission from CdSe quantum dots

    Science.gov (United States)

    Lee, Jae-Won; Yang, Ho-Soon; Hong, K. S.; Kim, S. M.

    2013-12-01

    Quantum-dot nanocrystals have particular optical properties due to the quantum confinement effect and the surface effect. This study focuses on the effect of surface conditions on the emission from quantum dots. The quantum dots prepared with 1-hexadecylamine (HDA) in the synthesis show strong emission while the quantum dots prepared without HDA show weak emission, as well as emission from surface energy traps. The comparison of the X-ray patterns of these two sets of quantum dots reveals that HDA forms a layer on the surface of quantum dot during the synthesis. This surface passivation with a layer of HDA reduces surface energy traps, therefore the emission from surface trap levels is suppressed in the quantum dots synthesized with HDA.

  8. Experimental study on the secondary emission (atomic and molecular ions, aggregates, electrons) induced by the bombardment of surfaces by means of energetic heavy ions (∼ MeV/u). Effects of the charge state of the projectiles

    International Nuclear Information System (INIS)

    Monart, B.

    1988-05-01

    The ionic and electronic emissions, induced by the sputtering of solid targets (organic and inorganic) with 1 MeV/u projectiles. The time-of-flight spectrometry is applied to the secondary emission analysis. The projectile velocity, the angle of attack (between the beam and the target), and the projectile's incident charge state, are taken into account. It is shown that the secondary emission depends on the charge of the incident ion and on the charge state changement in the material's bulk. A model, applying the theoretical calculations concerning the charge in the material's bulk, is proposed. The existence of an interaction depth, for the incident ion and the material, which depends on the secondary ions type and on the incident ion charge, is suggested. The calculated depth is about 200 angstroms for the aggregates ejected from a CsI target, sputtered with 14 Kr 18+ . The H + yield (coming from ∼ 10 angstroms) is used as a projectile charge probe, at the material surface. The experimental method allows, for the first time, the obtention of the equilibrium charge state in the condensed matter. The same method is applied to determine the non-equilibrium charges in the bulk of thin materials. The results show that, after leaving the material, the projectile presents a post-ionization state [fr

  9. Local emission spectroscopy of surface micrograins in A{sup III}B{sup V} semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, N. D., E-mail: ndzhukov@rambler.ru; Gluhovskoy, E. G.; Mosiyash, D. S. [Saratov State University (Russian Federation)

    2016-07-15

    The density-of-states spectra and the parameters of levels of electron states in locally chosen surface micrograins of indium antimonide and arsenide and gallium arsenide are studied with a tunneling electron microscope in the field-emission mode of measurements. By correlating the current–voltage characteristics with the formula for the probability of emission via levels, the activation energies of the levels (ψ) and the lifetimes of electrons at the levels (τ) are determined. Two types of levels for electron localization are identified. These are levels in the micrograin bulk (ψ ≈ 0.75, 1.15, and 1.59 eV for n-InSb, n-InAs, and n-GaAs, respectively; τ ~ 10{sup –8}–10{sup –7} s) and in the surface region of an i-InSb micrograin (ψ ~ 0.73, 1.33, 1.85, 2.15, 5.1 eV; τ ≈ 5 × 10{sup –8}–3 × 10{sup –7} s). A physical model involving the Coulomb-interaction-induced localization of light electrons and their size quantization determined by the electron effective mass, energy, and concentration and by the surface curvature of the micrograin is proposed.

  10. The Role of Meteorology and Surface Condition to Multi-Decadal Variations of Dust Emission in Sahara and Sahel

    Science.gov (United States)

    Kim, D.; Chin, M.; Diehl, T. L.; Bian, H.; Brown, M. E.; Remer, L. A.; Stockwell, W. R.

    2014-12-01

    North Africa is the world's largest dust source region influencing regional and global climate, human health, and even the local economy. However North Africa as a dust source is not uniform but it consists of the arid region (Sahara) and the semi-arid region (Sahel) with emission rates depending on meteorological and surface conditions. Several recent studies have shown that dust from North Africa seems to have a decreasing trend in the past three decades. The goal of this study is to better understand the controlling factors that determine the change of dust in North Africa using observational data and model simulations. First we analyze surface bareness conditions determined from a long-term satellite observed Normalized Difference Vegetation Index for 1980-2008. Then we examine the key meteorological variables of precipitation and surface winds. Modeling experiments were conducted using the NASA Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which has been recently updated with a dynamic dust source function. Using the method we separate the dust originating from the Sahel from that of the Sahara desert. We find that the surface wind speed is the most dominant factor affecting Sahelian dust emission while vegetation has a modulating effect. We will show regional differences in meteorological variables, surface conditions, dust emission, and dust distribution and address the relationships among meteorology, surface conditions, and dust emission/loading in the past three decades (1980-2008).

  11. Global radiative effects of solid fuel cookstove aerosol emissions

    Science.gov (United States)

    Huang, Yaoxian; Unger, Nadine; Storelvmo, Trude; Harper, Kandice; Zheng, Yiqi; Heyes, Chris

    2018-04-01

    We apply the NCAR CAM5-Chem global aerosol-climate model to quantify the net global radiative effects of black and organic carbon aerosols from global and Indian solid fuel cookstove emissions for the year 2010. Our assessment accounts for the direct radiative effects, changes to cloud albedo and lifetime (aerosol indirect effect, AIE), impacts on clouds via the vertical temperature profile (semi-direct effect, SDE) and changes in the surface albedo of snow and ice (surface albedo effect). In addition, we provide the first estimate of household solid fuel black carbon emission effects on ice clouds. Anthropogenic emissions are from the IIASA GAINS ECLIPSE V5a inventory. A global dataset of black carbon (BC) and organic aerosol (OA) measurements from surface sites and aerosol optical depth (AOD) from AERONET is used to evaluate the model skill. Compared with observations, the model successfully reproduces the spatial patterns of atmospheric BC and OA concentrations, and agrees with measurements to within a factor of 2. Globally, the simulated AOD agrees well with observations, with a normalized mean bias close to zero. However, the model tends to underestimate AOD over India and China by ˜ 19 ± 4 % but overestimate it over Africa by ˜ 25 ± 11 % (± represents modeled temporal standard deviations for n = 5 run years). Without BC serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling radiative effects of -141 ± 4 mW m-2 and -12 ± 4 mW m-2, respectively (± represents modeled temporal standard deviations for n = 5 run years). The net radiative impacts are dominated by the AIE and SDE mechanisms, which originate from enhanced cloud condensation nuclei concentrations for the formation of liquid and mixed-phase clouds, and a suppression of convective transport of water vapor from the lower troposphere to the upper troposphere/lower stratosphere that in turn leads to reduced ice cloud formation. When BC is allowed

  12. Study of land surface temperature and spectral emissivity using multi ...

    Indian Academy of Sciences (India)

    tral emissivities over a hard rock terrain using multi-sensor satellite data. The study area, of .... Georeferenced MODIS level 1B data (bands 31 and. 32) and Landsat ETM+ data .... the optical properties of the atmosphere. In the present study ...

  13. The Diagnosis of Plasma Parameters in Surface Alloying Technique by Optical Emission Spectrometry

    International Nuclear Information System (INIS)

    Fu Yabo; Zhang Yuefei; Chen Qiang; Zhang Guangqiu; Gao Yuan; Wang Jianzhong; Kui Xiaoyun

    2006-01-01

    Electron density (Ne) in a glow discharge plasma for the surface alloying technique is diagnosed by optical emission spectrometry (OES). With CH 4 as the feeding gas, Ne is obtained by comparing the Hβ spectrum according to the Stark broadening effect. It is noticed that Ne varies with the working pressures (30 Pa to 70 Pa) and cathode voltages (500 V to 1000 V), respectively. Due to an abnormal glow discharge, Ne is between 1.71x10 15 /cm 3 to 6.64x10 15 /cm 3 and increases rapidly with working gas pressures and cathode voltages. The results show that OES is a useful method to measure the plasma parameters in a surface alloying glow discharge plasma

  14. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    Science.gov (United States)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.

  15. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    International Nuclear Information System (INIS)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data

  16. Measurement of PCB emissions from building surfaces using a novel portable emission test cell

    DEFF Research Database (Denmark)

    Lyng, Nadja; Gunnarsen, Lars Bo; Andersen, Helle Vibeke

    2016-01-01

    Polychlorinated biphenyls (PCBs) were used in building materials like caulks and paints from 1930 e1970s and in some cases that caused elevated PCB concentrations in the indoor air at levels considered harmful to occupant health. PCBs are semivolatile organic compounds and capable of spreading from...... and there is a need to prioritise remediation measures on different materials. An inexpensive and portable emission test cell was developed to resemble indoor conditions in relation to the area specific ventilation rate. Emissions were measured using the test cell in the laboratory on freshly made PCB paint. Further......, the chamber was used for determining emissions from PCB-containing building materials in the field as well as remediated walls. The measurements showed that sorption of PCBs to chamber walls was insignificant after 2-4 days of exposure to the source. Over a period of two weeks emission rates did not change...

  17. Emissions of nitrous oxide and methane from surface and ground waters in Germany

    International Nuclear Information System (INIS)

    Hiessl, H.

    1993-01-01

    The paper provides a first estimation of the contribution of inland freshwater systems (surface waters and ground waters) to the emission of the greenhouse gases nitrous oxide and methane in Germany. These amounts are compared to other main sources for the emission of nitrous oxide and methane. (orig.) [de

  18. Structural dynamics of fore-crisis area on a heat emission surface of a fuel element's

    International Nuclear Information System (INIS)

    Sharaevskij, I.G.; Fialko, N.M.; Sharaevskaya, E.I.

    2011-01-01

    The known theoretical and experimental data regarding the nature of dry spots evolution are reviewed and the idea regarding the mechanism of heat emission from the heated surface in fore-crisis area are defined more precisely.

  19. Some studies of lead and iron adsorption on the W(100) surface by field emission microscopy

    International Nuclear Information System (INIS)

    Jones, J.P.; Roberts, E.W.

    1978-01-01

    The behaviour of lead and iron adsorbed on the W(100) surface has been studied by probe hole field emission microscopy, field desorption, and by measurement of the total energy distribution (TED) of field-emitted electrons. Lead adsorbed at 300 K which reduces the work function of W(100) can be completely removed at 78 K by field desorption below 3.2 V A -1 and the resulting surface has both the work function and TED, which are characteristic of the clean plane. Condensation at 800 K followed by field desorption, results in a plane surface of work function 4.17 eV and an altered TED. This effect is attributed to the microfacetting, which is observed by LEED. The Swanson peak in the W(100) TED which is removed by submonolayer amounts of lead re-emerges at monolayer coverage when lead adopts the (1 X 1) structure. Such behaviour is consistent with the model proposed by Kar and Soven. A spectral peak observed when lead is adsorbed on the reconstructed W(100) surface is thought to derive for the atomic 1 D state. Adsorption of iron on a W(100) surface reduces phi considerably due to dipole formation and efficiently quenches the Swanson peak. (Auth.)

  20. Investigation of sandwich material surface created by abrasive water jet (AWJ via vibration emission

    Directory of Open Access Journals (Sweden)

    P. Hreha

    2014-01-01

    Full Text Available The paper presents research a of abrasive waterjet cutting of heterogeneous “sandwich“ material with different Young modulus of elasticity of the cutted surface geometry by means of vibration emission. In order to confirm hypothetical assumptions about direct relation between vibration emission and surface quality an experiment in heterogeneous material consisting of stainless steel (DIN 1.4006 / AISI 410 and alloy AlCuMg2 has been provided.

  1. Surface influence on convoy electron emission at low energies

    International Nuclear Information System (INIS)

    Sanchez, E.A.

    1988-01-01

    It is studied the dependence of the production of convoy electrons induced by H + - 60 KeV with surface conditions of Al targets by in situ deposition of Na and O. The conclusion is that convoy electron production increases with the work function of the surface. (A.C.A.S.) [pt

  2. Field emission from the surface of highly ordered pyrolytic graphite

    Czech Academy of Sciences Publication Activity Database

    Knápek, Alexandr; Sobola, D.; Tománek, P.; Pokorná, Zuzana; Urbánek, Michal

    2017-01-01

    Roč. 395, FEB 15 (2017), s. 157-161 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:68081731 Keywords : field emission * HOPG * scanning electron microscopy * scanning near-field optical microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 3.387, year: 2016

  3. Photoelectric effect in surface-barrier structures

    International Nuclear Information System (INIS)

    Kononenko, V.K.; Tupenevich, P.A.

    1985-08-01

    Deviations from the Fowler law were observed when investigating photoelectric emission in p-type ZnTe surface-barrier structures. The revealed peculiarities of the structure photosensitivity spectrum are explained by the electron transitions involving surface states at the metal-semiconductor interface. (author)

  4. Field emission and high voltage cleaning of particulate contaminants on extended metallic surfaces

    International Nuclear Information System (INIS)

    Tan, J.; Bonin, B.; Safa, H.

    1996-01-01

    The vacuum insulation properties of extended metallic surfaces depends strongly on their cleanliness. The usual technique to reduce electronic field emission from such surfaces consists in exposing them to very high electric fields during limited periods of time. This kind of processing also reduces the occurrence of vacuum breakdown. The processing of the surface is generally believed to be due to a thermomechanical destruction of the emitting sites, initiated by the emission itself. Comparison of the electric forces vs adherence forces which act on dust particles lying on the surface shows that the processing could also be due simply to the mechanical removal of the dust particles, with a subsequent reduction of field emission from the contaminated surface. (author)

  5. Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates

    International Nuclear Information System (INIS)

    Hirakuri, Kenji; Yokoyama, Takahiro; Enomoto, Hirofumi; Mutsukura, Nobuki; Friedbacher, Gernot

    2001-01-01

    Electron field emission characteristics of diamond grains fabricated on iron dot-patterned silicon (Fe/Si) substrates at different methane concentrations have been investigated. The characteristics of the samples could be improved by control of the methane concentration during diamond fabrication. Etching treatment of the as-grown diamond has enhanced the emission properties both with respect to current and threshold voltage. In order to study the influence of etching effects on the field emission characteristics, the respective surfaces were studied by Raman spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis (ESCA). ESCA revealed intensive graphite and FeO x peaks on the sample surface grown at high methane concentration. For the etched samples, the peaks of diamond and silicon carbide were observed, and the peaks of nondiamond carbon disappeared. The experimental results show that the etching process removes graphitic and nondiamond carbon components. [copyright] 2001 American Institute of Physics

  6. NOx removal from vehicle emissions by functionality surface of asphalt road

    International Nuclear Information System (INIS)

    Chen Meng; Liu Yanhua

    2010-01-01

    This paper reported the potential of heterogeneous photocatalysis as an advanced oxidation technology for NO x removal from vehicle emissions by using TiO 2 as a photocatalyst immobilized on the surface of asphalt road. Based on asphalt road material porous characteristic, we utilized permeability technology to make asphalt nano-TiO 2 to be environmental protection materials. And then using scanning electron microscope, we observed the penetrating effect of TiO 2 . The effect of surface friction, humidity and light intensity on NO x removal had been systematically investigated by the use of TiO 2 immobilized on the surface of asphalt road as photocatalytic environmental protection materials. In addition, the decontaminating effect was tested by contrast test in TiO 2 spraying section with non-spraying section, while the productions were used in road environment. Results of experiment revealed that decontaminating rate of the productions ranged from 6% to 12% this kind of photochemical catalysis environmental protection material has good environment purification function.

  7. Effect of tip geometry on photo-electron-emission from nanostructures.

    Science.gov (United States)

    Teki, Ranganath; Lu, Toh-Ming; Koratkar, Nikhil

    2009-03-01

    We show in this paper the strong effect of tip geometry on the photo-electron-emission behavior of nanostructured surfaces. To study the effect of tip geometry we compared the photo-emissivity of Ru and Pt nanorods with pyramidal shaped tips to that of carbon nanorods that display flat top (planar) tips. Flat top architectures gave no significant increase in the emission current, while nanostructures with pyramidal shaped tips showed 3-4 fold increase in photo-emission compared to a thin film of the same material. Pyramidal tip geometries increase the effective surface area that is exposed to the incident photon-flux thereby enhancing the photon-collection probability of the system. Such nano-structured surfaces show promise in a variety of device applications such as photo-detectors, photon counters and photo-multiplier tubes.

  8. Mass transfer inside a flux hood for the sampling of gaseous emissions from liquid surfaces - Experimental assessment and emission rate rescaling

    Science.gov (United States)

    Prata, Ademir A.; Lucernoni, Federico; Santos, Jane M.; Capelli, Laura; Sironi, Selena; Le-Minh, Nhat; Stuetz, Richard M.

    2018-04-01

    This study assesses the mass transfer of compounds inside the US EPA flux hood, one of the enclosure devices most commonly employed for the direct measurement of atmospheric emissions from liquid surfaces in wastewater treatment plants (WWTPs). Experiments comprised the evaporation of water and the volatilisation of a range of volatile organic compounds (VOCs). Special attention was given to the evaluation of the mass transfer coefficients in the microenvironment created by the flux hood and the effects of concentration build up in the hood's headspace. The VOCs emission rates and the water evaporation rates generally increased with the sweep air flow rate, as did the mass transfer coefficients for all compounds. The emission of compounds whose volatilisation is significantly influenced by the gas phase was greatly affected by concentration build up, whereas this effect was not significant for liquid phase-controlled compounds. The gas-film mass transfer coefficient (kG) estimated inside the US EPA flux hood was of the same order as the respective kG reported in the literature for wind tunnel-type devices, but the emission rates measured by the flux hood can be expected to be lower, due to the concentration build-up. Compared against an emission model for the passive surfaces in WWTPs, the mass transfer of acetic acid (representing a gas phase-dominated compound) inside the US EPA flux hood was equivalent to conditions of wind speeds at 10 m height (U10) of 0.27, 0.51 and 0.99 m s-1, respectively, for sweep air flow rates of 2, 5 and 10 L min-1. On the other hand, for higher wind speeds, the emission rates of gas phase-controlled compounds obtained with the flux hood can be considerably underestimated: for instance, at U10 = 5 m s-1, the emission rates of acetic acid inside the flux hood would be approximately 23, 12 and 6 times lower than the emission rates in the field, for sweep air flow rates of 2, 5 and 10 L min-1, respectively. A procedure is presented in

  9. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  10. Electron emission and energy loss in grazing collisions of protons with insulator surfaces

    International Nuclear Information System (INIS)

    Gravielle, M. S.; Miraglia, J. E.; Aldazabal, I.; Arnau, A.; Ponce, V. H.; Aumayr, F.; Lederer, S.; Winter, H.

    2007-01-01

    Electron emission from LiF, KCl, and KI crystal surfaces during grazing collisions of swift protons is studied using a first-order distorted-wave formalism. Owing to the localized character of the electronic structure of these surfaces, we propose a model that allows us to describe the process as a sequence of atomic transitions from different target ions. Experimental results are presented for electron emission from LiF and KI and energy loss from KI surfaces. Calculations show reasonable agreement with these experimental data. The role played by the charge of the incident particle is also investigated

  11. Electron emission from MOS electron emitters with clean and cesium covered gold surface

    DEFF Research Database (Denmark)

    Nielsen, Gunver; Thomsen, Lasse Bjørchmar; Johansson, Martin

    2009-01-01

    MOS (metal-oxide-semiconductor) electron emitters consisting of a Si substrate, a SiO2 tunnel barrier and a Ti (1 nm)/Au(7 nm) top-electrode, with an active area of 1 cm(2) have been produced and studied with surface science techniques under UHV (ultra high vacuum) conditions and their emission...... characteristics have been investigated. It is known, that deposition of an alkali metal on the emitting surface lowers the work function and increases the emission efficiency. For increasing Cs coverages the surface has been characterized by X-ray Photoelectron Spectroscopy (XPS), Ion Scattering Spectroscopy (ISS...

  12. Emission of positive oxygen ions from ion bombardment of adsorbate-covered metal surfaces

    International Nuclear Information System (INIS)

    Kaurin, M.G.

    1989-01-01

    During ion bombardment of metal surfaces, collision cascades can result in the emission of sputtered secondary ions. Recent experiments, however, have suggested that the emission of positive ions of electronegative adsorbates can result from electronic processes rather than from processes involving elastic collisions. This dissertation presents the results of experiments studying the emission of positive oxygen ions from oxygen- and carbon-monoxide-covered transition metal surfaces during bombardment by 25-250 keV ions of neon, argon, and krypton. The systems studied may be grouped into four categories. For a nickel substrate with adsorbed oxygen, the emission of positive oxygen ions proceeds through collision cascades. For titanium and niobium with adsorbed oxygen, the emission of positive oxygen ions is proportional to the primary ion velocity, consistent with emission from electronic processes; for a given primary ion velocity, the oxygen ion yield is independent of primary ion species. For substrates of molybdenum and tungsten, the oxygen yield is proportional to primary ion velocity, but the yield also depends on the primary ion species for a given primary ion velocity in a manner that is consistent with emission resulting from electronic processes. For these two groups, except for titanium, the yields during neon ion bombardment do not extrapolate (assuming linearity with primary ion velocity) to a nonzero value at zero beam velocity. The magnitude of the oxygen ion yields from these targets is not consistent with that expected if the emission were induced by secondary electrons emitted during the ion bombardment

  13. Acoustic emission-based in-process monitoring of surface generation in robot-assisted polishing

    DEFF Research Database (Denmark)

    Pilny, Lukas; Bissacco, Giuliano; De Chiffre, Leonardo

    2016-01-01

    The applicability of acoustic emission (AE) measurements for in-process monitoring of surface generation in the robot-assisted polishing (RAP) was investigated. Surface roughness measurements require interruption of the process, proper surface cleaning and measurements that sometimes necessitate...... automatic detection of optimal process endpoint allow intelligent process control, creating fundamental elements in development of robust fully automated RAP process for its widespread industrial application....... removal of the part from the machine tool. In this study, stabilisation of surface roughness during polishing rotational symmetric surfaces by the RAP process was monitored by AE measurements. An AE sensor was placed on a polishing arm in direct contact with a bonded abrasive polishing tool...

  14. A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Meinerzhagen, F.; Breuer, L.; Bukowska, H.; Herder, M.; Schleberger, M.; Wucher, A. [Fakultät für Physik, Universität Duisburg-Essen and Cenide, 47057 Duisburg (Germany); Bender, M.; Severin, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Lebius, H. [CIMAP (CEA-CNRS-ENSICAEN-UCN), 14070 Caen Cedex 5 (France)

    2016-01-15

    The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.

  15. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization.

    Science.gov (United States)

    Miao, Xiang; Qu, Dan; Yang, Dongxue; Nie, Bing; Zhao, Yikang; Fan, Hongyou; Sun, Zaicheng

    2018-01-01

    Multiple-color-emissive carbon dots (CDots) have potential applications in various fields such as bioimaging, light-emitting devices, and photocatalysis. The majority of the current CDots to date exhibit excitation-wavelength-dependent emissions with their maximum emission limited at the blue-light region. Here, a synthesis of multiple-color-emission CDots by controlled graphitization and surface function is reported. The CDots are synthesized through controlled thermal pyrolysis of citric acid and urea. By regulating the thermal-pyrolysis temperature and ratio of reactants, the maximum emission of the resulting CDots gradually shifts from blue to red light, covering the entire light spectrum. Specifically, the emission position of the CDots can be tuned from 430 to 630 nm through controlling the extent of graphitization and the amount of surface functional groups, COOH. The relative photoluminescence quantum yields of the CDots with blue, green, and red emission reach up to 52.6%, 35.1%, and 12.9%, respectively. Furthermore, it is demonstrated that the CDots can be uniformly dispersed into epoxy resins and be fabricated as transparent CDots/epoxy composites for multiple-color- and white-light-emitting devices. This research opens a door for developing low-cost CDots as alternative phosphors for light-emitting devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Inverse modelling estimates of N2O surface emissions and stratospheric losses using a global dataset

    Science.gov (United States)

    Thompson, R. L.; Bousquet, P.; Chevallier, F.; Dlugokencky, E. J.; Vermeulen, A. T.; Aalto, T.; Haszpra, L.; Meinhardt, F.; O'Doherty, S.; Moncrieff, J. B.; Popa, M.; Steinbacher, M.; Jordan, A.; Schuck, T. J.; Brenninkmeijer, C. A.; Wofsy, S. C.; Kort, E. A.

    2010-12-01

    Nitrous oxide (N2O) levels have been steadily increasing in the atmosphere over the past few decades at a rate of approximately 0.3% per year. This trend is of major concern as N2O is both a long-lived Greenhouse Gas (GHG) and an Ozone Depleting Substance (ODS), as it is a precursor of NO and NO2, which catalytically destroy ozone in the stratosphere. Recently, N2O emissions have been recognised as the most important ODS emissions and are now of greater importance than emissions of CFC's. The growth in atmospheric N2O is predominantly due to the enhancement of surface emissions by human activities. Most notably, the intensification and proliferation of agriculture since the mid-19th century, which has been accompanied by the increased input of reactive nitrogen to soils and has resulted in significant perturbations to the natural N-cycle and emissions of N2O. There exist two approaches for estimating N2O emissions, the so-called 'bottom-up' and 'top-down' approaches. Top-down approaches, based on the inversion of atmospheric measurements, require an estimate of the loss of N2O via photolysis and oxidation in the stratosphere. Uncertainties in the loss magnitude contribute uncertainties of 15 to 20% to the global annual surface emissions, complicating direct comparisons between bottom-up and top-down estimates. In this study, we present a novel inversion framework for the simultaneous optimization of N2O surface emissions and the magnitude of the loss, which avoids errors in the emissions due to incorrect assumptions about the lifetime of N2O. We use a Bayesian inversion with a variational formulation (based on 4D-Var) in order to handle very large datasets. N2O fluxes are retrieved at 4-weekly resolution over a global domain with a spatial resolution of 3.75° x 2.5° longitude by latitude. The efficacy of the simultaneous optimization of emissions and losses is tested using a global synthetic dataset, which mimics the available atmospheric data. Lastly, using real

  17. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Directory of Open Access Journals (Sweden)

    S. C. Anenberg

    2011-07-01

    Full Text Available As a component of fine particulate matter (PM2.5, black carbon (BC is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m−3 (1.8 % and avoids 157 000 (95 % confidence interval, 120 000–194 000 annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %, followed by South Asia (India; 31 %, however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times

  18. Impacts of global, regional, and sectoral black carbon emission reductions on surface air quality and human mortality

    Science.gov (United States)

    Anenberg, S. C.; Talgo, K.; Arunachalam, S.; Dolwick, P.; Jang, C.; West, J. J.

    2011-07-01

    As a component of fine particulate matter (PM2.5), black carbon (BC) is associated with premature human mortality. BC also affects climate by absorbing solar radiation and reducing planetary albedo. Several studies have examined the climate impacts of BC emissions, but the associated health impacts have been studied less extensively. Here, we examine the surface PM2.5 and premature mortality impacts of halving anthropogenic BC emissions globally and individually from eight world regions and three major economic sectors. We use a global chemical transport model, MOZART-4, to simulate PM2.5 concentrations and a health impact function to calculate premature cardiopulmonary and lung cancer deaths. We estimate that halving global anthropogenic BC emissions reduces outdoor population-weighted average PM2.5 by 542 ng m-3 (1.8 %) and avoids 157 000 (95 % confidence interval, 120 000-194 000) annual premature deaths globally, with the vast majority occurring within the source region. Most of these avoided deaths can be achieved by halving emissions in East Asia (China; 54 %), followed by South Asia (India; 31 %), however South Asian emissions have 50 % greater mortality impacts per unit BC emitted than East Asian emissions. Globally, halving residential, industrial, and transportation emissions contributes 47 %, 35 %, and 15 % to the avoided deaths from halving all anthropogenic BC emissions. These contributions are 1.2, 1.2, and 0.6 times each sector's portion of global BC emissions, owing to the degree of co-location with population globally. We find that reducing BC emissions increases regional SO4 concentrations by up to 28 % of the magnitude of the regional BC concentration reductions, due to reduced absorption of radiation that drives photochemistry. Impacts of residential BC emissions are likely underestimated since indoor PM2.5 exposure is excluded. We estimate ∼8 times more avoided deaths when BC and organic carbon (OC) emissions are halved together, suggesting

  19. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

    Science.gov (United States)

    Im, Ulas; Poupkou, Anastasia; Incecik, Selahattin; Markakis, Konstantinos; Kindap, Tayfun; Unal, Alper; Melas, Dimitros; Yenigun, Orhan; Topcu, Sema; Odman, M Talat; Tayanc, Mete; Guler, Meltem

    2011-03-01

    Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. The influence of surface stress on dislocation emission from sharp and blunt cracks in f.c.c. metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob

    2000-01-01

    We use computer simulations to study the behaviour of atomically sharp and blunted cracks in various fee metals. The simulations use effective medium potentials which contain many-body interactions. We find that when using potentials representing platinum and gold a sharp crack is stable with res......We use computer simulations to study the behaviour of atomically sharp and blunted cracks in various fee metals. The simulations use effective medium potentials which contain many-body interactions. We find that when using potentials representing platinum and gold a sharp crack is stable...... with respect to the emission of a dislocation from the crack tip, whereas for all other metals studied the sharp crack is unstable. This result cannot be explained by existing criteria for the intrinsic ductile/brittle behaviour of crack tips, but is probably caused by surface stresses. When the crack...... is no longer atomically sharp dislocation emission becomes easier in all the studied metals. The effect is relatively strong; the critical stress intensity factor for emission to occur is reduced by up to 20%. This behaviour appears to be caused by the surface stress near the crack tip. The surface stress...

  1. Space-Based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions

    Science.gov (United States)

    Martin, Randall V.; Fiore, Arlene M.; VanDonkelaar, Aaron

    2004-01-01

    We present a novel capability in satellite remote sensing with implications for air pollution control strategy. We show that the ratio of formaldehyde columns to tropospheric nitrogen dioxide columns is an indicator of the relative sensitivity of surface ozone to emissions of nitrogen oxides (NO(x) = NO + NO2) and volatile organic compounds (VOCs). The diagnosis from these space-based observations is highly consistent with current understanding of surface ozone chemistry based on in situ observations. The satellite-derived ratios indicate that surface ozone is more sensitive to emissions of NO(x) than of VOCs throughout most continental regions of the Northern Hemisphere during summer. Exceptions include Los Angeles and industrial areas of Germany. A seasonal transition occurs in the fall when surface ozone becomes less sensitive to NOx and more sensitive to VOCs.

  2. The Boston Methane Project: Mapping Surface Emissions to Inform Atmospheric Estimation of Urban Methane Flux

    Science.gov (United States)

    Phillips, N.; Crosson, E.; Down, A.; Hutyra, L.; Jackson, R. B.; McKain, K.; Rella, C.; Raciti, S. M.; Wofsy, S. C.

    2012-12-01

    Lost and unaccounted natural gas can amount to over 6% of Massachusetts' total annual greenhouse gas inventory (expressed as equivalent CO2 tonnage). An unknown portion of this loss is due to natural gas leaks in pipeline distribution systems. The objective of the Boston Methane Project is to estimate the overall leak rate from natural gas systems in metropolitan Boston, and to compare this flux with fluxes from the other primary methane emissions sources. Companion talks at this meeting describe the atmospheric measurement and modeling framework, and chemical and isotopic tracers that can partition total atmospheric methane flux into natural gas and non-natural gas components. This talk focuses on estimation of surface emissions that inform the atmospheric modeling and partitioning. These surface emissions include over 3,300 pipeline natural gas leaks in Boston. For the state of Massachusetts as a whole, the amount of natural gas reported as lost and unaccounted for by utility companies was greater than estimated landfill emissions by an order of magnitude. Moreover, these landfill emissions were overwhelmingly located outside of metro Boston, while gas leaks are concentrated in exactly the opposite pattern, increasing from suburban Boston toward the urban core. Work is in progress to estimate spatial distribution of methane emissions from wetlands and sewer systems. We conclude with a description of how these spatial data sets will be combined and represented for application in atmospheric modeling.

  3. Nanometer-scale discernment of field emission from tungsten surface with single carbon monoxide molecule

    Science.gov (United States)

    Matsunaga, Soichiro; Suwa, Yuji; Katagiri, Souichi

    2017-12-01

    Unusual quantized beam fluctuations were found in the emission current from a cold-field emitter (CFE) operating in an extremely high vacuum of 10-10 Pa. To clarify the microscopic mechanism behind these fluctuations, we developed a new calculation method to evaluate the field emission from a heterogeneous surface under a strong electric field of 4 × 109 V/m by using the local potential distribution obtained by a first-principles calculation, instead of by using the work function. As a result of the first-principles calculations of a single molecule adsorbed on a tungsten surface, we found that dissociative adsorption of a carbon monoxide (CO) molecule enhances the emission current by changing the potential barrier in the area surrounding the C and O adatoms when these two atoms are placed at their most stable positions. It is also found that the migration of the O atom from the most stable position reduces the emission current. These types of enhancement and reduction of the emission current quantitatively explain the observed quantized fluctuations of the CFE emission current.

  4. White light emission from fluorescent SiC with porous surface

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Fiordaliso, Elisabetta Maria

    2017-01-01

    We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3, the photol......We report for the frst time a NUV light to white light conversion in a N-B co-doped 6H-SiC (fuorescent SiC) layer containing a hybrid structure. The surface of fuorescent SiC sample contains porous structures fabricated by anodic oxidation method. After passivation by 20nm thick Al2O3...... the bulk fuorescent SiC layer. A high color rendering index of 81.1 has been achieved. Photoluminescence spectra in porous layers fabricated in both commercial n-type and lab grown N-B co-doped 6H-SiC show two emission peaks centered approximately at 460nm and 530nm. Such bluegreen emission phenomenon can......, the photoluminescence intensity from the porous layer was signifcant enhanced by a factor of more than 12. Using a porous layer of moderate thickness (~10µm), high-quality white light emission was realized by combining the independent emissions of blue-green emission from the porous layer and yellow emission from...

  5. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  6. Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control

    Directory of Open Access Journals (Sweden)

    Magdalena Penkała

    2018-01-01

    Full Text Available Along with house heating and industry, emissions from road traffic (exhaust and tire, brake, car body or road surface abrasions are one of the primary sources of particulate matter (PM in the atmosphere in urban areas. Though numerous regulations and vehicle-control mechanisms have led to a significant decline of PM emissions from vehicle exhaust gases, other sources of PM remain related to road and car abrasion are responsible for non-exhaust emissions. Quantifying these emissions is a hard problem in both laboratory and field conditions. First, we must recognize the physicochemical properties of the PM that is emitted by various non-exhaust sources. In this paper, we underline the problem of information accessibility with regards to the properties and qualities of PM from non-exhaust sources. We also indicate why scarce information is available in order to find the possible solution to this ongoing issue.

  7. Monte Carlo calculation of secondary electron emission from carbon-surface by obliquely incident particles

    International Nuclear Information System (INIS)

    Ohya, Kaoru; Kawata, Jun; Mori, Ichiro

    1990-01-01

    Incidence angle dependences of secondary electron emission from a carbon surface by low energy electron and hydrogen atom are calculated using Monte Carlo simulations on the kinetic emission model. The calculation shows very small increase or rather decrease of the secondary electron yield with oblique incidence. It is explained in terms of not only multiple elastic collisions of incident particles with the carbon atoms but also small penetration depth of the particles comparable with the escape depth of secondary electrons. In addition, the two types of secondary electron emission are distinguished by using the secondary electron yield statistics; one is the emission due to trapped particles in the carbon, and the other is that due to backscattered particles. The high-yield component of the statistics on oblique incidence is more suppressed than those on normal incidence. (author)

  8. Characterization of Emissions and Residues from Simulations of the Deepwater Horizon Surface Oil Burns

    Science.gov (United States)

    The surface oil burns conducted by the U.S. Coast Guard from April to July 2010 during the Deepwater Horizon disaster in the Gulf of Mexico were simulated by small scale burns to characterize the pollutants, determine emission factors, and gather particulate matter for subsequent...

  9. Electron emission induced by resonant coherent interaction in ion-surface scattering at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1994-01-01

    The resonant coherent interaction of an ion with an oriented crystal surface, under grazing-incidence conditions with respect to a special direction of the crystal, gives rise to electron loss to the continuum from electronic bound states of the ion. The calculations presented below predict large probabilities for electron emission due to this mechanism. The electrons are emitted with well defined energies, expressed in terms of the condition of resonance. Furthermore, the emission takes place around certain preferential directions, which are determined by both the latter condition and the symmetry of the surface lattice. Our calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with glancing angle of 0--2 mrad indicate a yield of emission close to 1. Using heavier projectiles, one obtains smaller yields, but still large enough to be measurable in some cases (e.g., ∼0.9 for 53 MeV B 4+ and an angle of incidence of 1 mrad). Besides, the initial bound state is energy shifted due to the interaction with both the crystal potential and the velocity-dependent image potential. This results in a slight shift of the peaks of emission, which suggests a possible spectroscopy for analyzing the dynamical interaction of electronic bound states with solid surfaces

  10. Partial Volume Effects correction in emission tomography

    International Nuclear Information System (INIS)

    Le Pogam, Adrien

    2010-01-01

    Partial Volume Effects (PVE) designates the blur commonly found in nuclear medicine images and this PhD work is dedicated to their correction with the objectives of qualitative and quantitative improvement of such images. PVE arise from the limited spatial resolution of functional imaging with either Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT). They can be defined as a signal loss in tissues of size similar to the Full Width at Half Maximum (FWHM) of the PSF of the imaging device. In addition, PVE induce activity cross contamination between adjacent structures with different tracer uptakes. This can lead to under or over estimation of the real activity of such analyzed regions. Various methodologies currently exist to compensate or even correct for PVE and they may be classified depending on their place in the processing chain: either before, during or after the image reconstruction process, as well as their dependency on co-registered anatomical images with higher spatial resolution, for instance Computed Tomography (CT) or Magnetic Resonance Imaging (MRI). The voxel-based and post-reconstruction approach was chosen for this work to avoid regions of interest definition and dependency on proprietary reconstruction developed by each manufacturer, in order to improve the PVE correction. Two different contributions were carried out in this work: the first one is based on a multi-resolution methodology in the wavelet domain using the higher resolution details of a co-registered anatomical image associated to the functional dataset to correct. The second one is the improvement of iterative deconvolution based methodologies by using tools such as directional wavelets and curvelets extensions. These various developed approaches were applied and validated using synthetic, simulated and clinical images, for instance with neurology and oncology applications in mind. Finally, as currently available PET/CT scanners incorporate more

  11. Gases Emission From Surface Layers of Sand Moulds and Cores Stored Under the Humid Air Conditions

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2017-12-01

    Full Text Available A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

  12. Health effects of inhaled gasoline engine emissions.

    Science.gov (United States)

    McDonald, Jacob D; Reed, Matthew D; Campen, Matthew J; Barrett, Edward G; Seagrave, JeanClare; Mauderly, Joe L

    2007-01-01

    Despite their prevalence in the environment, and the myriad studies that have shown associations between morbidity or mortality with proximity to roadways (proxy for motor vehicle exposures), relatively little is known about the toxicity of gasoline engine emissions (GEE). We review the studies conducted on GEE to date, and summarize the findings from each of these studies. While there have been several studies, most of the studies were conducted prior to 1980 and thus were not conducted with contemporary engines, fuels, and driving cycles. In addition, many of the biological assays conducted during those studies did not include many of the assays that are conducted on contemporary inhalation exposures to air pollutants, including cardiovascular responses and others. None of the exposures from these earlier studies were characterized at the level of detail that would be considered adequate today. A recent GEE study was conducted as part of the National Environmental Respiratory Center (www.nercenter.org). In this study several in-use mid-mileage General Motors (Chevrolet S-10) vehicles were purchased and utilized for inhalation exposures. An exposure protocol was developed where engines were operated with a repeating California Unified Driving Cycle with one cold start per day. Two separate engines were used to provide two cold starts over a 6-h inhalation period. The exposure atmospheres were characterized in detail, including detailed chemical and physical analysis of the gas, vapor, and particle phase. Multiple rodent biological models were studied, including general toxicity and inflammation (e.g., serum chemistry, lung lavage cell counts/differentials, cytokine/chemokine analysis, histopathology), asthma (adult and in utero exposures with pulmonary function and biochemical analysis), cardiovascular effects (biochemical and electrocardiograph changes in susceptible rodent models), and susceptibility to infection (Pseudomonas bacteria challenge). GEE resulted in

  13. Electron Emission by N6+ Ions Scattered at a Magnetized Iron Surface

    International Nuclear Information System (INIS)

    Solleder, B.; Lemell, C.; Burgdoerfer, J.; Tokesi, K.

    2006-01-01

    Complete text of publication follows. Magnetized materials are of considerable interest in the electronics industry (hard discs, spintronics, etc.). A detailed understanding of the properties of magnetized surfaces is therefore important to optimize technical applications. In the last decades, different experimental techniques have been developed to probe spin effects in magnetized materials. In this work the spin polarization of electrons emitted during the impact of N 6+ ions on a magnetized Fe surface is investigated. We study potential emission (PE) of electrons as well as secondary electron (SE) production and transport in the target with the help of Monte Carlo (MC) simulations. Spin dependence of electron transfer processes and of transport in the solid are included. Fig. 1 shows the results of our simulation for the energy distribution and spin polarization of emitted electrons in comparison with experimental data of Pfandzelter et al. [1] for the interaction of N 6+ ions with magnetized Fe. Electrons with energies higher than 200 eV are predominantly PE electrons, emitted close to the surface via autoionization (AI), Auger capture (AC) and Auger deexcitation (AD) channels. Low energy electrons are dominated by promoted, autoionized, and secondary electrons. The polarization of above surface electrons is determined by the high of the potential barrier separating projectile and target. At large distances, the barrier drops only slightly below the Fermi edge and enables transitions of electrons from this part of the band structure which has about 50% polarization. These electrons are transferred to high n states feeding promotion and AI processes between high lying states. Electrons emitted by these processes therefore reflect the polarization near the Fermi edge. Close to the surface, the barrier is low enough to allow for electron capture from the entire conduction band. K-Auger electrons are emitted in immediate vicinity of the surface and therefore mirror

  14. Emissions of nitrogen oxides from road traffic - regulations, emissions and effects

    International Nuclear Information System (INIS)

    Sjoedin, Aake; Pihl-Karlsson, Gunilla; Johansson, Manne; Forsberg, Bertil; Erlandsson, Lennart

    2004-10-01

    The report is a review that aims to improve the basis for additional measures against the road traffic emissions of, in particular, NO x . An important question in the context is whether health effects of NO 2 should serve as a norm for the actions for emission reductions of NO x , or if the environmental effects of NO x -emissions in the form of acidification, eutrophication and ozone should play this role. WHO notes, in its latest review of health effect research, that one cannot demonstrate that NO 2 alone has any direct effects in concentrations at the current whole-year mean norm (40 μg/m 3 ). Such health effects that has been demonstrated in epidemiologic studies at these concentrations are caused by other traffic related emissions (e. g. particles) for which NO 2 constitutes a good indicator. WHO indicates the need for additional sharpening of the norms for ozone and particles. In this context, it is important to note that emissions of NO x on a regional scale contributes to formation of ozone as well as particles. Therefore there exist reasons to decrease the emissions of NO x in order to reach future recommended values for ozone and particles emissions. In the evaluations that will be done during 2004-2005 of the so called Goeteborg protocol, the EU's Ceiling Directives and the CAFE-programme, it is expected that new emissions objective for NO x will be suggested for 2015-2020, to cope with health and environment objectives in Europe. The report shows that that development that currently happens within the vehicle industry, for engines and exhaust emission control system are pursued to meet future exhaust requirement in the USA gives good conditions for the road traffic sector to contribute to that these objectives will reached

  15. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MYD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  16. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MOD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  17. MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Night (MYD21A1N.006). A new suite of MODIS Land Surface Temperature (LST) and...

  18. MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day (MOD21A1D.006). A new suite of MODIS Land Surface Temperature (LST) and...

  19. Interference effects with surface plasmons

    NARCIS (Netherlands)

    Kuzmin, Nikolay Victorovich

    2008-01-01

    A surface plasmon is a purely two-dimensional electromagnetic excitation bound to the interface between metal and dielectric and quickly decaying away from it. A surface plasmon is able to concentrate light on sub-wavelength scales – a feature that is attractive for nano-photonics and integrated

  20. Effect of Population Structure Change on Carbon Emission in China

    Directory of Open Access Journals (Sweden)

    Wen Guo

    2016-03-01

    Full Text Available This paper expanded the Logarithmic Mean Divisia Index (LMDI model through the introduction of urbanization, residents’ consumption, and other factors, and decomposed carbon emission changes in China into carbon emission factor effect, energy intensity effect, consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect, and then explored contribution rates and action mechanisms of the above six factors on change in carbon emissions in China. Then, the effect of population structure change on carbon emission was analyzed by taking 2003–2012 as a sample period, and combining this with the panel data of 30 provinces in China. Results showed that in 2003–2012, total carbon emission increased by 4.2117 billion tons in China. The consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect promoted the increase in carbon emissions, and their contribution ratios were 27.44%, 12.700%, 74.96%, and 5.90%, respectively. However, the influence of carbon emission factor effect (−2.54% and energy intensity effect (−18.46% on carbon emissions were negative. Population urbanization has become the main population factor which affects carbon emission in China. The “Eastern aggregation” phenomenon caused the population scale effect in the eastern area to be significantly higher than in the central and western regions, but the contribution rate of its energy intensity effect (−11.10 million tons was significantly smaller than in the central (−21.61 million tons and western regions (−13.29 million tons, and the carbon emission factor effect in the central area (−3.33 million tons was significantly higher than that in the eastern (−2.00 million tons and western regions (−1.08 million tons. During the sample period, the change in population age structure, population education structure, and population occupation structure

  1. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  2. Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures.

    Science.gov (United States)

    Tasolamprou, Anna C; Zhang, Lei; Kafesaki, Maria; Koschny, Thomas; Soukoulis, Costas M

    2015-06-01

    We demonstrate the numerical design and the experimental validation of frequency dependent directional emission from a dielectric photonic crystal structure. The wave propagates through a photonic crystal line-defect waveguide, while a surface layer at the termination of the photonic crystal enables the excitation of surface modes and a subsequent grating layer transforms the surface energy into outgoing propagating waves of the form of a directional beam. The angle of the beam is controlled by the frequency and the structure operates as a frequency splitter in the intermediate and far field region.

  3. Potential effects of emission taxes on CO2 emissions in OECD and LDC countries. Working paper

    International Nuclear Information System (INIS)

    Messner, S.; Strubegger, M.

    1990-12-01

    A set of existing optimization models representing the energy systems of the OECD and LDC countries (the LDC region covers all less developed countries excluding centrally planned economies) with a time horizon up to 2020 was applied to derive first-order estimates of the techno-economic potential for emission reduction. The driving force for the introduction of reduction measures was a scheme of taxes levied on the emissions of 6 relevant pollutants-including the greenhouse gases CO 2 and methane. The tax levels introduced are based on the taxes discussed by the Swedish government administration; they are the break-even point to test which measures are cost-effective and which emission levels can be reached at these costs. The regional models offer the choice between the following alternatives as response to increases in expenditures caused by emission taxes: (*) Reduction of final energy demand by supplying the requested services by other means (i.e., conservation). (*) Substitution of 'dirty' fuels by fuels entailing less pollution. (*) Introduction of 'clean' technologies for the same purposes (e.g., a combined cycle based on coal gasification is a much cleaner process for electricity generation from coal than conventional coal power plants). (*) For SO 2 and NO x emissions pollution reduction technologies (i.e., scrubbers and catalysts) can be added to existing technologies in order to reduce emissions. Alternative scenarios with emission taxes are compared to a base scenario without taxes related to pollutant emissions. The results indicate that an increase in CO 2 emissions in the OECD and LDC regions of 47% over the next 30 years in the base scenario would be changed into stabilization up to 2010 by measures induced by the tax levels introduced. Thereafter, however, energy consumption growth in the LDC area, in conjunction with the exhaustion of economically viable emission reduction measures, reverse this trend: CO 2 emissions start to increase again after

  4. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  5. Multicharged ion-induced emission from metal- and insulator surfaces related to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.P. [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1997-01-01

    The edge region of magnetically confined plasmas in thermonuclear fusion experiments couples the hot plasma core with the cold first wall. We consider the dependence of plasma-wall interaction processes on edge plasma properties, with particular emphasis on the role of slow multicharged ions (MCI). After a short survey on the physics of slow MCI-surface interaction we discuss recent extensive studies on MCI-induced electron emission from clean metal surfaces conducted at impact velocities << 1 a.u., from which generally reliable total electron yields can be obtained. We then demonstrate the essentially different role of the MCI charge for electron emission from metallic and insulator surfaces, respectively. Furthermore, we present recent results on slow MCI-induced `potential sputtering` of insulators which, in contrast to the well established kinetic sputtering, already occurs at very low ion impact energy and strongly increases with the MCI charge state. (J.P.N.). 55 refs.

  6. Remote sensing of land surface temperature: The directional viewing effect

    International Nuclear Information System (INIS)

    Smith, J.A.; Schmugge, T.J.; Ballard, J.R. Jr.

    1997-01-01

    Land Surface Temperature (LST) is an important parameter in understanding global environmental change because it controls many of the underlying processes in the energy budget at the surface and heat and water transport between the surface and the atmosphere. The measurement of LST at a variety of spatial and temporal scales and extension to global coverage requires remote sensing means to achieve these goals. Land surface temperature and emissivity products are currently being derived from satellite and aircraft remote sensing data using a variety of techniques to correct for atmospheric effects. Implicit in the commonly employed approaches is the assumption of isotropy in directional thermal infrared exitance. The theoretical analyses indicate angular variations in apparent infrared temperature will typically yield land surface temperature errors ranging from 1 to 4 C unless corrective measures are applied

  7. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  8. Estimation of nocturnal CO2 and N2O soil emissions from changes in surface boundary layer mass storage

    Science.gov (United States)

    Grant, Richard H.; Omonode, Rex A.

    2018-04-01

    Annual budgets of greenhouse and other trace gases require knowledge of the emissions throughout the year. Unfortunately, emissions into the surface boundary layer during stable, calm nocturnal periods are not measurable using most micrometeorological methods due to non-stationarity and uncoupled flow. However, during nocturnal periods with very light winds, carbon dioxide (CO2) and nitrous oxide (N2O) frequently accumulate near the surface and this mass accumulation can be used to determine emissions. Gas concentrations were measured at four heights (one within and three above canopy) and turbulence was measured at three heights above a mature 2.5 m maize canopy from 23 July to 10 September 2015. Nocturnal CO2 and N2O fluxes from the canopy were determined using the accumulation of mass within a 6.3 m control volume and out the top of the control volume within the nocturnal surface boundary layer. Diffusive fluxes were estimated by flux gradient method. The total accumulative and diffusive fluxes during near-calm nights (friction velocities CO2 and 0.53 nmol m-2 s-1 N2O. Fluxes were also measured using chambers. Daily mean CO2 fluxes determined by the accumulation method were 90 to 130 % of those determined using soil chambers. Daily mean N2O fluxes determined by the accumulation method were 60 to 80 % of that determined using soil chambers. The better signal-to-noise ratios of the chamber method for CO2 over N2O, non-stationary flow, assumed Schmidt numbers, and anemometer tilt were likely contributing reasons for the differences in chambers versus accumulated nocturnal mass flux estimates. Near-surface N2O accumulative flux measurements in more homogeneous regions and with greater depth are needed to confirm the conclusion that mass accumulation can be effectively used to estimate soil emissions during nearly calm nights.

  9. Economic effects on taxing CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Haaparanta, P. [Helsinki School of Economics (Finland); Jerkkola, J.; Pohjola, J. [The Research Inst. of the Finnish Economy, Helsinki (Finland)

    1996-12-31

    The CO{sub 2} emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO{sub 2} taxation. First one was the economic effects of increasing CO{sub 2} tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  10. Economic effects on taxing CO{sub 2} emissions

    Energy Technology Data Exchange (ETDEWEB)

    Haaparanta, P [Helsinki School of Economics (Finland); Jerkkola, J; Pohjola, J [The Research Inst. of the Finnish Economy, Helsinki (Finland)

    1997-12-31

    The CO{sub 2} emissions can be reduced by using economic instruments, like carbon tax. This project included two specific questions related to CO{sub 2} taxation. First one was the economic effects of increasing CO{sub 2} tax and decreasing other taxes. Second was the economic adjustment costs of reducing net emissions instead of gross emissions. A computable general equilibrium (CGE) model was used in this analysis. The study was taken place in Helsinki School of Economics

  11. Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles

    OpenAIRE

    Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

    1993-01-01

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquified petroleum gas, compressed natural gas, and electricity. Vehicle emission es...

  12. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    Science.gov (United States)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  13. MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid (MYD21A2.006). A new suite of MODIS Land Surface Temperature (LST) and Emissivity...

  14. MODIS/Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Terra Land Surface Temperature/3-Band Emissivity 8-Day L3 Global 1km SIN Grid (MOD21A2.006). A new suite of MODIS Land Surface Temperature (LST) and Emissivity...

  15. On the effect of emissions from aircraft engines on the state of the atmosphere

    Directory of Open Access Journals (Sweden)

    U. Schumann

    1994-04-01

    Full Text Available Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth's surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40°N and 60°N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.

  16. On the effect of emissions from aircraft engines on the state of the atmosphere

    Directory of Open Access Journals (Sweden)

    U. Schumann

    Full Text Available Emissions from aircraft engines include carbon dioxide, water vapour, nitrogen oxides, sulphur components and various other gases and particles. Such emissions from high-flying global civil subsonic air traffic may cause anthropogenic climate changes by an increase of ozone and cloudiness in the upper troposphere, and by an enhanced greenhouse effect. The absolute emissions by air traffic are small (a few percent of the total compared to surface emissions. However, the greenhouse effect of emitted water and of nitrogen oxides at cruise altitude is potentially large compared to that of the same emissions near the earth's surface because of relatively large residence times at flight altitudes, low background concentrations, low temperature, and large radiative efficiency. Model computations indicate that emission of nitrogen oxides has doubled the background concentration in the upper troposphere between 40°N and 60°N. Models also indicate that this causes an increase of ozone by about 5-20%. Regionally, the observed annual mean change in cloudiness is 0.4%. It is estimated that the resultant greenhouse effect of changes in ozone and thin cirrus cloud cover causes a climatic surface temperature change of 0.01-0.1 K. These temperature changes are small compared to the natural variability. Recent research indicates that the emissions at cruise altitude may increase the amount of stratospheric aerosols and polar stratospheric clouds and thereby have an impact on the atmospheric environment. Air traffic is increasing about 5-6% per year, fuel consumption by about 3%, hence the effects of the related emissions are expected to grow. This paper surveys the state of knowledge and describes several results from recent and ongoing research.

  17. Surface defect assisted broad spectra emission from CdSe quantum dots for white LED application

    Science.gov (United States)

    Samuel, Boni; Mathew, S.; Anand, V. R.; Correya, Adrine Antony; Nampoori, V. P. N.; Mujeeb, A.

    2018-02-01

    This paper reports, broadband photoluminescence from CdSe quantum dots (QDs) under the excitation of 403 nm using fluorimeter and 403 nm CW laser excitation. The broad spectrum obtained from the colloidal quantum dots was ranges from 450 nm to 800 nm. The broadness of the spectra was attributed to the merging of band edge and defect driven emissions from the QDs. Six different sizes of particles were prepared via kinetic growth method by using CdO and elemental Se as sources of Cd and Se respectively. The particle sizes were measured from TEM images. The size dependent effect on broad emission was also studied and the defect state emission was found to be predominant in very small QDs. The defect driven emission was also observed to be redshifted, similar to the band edge emission, due to quantum confinement effect. The emission corresponding to different laser power was also studied and a linear relation was obtained. In order to study the colour characteristics of the emission, CIE chromaticity coordinate, CRI and CCT of the prepared samples were measured. It is observed that, these values were tunable by the addition of suitable intensity of blue light from the excitation source to yield white light of various colour temperatures. The broad photoluminescence spectrum of the QDs, were compared with that of a commercially available white LED. It was found that the prepared QDs are good alternatives for the phosphor in phosphor converted white LEDs, to provide good spectral tunability.

  18. Cost-effective control of SO2 emissions in Asia

    NARCIS (Netherlands)

    Cofala, J.; Amann, M.; Gyarfas, F.; Schoepp, F.; Boudri, J.C.; Hordijk, L.; Kroeze, C.; Li Junfeng,; Dai Lin, D.; Panwar, T.S.; Gupta, S.

    2004-01-01

    Despite recent efforts to limit the growth of SO2 emissions in Asia, the negative environmental effects of sulphur emissions are likely to further increase in the future. This paper presents an extension of the RAINS-Asia integrated assessment model for acidification in Asia with an optimisation

  19. Greenhouse gas emissions from beef cattle pen surfaces in North Dakota.

    Science.gov (United States)

    Rahman, Shafiqur; Borhan, Md Saidul; Swanson, Kendall

    2013-01-01

    There is a global interest to quantify and mitigate greenhouse gas (GHG) (e.g. methane-CH4, nitrous oxide-N2O and carbon dioxide-CO2) emissions in animal feeding operations. The goal of this study was to quantify GHG emissions from the feedlot pen surface under North Dakota climatic conditions. In this study gaseous flux from the pen surfaces was generated using a custom-made wind tunnel at different times of the year (summer, fall, winter and spring). Gaseous fluxes (air samples) were drawn in the Tedlar bags using a vacuum chamber and gas concentrations were measured using a gas chromatograph within 24 h of sampling. The CH4 concentrations and flux rates (FRs) or flux among the months were not significantly different. Overall CH4, CO2 and N2O concentrations over a 7-month period were 2.66, 452 and 0.67 ppm, respectively. Estimated overall CH4, CO and N2O FRs were 1.32, 602 and 0.90 g m(-2) d(-1), respectively. Estimated emission rates using the wind tunnel were 38 g hd(-1) d(-1), 17 kg hd(-1) d(-1) and 26 g hd(-1) d(-1) for CH4, CO2 and N2O, respectively. The emission factors for GHG estimated in the research for North Dakota climate were the first of its kind, and these emission estimates can be used as a basis for planning and implementing management practices to minimize GHG emissions.

  20. Comment on the effect of Cs on photon and secondary ion emission during sputtering

    International Nuclear Information System (INIS)

    Yu, M.L.

    1978-01-01

    The effect of Cs on photon and negative ion emission was discussed for the situations where the sputtered atom interacts either very weakly or very strongly with the target surface. The experimental data seem to favor the strong interaction case. 5 references

  1. SURFACE FILMS TO SUPPRESS FIELD EMISSION IN HIGH-POWER MICROWAVE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay l

    2014-02-07

    Results are reported on attempts to reduce the RF breakdown probability on copper accelerator structures by applying thin surface films that could suppress field emission of electrons. Techniques for application and testing of copper samples with films of metals with work functions higher than copper are described, principally for application of platinum films, since platinum has the second highest work function of any metal. Techniques for application of insulating films are also described, since these can suppress field emission and damage on account of dielectric shielding of fields at the copper surface, and on account of the greater hardness of insulating films, as compared with copper. In particular, application of zirconium oxide films on high-field portions of a 11.424 GHz SLAC cavity structure for breakdown tests are described.

  2. Enhancing Optically Pumped Organic-Inorganic Hybrid Perovskite Amplified Spontaneous Emission via Compound Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2018-03-01

    Full Text Available Organic-inorganic hybrid perovskite has attracted intensive attention from researchers as the gain medium in lasing devices. However, achieving electrically driven lasing remains a significant challenge. Modifying the devices’ structure to enhance the optically pumped amplified spontaneous emission (ASE is the key issue. In this work, gold nanoparticles (Au NPs are first doped into PEDOT: PSS buffer layer in a slab waveguide device structure: Quartz/PEDOT: PSS (with or w/o Au NPs/CH3NH3PbBr3. As a result, the facile device shows a significantly enhanced ASE intensity and a narrowed full width at half maximum. Based on experiments and theoretical simulation data, the improvement is mainly a result of the compound surface plasmon resonance, including simultaneous near- and far-field effects, both of which could increase the density of excitons excited state and accelerate the radiative decay process. This method is highly significant for the design and development and fabrication of high-performance organic-inorganic hybrid perovskite lasing diodes.

  3. Channeling effect in electronic spectra produced by grazing impact of fast protons on insulator surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Archubi, C D; Gravielle, M S, E-mail: archubi@iafe.uba.a, E-mail: msilvia@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428, Buenos Aires (Argentina)

    2009-11-01

    Electron emission due to grazing scattering of fast protons from LiF and KCl surfaces is studied under axial incidence conditions. The differential emission probability is calculated within a distorted-wave formalism, taking into account axial channeled trajectories. For different emission angles, electronic spectra for proton incidence along the two principal crystal axes ([100] and [110]) are compared with those corresponding to an impact velocity in a random direction, finding effects associated with the channeling conditions.

  4. IRAS surface brightness maps of visible reflection nebulae: evidence for non-equilibrium infrared emission

    International Nuclear Information System (INIS)

    Castelaz, M.W.; Werner, M.W.; Sellgren, K.

    1986-01-01

    Surface brightness maps at 12, 25, 60, and 100 microns of 16 visible reflection nebulae were extracted from the Infrared Astronomy Satellite (IRAS) database. The maps were produced by coadding IRAS survey scans over areas centered on the illuminating stars, and have spatial resolutions of 0.9' x 4' at 12 and 25 microns, 1.8' x 4.5' at 60 microns, and 3.6' x 5' at 100 microns. Extended emission in the four IRAS bandpasses was detected in fourteen of the reflection nebulae. The IRAS data were used to measure the flux of the infrared emission associated with each source. The energy distributions show that the 12 micron flux is greater than the 25 micron flux in 11 of the nebulae, and the peak flux occurs in the 60 or 100 micron bandpass in all 16 nebular. The 60 and 100 micron flux can be approximated by blackbodies with temperatures between 30 and 50 K, consistent with temperatures expected from extrapolation of greybody fits to the 60 and 100 micron data. The excess 12 and 25 micron emission is attributed to a nonequilibrium process such as emission from thermal fluctuations of very small grains excited by single ultraviolet photons, or emission from polycyclic aromatic hydrocarbons (PAHs) excited by ultraviolet radiation. The common features of the energy distributions of the 16 reflection nebulae, also seen in the reflection nebulae associated with the Pleiades, suggest that PAHs or very small grains may be found in most reflection nebulae

  5. Silver-graphene oxide based plasmonic spacer for surface plasmon-coupled fluorescence emission enhancements

    Science.gov (United States)

    Badiya, Pradeep Kumar; Srinivasan, Venkatesh; Sathish Ramamurthy, Sai

    2017-06-01

    We report the application of single layered graphene oxide (SLGO) and silver decorated SLGO (Ag-SLGO) as plasmonic spacer material for obtaining enhanced fluorescence from a Rhodamine 6G (Rh6G) radiating dipole in a surface plasmon-coupled emission platform. To this end, we have decorated SLGO with biphasic silver nanoparticles using an in situ deposition technique to achieve 112-fold fluorescence enhancements.

  6. Kinetic electron emission from highly oriented pyrolytic graphite surfaces induced by singly charged ions

    CERN Document Server

    Cernusca, S; Winter, H; Aumayr, F; Loerincik, J; Sroubek, Z

    2002-01-01

    We present total electron yields determined by current measurements for normal impact of H sup + , H sub 2 sup + , H sub 3 sup + , C sup + , N sup + and O sup + ions (E<=10 keV) on a clean highly oriented pyrolytic graphite surface. The kinetic energy of the projectiles has been varied from near threshold up to 10 keV. By comparing the results to similar data obtained for a polycrystalline Au surface the role of different target properties for kinetic electron emission can be analysed.

  7. Surface trapping phenomena in thermionic emission generating l/f noise

    International Nuclear Information System (INIS)

    Stepanescu, A.

    1975-01-01

    A general expression of the power spectrum of''flicker noise'', involving stochastic trapping phenomena and calculated on the basis of a two parameter model, is applied in the case of thermoionic emission from cathode surface. The fluctuation of the work function over the cathode surface is interpreted as being due to a trapping process of foreign atoms by the cathode. Taking into account the very physical nature of the trapping mechanism, under self-consistent assumptions, a 1/f power spectrum is obtained in a certain range of frequency. The two parameter model removes some discrepancies involved in the preceding theories. (author)

  8. The powerful pulsed electron beam effect on the metallic surfaces

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Yuferov, V.B.; Kosik, N.A.; Druj, O.S.; Skibenko, E.I.

    2001-01-01

    Experimental results of the influence of powerful pulsed electron beams on the surface structure,hardness and corrosion resistance of the Cr18ni10ti steel are presented. The experiments were carried out in the powerful electron accelerators of directional effect VGIK-1 and DIN-2K with an energy up to approx 300 KeV and a power density of 10 9 - 10 11 W/cm 2 for micro- and nanosecond range. The essential influence of the irradiation power density on the material structure was established. Pulsed powerful beam action on metallic surface leads to surface melting,modification of the structure and structure-dependent material properties. The gas emission and mass-spectrometer analysis of the beam-surface interaction were defined

  9. Improving the indoor air quality by using a surface emissions trap

    Science.gov (United States)

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 °C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors.

  10. Study of electronic field emission from large surfaces under static operating conditions and hyper-frequency; Etude de l'emision electronique par effet de champ sur des surfaces larges en regime statique et hyperfrequence

    Energy Technology Data Exchange (ETDEWEB)

    Luong, M

    1997-09-01

    The enhanced electronic field emission from large area metallic surfaces lowers performances of industrial devices that have to sustain high electric field under vacuum. Despite of numerous investigations in the past, the mechanisms of such an emission have never been well clarified. Recently, research in our laboratory has pointed out the importance played by conducting sites (particles and protrusions). A refined geometrical model, called superposed protrusions model has been proposed to explain the enhanced emission by local field enhancement. As a logical continuation, the present work aims at testing this model and, in the same time, investigating the means to suppress the emission where it is undesirable. Thus, we have showed: the cause of current fluctuations in a continuous field regime (DC), the identity of emission characteristics ({beta}, A{sub e}) in both radiofrequency (RF) and DC regimes, the effectiveness of a thermal treatment by extern high density electronic bombardment, the effectiveness of a mechanical treatment by high pressure rinsing with ultra pure water, the mechanisms and limits of an in situ RF processing. Furthermore, the electronic emission from insulating particles has also been studied concurrently with a spectral analysis of the associated luminous emission. Finally, the refined geometrical model for conducting sites is reinforced while another model is proposed for some insulating sites. Several emission suppressing treatments has been explored and validated. At last, the characteristic of a RF pulsed field emitted electron beam has been checked for the first time as a possible application of such a field emission. (author)

  11. Study of electronic field emission from large surfaces under static operating conditions and hyper-frequency; Etude de l'emision electronique par effet de champ sur des surfaces larges en regime statique et hyperfrequence

    Energy Technology Data Exchange (ETDEWEB)

    Luong, M

    1997-09-01

    The enhanced electronic field emission from large area metallic surfaces lowers performances of industrial devices that have to sustain high electric field under vacuum. Despite of numerous investigations in the past, the mechanisms of such an emission have never been well clarified. Recently, research in our laboratory has pointed out the importance played by conducting sites (particles and protrusions). A refined geometrical model, called superposed protrusions model has been proposed to explain the enhanced emission by local field enhancement. As a logical continuation, the present work aims at testing this model and, in the same time, investigating the means to suppress the emission where it is undesirable. Thus, we have showed: the cause of current fluctuations in a continuous field regime (DC), the identity of emission characteristics ({beta}, A{sub e}) in both radiofrequency (RF) and DC regimes, the effectiveness of a thermal treatment by extern high density electronic bombardment, the effectiveness of a mechanical treatment by high pressure rinsing with ultra pure water, the mechanisms and limits of an in situ RF processing. Furthermore, the electronic emission from insulating particles has also been studied concurrently with a spectral analysis of the associated luminous emission. Finally, the refined geometrical model for conducting sites is reinforced while another model is proposed for some insulating sites. Several emission suppressing treatments has been explored and validated. At last, the characteristic of a RF pulsed field emitted electron beam has been checked for the first time as a possible application of such a field emission. (author)

  12. Particle emission induced by the interaction of highly charged slow Xe-ions with a SiO2 surface

    International Nuclear Information System (INIS)

    Schiwietz, G.; Skogvall, B.; Schneider, D.; Clark, M.; DeWitt, D.; McDonald, J.

    1991-01-01

    Sputtering of surface atoms by low energy (a few keV) heavy ions is a commonly used technique in material science and applied physics. In general, sputtering occurs via nuclear energy transfer processes and is determined mainly by the atom-atom interaction potentials. In the energy range of interest these potentials depend only slightly on the charge state of one collision partner if the other is neutral. The development of new ion-sources, however, allows for the use of ions with charged states of q > 50. For these highly charged ions it is conceivable that electronic processes come into play as well. If, for example, the density of charged surface atoms exceeds a certain limit, then particle emission can occur via the electrostatic repulsion of target atoms, the so-called Coulomb explosion. Indications for such electronic effects have been found in a few investigations of ion-induced sputtering Si (q q+ ). However, the order of magnitude of this effect is not clear until now. In this work we present preliminary data on sputtering, ion backscattering, electron and photon emission from SiO 2 surface induced by incident Xe ions of very high charge states (q=30--50). The experiment was performed at the electron beam ion trap (EBIT) of the Lawrence Livermore National Laboratory using a time-of-flight (TOF) ion analyzer-system from the Hahn-Meitner-Institute, Berlin

  13. The role of surface and deep-level defects on the emission of tin oxide quantum dots

    International Nuclear Information System (INIS)

    Kumar, Vinod; Kumar, Vijay; Som, S; Ntwaeaborwa, O M; Swart, H C; Neethling, J H; Lee, Mike

    2014-01-01

    This paper reports on the role of surface and deep-level defects on the blue emission of tin oxide quantum dots (SnO 2 QDs) synthesized by the solution-combustion method at different combustion temperatures. X-ray diffraction studies showed the formation of a single rutile SnO 2 phase with a tetragonal lattice structure. High resolution transmission electron microscopy studies revealed an increase in the average dot size from 2.2 to 3.6 nm with an increase of the combustion temperature from 350 to 550 °C. A decrease in the band gap value from 3.37 to 2.76 eV was observed with the increase in dot size due to the quantum confinement effect. The photoluminescence emission was measured for excitation at 325 nm and it showed a broad blue emission band for all the combustion temperatures studied. This was due to the creation of various oxygen and tin vacancies/defects as confirmed by x-ray photoelectron spectroscopy data. The origin of the blue emission in the SnO 2 QDs is discussed with the help of an energy band diagram. (paper)

  14. Cigar burning under different smoking intensities and effects on emissions.

    Science.gov (United States)

    Dethloff, Ole; Mueller, Christian; Cahours, Xavier; Colard, Stéphane

    2017-12-01

    The effect of smoking intensity on cigar smoke emissions was assessed under a range of puff frequencies and puff volumes. In order to potentially reduce emissions variability and to identify patterns as accurately as possible, cigar weights and diameters were measured, and outliers were excluded prior to smoking. Portions corresponding to 25%, 50%, 75% and 100% of the cigar, measured down to the butt length, were smoked under several smoking conditions, to assess nicotine, CO and water yields. The remaining cigar butts were analysed for total alkaloids, nicotine, and moisture. Results showed accumulation effects during the burning process having a significant impact on smoke emission levels. Condensation and evaporation occur and lead to smoke emissions dependent on smoking intensity. Differences were observed for CO on one side as a gas phase compound and nicotine on the other side as a particulate phase compound. For a given intensity, while CO emission increases linearly as the cigar burns, nicotine and water emissions exhibited an exponential increase. Our investigations showed that a complex phenomena occurs during the course of cigar smoking which makes emission data: difficult to interpret, is potentially misleading to the consumer, and inappropriate for exposure assessment. The results indicate that, tobacco content and physical parameters may well be the most robust basis for product characterisation and comparison rather than smoke emission. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effect of impervious surface area and vegetation changes on mean ...

    African Journals Online (AJOL)

    adeniyi adeyemi

    Land surface temperature (LST) is measured by the surface energy balance, .... climatic and environmental conditions (Cheng et al., 2006). ..... urban areas have generally resulted in a high reflection and emission of solar radiation and greater.

  16. Field and laboratory emission cell automation and control system for investigating surface chemistry reactions

    Science.gov (United States)

    Flemmer, Michael M.; Ham, Jason E.; Wells, J. R.

    2007-01-01

    A novel system [field and laboratory emission cell (FLEC) automation and control system] has been developed to deliver ozone to a surface utilizing the FLEC to simulate indoor surface chemistry. Ozone, humidity, and air flow rate to the surface were continuously monitored using an ultraviolet ozone monitor, humidity, and flow sensors. Data from these sensors were used as feedback for system control to maintain predetermined experimental parameters. The system was used to investigate the chemistry of ozone with α-terpineol on a vinyl surface over 72h. Keeping all other experimental parameters the same, volatile organic compound emissions from the vinyl tile with α-terpineol were collected from both zero and 100ppb(partsper109) ozone exposures. System stability profiles collected from sensor data indicated experimental parameters were maintained to within a few percent of initial settings. Ozone data from eight experiments at 100ppb (over 339h) provided a pooled standard deviation of 1.65ppb and a 95% tolerance of 3.3ppb. Humidity data from 17 experiments at 50% relative humidity (over 664h) provided a pooled standard deviation of 1.38% and a 95% tolerance of 2.77%. Data of the flow rate of air flowing through the FLEC from 14 experiments at 300ml/min (over 548h) provided a pooled standard deviation of 3.02ml/min and a 95% tolerance range of 6.03ml/min. Initial experimental results yielded long term emissions of ozone/α-terpineol reaction products, suggesting that surface chemistry could play an important role in indoor environments.

  17. Application of homotopy perturbation method for a conductive–radiative fin with temperature dependent thermal conductivity and surface emissivity

    Directory of Open Access Journals (Sweden)

    Pranab Kanti Roy

    2015-09-01

    Full Text Available This work aimed at studying the effects of environmental temperature and surface emissivity parameter on the temperature distribution, efficiency and heat transfer rate of a conductive–radiative fin. The Homotopy Perturbation Method (HPM being one of the semi-numerical methods for highly nonlinear and inhomogeneous equations, the local temperature distribution efficiencies and heat transfer rates are obtained using HPM in which Newton–Raphson method is used for the insulated boundary condition. It is found that the results of the present works are in good agreement with results available in the literature.

  18. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    Science.gov (United States)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to

  19. N2O emission from plant surfaces - light stimulated and a global phenomenon.

    Science.gov (United States)

    Mikkelsen, Teis; Bruhn, Dan; Ambus, Per

    2017-04-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed. Literature: Mikkelsen TN, Bruhn D & Ambus P. (2016). Solar UV Irradiation-Induced Production of Greenhouse Gases from Plant Surfaces: From Leaf to Earth. Progress in Botany, DOI 10.1007/124_2016_10. Bruhn D, Albert KR, Mikkelsen TN & Ambus P. (2014). UV-induced N2O emission from plants. Atmospheric Environment 99, 206-214.

  20. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Chambliss, S E; Zeinali, M; Minjares, R; Silva, R; West, J J

    2014-01-01

    Exposure to ambient fine particular matter (PM 2.5 ) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM 2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM 2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM 2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m −3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM 2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  1. Potential effects of emission taxes on CO2 emissions in the OECD and LDCs

    International Nuclear Information System (INIS)

    Messner, S.; Strubegger, M.

    1991-01-01

    A set of existing optimization models, which represent the energy systems of the OECD and LDCs (less developed countries excluding centrally planned economies) with a time horizon to 2020, has been applied to derive first-order estimates of the techno-economic potential for emission reduction. The driving force for the introduction of reduction measures is a scheme of taxes levied on the emission of six pollutants, including the greenhouse gases CO 2 and methane. The tax levels introduced are based on taxes discussed by the Swedish government: they are the break-even point to test which measures are cost-effective and which emission levels can be reached at these costs. The regional models include the following alternatives: (i) reduction of final energy demand by supplying the requested services by other means (i.e., conservation); (ii) substitution of new fuels for polluting fuels; (iii) introduction of clean technologies for the same purposes; (iv) additions of pollution-reduction technologies. Alternative scenarios with emission taxes are compared with a base scenario without taxes related to pollutant emissions. The results indicate that an increase in CO 2 emissions in the OECD and LDC regions of 47% over the next 30 yr in the base scenario would be changed to stable levels to 2010 by tax-induced measures. Thereafter, energy-consumption growth in the LDCs reverses this trend. (author)

  2. Health effects of soy-biodiesel emissions: mutagenicity-emission factors.

    Science.gov (United States)

    Mutlu, Esra; Warren, Sarah H; Matthews, Peggy P; King, Charly; Walsh, Leon; Kligerman, Andrew D; Schmid, Judith E; Janek, Daniel; Kooter, Ingeborg M; Linak, William P; Gilmour, M Ian; DeMarini, David M

    2015-01-01

    Soy biodiesel is the predominant biodiesel fuel used in the USA, but only a few, frequently conflicting studies have examined the potential health effects of its emissions. We combusted petroleum diesel (B0) and fuels with increasing percentages of soy methyl esters (B20, B50 and B100) and determined the mutagenicity-emission factors expressed as revertants/megajoule of thermal energy consumed (rev/MJ(th)). We combusted each fuel in replicate in a small (4.3-kW) diesel engine without emission controls at a constant load, extracted organics from the particles with dichloromethane, determined the percentage of extractable organic material (EOM), and evaluated these extracts for mutagenicity in 16 strains/S9 combinations of Salmonella. Mutagenic potencies of the EOM did not differ significantly between replicate experiments for B0 and B100 but did for B20 and B50. B0 had the highest rev/MJ(th), and those of B20 and B100 were 50% and ∼85% lower, respectively, in strains that detect mutagenicity due to polycyclic aromatic hydrocarbons (PAHs), nitroarenes, aromatic amines or oxidative mutagens. For all strains, the rev/MJ(th) decreased with increasing biodiesel in the fuel. The emission factor for the 16 EPA Priority PAHs correlated strongly (r(2 )= 0.69) with the mutagenicity-emission factor in strain TA100 + S9, which detects PAHs. Under a constant load, soy-biodiesel emissions were 50-85% less mutagenic than those of petroleum diesel. Without additional emission controls, petroleum and biodiesel fuels had mutagenicity-emission factors between those of large utility-scale combustors (e.g. natural gas, coal, or oil) and inefficient open-burning (e.g. residential wood fireplaces).

  3. Adverse effects of the automotive industry on carbon dioxide emissions

    Directory of Open Access Journals (Sweden)

    Mpho Bosupeng

    2016-05-01

    Full Text Available This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japan. In addition, significant relations were observed between output and carbon dioxide discharges in Spain, Canada, India and Japan. Changes in output had substantial impact on emissions in Germany, Canada and India. The results also show that the number of passenger cars influences the magnitude of emissions in multiple economies. In conclusion, the automotive industry has to be considered in policies that aim to reduce carbon dioxide emissions.

  4. [Study on Square Super-Lattice Pattern with Surface Discharge in Dielectric Barrier Discharge by Optical Emission Spectra].

    Science.gov (United States)

    Niu, Xue-jiao; Dong, Li-fang; Liu, Ying; Wang, Qian; Feng, Jian-yu

    2016-02-01

    Square super-lattice pattern with surface discharge consisting of central spots and dim spots is firstly observed in the mixture of argon and air by using a dielectric barrier discharge device with water electrodes. By observing the image, it is found that the central spot is located at the centriod of its surrounding four dim spots. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges (SDs). The brightness of the central spot and is quite different from that of the dim spot, which indicates that the plasma states of the central spot and the dim spot may be differentiated. The optical emission spectrum method is used to further study the several plasma parameters of the central spot and the dim spot in different argon content. The emission spectra of the N₂ second positive band (C³IIu --> B³ IIg) are measured, from which the molecule vibration temperatures of the central spot and the dim spot are calculated respectively. The broadening of spectral line 696.57 nm (2P₂-->1S₅) is used to study the electron densities of the central spot and the dim spot. It is found that the molecule vibration temperature and electron density of the dim spot are higher than those of the central spot in the same argon content The molecule vibration temperature and electron density of the central spot and the dim spot increase with the argon content increasing from 90% to 99.9%. The surface discharge induced by the volume discharge (VD) has the determinative effect on the formation of the dim spot The experimental results above play an important role in studying the formation mechanism of surface discharg&of square super-lattice pattern with surface discharge. In addition, the studies exert an influence on the application of surface discharge and volume discharge in different fields.

  5. Husbandry Emissions Estimation: Fusion of Mobile Surface and Airborne Remote Sensing and Mobile Surface In Situ Measurements

    Science.gov (United States)

    Leifer, I.; Hall, J. L.; Melton, C.; Tratt, D. M.; Chang, C. S.; Buckland, K. N.; Frash, J.; Leen, J. B.; Van Damme, M.; Clarisse, L.

    2017-12-01

    Emissions of methane and ammonia from intensive animal husbandry are important drivers of climate and photochemical and aerosol pollution. Husbandry emission estimates are somewhat uncertain because of their dependence on practices, temperature, micro-climate, and other factors, leading to variations in emission factors up to an order-of-magnitude. Mobile in situ measurements are increasingly being applied to derive trace gas emissions by Gaussian plume inversion; however, inversion with incomplete information can lead to erroneous emissions and incorrect source location. Mobile in situ concentration and wind data and mobile remote sensing column data from the Chino Dairy Complex in the Los Angeles Basin were collected near simultaneously (within 1-10 s, depending on speed) while transecting plumes, approximately orthogonal to winds. This analysis included airborne remote sensing trace gas information. MISTIR collected vertical column FTIR data simultaneously with in situ concentration data acquired by the AMOG-Surveyor while both vehicles traveled in convoy. The column measurements are insensitive to the turbulence characterization needed in Gaussian plume inversion of concentration data and thus provide a flux reference for evaluating in situ data inversions. Four different approaches were used on inversions for a single dairy, and also for the aggregate dairy complex plume. Approaches were based on differing levels of "knowledge" used in the inversion from solely the in situ platform and a single gas to a combination of information from all platforms and multiple gases. Derived dairy complex fluxes differed significantly from those estimated by other studies of the Chino complex. Analysis of long term satellite data showed that this most likely results from seasonality effects, highlighting the pitfalls of applying annualized extensions of flux measurements to a single campaign instantiation.

  6. Climate change impact of livestock CH4 emission in India: Global temperature change potential (GTP) and surface temperature response.

    Science.gov (United States)

    Kumari, Shilpi; Hiloidhari, Moonmoon; Kumari, Nisha; Naik, S N; Dahiya, R P

    2018-01-01

    Two climate metrics, Global surface Temperature Change Potential (GTP) and the Absolute GTP (AGTP) are used for studying the global surface temperature impact of CH 4 emission from livestock in India. The impact on global surface temperature is estimated for 20 and 100 year time frames due to CH 4 emission. The results show that the CH 4 emission from livestock, worked out to 15.3 Tg in 2012. In terms of climate metrics GTP of livestock-related CH 4 emission in India in 2012 were 1030 Tg CO 2 e (GTP 20 ) and 62 Tg CO 2 e (GTP 100 ) at the 20 and 100 year time horizon, respectively. The study also illustrates that livestock-related CH 4 emissions in India can cause a surface temperature increase of up to 0.7mK and 0.036mK over the 20 and 100 year time periods, respectively. The surface temperature response to a year of Indian livestock emission peaks at 0.9mK in the year 2021 (9 years after the time of emission). The AGTP gives important information in terms of temperature change due to annual CH 4 emissions, which is useful when comparing policies that address multiple gases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Impact of Future Emissions and Climate Change on Surface Ozone over China

    Science.gov (United States)

    Ma, C. T.; Westervelt, D. M.; Fiore, A. M.; Rieder, H. E.; Kinney, P.; Wang, S.; Correa, G. J. P.

    2017-12-01

    China's immense ambient air pollution problem and world-leading greenhouse gas emissions place it at the forefront of global efforts to address these related environmental concerns. Here, we analyze the impact of ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) future emissions scenarios representative of current legislation (CLE) and maximum technically feasible emissions reductions (MFR) on surface ozone (O3) concentrations over China in the 2030s and 2050s, in the context of a changing climate. We use a suite of simulations performed with the NOAA Geophysical Fluid Dynamics Laboratory's AM3 global chemistry-climate model. To estimate the impact of climate change in isolation on Chinese air quality, we hold emissions of air pollutants including O3 precursors fixed at 2015 levels but allow climate (global sea surface temperatures and sea ice cover) to change according to decadal averages for the years 2026-2035 and 2046-2055 from a three-member ensemble of GFDL-CM3 simulations under the RCP8.5 high warming scenario. Evaluation of the present-day simulation (2015 CLE) with observations from 1497 chiefly urban air quality monitoring stations shows that simulated surface O3 is positively biased by 26 ppb on average over the domain of China. Previous studies, however, have shown that the modeled ozone response to changes in NOx emissions over the Eastern United States mirrors the magnitude and structure of observed changes in maximum daily average 8-hour (MDA8) O3 distributions. Therefore, we use the model's simulated changes for the 2030s and 2050s to project changes in policy-relevant MDA8 O3 concentrations. We find an overall increase in MDA8 O3 for CLE scenarios in which emissions of NOx precursors are projected to increase, and under MFR scenarios, an overall decrease, with the highest changes occurring in summertime for both 2030 and 2050 MFR. Under climate change alone, the model simulates a mean summertime decrease of 1.3 ppb

  8. Experimental study of a high-efficiency low-emission surface combustor-heater

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Fish, F.F.

    1991-01-01

    The surface combustor-heater is a combined combustion/heat-transfer device in which the heat-exchange surfaces are embedded in a stationary bed of refractory material where gaseous fuel is burned. Because of intensive heat radiation from the hot solid particles and enhanced heat convection from the gas flow to the heat-exchange tubes, heat transfer is significantly intensified. Removing heat simultaneously with the combustion process has the benefit of reducing the combustion temperature, which suppresses NO x formation. A basic experimental study was conducted on a 60-kW bench-scale surface combustor-heater with two rows of water-cooled tube coils to evaluate its performance and explore the mechanism of combined convective-radiative heat transfer and its interaction with combustion in the porous matrix. Combustion stability in the porous matrix, heat-transfer rates, emissions, and pressure drop through the unit have been investigated for the variable parameters of operation and unit configurations. Experimental results have demonstrated that high combustion intensity (up to 2.5 MW/m 2 ), high heat-transfer rates (up to 310 kW/m 2 ), high density of energy conversion (up to 8 MW/m 3 ), as well as ultra-low emissions (NO x and CO as low as 15 vppm*) have been achieved. The excellent performance of the test unit and the extensive data obtained from the present experimental study provide the basis for further development of high-efficiency and ultra low-emission water heaters, boilers, and process heaters based on the surface combustor-heater concept. 4 refs., 16 figs

  9. Effect of Fuel Composition on Particulate Matter Emissions from a Gasoline Direct Injection Engine

    Science.gov (United States)

    Smallwood, Bryden Alexander

    The effects of fuel composition on reducing PM emissions were investigated using a Ford Focus wall-guided gasoline direct injection engine (GDI). Initial results with a 65% isooctane and 35% toluene blend showed significant reductions in PM emissions. Further experiments determined that this decrease was due to a lack of light-end components in that fuel blend. Tests with pentane content lower than 15% were found to have PN concentrations 96% lower than tests with 20% pentane content. This indicates that there is a shift in mode of soot production. Pentane significantly increases the vapour pressure of the fuel blend, potentially resulting in surface boiling, less homogeneous mixtures, or decreased fuel rebound from the piston. PM mass measurements and PN Index values both showed strong correlations with the PN concentration emissions. In the gaseous exhaust, THC, pentane, and 1,3 butadiene showed strong correlations with the PM emissions.

  10. Investigating the effect of electron emission pattern on RF gun beam quality

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, A. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Velenjak, 1983963113, Tehran (Iran, Islamic Republic of); Shokri, B., E-mail: b-shokri@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Velenjak, 1983963113, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, G.C., Velenjak, 1983963113, Tehran (Iran, Islamic Republic of)

    2016-05-11

    Thermionic radio frequency gun is one of the most promising choices to gain a high quality electron beam, used in the infrared free electron lasers and synchrotron radiation injectors. To study the quality of the beam in a compact electron source, the emission pattern effect on the beam dynamics should be investigated. In the presented work, we developed a 3D simulation code to model the real process of thermionic emission and to investigate the effect of emission pattern, by considering geometrical constraints, on the beam dynamics. According to the results, the electron bunch emittance varies considerably with the emission pattern. Simulation results have been validated via comparison with the well-known simulation codes such as ASTRA simulation code and CST microwave studio, as well as other simulation results in the literature. It was also demonstrated that by using a continuous wave laser beam for heating the cathode, the emission pattern full width at half maximum (FWHM) of the transverse emission distribution is proportional to FWHM of the Gaussian profile for the laser beam. Additionally, by using the developed code, the effect of wall structure around the cathode on the back bombardment effect has been studied. According to the results, for a stable operation of the RF gun, one should consider the nose cone in vicinity of the cathode surface to reduce the back-bombardment effect. - Highlights: • We developed a 3D code to simulate the beam dynamics of thermionic RF gun. • Te impact of the emission pattern on the beam dynamic was investigated. • Different emission pattern results different emittance in the gun exit. • Using a nosecone around the cathode adjacent wall reduces back bombardment effect.

  11. Relative impacts of worldwide tropospheric ozone changes and regional emission modifications on European surface-ozone levels

    International Nuclear Information System (INIS)

    Szopa, S.; Hauglustaine, D.A.

    2007-01-01

    Multi-scale models were applied to assess the surface ozone changes in 2030. Several emission scenarios are considered, ranging from (a) a pessimistic anthropogenic emission increase to (b) an optimistic decrease of emissions, and including (c) a realistic scenario that assumes the implementation of control legislations [CLE]. The two extreme scenarios lead respectively to homogeneous global increase and decrease of surface ozone, whereas low and inhomogeneous changes associated with a slight global increase of ozone are found for the CLE scenario. Over western Europe, for the CLE scenario, the benefit of European emission reduction is significantly counterbalanced by increasing global ozone levels. Considering warmer conditions over Europe and future emission modifications, the human health exposure to surface ozone is found to be significantly worsened. (authors)

  12. Effect of low emission sources on air quality in Cracow

    Energy Technology Data Exchange (ETDEWEB)

    Nedoma, J. [EKOPOL Environmental Engineering Studies and Design Office, Co. Ltd., Cracow (Poland)

    1995-12-31

    The paper presents calculation of power engineering low emission and results of stimulation of the effect of this emission on air quality in Cracow, Poland. It has been stated that the segment of low emission in central areas of the town makes up ca. 40% of the observed concentration of sulfur dioxide. Furthermore it has been stated that the capital investment must be concentrated in the central part of the town in order to reach noticeable improvement of air quality in Cracow. Neither the output of a separate power source nor the emission level and its individual harmful effect, but the location of the source and especially packing density of the sources must decide the priority of upgrading actions.

  13. The Venus Emissivity Mapper - gaining a global perspective on the surface composition of Venus

    Science.gov (United States)

    Helbert, Joern; Dyar, Melinda; Widemann, Thomas; Marcq, Emmanuel; Maturilli, Alessandro; Mueller, Nils; Kappel, David; Ferrari, Sabrina; D'Amore, Mario; Tsang, Constantine; Arnold, Gabriele; Smrekar, Suzanne; VEM Team

    2017-10-01

    The permanent cloud cover of Venus prohibits observations of the surface with traditional imaging techniques over much of the EM spectral range, leading to the false notion that information about the composition of Venus’ surface could only be derived from lander missions. However, harsh environmental conditions on the surface cause landed missions to be sole site, highly complex, and riskier than orbiting missions.It is now known that 5 transparency windows occur in the Venus atmosphere, ranging from 0.86 µm to 1.18 µm. Recent advances in high temperature laboratory spectroscopy at the PSL at DLR these windows are highly diagnostic for surface mineralogy. Mapping of the southern hemisphere of Venus with VIRTIS on VEX in the 1.02 µm band was a proof-of-concept for an orbital remote sensing approach to surface composition and weathering studies[1-3]. The Venus Emissivity Mapper [4] proposed for the NASA’s Venus Origins Explorer (VOX) and the ESA EnVision proposal builds on these recent advances. It is the first flight instrument specially designed with a sole focus on mapping the surface of Venus using the narrow atmospheric windows around 1 µm. Operating in situ from Venus orbit, VEM will provide a global map of surface composition as well as redox state of the surface, providing a comprehensive picture of surface-atmosphere interaction and support for landing site selection. Continuous observation of the thermal emission of the Venus will provide tight constraints on the current day volcanic activity[5]. This is complemented by measurements of atmospheric water vapor abundance as well as cloud microphysics and dynamics. These data will allow for accurate correction of atmospheric interference on the surface measurements, which provide highly valuable science on their own. A mission combining VEM with a high-resolution radar mapper such as VOX or EnVision in a low circular orbit will provide key insights into the divergent evolution of Venus.1. Smrekar, S

  14. Fourier emission infrared microspectrophotometer for surface analysis. I - Application to lubrication problems

    Science.gov (United States)

    Lauer, J. L.; King, V. W.

    1979-01-01

    A far-infrared interferometer was converted into an emission microspectrophotometer for surface analysis. To cover the mid-infrared as well as the far-infrared the Mylar beamsplitter was made replaceable by a germanium-coated salt plate, and the Moire fringe counting system used to locate the moveable Michelson mirror was improved to read 0.5 micron of mirror displacement. Digital electronics and a dedicated minicomputer were installed for data collection and processing. The most critical element for the recording of weak emission spectra from small areas was, however, a reflecting microscope objective and phase-locked signal detection with simultaneous referencing to a blackbody source. An application of the technique to lubrication problems is shown.

  15. Electrom emission from slow highly charged ions interacting with a metal surface

    International Nuclear Information System (INIS)

    Aumayr, F.; Kurz, H.; Toeglhofer, K.; Winter, H.

    1992-01-01

    Recent progress in investigating electron emission from slow highly charged ions approaching a metal surface is discussed. In particular, new informations on generation and decay of transient multiply excited ''hollow atoms'' developing during these processes have been gained from measurement of the statistics of emitted electrons (ES). ES and precise total electron yields derived from the former have been measured for normal incidence of slow (impact velocity 1/15.10 4 ms -1 ) multicharged ions N q+ (q≤6), Ne q+ (q≤10), Ar q+ (q≤16), Kr q+ (q≤10), Xe q+ (q≤10) and I q+ (q≤25) on clean polycrystalline gold. A classical over-barrier approach as recently introduced by Burgdoerfer et al. 1991 has been extended and successfully applied to model the measured impact-velocity dependences of total electron yields. In this way contributions from different electron emission mechanisms could be identified. (orig.)

  16. Investigation of Influence of Surface Nanoparticle on Emission Properties of Scandia-Doped Dispenser Cathodes

    Science.gov (United States)

    Zhang, Xizhu; Wang, Jinshu; Wang, Yiman; Liu, Wei; Zhou, Meiling; Gao, Zhiyuan

    2013-06-01

    The microstructure of a fully activated scandia doped dispenser (SDD) cathode has been studied by scanning electron microscope (SEM). The observation results display that nanoparticles appear at the growth steps and the surface of tungsten grains of the fully activated SDD cathode. To study the influence of the nanoparticles on the emission, the local electric field strengths around the nanoparticles have been calculated by Maxwell 2D code and Comsol. The calculation results show that the local electric field strengths are enhanced by 1.1 to 3.8 times to average value based on different model conditions. The highest field strength is about 1.54 × 105 V/cm at an average field strength of 40 KV/cm, which is related to a space-charge limited (SCL) current density of 100 A/cm2 in the experimental configuration. This implies the field strength is not high enough to cause field emission.

  17. Stimulated-emission effects in particle creation near black holes

    International Nuclear Information System (INIS)

    Wald, R.M.

    1976-01-01

    It has recently been shown that if a black hole is formed by gravitational collapse, spontaneous particle creation will occur and a thermal spectrum of all species of particles will be emitted to infinity if the quantum matter was initially in the vacuum state. In this paper we investigate the stimulated-emission effects which occur if particles are present initially. We show in general that for a Hermitian scalar field in an external potential or in curved, asymptotically flat spacetime, stimulated-emission effects can occur precisely in those modes for which there is spontaneous particle creation from the vacuum. For the case of a Schwarzschild black hole, this result appears paradoxical, since spontaneous emission occurs at late times but there is no classical analog of stimulated emission at late times. The resolution of this paradox is that in order to induce emission of particles which emerge at late times one must send in particles at early times, so that they reach the black hole very near the instant of its formation. However, enormous energy is required of these incoming particles in order to stimulate emission of particles which emerge at late times. Thus, for a Schwarzschild black hole, even if particles are initially present (with limited energy) they will induce emission only at early times; at late times one will see only the spontaneously emitted blackbody thermal radiation. For the case of a Kerr black hole stimulated emission can be induced by particles sent in at late times with the appropriate frequencies and angular dependence. If the number of incoming particles is large, this quantum stimulated emission just gives the classical superradiant scattering

  18. Price and welfare effects of emission quota allocation

    OpenAIRE

    Golombek, Rolf; Kittelsen, Sverre A.C.; Rosendahl, Knut Einar

    2011-01-01

    Abstracts with downloadable Discussion Papers in PDF are available on the Internet: http://www.ssb.no Abstract: We analyze how different ways of allocating emission quotas may influence the electricity market. Using a large-scale numerical model of the Western European energy market, we show that different allocation mechanisms can have very different effects on the electricity market, even if the total emission target is fixed. This is particularly the case if output-based alloca...

  19. Adverse effects of the automotive industry on carbon dioxide emissions

    OpenAIRE

    Mpho Bosupeng

    2016-01-01

    This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japa...

  20. Interregional carbon emission spillover–feedback effects in China

    International Nuclear Information System (INIS)

    Zhang, Youguo

    2017-01-01

    A three-region input–output model was applied in this study to analyze the emission spillover–feedback effects across the eastern, middle, and western regions of China. Results revealed that the interregional trade has important spillover effects (SEs) on the emissions of each region, particularly in the middle and western regions, but the feedback effects are few. Although the eastern regional final demands have a smaller economic SE per unit than those of the middle and western regions in 2002–2010, its emission SE gradually exceeded that of the two other regions. The interregional trade policy has to be enforced in the future, but the emission SEs should be controlled efficiently. Therefore, the central government should continue to implement the policies on the reduction of energy and carbon intensities from the past decade, limit coal consumption, and encourage renewable fuel development. At the same time, the central government and the eastern region can help the middle and western regions control their carbon intensity by providing fiscal, technological, and training assistance. The middle and western regions should set strict admittance standards for energy-intensive plants that transferred from the eastern region. - Highlights: • We study spillover-feedback effects (SFEs) with a three-region input-output model. • We calculate the emission SFEs among the east, middle and west China. • We compare changes of the interregional emission and economic SFEs in 2002–2010. • Regional sector emission SFEs are also presented. • The policy implication of emission SFEs are discussed.

  1. Atmospheric emissions of methyl isothiocyanate and chloropicrin following soil fumigation and surface containment treatment in bare-root forest nurseries

    Science.gov (United States)

    D. Wang; J. Juzwik; S.W. Fraedrich; K. Spokas; Y. Zhang; W.C. Koskinen

    2005-01-01

    Methylisothiocyanate (MITC) and chloropicrin (CP) are alternatives to methyl bromide for soil fumigation. However, surface transport of MITC emission has been cited as the cause for seedling damage in adjacent fields at several bare-root forest-tree nurseries. Field experiments were conducted at nurseries to measure air emissions of MITC and CP after fumigation....

  2. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    Science.gov (United States)

    LeVine, D. M.; Lang, R.; Wentz, F.; Messiner, T.

    2012-01-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.1 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest.

  3. MODIS/Aqua Land Surface Temperature/Emissivity 8-Day L3 Global 0.05Deg CMG V041

    Data.gov (United States)

    National Aeronautics and Space Administration — The MYD11C2.041 dataset was decommissioned as of March 1, 2018. Users are encouraged to use Version 6 of MODIS/Aqua Land Surface Temperature and Emissivity Daily L3...

  4. Investigation on surface-plasmon-enhanced light emission of InGaN/GaN multiple quantum wells

    Science.gov (United States)

    Yu, Zhenzhong; Li, Qiang; Fan, Qigao; Zhu, Yixin

    2018-05-01

    We demonstrate surface-plasmon (SP) enhanced light emission from InGaN/GaN near ultraviolet (NUV) multiple quantum wells (MQWs) using Ag thin films and nano-particles (NPs). Two types of Ag NP arrays are fabricated on the NUV-MQWs, one is fabricated on p-GaN layer with three different sizes of about 120, 160 and 240 nm formed by self-assembled process, while the other is embedded close to the MQWs. In addition, the influence of the surface plasmon polariton (SPP) and localized surface plasmon (LSP) in NUV-MQWs has been investigated by photoluminescence (PL) measurement. Both PL measurements and theoretical simulation results show that the NUV light would be extracted more effectively under LSP mode than that of SPP mode. The highest enhancement of PL intensity is increased by 324% for the sample with NPs embedded in etched p-GaN near the MQWs as compared with the bare MQWs, also is about 1.24 times higher than the MQW sample covered with Ag NPs on the surface, indicating strong surface scattering and SP coupling between Ag NPs and NUV-MQWs.

  5. Effects of preprocessing method on TVOC emission of car mat

    Science.gov (United States)

    Wang, Min; Jia, Li

    2013-02-01

    The effects of the mat preprocessing method on total volatile organic compounds (TVOC) emission of car mat are studied in this paper. An appropriate TVOC emission period for car mat is suggested. The emission factors for total volatile organic compounds from three kinds of new car mats are discussed. The car mats are preprocessed by washing, baking and ventilation. When car mats are preprocessed by washing, the TVOC emission for all samples tested are lower than that preprocessed in other methods. The TVOC emission is in stable situation for a minimum of 4 days. The TVOC emitted from some samples may exceed 2500μg/kg. But the TVOC emitted from washed Polyamide (PA) and wool mat is less than 2500μg/kg. The emission factors of total volatile organic compounds (TVOC) are experimentally investigated in the case of different preprocessing methods. The air temperature in environment chamber and the water temperature for washing are important factors influencing on emission of car mats.

  6. Antibacterial effect of doxycycline-coated dental abutment surfaces

    International Nuclear Information System (INIS)

    Xing, Rui; Tiainen, Hanna; Shabestari, Maziar; Lyngstadaas, Ståle P; Haugen, Håvard J; Witsø, Ingun L; Lönn-Stensrud, Jessica; Jugowiec, Dawid

    2015-01-01

    Biofilm formation on dental abutment may lead to peri-implant mucositis and subsequent peri-implantitis. These cases are clinically treated with antibiotics such as doxycycline (Doxy). Here we used an electrochemical method of cathodic polarization to coat Doxy onto the outer surface of a dental abutment material. The Doxy-coated surface showed a burst release in phosphate-buffered saline during the first 24 h. However, a significant amount of Doxy remained on the surface for at least 2 weeks especially on a 5 mA–3 h sample with a higher Doxy amount, suggesting both an initial and a long-term bacteriostatic potential of the coated surface. Surface chemistry was analyzed by x-ray photoelectron spectroscopy and secondary ion mass spectrometry. Surface topography was evaluated by field emission scanning electron microscopy and blue-light profilometry. Longer polarization time from 1 h to 5 h and higher current density from 1 to 15 mA cm −2 resulted in a higher amount of Doxy on the surface. The surface was covered by a layer of Doxy less than 100 nm without significant changes in surface topography. The antibacterial property of the Doxy-coated surface was analyzed by biofilm and planktonic growth assays using Staphylococcus epidermidis. Doxy-coated samples reduced both biofilm accumulation and planktonic growth in broth culture, and also inhibited bacterial growth on agar plates. The antibacterial effect was stronger for samples of 5 mA–3 h coated with a higher amount of Doxy compared to that of 1 mA–1 h. Accordingly, an abutment surface coated with Doxy has potential for preventing bacterial colonization when exposed to the oral cavity. Doxy-coating could be a viable way to control peri-implant mucositis and prevent its progression into peri-implantitis. (paper)

  7. Surface effects of underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  8. Surface effects on the crystallization of cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) and the consequences for its N K X-ray emission spectrum.

    Science.gov (United States)

    Goldberg, Ilana G; Vila, Fernando D; Jach, Terrence

    2012-10-11

    Recent studies of the crystallization of cyclotrimethylene-trinitramine (RDX) have shown that the presence of the α- and β-phases of the compound is sensitive to the substrate when using drop cast crystallization methods. The specific phase has potential consequences for measurements of the nitrogen K X-ray emission spectrum (XES) that were recently reported for this compound using samples crystallized on In metal substrates. We have determined that the crystallization of RDX on a clean In metal substrate starts out completely as the β-phase but progressively incorporates the α-phase as the film thickens. In addition, we have carried out additional molecular orbital calculations of the N 1s X-ray fluorescence from the valence band, comparing the results expected from the α-and β- phases. The differences due to the presence of the β-phase instead of, or in addition to, the α-phase appear to be minimal.

  9. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun; Grigoryan, Vahram L.; Maekawa, Sadamichi; Wang, Xuhui; Xiao, Jiang

    2015-01-01

    induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  10. Fuel Effects on Emissions From Non-Road Engines

    Energy Technology Data Exchange (ETDEWEB)

    Murtonen, T.; Nylund, N.

    2003-10-15

    The objective of this project was to study how fuel quality affects the exhaust emissions from different kinds of non-road engines. The project was divided into two parts: emissions from small gasoline engines and emissions from diesel engines. The measured small engines were a 2-stroke chainsaw engine, and a 4-stroke OHV engine, which could be used in different applications. Measurements were done with three different fuels, with and without catalyst. Also a comparison between biodegradable vs. conventional lubrication oil was done with the 2-stroke engine. Measurements were done according to ISO8178 standard. The results clearly demonstrate that using a good quality fuel (e.g. low sulphur, low aromatics) and a catalyst gives the best outcome in overall emission levels from these small engines. In the second part two different diesel engines were tested with five different fuels. Two of the fuels were biodiesel blends. The engines were chosen to represent old and new engine technology. The old engine (MY 1985) was produced before EU emission regulations were in place, and the new engine fulfilled the current EU Stage 2 emission limits. These measurements were also done according to the ISO8178 standard. With the new engine comparison with and without oxidation catalyst was done using two fuels. The results in general are similar compared to the results from the small gasoline engines: fuel quality has an effect on the emissions and when combining a good quality fuel (e.g. low sulphur, low aromatics) and an oxidation catalyst the emission levels are significantly reduced. Also some unregulated emission measurements were done but those results are not included to this report.

  11. Surface and Bulk Characteristics of Cesium Iodide (CsI) coated Carbon (C) Fibers for High Power Microwave (HPM) Field Emission Cathodes

    Science.gov (United States)

    Vlahos, Vasilios; Morgan, Dane; Booske, John H.; Shiffler, Don

    2008-11-01

    CsI coated C fibers [1] are promising field emission cathodes for HPM applications. Ab initio computational modeling has shown that atomically-thin CsI coatings reduce the work function of C substrates by a surface dipole mechanism [2]. Characterization measurements of the composition and morphology of the CsI-coated C fibers are underway for determining the properties and characteristics of the following important regions of the fiber: (i) the surface on the tip of the fiber where the majority of electron emission is believed to occur, (ii) the surface covering the body of the fiber and its role on the emission properties of the system, and (iii) the interior volume of the fiber and its effects on the CsI surface re-supply process and rate. The results will be interpreted in terms of surface electronic properties and theoretical electron emission models. [1]D. Shiffler, et al., Phys. Plasmas 11 (2004) 1680. [2]V.Vlahos et al., Appl. Phys. Lett. 91 (2007) 144102.

  12. Microscopic work function anisotropy and surface chemistry of 316L stainless steel using photoelectron emission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, N., E-mail: nick.barrett@cea.fr [CEA, IRAMIS, SPEC, LENSIS, F-91191 Gif-sur-Yvette (France); Renault, O. [CEA, LETI, Minatec Campus, F-38054 Grenoble Cedex 09 (France); Lemaître, H. [Université de Cergy-Pontoise, Rue d’Eragny, Neuville sur Oise, 95 031 Cergy-Pontoise (France); Surface Dynamics Laboratory, Institut for Fysik og Astronomi Aarhus Universitet, Ny Munkegade 120, 8000 Aarhus C (Denmark); Bonnaillie, P. [CEA, DEN, DANS, DMN, SRMP, F-91191 Gif-sur-Yvette (France); Barcelo, F. [CEA, DEN, DANS, DMN, SRMA, LA2M, F-91191 Gif-sur-Yvette (France); Miserque, F. [CEA, DEN, DANS, DPC, SCCME, LECA, F-91191 Gif-sur-Yvette (France); Wang, M.; Corbel, C. [Laboratoire des Solides Irradis, Ecole Polytechnique, route de Saclay, F-91128 Palaiseau (France)

    2014-08-15

    Highlights: • PEEM and EBSD study of spatial variations in local work function of 316L steel. • Correlation between work function and crystal grain orientation at the surface of 316L steel. • Spatially resolved chemistry of residual oxide layer. - Abstract: We have studied the variation in the work function of the surface of sputtered cleaned 316L stainless steel with only a very thin residual oxide surface layer as a function of grain orientation using X-ray photoelectron emission microscopy (XPEEM) and Electron Backscattering Diffraction. The grains are mainly oriented [1 1 1] and [1 0 1]. Four distinct work function values spanning a 150 meV energy window are measured. Grains oriented [1 1 1] have a higher work function than those oriented [1 0 1]. From core level XPEEM we deduce that all grain surfaces are Cr enriched and Ni depleted whereas the Cr/Fe ratio is similar for all grains. The [1 1 1] oriented grains show evidence for a Cr{sub 2}O{sub 3} surface oxide and a higher concentration of defective oxygen sites.

  13. Spin Hall effect by surface roughness

    KAUST Repository

    Zhou, Lingjun

    2015-01-08

    The spin Hall and its inverse effects, driven by the spin orbit interaction, provide an interconversion mechanism between spin and charge currents. Since the spin Hall effect generates and manipulates spin current electrically, to achieve a large effect is becoming an important topic in both academia and industries. So far, materials with heavy elements carrying a strong spin orbit interaction, provide the only option. We propose here a new mechanism, using the surface roughness in ultrathin films, to enhance the spin Hall effect without heavy elements. Our analysis based on Cu and Al thin films suggests that surface roughness is capable of driving a spin Hall angle that is comparable to that in bulk Au. We also demonstrate that the spin Hall effect induced by surface roughness subscribes only to the side-jump contribution but not the skew scattering. The paradigm proposed in this paper provides the second, not if only, alternative to generate a sizable spin Hall effect.

  14. X-ray emission in collisions of highly charged I, Pr, Ho, and Bi ions with a W surface

    International Nuclear Information System (INIS)

    Watanabe, H.; Tona, M.; Ohtani, S.; Sun, J.; Nakamura, N.; Yamada, C.; Yoshiyasu, N.; Sakurai, M.

    2007-01-01

    X-ray emission yields, which are defined as the total number of emitted x-ray photons per incident ion, and dissipated fractions of potential energies through x-ray emission have been measured for slow highly charged ions of I, Pr, Ho, and Bi colliding with a W surface. A larger amount of potential energy was consumed for the x-ray emission with increasing the atomic number and the charge state. The present measurements show that x-ray emission is one of the main decay channels of hollow atoms produced in collisions of very highly charged ions of heavy elements

  15. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure

    OpenAIRE

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Ob...

  16. Monte Carlo simulation of heavy ion induced kinetic electron emission from an Al surface

    CERN Document Server

    Ohya, K

    2002-01-01

    A Monte Carlo simulation is performed in order to study heavy ion induced kinetic electron emission from an Al surface. In the simulation, excitation of conduction band electrons by the projectile ion and recoiling target atoms is treated on the basis of the partial wave expansion method, and the cascade multiplication process of the excited electrons is simulated as well as collision cascade of the recoiling target atoms. Experimental electron yields near conventional threshold energies of heavy ions are simulated by an assumption of a lowering in the apparent surface barrier for the electrons. The present calculation derives components for electron excitations by the projectile ion, the recoiling target atoms and the electron cascades, from the calculated total electron yield. The component from the recoiling target atoms increases with increasing projectile mass, whereas the component from the electron cascade decreases. Although the components from the projectile ion and the electron cascade increase with...

  17. Impact of surface morphology on the properties of light emission in InGaN epilayers

    Science.gov (United States)

    Kristijonas Uždavinys, Tomas; Marcinkevičius, Saulius; Mensi, Mounir; Lahourcade, Lise; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas

    2018-05-01

    Scanning near-field optical microscopy was used to study the influence of the surface morphology on the properties of light emission and alloy composition in InGaN epitaxial layers grown on GaN substrates. A strong correlation between the maps of the photoluminescence (PL) peak energy and the gradient of the surface morphology was observed. This correlation demonstrates that the In incorporation strongly depends on the geometry of the monolayer step edges that form during growth in the step-flow mode. The spatial distribution of nonradiative recombination centers — evaluated from PL intensity maps — was found to strongly anticorrelate with the local content of In atoms in the InGaN alloy.

  18. Modulating emission polarization of semiconductor quantum dots through surface plasmon of metal nanorod

    Science.gov (United States)

    Cheng, Mu-Tian; Liu, Shao-Ding; Wang, Qu-Quan

    2008-04-01

    We theoretically investigated the dynamics of exciton populations [ρyy(t ) and ρxx(t )] on two orthogonal polarization eigenstates (∣x⟩ and ∣y⟩) and the polarization ratio P(t )=[ρyy(t )-ρxx(t )]/[ρyy(t )+ρxx(t )] of an anisotropic InGaAs quantum dot modulated by the surface plasmon of an Au nanorod (NR). In the resonance of longitudinal surface plasmon of AuNR, the polarization ratio P(t ) increases from 0.22 to 0.99 during the excitation due to the efficient enhancement of Rabi frequency of the transition between the ∣y⟩ and vacuum states, and decreases from 0.02 to -0.92 after the excitation pulse due to the enhancement of decay rate of the ∣y⟩ state. This offers an approach to modulate the dynamic polarization ratio of radiative emissions.

  19. [Study on plasma temperature of a large area surface discharge by optical emission spectrum].

    Science.gov (United States)

    Dong, Li-Fang; Tong, Guo-Liang; Zhang, Yu; Zhou, Bin

    2014-04-01

    A large area surface discharge was realized in air/argon gas mixture by designing a discharge device with water electrodes. By using optical emission spectrum, the variations of the molecular vibrational temperature, the mean energy of electron, and the electronic excitation temperature as a function of the gas pressure were studied. The nitrogen molecular vibrational temperature was calculated according to the emission line of the second positive band system of the nitrogen molecule (C3 pi(u) --> B 3 pi(g)). The electronic excitation temperature was obtained by using the intensity ratio of Ar I 763.51 nm (2P(6) --> 1S(5)) to Ar I 772.42 nm (2P(2) --> 1S(3)). The changes in the mean energy of electron were studied by the relative intensity ratio of the nitrogen molecular ion 391.4 nm to nitrogen 337.1 nm. It was found that the intensity of emission spectral line increases with the increase in the gas pressure, meanwhile, the outline and the ratios of different spectral lines intensity also change. The molecular vibrational temperature, the mean energy of electron, and the electronic excitation temperature decrease as the gas pressure increases from 0.75 x 10(5) Pa to 1 x 10(5) Pa.

  20. Effects of ion sputtering on semiconductor surfaces

    International Nuclear Information System (INIS)

    McGuire, G.E.

    1978-01-01

    Ion beam sputtering has been combined with Auger spectroscopy to study the effects of ion beams on semiconductor surfaces. Observations on the mass dependence of ion selective sputtering of two component systems are presented. The effects of ion implantation are explained in terms of atomic dilution. Experimental data are presented that illustrate the super-position of selective sputtering and implantation effects on the surface composition. Sample reduction from electron and ion beam interaction is illustrated. Apparent sample changes which one might observe from the effects of residual gas contamination and electric fields are also discussed. (Auth.)

  1. Effects of flooding-induced N2O production, consumption and emission dynamics on the annual N2O emission budget in wetland soil

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher; Elberling, Bo

    2012-01-01

    during mid-summer when the WL was at its seasonally lowest counterbalancing ~6.4% of the total annual net N2O emission budget. Main surface emission periods of N2O were observed when the water level and associated peaks in subsurface N2O concentrations were gradually decreasing to soil depths down to 40...... production and consumption capacities where >500 nmol N2O cm-3 were sequentially produced and consumed in less than 24 hrs. It is concluded that a higher future frequency of flooding induced N2O emissions will have a very limited effect on the net annual N2O emission budget as long as NO3- availability...

  2. Multi-source SO2 emission retrievals and consistency of satellite and surface measurements with reported emissions

    NARCIS (Netherlands)

    Fioletov, V.; McLinden, C.A.; Kharol, S.K.; Krotkov, N.A.; Li, C.; Joiner, J.; Moran, M.D.; Vet, R.; Visschedijk, A.J.H.; Denier Van Der Gon, H.A.C.

    2017-01-01

    Reported sulfur dioxide (SO2) emissions from US and Canadian sources have declined dramatically since the 1990s as a result of emission control measures. Observations from the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite and ground-based in situ measurements are examined to verify

  3. Nitrous oxide emissions from sugarcane straw left on the soil surface in Brazil

    Science.gov (United States)

    Galdos, M. V.; Cerri, C. E.; Carvalho, J. L.; Cerri, C. C.

    2012-12-01

    In Brazil, the largest exporter of ethanol from sugarcane in the world, burning the dry leaves and tops in order to facilitate the harvest and transportation of the stalks is still a common practice. Burning plant residues causes emissions of greenhouse gases (GHGs) such as CO2, CH4 and N2O, besides the release of charcoal particles into the atmosphere. Due to a combination of pressure from changes in the public opinion and economical reasons, in Brazil sugarcane harvest is changing from a burned into an unburned system. Since manual harvest of sugarcane without burning is not economically feasible, mechanical harvesters have been developed that can take the stalk and leave the residues on the field, forming a mulch, in a system called green cane management. It is expected that 80% of the cane harvested in the main producing regions in Brazil will be harvested without burning by 2014. The conversion from burning sugarcane to green management of sugarcane will have impacts on the biogeochemical cycling of carbon and nitrogen in the plant soil system. The green cane management results in the deposition of large amounts of plant litter on the soil surface after harvest, ranging from 10 to 20 tons per hectare, which impact the whole production process of sugarcane, influencing yields, fertilizer management and application, soil erosion, soil organic matter dynamics as well as greenhouse gas emissions (CO2, N2O, CH4). From a GHG perspective, the conservation of sugarcane residues prevents emissions from the burning process, may promote carbon sequestration in soils and releases nitrogen during the decomposition process replacing the need for, and GHG emissions from, fossil fuel based nitrogen fertilizer sources. Measurements of soil C and N stocks and associated greenhouse gas emissions from the burned and unburned sugarcane systems and in the sugarcane expansion areas are still scarce. Therefore, the main objective of this work was to quantify the nitrous oxide

  4. Impact of the 2008 Global Recession on Air Quality over the United States: Implications for Surface Ozone Levels from Changes in NOx Emissions

    Science.gov (United States)

    Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka

    2016-01-01

    Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the would-be NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain realistic changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 12ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.51ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.

  5. Surprisingly small HONO emissions from snow surfaces at Browning Pass, Antarctica

    Directory of Open Access Journals (Sweden)

    H. J. Beine

    2006-01-01

    Full Text Available Measured Fluxes of nitrous acid at Browning Pass, Antarctica were very low, despite conditions that are generally understood as favorable for HONO emissions, including: acidic snow surfaces, an abundance of NO3- anions in the snow surface, and abundant UV light for NO3- photolysis. Photochemical modeling suggests noon time HONO fluxes of 5–10 nmol m-2 h-1; the measured fluxes, however, were close to zero throughout the campaign. The location and state of NO3- in snow is crucial to its reactivity. The analysis of soluble mineral ions in snow reveals that the NO3- ion is probably present in aged snows as NaNO3. This is peculiar to our study site, and we suggest that this may affect the photochemical reactivity of NO3-, by preventing the release of products, or providing a reactive medium for newly formed HONO. In fresh snow, the NO3- ion is probably present as dissolved or adsorbed HNO3 and yet, no HONO emissions were observed. We speculate that HONO formation from NO3- photolysis may involve electron transfer reactions of NO2 from photosensitized organics and that fresh snows at our site had insufficient concentrations of adequate organic compounds to favor this reaction.

  6. Laboratory Measured Emission Losses of Methyl Isothiocyanate at Pacific Northwest Soil Surface Fumigation Temperatures.

    Science.gov (United States)

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2017-02-01

    Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.

  7. Triple layered core–shell structure with surface fluorinated ZnO-carbon nanotube composites and its electron emission properties

    International Nuclear Information System (INIS)

    Wang, H.Y.; Chua, Daniel H.C.

    2013-01-01

    Highlights: ► The effects of CF 4 plasma on ZnO-CNT core–shell structures were studied. ► ZnO was effective in protecting the aligned CNTs core for as long as 30 min of plasma etching. ► SEM showed the surface morphology was nearly similar between pristine, 2 min and 30 min plasma etched specimens. ► F was observed to displace O in ZnO. ► This is the first report of an ultra long plasma etch of fluorine onto ZnO surface. - Abstract: Core-shelled structures such as zinc oxide (ZnO) on carbon nanotubes (CNTs) give rise to interesting material properties. In this work, a triple-layered core–shell–shell structure is presented where the effects of fluorine (F) incorporation on the outmost shell of the ZnO-CNT structure are studied. The samples prepared ranged from a short 2 min to a 30 min immersion in carbon tetraflouride (CF 4 ) plasma. In addition, its effects on the electron emission properties also studied and it is shown that the plasma immersions create thinner field emitters with sharp tiny wrinkles giving rise to more electron emission sites and higher enhancement factor. In addition, X-ray photoelectron spectroscopy measurements showed that F ions replace O in ZnO coatings during immersion process, thus increasing the electrical conductivity and shifts the Fermi level of ZnO upwards. Both physical and electronic effects further contribute to a lower threshold field.

  8. Effects of surfaces on resistor percolation.

    Science.gov (United States)

    Stenull, O; Janssen, H K; Oerding, K

    2001-05-01

    We study the effects of surfaces on resistor percolation at the instance of a semi-infinite geometry. Particularly we are interested in the average resistance between two connected ports located on the surface. Based on general grounds as symmetries and relevance we introduce a field theoretic Hamiltonian for semi-infinite random resistor networks. We show that the surface contributes to the average resistance only in terms of corrections to scaling. These corrections are governed by surface resistance exponents. We carry out renormalization-group improved perturbation calculations for the special and the ordinary transition. We calculate the surface resistance exponents phiS and phiS(infinity) for the special and the ordinary transition, respectively, to one-loop order.

  9. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering

    Science.gov (United States)

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli

    2018-01-01

    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  10. Discrepancies between soft x-ray emissivity contours and magnetic flux surfaces in Alcator C-Mod

    International Nuclear Information System (INIS)

    Borras, M.C.; Granetz, R.S.

    1996-01-01

    The soft x-ray diagnostic system of Alcator C-Mod, equipped with 152 detectors distributed in four arrays, is used to obtain iso-emissivity surfaces. These surfaces have been characterized by giving their elongation and relative shift from the centre of the tokamak as functions of plasma radius. Flux surfaces, provided by magnetic diagnostics, have also been described with elongation and shift. Results from the comparison of the two sets of geometric parameters obtained from magnetic and x-ray diagnostics are presented. We find that, whereas the shifts obtained from these two diagnostic methods are always in good agreement, the corresponding elongation curves show different patterns. An agreement between elongations better than 2% is only found in a range of about 2 cm in minor radius. On the other hand, the elongations can differ by 10% towards the plasma edge and the plasma centre. Error bars for the x-ray diagnostic are obtained by propagating the effect of ± 1% random errors at the detector signals, and can amount to ± 1-2% of the estimated values near the edge and the centre of the plasma. The estimated uncertainties in the determination of elongation from magnetic flux surfaces are of the order of 4%. A series of tests and simulations performed to verify the accuracy of the X-ray diagnostic system is presented. The discrepancies found could imply the existence of asymmetries in impurity concentration. (Author)

  11. Light emission from sputtered or backscattered atoms on tungsten surfaces under ion irradiation

    International Nuclear Information System (INIS)

    Sakai, Yasuhiro; Nogami, Keisuke; Kato, Daiji; Sakaue, Hiroyuki A.; Kenmotsu, Takahiko; Furuya, Kenji; Motohashi, Kenji

    2013-01-01

    We measured the intensity of light emission from sputtered atoms on tungsten surfaces under the irradiations of Kr"+ ion and Ar"+ ion, as a function of the perpendicular distance from the surface. Using the analysis of decay curve, we estimated the mean vertical velocity component in direction normal to the surface. We found that the estimated mean velocity had much differences according to the excited state. For example, although the estimated mean vertical velocity component normal to the surface from the 400.9 nm line((5d"5(6S)6p "7p_4→(5d"5(6S)6s "7S_3 transition) was 5.6±1.7 km/sec, that from the 386.8 nm line((5d"4(6S)6p "7D_4→(5d"5(6S)6s "7S_4 transition) was 2.8±1.0 km/sec. However, for different projectiles and energies, we found no remarkable changes in the velocity. (author)

  12. Surface behavior based on ion-induced secondary electron emission from semi-insulating materials in breakdown evolution

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Emrah; Karakoese, Sema [Department of Physics, Faculty of Sciences, Gazi University, 06500 Ankara (Turkey); Salamov, Bahtiyar G. [Department of Physics, Faculty of Sciences, Gazi University, 06500 Ankara (Turkey); Institute of Physics, National Academy of Science, 1143 Baku (Azerbaijan)

    2013-09-15

    This study focuses on analyses of secondary electron emission (SEE) at semiconductor surfaces when the sufficient conditions of space-time distribution occur. Experimental measurements and calculations with the approach of Townsend coefficients, which include the evaluations of ionization coefficient ({alpha}) and SEE coefficient ({gamma}) were performed in high-ohmic InP, GaAs, and Si semiconductor cathodes with argon and air environments in a wide range of E/N (300-10 000 Td). The direct calculations of {gamma} were carried out to determine the behavior of cold-semiconductor cathode current in a wide range of microgaps (45-525 {mu}m). Paschen curves are interpreted in the dependence of large pd range on breakdown voltage through {gamma} and {alpha}/N. Ion-induced secondary electrons exhibit the direct behaviors affecting the timescale of breakdown evolution in the vicinity of the Paschen minimum during the natural bombardment process with ions of semiconductor cathodes. Also, when {alpha}/N rapidly drops and the excitations of gas atoms densely occupy the gas volume, we determined that the photoelectric effect provides a growth for electron emission from semiconductor surfaces at the breakdown stage at the reduced values of E/N. At all pressures, the emission magnitudes of electrons liberated by semiconductor cathodes into vacuum are found as {gamma}{sub InP} > {gamma}{sub GaAs} > {gamma}{sub Si} in breakdown evolution. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Vibration of Piezoelectric Nanowires Including Surface Effects

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2014-04-01

    Full Text Available In this paper, surface and piezoelectric effects on the vibration behavior of nanowires (NWs are investigated by using a Timoshenko beam model. The electric field equations and the governing equations of motion for the piezoelectric NWs are derived with the consideration of surface effects. By the exact solution of the governing equations, an expression for the natural frequencies of NWs with simply-supported boundary conditions is obtained. The effects of piezoelectricity and surface effects on the vibrational behavior of Timoshenko NWs are graphically illustrated. A comparison is also made between the predictions of Timoshenko beam model and those of its Euler-Bernoulli counterpart. Additionally, the present results are validated through comparison with the available data in the literature.

  14. Field emission current from a junction field-effect transistor

    International Nuclear Information System (INIS)

    Monshipouri, Mahta; Abdi, Yaser

    2015-01-01

    Fabrication of a titanium dioxide/carbon nanotube (TiO 2 /CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO 2 nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO 2 /CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO 2 /CNT hetero-structure is also investigated, and well modeled

  15. Advances in surface treatments: Technology, applications, effects

    International Nuclear Information System (INIS)

    Niku-Lari, A.

    1987-01-01

    An international handbook has been produced to include all aspects of residual stresses, including the theoretical background, effects of residual stresses, measurement and calculation and quantitative assessment of residual stress effects. Techniques for altering residual stresses, particularly surface treatments, are discussed. Up to date information on the state of the art is presented. (UK)

  16. Surface and interface effects in VLSI

    CERN Document Server

    Einspruch, Norman G

    1985-01-01

    VLSI Electronics Microstructure Science, Volume 10: Surface and Interface Effects in VLSI provides the advances made in the science of semiconductor surface and interface as they relate to electronics. This volume aims to provide a better understanding and control of surface and interface related properties. The book begins with an introductory chapter on the intimate link between interfaces and devices. The book is then divided into two parts. The first part covers the chemical and geometric structures of prototypical VLSI interfaces. Subjects detailed include, the technologically most import

  17. Effect of impact surface in equestrian falls

    OpenAIRE

    Clark, J. Michio; Post, Andrew; Connor, Thomas A.; Hoshizaki, Thomas Blaine; Gilchrist, M. D.

    2016-01-01

    This study examines the effect of impact surface on head kinematic response and maximum principal strain (MPS) for equestrian falls. A helmeted Hybrid III headform was dropped unrestrained onto three impact surfaces of different stiffness (steel, turf and sand) and three locations. Peak resultant linear acceleration, rotational acceleration and duration of the impact events were measured. A finite element brain model was used to calculate MPS. The results revealed that drops onto steel produc...

  18. Control of formaldehyde and TVOC emission from wood-based flooring composites at various manufacturing processes by surface finishing.

    Science.gov (United States)

    Kim, Sumin

    2010-04-15

    This paper assesses the reproducibility of testing formaldehyde and TVOC emission behavior from wood flooring composites bonded by urea-formaldehyde resin at various manufacturing steps for surface finishing materials. The surface adhesion step of laminate flooring for this research was divided into two steps; HDF only and HDF with LPMs. In the case of engineered flooring, the manufacturing steps were divided into three steps; plywood only, fancy veneer bonded on plywood and UV coated on fancy veneer with plywood. Formaldehyde and VOCs emission decreased at the process of final surface finishing materials; LPMs were applied on the surface of HDF for laminate flooring. Although emissions increased when fancy veneer was bonded onto plywood in the case of engineered flooring, emission was dramatically reduced up to similar level with plywood only when final surface finishing; UV-curable coating was applied on fancy veneer. This study suggests that formaldehyde and VOCs emission from floorings can be controlled at manufacturing steps for surface finishing. 2009 Elsevier B.V. All rights reserved.

  19. Effect of biodiesel fuels on diesel engine emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lapuerta, Magin; Armas, Octavio; Rodriguez-Fernandez, Jose [Escuela Tecnica Superior de Ingenieros Industriales, University of Castilla-La Mancha, Avda. Camilo Jose Cela, s/n. 13071 Ciudad Real (Spain)

    2008-04-15

    The call for the use of biofuels which is being made by most governments following international energy policies is presently finding some resistance from car and components manufacturing companies, private users and local administrations. This opposition makes it more difficult to reach the targets of increased shares of use of biofuels in internal combustion engines. One of the reasons for this resistance is a certain lack of knowledge about the effect of biofuels on engine emissions. This paper collects and analyzes the body of work written mainly in scientific journals about diesel engine emissions when using biodiesel fuels as opposed to conventional diesel fuels. Since the basis for comparison is to maintain engine performance, the first section is dedicated to the effect of biodiesel fuel on engine power, fuel consumption and thermal efficiency. The highest consensus lies in an increase in fuel consumption in approximate proportion to the loss of heating value. In the subsequent sections, the engine emissions from biodiesel and diesel fuels are compared, paying special attention to the most concerning emissions: nitric oxides and particulate matter, the latter not only in mass and composition but also in size distributions. In this case the highest consensus was found in the sharp reduction in particulate emissions. (author)

  20. Road dust emission sources and assessment of street washing effect

    NARCIS (Netherlands)

    Karanasiou, A.; Amato, F.; Moreno, T.; Lumbreras, J.; Borge, R.; Linares, C.; Boldo, E.; Alastuey, A.; Querol, X.

    2014-01-01

    Although previous studies report on the effect of street washing on ambient particulate matter levels, there is a lack of studies investigating the results of street washing on the emission strength of road dust. A sampling campaign was conducted in Madrid urban area during July 2009 where road dust

  1. Effective Spectral Indices of Core and Extended Emissions for Radio ...

    Indian Academy of Sciences (India)

    Effective Spectral Indices of Core and Extended Emissions for Radio Sources. R. S. Yang1,∗, J. H. Yang1,2 & J. J. Nie1. 1Department of Physics and Electronics Science, Hunan University of Arts and Science,. Changde 415000, China. 2Centre for Astrophysics, Guangzhou University, Guangzhou 510006, China. ∗ e-mail: ...

  2. Effects of treated poultry litter on potential greenhouse gas emission ...

    African Journals Online (AJOL)

    A study was conducted to evaluate the effects of different treatments of poultry faecal waste on potential greenhouse gas emission and inherent agronomic potentials. Sugar solution at 100g/l salt solution at 350g/l and oven-drying were the various faecal treatments examined using a completely randomized design.

  3. Proinflammatory effects of cookstove emissions on human bronchial epithelial cells.

    Science.gov (United States)

    Hawley, B; Volckens, J

    2013-02-01

    Approximately half of the world's population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many 'improved' stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner-burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 h following exposure. Cells exposed to emissions from the cleaner-burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional three-stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. Emissions from more efficient, cleaner-burning cookstoves produced less inflammation in well-differentiated bronchial lung cells. The results support evidence that more efficient cookstoves can reduce the health burden associated with exposure to indoor pollution from the combustion of biomass. © 2012 John Wiley & Sons A/S.

  4. Biofilm Surface Density Determines Biocide Effectiveness

    Directory of Open Access Journals (Sweden)

    Sara Bas

    2017-12-01

    Full Text Available High resistance of biofilms for chemical challenges is a serious industrial and medical problem. In this work a gradient of surface covered with biofilm has been produced and correlated to the effectiveness of different commercially available oxidative biocides. The results for thin Escherichia coli biofilms grown in rich media supplemented with glucose or lactose on glass or poly methyl methacrylate surfaces indicate that the effectiveness of hydrogen peroxide or chlorine dioxide and quaternary ammonium compounds is inversely proportional to the fraction of the surface covered with the biofilm. In areas where biofilm covered more than 90% of the available surface the biocide treatment was inefficient after 60 min of incubation. The combined effect of oxidant and surfactant increased the effectiveness of the biocide. On the other hand, the increased biofilm viscoelasticity reduced biocide effectiveness. The results emphasize differential biocide effectiveness depending on the fraction of the attached bacterial cells. The results suggest that biofilm biocide resistance is an acquired property that increases with biofilm maturation. The more dense sessile structures present lower log reductions compared to less dense ones.

  5. Fate factors and emission flux estimates for emerging contaminants in surface waters

    Directory of Open Access Journals (Sweden)

    Hoa T. Trinh

    2016-01-01

    Full Text Available Pharmaceuticals, personal care products, hormones, and wastewater products are emerging environmental concerns for manifold reasons, including the potential of some compounds found in these products for endocrine disruption at a very low chronic exposure level. The environmental occurrences and sources of these contaminants in the water, soil, sediment and biota in European nations and the United States are well documented. This work reports a screening-level emission and fate assessment of thirty compounds, listed in the National Reconnaissance of the United States Geological Survey (USGS, 1999–2000 as the most frequently detected organic wastewater contaminants in U.S. streams and rivers. Estimations of the surface water fate factors were based on Level II and Level III multimedia fugacity models for a 1000 km2 model environment, the size of a typical county in the eastern United States. The compounds are categorized into three groups based upon the sensitivity of their predicted surface water fate factors to uncertainties in their physicochemical property values and the landscape parameters. The environmental fate factors, mass distributions, and loss pathways of all of the compounds are strongly affected by their assumed modes of entry into the environment. It is observed that for thirteen of the thirty organic wastewater contaminants most commonly detected in surface waters, conventional treatment strategies may be ineffective for their removal from wastewater effluents. The surface water fate factors predicted by the fugacity models were used in conjunction with the surface water concentrations measured in the USGS reconnaissance to obtain emission flux estimates for the compounds into U.S. streams and rivers. These include estimated fluxes of 6.8 × 10−5 to 0.30 kg/h km2 for the biomarker coprostanol; 1.7 × 10−5 to 6.5 × 10−5 kg/h km2 for the insect repellent N,N-diethyltoluamide; and 4.3 × 10−6 to 3.1 × 10−5 kg/h km2 for

  6. Secondary Electron Emission from Dust and Its Effect on Charging

    Science.gov (United States)

    Saikia, B. K.; Kakati, B.; Kausik, S. S.; Bandyopadhyay, M.

    2011-11-01

    Hydrogen plasma is produced in a plasma chamber by striking discharge between incandescent tungsten filaments and the permanent magnetic cage [1], which is grounded. The magnetic cage has a full line cusped magnetic field geometry used to confine the plasma elements. A cylindrical Langmuir probe is used to study the plasma parameters in various discharge conditions. The charge accumulated on the dust particles is calculated using the capacitance model and the dust current is measured by the combination of a Faraday cup and an electrometer at different discharge conditions. It is found Secondary electron emission from dust having low emission yield effects the charging of dust particles in presence of high energetic electrons.

  7. Secondary Electron Emission from Dust and Its Effect on Charging

    International Nuclear Information System (INIS)

    Saikia, B. K.; Kakati, B.; Kausik, S. S.; Bandyopadhyay, M.

    2011-01-01

    Hydrogen plasma is produced in a plasma chamber by striking discharge between incandescent tungsten filaments and the permanent magnetic cage [1], which is grounded. The magnetic cage has a full line cusped magnetic field geometry used to confine the plasma elements. A cylindrical Langmuir probe is used to study the plasma parameters in various discharge conditions. The charge accumulated on the dust particles is calculated using the capacitance model and the dust current is measured by the combination of a Faraday cup and an electrometer at different discharge conditions. It is found Secondary electron emission from dust having low emission yield effects the charging of dust particles in presence of high energetic electrons.

  8. Effects of lignite application on ammonia and nitrous oxide emissions from cattle pens

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jianlei, E-mail: su@unimelb.edu.au [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Bai, Mei [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Shen, Jianlin [Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China); Griffith, David W.T. [Department of Chemistry, University of Wollongong, NSW 2522 (Australia); Denmead, Owen T. [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Hill, Julian [Ternes Agricultural Consulting Pty Ltd, Upwey, VIC 3158 (Australia); Lam, Shu Kee; Mosier, Arvin R. [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia); Chen, Deli, E-mail: delichen@unimelb.edu.au [Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3010 (Australia)

    2016-09-15

    Beef cattle feedlots are a major source of ammonia (NH{sub 3}) emissions from livestock industries. We investigated the effects of lignite surface applications on NH{sub 3} and nitrous oxide (N{sub 2}O) emissions from beef cattle feedlot pens. Two rates of lignite, 3 and 6 kg m{sup −2}, were tested in the treatment pen. No lignite was applied in the control pen. Twenty-four Black Angus steers were fed identical commercial rations in each pen. We measured NH{sub 3} and N{sub 2}O concentrations continuously from 4th Sep to 13th Nov 2014 using Quantum Cascade Laser (QCL) NH{sub 3} analysers and a closed-path Fourier Transform Infrared Spectroscopy analyser (CP-FTIR) in conjunction with the integrated horizontal flux method to calculate NH{sub 3} and N{sub 2}O fluxes. During the feeding period, 16 and 26% of the excreted nitrogen (N) (240 g N head{sup −1} day{sup −1}) was lost via NH{sub 3} volatilization from the control pen, while lignite application decreased NH{sub 3} volatilization to 12 and 18% of the excreted N, for Phase 1 and Phase 2, respectively. Compared to the control pen, lignite application decreased NH{sub 3} emissions by approximately 30%. Nitrous oxide emissions from the cattle pens were small, 0.10 and 0.14 g N{sub 2}O-N head{sup −1} day{sup −1} (< 0.1% of excreted N) for the control pen, for Phase 1 and Phase 2, respectively. Lignite application increased direct N{sub 2}O emissions by 40 and 57%, to 0.14 and 0.22 g N{sub 2}O-N head{sup −1} day{sup −1}, for Phase 1 and Phase 2, respectively. The increase in N{sub 2}O emissions resulting from lignite application was counteracted by the lower indirect N{sub 2}O emission due to decreased NH{sub 3} volatilization. Using 1% as a default emission factor of deposited NH{sub 3} for indirect N{sub 2}O emissions, the application of lignite decreased total N{sub 2}O emissions. - Graphical abstract: Lignite application substantially decreased NH{sub 3} emissions from cattle feedlots and increased

  9. Surface emissions of heat, water and GHGs from a NYC greenroof

    Science.gov (United States)

    McGillis, W. R.; Jacobson, G.; Culligan, P.; Gaffin, S.; Carson, T.; Marasco, D.; Hsueh, D.; Rella, C.

    2012-04-01

    The budgets of heat, water, and GHGs from greenroofs in New York City, needed for adaptation and sustainable policy and infrastructure strategies, requires an accurate measure of their surface emissions. A high speed, Cavity Ring-Down Spectroscopy (CRDS) based analyzer for measuring carbon dioxide (CO2), methane (CH4) and water (H2O) and an ultrasonic wind and temperature anemometer for measuring heat and momentum is used to assess greenroof performance during seasonal, diurnal, and episodic weather conditions. The flux instrument has proven capable of raw 10 Hz precision (one standard deviation) better than 110 parts-per-billion (ppbv) for carbon dioxide, better than 3 ppbv for methane and better than 6 ppmv +0.3% of reading for water vapor. In the water and heat budget, comparison and reconciliation of greenroof evapotranspiration (ET) using micrometeorological techniques, water balance, and heat balance was conducted. The water balance (month timescales), the heat balance (week timescale) show agreement to the micrometeorological surface ET (hour timescale). By using boundary layer flux measurements of ET, the fundamental performance of greenroofs on climate and weather conditions can be explored. These boundary layer measured surface fluxes provide critical information on the physiology of the built environment in New York City. Faced with sewage failures due to water management and exacerbated heating, the accurate assessment of greenroof performance on high spatial and temporal scales in required for the urban environment. Results will be presented and discussed.

  10. Microwave emission measurements of sea surface roughness, soil moisture, and sea ice structure

    Science.gov (United States)

    Gloersen, P.; Wilheit, T. T.; Schmugge, T. J.

    1972-01-01

    In order to demonstrate the feasibility of the microwave radiometers to be carried aboard the Nimbus 5 and 6 satellites and proposed for one of the earth observatory satellites, remote measurements of microwave radiation at wavelengths ranging from 0.8 to 21 cm have been made of a variety of the earth's surfaces from the NASA CV-990 A/C. Brightness temperatures of sea water surfaces of varying roughness, of terrain with varying soil moisture, and of sea ice of varying structure were observed. In each case, around truth information was available for correlation with the microwave brightness temperature. The utility of passive microwave radiometry in determining ocean surface wind speeds, at least for values higher than 7 meters/second has been demonstrated. In addition, it was shown that radiometric signatures can be used to determine soil moisture in unvegetated terrain to within five percentage points by weight. Finally, it was demonstrated that first year thick, multi-year, and first year thin sea ice can be distinguished by observing their differing microwave emissivities at various wavelengths.

  11. Gaseous elemental mercury (GEM emissions from snow surfaces in northern New York.

    Directory of Open Access Journals (Sweden)

    J Alexander Maxwell

    Full Text Available Snow surface-to-air exchange of gaseous elemental mercury (GEM was measured using a modified Teflon fluorinated ethylene propylene (FEP dynamic flux chamber (DFC in a remote, open site in Potsdam, New York. Sampling was conducted during the winter months of 2011. The inlet and outlet of the DFC were coupled with a Tekran Model 2537A mercury (Hg vapor analyzer using a Tekran Model 1110 two port synchronized sampler. The surface GEM flux ranged from -4.47 ng m(-2 hr(-1 to 9.89 ng m(-2 hr(-1. For most sample periods, daytime GEM flux was strongly correlated with solar radiation. The average nighttime GEM flux was slightly negative and was not well correlated with any of the measured meteorological variables. Preliminary, empirical models were developed to estimate GEM emissions from snow surfaces in northern New York. These models suggest that most, if not all, of the Hg deposited with and to snow is reemitted to the atmosphere.

  12. Gaseous elemental mercury (GEM) emissions from snow surfaces in northern New York.

    Science.gov (United States)

    Maxwell, J Alexander; Holsen, Thomas M; Mondal, Sumona

    2013-01-01

    Snow surface-to-air exchange of gaseous elemental mercury (GEM) was measured using a modified Teflon fluorinated ethylene propylene (FEP) dynamic flux chamber (DFC) in a remote, open site in Potsdam, New York. Sampling was conducted during the winter months of 2011. The inlet and outlet of the DFC were coupled with a Tekran Model 2537A mercury (Hg) vapor analyzer using a Tekran Model 1110 two port synchronized sampler. The surface GEM flux ranged from -4.47 ng m(-2) hr(-1) to 9.89 ng m(-2) hr(-1). For most sample periods, daytime GEM flux was strongly correlated with solar radiation. The average nighttime GEM flux was slightly negative and was not well correlated with any of the measured meteorological variables. Preliminary, empirical models were developed to estimate GEM emissions from snow surfaces in northern New York. These models suggest that most, if not all, of the Hg deposited with and to snow is reemitted to the atmosphere.

  13. Surface and electron emission properties of hydrogen-free diamond-like carbon films investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Liu Dongping; Zhang, Sam; Ong, S.-E.; Benstetter, Guenther; Du Hejun

    2006-01-01

    In this study, we have deposited hydrogen-free diamond-like carbon (DLC) films by using DC magnetron sputtering of graphite target at various r.f. bias voltages. Surface and nanoscale emission properties of these DLC films have been investigated using a combination of atomic force microscopy (AFM)-based nanowear tests and conducting-AFM, by simultaneously measuring the topography and the conductivity of the samples. Nanowear tests show that these DLC films are covered with the thin (1.5-2.0 nm) graphite-like layers at surfaces. Compared to the film bulk structure, the graphite-like surface layers are more conductive. The graphite-like surface layers significantly influence the electron emission properties of these films. Low-energy carbon species can be responsible for the formation of graphite-like surface layers. Nanoscale electron emission measurements have revealed the inhomogeneous emission nature of these films. The low-field emission from these films can be attributed to the existence of sp 2 -configured nanoclusters inside the films

  14. Field emission study from an array of hierarchical micro protrusions on stainless steel surface generated by femtosecond pulsed laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K., E-mail: anilks@barc.gov.in [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India); Suryawanshi, Sachin R.; More, M.A. [Department of Physics, Savitribai Phule Pune University, Pune, 411007 (India); Basu, S. [Solid State Physics Division, BARC, Mumbai, 40085 (India); Sinha, Sucharita [Laser & Plasma Technology Division, BARC, Mumbai, 400085 (India)

    2017-02-28

    Highlights: • Array of self assembled micro-protrusions have been generated on stainless steel surfaces by femtosecond pulsed laser irradiation. • Density of the formed micro-protrusions is ∼5.6 × 105 protrusions/cm{sup 2}. • Laser treated surface is mainly composed of iron oxide and cementite phases. • Micro-structured sample has shown good field emission properties – low turn on field, high field enhancement factor and stable emission current. - Abstract: This paper reports our results on femtosecond (fs) pulsed laser induced surface micro/nano structuring of stainless steel 304 (SS 304) samples and their characterization in terms of surface morphology, formed material phases on laser irradiation and field emission studies. Our investigations reveal that nearly uniform and dense array of hierarchical micro-protrusions (density: ∼5.6 × 10{sup 5} protrusions/cm{sup 2}) is formed upon laser treatment. Typical tip diameters of the generated protrusions are in the range of 2–5 μm and these protrusions are covered with submicron sized features. Grazing incidence X-ray diffraction (GIXRD) analysis of the laser irradiated sample surface has shown formation mainly of iron oxides and cementite (Fe{sub 3}C) phases in the treated region. These laser micro-structured samples have shown good field emission properties such as low turn on field (∼4.1 V/μm), high macroscopic field enhancement factor (1830) and stable field emission current under ultra high vacuum conditions.

  15. Surface effects on the red giant branch

    Science.gov (United States)

    Ball, W. H.; Themeßl, N.; Hekker, S.

    2018-05-01

    Individual mode frequencies have been detected in thousands of individual solar-like oscillators on the red giant branch (RGB). Fitting stellar models to these mode frequencies, however, is more difficult than in main-sequence stars. This is partly because of the uncertain magnitude of the surface effect: the systematic difference between observed and modelled frequencies caused by poor modelling of the near-surface layers. We aim to study the magnitude of the surface effect in RGB stars. Surface effect corrections used for main-sequence targets are potentially large enough to put the non-radial mixed modes in RGB stars out of order, which is unphysical. Unless this can be circumvented, model-fitting of evolved RGB stars is restricted to the radial modes, which reduces the number of available modes. Here, we present a method to suppress gravity modes (g-modes) in the cores of our stellar models, so that they have only pure pressure modes (p-modes). We show that the method gives unbiased results and apply it to three RGB solar-like oscillators in double-lined eclipsing binaries: KIC 8410637, KIC 9540226 and KIC 5640750. In all three stars, the surface effect decreases the model frequencies consistently by about 0.1-0.3 μHz at the frequency of maximum oscillation power νmax, which agrees with existing predictions from three-dimensional radiation hydrodynamics simulations. Though our method in essence discards information about the stellar cores, it provides a useful step forward in understanding the surface effect in RGB stars.

  16. Effect of electron emission on the charge and shielding of a dust grain in a plasma: A continuum theory

    International Nuclear Information System (INIS)

    D'yachkov, L. G.; Khrapak, A. G.; Khrapak, S. A.

    2008-01-01

    The continuum approximation is used to analyze the effect of electron emission from the surface of a spherical dust grain immersed in a plasma on the grain charge by assuming negligible ionization and recombination in the disturbed plasma region around the grain. A parameter is introduced that quantifies the emission intensity regardless of the emission mechanism (secondary, photoelectric, or thermionic emission). An analytical expression for the grain charge Z d is derived, and a criterion for change in the charge sign is obtained. The case of thermionic emission is examined in some detail. It is shown that the long-distance asymptotic behavior of the grain potential follows the Coulomb law with a negative effective charge Z eff , regardless of the sign of Z d . Thus, the potential changes sign and has a minimum if Z d > 0, which implies that attraction is possible between positively charged dust grains

  17. Synergistic impacts of anthropogenic and biogenic emissions on summer surface O3 in East Asia.

    Science.gov (United States)

    Qu, Yu; An, Junling; Li, Jian

    2013-03-01

    A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs), biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface 03 (O3DM) concentrations in East Asia in summer (June to August 2000). The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China, with a maximum of 60 ppbv, while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China, with a maximum of 25 ppbv. This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1 degree x 1 degree) although global emissions of BVOCs are much greater than those of AVOCs. Daily maximum total contributions of BVOCs can approach 20 ppbv in North China, but they can reach 40 ppbv in South China, approaching or exceeding those in some developed countries in Europe and North America. BVOC emissions in such special areas should be considered when 03 control measures are taken. Synergistic contributions among AVOCs, BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China. Thus, the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location. This result suggests that 03 control measures obtained from episodic studies could be limited for long-term applications.

  18. Surface layer effects on waste glass corrosion

    International Nuclear Information System (INIS)

    Feng, X.

    1993-01-01

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties

  19. Energy and air emission effects of water supply.

    Science.gov (United States)

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  20. Effect of alkali treatment on surface morphology of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K. J., E-mail: gd130056@siswa.uthm.edu.my; Wahab, M. A. A., E-mail: cd110006@siswa.uthm.edu.my; Mahmod, S., E-mail: cd110201@siswa.uthm.edu.my; Idris, M. I., E-mail: izwana@uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  1. Experimental Investigation of Convective Heat Transfer during Night Cooling with Different Ventilation Systems and Surface Emissivities

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2013-01-01

    models for convection. In a full-scale test room, the heat transfer was investigated during 12 h of discharge by night-time ventilation. A total of 34 experiments have been performed, with different ventilation types (mixing and displacement), air change rates, temperature differences between the inlet...... air and the room, and floor emissivities. This extensive experimental study enabled a detailed analysis of the convective and radiative flow at the different surfaces of the room. The experimentally derived convective heat transfer coefficients (CHTC) have been compared to existing correlations....... For mixing ventilation, existing correlations did not predict accurately the convective heat transfer at the ceiling due to differences in the experimental conditions. But the use of local parameters of the air flow showed interesting results to obtain more adaptive CHTC correlations. For displacement...

  2. Surface structures for enhancement of quantum yield in broad spectrum emission nanocrystals

    Science.gov (United States)

    Schreuder, Michael A.; McBride, James R.; Rosenthal, Sandra J.

    2014-07-22

    Disclosed are inorganic nanoparticles comprising a body comprising cadmium and/or zinc crystallized with selenium, sulfur, and/or tellurium; a multiplicity of phosphonic acid ligands comprising at least about 20% of the total surface ligand coverage; wherein the nanocrystal is capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the maximum absorbance wavelength of the first electromagnetic region is different from the maximum emission wavelength of the second electromagnetic region, thereby providing a Stokes shift of at least about 20 nm, wherein the second electromagnetic region comprises an at least about 100 nm wide band of wavelengths, and wherein the nanoparticle exhibits has a quantum yield of at least about 10%. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.

  3. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    Energy Technology Data Exchange (ETDEWEB)

    England, G.C.; McGrath, T.P. [GE-Energy and Environmental Research Corp., Irvine, CA (United States); Gilmer, L. [Equilon Enterprises, Bellaire, TX (United States); Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States); Lev-On, M. [ARCO, Los Angeles, CA (United States); Hunt, T. [American Petroleum Institute, Washington, DC (United States)

    2001-07-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO{sub x} emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  4. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    International Nuclear Information System (INIS)

    England, G.C.; McGrath, T.P.; Gilmer, L.; Seebold, J.G.; Lev-On, M.; Hunt, T.

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO x emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  5. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean

    Science.gov (United States)

    Lana, A.; Bell, T. G.; Simó, R.; Vallina, S. M.; Ballabrera-Poy, J.; Kettle, A. J.; Dachs, J.; Bopp, L.; Saltzman, E. S.; Stefels, J.; Johnson, J. E.; Liss, P. S.

    2011-03-01

    The potentially significant role of the biogenic trace gas dimethylsulfide (DMS) in determining the Earth's radiation budget makes it necessary to accurately reproduce seawater DMS distribution and quantify its global flux across the sea/air interface. Following a threefold increase of data (from 15,000 to over 47,000) in the global surface ocean DMS database over the last decade, new global monthly climatologies of surface ocean DMS concentration and sea-to-air emission flux are presented as updates of those constructed 10 years ago. Interpolation/extrapolation techniques were applied to project the discrete concentration data onto a first guess field based on Longhurst's biogeographic provinces. Further objective analysis allowed us to obtain the final monthly maps. The new climatology projects DMS concentrations typically in the range of 1-7 nM, with higher levels occurring in the high latitudes, and with a general trend toward increasing concentration in summer. The increased size and distribution of the observations in the DMS database have produced in the new climatology substantially lower DMS concentrations in the polar latitudes and generally higher DMS concentrations in regions that were severely undersampled 10 years ago, such as the southern Indian Ocean. Using the new DMS concentration climatology in conjunction with state-of-the-art parameterizations for the sea/air gas transfer velocity and climatological wind fields, we estimate that 28.1 (17.6-34.4) Tg of sulfur are transferred from the oceans into the atmosphere annually in the form of DMS. This represents a global emission increase of 17% with respect to the equivalent calculation using the previous climatology. This new DMS climatology represents a valuable tool for atmospheric chemistry, climate, and Earth System models.

  6. Soil surface Hg emission flux in coalfield in Wuda, Inner Mongolia, China.

    Science.gov (United States)

    Li, Chunhui; Liang, Handong; Liang, Ming; Chen, Yang; Zhou, Yi

    2018-03-30

    Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m -2  h -1 , and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m -2  h -1 ; no coal-fire area 19 and 32 ng m -2  h -1 ; and backfilling area 53 ng m -2  h -1 . Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield. Graphical abstract ᅟ.

  7. Transcontinental methane measurements: Part 2. Mobile surface investigation of fossil fuel industrial fugitive emissions

    Science.gov (United States)

    Leifer, Ira; Culling, Daniel; Schneising, Oliver; Farrell, Paige; Buchwitz, Michael; Burrows, John P.

    2013-08-01

    The potent greenhouse gas, methane, CH4, has a wide variety of anthropogenic and natural sources. Fall, continental-scale (Florida to California) surface CH4 data were collected to investigate the importance of fossil fuel industrial (FFI) emissions in the South US. A total of 6600 measurements along 7020-km of roadways were made by flame ion detection gas chromatography onboard a nearly continuously moving recreational vehicle in 2010. A second, winter survey in Southern California measured CH4 at 2 Hz with a cavity ring-down spectrometer in 2012. Data revealed strong and persistent FFI CH4 sources associated with refining, oil/gas production, a presumed major pipeline leak, and a coal loading plant. Nocturnal CH4 mixing ratios tended to be higher than daytime values for similar sources, sometimes significantly, which was attributed to day/night meteorological differences, primarily changes in the boundary layer height. The highest CH4 mixing ratio (39 ppm) was observed near the Kern River Oil Field, California, which uses steam reinjection. FFI CH4 plume signatures were distinguished as stronger than other sources on local scales. On large (4°) scales, the CH4 trend was better matched spatially with FFI activity than wetland spatial patterns. Qualitative comparison of surface data with SCIAMACHY and GOSAT satellite retrievals showed agreement of the large-scale CH4 spatial patterns. Comparison with inventory models and seasonal winds suggests for some seasons and some portions of the Gulf of Mexico a non-negligible underestimation of FFI emissions. For other seasons and locations, qualitative interpretation is not feasible. Unambiguous quantitative source attribution is more complex, requiring transport modeling.

  8. Color-tunable mixed photoluminescence emission from Alq3 organic layer in metal-Alq3-metal surface plasmon structure.

    Science.gov (United States)

    Chen, Nai-Chuan; Liao, Chung-Chi; Chen, Cheng-Chang; Fan, Wan-Ting; Wu, Jin-Han; Li, Jung-Yu; Chen, Shih-Pu; Huang, Bohr-Ran; Lee, Li-Ling

    2014-01-01

    This work reports the color-tunable mixed photoluminescence (PL) emission from an Alq3 organic layer in an Au-Alq3-Au plasmonic structure through the combination of organic fluorescence emission and another form of emission that is enabled by the surface plasmons in the plasmonic structure. The emission wavelength of the latter depends on the Alq3 thickness and can be tuned within the Alq3 fluorescent spectra. Therefore, a two-color broadband, color-tunable mixed PL structure was obtained. Obvious changes in the Commission Internationale d'Eclairage (CIE) coordinates and the corresponding emission colors of Au-Alq3-Au samples clearly varied with the Alq3 thickness (90, 130, and 156 nm).

  9. Localized-Surface-Plasmon Enhanced the 357 nm Forward Emission from ZnMgO Films Capped by Pt Nanoparticles

    Directory of Open Access Journals (Sweden)

    Song XM

    2009-01-01

    Full Text Available Abstract The Pt nanoparticles (NPs, which posses the wider tunable localized-surface-plasmon (LSP energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors.

  10. Emissivity of Candidate Materials for VHTR Applicationbs: Role of Oxidation and Surface Modification Treatments

    International Nuclear Information System (INIS)

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Cao, Guoping; Kulcinski, Gerald

    2011-01-01

    The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR, the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan (1) has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.

  11. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data

    International Nuclear Information System (INIS)

    Wan, Z.; Li, Z.L.

    1997-01-01

    The authors have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NEΔT) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4--0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10--12.5 microm IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2--3 K

  12. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  13. Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces

    CERN Document Server

    Kildemo, M.; Le Roy, S.; Søndergård, E.

    2009-01-01

    High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author’s knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio, single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.

  14. Staircase and saw-tooth field emission steps from nanopatterned n-type GaSb surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kildemo, M.; Levinsen, Y. Inntjore; Le Roy, S.; Soenderga ring rd, E. [Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondlieim (Norway); Department of Physics, Norwegian University of Science and Technology (NTNU), NO-7491 Trondlieim, Norway and AB CERN, CH- 1211 Geneva 23 (Switzerland); Laboratoire Surface du Verre et Interfaces, UMR 125 Unite Mixte de Recherche CNRS/Saint-Gobain Laboratoire, 39 Quai Lucien Lefranc, F-93303 Aubervilliers Cedex (France)

    2009-09-15

    High resolution field emission experiments from nanopatterned GaSb surfaces consisting of densely packed nanocones prepared by low ion-beam-energy sputtering are presented. Both uncovered and metal-covered nanopatterned surfaces were studied. Surprisingly, the field emission takes place by regular steps in the field emitted current. Depending on the field, the steps are either regular, flat, plateaus, or saw-tooth shaped. To the author's knowledge, this is the first time that such results have been reported. Each discrete jump in the field emission may be understood in terms of resonant tunneling through an extended surface space charge region in an n-type, high aspect ratio, single GaSb nanocone. The staircase shape may be understood from the spatial distribution of the aspect ratio of the cones.

  15. Total pollution effect of urban surface runoff.

    Science.gov (United States)

    Luo, Hongbing; Luo, Lin; Huang, Gu; Liu, Ping; Li, Jingxian; Hu, Sheng; Wang, Fuxiang; Xu, Rui; Huang, Xiaoxue

    2009-01-01

    For pollution research with regard to urban surface runoff, most sampling strategies to date have focused on differences in land usage. With single land-use sampling, total surface runoff pollution effect cannot be evaluated unless every land usage spot is monitored. Through a new sampling strategy known as mixed stormwater sampling for a street community at discharge outlet adjacent to river, this study assessed the total urban surface runoff pollution effect caused by a variety of land uses and the pollutants washed off from the rain pipe system in the Futian River watershed in Shenzhen City of China. The water quality monitoring indices were COD (chemical oxygen demand), TSS (total suspend solid), TP (total phosphorus), TN (total nitrogen) and BOD (biochemical oxygen demand). The sums of total pollution loads discharged into the river for the four indices of COD, TSS, TN, and TP over all seven rainfall events were very different. The mathematical model for simulating total pollution loads was established from discharge outlet mixed stormwater sampling of total pollution loads on the basis of four parameters: rainfall intensity, total land area, impervious land area, and pervious land area. In order to treat surface runoff pollution, the values of MFF30 (mass first flush ratio) and FF30 (first 30% of runoff volume) can be considered as split-flow control criteria to obtain more effective and economical design of structural BMPs (best management practices) facilities.

  16. Emission-angle and polarization-rotation effects in the lensed CMB

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Antony [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Hall, Alex [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-08-01

    Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Born field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.

  17. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  18. Analytical modelling of acoustic emission from buried or surface-breaking cracks under stress

    International Nuclear Information System (INIS)

    Ben Khalifa, W; Jezzine, K; Hello, G; Grondel, S

    2012-01-01

    Acoustic emission (AE) is a non-destructive testing method used in various industries (aerospace, petrochemical and pressure-vessel industries in general, power generation, civil engineering, mechanical engineering, etc...) for the examination of large structures subjected to various stresses (e.g. mechanical loading).The energy released by a defect under stress (the AE phenomenon) can propagate as guided waves in thin structures or as surface Rayleigh waves in thick ones. Sensors (possibly permanently) are positioned at various locations on the structure under examination and are assumed to be sensitive to these waves. Then, post-processing tools typically based on signal processing and triangulation algorithms can be used to inverse these data, allowing one to estimate the position of the defect from which emanates the waves measured. The French Atomic Energy Commission is engaged in the development of tools for simulating AE examinations. These tools are based on specific models for the AE sources, for the propagation of guided or Rayleigh waves and for the behaviour of AE sensors. Here, the coupling of a fracture mechanics based model for AE source and surface/guided wave propagation models is achieved through an integral formulation relying on the elastodynamic reciprocity principle. As a first approximation, a simple piston-like model is used to predict the sensitivity of AE sensors. Predictions computed by our simulation tool are compared to results from the literature for validation purpose.

  19. Linking seasonal surface water dynamics with methane emissions and export from small, forested wetlands

    Science.gov (United States)

    Hondula, K. L.; Palmer, M.

    2017-12-01

    One of the biggest uncertainties about global methane sources and sinks is attributed to uncertainties regarding wetland area and its dynamics. This is exacerbated by confusion over the role of small, shallow water bodies like Delmarva bay wetlands that could be categorized as both wetlands and ponds. These small inland water bodies are often poorly quantified due to their size, closed forest canopies, and inter- and intra-annual variability in surface water extent. We are studying wetland-rich areas on the Delmarva Peninsula in the U.S. mid-Atlantic to address this uncertainty at the scale of individual wetland ecosystems ( 1m depth). We estimated the size and temporal variability of the methane emissions source area by combining these measurements with daily estimates of the extent of surface water inundation derived from water level monitoring and a high-resolution digital elevation model. This knowledge is critical for informing land use decisions (e.g. restoring wetlands specifically for climate mitigation), the jurisdiction of environmental policies in the US, and for resolving major outstanding discrepancies in our understanding of the global methane budget.

  20. Spontaneous acoustic emission of a corrugated shock wave in the presence of a reflecting surface

    International Nuclear Information System (INIS)

    Wouchuk, J.G.; Lopez Cavada, J.

    2004-01-01

    An analytic model to study perturbation evolution in the space between a corrugated shock and a piston surface is presented. The conditions for stable oscillation patterns are obtained by looking at the poles of the exact Laplace transform. It is seen that besides the standard D'yakov-Kontorovich (DK) mode of oscillation, the shock surface can exhibit an additional finite set of discrete frequencies, due to the interaction with the piston which reflects sound waves from behind. The additional eigenmodes are excited when the shock is launched at t=0 + . The first eigenmode (the DK mode) is always present, if the Hugoniot curve has the correct slope in the V-p plane. However, the additional frequencies could be excited for strong enough shocks. The predictions of the model are verified for particular cases by studying a van der Waals gas, as in the work of Bates and Montgomery [Phys. Fluids 11, 462 (1999); Phys. Rev. Lett. 84, 1180 (2000)]. Only acoustic emission modes are considered

  1. On application of ion-photon emission method in spectral analysis of surface of different materials

    International Nuclear Information System (INIS)

    Bazhin, A.I.; Buravlev, Yu.M.; Ryzhov, V.N.

    1983-01-01

    Possibilities of application of ion-photom emission (IPE) method for determining element composition of the aluminium bronzes surface and profiles of distribution of hydrogen and helium implanted in metals (Mon Wn Cun Aln OKh18N10T steel) by ion bombardment have been studied. As ion source duoplasmatron which permits to obtain ions of inert (helium, argon) and active (hydrogenn oxygen) gases with current density 0.1-1 mA/cm 2 in the beam and energy from 5 to 25 keV has been applied. The photomultiplier PEM-79 has been used as a detector of optical radiation arising in the course of ion bombardment of the sample. For spectra recording the two-coordinate recorder has been used. Calibration charts which permit to determine the concentration of the investigated elements with 3-5% accuracy are obtained. The method sensitivity depends on excitation energy of transition observed in the spectrum. By known volumetric element concentration in the sample one can determine its concentration on a sUrface without resorting to a calibration chart in the coUrse of target sputtering. It has been found that the target impurity sputtering coefficient becomes nonselective to their relatiVe content. At wide incidence angles of ion beam. In contrast to other excitation methods (arc, spark) the IPE method possesses locality which constitutes 1 μm at a quite simple method of ion beam focussing (single lens)

  2. Ag-protein plasmonic architectures for surface plasmon-coupled emission enhancements and Fabry-Perot mode-coupled directional fluorescence emission

    Science.gov (United States)

    Badiya, Pradeep Kumar; Patnaik, Sai Gourang; Srinivasan, Venkatesh; Reddy, Narendra; Manohar, Chelli Sai; Vedarajan, Raman; Mastumi, Noriyoshi; Belliraj, Siva Kumar; Ramamurthy, Sai Sathish

    2017-10-01

    We report the use of silver decorated plant proteins as spacer material for augmented surface plasmon-coupled emission (120-fold enhancement) and plasmon-enhanced Raman scattering. We extracted several proteins from different plant sources [Triticum aestivum (TA), Aegle marmelos (AM), Ricinus communis (RC), Jatropha curcas (JC) and Simarouba glauca (SG)] followed by evaluation of their optical properties and simulations to rationalize observed surface plasmon resonance. Since the properties exhibited by protein thin films is currently gaining research interest, we have also carried out simulation studies with Ag-protein biocomposites as spacer materials in metal-dielectric-metal planar microcavity architecture for guided emission of Fabry-Perot mode-coupled fluorescence.

  3. Surface effects on converse piezoelectricity of crystals.

    Science.gov (United States)

    Molayem, Mohammad; Springborg, Michael; Kirtman, Bernard

    2017-09-20

    The contribution of surface units to bulk properties are often neglected in theoretical and computational studies of crystalline systems. We demonstrate that this assumption has to be made with caution in the case of (electric field) polarization. As a generalization of an earlier work on quasi-one-dimensional systems [Springborg, et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 82, 165442], it is shown that the polarization for 2D and 3D systems contains a surface contribution that can, in principle, take any value (within physical limits) and has consequences for converse piezoelectric responses. Subsequently, we determine the surface effects quantitatively for a group of ferroelectric perovskite structures. Our results indicate that such contributions can be substantial.

  4. Range of drainage effect of surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Sozanski, J.

    1978-03-01

    This paper discusses methods of calculating the range of effects of water drainage from surface coal mines and other surface mines. It is suggested that methods based on test pumping (water drainage) are time consuming, and the results can be distorted by atmospheric factors such as rain fall or dry period. So-called empirical formulae produce results which are often incorrect. The size of a cone shaped depression calculated on the basis of empirical formulae can be ten times smaller than the size of the real depression. It is suggested that using a formula based on the Dupuit formula is superior to other methods of depression calculation. According to the derived formulae the radius of the depresion cone is a function of parameters of the water bearing horizons, size of surface mine working and of water depression. The proposed formula also takes into account the influence of atmospheric factors (water influx caused by precipitation, etc.). (1 ref.) (In Polish)

  5. Volume and surface photoemission from tungsten. I. Calculation of band structure and emission spectra

    DEFF Research Database (Denmark)

    Christensen, N. Egede; Feuerbacher, B.

    1974-01-01

    is obtained from an ad hoc potential based on a Dirac-Slater atomic calculation for the ground-state configuration and with full Slater exchange in the atomic as well as in the crystal potential. The selection of this best potential is justified by comparing the calculated band structure to Fermi...... of states. The present work includes a crude estimate of this surface density of states, which is derived from the bulk band structure by narrowing the d bands according to an effective number of neighbors per surface atom. Estimates of surface relaxation effects are also included.......The electronic energy-band structure of tungsten has been calculated by means of the relativistic-augmented-plane-wave method. A series of mutually related potentials are constructed by varying the electronic configuration and the amount of Slater exchange included. The best band structure...

  6. Quantifying the emissions reduction effectiveness and costs of oxygenated gasoline

    International Nuclear Information System (INIS)

    Lyons, C.E.

    1993-01-01

    During the fall, winter, and spring of 1991-1992, a measurement program was conducted in Denver, Colorado to quantify the technical and economic effectiveness of oxygenated gasoline in reducing automobile carbon monoxide (CO) emissions. Emissions from 80,000 vehicles under a variety of operating conditions were measured before, during, and after the seasonal introduction of oxygenated gasoline into the region. Gasoline samples were taken from several hundred vehicles to confirm the actual oxygen content of the fuel in use. Vehicle operating conditions, such as cold starts and warm operations, and ambient conditions were characterized. The variations in emissions attributable to fuel type and to operating conditions were then quantified. This paper describes the measurement program and its results. The 1991-1992 Colorado oxygenated gasoline program contributed to a reduction in carbon monoxide (CO) emissions from gasoline-powered vehicles. The measurement program demonstrated that most of the reduction is concentrated in a small percentage of the vehicles that use oxygenated gasoline. The remainder experience little or not reduction in emissions. The oxygenated gasoline program outlays are approximately $25 to $30 million per year in Colorado. These are directly measurable costs, incurred through increased government expenditures, higher costs to private industry, and losses in fuel economy. The measurement program determined the total costs of oxygenated gasoline as an air pollution control strategy for the region. Costs measured included government administration and enforcement, industry production and distribution, and consumer and other user costs. This paper describes the ability of the oxygenated gasoline program to reduce pollution; the overall cost of the program to government, industry, and consumers; and the effectiveness of the program in reducing pollution compared to its costs

  7. Modelling lifestyle effects on energy demand and related emissions

    International Nuclear Information System (INIS)

    Weber, C.

    2000-01-01

    An approach to analyse and quantify the impact of lifestyle factors on current and future energy demand is developed. Thereby not only directly environmentally relevant consumer activities such as car use or heating have been analysed, but also expenditure patterns which induce environmental damage through the production of the consumed goods. The use of household survey data from the national statistical offices offers the possibility to cover this wide range of activities. For the available social-economic household characteristics a variety of different behavioural patterns have been observed. For evaluating the energy and emission consequences of the consumed goods enhanced input-output models are used. The additions implemented - a mixed monetary-energetic approach for inter-industry flows and a separate treatment of transport -related emissions - improve the reliability of the obtained results. The developed approach has been used for analysing current emissions profiles and distributions in West Germany, France and the Netherlands as well as scenarios for future energy demand and related emissions. It therefore provides a comprehensive methodology to analyse environmental effects in a consumer and citizen perspective and thus contributes to an increase transparency of complex economic and ecological interconnections. (author)

  8. Effect of the three-dimensional structure of laser emission on the dynamics of low-threshold optical breakdown plasmas

    Science.gov (United States)

    Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Derkach, O. N.; Kanevskii, M. F.

    1989-03-01

    The effect of the transverse structure of pulsed CO2 laser emission on the dynamics of laser-induced detonation waves propagating from a metal surface and on plasma transparency recovery is investigated theoretically and experimentally. Particular attention is given to breakdown initiation near the surface. It is suggested that the inclusion of refraction in the plasma into a self-consistent numerical mode is essential for the adequate quantitative description of experimental data on the interaction of laser emission with low-threshold optical breakdown plasmas.

  9. The Use of Satellite Data to Relate Waterbody Surface Area and Temperature to Greenhouse Gas Emissions Across a Subarctic Landscape

    Science.gov (United States)

    Herrick, C.; Palace, M. W.; Wik, M.; Burke, S. A.; Varner, R. K.

    2017-12-01

    High latitude lakes and ponds are significant sources of methane (CH4) and carbon dioxide (CO2) emission. Increased near-surface air temperature has linked these water bodies to large increases in methane emissions due to longer ice-free seasons, impacting climate change and further changing air temperature as a feedback mechanism. The impacts of changes in lake surface temperatures cannot be assessed until we know more about the baseline mechanistic biogeochemical controls that influence these emissions. Using a combination of image-based atmospheric corrections and image fusion models, thermal data from Landsat and MODIS satellites were used to characterize the temperature regimes of artic lakes in northern Sweden. This analysis provides insight into the temporal attributes of individual lakes in regard to temperature shifts and variability, as well as provides a rich temporal dataset where in situ temperature data is unavailable. Field-based measurements of temperature and associated methane release were used for calibration and correlation. This enabled the creation of emissions estimates over the broader pan-arctic landscape, including inter-seasonal and inter-annual variabilities. The result is a multi-year snapshot of temperature and emissions, allowing for future estimates of greenhouse gas emissions.

  10. Effect of energy taxation on fuel choice and emissions

    International Nuclear Information System (INIS)

    Leino, P.; Kosunen, P.; Rauhamaeki, J.

    1997-01-01

    The aim of the project was to study how various tax models for power plant fuels affect the fuel consumption and emissions of particles, sulphur dioxide (SO 2 ), nitrogen oxide (NO x ) and carbon dioxide (CO 2 ). First, the development of Finnish energy taxation is discussed, followed by a survey of the energy production structure for 1994. For this purpose, it was necessary to prepare a large boiler database, which covers about 95 % of the fuel consumption of Finnish energy production. The boiler database was used to calculate the emissions of particles, SO 2 , NO x and CO 2 in 1994. The year 2010 selected under review is the year by which the Ministry of Trade and Industry has prepared their primary energy consumption estimates. Four different alternatives were studied as future tax models. In the first alternative taxation would be as it in years 1995-1996 and in the second alternative taxation would be as in January 1997. In the third alternative the Finnish application of EU taxes would be in force in full, i.e., the tax on heavy fuel oil would be 10 US dollars a barrel. In the fourth alternative there would be no taxes on fuels. The boiler database was used to find out how the consumption distribution of the fuels used in 2010 would change in the various tax models. The tax models affect most the position of fuel peat and natural gas in Finland. If the EU alternative, which is favourable for fuel peat and natural gas, comes true, the consumption of fuel peat will grow by two thirds and the consumption of natural gas will more than double from the present level. If the taxation is as 1 January 1997, the consumption of peat will remain the same as today and the consumption of natural gas will grow by about 50 %. However, if there are no taxes on fuels, the consumption of fuel peat will fall by almost a third and the consumption of natural gas will remain the same as expected at the existing and planned plants. The effect of the various tax models on emissions

  11. A close look to subthreshold kinetic emission from clean metal surfaces: "Surface-assisted kinetic emission" and "potential excitation of plasmons"

    Czech Academy of Sciences Publication Activity Database

    Winter, H. P.; Aumayr, F.; Lörinčík, Jan; Šroubek, Zdeněk

    2002-01-01

    Roč. 66, č. 4 (2002), s. 548-550 ISSN 0367-6765 R&D Projects: GA ČR GA202/99/0881 Institutional research plan: CEZ:AV0Z4040901 Keywords : electron-emission * slow ions * Al(111) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.088, year: 2001

  12. The ratio of effective building height to street width governs dispersion of local vehicle emissions

    Science.gov (United States)

    Schulte, Nico; Tan, Si; Venkatram, Akula

    2015-07-01

    Analysis of data collected in street canyons located in Hanover, Germany and Los Angeles, USA, suggests that street-level concentrations of vehicle-related pollutants can be estimated with a model that assumes that vertical turbulent transport of emissions dominates the governing processes. The dispersion model relates surface concentrations to traffic flow rate, the effective aspect ratio of the street, and roof level turbulence. The dispersion model indicates that magnification of concentrations relative to those in the absence of buildings is most sensitive to the aspect ratio of the street, which is the ratio of the effective height of the buildings on the street to the width of the street. This result can be useful in the design of transit oriented developments that increase building density to reduce emissions from transportation.

  13. Effects of grassland management on the emission of methane from grassland on peat soils

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen (Netherlands)

    1995-12-31

    The aim of the project on the title subject is to provide insight into the major controlling factors that contribute to the net exchange rates of methane (CH4) between grassland and atmosphere, and to provide quantitative net CH4 emission rates. Net CH4 emissions have been monitored with vented closed flux chambers on both intensively managed grasslands and grasslands in a nature preserve on peat soil in the Netherlands. Net CH4 emissions from intensively managed grasslands (Zegveld, Netherlands) were low in the period January-December 1994, in general in the range of -0.2 to 0.2 mg CH4 m{sup -2} d{sup -1}. Only in the relatively warm summer of 1994, consumption of atmospheric CH4 of about 0.4 mg m{sup -2} d{sup -1} was measured. Effects of ground water level in the range of 30-60 cm below surface were very small. There were also no clear effects of nitrogen fertilization and grazing versus mowing on CH4 emission from the soil. Net CH4 emissions from three extensively managed grasslands in a nature preserve (Nieuwkoopse Plassen area in the Netherlands) ranged from 0-215 mg CH4 m{sup -2} d{sup -1} in the period January 1994-June 1995. Differences between the three sites were quite large, as were the spatial variations at each of the sites. The results presented here indicate that a shift of intensively managed peat grasslands into more natural ecosystems will significantly increase the contribution of Dutch peat soils to the total CH4 emission. refs.

  14. Commentary Relative to the Emission Spectrum of the Solar Atmosphere: Further Evidence for a Distinct Solar Surface

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-07-01

    Full Text Available The chromosphere and corona of the Sun represent tenuous regions which are characterized by numerous optically thin emission lines in the ultraviolet and X-ray bands. When observed from the center of the solar disk outward, these emission lines experience modest brightening as the limb is approached. The intensity of many ultraviolet and X-ray emission lines nearly doubles when observation is extended just beyond the edge of the disk. These findings indicate that the solar body is opaque in this frequency range and that an approximately two fold greater region of the solar atmosphere is being sampled outside the limb. These observations provide strong support for the presence of a distinct solar surface. Therefore, the behavior of the emission lines in this frequency range constitutes the twenty fifth line of evidence that the Sun is comprised of condensed matter

  15. Surface modification by vacuum annealing for field emission from heavily phosphorus-doped homoepitaxial (1 1 1) diamond

    International Nuclear Information System (INIS)

    Yamada, Takatoshi; Nebel, Christoph E.; Somu, Kumaragurubaran; Shikata, Shin-ichi

    2008-01-01

    The relationship between field emission properties and C 1s core level shifts of heavily phosphorus-doped homoepitaxial (1 1 1) diamond is investigated as a function of annealing temperature in order to optimize surface carbon bonding configurations for device applications. A low field emission threshold voltage is observed from surfaces annealed at 800 deg. C for hydrogen-plasma treated surface, while a low field emission threshold voltage of wet-chemical oxidized surface is observed after annealing at 900 deg. C. The C 1s core level by X-ray photoelectron spectroscopy (XPS) showed a shoulder peak at 1 eV below the main peak over 800 and 900 deg. C annealing temperature for hydrogen-plasma treated and wet-chemical oxidized surfaces, respectively. When the shoulder peak intensity is less than 10% of the main peak intensity, lower threshold voltages are observed. This is due to the carbon-reconstruction which gives rise to a small positive electron affinity. By increasing annealing temperature, the shoulder peak ratios also increase, which indicates that a surface graphitization takes place. This leads to higher threshold voltages

  16. Radioactivity in surface waters and its effects

    International Nuclear Information System (INIS)

    Stoeber, I.

    1987-01-01

    In consequence of the reactor accident in Chernobyl, the State Office for Water and Waste Disposal of North-Rhine Westphalia implemented immediate programmes for monitoring radioactivity in surface waters, including their sediments and organisms. Of the initially-measured radionuclides, only cesium-137, with its long half-life of 30 years, is of interest. Only trace amounts of the almost equally long-lived strontium 90 (half-life 28 years) were present in rainfall. Cs-137 is a non-natural-radionuclide, occurring solely as a by-product of nuclear installations and atomic bomb tests. Following the ban on surface testing of nuclear weapons, the Cs-137 content of surface waters had fallen significantly up to April 1986. The load due to the reactor disaster is of the same order of magnitude as that produced by atomic testing at the end of the nineteen-sixties. The paper surveys radioactive pollution of surface waters in North-Rhine Westphalia and its effects on water use, especially in regard to potable water supplies and the fish population. (orig./HSCH) [de

  17. Effects of salvage logging and pile-and-burn on fuel loading, potential fire behaviour, fuel consumption and emissions

    Science.gov (United States)

    Morris C. Johnson; Jessica E. Halofsky; David L. Peterson

    2013-01-01

    We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-...

  18. Field emission current from a junction field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2015-04-15

    Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.

  19. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    KAUST Repository

    Li, Xiaohang; Xie, Hongen; Ponce, Fernando A.; Ryou, Jae-Hyun; Detchprohm, Theeradetch; Dupuis, Russell D.

    2015-01-01

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaNmultiple-quantum well(MQW)heterostructuresgrown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a

  20. Method for measurement of emissivity and absorptivity of highly reflective surfaces from 20 K to room temperatures

    Czech Academy of Sciences Publication Activity Database

    Králík, Tomáš; Musilová, Věra; Hanzelka, Pavel; Frolec, Jiří

    2016-01-01

    Roč. 53, č. 2 (2016), s. 743-753 ISSN 0026-1394 R&D Projects: GA ČR(CZ) GA14-07397S; GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : absorptivity * emissivity * radiative heat transfer * metallic surfaces * cryogenics * uncertainty evaluation Subject RIV: BJ - Thermodynamics Impact factor: 3.411, year: 2016

  1. Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths

    DEFF Research Database (Denmark)

    Radko, Ilya P.; Nielsen, Michael Grøndahl; Albrektsen, Ole

    2010-01-01

    Amplification of surface plasmon polaritons (SPPs) in planar metal-dielectric structure through stimulated emission is investigated using leakage-radiation microscopy configuration. The gain medium is a thin polymethylmethacrylate layer doped with lead-sulphide nanocrystals emitting at near-infrared...

  2. Emission analysis on the effect of nanoparticles on neat biodiesel in unmodified diesel engine.

    Science.gov (United States)

    Pandian, Amith Kishore; Ramakrishnan, Ramesh Bapu Bathey; Devarajan, Yuvarajan

    2017-10-01

    Biodiesels derived from the mahua seeds are established as a promising alternative for the diesel fuel owing to its non-edible nature and improved properties. TiO 2 nanoparticle in powder form is added to neat mahua oil biodiesel (BD100) to examine its effect on emission characteristics. TiO 2 nanoparticle is chosen as an additive owing to its catalytic effect, higher surface energy, and larger surface to volume ratio. TiO 2 nanoparticle with an average size of 60 nm was synthesized by sol-gel route. TiO 2 nanoparticles are added with mahua biodiesel (BD100) at 100 and 200 ppm. Mahua oil biodiesel doped with 100 and 200 ppm of TiO 2 nanoparticles are referred as BD100T100 and BD100T200. A constant speed diesel engine is employed for the experimental trail. Engine is fueled with diesel, BD100, BD100T100, and BD100T200, respectively. Experimental result confirmed that the modified fuels (BD100T200 and BD100T100) showed a significant reduction in all the emissions. Further, the addition of TiO 2 nanoparticle (200 ppm) to mahua biodiesel gave respective reduction of 9.3, 5.8, 6.6, and 2.7% in carbon monoxide, hydrocarbon, nitrogen oxide, and smoke emissions when compared to neat mahua biodiesel.

  3. Ion bombardment effect on surface state of metal

    International Nuclear Information System (INIS)

    Vaulin, E.P.; Georgieva, N.E.; Martynenko, T.P.

    1990-01-01

    The effect of slow argon ion bombardment on the surface microstructure of polycrystalline copper as well as the effect of surface state on sputtering of D-16 polycrystalline alloy are experimentally studied. Reduction of copper surface roughness is observed. It is shown that the D-16 alloy sputtering coefficient is sensitive to the surface state within the limits of the destructed surface layer

  4. Interference effect in the resonant emission of a semiconductor microcavity

    Science.gov (United States)

    Cassabois, G.; Bogani, F.; Triques, A. L.; Delalande, C.; Roussignol, Ph.

    2001-07-01

    We present a phenomenological description of the coherent emission from a semiconductor microcavity in the strong-coupling regime. We consider two main contributions which are calculated in the framework of the semiclassical approach of the linear dispersion theory: reflectivity corresponds to the response of a uniform microcavity while resonant Rayleigh scattering (RRS) arises from disorder. Our simulations are compared to experimental results obtained at normal incidence in a backscattering geometry by means of cw spectroscopy and interferometric correlation with subpicosecond resolution. In this geometry, a fair agreement is reached assuming interferences between the two aforementioned contributions. This interference effect gives evidence of the drastic modification of the RRS emission pattern of the embedded quantum well induced by the Fabry-Pérot cavity.

  5. Effects of Enhanced Eathode Electron Emission on Hall Thruster Operation

    International Nuclear Information System (INIS)

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2009-01-01

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steadystate parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction of the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction of the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes of the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  6. The effect of South American biomass burning aerosol emissions on the regional climate

    Science.gov (United States)

    Thornhill, Gillian D.; Ryder, Claire L.; Highwood, Eleanor J.; Shaffrey, Len C.; Johnson, Ben T.

    2018-04-01

    The impact of biomass burning aerosol (BBA) on the regional climate in South America is assessed using 30-year simulations with a global atmosphere-only configuration of the Met Office Unified Model. We compare two simulations of high and low emissions of biomass burning aerosol based on realistic interannual variability. The aerosol scheme in the model has hygroscopic growth and optical properties for BBA informed by recent observations, including those from the recent South American Biomass Burning Analysis (SAMBBA) intensive aircraft observations made during September 2012. We find that the difference in the September (peak biomass emissions month) BBA optical depth between a simulation with high emissions and a simulation with low emissions corresponds well to the difference in the BBA emissions between the two simulations, with a 71.6 % reduction from high to low emissions for both the BBA emissions and the BB AOD in the region with maximum emissions (defined by a box of extent 5-25° S, 40-70° W, used for calculating mean values given below). The cloud cover at all altitudes in the region of greatest BBA difference is reduced as a result of the semi-direct effect, by heating of the atmosphere by the BBA and changes in the atmospheric stability and surface fluxes. Within the BBA layer the cloud is reduced by burn-off, while the higher cloud changes appear to be responding to stability changes. The boundary layer is reduced in height and stabilized by increased BBA, resulting in reduced deep convection and reduced cloud cover at heights of 9-14 km, above the layer of BBA. Despite the decrease in cloud fraction, September downwelling clear-sky and all-sky shortwave radiation at the surface is reduced for higher emissions by 13.77 ± 0.39 W m-2 (clear-sky) and 7.37 ± 2.29 W m-2 (all-sky), whilst the upwelling shortwave radiation at the top of atmosphere is increased in clear sky by 3.32 ± 0.09 W m-2, but decreased by -1.36±1.67 W m-2 when cloud changes are

  7. Exploring gamma radiation effect on exoelectron emission properties of bone

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V. [Riga Technical Univ., Biomedical Engineering and Nanotechnology Institute (Latvia)

    2006-07-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  8. Exploring gamma radiation effect on exoelectron emission properties of bone

    International Nuclear Information System (INIS)

    Zakaria, M.; Dekhtyar, Y.; Bogucharska, T.; Noskov, V.

    2006-01-01

    Gamma radiation is used for radiation therapy to treat carcinogenic diseases including bone cancer. Ionising radiation kills carcinogenic calls. However, there are side effects of the gamma radiation on the bone surface electron structure. One of the effects is in the form of altering electron density of states of bone that, with time, influences biomedical reactions on bone life condition. (authors)

  9. A Climatology of dust emission in northern Africa using surface observations from 1984-2012

    Science.gov (United States)

    Cowie, Sophie; Knippertz, Peter; Marsham, John

    2014-05-01

    The huge quantity of mineral dust emitted annually from northern Africa makes this area crucial to the global dust cycle. Once in the atmosphere, dust aerosols have a significant impact on the global radiation budget, clouds, the carbon cycle and can even act as a fertilizer to rain forests in South America. Current model estimates of dust production from northern Africa are uncertain. At the heart of this problem is insufficient understanding of key dust emitting processes such as haboobs (cold pools generated through evaporation of convective precipitation), low-level jets (LLJs) and dry convection (dust devils and dust plumes). Scarce observations in this region, in particular in the Sahara, make model evaluation difficult. This work uses long-term surface observations from 70 stations situated in the Sahara and Sahel to explore the diurnal, seasonal and geographical variations in dust emission events and thresholds. Quality flags are applied to each station to indicate a day-time bias or gaps in the time period 1984-2012. The frequency of dust emission (FDE) is calculated using the present weather codes (WW) of SYNOP reports, where WW = 07,08,09,30-35 and 98. Thresholds are investigated by estimating the wind speeds for which there is a 25%, 50% and 75% probability of dust emission. The 50% threshold is used to calculate strong wind frequency (SWF) and the diagnostic parameter dust uplift potential (DUP); a thresholded cubic function of wind-speed which quantifies the dust generating power of winds. Stations are grouped into 6 areas (North Algeria, Central Sahara, Egypt, West Sahel, Central Sahel and Sudan) for more in-depth analysis of these parameters. Spatially, thresholds are highest in northern Algeria and lowest in the Sahel around the latitude band 16N-21N. Annual mean FDE is anti-correlated with the threshold, showing the importance of spatial variations in thresholds for mean dust emission. The annual cycles of FDE and SWF for the 6 grouped areas are

  10. Scenarios for global emissions from air traffic. The development of regional and gridded (5 degrees x 5 degrees) emissions scenarios for aircraft and for surface sources, based on CPB scenarios and existing emission inventories for aircraft and surface sources

    NARCIS (Netherlands)

    Olivier JGJ; LAE

    1995-01-01

    An estimate was made of present global emissions from air traffic using statistical information on fuel consumption, aircraft types and applying emission factors for various compounds. To generate scenarios for future emissions from air traffic, assumptions were used regarding the development of the

  11. RF Sheath-Enhanced Plasma Surface Interaction Studies using Beryllium Optical Emission Spectroscopy in JET ITER-Like Wall

    Energy Technology Data Exchange (ETDEWEB)

    Agarici, G. [Fusion for Energy (F4E), Barcelona, Spain; Klepper, C Christopher [ORNL; Colas, L. [French Atomic Energy Commission (CEA); Krivska, Alena [Ecole Royale Militaire, Brussels Belgium; Bobkov, V. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Jacquet, P. [Culham Centre for Fusion Energy (CCFE), Abingdon, UK; Delabie, Ephrem G. [ORNL; Giroud, C. [EURATOM / UKAEA, UK; Kirov, K K. [Association EURATOM-CCFE, Abingdon, UK; Lasa Esquisabel, Ane [ORNL; Lerche, E. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Dumortier, P. [ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium; Durodie, Frederic [Ecole Royale Militaire, Brussels Belgium

    2017-10-01

    A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5 MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.

  12. Longitudinal surface curvature effect in magnetohydrodynamics

    International Nuclear Information System (INIS)

    Bodas, N.G.

    1975-01-01

    The two-dimensional motion of an incompressible and electrically conducting fluid past an electrically insulated body surface (having curvature) is studied for a given O(1) basic flow and magnetic field, when (i) the applied magnetic field is aligned with the velocity in the basic flow, and (ii) the applied magnetic field is within the body surface. 01 and 0(Re sup(1/2)) mean the first and second order approximations respectively in an exansion scheme in powers of Resup(-1/2), Re being the Reynolds number). The technique of matched asymptotic expansions is used to solve the problem. The governing partial differential equations to 0(Resup(-1/2)) boundary layer approximation are found to give similarity solutions for a family of surface curvature and pressure gradient distributions in case (i), and for uniform basic flow with analytic surface curvature distributions in case (ii). The equations are solved numerically. In case (i) it is seen that the effect of the magnetic field on the skin-friction- correction due to the curvature is very small. Also the magnetic field at the wall is reduced by the curvature on the convex side. In case (ii) the magnetic field significantly increases the skin-friction-correction due to the curvature. The effect of the magnetic field on the O(1) and O(Resup(-1/2)) skin friction coefficients increases with the increase of the electrical conductivity of the fluid. Also, at higher values of the magnetic pressure, moderate changes in the electrical conductivity do not influence the correction to the skin-friction significantly. (Auth.)

  13. Emissions of nitrogen oxides from road traffic - regulations, emissions and effects; Vagtrafikens utslaepp av kvaeveoxider - reglering, utslaepp och effekter

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedin, Aake; Pihl-Karlsson, Gunilla; Johansson, Manne [Swedish Environmental Research Inst., Goeteborg (Sweden); Forsberg, Bertil [Umeaa Univ. (Sweden). Public Health and Clinical Medicine; Ahlvik, Peter [Ecotraffic ERD3 AB, Stockholm (Sweden); Erlandsson, Lennart [AVL MTC AB, Stockholm (Sweden)

    2004-10-01

    The report is a review that aims to improve the basis for additional measures against the road traffic emissions of, in particular, NO{sub x}. An important question in the context is whether health effects of NO{sub 2} should serve as a norm for the actions for emission reductions of NO{sub x}, or if the environmental effects of NO{sub x}-emissions in the form of acidification, eutrophication and ozone should play this role. WHO notes, in its latest review of health effect research, that one cannot demonstrate that NO{sub 2} alone has any direct effects in concentrations at the current whole-year mean norm (40 {mu}g/m{sup 3}). Such health effects that has been demonstrated in epidemiologic studies at these concentrations are caused by other traffic related emissions (e. g. particles) for which NO{sub 2} constitutes a good indicator. WHO indicates the need for additional sharpening of the norms for ozone and particles. In this context, it is important to note that emissions of NO{sub x} on a regional scale contributes to formation of ozone as well as particles. Therefore there exist reasons to decrease the emissions of NO{sub x} in order to reach future recommended values for ozone and particles emissions. In the evaluations that will be done during 2004-2005 of the so called Goeteborg protocol, the EU's Ceiling Directives and the CAFE-programme, it is expected that new emissions objective for NO{sub x} will be suggested for 2015-2020, to cope with health and environment objectives in Europe. The report shows that that development that currently happens within the vehicle industry, for engines and exhaust emission control system are pursued to meet future exhaust requirement in the USA gives good conditions for the road traffic sector to contribute to that these objectives will reached.

  14. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Science.gov (United States)

    Leifer, Ira; Melton, Christopher; Fischer, Marc L.; Fladeland, Matthew; Frash, Jason; Gore, Warren; Iraci, Laura T.; Marrero, Josette E.; Ryoo, Ju-Mee; Tanaka, Tomoaki; Yates, Emma L.

    2018-03-01

    Methane (CH4) inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne-surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL) and combines downwind trace gas concentration anomaly (plume) above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX - the Alpha Jet Atmospheric eXperiment) and mobile surface (collected by AMOG - the AutoMObile trace Gas - Surveyor) data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV) floor into the Sierra Nevada (0.1-2.2 km altitude), validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10-20 km downwind, highlighting the importance of the experimental design.

  15. Microwave remote sensing: Active and passive. Volume 2 - Radar remote sensing and surface scattering and emission theory

    Science.gov (United States)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1982-01-01

    The fundamental principles of radar backscattering measurements are presented, including measurement statistics, Doppler and pulse discrimination techniques, and associated ambiguity functions. The operation of real and synthetic aperture sidelooking airborne radar systems is described, along with the internal and external calibration techniques employed in scattering measurements. Attention is given to the physical mechanisms responsible for the scattering emission behavior of homogeneous and inhomogeneous media, through a discussion of surface roughness, dielectric properties and inhomogeneity, and penetration depth. Simple semiempirical models are presented. Theoretical models involving greater mathematical sophistication are also given for extended ocean and bare soil surfaces, and the more general case of a vegetation canopy over a rough surface.

  16. Nitrogen source and placement effects on soil nitrous oxide emissions from no-till corn.

    Science.gov (United States)

    Halvorson, Ardell D; Del Grosso, Stephen J

    2012-01-01

    A nitrogen (N) source comparison study was conducted to further evaluate the effects of inorganic N source and placement on growing-season and non-crop period soil nitrous oxide (NO). Commercially available controlled-release N fertilizers were evaluated for their potential to reduce NO emissions from a clay loam soil compared with conventionally used granular urea and urea-ammonium nitrate (UAN) fertilizers in an irrigated no-till (NT) corn ( L.) production system. Controlled-release N fertilizers evaluated were: a polymer-coated urea (ESN), stabilized urea (SuperU), and UAN+AgrotainPlus (SuperU and AgrotainPlus contain nitrification and urease inhibitors). Each N source was surface band applied (202 kg N ha) near the corn row at emergence and watered into the soil the next day. Subsurface banded ESN (ESNssb) and check (no N applied) treatments were included. Nitrous oxide fluxes were measured during two growing seasons and after harvest using static, vented chambers. All N sources had significantly lower growing-season NO emissions than granular urea (0.7% of applied N), with UAN+AgrotainPlus (0.2% of applied N) and ESN (0.3% of applied N) having lower emissions than UAN (0.4% of applied N). Similar trends were observed when expressing NO emissions on a grain yield and N uptake basis. Corn grain yields were not different among N sources but were greater than the check. Selection of N fertilizer source can be a mitigation practice for reducing NO emissions in NT, irrigated corn in semiarid areas. In our study, UAN+AgrotainPlus consistently had the lowest level of NO emissions with no yield loss. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Investigation of intrinsic and extrinsic defects effective role on producing intense red emission in ZnO:Eu nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, Mehrdad, E-mail: najafi@shahroodut.ac.ir; Haratizadeh, Hamid

    2015-05-15

    Highlights: • Effective role of defects on producing red emission at indirect excitation. • V{sub Zn} and V{sub O} defects have important role on energy transfer. • Mg related defects and Zn{sub i} defects were responsible for blue emission. • Extrinsic and intrinsic defects mediated energy transfer to sensitize Eu{sup 3+} ions. • Decrease of red emission because of diminishing in oxygen vacancy. - Abstract: Europium doped ZnO nanorads and nanosheets were synthesized by hydrothermal method. Effects of Mg doping, morphology and annealing in oxygen ambient on structural and optical properties of ZnO nanostructures were investigated using X-ray diffraction (XRD), particle size analysis (PSA), thermo gravimetric analysis (TGA), differential thermal analysis (DTA), differential thermo gravimetry (DTG), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). This study recommends that both of intrinsic and extrinsic defects facilitate energy transfer (ET) from the ZnO host to Eu{sup 3+} ions and consequently have efficient role on producing intense red emission at indirect excitation. The results also showed that annealing process improved the crystal structure of ZnO nanosheets due to decrease of surface defects; however decreased ET and red emission because of diminishing in oxygen vacancy. In addition in ZnO nanorods sample with more surface area in comparison with ZnO nanosheets sample deep level emissions are enhanced.

  18. The effects of emission control strategies on light-absorbing carbon emissions from a modern heavy-duty diesel engine.

    Science.gov (United States)

    Robinson, Michael A; Olson, Michael R; Liu, Z Gerald; Schauer, James J

    2015-06-01

    Control of atmospheric black carbon (BC) and brown carbon (BrC) has been proposed as an important pathway to climate change mitigation, but sources of BC and BrC are still not well understood. In order to better identify the role of modern heavy-duty diesel engines on the production of BC and BrC, emissions from a heavy-duty diesel engine operating with different emission control strategies were examined using a source dilution sampling system. The effect of a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) on light-absorbing carbon (LAC) was evaluated at three steady-state engine operation modes: idle, 50% speed and load, and 100% speed and load. LAC was measured with four different engine configurations: engine out, DOC out, DPF out, and engine out with an altered combustion calibration. BC and BrC emission rates were measured with the Aethalometer (AE-31). EC and BC emission rates normalized to the mass of CO₂emitted increased with increasing engine speed and load. Emission rates normalized to brake-specific work did not exhibit similar trends with speed and load, but rather the highest emission rate was measured at idle. EC and OC emissions were reduced by 99% when the DOC and DPF architecture was applied. The application of a DPF was equally effective at removing 99% of the BC fraction of PM, proving to be an important control strategy for both LAC and PM. BC emissions were unexpectedly increased across the DOC, seemingly due to a change aerosol optical properties. Removal of exhaust gas recirculation (EGR) flow due to simulated EGR cooler failure caused a large increase in OC and BrC emission rates at idle, but had limited influence during high load operation. LAC emissions proved to be sensitive to the same control strategies effective at controlling the total mass of diesel PM. In the context of black carbon emissions, very small emission rates of brown carbon were measured over a range of control technologies and engine operating

  19. Surface roughness effects on turbulent Couette flow

    Science.gov (United States)

    Lee, Young Mo; Lee, Jae Hwa

    2017-11-01

    Direct numerical simulation of a turbulent Couette flow with two-dimensional (2-D) rod roughness is performed to examine the effects of the surface roughness. The Reynolds number based on the channel centerline laminar velocity (Uco) and channel half height (h) is Re =7200. The 2-D rods are periodically arranged with a streamwise pitch of λ = 8 k on the bottom wall, and the roughness height is k = 0.12 h. It is shown that the wall-normal extent for the logarithmic layer is significantly shortened in the rough-wall turbulent Couette flow, compared to a turbulent Couette flow with smooth wall. Although the Reynolds stresses are increased in a turbulent channel flow with surface roughness in the outer layer due to large-scale ejection motions produced by the 2-D rods, those of the rough-wall Couette flow are decreased. Isosurfaces of the u-structures averaged in time suggest that the decrease of the turbulent activity near the centerline is associated with weakened large-scale counter-rotating roll modes by the surface roughness. This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).

  20. Electron collision effects on the bremsstrahlung emission in Lorentzian plasmas

    International Nuclear Information System (INIS)

    Jung, Young-Dae; Kato, Daiji

    2009-06-01

    The electron-electron collision effects on the electron-ion bemsstranhlung process are investigated in warm Lorentzian plasmas. The effective electron-ion interaction potential is obtained by including the far-field terms caused by the electron-electron collisions with the effective Debye length in Lorentzian plasmas. The bremsstranhlung radiation cross section is obtained as a function of the electron energy, photon energy, collision frequency, spectral index, and Debye length using the Born approximation for the initial and final states of the projectile electron. It is shown that the non-Maxwellian character suppresses the bremsstrahlung radiation cross section. It is also shown that the electron-electron collision effect enhances the bremsstrahlung emission spectrum. In addition, the bremsstrahlung radiation cross section decreases with an increase of the plasma temperature. (author)

  1. Low-Computation Strategies for Extracting CO2 Emission Trends from Surface-Level Mixing Ratio Observations

    Science.gov (United States)

    Shusterman, A.; Kim, J.; Lieschke, K.; Newman, C.; Cohen, R. C.

    2017-12-01

    Global momentum is building for drastic, regulated reductions in greenhouse gas emissions over the coming decade. With this increasing regulation comes a clear need for increasingly sophisticated monitoring, reporting, and verification (MRV) strategies capable of enforcing and optimizing emissions-related policy, particularly as it applies to urban areas. Remote sensing and/or activity-based emission inventories can offer MRV insights for entire sectors or regions, but are not yet sophisticated enough to resolve unexpected trends in specific emitters. Urban surface monitors can offer the desired proximity to individual greenhouse gas sources, but due to the densely-packed nature of typical urban landscapes, surface observations are rarely representative of a single source. Most previous efforts to decompose these complex signals into their contributing emission processes have involved inverse atmospheric modeling techniques, which are computationally intensive and believed to depend heavily on poorly understood a priori estimates of error covariance. Here we present a number of transparent, low-computation approaches for extracting source-specific emissions estimates from signals with a variety of nearfield influences. Using observations from the first several years of the BErkeley Atmospheric CO2 Observation Network (BEACO2N), we demonstrate how to exploit strategic pairings of monitoring "nodes," anomalous wind conditions, and well-understood temporal variations to hone in on specific CO2 sources of interest. When evaluated against conventional, activity-based bottom-up emission inventories, these strategies are seen to generate quantitatively rigorous emission estimates. With continued application as the BEACO2N data set grows in time and space, these approaches offer a promising avenue for optimizing greenhouse gas mitigation strategies into the future.

  2. Role of Surface Wind and Vegetation Cover in Multi-decadal Variations of Dust Emission in the Sahara and Sahel

    Science.gov (United States)

    Kim, Dong; Chin, Mian; Remer, Lorraine A.; Diehl, Thomas L.; Bian, Huisheng; Yu, Hongbin; Brown, Molly E.; Stockwell, William R.

    2016-01-01

    North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82 of the continental North Africa dust emission (1340-1570 Tg year(exp -1) in the 27-year average, the Sahel accounts for 17 with a larger seasonal and inter-annual variation (230-380 Tg year(exp -1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R equals 0.92). Over the Sahel, the dust emission is correlated with W10m (R 0.69) but is also anti-correlated with the trend of NDVI (R equals 0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R equals 0.53), suggesting that Saharan Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.

  3. On the Stress Transfer of Nanoscale Interlayer with Surface Effects

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    2018-01-01

    Full Text Available An improved shear-lag model is proposed to investigate the mechanism through which the surface effect influences the stress transfer of multilayered structures. The surface effect of the interlayer is characterized in terms of interfacial stress and surface elasticity by using Gurtin–Murdoch elasticity theory. Our calculation result shows that the surface effect influences the efficiency of stress transfer. The surface effect is enhanced with decreasing interlayer thickness and elastic modulus. Nonuniform and large residual surface stress distribution amplifies the influence of the surface effect on stress concentration.

  4. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  5. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Miake-Lye, R C; Anderson, M R; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1998-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  6. Proceedings of the Emissions trading conference : effective strategies for successful emissions trading in a global market

    International Nuclear Information System (INIS)

    2001-01-01

    There is growing interest everywhere in the topic of emissions trading in order to meet the commitments made under the Kyoto Protocol. During this conference, most aspects of emissions trading were discussed, ranging from the need to establish credible emission reduction estimates to the means of achieving those goals, to the trading activities of Ontario Power Generation in the field of emissions trading both at the domestic and the international level. There were presentations that focussed on greenhouse gas policies, markets and strategic plays, and the preparation for the regulation of greenhouse gas. An emissions trading regime for Canada was examined by one of the presenters. This conference provided a useful venue for all stakeholders to discuss various strategies and ideas related to emissions trading. Speakers represented governments, the private sector and utilities, as well as the National Round Table on the Environment and the Economy. tabs., figs

  7. Effects of forest fertilization on C sequestration and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Bull, G.Q.; Northway, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Resources Management; Mohn, W.W. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Microbiology and Immunology

    2005-07-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N{sub 2}O) and consumption of methane (CH{sub 4}) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO{sub 2}). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N{sub 2}O production and CH{sub 4} oxidation in order to determine the complex and often contradictory effects of fertilizers on N{sub 2}O emission and CH{sub 4} oxidation in forest soils. The actual N{sub 2}O, CO{sub 2}, and CH{sub 4} fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity.

  8. Effects of forest fertilization on C sequestration and GHG emissions

    International Nuclear Information System (INIS)

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F.; Bull, G.Q.; Northway, S.; Mohn, W.W.

    2005-01-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N 2 O) and consumption of methane (CH 4 ) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO 2 ). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N 2 O production and CH 4 oxidation in order to determine the complex and often contradictory effects of fertilizers on N 2 O emission and CH 4 oxidation in forest soils. The actual N 2 O, CO 2 , and CH 4 fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity

  9. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Date Report No. 3: Diesel Fuel Sulfur Effects on Particulate Matter Emissions

    Energy Technology Data Exchange (ETDEWEB)

    DOE; ORNL; NREL; EMA; MECA

    1999-11-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NO{sub x}) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices for multiple levels of fuel sulfur content. This interim report covers the effects of diesel fuel sulfur level on particulate matter emissions for four technologies.

  10. Is the Clean Development Mechanism Effective for Emission Reductions?

    DEFF Research Database (Denmark)

    Tarp, Finn; Huang, Yongfu; He, Jingjing

    2014-01-01

    with great challenges, given the wide divide between developed and developing nations. Against this background, comprehensive evaluations of the effectiveness of Kyoto market‐based mechanisms such as the Clean Development Mechanism (CDM) in terms of mitigating human‐induced climate change are urgently needed...... reductions for 60 CDM host countries over the period 2005–2010, using a newly developed econometric method for dynamic panel data models associated with the X‐differencing procedure. Our results provide evidence in support of a decline in CO 2 emissions in CDM host countries. We conclude...

  11. AMSR-E/Aqua Monthly Global Microwave Land Surface Emissivity, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set is a global land emissivity product using passive microwave observations from the Advanced Microwave Scanning Radiometer - Earth Observing System...

  12. Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia

    Science.gov (United States)

    Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg

    2016-01-01

    The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

  13. Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects

    DEFF Research Database (Denmark)

    Uskov, Alexander; Protsenko, Igor E.; Ikhsanov, Renat S.

    2014-01-01

    in the surface mechanism, which leads to a substantial (by similar to 5 times) increase of the internal photoelectron emission rate from a nanoparticle compared to the case when such a discontinuity is absent. For a plasmonic nanoparticle, a comparison of the two photoeffect mechanisms was undertaken...... for the first time which showed that the surface photoeffect can in the general case be larger than the volume one, which agrees with the results obtained for a flat metal surface first formulated by Tamm and Schubin in their pioneering development of a quantum-mechanical theory of photoeffect in 1931....... In accordance with our calculations, this possible predominance of the surface effect is based on two factors: (i) effective cooling of hot carriers during their propagation from the volume of the nanoparticle to its surface in the scenario of the volume mechanism and (ii) strengthening of the surface mechanism...

  14. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  15. Temperature dependence of photon-enhanced thermionic emission from GaAs surface with nonequilibrium Cs overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravlev, A.G. [Rzhanov Institute of Semiconductor Physics, Pr. Lavrentieva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation); Alperovich, V.L., E-mail: alper@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Pr. Lavrentieva, 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova, 2, 630090 Novosibirsk (Russian Federation)

    2017-02-15

    Highlights: • Electronic properties of Cs/GaAs surface are studied at elevated temperatures. • Heating to ∼100 °C strongly affects photoemission current and surface band bending. • For θ < 0.4 ML photoemission current relaxation is due to band bending. • A spectral proof of the PETE process is obtained at Cs/GaAs thermal cycling. - Abstract: The temperature influence on the Cs/GaAs surface electronic properties, which determine the photon-enhanced thermionic emission (PETE), is studied. It was found that heating to moderate temperatures of about 100 °C leads to substantial changes in the magnitude and shape of Cs coverage dependences of photoemission current and surface band bending, along with the changes of relaxation kinetics after Cs deposition. A spectral proof of the PETE process is obtained under thermal cycling of the Cs/GaAs surface with 0.45 monolayer (ML) of Cs.

  16. US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate

    Science.gov (United States)

    Lin, Meiyun; Horowitz, Larry W.; Payton, Richard; Fiore, Arlene M.; Tonnesen, Gail

    2017-03-01

    US surface O3 responds to varying global-to-regional precursor emissions, climate, and extreme weather, with implications for designing effective air quality control policies. We examine these conjoined processes with observations and global chemistry-climate model (GFDL-AM3) hindcasts over 1980-2014. The model captures the salient features of observed trends in daily maximum 8 h average O3: (1) increases over East Asia (up to 2 ppb yr-1), (2) springtime increases at western US (WUS) rural sites (0.2-0.5 ppb yr-1) with a baseline sampling approach, and (3) summertime decreases, largest at the 95th percentile, and wintertime increases in the 50th to 5th percentiles over the eastern US (EUS). Asian NOx emissions have tripled since 1990, contributing as much as 65 % to modeled springtime background O3 increases (0.3-0.5 ppb yr-1) over the WUS, outpacing O3 decreases attained via 50 % US NOx emission controls. Methane increases over this period contribute only 15 % of the WUS background O3 increase. Springtime O3 observed in Denver has increased at a rate similar to remote rural sites. During summer, increasing Asian emissions approximately offset the benefits of US emission reductions, leading to weak or insignificant observed O3 trends at WUS rural sites. Mean springtime WUS O3 is projected to increase by ˜ 10 ppb from 2010 to 2030 under the RCP8.5 global change scenario. While historical wildfire emissions can enhance summertime monthly mean O3 at individual sites by 2-8 ppb, high temperatures and the associated buildup of O3 produced from regional anthropogenic emissions contribute most to elevating observed summertime O3 throughout the USA. GFDL-AM3 captures the observed interannual variability of summertime EUS O3. However, O3 deposition sink to vegetation must be reduced by 35 % for the model to accurately simulate observed high-O3 anomalies during the severe drought of 1988. Regional NOx reductions alleviated the O3 buildup during the recent heat waves of 2011

  17. Measures to reduce glyphosate runoff from hard surfaces, 2: effect of time interval between application and first precipitation event

    NARCIS (Netherlands)

    Luijendijk, C.D.; Beltman, W.H.J.; Smidt, R.A.; Pas, van der L.J.T.; Kempenaar, C.

    2005-01-01

    In this research the effect of moisture conditions of hard surfaces on emission of herbicides from hard surfaces was quantified. In addition the dissipation of glyphosate applied on brick-pavement is determined in time. The outdoor experiment was carried out on 3 and 17 June 2003. In previous

  18. Effect of Bedding Material on Dust and Ammonia Emission from Broiler Houses

    NARCIS (Netherlands)

    Harn, van J.; Aarnink, A.J.A.; Mosquera Losada, J.; Riel, van J.W.; Ogink, N.W.M.

    2012-01-01

    Ammonia emission, Bedding material, Broilers, Dust emission The objective of this study was to determine the effects of different bedding materials on fine dust (PM10 and PM2.5) and ammonia emissions from broiler houses. The effects on broiler performance and footpad lesions were also studied. The

  19. Impact of regional climate change and future emission scenarios on surface O3 and PM2.5 over India

    Science.gov (United States)

    Pommier, Matthieu; Fagerli, Hilde; Gauss, Michael; Simpson, David; Sharma, Sumit; Sinha, Vinay; Ghude, Sachin D.; Landgren, Oskar; Nyiri, Agnes; Wind, Peter

    2018-01-01

    Eleven of the world's 20 most polluted cities are located in India and poor air quality is already a major public health issue. However, anthropogenic emissions are predicted to increase substantially in the short-term (2030) and medium-term (2050) futures in India, especially if no further policy efforts are made. In this study, the EMEP/MSC-W chemical transport model has been used to predict changes in surface ozone (O3) and fine particulate matter (PM2.5) for India in a world of changing emissions and climate. The reference scenario (for present-day) is evaluated against surface-based measurements, mainly at urban stations. The evaluation has also been extended to other data sets which are publicly available on the web but without quality assurance. The evaluation shows high temporal correlation for O3 (r = 0.9) and high spatial correlation for PM2.5 (r = 0.5 and r = 0.8 depending on the data set) between the model results and observations. While the overall bias in PM2.5 is small (lower than 6 %), the model overestimates O3 by 35 %. The underestimation in NOx titration is probably the main reason for the O3 overestimation in the model. However, the level of agreement can be considered satisfactory in this case of a regional model being evaluated against mainly urban measurements, and given the inevitable uncertainties in much of the input data.For the 2050s, the model predicts that climate change will have distinct effects in India in terms of O3 pollution, with a region in the north characterized by a statistically significant increase by up to 4 % (2 ppb) and one in the south by a decrease up to -3 % (-1.4 ppb). This variation in O3 is assumed to be partly related to changes in O3 deposition velocity caused by changes in soil moisture and, over a few areas, partly also by changes in biogenic non-methane volatile organic compounds.Our calculations suggest that PM2.5 will increase by up to 6.5 % over the Indo-Gangetic Plain by the 2050s. The increase over India

  20. Impact of regional climate change and future emission scenarios on surface O3 and PM2.5 over India

    Directory of Open Access Journals (Sweden)

    M. Pommier

    2018-01-01

    Full Text Available Eleven of the world's 20 most polluted cities are located in India and poor air quality is already a major public health issue. However, anthropogenic emissions are predicted to increase substantially in the short-term (2030 and medium-term (2050 futures in India, especially if no further policy efforts are made. In this study, the EMEP/MSC-W chemical transport model has been used to predict changes in surface ozone (O3 and fine particulate matter (PM2.5 for India in a world of changing emissions and climate. The reference scenario (for present-day is evaluated against surface-based measurements, mainly at urban stations. The evaluation has also been extended to other data sets which are publicly available on the web but without quality assurance. The evaluation shows high temporal correlation for O3 (r =  0.9 and high spatial correlation for PM2.5 (r =  0.5 and r =  0.8 depending on the data set between the model results and observations. While the overall bias in PM2.5 is small (lower than 6 %, the model overestimates O3 by 35 %. The underestimation in NOx titration is probably the main reason for the O3 overestimation in the model. However, the level of agreement can be considered satisfactory in this case of a regional model being evaluated against mainly urban measurements, and given the inevitable uncertainties in much of the input data.For the 2050s, the model predicts that climate change will have distinct effects in India in terms of O3 pollution, with a region in the north characterized by a statistically significant increase by up to 4 % (2 ppb and one in the south by a decrease up to −3 % (−1.4 ppb. This variation in O3 is assumed to be partly related to changes in O3 deposition velocity caused by changes in soil moisture and, over a few areas, partly also by changes in biogenic non-methane volatile organic compounds.Our calculations suggest that PM2.5 will increase by up to 6.5 % over the Indo

  1. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation

    Directory of Open Access Journals (Sweden)

    K. Miyazaki

    2017-01-01

    underestimation of soil NOx sources in the emission inventories. Despite the large trends observed for individual regions, the global total emission is almost constant between 2005 (47.9 Tg N yr−1 and 2014 (47.5 Tg N yr−1.

  2. Tunable emission in surface passivated Mn-ZnS nanophosphors and its application for Glucose sensing

    Directory of Open Access Journals (Sweden)

    Manoj Sharma

    2012-03-01

    Full Text Available The present work describes the tunable emission in inorganic-organic hybrid NPs which can be useful for optoelectronic and biosensing applications. In this work, Mn- ZnS nanoparticles emitting various colors, including blue and orange, were synthesized by simple chemical precipitation method using chitosan as a capping agent. Earlier reports describe that emission color characteristics in nanoparticles are tuned by varying particle size and with doping concentration. Here in this article tunable emission has been achieved by varying excitation wavelength in a single sample. This tunable emission property with high emission intensity was further achieved by changing capping concentration keeping host Mn-ZnS concentration same. Tunable emission is explained by FRET mechanism. Commission Internationale de l’Eclairage (CIE chromaticity coordinates shifts from (0.273, 0.20 and (0.344, 0.275 for same naocrystals by suitably tuning excitation energy from higher and lower ultra-violet (UV range. Synthesized nanoparticles have been characterized by X-ray diffraction, SEM, HRTEM, UV- Visible absorption and PL spectroscopy for structural and optical studies. Using tunable emission property, these highly emissive nanoparticles functionalized with biocompatible polymer chitosan were further used for glucose sensing applications.

  3. Mapping of upper electronic reaction surfaces by tuned laser photolysis and by absorption and emission spectroscopies

    International Nuclear Information System (INIS)

    Morgan, M.A.

    1989-07-01

    Potential energy surfaces for photorotamerization of two intramolecularly hydrogen-bonded molecules, o-hydroxybenzaldehyde (OHBA) and methyl salicylate (MS), isolated in cryogenic matrices have been spectroscopically mapped. In addition, the external heavy atom effect of krypton and xenon matrices on the coupling between the S 1 and T 1 surfaces of 4-(dimethylamino)benzonitrile has been examined. Heavy atom matrices are known to increase rates of spin-forbidden processes. The phosphorescence intensity of DMABN increases in krypton and xenon matrices, while the fluorescence intensity, and phosphorescence and fluorescence lifetimes, decrease. These effects are interpreted in terms of a model in which the phosphorescence rate constant increases 300-fold in xenon compared to argon, while the rate constants for intersystem crossing and nonradiative relaxation from the triplet state increase by factors of less than 5. Lifetime measurements in argon matrices doped with heavy atoms indicate that even one heavy atom neighbor has a significant effect on both singlet and triplet lifetimes. 78 refs., 35 figs., 15 tabs

  4. Investigating animal health effects of sour gas acid forming emissions

    International Nuclear Information System (INIS)

    Edwards, W.C.

    1992-01-01

    The effects of sour gas well blowout emissions on livestock are reviewed. Guidelines for safe drilling operations in hydrogen sulfide environments, general hazards and characteristics of hydrogen sulfide, and guidelines for field investigation into the effects of sour gas and acid emissions on livestock are discussed. A case history involving the Ross No. 2 gas well blowout of July 1985 in Rankin County, Mississippi is presented. The blowout lasted for 72 days, and at peak discharge the 500 ppM radius was ca 3.5 miles. A cattle embryo transplant operation located one half mile from the well was affected by the blowout. Examination by a local veterinarian of the cattle demonstrated eye irritation, epiphora, nasal discharge and coughing. After one and a half months of exposure, most animals showed clinical signs of a severe dry hacking cough, epiphora, dry rales over the thoracic inlet, and a bronchial popping sound over the lateral thorax. All animals had eye irritation. Of 55 animals showing signs of respiratory distress and eye irritations, 15 were still clinically ill in May of 1986. 7 refs., 1 tab

  5. Health effects of laser printer emissions: a controlled exposure study.

    Science.gov (United States)

    Karrasch, S; Simon, M; Herbig, B; Langner, J; Seeger, S; Kronseder, A; Peters, S; Dietrich-Gümperlein, G; Schierl, R; Nowak, D; Jörres, R A

    2017-07-01

    Ultrafine particles emitted from laser printers are suspected to elicit adverse health effects. We performed 75-minute exposures to emissions of laser printing devices (LPDs) in a standardized, randomized, cross-over manner in 23 healthy subjects, 14 mild, stable asthmatics, and 15 persons reporting symptoms associated with LPD emissions. Low-level exposures (LLE) ranged at the particle background (3000 cm -3 ) and high-level exposures (HLE) at 100 000 cm -3 . Examinations before and after exposures included spirometry, body plethysmography, transfer factors for CO and NO (TLCO, TLNO), bronchial and alveolar NO, cytokines in serum and nasal secretions (IL-1β, IL-5, IL-6, IL-8, GM-CSF, IFNγ, TNFα), serum ECP, and IgE. Across all participants, no statistically significant changes occurred for lung mechanics and NO. There was a decrease in volume-related TLNO that was more pronounced in HLE, but the difference to LLE was not significant. ECP and IgE increased in the same way after exposures. Nasal IL-6 showed a higher increase after LLE. There was no coherent pattern regarding the responses in the participant subgroups or single sets of variables. In conclusion, the experimental acute responses to short but very high-level LPD exposures were small and did not indicate clinically relevant effects compared to low particle number concentrations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Effect of gasoline/methanol blends on motorcycle emissions: Exhaust and evaporative emissions

    Science.gov (United States)

    Li, Lan; Ge, Yunshan; Wang, Mingda; Li, Jiaqiang; Peng, Zihang; Song, Yanan; Zhang, Liwei

    2015-02-01

    The emission characteristics of motorcycles using gasoline and M15 (consisting of 85% gasoline and 15% methanol by volume) were investigated in this article. Exhaust and evaporative emissions, including regulated and unregulated emissions, of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED), respectively. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions, including carbonyls, volatile organic compounds (VOCs) and methanol, were sampled through battery-operated air pumps using tubes coated with 2,4-dintrophenylhydrazine (DNPH), Tenax TA and silica gel, respectively. The experimental results showed that, for exhaust emission, compared with those from gasoline fueled motorcycles, the concentration of total hydrocarbons (THC) and CO from motorcycles fueled with M15 decreased by 11%-34.5% and 63%-84% respectively, while the concentration of NOx increased by 76.9%-107.7%. Compared with those from gasoline fueled motorcycles, BTEX from motorcycles fueled with M15 decreased by 16%-60% while formaldehyde increased by 16.4%-52.5%. For evaporative emission, diurnal losses were more than hot soak losses and turned out to be dominated in evaporative emissions. In addition, compared with gasoline fueling motorcycles, the evaporative emissions of THC, carbonyls and VOCs from motorcycles fueled with M15 increased by 11.7%-37%, 38%-45% and 16%-42%, respectively. It should be noted that the growth rate of methanol was as high as 297%-1429%. It is important to reduce the evaporative emissions of methanol fueling motorcycles.

  7. Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling

    Energy Technology Data Exchange (ETDEWEB)

    Ozel, Tuncay; Soganci, Ibrahim Murat; Nizamoglu, Sedat; Huyal, Ilkem Ozge; Mutlugun, Evren; Demir, Hilmi Volkan [Department of Physics, Department of Electrical and Electronics Engineering, Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Sapra, Sameer; Gaponik, Nikolai; Eychmueller, Alexander [Physical Chemistry/Electrochemistry Group, Technische Universitaet Dresden, Bergstr. 66b, Dresden 01062 (Germany)], E-mail: volkan@bilkent.edu.tr

    2008-08-15

    We propose and demonstrate the controlled modification and selective enhancement of surface-state emission in white-luminophor CdS nanocrystals (NCs) by plasmon-coupling them with proximal metal nanostructures. By carefully designing nano-Ag films to match their localized plasmon resonance spectrally with the surface-state emission peak of CdS NCs, we experimentally show that the surface-state emission is substantially enhanced in the visible wavelength, while the interband (band-edge) transition at the shorter wavelength far away from the plasmon resonance is simultaneously significantly suppressed. With such plasmon tuning and consequent strong plasmon coupling specifically for the surface-state transitions, the surface-state emission is made stronger than the band-edge emission. This corresponds to an enhancement factor of 12.7-fold in the ratio of the surface-state peak emission to the band-edge peak emission of the plasmon-coupled film sample compared with that in solution. Such a plasmonic engineering of surface-state emission in trap-rich CdS white nanoluminophors holds great promise for future solid-state lighting.

  8. Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling

    International Nuclear Information System (INIS)

    Ozel, Tuncay; Soganci, Ibrahim Murat; Nizamoglu, Sedat; Huyal, Ilkem Ozge; Mutlugun, Evren; Demir, Hilmi Volkan; Sapra, Sameer; Gaponik, Nikolai; Eychmueller, Alexander

    2008-01-01

    We propose and demonstrate the controlled modification and selective enhancement of surface-state emission in white-luminophor CdS nanocrystals (NCs) by plasmon-coupling them with proximal metal nanostructures. By carefully designing nano-Ag films to match their localized plasmon resonance spectrally with the surface-state emission peak of CdS NCs, we experimentally show that the surface-state emission is substantially enhanced in the visible wavelength, while the interband (band-edge) transition at the shorter wavelength far away from the plasmon resonance is simultaneously significantly suppressed. With such plasmon tuning and consequent strong plasmon coupling specifically for the surface-state transitions, the surface-state emission is made stronger than the band-edge emission. This corresponds to an enhancement factor of 12.7-fold in the ratio of the surface-state peak emission to the band-edge peak emission of the plasmon-coupled film sample compared with that in solution. Such a plasmonic engineering of surface-state emission in trap-rich CdS white nanoluminophors holds great promise for future solid-state lighting

  9. Near-Field Spectral Effects due to Electromagnetic Surface Excitations

    OpenAIRE

    Shchegrov , Andrei ,; Joulain , Karl; Carminati , Rémi; Greffet , Jean-Jacques

    2000-01-01

    International audience; We demonstrate theoretically that the spectra of electromagnetic emission of surface systems can display remarkable differences in the near and the far zones. The spectral changes occur due to the loss of evanescent modes and are especially pronounced for systems which support surface waves. PACS numbers: 78.20. – e, 05.40. – a, 44.40. + a, 87.64.Xx Spectroscopy of electromagnetic radiation is perhaps the most powerful exploration tool employed in natural sciences: ast...

  10. Increased energy efficiency and the rebound effect: Effects on consumption and emissions

    International Nuclear Information System (INIS)

    Braennlund, Runar; Ghalwash, Tarek; Nordstroem, Jonas

    2007-01-01

    The main objective of this paper is to examine how exogenous technological progress, in terms of an increase in energy efficiency, affects consumption choice by Swedish households and thereby emissions of carbon dioxide (CO 2 ), sulphur dioxide (SO 2 ) and nitrogen oxide (NO x ). The aim of the paper is closely related to the discussion of what is termed the 'rebound effect'. To neutralise the rebound effect, we estimate the necessary change in CO 2 tax, i.e. the CO 2 tax that keeps CO 2 emissions at their initial level. In addition, we estimate how this will affect emissions of sulphur dioxide and nitrogen oxides. The results indicate that an increase in energy efficiency of 20% will increase emissions of CO 2 by approximately 5%. To reduce the CO 2 emissions to their initial level, the CO 2 tax must be raised by 130%. This tax increase will reduce the emissions of sulphur dioxide to below their initial level, but will leave the emissions of nitrogen oxides at a higher level than initially. Thus, if marginal damages from sulphur dioxide and nitrogen dioxide are non-constant, additional policy instruments are needed

  11. Toxicity and health effects of vehicle emissions in Shanghai

    Science.gov (United States)

    Ye, Shun-Hua; Zhou, Wei; Song, Jian; Peng, Bao-Cheng; Yuan, Dong; Lu, Yuan-Ming; Qi, Ping-Ping

    In China, the number of vehicles is increasing rapidly with the continuous development of economy, and vehicle emission pollution in major cities is more serious than ever. In this article, we summarized the results of a series of short-term assays, animal experiments and epidemiology investigations on the genotoxicity, immunotoxicity, respiratory toxicity and health effects of vehicle emissions in Shanghai, including gasoline exhausts (gas condensate and particles), diesel exhaust particles (DEP) and scooter exhaust particles (SEP). The results showed that: (1) Both gases and particulate phases of the exhausts of different kinds of vehicles showed strong mutagenicity in Ames test (TA98 and TA100 strains), rat hepatocyte unscheduled DNA synthesis (UDS) assay, and mouse micronucleus assay, and vehicle emissions could induce the transformation of Syrian hamster embryo (SHE) cells. DEP and SEP could induce the transformation of human diploid cell strain (KMB-13) cells, immunohistochemistry assay showed that c-myc and p21 proteins were highly expressed in the transformed cells. DEP and SEP could also inhibit the gap junctional intercellular communication (GJIC) of BALB/C3T3 cells (2) Vehicle emissions could decrease the number of macrophages in the lung (bronchial alveolar lavage fluid) (BALF) of male SD rats. Vehicle emissions could also increase the proportion of polymorphonuclear leukocytes (PMN), the content of cetyneuraminic acid (NA), the activity of lactate dehydrogenase (LDH), alkali phosphate (AKP), acid phosphate (ACP) in the lung BALF of the animals. (3) In epidemiology investigation, the proportion of those who have respiratory symptoms and chronic obstructive pulmonary diseases (COPD) in the workers who were exposed to DEP ( n=806) were much higher than those of the controls ( n=413). The OR (odd ratio) values of angina, nasal obstruction, phlegm, short of breath and COPD were 2.27, 3.08, 3.00, 3.19 and 2.32, respectively, and the proportion of those who

  12. Toxicity and health effects of vehicle emissions in Shanghai

    Energy Technology Data Exchange (ETDEWEB)

    Shunhua Ye; Wei Zhou; Jian Song; Baocheng Peng; Dong Yuan; Yuanming Lu; Pingping Qi [Shanghai Medical University (China). Dept. of Environmental Health

    2000-07-01

    In China, the number of vehicles is increasing rapidly with the continuous development of economy, and vehicle emission pollution in major cities is more serious than ever. In this article, we summarized the results of a series of short-term assays, animal experiments and epidemiology investigations on the genotoxicity, immunotoxicity, respiratory toxicity and health effects of vehicle emissions in Shanghai, including gasoline exhausts (gas condensate and particles), diesel exhaust particles (DEP) and scooter exhaust particles (SEP). The results showed that: (1) Both gases and particulate phases of the exhausts of different kinds of vehicles showed strong mutagenicity in Ames test (TA98 and TA100 strains), rat hepatocyte unscheduled DNA synthesis (UDS) assay, and mouse micronucleus assay, and vehicle emissions could induce the transformation of Syrian hamster embryo (SHE) cells. DEP and SEP could induce the transformation of human diploid cell strain (KMB-13) cells, immunohistochemistry assay showed that c-myc and p21 proteins were highly expressed in the transformed cells. DEP and SEP could also inhibit the gap junctional intercellular communication (GJIC) of BALB/C3T3 cells (2) Vehicle emissions could decrease the number of macrophages in the lung (bronchial alveolar lavage fluid) (BALF) of male SD rats. Vehicle emissions could also increase the proportion of polymorphonuclear leukocytes (PMN), the content of cetyneuraminic acid (NA), the activity of lactate dehydrogenase (LDH), alkali phosphate (AKP), acid phosphate (ACP) in the lung BALF of the animals. (3) In epidemiology investigation, the proportion of those who have respiratory symptoms and chronic obstructive pulmonary diseases (COPD) in the workers who were exposed to DEP (n = 806) were much higher than those of the controls (n = 413). The OR (odd ratio) values of angina, nasal obstruction, phlegm, short of breath and COPD were 2.27, 3.08, 3.00, 3.19 and 2.32, respectively, and the proportion of those who

  13. Surface Effects on Nanoscale Gas Flows

    Science.gov (United States)

    Beskok, Ali; Barisik, Murat

    2010-11-01

    3D MD simulations of linear Couette flow of argon gas confined within nano-scale channels are performed in the slip, transition and free molecular flow regimes. The velocity and density profiles show deviations from the kinetic theory based predictions in the near wall region that typically extends three molecular diameters (s) from each surface. Utilizing the Irwin-Kirkwood theorem, stress tensor components for argon gas confined in nano-channels are investigated. Outside the 3s region, three normal stress components are identical, and equal to pressure predicted using the ideal gas law, while the shear stress is a constant. Within the 3s region, the normal stresses become anisotropic and the shear stress shows deviations from its bulk value due to the surface virial effects. Utilizing the kinetic theory and MD predicted shear stress values, the tangential momentum accommodation coefficient for argon gas interacting with FCC structured walls (100) plane facing the fluid is calculated to be 0.75; this value is independent of the Knudsen number. Results show emergence of the 3s region as an additional characteristic length scale in nano-confined gas flows.

  14. Effect of Vehicle Characteristics on Unpaved Road Dust Emissions

    National Research Council Canada - National Science Library

    Gillies, J. A; Etyemezian, V; Kuhns, H; Nikolic, D; Gillette, D. A

    2005-01-01

    This paper presents PM10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road...

  15. Denitrifiers in the surface zone are primarily responsible for the nitrous oxide emission of dairy manure compost

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Koki, E-mail: k_maeda@affrc.go.jp [Dairy Research Division, National Agricultural Research Center for Hokkaido Region, National Agricultural and Food Research Organization, 1 Hitsujigaoka, Sapporo 062-8555 (Japan); Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Toyoda, Sakae [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Hanajima, Dai [Dairy Research Division, National Agricultural Research Center for Hokkaido Region, National Agricultural and Food Research Organization, 1 Hitsujigaoka, Sapporo 062-8555 (Japan); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan)

    2013-03-15

    Highlights: ► Nitrous oxide (N{sub 2}O) productions of each compost zones were compared. ► The pile surface emitted significant fluxes of N{sub 2}O. ► The isotopic signature of N{sub 2}O from surface and NO{sub 2}{sup −} amended core were different. ► The denitrifying gene abundance was significantly higher in pile surface than the pile core. -- Abstract: During the dairy manure composting process, significant nitrous oxide (N{sub 2}O) emissions occur just after the pile turnings. To understand the characteristics of this N{sub 2}O emission, samples were taken from the compost surface and core independently, and the N{sub 2}O production was monitored in laboratory incubation experiments. Equal amounts of surface and core samples were mixed to simulate the turning, and the {sup 15}N isotope ratios within the molecules of produced N{sub 2}O were analyzed by isotopomer analysis. The results showed that the surface samples emitted significant levels of N{sub 2}O, and these emissions were correlated with NO{sub x}{sup −}-N accumulation. Moreover, the surface samples and surface-core mixed samples incubated at 30 °C produced N{sub 2}O with a low site preference (SP) value (−0.9 to 7.0‰) that was close to bacteria denitrification (0‰), indicating that denitrifiers in the surface samples are responsible for this N{sub 2}O production. On the other hand, N{sub 2}O produced by NO{sub 2}{sup −}-amended core samples and surface samples incubated at 60 °C showed unrecognized isotopic signatures (SP = 11.4–20.3‰). From these results, it was revealed that the N{sub 2}O production occurring just after the turnings was mainly derived from bacterial denitrification (including nitrifier denitrification) of NO{sub x}{sup −}-N under mesophilic conditions, and surface denitrifying bacteria appeared to be the main contributor to this process.

  16. Surface effects in metal oxide-based nanodevices

    KAUST Repository

    Lien, Der Hsien

    2015-10-29

    As devices shrink to the nanoscale, surface-to-volume ratio increases and the surface-environment interaction becomes a major factor for affecting device performance. The variation of electronic properties, including the surface band bending, gas chemisorption or photodesorption, native surface defects, and surface roughness, is called "surface effects". Such effects are ambiguous because they can be either negative or beneficial effects, depending on the environmental conditions and device application. This review provides an introduction to the surface effects on different types of nanodevices, offering the solutions to respond to their benefits and negative effects and provides an outlook on further applications regarding the surface effect. This review is beneficial for designing nano-enabled photodetectors, harsh electronics, memories, sensors and transistors via surface engineering.

  17. Surface effects in metal oxide-based nanodevices

    KAUST Repository

    Lien, Der Hsien; Duran Retamal, Jose Ramon; Ke, Jr Jian; Kang, Chen Fang; He, Jr-Hau

    2015-01-01

    As devices shrink to the nanoscale, surface-to-volume ratio increases and the surface-environment interaction becomes a major factor for affecting device performance. The variation of electronic properties, including the surface band bending, gas chemisorption or photodesorption, native surface defects, and surface roughness, is called "surface effects". Such effects are ambiguous because they can be either negative or beneficial effects, depending on the environmental conditions and device application. This review provides an introduction to the surface effects on different types of nanodevices, offering the solutions to respond to their benefits and negative effects and provides an outlook on further applications regarding the surface effect. This review is beneficial for designing nano-enabled photodetectors, harsh electronics, memories, sensors and transistors via surface engineering.

  18. Thermal effects on vehicle emission dispersion in an urban street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Xiaomin Xie; Zhen Huang; Jiasong Wang; Zheng Xie [Shanghai Jiao Tong Univ., School of Mechanical Engineering, Shanghai (China)

    2005-05-15

    The impact of the thermal effects on vehicle emission dispersion within street canyons is examined. The results show that heating from building wall surfaces and horizontal surfaces lead to strong buoyancy forces close to surfaces receiving direct solar radiation. This thermally induced flow is combined with mechanically induced flows formed in the canyon where there is no solar heating, and affects the transport of pollutants from the canyon to the layer aloft. The relative influence of each of these effects can be estimates by Gr/Re{sup 2}. When the windward wall is warmer than the air, an upward buoyancy flux opposes the downward advection flux along the wall; if Gr/Re{sup 2} > 2, the flow structure is divided into two counter-rotating cells, and pollutants are accumulated on the windward side of the canyon. When the horizontal surface is heated, and Gr/Re{sup 2} > 4, the flow structure is divided into two counter-rotating cells by upward buoyancy flux. Pollutants are accumulated at the windward side of the canyon. When the leeward side is heated, the buoyancy flux adds to the upward advection flux along the wall strengthening the original vortex and pollutant effects of transport compared to the isothermal case. (Author)

  19. N2O emission from plant surfaces – light stimulated and a global phenomenon

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Ambus, Per

    2017-01-01

    for the first time N2O emission fromterrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurementsto investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and withoutUV-screening. Further laboratory tests were conducted...... with a range of species to study the controls and possibleloci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c.20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a ratherhigh activation energy indicative...

  20. Incident ion charge state dependence of electron emission during slow multicharged ion-surface interactions

    International Nuclear Information System (INIS)

    Hughes, I.G.; Zeijlmans van Emmichoven, P.A.; Havener, C.C.; Overbury, S.H.; Robinson, M.T.; Zehner, D.M.; Meyer, F.W.

    1992-01-01

    Characteristic variations in the total electron yield γ as a function of crystal azimuthal orientation are reported for slow N 2+ , N 5+ and N 6+ ions incident on a Au(011) single crystal, together with measurements of γ as a function of incident ion velocity. Kinetic electron emission is shown to arise predominantly in close collisions between incident ions and target atoms, and potential electron emission is found to be essentially constant within our present velocity range. The incident ion charge state is shown to play no role in kinetic electron emission. Extremely fast neutralization times of the order of 10 - 15 secs are needed to explain the observations

  1. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    International Nuclear Information System (INIS)

    Lawton, J J; Pulisciano, A; Palmer, R E

    2009-01-01

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  2. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, J J; Pulisciano, A; Palmer, R E, E-mail: R.E.Palmer@bham.ac.u [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2009-11-25

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  3. Effect of Surface Treatment on the Surface Characteristics of AISI 316L Stainless Steel

    Science.gov (United States)

    Trigwell, Steve; Selvaduray, Guna

    2005-01-01

    The ability of 316L stainless steel to maintain biocompatibility, which is dependent upon the surface characteristics, is critical to its effectiveness as an implant material. The surfaces of mechanically polished (MP), electropolished (EP) and plasma treated 316L stainless steel coupons were characterized by X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES) for chemical composition, Atomic Force Microscopy for surface roughness, and contact angle measurements for critical surface tension. All surfaces had a Ni concentration that was significantly lower than the bulk concentration of -43%. The Cr content of the surface was increased significantly by electropolishing. The surface roughness was also improved significantly by electropolishing. Plasma treatment had the reverse effect - the surface Cr content was decreased. It was also found that the Cr and Fe in the surface exist in both the oxide and hydroxide states, with the ratios varying according to surface treatment.

  4. Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine

    International Nuclear Information System (INIS)

    Yusri, I.M.; Mamat, R.; Azmi, W.H.; Omar, A.I.; Obed, M.A.; Shaiful, A.I.M.

    2017-01-01

    Highlights: • Adding 2-butanol in gasoline fuel can improve engine performance. • 2-Butanol addition reduced NO x , CO, and HC but produced higher CO 2 . • RSM was applied to optimize the engine performance and exhaust emissions. - Abstract: Producing an optimal balance between engine performance and exhaust emissions has always been one of the main challenges in automotive technology. This paper examines the use of RSM (response surface methodology) to optimize the engine performance, and exhaust emissions of a spark-ignition (SI) engine which operates with 2-butanol–gasoline blends of 5%, 10%, and 15% called GBu5, GBu10, and GBu15. In the experiments, the engine ran at various speeds for each test fuel and 13 different conditions were constructed. The optimization of the independent variables was performed by means of a statistical tool known as DoE (design of experiments). The desirability approach by RSM was employed with the aim of minimizing emissions and maximizing of performance parameters. Based on the RSM model, performance characteristics revealed that increments of 2-butanol in the blended fuels lead to increasing trends of brake power, brake mean effective pressure and brake thermal efficiency. Nonetheless, marginal higher brake specific fuel consumption was observed. Furthermore, the RSM model suggests that the presence of 2-butanol exhibits a decreasing trend of nitrogen oxides, carbon monoxides, and unburnt hydrocarbon, however, a higher trend was observed for carbon dioxides exhaust emissions. It was established from the study that the GBu15 blend with an engine speed of 3205 rpm was found to be optimal to provide the best performance and emissions characteristics as compared to the other tested blends.

  5. VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX

    International Nuclear Information System (INIS)

    Tritz, Kevin; Finkenthal, Michael; Stutman, Dan; Bell, Ronald E; Boyle, Dennis; Kaita, Robert; Kozub, Tom; Lucia, Matthew; Majeski, Richard; Merino, Enrique; Schmitt, John; Beiersdorfer, Peter; Clementson, Joel; Kubota, Shigeyuki

    2014-01-01

    The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in the form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. These new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments. (paper)

  6. Tailoring of quantum dot emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings.

    Science.gov (United States)

    Margapoti, Emanuela; Gentili, Denis; Amelia, Matteo; Credi, Alberto; Morandi, Vittorio; Cavallini, Massimiliano

    2014-01-21

    We report on the tailoring of quantum dot (QD) emission efficiency by localized surface plasmon polaritons in self-organized mesoscopic rings. Ag nanoparticles (NPs) with CdSe QDs embedded in a polymeric matrix are spatially organised in mesoscopic rings and coupled in a tuneable fashion by breath figure formation. The mean distance between NPs and QDs and consequently the intensity of QD photoluminescence, which is enhanced by the coupling of surface plasmons and excitons, are tuned by acting on the NP concentration.

  7. Total vertical sediment flux and PM10 emissions from disturbed Chihuahuan Desert Surfaces

    Science.gov (United States)

    Desert surfaces are typically stable and represent some of the oldest landforms on Earth. For surfaces without vegetation, the evolution of a desert pavements of gravel protects the surface from erosive forces and vegetation further protects the surface in arid and semi-arid rangelands. The suscep...

  8. All-(111) surface silicon nanowire field effect transistor devices: Effects of surface preparations

    NARCIS (Netherlands)

    Masood, M.N.; Carlen, Edwin; van den Berg, Albert

    2014-01-01

    Etching/hydrogen termination of All-(111) surface silicon nanowire field effect (SiNW-FET) devices developed by conventional photolithography and plane dependent wet etchings is studied with X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and

  9. Land Surface Temperature and Emissivity Separation from Cross-Track Infrared Sounder Data with Atmospheric Reanalysis Data and ISSTES Algorithm

    Directory of Open Access Journals (Sweden)

    Yu-Ze Zhang

    2017-01-01

    Full Text Available The Cross-track Infrared Sounder (CrIS is one of the most advanced hyperspectral instruments and has been used for various atmospheric applications such as atmospheric retrievals and weather forecast modeling. However, because of the specific design purpose of CrIS, little attention has been paid to retrieving land surface parameters from CrIS data. To take full advantage of the rich spectral information in CrIS data to improve the land surface retrievals, particularly the acquisition of a continuous Land Surface Emissivity (LSE spectrum, this paper attempts to simultaneously retrieve a continuous LSE spectrum and the Land Surface Temperature (LST from CrIS data with the atmospheric reanalysis data and the Iterative Spectrally Smooth Temperature and Emissivity Separation (ISSTES algorithm. The results show that the accuracy of the retrieved LSEs and LST is comparable with the current land products. The overall differences of the LST and LSE retrievals are approximately 1.3 K and 1.48%, respectively. However, the LSEs in our study can be provided as a continuum spectrum instead of the single-channel values in traditional products. The retrieved LST and LSEs now can be better used to further analyze the surface properties or improve the retrieval of atmospheric parameters.

  10. Electron emission during interactions of multicharged N and Ar ions with Au(110) and Cu(001) surfaces

    International Nuclear Information System (INIS)

    Meyer, F.W.; Overbury, S.H.; Havener, C.C.; Zeijlmans van Emmichoven, P.A.; Burgdoerfer, J.; Zehner, D.M.

    1991-01-01

    We report measurements of energy distributions of electrons emitted during interactions 10q-keV N 6+ , and Ar q+ (q=7,8,9) ions with Au(110) and Cu(001) surfaces at grazing angles. The electron energy distributions have been measured as a function of angle of incidence, observation angle, and target-crystal azimuth. For both Au and Cu targets, the projectile KLL Auger peak observed for the case of the N 6+ projectiles is seen to consist of two components whose intensities have strikingly different dependences on incident perpendicular velocity. The main component of the KLL peak is attributed to subsurface electron emission and is modeled using a Monte Carlo simulation of the projectile trajectories in the bulk. The second component, observed only for the smallest incident perpendicular velocities, is attributed to above-surface KLL Auger electron emission and is modeled using computer simulations of the resonance neutralization-autoionization cascade that occurs prior to projectile penetration of the surface. In the case of the Au target, NNV and NVV transitions, attributed to vacancy transfer from the projectile K shell to the N shell of Au, are also observed. The Monte Carlo simulation of the subsurface contribution to the electron emission is able to reproduce the observed angle-of-incidence dependence of both the projectile and the target Auger electron intensities. In addition, it shows reasonable agreement with the observed dependences of the projectile KLL intensity on observation angle and crystal azimuth

  11. Greenhouse gas emissions from reservoir water surfaces: A new global synthesis

    Science.gov (United States)

    Collectively, reservoirs created by dams are thought to be an important source ofgreenhouse gases (GHGs) to the atmosphere. So far, efforts to quantify, model, andmanage these emissions have been limited by data availability and inconsistenciesin methodological approach. Here we ...

  12. Greenhouse effect: A first estimation of the emissions in Italy

    International Nuclear Information System (INIS)

    Gaudioso, D.; Onufrio, G.

    1991-03-01

    The estimate of the anthropogenic emissions of greenhouse gases and the selection of the relevant emission factors represents a preliminary condition to define policies aiming at curbing these emissions. In the first part of this paper there is an analysis of C0 2 emission factors, referred to the various fuels and energy technologies. The values at issue take into account the physico-chemical composition of the different fossil fuels, as well as the overall efficiency of energy production cycles and end uses patterns. As concerns the other greenhouse gases, the available information is summarized at a much more integrate level. The second part presents some estimates of carbon dioxide emissions in Italy, by sector and by fuel; some characteristic levels of specific emissions are also identified. A comparative estimate for CH 4 , N 2 O, CO and CFC's is also made, in order to set up a first reference table of the emissions of greenhouse gases in our country. (author)

  13. Enabling Highly Effective Boiling from Superhydrophobic Surfaces

    Science.gov (United States)

    Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.

    2018-04-01

    A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

  14. Surface effect theory in binary alloys: surfaces with cut-off

    International Nuclear Information System (INIS)

    Kumar, V.; Silva, C.E.T.G. da; Moran-Lopez, J.L.

    1981-01-01

    A surface effect theory in binary alloys which ore ordered with surfaces with cut-off is presented. This theory is based in a model of pair interaction between first neighbours and includes long and short range effects. The (120) surface with sup(-) (110) monoatomic cut-off and terrace in the (110) planes of an alloy with body centered cubic structure is presented as example. Results for the concentrations in all the different surface sites are given. (L.C.) [pt

  15. Electron transport effects in ion induced electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium)]. E-mail: adubus@ulb.ac.be; Pauly, N. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. FD Roosevelt, B-1050 Brussels (Belgium); Roesler, M. [Karl-Pokern-Str. 12, D-12587 Berlin (Germany)

    2007-03-15

    Ion induced electron emission (IIEE) is usually described as a three-step process, i.e. electron excitation by the incident projectile, electron transport (and multiplication) and electron escape through the potential barrier at the surface. In many cases, the first step of the process has been carefully described. The second step of the process, i.e. electron transport and multiplication, has often been treated in a very rough way, a simple decreasing exponential law being sometimes used. It is precisely the aim of the present work to show the importance of a correct description of electron transport and multiplication in a theoretical calculation of IIEE. A short overview of the electron transport models developed for IIEE is given in this work. The so-called 'Infinite medium slowing-down model' often used in recent works is evaluated by means of Monte Carlo simulations. In particular, the importance of considering correctly the semi-infinite character of the medium and the boundary condition at the vacuum-medium interface is discussed. Quantities like the electron escape depth are also briefly discussed. This evaluation has been performed in the particular case of protons (25keV

  16. Atmospheric characterization through fused mobile airborne and surface in situ surveys: methane emissions quantification from a producing oil field

    Directory of Open Access Journals (Sweden)

    I. Leifer

    2018-03-01

    Full Text Available Methane (CH4 inventory uncertainties are large, requiring robust emission derivation approaches. We report on a fused airborne–surface data collection approach to derive emissions from an active oil field near Bakersfield, central California. The approach characterizes the atmosphere from the surface to above the planetary boundary layer (PBL and combines downwind trace gas concentration anomaly (plume above background with normal winds to derive flux. This approach does not require a well-mixed PBL; allows explicit, data-based, uncertainty evaluation; and was applied to complex topography and wind flows. In situ airborne (collected by AJAX – the Alpha Jet Atmospheric eXperiment and mobile surface (collected by AMOG – the AutoMObile trace Gas – Surveyor data were collected on 19 August 2015 to assess source strength. Data included an AMOG and AJAX intercomparison transect profiling from the San Joaquin Valley (SJV floor into the Sierra Nevada (0.1–2.2 km altitude, validating a novel surface approach for atmospheric profiling by leveraging topography. The profile intercomparison found good agreement in multiple parameters for the overlapping altitude range from 500 to 1500 m for the upper 5 % of surface winds, which accounts for wind-impeding structures, i.e., terrain, trees, buildings, etc. Annualized emissions from the active oil fields were 31.3 ± 16 Gg methane and 2.4 ± 1.2 Tg carbon dioxide. Data showed the PBL was not well mixed at distances of 10–20 km downwind, highlighting the importance of the experimental design.

  17. Influence of a single lightning discharge on the intensity of an air electric field and acoustic emission of near-surface rocks

    Directory of Open Access Journals (Sweden)

    S. E. Smirnov

    2012-10-01

    Full Text Available The effect was observed as a sharp fall of the electric potential gradient from +80 V m−1 down to –21 V m−1. After that the field returned to its normal level according to the formula of the capacitor discharge with 17 s characteristic time. Simultaneously, the response of the acoustic emission of surface rocks in the range of frequencies between 6.5 kHz and 11 kHz was evaluated.

  18. Passive wireless surface acoustic wave sensors for monitoring sequestration sites CO2 emission

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yizhong [Univ. of Pittsburgh, PA (United States); Chyu, Minking [Univ. of Pittsburgh, PA (United States); Wang, Qing-Ming [Univ. of Pittsburgh, PA (United States)

    2013-02-14

    University of Pittsburgh’s Transducer lab has teamed with the U.S. Department of Energy’s National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/°C. The overall effect of temperature on nanocomposite resistance was -1000ppm/°C. The gas response of the nanocomposite was about 10% resistance increase under pure CO2 . The sensor frequency change was around 300ppm for pure CO2 . With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

  19. Normal emission photoelectron diffraction: a new technique for determining surface structure

    International Nuclear Information System (INIS)

    Kevan, S.D.

    1980-05-01

    One technique, photoelectron diffraction (PhD) is characterized. It has some promise in surmounting some of the problems of LEED. In PhD, the differential (angle-resolved) photoemission cross-section of a core level localized on an adsorbate atom is measured as a function of some final state parameter. The photoemission final state consists of two components, one of which propagates directly to the detector and another which scatters off the surface and then propagates to the detector. These are added coherently, and interference between the two manifests itself as cross-section oscillations which are sensitive to the local structure around the absorbing atom. We have shown that PhD deals effectively with two- and probably also three-dimensionally disordered systems. Its non-damaging and localized, atom-specific nature gives PhD a good deal of promise in dealing with molecular overlayer systems. It is concluded that while PhD will never replace LEED, it may provide useful, complementary and possibly also more accurate surface structural information

  20. Anisotropic effects of terahertz emission from laser sparks in air

    International Nuclear Information System (INIS)

    Zharova, N. A.; Mironov, V. A.; Fadeev, D. A.

    2010-01-01

    Strong terahertz (THz) radiation can be generated by intense femtosecond laser pulses propagating in air. The excitation of transient current induced in the wake just behind the laser pulse is studied in detail using numerical simulations on the basis of Maxwell's equations for THz-band fields and hydrodynamic model for the plasma motion. It is shown that the thermal effects, anisotropic in character in the case of linear polarized laser field, can explain observed quadrupole-type THz radiation pattern in the experiment performed by Akhmedzhanov et al. [Radiophys. Quantum Electron. 52, 482 (2009)]. Taking into account the transverse structure of the plasma filament, our numerical code enables us to calculate the spatial distribution and temporal evolution of terahertz electron current, its spectrum, and angular emission pattern. It is shown that an expansion of full fields in terms of azimuthal modes is a useful tool for research of THz generation in many situations of practical interest.

  1. Biochar carbon stability and effect on greenhouse gas emissions

    DEFF Research Database (Denmark)

    Bruun, Esben Wilson; Cross, Andrew; Hammond, Jim

    2016-01-01

    As demonstrated by several scientific studies there is no doubt that biochar in general is very recalcitrant compared to other organic matter additions and soil organic matter fractions and also that it is possible to sequester carbon at a climate change relevant time scale (~100 years or more......) by soil application of biochar. However, the carbon stability of biochar in soil is strongly correlated with the degree of thermal alteration of the original feedstock (the lower the temperature, the larger the labile fraction) and in depth understanding of the technology used and its effect...... on the biochar quality is necessary in order to produce the most beneficial biochars for soil application. Beside carbon sequestration in soil biochar may improve the GHG balance by reducing N2O and CH4 soil emissions, although contrasting results are found in the literature. The mechanisms behind...

  2. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    Science.gov (United States)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  3. Linear surface photoelectric effect of gold in intense laser field as a possible high-current electron source

    International Nuclear Information System (INIS)

    Farkas, G.; Horvath, Z.G.; Toth, C.; Fotakis, C.; Hontzopoulos, E.

    1987-01-01

    Investigations were conducted on radiation-induced electron emission processes on a gold target surface with a high-intensity (2 MW/cm 2 ) KrF laser (λ = 248 nm). The single photon surface photoelectric emission obtained can be used for high-current density electron sources. The measured polarization dependence of electron current shows the dominance of the surface-type effect over that of the volume type, thereby making it possible to optimize the short, high-density electron current creation conditions. The advantage of the grazing light incidence and the multiphoton photoeffect giving rise to a 500 A/cm 2 electron current has been demonstrated

  4. Nitrous oxide emissions from manure handling - effects of storage conditions and climate

    International Nuclear Information System (INIS)

    Sommer, S.G.; Petersen, S.O.

    2002-01-01

    Stored animal manure and manure applied in the field contributes an estimated 20% to the total anthropogenic emissions of nitrous oxide (N 2 0) in Denmark. Manure composition, handling and climatic conditions may all influence the emission level during storage, but there are relatively few experimental data on emissions of N 2 0 from manure management, including animal houses, slurry stores and manure heaps. Among animal housing systems, very high emission rates have been found with pig deep lifter, and N 2 0 emissions are further stimulated by mechanical mixing. Slurry stores are anaerobic, but a recent study showed that N 2 0 can be produced in porous surface covers such as natural surface crusts, straw or leca pebbles, while no N 2 0 was emitted from uncovered slurry. The emission was significantly related to the water balance, i.e., the difference between evaporation and rain, during dry periods; during wet periods no N 2 0 was emitted. For solid manure, previous studies have typically found that less than 1 % of total N is emitted as N 2 0. Nitrous oxide may be produced throughout the manure heap, provided an environment with both aerobic and anaerobic pockets exists. Profiles from an experimental heap indicated that most of the N 2 0 emitted from solid manure was produced near the surface of the heap. Increasing density appears to stimulate N 2 0 emissions up to a point, where the air exchange is significantly impeded. The IPCC methodology calculates N 2 0 emissions from manure on the basis of total N content (that is, on the basis of volume) and climate region only. Possibly, estimates of N 2 0 emissions from slurry stores could be improved by considering surface area, ammonium content and water balance as input variables. Emissions from solid manure heaps should consider surface area and the potential for composting, as reflected in bulk density and moisture content. (au)

  5. A theoretical and numerical study of polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum

    Science.gov (United States)

    Yueh, S. H.; Kwok, R.

    1993-01-01

    In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also

  6. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    OpenAIRE

    Abdullah Mohd Fareez Edzuan; Zhing Sim Shu; Bilong Bugik Clarence

    2017-01-01

    As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM) emissions however nitrogen oxides (NOx) emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coco...

  7. Characterization of air freshener emission: the potential health effects.

    Science.gov (United States)

    Kim, Sanghwa; Hong, Seong-Ho; Bong, Choon-Keun; Cho, Myung-Haing

    2015-01-01

    Air freshener could be one of the multiple sources that release volatile organic compounds (VOCs) into the indoor environment. The use of these products may be associated with an increase in the measured level of terpene, such as xylene and other volatile air freshener components, including aldehydes, and esters. Air freshener is usually used indoors, and thus some compounds emitted from air freshener may have potentially harmful health impacts, including sensory irritation, respiratory symptoms, and dysfunction of the lungs. The constituents of air fresheners can react with ozone to produce secondary pollutants such as formaldehyde, secondary organic aerosol (SOA), oxidative product, and ultrafine particles. These pollutants then adversely affect human health, in many ways such as damage to the central nervous system, alteration of hormone levels, etc. In particular, the ultrafine particles may induce severe adverse effects on diverse organs, including the pulmonary and cardiovascular systems. Although the indoor use of air freshener is increasing, deleterious effects do not manifest for many years, making it difficult to identify air freshener-associated symptoms. In addition, risk assessment recognizes the association between air fresheners and adverse health effects, but the distinct causal relationship remains unclear. In this review, the emitted components of air freshener, including benzene, phthalate, and limonene, were described. Moreover, we focused on the health effects of these chemicals and secondary pollutants formed by the reaction with ozone. In conclusion, scientific guidelines on emission and exposure as well as risk characterization of air freshener need to be established.

  8. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    Science.gov (United States)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  9. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    Directory of Open Access Journals (Sweden)

    S. Strada

    2016-04-01

    Full Text Available A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse by  ∼ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources enhance GPP by +5–8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2–5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5–8 %. The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of −2 to −12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  10. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    KAUST Repository

    Li, Xiaohang

    2015-12-14

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaNmultiple-quantum well(MQW)heterostructuresgrown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a pumping power density of 630 kW/cm2. Spectral deconvolution revealed superposition of a linearly amplified spontaneous emission peak at λ ∼ 257.0 nm with a full width at half maximum (FWHM) of ∼12 nm and a superlinearly amplified SE peak at λ ∼ 260 nm with a narrow FWHM of less than 2 nm. In particular, the wavelength of ∼260 nm is the shortest wavelength of surface SE from III-nitride MQWheterostructures to date. Atomic force microscopy and scanning transmission electron microscopy measurements were employed to investigate the material and structural quality of the AlGaNheterostructures, showing smooth surface and sharp layer interfaces. This study offers promising results for AlGaNheterostructuresgrown on sapphire substrates for the development of DUV vertical cavity surface emitting lasers(VCSELs).

  11. Onset of surface stimulated emission at 260 nm from AlGaN multiple quantum wells

    International Nuclear Information System (INIS)

    Li, Xiaohang; Xie, Hongen; Ponce, Fernando A.; Ryou, Jae-Hyun; Detchprohm, Theeradetch; Dupuis, Russell D.

    2015-01-01

    We demonstrated onset of deep-ultraviolet (DUV) surface stimulated emission (SE) from c-plane AlGaN multiple-quantum well (MQW) heterostructures grown on a sapphire substrate by optical pumping at room temperature. The onset of SE became observable at a pumping power density of 630 kW/cm 2 . Spectral deconvolution revealed superposition of a linearly amplified spontaneous emission peak at λ ∼ 257.0 nm with a full width at half maximum (FWHM) of ∼12 nm and a superlinearly amplified SE peak at λ ∼ 260 nm with a narrow FWHM of less than 2 nm. In particular, the wavelength of ∼260 nm is the shortest wavelength of surface SE from III-nitride MQW heterostructures to date. Atomic force microscopy and scanning transmission electron microscopy measurements were employed to investigate the material and structural quality of the AlGaN heterostructures, showing smooth surface and sharp layer interfaces. This study offers promising results for AlGaN heterostructures grown on sapphire substrates for the development of DUV vertical cavity surface emitting lasers (VCSELs)

  12. On the capability of IASI measurements to inform about CO surface emissions

    Directory of Open Access Journals (Sweden)

    S. Szopa

    2009-11-01

    Full Text Available Between July and November 2008, simultaneous observations were conducted by several orbiting instruments that monitor carbon monoxide in the atmosphere, among them the Infrared Atmospheric Sounding Instrument (IASI and Measurements Of Pollution In The Troposphere (MOPITT. In this paper, the concentration retrievals at about 700 hPa from these two instruments are successively used in a variational Bayesian system to infer the global distribution of CO emissions. Starting from a global emission budget of 479 Tg for the considered period, the posterior estimate of CO emissions using IASI retrievals gives a total of 643 Tg, which is in close agreement with the budget calculated with version 3 of the MOPITT data (649 Tg. The regional totals are also broadly consistent between the two inversions. Even though our theoretical error budget indicates that IASI constrains the emissions slightly less than MOPITT, because of lesser sensitivity in the lower troposphere, these first results indicate that IASI may play a major role in the quantification of the emissions of CO.

  13. Effect of ethanol fuel additive on diesel emissions.; TOPICAL

    International Nuclear Information System (INIS)

    Cole, R. L.; Poola, R. B.; Sekar, R.; Schaus, J. E.; McPartlin, P.

    2001-01-01

    Engine-out emissions from a Volkswagen model TDI engine were measured for three different fuels: neat diesel fuel, a blend of diesel fuel and additives containing 10% ethanol, and a blend of diesel fuel and additives containing 15% ethanol. The test matrix covered five speeds from 1,320 to 3,000 rpm, five torques from 15 Nm to maximum plus the 900-rpm idle condition, and most of the points in the FTP-75 and US-06 vehicle tests. Emissions of particulate matter (PM), nitrogen oxides (NO(sub x)), unburned hydrocarbons (HCs), and carbon monoxide (CO) were measured at each point, as were fuel consumption, exhaust oxygen, and carbon dioxide output. PM emissions were reduced up to 75% when ethanol-diesel blends were used instead of neat diesel fuel. Significant reductions in PM emissions occurred over one-half to two-thirds of the test matrix. NO(sub x) emissions were reduced by up to 84%. Although the regions of reduced NO(sub x) emissions were much smaller than the regions of reduced PM emissions, there was considerable overlap between the two regions where PM emissions were reduced by up to 75% and NO(sub x) emissions were reduced by up to 84%. Such simultaneous reduction of both PM and NO(sub x) emissions would be difficult to achieve by any other means. HC and CO emissions were also reduced in the regions of reduced PM and NO(sub x) emissions that overlapped. Because the ethanol-diesel blends contain less energy on both a per-unit-mass basis and a per-unit-volume basis, there was a reduction in maximum torque of up to 10% and an increase in brake-specific fuel consumption of up to 7% when these blends were used

  14. Apparatus and procedure to characterize the surface quality of conductors by measuring the rate of cathode emission as a function of surface electric field strength

    Science.gov (United States)

    Mestayer, Mac; Christo, Steve; Taylor, Mark

    2014-10-21

    A device and method for characterizing quality of a conducting surface. The device including a gaseous ionizing chamber having centrally located inside the chamber a conducting sample to be tested to which a negative potential is applied, a plurality of anode or "sense" wires spaced regularly about the central test wire, a plurality of "field wires" at a negative potential are spaced regularly around the sense, and a plurality of "guard wires" at a positive potential are spaced regularly around the field wires in the chamber. The method utilizing the device to measure emission currents from the conductor.

  15. Effect of annealing on field emission properties of nanodiamond coating

    International Nuclear Information System (INIS)

    Zhai, C.X.; Yun, J.N.; Zhao, L.L.; Zhang, Z.Y.; Wang, X.W.; Chen, Y.Y.

    2011-01-01

    Field electron emission of detonation nanodiamond (ND) coated on a titanium substrate by electrophoretic deposition is investigated. It is found that thermal annealing can significantly improve the field emission properties of the ND layer, which can be mainly attributed to the formation of the TiC phase between diamond and Ti. The first-principles calculated results show that the formation of transition layers can lower the interface barrier and enhance the field electron emission of ND coating. Besides, the transformation of diamond to graphite after annealing has been revealed by Raman spectra. This transformation also benefits the electron emission enhancement.

  16. Effect of annealing on field emission properties of nanodiamond coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, C.X., E-mail: zhaicatty@126.co [School of Information Science and Technology, Northwest University, Xi' an 710127, Shaanxi (China); Yun, J.N.; Zhao, L.L.; Zhang, Z.Y.; Wang, X.W.; Chen, Y.Y. [School of Information Science and Technology, Northwest University, Xi' an 710127, Shaanxi (China)

    2011-03-01

    Field electron emission of detonation nanodiamond (ND) coated on a titanium substrate by electrophoretic deposition is investigated. It is found that thermal annealing can significantly improve the field emission properties of the ND layer, which can be mainly attributed to the formation of the TiC phase between diamond and Ti. The first-principles calculated results show that the formation of transition layers can lower the interface barrier and enhance the field electron emission of ND coating. Besides, the transformation of diamond to graphite after annealing has been revealed by Raman spectra. This transformation also benefits the electron emission enhancement.

  17. Flexible Ag-C60 nano-biosensors based on surface plasmon coupled emission for clinical and forensic applications.

    Science.gov (United States)

    Mulpur, Pradyumna; Yadavilli, Sairam; Mulpur, Praharsha; Kondiparthi, Neeharika; Sengupta, Bishwambhar; Rao, Apparao M; Podila, Ramakrishna; Kamisetti, Venkataramaniah

    2015-10-14

    The relatively low sensitivity of fluorescence detection schemes, which are mainly limited by the isotropic nature of fluorophore emission, can be overcome by utilizing surface plasmon coupled emission (SPCE). In this study, we demonstrate directional emission from fluorophores on flexible Ag-C60 SPCE sensor platforms for point-of-care sensing, in healthcare and forensic sensing scenarios, with at least 10 times higher sensitivity than traditional fluorescence sensing schemes. Adopting the highly sensitive Ag-C60 SPCE platform based on glass and novel low-cost flexible substrates, we report the unambiguous detection of acid-fast Mycobacterium tuberculosis (Mtb) bacteria at densities as low as 20 Mtb mm(-2); from non-acid-fast bacteria (e.g., E. coli and S. aureus), and the specific on-site detection of acid-fast sperm cells in human semen samples. In combination with the directional emission and high-sensitivity of SPCE platforms, we also demonstrate the utility of smartphones that can replace expensive and cumbersome detectors to enable rapid hand-held detection of analytes in resource-limited settings; a much needed critical advance to biosensors, for developing countries.

  18. Studying the Impacts of Environmental Factors and Agricultural Management on Methane Emissions from Rice Paddies Using a Land Surface Model

    Science.gov (United States)

    Lin, T. S.; Gahlot, S.; Shu, S.; Jain, A. K.; Kheshgi, H. S.

    2017-12-01

    Continued growth in population is projected to drive increased future demand for rice and the methane emissions associated with its production. However, observational studies of methane emissions from rice have reported seemingly conflicting results and do not all support this projection. In this study we couple an ecophysiological process-based rice paddy module and a methane emission module with a land surface model, Integrated Science Assessment Model (ISAM), to study the impacts of various environmental factors and agricultural management practices on rice production and methane emissions from rice fields. This coupled modeling framework accounts for dynamic rice growth processes with adaptation of photosynthesis, rice-specific phenology, biomass accumulation, leaf area development and structures responses to water, temperature, light and nutrient stresses. The coupled model is calibrated and validated with observations from various rice cultivation fields. We find that the differing results of observational studies can be caused by the interactions of environmental factors, including climate, atmospheric CO2 concentration, and N deposition, and agricultural management practices, such as irrigation and N fertilizer applications, with rice production at spatial and temporal scales.

  19. The zonal structure of tropical O3 and CO as observed by the Tropospheric Emission Spectrometer in November 2004 – Part 2: Impact of surface emissions on O3 and its precursors

    Directory of Open Access Journals (Sweden)

    G. Osterman

    2009-06-01

    Full Text Available The impact of surface emissions on the zonal structure of tropical tropospheric ozone and carbon monoxide is investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions.Vertical ozone profiles from the Tropospheric Emission Spectrometer (TES and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ network show elevated concentrations of ozone over Indonesia and Australia (60–70 ppb in the lower troposphere against the backdrop of the well-known zonal "wave-one" pattern with ozone concentrations of (70–80 ppb centered over the Atlantic . Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT CO profiles (Jones et al., 2009. These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30–40% over Indonesia. The response of the free tropospheric chemical state to the changes in these emissions is investigated for ozone, CO, NOx, and PAN. Model simulations indicate that ozone over Indonesian/Australian is sensitive to regional changes in surface emissions of NOx but relatively insensitive to lightning NOx. Over sub-equatorial Africa and South America, free tropospheric NOx was reduced in response to increased surface emissions potentially muting ozone production.

  20. NASA's MODIS/VIIRS Land Surface Temperature and Emissivity Products: Asssessment of Accuracy, Continuity and Science Uses

    Science.gov (United States)

    Hulley, G. C.; Malakar, N.; Islam, T.

    2017-12-01

    Land Surface Temperature and Emissivity (LST&E) are an important Earth System Data Record (ESDR) and Environmental Climate Variable (ECV) defined by NASA and GCOS respectively. LST&E data are key variables used in land cover/land use change studies, in surface energy balance and atmospheric water vapor retrieval models and retrievals, and in climate research. LST&E products are currently produced on a routine basis using data from the MODIS instruments on the NASA EOS platforms and by the VIIRS instrument on the Suomi-NPP platform that serves as a bridge between NASA EOS and the next-generation JPSS platforms. Two new NASA LST&E products for MODIS (MxD21) and VIIRS (VNP21) are being produced during 2017 using a new approach that addresses discrepancies in accuracy and consistency between the current suite of split-window based LST products. The new approach uses a Temperature Emissivity Separation (TES) algorithm, originally developed for the ASTER instrument, to physically retrieve both LST and spectral emissivity consistently for both sensors with high accuracy and well defined uncertainties. This study provides a rigorous assessment of accuracy of the MxD21/VNP21 products using temperature- and radiance-based validation strategies and demonstrates continuity between the products using collocated matchups over CONUS. We will further demonstrate potential science use of the new products with studies related to heat waves, monitoring snow melt dynamics, and land cover/land use change.

  1. Analysis of Field Emission of Fabricated Nanogap in Pd Strips for Surface Conduction Electron-Emitter Displays

    Science.gov (United States)

    Lo, Hsiang-Yu; Li, Yiming; Tsai, Chih-Hao; Pan, Fu-Ming

    2008-04-01

    We study the field emission (FE) property of a nanometer-scale gap structure in a palladium strip, which was fabricated by hydrogen absorption under high-pressure treatment. A vigorous cracking process could be accompanied by extensive atomic migration during the hydrogen treatment. A three-dimensional finite-difference time-domain particle-in-cell method is adopted to simulate the electron emission in a surface-conduction electron-emitter display (SED) device. Examinations of conducting characteristics, FE efficiency, the local field around the emitter, and the current density on the anode plate with one FE emitter are conducted. The image of a light spot is successfully produced on a phosphor plate, which implies that the explored electrode with nanometer separation possesses a potential SED application. Experimental observation and numerical simulation show that the proposed structure can be used as a surface conduction electron emitter and has a high FE efficiency with low turn-on voltage and a different electron emission mechanism. This study benefits the advanced SED design for a new type of electron source.

  2. Indicative Surfaces for Crystal Optical Effects

    OpenAIRE

    R.Vlokh,; O.Mys; O.Vlokh

    2005-01-01

    This paper has mainly a pedagogical meaning. Our aim is to demonstrate a correct general approach for constructing indicative surfaces of higher-rank tensors. We reconstruct the surfaces of piezo-optic tensor for beta-BaB2O4 and LiNbO3 crystals, which have been incorrectly presented in our recent papers.

  3. Antibacterial effect of surface pretreatment techniques against ...

    African Journals Online (AJOL)

    Objective: The aim of this study was to evaluate the antibacterial surface pretreatment methods against Streptococcus mutans within the infected dentin surface using a tooth cavity model. Material and Methods: Seventy-two cavities were prepared on caries-free third molars (n = 8). After sterilization, teeth were inoculated ...

  4. Responses of herbaceous plants to urban air pollution: Effects on growth, phenology and leaf surface characteristics

    International Nuclear Information System (INIS)

    Honour, Sarah L.; Bell, J. Nigel B.; Ashenden, Trevor W.; Cape, J. Neil; Power, Sally A.

    2009-01-01

    Vehicle exhaust emissions are a dominant feature of urban environments and are widely believed to have detrimental effects on plants. The effects of diesel exhaust emissions on 12 herbaceous species were studied with respect to growth, flower development, leaf senescence and leaf surface wax characteristics. A diesel generator was used to produce concentrations of nitrogen oxides (NO x ) representative of urban conditions, in solardome chambers. Annual mean NO x concentrations ranged from 77 nl l -l to 98 nl l -1 , with NO:NO 2 ratios of 1.4-2.2, providing a good experimental simulation of polluted roadside environments. Pollutant exposure resulted in species-specific changes in growth and phenology, with a consistent trend for accelerated senescence and delayed flowering. Leaf surface characteristics were also affected; contact angle measurements indicated changes in surface wax structure following pollutant exposure. The study demonstrated clearly the potential for realistic levels of vehicle exhaust pollution to have direct adverse effects on urban vegetation. - Fumigation experiments demonstrate adverse effects of exhaust emissions on urban vegetation

  5. Work function and surface stability of tungsten-based thermionic electron emission cathodes

    Science.gov (United States)

    Jacobs, Ryan; Morgan, Dane; Booske, John

    2017-11-01

    Materials that exhibit a low work function and therefore easily emit electrons into vacuum form the basis of electronic devices used in applications ranging from satellite communications to thermionic energy conversion. W-Ba-O is the canonical materials system that functions as the thermionic electron emitter commercially used in a range of high-power electron devices. However, the work functions, surface stability, and kinetic characteristics of a polycrystalline W emitter surface are still not well understood or characterized. In this study, we examined the work function and surface stability of the eight lowest index surfaces of the W-Ba-O system using density functional theory methods. We found that under the typical thermionic cathode operating conditions of high temperature and low oxygen partial pressure, the most stable surface adsorbates are Ba-O species with compositions in the range of Ba0.125O-Ba0.25O per surface W atom, with O passivating all dangling W bonds and Ba creating work function-lowering surface dipoles. Wulff construction analysis reveals that the presence of O and Ba significantly alters the surface energetics and changes the proportions of surface facets present under equilibrium conditions. Analysis of previously published data on W sintering kinetics suggests that fine W particles in the size range of 100-500 nm may be at or near equilibrium during cathode synthesis and thus may exhibit surface orientation fractions well described by the calculated Wulff construction.

  6. Effect of solid waste landfill on underground and surface water ...

    African Journals Online (AJOL)

    Effect of solid waste landfill on underground and surface water quality at ring road, Ibadan, Nigeria. ... parameters showed increased concentrations over those from control sites. ... Keywords: Landfill, groundwater, surface-water, pollution.

  7. Effect of nanocrystalline surface of substrate on microstructure and ...

    Indian Academy of Sciences (India)

    surface layers or bulk nanocrystalline metals and alloys more effectively. ... severe plastic deformation on surface layers of bulk met- als at high strains and strain rates. .... scanning electron microscopy (SEM) (Zeiss, model: Sigma. VP), energy ...

  8. Tribological effects of polymer surface modification through plastic

    Indian Academy of Sciences (India)

    Tribological effects of polymer surface modification through plastic deformation. K O Low K J Wong ... In this regard, a surface modification technique through plastic deformation has been implemented. ... Bulletin of Materials Science | News.

  9. Fragranced consumer products: exposures and effects from emissions.

    Science.gov (United States)

    Steinemann, Anne

    2016-01-01

    Fragranced consumer products, such as cleaning supplies, air fresheners, and personal care products, are a primary source of indoor air pollutants and personal exposure. Previous research indicates that fragranced products can trigger adverse health effects, with implications for workplaces and public places. This is the first study to examine the multiple dimensions of exposures related to fragranced products and effects in the US population. The study investigated the prevalence and types of fragranced product exposures, associated health effects, awareness of product emissions, and preferences for fragrance-free policies and environments. Data were collected using an online survey with a nationally representative population ( n  = 1136) of adults in the USA. Overall, 34.7 % of the population reported health problems, such as migraine headaches and respiratory difficulties, when exposed to fragranced products. Further, 15.1 % have lost workdays or a job due to fragranced product exposure in the workplace. Also, 20.2 % would enter a business but then leave as quickly as possible if they smell air fresheners or some fragranced product. Over 50 % of the population would prefer that workplaces, health care facilities and professionals, hotels, and airplanes were fragrance-free. While prior research found that common fragranced products, even those called green and organic, emitted hazardous air pollutants, more than two thirds of the population were not aware of this, and over 60 % would not continue to use a fragranced product if they knew it emitted such pollutants. Results from this study provide strong evidence that fragranced products can trigger adverse health effects in the general population. The study also indicates that reducing exposure to fragranced products, such as through fragrance-free policies, can provide cost-effective and relatively simple ways to reduce risks and improve air quality and health.

  10. Spatial variability in nitrous oxide and methane emissions from beef cattle feedyard pen surfaces

    Science.gov (United States)

    Greenhouse gas emissions from beef cattle feedlots include enteric carbon dioxide and methane, and manure-derived methane, nitrous oxide and carbon dioxide. Enteric methane comprises the largest portion of the greenhouse gas footprint of beef cattle feedyards. For the manure component, methane is th...

  11. Kinetic electron emission from metal surfaces induced by impact of slow ions

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Zdeněk; Lorinčík, Jan

    -, č. 625 (2014), s. 7-9 ISSN 0039-6028 R&D Projects: GA MŠk(CZ) ME10086 Institutional support: RVO:67985882 Keywords : Ion induced kinetic electron emission * Electronic excitation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.925, year: 2014

  12. Global distribution of N2O emissions from aquatic systems : natural emissions and anthropogenic effects

    NARCIS (Netherlands)

    Seitzinger, S.P.; Styles, R.V.; Kroeze, C.

    2000-01-01

    Context Abstract: Atmospheric concentrations of nitrous oxide, a greenhouse gas, are increasing due to human activities. Our analysis suggests that a third of global anthropogenic N2O emission is from aquatic sources (rivers, estuaries, continental shelves) and the terrestrial sources comprise the

  13. [Emissions trading potential : achieving emission reductions in a cost-effective manner

    International Nuclear Information System (INIS)

    Fay, K.

    1998-01-01

    The issue of emissions trading as a viable tool to reduce greenhouse gas emissions by developed countries was discussed. The essence of this author's argument was that emissions trading alone will not solve the climate change problem and that the details of the program are hazy at best. In order to have any hope of meeting the emission reductions, it is essential to begin working out the details now, and to coordinate them with the Clean Development Mechanism (CDM) and Joint Implementation (JI) plan since all three of these flexibility mechanisms will be working in and among themselves, therefore they need to be consistent. Work on a general set of draft principles by the International Climate Change Partnership (ICCP), a coalition headquartered in Washington, DC, was summarized. Essentially, ICCP favors voluntary programs, incentives for participation, no quantitative limits on trading, no limits on sources and sinks. ICCP believes that trading should be allowed at the company level, and liability should not devolve on the buyer alone, rather, it should be negotiated between buyers and sellers. Credits for early action should also be tradable and most of all, the trading program should be simple to allow active participation by industry, and be free of bureaucratic impediments

  14. Soy Biodiesel Emissions Have Reduced Inflammatory Effects Compared to Diesel Emissions in Healthy and Allergic Mice

    Science.gov (United States)

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrat...

  15. Greenhouse effect gas emission: an assessment without measuring; Emissions de gaz a effet de serre: une mesure sans capteur

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-02-01

    The European directive 2003/87/CE creates a market for greenhouse effect gases (GEG) emission quotas. The setting of this market implies for each enterprise to make an inventory of its own GEG emissions. The gases involved in this assessment are those concerned in international agreements, namely CO{sub 2}, CH{sub 4}, N{sub 2}O, C{sub n}H{sub m}F{sub p}, C{sub n}F{sub 2n+2} and SF{sub 6}. The French agency for the environment and the management of energy (ADEME) proposes a method to make a consistent inventory that is based on equivalencies that are listed, for instance the production of a ton of steel generates 870 kg of carbon emission equivalent, this value falls to 300 kg in the case of steel made from recycled materials, another example: the extraction and the transport to the refinery of one ton of crude oil represents 61 kg of carbon emission equivalent. 3 levels of completion are considered: the first level takes into account only the gas emissions that follow directly from the enterprise's activities. The second level adds to the first level the gas emissions due to the transport of energy, goods and people involved in the enterprise's activities. The third level integrates to the second level the gas emissions issued from the production of the energy and goods necessary to the enterprise's activities. The lack of accuracy of this method is assessed to be less than 20% in the best cases. (A.C.)

  16. Transparent organic light-emitting diodes with balanced white emission by minimizing waveguide and surface plasmonic loss.

    Science.gov (United States)

    Zhang, Yi-Bo; Ou, Qing-Dong; Li, Yan-Qing; Chen, Jing-De; Zhao, Xin-Dong; Wei, Jian; Xie, Zhong-Zhi; Tang, Jian-Xin

    2017-07-10

    It is challenging in realizing high-performance transparent organic light-emitting diodes (OLEDs) with symmetrical light emission to both sides. Herein, an efficient transparent OLED with highly balanced white emission to both sides is demonstrated by integrating quasi-periodic nanostructures into the organic emitter and the metal-dielectric composite top electrode, which can simultaneously suppressing waveguide and surface plasmonic loss. The power efficiency and external quantum efficiency are raised to 83.5 lm W -1 and 38.8%, respectively, along with a bi-directional luminance ratio of 1.26. The proposed scheme provides a facile route for extending application scope of transparent OLEDs for future transparent displays and lightings.

  17. Localization of burn mark under an abnormal topography on MOSFET chip surface using liquid crystal and emission microscopy tools.

    Science.gov (United States)

    Lau, C K; Sim, K S; Tso, C P

    2011-01-01

    This article focuses on the localization of burn mark in MOSFET and the scanning electron microscope (SEM) inspection on the defect location. When a suspect abnormal topography is shown on the die surface, further methods to pin-point the defect location is necessary. Fault localization analysis becomes important because an abnormal spot on the chip surface may and may not have a defect underneath it. The chip surface topography can change due to the catastrophic damage occurred at layers under the chip surface, but it could also be due to inconsistency during metal deposition in the wafer fabrication process. Two localization techniques, liquid crystal thermography and emission microscopy, were performed to confirm that the abnormal topography spot is the actual defect location. The tiny burn mark was surfaced by performing a surface decoration at the defect location using hot hydrochloric acid. SEM imaging, which has the high magnification and three-dimensional capabilities, was used to capture the images of the burn mark. Copyright © 2011 Wiley Periodicals, Inc.

  18. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars.

    Science.gov (United States)

    Rosenkranz, Maaria; Pugh, Thomas A M; Schnitzler, Jörg-Peter; Arneth, Almut

    2015-09-01

    Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment. © 2014 John Wiley & Sons Ltd.

  19. Vehicle non-exhaust emissions from the tyre-road interface - effect of stud properties, traction sanding and resuspension

    Science.gov (United States)

    Kupiainen, Kaarle J.; Pirjola, Liisa

    2011-08-01

    In Northern cities respirable street dust emission levels (PM 10) are especially high during spring. The spring time dust has been observed to cause health effects as well as discomfort among citizens. Major sources of the dust are the abrasion products from the pavement and traction sand aggregates that are formed due to the motion of the tyre. We studied the formation of respirable abrasion particles in the tyre-road interface due to tyre studs and traction sanding by a mobile laboratory vehicle Sniffer. The measurements were preformed on a test track, where the influence of varying stud weight and stud number per tyre on PM 10 emissions was studied. Studded tyres resulted in higher emission levels than studless tyres especially with speeds 50 km h -1 and higher; however, by using light weight studs, which approximately halves the weight of studs, or by reducing the number of studs per tyre to half, the emission levels decreased by approximately half. Additionally measurements were done with and without traction sand coverage on the pavement of a public road. After traction sanding the emission levels were not affected by tyre type but by formation and suspension of traction sand related dust from the road surface. The emissions after traction sanding decreased as a function of time as passing vehicles' motion shifted the sand grains away from the areas with most tyre-road contact.

  20. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  1. Effect of Shipping Emissions on Present and Future Atmospheric Composition Over the Barents Sea

    Science.gov (United States)

    Daskalakis, N.; Raut, J. C.; Law, K.; Marelle, L.; Thomas, J. L.; Onishi, T.

    2016-12-01

    The Arctic is undergoing unprecedented changes as a result of rapid warming and socio-economic drivers. Even though the region is a receptor for anthropogenic pollution from the highly populated mid-latitudes, there are also local sources of pollution, such as shipping, that are already perturbing atmospheric composition. The Barents Sea, located off the northern coasts of Norway and Russia, has year-round shipping traffic and is likely to grow in a warming Arctic because of the economic benefits related to the opening up of the North-East passage placing it in a strategic position for the transport of goods between Europe and Asia. An increase in the marine traffic has already been observed over the past years in this region, resulting in increased emissions of pollutants. In this work, we investigate the impact of the shipping emissions in the Barents Sea on atmospheric composition for the summer period (July/August) with high traffic using the regional chemistry-aerosol transport model WRF-Chem run at high resolution over the region. We quantify the effects of shipping pollution on aerosol concentrations, such as black carbon, sulphate (SO42-), nitrate (NO3-), and secondary organic aerosols (SOA) as well as deposition of potentially important nutrients (NO3-, SO42-). The model is run using an analytical chemical mechanism for gas phase and aerosols (SAPRC99 coupled with VBS and MOSAIC) for present-day (2012) and future (2050) conditions with ECLIPSE anthropogenic emissions and Winther et al. (2014) shipping emissions. Present-day simulations are evaluated against available data. We examine different future growth scenarios taking into account current and proposed ship operation regulations, such as CLE (current legislation) and HGS (high growth scenario), to investigate possible future changes in surface concentrations, tropospheric burdens and deposition fluxes. Potential chemistry-climate feedbacks are also examined such as those related to aerosol

  2. Effect of blending different rank coals on NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Esteban, R.; Arenillas, A.; Pis, J.J. [Instituto Nacional del Carbon, Oviedo (Spain)

    1999-07-01

    A study was carried out to assess the NOx emissions when the fraction of high-volatile coals in blends with low-volatile coals, such as anthracitic and semianthracitic, was increased. Burnout and NO emissions were determined for individual coals and their blends. 4 refs., 4 figs., 1 tab.

  3. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric

  4. Effect of host polymer blends to phosphorescence emission | Alias ...

    African Journals Online (AJOL)

    Each polymer was blended with the same ratio composition. The influences of host polymer composition to the phosphorescence emission were observed under pulsed UV excitation source of Xenon lamp. The results shows that there were changing in the phosphorescence emission and life time with difference host ...

  5. Chemical effects in x-ray emission spectra

    International Nuclear Information System (INIS)

    Fernandes, N.G.

    1982-01-01

    The chemical bond influence in X-ray emission spectra of hafnium, iodine, iron, sulphur, aluminium and magnesium is detected. The position of one X-ray emission line is determined by three methods: parabolic profile; Gaussian distribution and extra-heavy maximum. (author)

  6. Environmental and economic effects of the Copenhagen pledges and more ambitious emission reduction targets. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, Joachim; Duscha, Vicki; Peterson, Everett B. [Fraunhofer-Institut fuer System- und Innovationsforschung, Karlsruhe (Germany); Virginia Tech, Blacksburg, VA (United States). Dept. of Agricultural and Applied Economics

    2010-06-15

    Global carbon dioxide emissions need to be reduced by at least 50 to 85 % in 2050 compared to 2000 levels to limit global surface temperature increase to 2 C compared to preindustrial levels (IPCC 2007). As an intermediate greenhouse gas emission reduction target for industrialized countries in 2020 the IPCC (2007) confirmed a range of 25 % to 40 % compared to 1990, together with a substantial deviation from baseline in some developing regions, which was quantified as reductions in the range of 15 % to 30 % below baseline (den Elzen and Hoehne 2008). This report explores the environmental and economic effects of the pledges submitted by industrialized and major developing countries for 2020 under the Copenhagen Accord as quantifiable emission reductions or as NAMAs. Two scenarios reflect the lower (''weak'') and upper (''ambitious'') bounds of the Copenhagen pledges leading to emission reductions of 17 % below 1990 levels for Annex I countries and 13 % below reference levels for Non-Annex I countries. Both scenarios do not reach the level of ambition indicated as necessary by science to keep temperature increase below 2 C. In addition, two scenarios in accordance with the IPCC range for reaching a 2 C target are analyzed with industrialized countries in aggregate reducing their CO{sub 2}-emissions by 30 % and by 40 % in 2020 compared to 1990 levels, respectively. For all four policy scenarios the effects of emission paths leading to a global reduction target of 50 % below 1990 levels in 2050 are also simulated for 2030. In the scenarios for 2030 all but the least developed countries are assumed to take on emission targets, but emission caps are considerably less stringent for developing countries than for developed countries. In addition, a separate scenario is carried out which estimates the costs of an unconditioned EU 30 % emission reduction target. The analyses are carried out with the dynamic Computable General

  7. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    Science.gov (United States)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.

  8. Antibacterial Effect of Surface Pretreatment Techniques against ...

    African Journals Online (AJOL)

    2018-02-23

    Feb 23, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ... Objective: The aim of this study was to evaluate the antibacterial surface .... glass ionomer cement. ..... resin containing antibacterial monomer MDPB.

  9. Application of Gauss's theorem to quantify localized surface emissions from airborne measurements of wind and trace gases

    Science.gov (United States)

    Conley, Stephen; Faloona, Ian; Mehrotra, Shobhit; Suard, Maxime; Lenschow, Donald H.; Sweeney, Colm; Herndon, Scott; Schwietzke, Stefan; Pétron, Gabrielle; Pifer, Justin; Kort, Eric A.; Schnell, Russell

    2017-09-01

    Airborne estimates of greenhouse gas emissions are becoming more prevalent with the advent of rapid commercial development of trace gas instrumentation featuring increased measurement accuracy, precision, and frequency, and the swelling interest in the verification of current emission inventories. Multiple airborne studies have indicated that emission inventories may underestimate some hydrocarbon emission sources in US oil- and gas-producing basins. Consequently, a proper assessment of the accuracy of these airborne methods is crucial to interpreting the meaning of such discrepancies. We present a new method of sampling surface sources of any trace gas for which fast and precise measurements can be made and apply it to methane, ethane, and carbon dioxide on spatial scales of ˜ 1000 m, where consecutive loops are flown around a targeted source region at multiple altitudes. Using Reynolds decomposition for the scalar concentrations, along with Gauss's theorem, we show that the method accurately accounts for the smaller-scale turbulent dispersion of the local plume, which is often ignored in other average mass balance methods. With the help of large eddy simulations (LES) we further show how the circling radius can be optimized for the micrometeorological conditions encountered during any flight. Furthermore, by sampling controlled releases of methane and ethane on the ground we can ascertain that the accuracy of the method, in appropriate meteorological conditions, is often better than 10 %, with limits of detection below 5 kg h-1 for both methane and ethane. Because of the FAA-mandated minimum flight safe altitude of 150 m, placement of the aircraft is critical to preventing a large portion of the emission plume from flowing underneath the lowest aircraft sampling altitude, which is generally the leading source of uncertainty in these measurements. Finally, we show how the accuracy of the method is strongly dependent on the number of sampling loops and/or time

  10. Effect of surface energy on powder compactibility.

    Science.gov (United States)

    Fichtner, Frauke; Mahlin, Denny; Welch, Ken; Gaisford, Simon; Alderborn, Göran

    2008-12-01

    The influence of surface energy on the compactibility of lactose particles has been investigated. Three powders were prepared by spray drying lactose solutions without or with low proportions of the surfactant polysorbate 80. Various powder and tablet characterisation procedures were applied. The surface energy of the powders was characterized by Inverse Gas Chromatography and the compressibility of the powders was described by the relationship between tablet porosity and compression pressure. The compactibility of the powders was analyzed by studying the evolution of tablet tensile strength with increasing compaction pressure and porosity. All powders were amorphous and similar in particle size, shape, and surface area. The compressibility of the powders and the microstructure of the formed tablets were equal. However, the compactibility and dispersive surface energy was dependent of the composition of the powders. The decrease in tablet strength correlated to the decrease in powder surface energy at constant tablet porosities. This supports the idea that tablet strength is controlled by formation of intermolecular forces over the areas of contact between the particles and that the strength of these bonding forces is controlled by surface energy which, in turn, can be altered by the presence of surfactants.

  11. EFFECTS OF ETHANOL BLENDED DIESEL FUEL ON EXHAUST EMISSIONS FROM A DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Özer CAN

    2005-02-01

    Full Text Available Diesel engine emissions can be improved by adding organic oxygenated compounds to the No. 2 diesel fuel. In this study, effects of 10 % and 15 % (in volume ethanol addition to Diesel No. 2 on exhaust emissions from an indirect injection turbocharged diesel engine running at different engine speeds and loads were investigated. Experimental results showed that the ethanol addition reduced CO, soot and SO2 emissions, although it caused some increase in NOx emission and some power reductions due to lower heating value of ethanol. Improvements on emissions were more significant at full load rather than at partial loads.

  12. Emissions and Fuel Consumption Modeling for Evaluating Environmental Effectiveness of ITS Strategies

    Directory of Open Access Journals (Sweden)

    Yuan-yuan Song

    2013-01-01

    Full Text Available Road transportation is a major fuel consumer and greenhouse gas emitter. Recently, the intelligent transportation systems (ITSs technologies, which can improve traffic flow and safety, have been developed to reduce the fuel consumption and vehicle emissions. Emission and fuel consumption estimation models play a key role in the evaluation of ITS technologies. Based on the influence analysis of driving parameters on vehicle emissions, this paper establishes a set of mesoscopic vehicle emission and fuel consumption models using the real-world vehicle operation and emission data. The results demonstrate that these models are more appropriate to evaluate the environmental effectiveness of ITS strategies with enough estimation accuracy.

  13. Effect and control on temperature measurement accuracy of the fiber- optic colorimeter by emissivity of different temperatures

    Science.gov (United States)

    Liu, Yu-fang; Han, Xin; Shi, De-heng

    2008-03-01

    Based on the Kirchhoff's Law, a practical dual-wavelength fiber-optic colorimeter, with the optimal work wavelength centered at 2.1 μm and 2.3 μm is presented. The effect of the emissivity on the precision of the measured temperature has been explored under various circumstances (i.e. temperature, wavelength) and for different materials. In addition, by fitting several typical material emissivity-temperature dependencies curves, the influence of the irradiation (radiant flux originating from the surroundings) and the surface reflected radiation on the temperature accuracy is studied. The results show that the calibration of the measured temperature for reflected radiant energy is necessary especially in low target temperature or low target emissivity, and the temperature accuracy is suitable for requirements in the range of 400-1200K.

  14. MODELING THE ANOMALY OF SURFACE NUMBER DENSITIES OF GALAXIES ON THE GALACTIC EXTINCTION MAP DUE TO THEIR FIR EMISSION CONTAMINATION

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi; Yahata, Kazuhiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Kayo, Issha [Department of Physics, Toho University, Funabashi, Chiba 274-8510 (Japan); Nishimichi, Takahiro, E-mail: kashiwagi@utap.phys.s.u-tokyo.ac.jp [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan)

    2015-02-01

    The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al. for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.

  15. Impacts of population growth, urbanisation and sanitation changes on global human Cryptosporidium emissions to surface water

    NARCIS (Netherlands)

    Hofstra, Nynke; Vermeulen-Henstra, Lucie

    2016-01-01

    Cryptosporidium is a pathogenic protozoan parasite and is a leading cause of diarrhoea worldwide. The concentration of Cryptosporidium in the surface water is a determinant for probability of exposure and the risk of disease. Surface water concentrations are expected to change with population

  16. Characterization of leached surface layers on simulated high-level waste glasses by sputter-induced optical emission

    International Nuclear Information System (INIS)

    Houser, C.; Tsong, I.S.T.; White, W.B.

    1979-01-01

    The leaching process in simulated waste encapsulant glasses was studied by measuring the compositional depth-profiles of H (from water), the glass framework formers Si and B, the alkalis Na and Cs, the alkaline earths Ca and Sr, the transition metals Mo and Fe, the rare-earths La, Ce, and Nd, using the technique of sputter-induced optical emission. The leaching process of these glasses is highly complex. In addition to alkali/hydrogen exchange, there is breakdown of the glass framework, build-up of barrier layers on the surface, and formation of layered reaction zones of distinctly different chemistry all within the outer micrometer of the glass

  17. Effect of tissue heterogeneity on quantification in positron emission tomography

    International Nuclear Information System (INIS)

    Blomqvist, G.; Lammertsma, A.A.; Mazoyer, B.; Wienhard, K.

    1995-01-01

    As a result of the limited spatial resolution of positron emission tomographic scanners, the measurements of physiological parameters are compromised by tissue heterogeneity. The effect of tissue heterogeneity on a number of parameters was studied by simulation and an analytical method. Five common tracer models were assessed. The input and tissue response functions were assumed to be free from noise and systematic errors. The kinetic model was assumed to be perfect. Two components with different kinetics were mixed in different proportions and contrast with respect to the model parameters. Different experimental protocols were investigated. Of three methods investigated for the measurement of cerebral blood flow (CBF) (steady state, dynamic, integral), the second one was least sensitive to errors caused by tissue heterogeneity and the main effect was an underestimation of the distribution volume. With the steady state method, errors in oxygen extraction fraction caused by tissue heterogeneity were always found to be less than the corresponding errors in CBF. For myocardial blood flow the steady state method was found to perform better than the bolus method. The net accumulation of substrate (i.e. rCMR glc in the case of glucose analogs) was found to be comparatively insensitive to tissue heterogeneity. Individual rate constans such as k 2 and k 3 for efflux and metabolism of the substrate in the pool of unmetabolized substrate in the tissue, respectively, were found to be more sensitive. In studies of radioligand binding, using only tracer doses, the effect of tissue heterogeneity on the parameter k on .B max could be considerable. In studies of radioligand binding using a protocol with two experiments, one with high and one with low specific activity, B max was found to be insensitive while K d was very sensitive to tissue heterogeneity. (orig.)

  18. Effect of tissue heterogeneity on quantification in positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, G [Dept. of Clinical Neuroscience, Experimental Alcohol and Drug Addiction Research Section, Karolinska Hospital, Stockholm (Sweden); Lammertsma, A A [PET Methodology Group, Cyclotron Unit, MRC Clinical Sciences Centre, Royal Postgraduate Medical School, Hammersmith Hospital, London (United Kingdom); Mazoyer, B [Service Hospitalier Frederic Joliot CEA/Dept. de Biologie, Hopital d` Orsay and Antenne d` Informatique Medicale, Hopital Robert Debre, Paris (France); Wienhard, K [Max-Planck-Inst. fuer Neurologische Forschung, Koeln (Germany)

    1995-07-01

    As a result of the limited spatial resolution of positron emission tomographic scanners, the measurements of physiological parameters are compromised by tissue heterogeneity. The effect of tissue heterogeneity on a number of parameters was studied by simulation and an analytical method. Five common tracer models were assessed. The input and tissue response functions were assumed to be free from noise and systematic errors. The kinetic model was assumed to be perfect. Two components with different kinetics were mixed in different proportions and contrast with respect to the model parameters. Different experimental protocols were investigated. Of three methods investigated for the measurement of cerebral blood flow (CBF) (steady state, dynamic, integral), the second one was least sensitive to errors caused by tissue heterogeneity and the main effect was an underestimation of the distribution volume. With the steady state method, errors in oxygen extraction fraction caused by tissue heterogeneity were always found to be less than the corresponding errors in CBF. For myocardial blood flow the steady state method was found to perform better than the bolus method. The net accumulation of substrate (i.e. rCMR{sub glc} in the case of glucose analogs) was found to be comparatively insensitive to tissue heterogeneity. Individual rate constans such as k{sub 2} and k{sub 3} for efflux and metabolism of the substrate in the pool of unmetabolized substrate in the tissue, respectively, were found to be more sensitive. In studies of radioligand binding, using only tracer doses, the effect of tissue heterogeneity on the parameter k{sub on}.B{sub max} could be considerable. In studies of radioligand binding using a protocol with two experiments, one with high and one with low specific activity, B{sub max} was found to be insensitive while K{sub d} was very sensitive to tissue heterogeneity. (orig.)

  19. Dominant role of dielectron satellites in emission spectra of laser plasma near target surface

    International Nuclear Information System (INIS)

    Rozmej, F.; Faenov, A.Ya.; Pikuz, T.A.

    1997-01-01

    It is shown that satellite structures of resonance lines may become more intensive than resonance lines themselves. The experimental and theoretical studies show that the conditions whereby the satellite structures become predominant in the plasma emission spectrum, are sufficiently easily realized in the experiment and moreover they obviously will present typical cases by studies on the plasma condensed areas in the experiments on inertial thermonuclear synthesis and by investigation of plasma, created through pico- and femtosecond laser pulses of high contrast

  20. The Effect of Substrate Emissivity on the Spectral Emission of a Hot-Gas Overlayer

    Science.gov (United States)

    2015-12-30

    The spectral radiosity , denoted by Js(0, λ, Ts, Tsurf) accounts for both the emitted spectral energy and the reflected spectral energy from the...spectral intensity emitted from the window is given by I(λ, Twin) = εwinI(λ, Twin)BB where εwin is the spectral emissivity. The spectral radiosity incident... radiosity , one determines that the window contributes 6.1% reflected radiation to the observed signal from the anode. Figure 9. Anode-Window Geometry

  1. Probabilistic estimation of future emissions of isoprene and surface oxidant chemistry associated with land-use change in response to growing food needs

    Directory of Open Access Journals (Sweden)

    C. J. Hardacre

    2013-06-01

    Full Text Available We quantify the impact of land-use change, determined by our growing demand for food and biofuel production, on isoprene emissions and subsequent atmospheric oxidant chemistry in 2015 and 2030, relative to 1990, ignoring compound climate change effects over that period. We estimate isoprene emissions from an ensemble (n = 1000 of land-use change realizations from 1990–2050, broadly guided by the IPCC AR4/SRES scenarios A1 and B1. We also superimpose land-use change required to address projected biofuel usage using two scenarios: (1 assuming that world governments make no changes to biofuel policy after 2009, and (2 assuming that world governments develop biofuel policy with the aim of keeping equivalent atmospheric CO2 at 450 ppm. We present the median and interquartile range (IQR statistics of the ensemble and show that land-use change between −1.50 × 1012 m2 to +6.06 × 1012 m2 was found to drive changes in the global isoprene burden of −3.5 to +2.8 Tg yr−1 in 2015 and −7.7 to +6.4 Tg yr−1 in 2030. We use land-use change realizations corresponding to the median and IQR of these emission estimates to drive the GEOS-Chem global 3-D chemistry transport model to investigate the perturbation to global and regional surface concentrations of isoprene, nitrogen oxides (NO+NO2, and the atmospheric concentration and deposition of ozone (O3. We show that across subcontinental regions the monthly surface O3 increases by 0.1–0.8 ppb, relative to a zero land-use change calculation, driven by increases (decreases in surface isoprene in high (low NOx environments. At the local scale (4° × 5° we find that surface O3 increases by 5–12 ppb over temperate North America, China and boreal Eurasia, driven by large increases in isoprene emissions from short-rotation coppice crop cultivation for biofuel production.

  2. Effect of climate-driven changes in species composition on regional emission capacities of biogenic compounds

    Science.gov (United States)

    Schurgers, G.; Arneth, A.; Hickler, T.

    2011-11-01

    Regional or global modeling studies of dynamic vegetation often represent vegetation by large functional units (plant functional types (PFTs)). For simulation of biogenic volatile organic compounds (BVOC) in these models, emission capacities, which give the emission under standardized conditions, are provided as an average value for a PFT. These emission capacities thus hide the known heterogeneity in emission characteristics that are not straightforwardly related to functional characteristics of plants. Here we study the effects of the aggregation of species-level information on emission characteristics at PFT level. The roles of temporal and spatial variability are assessed for Europe by comparing simulations that represent vegetation by dominant tree species on the one hand and by plant functional types on the other. We compare a number of time slices between the Last Glacial Maximum (21,000 years ago) and the present day to quantify the effects of dynamically changing vegetation on BVOC emissions. Spatial heterogeneity of emission factors is studied with present-day simulations. We show that isoprene and monoterpene emissions are of similar magnitude in Europe when the simulation represents dominant European tree species, which indicates that simulations applying typical global-scale emission capacities for PFTs tend to overestimate isoprene and underestimate monoterpene emissions. Moreover, both spatial and temporal variability affect emission capacities considerably, and by aggregating these to PFT level averages, one loses the information on local heterogeneity. Given the reactive nature of these compounds, accounting for spatial and temporal heterogeneity can be important for studies of their fate in the atmosphere.

  3. Effects of cetane number on HCCI combustion efficiency and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, V.; Neill, W.S.; Guo, H.; Chippior, W.L. [National Research Council of Canada, Ottawa, ON (Canada); Fairbridge, C. [Natural Resources Canada, Ottawa, ON (Canada); Mitchell, K. [Shell Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    Homogeneous charge compression ignition (HCCI) is a form of internal combustion in which well-mixed fuel and oxidizer are compressed to the point of auto-ignition. This exothermic reaction releases chemical energy into a sensible form that can be transformed in an engine into work and heat. The effects of cetane number on HCCI combustion efficiency and emissions were examined in this presentation. The presentation discussed the experimental setup, fuels, experimental procedures, and results. The setup included an enhanced fuel injector/vaporizer consisting of an OEM gasoline port fuel injector, air blast for improved atomization, and heated section to improved vaporization. A minimally processed and low cetane number fuel derived from oil sands was used as the base fuel in the study. Two sets of experiments were devised and described to evaluate each test fuel. One set used controlled input conditions exhaust gas recirculation (EGR)-air-fuel ratio (AFR) while the other set employed controlled engine outputs (such as speed and load). Results were presented for hydroprocessing; cetane improver addition; blending with supercetane renewable diesel; and a comparison of fuels with similar cetane numbers. It was concluded that increasing the fuel cetane number shifted the AFR-EGR operating window for HCCI combustion towards higher AFT (leaner mixtures) and reduced the cyclic variations. tabs., figs.

  4. Secondary ion emission from cleaned surfaces bombarded by 100 MeV accelerator beams at the GSI Darmstadt

    International Nuclear Information System (INIS)

    Wien, K.; Becker, O.; Guthier, W.; Knippelberg, W.; Koczon, P.

    1988-01-01

    The 1.4 MeV/n beam facility for the UNILAC/GSI has been used to study secondary ion emission from surfaces cleaned under UHV conditions by ion etching or cleaving of crystals. The desorption phenomena observed by means of TOF mass spectrometry can be classified as follows: (1) Clean metal surfaces emit metal ions being ejected by atomic collisions cascades. Electronic excitation of surface states seems to support ionization. (2) The desorption of contaminants adsorbed at the metal surface is strongly correlated with the electronic energy loss of the projectiles - even, if the content of impurities is very low. (3) Ion formation at the epitaxial surface of fluoride crystals as CaF 2 , MgF 2 and NaF is initiated by the electronic excitation of the crystal. At high beam energies the mass spectrum is dominated by a series of cluster ions. These cluster ions disappear below a certain energy deposit threshold, whereas small atomic ions are observed over the whole energy range

  5. Comprehensive effects of a sedge plant on CH4 and N2O emissions in an estuarine marsh

    Science.gov (United States)

    Li, Yangjie; Wang, Dongqi; Chen, Zhenlou; Hu, Hong

    2018-05-01

    Although there have been numerous studies focusing on plants' roles in methane (CH4) emissions, the influencing mechanism of wetland plants on nitrous oxide (N2O) emissions has rarely been studied. Here, we test whether wetland plants also play an important role in N2O emissions. Gas fluxes were determined using the in situ static flux chamber technique. We also carried out pore-water extractions, sedge removal experiments and tests of N2O transportation. The brackish marsh acted as a net source of both CH4 and N2O. However, sedge plants played the opposite role in CH4 and N2O emissions. The removal of the sedges led to reduced CH4 emissions and increased accumulation of CH4 inside the sediment. Apart from being a conduit for CH4 transport, the sedges made a greater contribution to CH4 oxidation than CH4 production. The sedges exerted inhibitory effects on the release of N2O. The N2O was barely detectable inside the sediment in both vegetated and vegetation-removed plots. The denitrification measurements and nitrogen addition (the addition rates were equal to 0.028, 0.056 and 0.112 g m-2) experiments suggest that denitrification associated with N2O production occurred mainly in the surface sediment layer. The vascular sedge could transport atmospheric N2O downward into the rhizosphere. The rhizospheric sediment, together with the vascular sedge, became an effective sink of atmospheric N2O.

  6. The effects of fiscal policy on CO_2 emissions: Evidence from the U.S.A

    International Nuclear Information System (INIS)

    Halkos, George E.; Paizanos, Epameinondas A.

    2016-01-01

    This paper examines the effects of fiscal policy on CO_2 emissions using Vector Autoregressions on U.S. quarterly data from 1973 to 2013. In particular, we analyze the short- and mid-term interactions between fiscal policy and emissions by using sign restrictions to identify the policy shocks. We construct the impulse responses to linear combinations of fiscal shocks, corresponding to the scenarios of deficit-financed spending and deficit-financed tax-cuts. To consider possible variations of the effect of fiscal policy according to the sources of pollution, we distinguish between production- and consumption- generated CO_2 emissions. The results point out that the implementation of expansionary fiscal spending provides an alleviating effect on emissions from both sources of the pollutant, whereas deficit-financed tax-cuts are associated with an increase on consumption-generated CO_2 emissions. The exact pattern of the effects depends on the source of emissions, the scenario of fiscal policy that is implemented and the functional class of government expenditure being increased. - Highlights: • We investigate the effects of fiscal policy on CO_2 emissions using VAR methods. • Spending expansions reduce production- and consumption- generated CO_2 emissions. • This alleviating effect is greater when increasing certain expenditure categories. • Deficit-financed tax-cuts increase consumption-generated CO_2 emissions. • Unique factors in U.S. may limit applicability of findings to other jurisdictions.

  7. Effectiveness of lead aprons in positron emission tomography

    International Nuclear Information System (INIS)

    Bezerra Fonseca, R.; Amaral, A.

    2008-01-01

    Full text: In the last two decades, Positron Emission Tomography (PET) has emerged as clinical diagnostic technique, becoming one of the fastest growing imaging tools in modern nuclear medicine. Because 511 keV annihilation photon energy is much higher than the photon with mean energy of 140 keV emitted in Single Photon Computed Tomography (SPECT), medical staff working in PET studies receive a higher dose than those working only with SPECT tracers do. As a result, special attention must be paid to keep radiation exposure as low as reasonably achievable (ALARA principle). Lead equivalent apron is the principal personal protective equipment for technologists occupationally exposed to ionizing radiation in medical procedures and may be an important component in the ALARA program. However, in practices involving PET, 0.5 mm lead equivalent aprons have been used regardless of photon's energy. In this context, this work was designed for evaluating radioprotective effectiveness of such aprons in PET procedures. For this, the operational quantities personal dose equivalent H p (0.07) and H p (10) have been assessed by using MCNP4C code in a model of individual exposure to small source of 511 keV photons, representing the situation of injection of the radiopharmaceutical, in two situations: technologists wearing and not wearing 0.5 mm lead aprons. To represent the technologist a mathematical anthropomorphic phantom was employed, and the simulated source to subject distances varied between 40 to 100 cm, in steps of 10 cm. The results showed no significant differences between the values obtained for H p (10) in the two situations, pointing out that that there is no radioprotective influence of wearing such aprons on PET practices. Compared to simulations without such device, H p (0.07) increased up about 26% when technologist is wearing radioprotective aprons, depending on the source to subject distance. On the basis of this work, 0.5 mm lead equivalent aprons should not be

  8. Quantum Hall effect on Riemann surfaces

    Science.gov (United States)

    Tejero Prieto, Carlos

    2009-06-01

    We study the family of Landau Hamiltonians compatible with a magnetic field on a Riemann surface S by means of Fourier-Mukai and Nahm transforms. Starting from the geometric formulation of adiabatic charge transport on Riemann surfaces, we prove that Hall conductivity is proportional to the intersection product on the first homology group of S and therefore it is quantized. Finally, by using the theory of determinant bundles developed by Bismut, Gillet and Soul, we compute the adiabatic curvature of the spectral bundles defined by the holomorphic Landau levels. We prove that it is given by the polarization of the jacobian variety of the Riemann surface, plus a term depending on the relative analytic torsion.

  9. Quantum Hall effect on Riemann surfaces

    International Nuclear Information System (INIS)

    Tejero Prieto, Carlos

    2009-01-01

    We study the family of Landau Hamiltonians compatible with a magnetic field on a Riemann surface S by means of Fourier-Mukai and Nahm transforms. Starting from the geometric formulation of adiabatic charge transport on Riemann surfaces, we prove that Hall conductivity is proportional to the intersection product on the first homology group of S and therefore it is quantized. Finally, by using the theory of determinant bundles developed by Bismut, Gillet and Soul, we compute the adiabatic curvature of the spectral bundles defined by the holomorphic Landau levels. We prove that it is given by the polarization of the jacobian variety of the Riemann surface, plus a term depending on the relative analytic torsion.

  10. The impact of climate and composition on playa surface roughness: Investigation of atmospheric mineral dust emission mechanisms

    Science.gov (United States)

    Tollerud, H. J.; Fantle, M. S.

    2011-12-01

    Atmospheric mineral dust has a wide range of impacts, including the transport of elements in geochemical cycles, health hazards from small particles, and climate forcing via the reflection of sunlight from dust particles. In particular, the mineral dust component of climate forcing is one of the most uncertain elements in the IPCC climate forcing summary. Mineral dust is also an important component of geochemical cycles. For instance, dust inputs to the ocean potentially affect the iron cycle by stimulating natural iron fertilization, which could then modify climate via the biological pump. Also dust can transport nutrients over long distances and fertilize nutrient-poor regions, such as island ecosystems or the Amazon rain forest. However, there are still many uncertainties in quantifying dust emissions from source regions. One factor that influences dust emission is surface roughness and texture, since a weak, unconsolidated surface texture is more easily ablated by wind than a strong, hard crust. We are investigating the impact of processes such as precipitation, groundwater evaporation, and wind on surface roughness in a playa dust source region. We find that water has a significant influence on surface roughness. We utilize ESA's Advanced Synthetic Aperture Radar (ASAR) instrument to measure roughness in the playa. A map of roughness indicates where the playa surface is smooth (on the scale of centimeters) and potentially very strong, and where it is rough and might be more sensitive to disturbance. We have analyzed approximately 40 ASAR observations of the Black Rock Desert from 2007-2011. In general, the playa is smoother and more variable over time relative to nearby areas. There is also considerable variation within the playa. While the playa roughness maps changed significantly between summers and between observations during the winters, over the course of each summer, the playa surface maintained essentially the same roughness pattern. This suggests that

  11. Electron emission induced by resonant coherent ion-surface interaction at grazing incidence

    International Nuclear Information System (INIS)

    Garcia de Abajo, F.J.; Ponce, V.H.; Echenique, P.M.

    1992-01-01

    A new spectroscopy based on the resonant coherently induced electron loss to the continuum in ion-surface scattering under grazing incidence is proposed. A series of peaks, corresponding to the energy differences determined by the resonant interaction with the rows of atoms in the surface, is predicted to appear in the energy distribution of electrons emitted from electronic states bound to the probe. Calculations for MeV He + ions scattered at a W(001) surface along the left-angle 100 right-angle direction with a glancing angle of 0--2 mrad show a total yield close to 1

  12. Effects on energetic impact of atomic clusters with surfaces

    International Nuclear Information System (INIS)

    Popok, V.N.; Vuchkovich, S.; Abdela, A.; Campbell, E.E.B.

    2007-01-01

    A brief state-of-the-art review in the field of cluster ion interaction with surface is presented. Cluster beams are efficient tools for manipulating agglomerates of atoms providing control over the synthesis as well as modification of surfaces on the nm-scale. The application of cluster beams for technological purposes requires knowledge of the physics of cluster-surface impact. This has some significant differences compared to monomer ion - surface interactions. The main effects of cluster-surface collisions are discussed. Recent results obtained in experiments on silicon surface nanostructuring using keV-energy implantation of inert gas cluster ions are presented and compared with molecular dynamics simulations. (authors)

  13. Effectiveness of state climate and energy policies in reducing power-sector CO2 emissions

    Science.gov (United States)

    Martin, Geoff; Saikawa, Eri

    2017-12-01

    States have historically been the primary drivers of climate change policy in the US, particularly with regard to emissions from power plants. States have implemented policies designed either to directly curb greenhouse gas (GHG) emissions from power plants, or to encourage energy efficiency and renewable energy growth. With the federal government withdrawing from the global climate agreement, understanding which state-level policies have successfully mitigated power-plant emissions is urgent. Past research has assessed policy effectiveness using data for periods before the adoption of many policies. We assess 17 policies using the latest data on state-level power-sector CO2 emissions. We find that policies with mandatory compliance are reducing power-plant emissions, while voluntary policies are not. Electric decoupling, mandatory GHG registry/reporting and public benefit funds are associated with the largest reduction in emissions. Mandatory GHG registry/reporting and public benefit funds are also associated with a large reduction in emissions intensity.

  14. Carbon dioxide emissions effects of grid-scale electricity storage in a decarbonizing power system

    Science.gov (United States)

    Craig, Michael T.; Jaramillo, Paulina; Hodge, Bri-Mathias

    2018-01-01

    While grid-scale electricity storage (hereafter ‘storage’) could be crucial for deeply decarbonizing the electric power system, it would increase carbon dioxide (CO2) emissions in current systems across the United States. To better understand how storage transitions from increasing to decreasing system CO2 emissions, we quantify the effect of storage on operational CO2 emissions as a power system decarbonizes under a moderate and strong CO2 emission reduction target through 2045. Under each target, we compare the effect of storage on CO2 emissions when storage participates in only energy, only reserve, and energy and reserve markets. We conduct our study in the Electricity Reliability Council of Texas (ERCOT) system and use a capacity expansion model to forecast generator fleet changes and a unit commitment and economic dispatch model to quantify system CO2 emissions with and without storage. We find that storage would increase CO2 emissions in the current ERCOT system, but would decrease CO2 emissions in 2025 through 2045 under both decarbonization targets. Storage reduces CO2 emissions primarily by enabling gas-fired generation to displace coal-fired generation, but also by reducing wind and solar curtailment. We further find that the market in which storage participates drives large differences in the magnitude, but not the direction, of the effect of storage on CO2 emissions.

  15. Surface Coating of Wood Building Products: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    Learn about the NESHAP for surface coating of wood building products by reading the rule summary and history, with links to the federal register notices, additional documents, related rules and compliance information

  16. Effects of After-Treatment Control Technologies on Heavy-Duty Diesel Truck Emissions

    Science.gov (United States)

    Preble, C.; Dallmann, T. R.; Kreisberg, N. M.; Hering, S. V.; Harley, R.; Kirchstetter, T.

    2015-12-01

    Diesel engines are major emitters of nitrogen oxides (NOx) and the black carbon (BC) fraction of particulate matter (PM). Diesel particle filter (DPF) and selective catalytic reduction (SCR) emission</