WorldWideScience

Sample records for surface dipole potential

  1. Ab initio potential energy and dipole moment surfaces for CS2: determination of molecular vibrational energies.

    Science.gov (United States)

    Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex

    2013-08-15

    The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.

  2. Tuning the surface potential of Ag surfaces by chemisorption of oppositely-oriented thiolated carborane dipoles

    Czech Academy of Sciences Publication Activity Database

    Lübben, J.F.; Baše, Tomáš; Rupper, P.; Künniger, T.; Macháček, Jan; Guimond, S.

    2011-01-01

    Roč. 354, č. 1 (2011), s. 168-174 ISSN 0021-9797 R&D Projects: GA AV ČR(CZ) IAA400320901 Keywords : Adsorption * Thiolated carboranes * Silver surface * Surface potential * X-ray photoelectron spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 3.070, year: 2011

  3. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  4. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    International Nuclear Information System (INIS)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-01-01

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H 2 O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm −1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band

  5. Potential energy and dipole moment surfaces for HF@C60: Prediction of spectral and electric response properties

    Science.gov (United States)

    Kalugina, Yulia N.; Roy, Pierre-Nicholas

    2017-12-01

    We present a five-dimensional potential energy surface (PES) for the HF@C60 system computed at the DF-LMP2/cc-pVTZ level of theory. We also calculated a five-dimensional dipole moment surface (DMS) based on DFT(PBE0)/cc-pVTZ calculations. The HF and C60 molecules are considered rigid with bond length rHF = 0.9255 Å (gas phase ground rovibrational state geometry). The C60 geometry is of Ih symmetry. The ab initio points were fitted to obtain a PES in terms of bipolar spherical harmonics. The minimum of the PES corresponds to a geometry where the center of mass of HF is located 0.11 Å away from the center of the cage with an interaction energy of -6.929 kcal/mol. The DMS was also represented in terms of bipolar spherical harmonics. The PES was used to calculate the rotation-translation bound states of HF@C60, and good agreement was found relative to the available experimental data [A. Krachmalnicoff et al., Nat. Chem. 8, 953 (2016)] except for the splitting of the first rotational excitation levels. We propose an empirical adjustment to the PES in order to account for the experimentally observed symmetry breaking. The form of that effective PES is additive. We also propose an effective Hamiltonian with an adjusted rotational constant in order to quantitatively reproduce the experimental results including the splitting of the first rotational state. We use our models to compute the molecular volume polarizability of HF confined by C60 and obtain good agreement with experiment.

  6. Stochastic resonance in a surface dipole

    Energy Technology Data Exchange (ETDEWEB)

    Heinsalu, E., E-mail: els@ifisc.uib-csic.es [IFISC, Instituto de Fisica Interdisciplinar y Sistemas Complejos (CSIC-UIB), E-07122 Palma de Mallorca (Spain); National Institute of Chemical Physics and Biophysics, Raevala 10, 15042 Tallinn (Estonia); Patriarca, M. [IFISC, Instituto de Fisica Interdisciplinar y Sistemas Complejos (CSIC-UIB), E-07122 Palma de Mallorca (Spain); National Institute of Chemical Physics and Biophysics, Raevala 10, 15042 Tallinn (Estonia); Marchesoni, F. [Dipartimento di Fisica, Universita di Camerino, I-62032 Camerino (Italy)

    2010-10-05

    The dynamics of a neutral dipole diffusing on a one-dimensional symmetric periodic substrate is numerically investigated in the presence of an ac electric field. It is observed that the amplitude of the forced oscillations of the dipole can be enhanced by tuning the noise strength, i.e., the substrate temperature. Such a manifestation of stochastic resonance turns out to be extremely sensitive to the mechanical properties of the dipole. This phenomenon has immediate applications in surface physics and nanodevice technology.

  7. High Accuracy Potential Energy Surface, Dipole Moment Surface, Rovibrational Energies and Line List Calculations for ^{14}NH_3

    Science.gov (United States)

    Coles, Phillip; Yurchenko, Sergei N.; Polyansky, Oleg; Kyuberis, Aleksandra; Ovsyannikov, Roman I.; Zobov, Nikolay Fedorovich; Tennyson, Jonathan

    2017-06-01

    We present a new spectroscopic potential energy surface (PES) for ^{14}NH_3, produced by refining a high accuracy ab initio PES to experimental energy levels taken predominantly from MARVEL. The PES reproduces 1722 matched J=0-8 experimental energies with a root-mean-square error of 0.035 cm-1 under 6000 cm^{-1} and 0.059 under 7200 cm^{-1}. In conjunction with a new DMS calculated using multi reference configuration interaction (MRCI) and H=aug-cc-pVQZ, N=aug-cc-pWCVQZ basis sets, an infrared (IR) line list has been computed which is suitable for use up to 2000 K. The line list is used to assign experimental lines in the 7500 - 10,500 cm^{-1} region and previously unassigned lines in HITRAN in the 6000-7000 cm^{-1} region. Oleg L. Polyansky, Roman I. Ovsyannikov, Aleksandra A. Kyuberis, Lorenzo Lodi, Jonathan Tennyson, Andrey Yachmenev, Sergei N. Yurchenko, Nikolai F. Zobov, J. Mol. Spec., 327 (2016) 21-30 Afaf R. Al Derzia, Tibor Furtenbacher, Jonathan Tennyson, Sergei N. Yurchenko, Attila G. Császár, J. Quant. Spectrosc. Rad. Trans., 161 (2015) 117-130

  8. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu [Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com [Quantum Pomegranate, LLC, 2604 Kings Lake Court NE, Atlanta, Georgia 30345 (United States)

    2016-03-21

    We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.

  9. Highly Accurate Potential Energy Surface, Dipole Moment Surface, Rovibrational Energy Levels, and Infrared Line List for (32)S(16)O2 up to 8000 cm(exp -1)

    Science.gov (United States)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2014-01-01

    A purely ab initio potential energy surface (PES) was refined with selected (32)S(16)O2 HITRAN data. Compared to HITRAN, the root-mean-squares error (RMS) error for all J=0-80 rovibrational energy levels computed on the refined PES (denoted Ames-1) is 0.013 cm(exp -1). Combined with a CCSD(T)/aug-cc-pV(Q+d)Z dipole moment surface (DMS), an infrared (IR) line list (denoted Ames-296K) has been computed at 296K and covers up to 8,000 cm(exp -1). Compared to the HITRAN and CDMS databases, the intensity agreement for most vibrational bands is better than 85-90%. Our predictions for (34)S(16)O2 band origins, higher energy (32)S(16)O2 band origins and missing (32)S(16)O2 IR bands have been verified by most recent experiments and available HITRAN data. We conclude that the Ames-1 PES is able to predict (32/34)S(16)O2 band origins below 5500 cm(exp -1) with 0.01-0.03 cm(exp -1) uncertainties, and the Ames-296K line list provides continuous, reliable and accurate IR simulations. The Ka-dependence of both line position and line intensity errors is discussed. The line list will greatly facilitate SO2 IR spectral experimental analysis, as well as elimination of SO2 lines in high-resolution astronomical observations.

  10. Calculation and fitting of potential energy and dipole moment surfaces for the water molecule: Fully ab initio determination of vibrational transition energies and band intensities

    International Nuclear Information System (INIS)

    Kedziora, G.S.; Shavitt, I.

    1997-01-01

    Potential energy and dipole moment surfaces for the water molecule have been generated by multireference singles-and-doubles configuration interaction calculations using a large basis set of the averaged-atomic-natural-orbital type and a six-orbital-six-electron complete-active-space reference space. The surfaces are suitable for modeling vibrational transitions up to about 11000cm -1 above the ground state. A truncated singular-value decomposition method has been used to fit the surfaces. This fitting method is numerically stable and is a useful tool for examining the effectiveness of various fitting function forms in reproducing the calculated surface points and in extrapolating beyond these points. The fitted surfaces have been used for variational calculations of the 30 lowest band origins and the corresponding band intensities for transitions from the ground vibrational state. With a few exceptions, the results compare well with other calculations and with experimental data. copyright 1997 American Institute of Physics

  11. Corrected electrostatic model for dipoles adsorbed on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Maschhoff, B.L.; Cowin, J.P. (Enviornmental and Molecular Science Laboratory, Pacific Northwest Laboratories Box 999 MS K2-14, Richland, Washington 99352 (United States))

    1994-11-01

    We present a dipole--dipole interaction model for polar molecules vertically adsorbed on a idealized metal surface in an approximate analytic form suitable for estimating the coverage dependence of the work function, binding energies, and thermal desorption activation energies. In contrast to previous treatments, we have included all contributions to the interaction energy within the dipole model, such as the internal polarization energy and the coverage dependence of the self-image interaction with the metal. We show that these can contribute significantly to the total interaction energy. We present formulae for both point and extended dipole cases.

  12. Effects of Surface Dipole Lengths on Evaporation of Tiny Water Aggregation

    International Nuclear Information System (INIS)

    Wang Shen; Wan Rongzheng; Fang Haiping; Tu Yusong

    2013-01-01

    Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e–0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water. (condensed matter: structural, mechanical, and thermal properties)

  13. A class of Fourier integrals based on the electric potential of an elongated dipole.

    Science.gov (United States)

    Skianis, Georgios Aim

    2014-01-01

    In the present paper the closed expressions of a class of non tabulated Fourier integrals are derived. These integrals are associated with a group of functions at space domain, which represent the electric potential of a distribution of elongated dipoles which are perpendicular to a flat surface. It is shown that the Fourier integrals are produced by the Fourier transform of the Green's function of the potential of the dipole distribution, times a definite integral in which the distribution of the polarization is involved. Therefore the form of this distribution controls the expression of the Fourier integral. Introducing various dipole distributions, the respective Fourier integrals are derived. These integrals may be useful in the quantitative interpretation of electric potential anomalies produced by elongated dipole distributions, at spatial frequency domain.

  14. Controllable Nanoparticle Assembly and Actuation with Modified Dipole Potentials in Simulation

    Science.gov (United States)

    Dempster, Joshua

    Science at the nanoscale poses several recurring difficulties. How can we control the assembly of objects too small for direct manipulation to be practical? How can we extend that control to in vivo systems so we can make use of nanotechnology in medicine? And how can we recreate the extraordinary capacities of Nature: healing, replication, growth, adaptation, self-regulation? One of the most powerful tools for addressing these challenges is the simple, familiar dipole moment. Since their debut as fuel control devices at NASA in the early sixties, possible applications for dipole suspensions have grown to areas far beyond what their creators envisioned. A multitude of ambitious new medical and mechanical applications make use of dipolar colloids. Dipoles are attractive from a practical standpoint because one can use fields to control not just their orientation and location, but also their mutual interactions. From a physical standpoint, dipoles are compelling as an exceptionally simple form of symmetry-breaking that leads to a variety of complex phenomena. This thesis studies the assembly and control of spherical colloids with a dipolar interaction modified by additional conditions using simulations. Three cases are examined in detail. The first is the case of an electrical dipole moment created by regions of opposite charge density on the surface of a colloid. Here the dipole potential is modified by strong screening. Such a system is interesting as a model for certain proteins in a high-salt solution and suggests possible uses for inverse Janus colloids. The resulting phases have little resemblance to the usual dipole phases and can be controlled with small quantities of homogeneously charged particles. In the second case, superparamagnetic dipoles are linked into chains. Such chains have been realized in a wide variety of experimental schemes. A general theory is developed for the equilibrium shapes of the chains in a precessing field when their endpoints are

  15. Ab initio study of the intermolecular potential energy surface in the ion-induced-dipole hydrogen-bonded O2(-)(X2Πg)-H2(X1Σg(+)) complex.

    Science.gov (United States)

    Fawzy, Wafaa M

    2012-01-26

    This work presents the first investigation on the intermolecular potential energy surface of the ground electronic state of the O2(-)(2Πg)-H2(1Σg(+)) complex. High level correlated ab initio calculations were carried out using the Hartree-Fock spin-unrestricted coupled cluster singles and doubles including perturbative triples correction [RHF-UCCSD(T)]/aug-cc-pVXZ levels of calculations, where XZ = DZ, TZ, QZ, and 5Z. Results of full geometry optimization and the intermolecular potential energy surface (IPES) calculations show four equivalent minimum energy structures of L-shaped geometry with Cs symmetry at equilibrium along the 2A″ surface of the complex. For these equilibrium minimum energy structures, the most accurate value for the dissociation energy (De) was calculated as 1407.7 cm(-1), which was obtained by extrapolating the counterpoise (CP) corrected De values to the complete basis set (CBS) limit. This global minimum energy structure is stabilized by an ion-induced-dipole hydrogen bond. Detailed investigations of the IPES show that the collinear structure is unstable, while the C2v geometries present saddle points along the 2A″ surface. The barrier height between the two equivalent structures that differs in whether the hydrogen-bonded hydrogen atom is above or below the axis that connects centers of masses of the H2 and O2(-) moieties within the complex was calculated as 70 cm(-1). This suggests that the complex exhibits large amplitude motion. The barrier height to rotation of the H2 moiety by 180° within the complex is 1020 cm(-1). Anharmonic oscillator calculations predicted a strong H-H stretch fundamental transition at 3807 cm(-1). Results of the current work are expected to stimulate further theoretical and experimental investigations on the nature of intermolecular interactions in complexes that contain the superoxide radical and various closed-shell molecules that model atmospheric and biological molecules. These studies are fundamental

  16. Coupling reduction between dipole antenna elements by using a planar meta-surface

    DEFF Research Database (Denmark)

    Saenz, Elena; Ederra, Inigo; Gonzalo, Ramon

    2009-01-01

    The mutual coupling between dipole antenna array elements using a planar meta-surface as superstrate is experimentally investigated. The meta-surface is based on grids of short metal strips and continuous wires. A comparison between the mutual coupling when the dipoles are radiating in free space...

  17. Sound pressure around dipole source above porous surface.

    Science.gov (United States)

    Prezelj, Jurij; Steblaj, Peter; Cudina, Mirko

    2014-06-01

    A technique for in situ measurements of acoustic properties of a fibrous porous material is proposed in this paper. Proposed technique exploits a directivity pattern of a dipole source in its very near field. Theoretical analysis for the proposed technique is based on the Rayleigh integral with a complex reflection included. Results are compared with results of FEM analysis and show that flow resistivity of a porous material placed in the very near field of the dipole source has significant influence on the sound pressure at its ring. Results provide an excellent starting point for the design of the sensor for sound absorption.

  18. Dipole moments associated with edge atoms; a comparative study on stepped Pt, Au and W surfaces

    International Nuclear Information System (INIS)

    Besocke, K.; Krahl-Urban, B.; Wagner, H.

    1977-01-01

    Work function measurements have been performed on stepped Pt and Au surfaces with (111) terraces and on W surfaces with (110) terraces. In each case the work function decreases linearly with increasing step density and depends on the step orientation. The work function changes are attributed to dipole moments associated with the step edges. The dipole moments per unit step length are larger for open edge structures than for densely packed ones. The dipole moments for Pt are about twice as large as for Au and W. (Auth.)

  19. Dipole and quadrupole synthesis of electric potential fields. M.S. Thesis

    Science.gov (United States)

    Tilley, D. G.

    1979-01-01

    A general technique for expanding an unknown potential field in terms of a linear summation of weighted dipole or quadrupole fields is described. Computational methods were developed for the iterative addition of dipole fields. Various solution potentials were compared inside the boundary with a more precise calculation of the potential to derive optimal schemes for locating the singularities of the dipole fields. Then, the problem of determining solutions to Laplace's equation on an unbounded domain as constrained by pertinent electron trajectory data was considered.

  20. Analytic functions for potential energy curves, dipole moments, and transition dipole moments of LiRb molecule.

    Science.gov (United States)

    You, Yang; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang; Wang, Li-Zhi

    2016-01-15

    The analytic potential energy functions (APEFs) of the X(1)Σ(+), 2(1)Σ(+), a(3)Σ(+), and 2(3)Σ(+) states of the LiRb molecule are obtained using Morse long-range potential energy function with damping function and nonlinear least-squares method. These calculations were based on the potential energy curves (PECs) calculated using the multi-reference configuration interaction (MRCI) method. The reliability of the APEFs is confirmed using the curves of their first and second derivatives. By using the obtained APEFs, the rotational and vibrational energy levels of the states are determined by solving the Schrödinger equation of nuclear movement. The spectroscopic parameters, which are deduced using Dunham expansion, and the obtained rotational and vibrational levels are compared with the reported theoretical and experimental values. The correlation effect of the electrons of the inner shell remarkably improves the results compared with the experimental spectroscopic parameters. For the first time, the APEFs for the dipole moments and transition dipole moments of the states have been determined based on the curves obtained from the MRCI calculations. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Calculation of the Induced Charge Distribution on the Surface of a Metallic Nanoparticle Due to an Oscillating Dipole Using Discrete Dipole Approximation method

    Directory of Open Access Journals (Sweden)

    V. Fallahi

    2013-06-01

    Full Text Available In this paper, the interaction between an oscillating dipole moment and a Silver nanoparticle has been studied. Our calculations are based on Mie scattering theory and discrete dipole approximation(DDA method.At first, the resonance frequency due to excitingthe localized surface plasmons has been obtained using Mie scattering theory and then by exciting a dipole moment in theclose proximity of the nanoparticle, the induced charge distribution on the nanoparticle surface has been calculated. In our calculations, we have exploited the experimental data obtained by Johnson and Christy for dielectric function.

  2. Theoretical studies of MHD plasma molecules. I. Potential energy curves and dipole moments of linear KOH

    International Nuclear Information System (INIS)

    England, W.B.

    1978-01-01

    Uncorrelated and correlated potential energy curves and dipole moments are reported for linear KOH. The compound is found to be ionic, K + OH - . Minimum energy bond lengths are R/sub KO/=4.2913 au and R/sub OH/=1.7688 au, with an estimated accuracy of 2%. The corresponding dipole moment is 3.3 au (8.46 D) with a similar accuracy estimate. This is to our knowledge the first value ever reported for the KOH dipole moment, and the large value suggests that KOH will be an effective electron scatterer in MHD plasmas

  3. Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions

    DEFF Research Database (Denmark)

    Ni, X.; Naik, G. V.; Kildishev, A. V.

    2011-01-01

    Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular-depende......-dependent emission spectra of europium ions on top of different films. The results show the modified behavior of electric and magnetic dipoles on metallic and HMM surfaces. The results of numerical calculations agree well with experimental data.......Spontaneous emission patterns of electric and magnetic dipoles on different metallic surfaces and a hyperbolic metamaterial (HMM) surface were simulated using the dyadic Green’s function technique. The theoretical approach was verified by experimental results obtained by measuring angular...

  4. Sweetness-induced activation of membrane dipole potential in STC-1 taste cells.

    Science.gov (United States)

    Chen, Li-Chun; Xie, Ning-Ning; Deng, Shao-Ping

    2016-12-01

    The biological functions of cell membranes strongly influence the binding and transport of molecular species. We developed STC-1 cell line stably expressing the sweet taste receptor (T1R2/T1R3), and explored the possible correlation between sweeteners and membrane dipole potential of STC-1 cells. In this study, sweetener-induced dipole potential activation was elucidated using a fluorescence-based measurement technique, by monitoring the voltage sensitive probe Di-8-ANEPPS using a dual wavelength ratiometric approach. It indicated that the presence of sweeteners resulted in cell membrane dipole potential change, and interaction of artificial sweeteners with taste cells resulted in a greater reduction in potential compared with natural sweeteners. Our work presents a newly developed approach using a fluorescence-based measurement technique to study sweetener-induced dipole potential activation of STC-1 cells. This new approach could be used as a complementary tool to study the function of sweet taste receptors or other GPCRs and helps to understand the basis sweetness mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Potential energy and transition dipole moment functions of C2-

    Czech Academy of Sciences Publication Activity Database

    Šedivcová, Tereza; Špirko, Vladimír

    2006-01-01

    Roč. 104, 13/14 (2006), s. 1999-2005 ISSN 0026-8976 R&D Projects: GA AV ČR(CZ) IAA400550511; GA MŠk(CZ) LC512; GA ČR(CZ) GD203/05/H001 Institutional research plan: CEZ:AV0Z40550506 Keywords : ab initio calculation * transition moments * potential energy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.690, year: 2006

  6. The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials

    Science.gov (United States)

    Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang

    2017-11-01

    We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.

  7. The Coupling Effects of Surface Plasmon Polaritons and Magnetic Dipole Resonances in Metamaterials.

    Science.gov (United States)

    Liu, Bo; Tang, Chaojun; Chen, Jing; Yan, Zhendong; Zhu, Mingwei; Sui, Yongxing; Tang, Huang

    2017-11-09

    We numerically investigate the coupling effects of surface plasmon polaritons (SPPs) and magnetic dipole (MD) resonances in metamaterials, which are composed of an Ag nanodisk array and a SiO 2 spacer on an Ag substrate. The periodicity of the Ag nanodisk array leads to the excitation of SPPs at the surface of the Ag substrate. The near-field plasmon interactions between individual Ag nanodisks and the Ag substrate form MD resonances. When the excitation wavelengths of SPPs are tuned to approach the position of MD resonances by changing the array period of Ag nanodisks, SPPs and MD resonances are coupled together into two hybridized modes, whose positions can be well predicted by a coupling model of two oscillators. In the strong coupling regime of SPPs and MD resonances, the hybridized modes exhibit an obvious anti-crossing, resulting into an interesting phenomenon of Rabi splitting. Moreover, the magnetic fields under the Ag nanodisks are greatly enhanced, which may find some potential applications, such as magnetic nonlinearity.

  8. Dipole source analysis for readiness potential and field using simultaneously measured EEG and MEG signals.

    Science.gov (United States)

    Mideksa, K G; Hellriegel, H; Hoogenboom, N; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M

    2013-01-01

    Various source localization techniques have indicated the generators of each identifiable component of movement-related cortical potentials, since the discovery of the surface negative potential prior to self-paced movement by Kornhuber and Decke. Readiness potentials and fields preceding self-paced finger movements were recorded simultaneously using multichannel electroencephalography (EEG) and magnetoencephalography (MEG) from five healthy subjects. The cortical areas involved in this paradigm are the supplementary motor area (SMA) (bilateral), pre-SMA (bilateral), and contralateral motor area of the moving finger. This hypothesis is tested in this paper using the dipole source analysis independently for only EEG, only MEG, and both combined. To localize the sources, the forward problem is first solved by using the boundary-element method for realistic head models and by using a locally-fitted-sphere approach for spherical head models consisting of a set of connected volumes, typically representing the scalp, skull, and brain. In the source reconstruction it is to be expected that EEG predominantly localizes radially oriented sources while MEG localizes tangential sources at the desired region of the cortex. The effect of MEG on EEG is also observed when analyzing both combined data. When comparing the two head models, the spherical and the realistic head models showed similar results. The significant points for this study are comparing the source analysis between the two modalities (EEG and MEG) so as to assure that EEG is sensitive to mostly radially orientated sources while MEG is only sensitive to only tangential sources, and comparing the spherical and individual head models.

  9. Dipole response in neutron-rich nuclei within self-consistent approaches using realistic potentials

    Directory of Open Access Journals (Sweden)

    Lo Iudice N.

    2015-01-01

    Full Text Available A nucleon-nucleon chiral potential with a corrective density dependent term simulating a three-body force is used in a self-consistent calculation of the dipole strength distribution in neutron-rich nuclei, with special attention to the low-lying spectra associated to the pygmy resonance. A Hartree-Fock-Bogoliubov basis is generated and adopted in Tamm-Dancoff and random-phase approximations and, then, in an equation of motion approach which includes a basis of two-phonon states. The direct use of the mentioned chiral potential improves the description of both giant and pygmy dipole modes with respect to other realistic interactions. Moreover, the inclusion of the two-phonon states induces a pronounced fragmentation of the giant resonance and enhances the density of the low-lying levels in the pygmy region in agreement with recent experiments.

  10. Soft dipole mode of 11Li in approximation of asymptotic potential

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lashko, Yu.A.

    2001-01-01

    The soft dipole mode of 11 Li is studied in the frame of microscopic tri-cluster model and in the asymptotic potential approximation. The theory reproduces well the ground state energy, matter radius and the behaviour of the effective photodisintegration cross section in the range of low energies above the decay threshold of 11 Li. Our calculations point two resonant states in this range [ru

  11. Coupling of Surface and Volume Dipole Oscillations in C60 Molecules

    Science.gov (United States)

    Brack, M.; Winkler, P.; Murthy, M. V. N.

    We first give a short review of the "local-current approximation" (LCA), derived from a general variation principle, which serves as a semiclassical description of strongly collective excitations in finite fermion systems starting from their quantum-mechanical mean-field ground state. We illustrate it for the example of coupled translational and compressional dipole excitations in metal clusters. We then discuss collective electronic dipole excitations in C60 molecules (Buckminster fullerenes). We show that the coupling of the pure translational mode ("surface plasmon") with compressional volume modes in the semiclasscial LCA yields semi-quantitative agreement with microscopic time-dependent density functional (TDLDA) calculations, while both theories yield qualitative agreement with the recent experimental observation of a "volume plasmon".

  12. Coupling of surface and volume dipole oscillations in C60 molecules

    International Nuclear Information System (INIS)

    Brack, M.; Winkler, P.; Murthy, M.V.N.

    2008-01-01

    We first give a short review of the "local-current approximation" (LCA), derived from a general variation principle, which serves as a semiclassical description of strongly collective excitations in finite fermion systems starting from their quantum-mechanical mean-field ground state. We illustrate it for the example of coupled translational and compressional dipole excitations in metal clusters. We then discuss collective electronic dipole excitations in C 60 molecules (Buckminster fullerenes). We show that the coupling of the pure translational mode ("surface plasmon") with compressional volume modes in the semiclasscial LCA yields semi-quantitative agreement with microscopic time-dependent density functional (TDLDA) calculations, while both theories yield qualitative agreement with the recent experimental observation of a "volume plasmon". (author)

  13. Multilayer Strip Dipole Antenna Using Stacking Technique and Its Application for Curved Surface

    Directory of Open Access Journals (Sweden)

    Charinsak Saetiaw

    2013-01-01

    Full Text Available This paper presents the design of multilayer strip dipole antenna by stacking a flexible copper-clad laminate utilized for curved surface on the cylindrical objects. The designed antenna will reduce the effects of curving based on relative lengths that are changed in each stacking flexible copper-clad laminate layer. Curving is different from each layer of the antenna, so the resonance frequency that resulted from an extended antenna provides better frequency response stability compared to modern antenna when it is curved or attached to cylindrical objects. The frequency of multilayer antenna is designed at 920 MHz for UHF RFID applications.

  14. The approximation of asymptotic potential and the soft dipole mode of the 6He

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lashko, Yu.A.; Shvrdov, L.P.; Kato, K.

    1999-01-01

    The soft dipole mode of a three-cluster 6 He nucleus is investigated on the basis of the generalized version of the zero-radius nuclear forces approximation, taking into account a slowly decreasing asymptotic potential and influence of the Paulo exclusion principle on the asymptotic of the wave function, and also the fact of degeneration of 1 - continuous spectrum states. The issue of the behaviour of matrix elements of the two-channel S-matrix and problem of existence of the super-threshold 1 - resonance are discussed [ru

  15. Chirality Driven by Magnetic Dipole Response for Demultiplexing of Surface Waves

    DEFF Research Database (Denmark)

    Sinev, Ivan S.; Bogdanov, Andrey A.; Komissarenko, Filipp E.

    2017-01-01

    Surface electromagnetic waves are characterized by the intrinsic spin-orbit interaction which results in the fascinating spin-momentum locking. Therefore, directional coupling of light to surface waves can be achieved through chiral nanoantennas. Here, we show that dielectric nanoantenna provides...... chiral response with strong spectral dependence due to the interference of electric and magnetic dipole momenta when placed in the vicinity of the metal-air interface. Remarkably, chiral behaviour in the proposed scheme does not require elliptical polarization of the pump beam or the geometric chirality...... of the nanoantenna. We show that the proposed ultracompact and simple dielectric nanoantenna allows for both directional launching of surface plasmon polaritons on a thin gold film and their demultiplexing with a high spectral resolution....

  16. Generation of Electricity at Graphene Interface Governed by Underlying Surface Dipole Induced Ion Adsorption

    Science.gov (United States)

    Yang, Shanshan; Su, Yudan; Wu, Qiong; Zhang, Yuanbo; Tian, Chuanshan

    Aqueous droplet moving along graphene surface can produce electricity This interesting phenomenon provided environment-friendly means to harvest energy from graphene interface in contact with sea wave or rain droplets. However, microscopically, the nature of charge adsorption at the graphene interface is still unclear. Here, utilizing sum-frequency spectroscopy in combined with measurement of electrical power generation, the origin of charge adsorption on graphene was investigated. It was found that the direct ion-graphene interaction is negligibly small, contrary to the early speculation, but the ordered surface dipole from the supporting substrate, such as PET, is responsible for ion adsorption at the interface. Graphene serves as a conductive layer with mild screening of Coulomb interaction when aqueous droplet slips over the surface. These results pave the way for optimization of energy harvesting efficiency of graphene-based device.

  17. The 2H Electric Dipole Moment in a Separable Potential Approach

    Directory of Open Access Journals (Sweden)

    Afnan I.R.

    2010-04-01

    Full Text Available Measurement of the electric dipole moment (EDM of 2H or of 3He may well come prior to the coveted measurement of the neutron EDM. Exact model calculations for the deuteron are feasible, and we explore here the model dependence of such deuteron EDM calculations. We investigate in a separable potential approach the relationship of the full model calculation to the plane wave approximation, correct an error in an early potential model result, and examine the tensor force aspects of the model results as well as the effect of the short range repulsion found in the realistic, contemporary potential model calculations of Liu and Timmermans. We conclude that, because one-pion exchange dominates the EDM calculation, separable potential model calculations should provide an adequate picture of the 2H EDM until better than 10% measurements are achieved.

  18. What Can We Learn about Cholesterol's Transmembrane Distribution Based on Cholesterol-Induced Changes in Membrane Dipole Potential?

    DEFF Research Database (Denmark)

    Falkovich, Stanislav G.; Martinez-Seara, Hector; Nesterenko, Alexey M.

    2016-01-01

    on the cytosolic side, and vice versa. Biologically this implies that by altering the dipole potential, cholesterol can provide a driving force for cholesterol molecules to favor the cytosolic leaflet, in order to compensate for the intramembrane field that arises from the resting potential....

  19. Fluorine-Terminated Diamond Surfaces as Dense Dipole Lattices: The Electrostatic Origin of Polar Hydrophobicity.

    Science.gov (United States)

    Mayrhofer, Leonhard; Moras, Gianpietro; Mulakaluri, Narasimham; Rajagopalan, Srinivasan; Stevens, Paul A; Moseler, Michael

    2016-03-30

    Despite the pronounced polarity of C-F bonds, many fluorinated carbon compounds are hydrophobic: a controversial phenomenon known as "polar hydrophobicity". Here, its underlying microscopic mechanisms are explored by ab initio calculations of fluorinated and hydrogenated diamond (111) surfaces interacting with single water molecules. Gradient- and van der Waals-corrected density functional theory simulations reveal that "polar hydrophobicity" of the fully fluorinated surfaces is caused by a negligible surface/water electrostatic interaction. The densely packed C-F surface dipoles generate a short-range electric field that decays within the core repulsion zone of the surface and hence vanishes in regions accessible by adsorbates. As a result, water physisorption on fully F-terminated surfaces is weak (adsorption energies Ead 0.2 eV) that is dominated by electrostatic interactions. The suppression of electrostatic interactions also holds for perfluorinated molecular carbon compounds, thus explaining the prevalent hydrophobicity of fluorocarbons. In general, densely packed polar terminations do not always lead to short-range electric fields. For example, surfaces with substantial electron density spill-out give rise to electric fields with a much slower decay. However, electronic spill-out is limited in F/H-terminated carbon materials. Therefore, our ab initio results can be reproduced and rationalized by a simple classical point-charge model. Consequently, classical force fields can be used to study the wetting of F/H-terminated diamond, revealing a pronounced correlation between adsorption energies of single H2O molecules and water contact angles.

  20. Electromagnetic fields due to a horizontal electric dipole antenna laid on the surface of a two-layer medium

    Science.gov (United States)

    Tsang, L.; Kong, J. A.

    1974-01-01

    With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.

  1. What Can We Learn about Cholesterol's Transmembrane Distribution Based on Cholesterol-Induced Changes in Membrane Dipole Potential?

    Czech Academy of Sciences Publication Activity Database

    Falkovich, S. G.; Martinez-Seara, Hector; Nesterenko, A. M.; Vattulainen, I.; Gurtovenko, A. A.

    2016-01-01

    Roč. 7, č. 22 (2016), s. 4585-4590 ISSN 1948-7185 Institutional support: RVO:61388963 Keywords : membrane * cholesterol * membrane asymmetry * membrane dipole potential * transmembrane distribution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.353, year: 2016

  2. Theory of the surface dipole layer and of surface tension in liquids of charged particles

    International Nuclear Information System (INIS)

    Senatore, G.; Tosi, M.P.

    1980-01-01

    The problem of the surface density profiles and of the surface tension of a two-component liquid of charged particles in equilibrium with its vapour is examined. The exact equilibrium conditions for the profiles are given in terms of the inverse response functions of the inhomogeneous fluid, and alternative exact expressions for the surface tension are derived. The use of a density gradient expansion reduces the problem to knowledge of properties of a homogeneous charged fluid on a uniform neutralizing background, in which the total particle density and the charge density are independent variables. Additional simplifications are discussed for special cases for which a perturbative treatment of the surface charge density profile can be developed, and in particular for nearly symmetric ionic liquids and for simple liquid metals. (author)

  3. Surface potential domains on lamellar P3OT structures

    International Nuclear Information System (INIS)

    Perez-GarcIa, B; Abad, J; Urbina, A; Colchero, J; Palacios-Lidon, E

    2008-01-01

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place

  4. Surface potential domains on lamellar P3OT structures

    Energy Technology Data Exchange (ETDEWEB)

    Perez-GarcIa, B [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Abad, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Urbina, A [Departamento Electronica, TecnologIa de Computadoras y Proyectos, Universidad Politecnica de Cartagena, E-30202 Cartagena (Spain); Colchero, J [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain); Palacios-Lidon, E [Departamento Fisica, Facultad de Quimica (Campus Espinardo), Universidad de Murcia, E-30100 Murcia (Spain)

    2008-02-13

    In this work the electrostatic properties of poly(3-octylthiophene) thin films have been studied on a nanometer scale by means of electrostatic force microscopy and Kelvin probe microscopy (KPM). The KPM images reveal that different surface contact potential domains coexist on the polymer surface. This result, together with additional capacitance measurements, indicates that the potential domains are related to the existence of dipoles due to different molecular arrangements. Finally, capacitance measurements as a function of the tip-sample bias voltage show that in all regions large band bending effects take place.

  5. Potential photosynthesis of crop surfaces.

    NARCIS (Netherlands)

    Wit, de C.T.

    1959-01-01

    A formula for calculating the potential photosynthesis of a closed crop surface is proposed, assuming that the leaves of the crop are not arranged in any definite direction. In the Netherlands, values for potential photosynthesis vary from 290 kg. CH2O/ha./day in June to 50 kg./ha./day in December.

  6. Intermolecular potential energy surface for CS2 dimer.

    Science.gov (United States)

    Farrokhpour, Hossein; Mombeini, Zainab; Namazian, Mansoor; Coote, Michelle L

    2011-04-15

    A new four-dimensional intermolecular potential energy surface for CS(2) dimer is obtained by ab initio calculation of the interaction energies for a range of configurations and center-of-mass separation distances for the first time. The calculations were performed using the supermolecular approach at the Møller-Plesset second-order perturbation (MP2) level of theory with the augmented correlation consistent basis sets (aug-cc-pVxZ, x = D, T) and corrected for the basis-set superposition error using the full counterpoise correction method. A two-point extrapolation method was used to extrapolate the calculated energy points to the complete basis set limit. The effect of using the higher levels of theory, quadratic configuration interaction containing single, double, and perturbative triple excitations QCISD(T) and coupled cluster singles, doubles and perturbative triples excitations CCSD(T), on the shape of potential energy surface was investigated. It is shown that the MP2 level of theory apparently performs extremely poorly for describing the intermolecular potential energy surface, overestimating the total energy by a factor of nearly 1.73 in comparison with the QCISD(T) and CCSD(T) values. The value of isotropic dipole-dipole dispersion coefficient (C(6) ) of CS(2) fluid was obtained from the extrapolated MP2 potential energy surface. The MP2 extrapolated energy points were fitted to well-known analytical potential functions using two different methods to represent the potential energy surface analytically. The most stable configuration of the dimer was determined at R = 6.23 au, α = 90°, β = 90°, and γ = 90°, with a well depth of 3.980 kcal mol(-1) at the MP2 level of theory. Finally, the calculated second virial coefficients were compared with experimental values to test the quality of the presented potential energy surface. Copyright © 2010 Wiley Periodicals, Inc.

  7. A limit of the confluent Heun equation and the Schroedinger equation for an inverted potential and for an electric dipole

    International Nuclear Information System (INIS)

    El-Jaick, Lea Jaccoud; Figueiredo, Bartolomeu D.B.

    2009-01-01

    We reexamine and extend a group of solutions in series of Bessel functions for a limiting case of the confluent Heun equation and, then, apply such solutions to the one-dimensional Schroedinger equation with an inverted quasi-exactly solvable potential as well as to the angular equation for an electron in the field of a point electric dipole. For the first problem we find finite and infinite-series solutions which are convergent and bounded for any value of the independent variable. For the angular equation, we also find expansions in series of Jacobi polynomials. (author)

  8. Effects of Oriented Surface Dipole on Photoconversion Efficiency in an Alkane/Lipid-Hybrid-Bilayer-Based Photovoltaic Model System

    KAUST Repository

    Liu, Lixia

    2013-06-21

    When a phospholipid monolayer containing a zinc-coordinated porphyrin species formed atop a self-assembled monolayer of heptadecafluoro-1-decanethiol (CF3(CF2)7(CH2)2SH) is subjected to photoelectrochemical current generation, a significant modulation effect is observed. Compared with devices that contain similar photoactive lipid monolayers but formed on 1-dodecanethiol SAMs, these fluorinated hybrid bilayers produce a >60 % increase in cathodic currents and a similar decrease in anodic currents. Photovoltages recorded from these hybrid bilayers are found to vary in the same fashion. The modulation of photovoltaic responses in these hybrid-bilayer-based devices is explained by the opposite surface dipoles associated with the thiols employed in this study, which in one case (fluorothiol) increase and in another (alkanethiol) decrease the work function of the underlying gold substrates. A similar trend of photovoltage/photocurrent modulation is also observed if fullerene is used as the photoagent in these devices. Our results reveal the intricacy of orientated surface dipole in influencing the photovoltaic processes, and its subtle interplay with other factors related to the photoagents, such as their location and orientation within the organic matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Impact of self-assembled monolayer assisted surface dipole modulation of PET substrate on the quality of RF-sputtered AZO film

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Thieu Thi Tien [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Faculty of Chemical Engineering and Food Technology, Ba Ria-Vung Tau University, Vung Tau (Viet Nam); Mahesh, K.P.O. [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lin, Pao-Hung [Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Tai, Yian, E-mail: ytai@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2017-05-01

    Highlights: • We use SAMs functionalizing the PET substrates to generate different surface dipoles. • We deposited AZO film on pristine and SAMs-modified PET substrate. • The positive dipole moment of PET surface promotes the crystallinity of AZO film. • The negative dipole moment of PET surface deteriorates the crystallinity of AZO film. • The electrical properties of AZO/PET changes upon the variation of the crystallinity. - Abstract: In this study, we fabricated the electron donating/withdrawing group functionalized organosilane self-assembled monolayers (SAMs) on transparent polyethylene terephthalate (PET) flexible substrate followed by the deposition of aluminum doped zinc oxide (AZO) using RF magnetron sputtering at room temperature. The effect of different SAMs on transparent PET substrates and AZO films were studied by contact angle (CA), X-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), X-ray diffraction (XRD), Field-Emission scanning electron microscope (FE-SEM), Hall measurement and UV–vis spectroscopy (UV–vis). The results presented that the surface dipole (i.e. electron-donating/withdrawing) of different SAMs functionalized PET substrates affected the quality of the AZO films which deposited on top of them. The crystallinity, the charge mobility, and the carrier concentration of the AZO improved when the film was deposited on the PET functionalized with electron donating group, which was possibly due to favored interaction between electron donating group and Al ions.

  10. Impact of self-assembled monolayer assisted surface dipole modulation of PET substrate on the quality of RF-sputtered AZO film

    International Nuclear Information System (INIS)

    Vo, Thieu Thi Tien; Mahesh, K.P.O.; Lin, Pao-Hung; Tai, Yian

    2017-01-01

    Highlights: • We use SAMs functionalizing the PET substrates to generate different surface dipoles. • We deposited AZO film on pristine and SAMs-modified PET substrate. • The positive dipole moment of PET surface promotes the crystallinity of AZO film. • The negative dipole moment of PET surface deteriorates the crystallinity of AZO film. • The electrical properties of AZO/PET changes upon the variation of the crystallinity. - Abstract: In this study, we fabricated the electron donating/withdrawing group functionalized organosilane self-assembled monolayers (SAMs) on transparent polyethylene terephthalate (PET) flexible substrate followed by the deposition of aluminum doped zinc oxide (AZO) using RF magnetron sputtering at room temperature. The effect of different SAMs on transparent PET substrates and AZO films were studied by contact angle (CA), X-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), X-ray diffraction (XRD), Field-Emission scanning electron microscope (FE-SEM), Hall measurement and UV–vis spectroscopy (UV–vis). The results presented that the surface dipole (i.e. electron-donating/withdrawing) of different SAMs functionalized PET substrates affected the quality of the AZO films which deposited on top of them. The crystallinity, the charge mobility, and the carrier concentration of the AZO improved when the film was deposited on the PET functionalized with electron donating group, which was possibly due to favored interaction between electron donating group and Al ions.

  11. Theoretical study of the electronic structure of KLi molecule: Adiabatic and diabatic potential energy curves and dipole moments

    International Nuclear Information System (INIS)

    Dardouri, Riadh; Habli, Héla; Oujia, Brahim; Gadéa, Florent Xavier

    2012-01-01

    Graphical abstract: We present the resulting 12 1 Σ + diabatic potential energy curves where they are labeled D 1 for the ionic Li − K + and D 2 to D 12 for other. Highlights: ► Our ab initio study has been conducted for 48 electronic states of LiK molecule. ► We use pseudo-potential for the core and large basis sets for the Rydberg states. ► The calculations rely on ab initio pseudo-potential and full valence CI approaches. ► Diabatic potentials are analyzed, revealing the strong imprint of the ionic 1 Σ + state. - Abstract: For all states dissociating below the ionic limit Li − K + , we perform an adiabatic and diabatic study for 1 Σ + electronic states dissociating into K (4s, 4p, 4d, 5s, 5p, 5d, 6s) + Li (2s, 2p, 3s). Furthermore, we present the adiabatic results for the 1–11 3 Σ, 1–8 1,3 Π and 1–4 1,3 Δ states. The present calculations on the KLi molecule are complementary to previous theoretical work on this system, including recently observed electronic states that had not been calculated previously. The calculations rely on an ab initio pseudo-potential, Core Polarization Potential operators for the core–valence correlation and full valence CI approaches, combined to an efficient diabatization procedure. For the low-lying states, our spectroscopic constants and vibrational level spacing are in good agreement with the available experimental data. Diabatic potentials and permanent dipole moments are analyzed, revealing the strong imprint of the ionic state in the 1 Σ + adiabatic states.

  12. Theoretical study of the electronic structure of KLi molecule: Adiabatic and diabatic potential energy curves and dipole moments

    Energy Technology Data Exchange (ETDEWEB)

    Dardouri, Riadh, E-mail: dardouririad@yahoo.fr [Laboratoire de Physique Quantique, Faculte des Sciences de Monastir, Avenue de l' Environnement, 5019 Monastir (Tunisia); Habli, Hela [Laboratoire de Physique Quantique, Faculte des Sciences de Monastir, Avenue de l' Environnement, 5019 Monastir (Tunisia); Oujia, Brahim; Gadea, Florent Xavier [Laboratoire de Chimie et Physique Quantique, UMR 5626 du CNRS, Universite de Toulouse, UPS, 118 route de Narbonne, 31062 Toulouse Cedex 4 (France)

    2012-05-03

    Graphical abstract: We present the resulting 12 {sup 1}{Sigma}{sup +} diabatic potential energy curves where they are labeled D{sub 1} for the ionic Li{sup -}K{sup +} and D{sub 2} to D{sub 12} for other. Highlights: Black-Right-Pointing-Pointer Our ab initio study has been conducted for 48 electronic states of LiK molecule. Black-Right-Pointing-Pointer We use pseudo-potential for the core and large basis sets for the Rydberg states. Black-Right-Pointing-Pointer The calculations rely on ab initio pseudo-potential and full valence CI approaches. Black-Right-Pointing-Pointer Diabatic potentials are analyzed, revealing the strong imprint of the ionic {sup 1}{Sigma}{sup +} state. - Abstract: For all states dissociating below the ionic limit Li{sup -}K{sup +}, we perform an adiabatic and diabatic study for {sup 1}{Sigma}{sup +} electronic states dissociating into K (4s, 4p, 4d, 5s, 5p, 5d, 6s) + Li (2s, 2p, 3s). Furthermore, we present the adiabatic results for the 1-11 {sup 3}{Sigma}, 1-8 {sup 1,3}{Pi} and 1-4 {sup 1,3}{Delta} states. The present calculations on the KLi molecule are complementary to previous theoretical work on this system, including recently observed electronic states that had not been calculated previously. The calculations rely on an ab initio pseudo-potential, Core Polarization Potential operators for the core-valence correlation and full valence CI approaches, combined to an efficient diabatization procedure. For the low-lying states, our spectroscopic constants and vibrational level spacing are in good agreement with the available experimental data. Diabatic potentials and permanent dipole moments are analyzed, revealing the strong imprint of the ionic state in the {sup 1}{Sigma}{sup +} adiabatic states.

  13. Soft dipole mode of neutron-rich light nuclei in asymptotic potential approximation

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lashko, Yu.A.; Shvedov, L.P.

    2000-01-01

    Completely antisymmetrized 1''-continuum wave functions as well as the ground state wave function for ''6He have been constructed in asymptotic potential approximation. The behaviour of two-channel S-matrix elements shows on the existence of 1''- resonant state just above the three-body decay threshold of ''6He

  14. Backfire antennas with dipole elements

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø; Pontoppidan, Knud

    1970-01-01

    A method is set up for a theoretical investigation of arbitrary backfire antennas based upon dipole structures. The mutual impedance between the dipole elements of the antenna is taken into account, and the field radiated due to a surface wave reflector of finite extent is determined by calculating...

  15. Theoretical study of the CsH molecule: adiabatic and diabatic potential energy curves and dipole moments

    International Nuclear Information System (INIS)

    Zrafi, W; Oujia, B; Gadea, F X

    2006-01-01

    For nearly all states dissociating below the ionic limit, we perform an adiabatic and diabatic study for 1 Σ + and 3 Σ + electronic states dissociating into Cs (6s, 6p, 5d, 7s, 7p, 6d, 8s and 4f) + H (1s). Furthermore, we present the adiabatic results for the 1-5 1,3 Π and 1-3 1,3 Δ states. The calculations rely on an ab initio pseudopotential, semi-empirical operator core-valence correlation and full valence CI approaches, combined to an efficient diabatization procedure. For the low-lying states, our spectroscopic constants and vibrational level spacing are in very good agreement with the available experimental data. Diabatic potentials and dipole moments are analysed, revealing the strong imprint of the ionic state in the 1 Σ + adiabatic states. The H electron affinity correction was accounted for by the use of the efficient diabatization method. This leads to a better agreement with the available experimental data. Experimental suggestions are also given for the higher excited states based on their unusual behaviour

  16. Investigation of the surface potential of TiO2 (110) by frequency-modulation Kelvin probe force microscopy.

    Science.gov (United States)

    Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro

    2016-12-16

    We investigate the surface potential distribution on a TiO 2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO 2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO 2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO 2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.

  17. Potential energy surfaces for chemical reactions

    International Nuclear Information System (INIS)

    Schaefer, H.F. III.

    1976-01-01

    Research into potential energy surfaces for chemical reactions at Lawrence Berkeley Laboratory during 1976 is described. Topics covered include: the fuzzy interface between surface chemistry catalysis and organometallic chemistry; potential energy surfaces for elementary fluorine hydrogen reactions; structure, energetics, and reactivity of carbenes; and the theory of self-consistent electron pairs

  18. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Song, Hai-Ying; Liu, H.Y.; Liu, Shi-Bing, E-mail: sbliu@bjut.edu.cn

    2017-07-12

    Highlights: • Proposed a valid mechanism of high harmonic generation by laser grating target interaction: oscillation of equivalent electric dipole (OEED). • Found that there also exist harmonic emission at large emission angle but not just near-surface direction as the former researches had pointed out. • Show the process of the formation and motion of electron bunches at the grating-target surface irradiating with femtosecond laser pulse. - Abstract: We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  19. The localization of focal heart activity via body surface potential measurements: tests in a heterogeneous torso phantom

    Science.gov (United States)

    Wetterling, F.; Liehr, M.; Schimpf, P.; Liu, H.; Haueisen, J.

    2009-09-01

    The non-invasive localization of focal heart activity via body surface potential measurements (BSPM) could greatly benefit the understanding and treatment of arrhythmic heart diseases. However, the in vivo validation of source localization algorithms is rather difficult with currently available measurement techniques. In this study, we used a physical torso phantom composed of different conductive compartments and seven dipoles, which were placed in the anatomical position of the human heart in order to assess the performance of the Recursively Applied and Projected Multiple Signal Classification (RAP-MUSIC) algorithm. Electric potentials were measured on the torso surface for single dipoles with and without further uncorrelated or correlated dipole activity. The localization error averaged 11 ± 5 mm over 22 dipoles, which shows the ability of RAP-MUSIC to distinguish an uncorrelated dipole from surrounding sources activity. For the first time, real computational modelling errors could be included within the validation procedure due to the physically modelled heterogeneities. In conclusion, the introduced heterogeneous torso phantom can be used to validate state-of-the-art algorithms under nearly realistic measurement conditions.

  20. The localization of focal heart activity via body surface potential measurements: tests in a heterogeneous torso phantom

    Energy Technology Data Exchange (ETDEWEB)

    Wetterling, F; Liehr, M; Haueisen, J [Biomagnetic Center, Department of Neurology, Friedrich Schiller University Jena, Jena (Germany); Schimpf, P [Department of Computer Science, Eastern Washington University, Cheney, WA (United States); Liu, H [Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard Medical School, Boston, MA (United States)], E-mail: wetterlf@tcd.ie

    2009-09-21

    The non-invasive localization of focal heart activity via body surface potential measurements (BSPM) could greatly benefit the understanding and treatment of arrhythmic heart diseases. However, the in vivo validation of source localization algorithms is rather difficult with currently available measurement techniques. In this study, we used a physical torso phantom composed of different conductive compartments and seven dipoles, which were placed in the anatomical position of the human heart in order to assess the performance of the Recursively Applied and Projected Multiple Signal Classification (RAP-MUSIC) algorithm. Electric potentials were measured on the torso surface for single dipoles with and without further uncorrelated or correlated dipole activity. The localization error averaged 11 {+-} 5 mm over 22 dipoles, which shows the ability of RAP-MUSIC to distinguish an uncorrelated dipole from surrounding sources activity. For the first time, real computational modelling errors could be included within the validation procedure due to the physically modelled heterogeneities. In conclusion, the introduced heterogeneous torso phantom can be used to validate state-of-the-art algorithms under nearly realistic measurement conditions.

  1. The localization of focal heart activity via body surface potential measurements: tests in a heterogeneous torso phantom

    International Nuclear Information System (INIS)

    Wetterling, F; Liehr, M; Haueisen, J; Schimpf, P; Liu, H

    2009-01-01

    The non-invasive localization of focal heart activity via body surface potential measurements (BSPM) could greatly benefit the understanding and treatment of arrhythmic heart diseases. However, the in vivo validation of source localization algorithms is rather difficult with currently available measurement techniques. In this study, we used a physical torso phantom composed of different conductive compartments and seven dipoles, which were placed in the anatomical position of the human heart in order to assess the performance of the Recursively Applied and Projected Multiple Signal Classification (RAP-MUSIC) algorithm. Electric potentials were measured on the torso surface for single dipoles with and without further uncorrelated or correlated dipole activity. The localization error averaged 11 ± 5 mm over 22 dipoles, which shows the ability of RAP-MUSIC to distinguish an uncorrelated dipole from surrounding sources activity. For the first time, real computational modelling errors could be included within the validation procedure due to the physically modelled heterogeneities. In conclusion, the introduced heterogeneous torso phantom can be used to validate state-of-the-art algorithms under nearly realistic measurement conditions.

  2. A Green's function approach to giant-dipole systems

    Science.gov (United States)

    Stielow, Thomas; Scheel, Stefan; Kurz, Markus

    2018-01-01

    In this work we perform a Green’s function analysis of giant-dipole systems. First, we derive the Green’s functions of different magnetically field-dressed systems, in particular of electronically highly excited atomic species in crossed electric and magnetic fields—so-called giant-dipole states. We determine the dynamical polarizability of atomic giant-dipole states as well as the adiabatic potential energy surfaces of giant-dipole molecules in the framework of the Green’s function approach. Furthermore, we perform an comparative analysis of the latter to an exact diagonalization scheme and show the general divergence behavior of the widely applied Fermi-pseudopotential approach. Finally, we derive the giant-dipole’s regularized Green’s function representation.

  3. An Ab Initio Based Potential Energy Surface for Water

    Science.gov (United States)

    Partridge, Harry; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1996-01-01

    We report a new determination of the water potential energy surface. A high quality ab initio potential energy surface (PES) and dipole moment function of water have been computed. This PES is empirically adjusted to improve the agreement between the computed line positions and those from the HITRAN 92 data base. The adjustment is small, nonetheless including an estimate of core (oxygen 1s) electron correlation greatly improves the agreement with experiment. Of the 27,245 assigned transitions in the HITRAN 92 data base for H2(O-16), the overall root mean square (rms) deviation between the computed and observed line positions is 0.125/cm. However the deviations do not correspond to a normal distribution: 69% of the lines have errors less than 0.05/cm. Overall, the agreement between the line intensities computed in the present work and those contained in the data base is quite good, however there are a significant number of line strengths which differ greatly.

  4. Scanning Surface Potential Microscopy of Spore Adhesion on Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ida [University of Tennessee, Knoxville (UTK); Chung, Eunhyea [Georgia Institute of Technology; Kweon, Hyojin [Georgia Institute of Technology; Yiacoumi, Sotira [Georgia Institute of Technology; Tsouris, Costas [ORNL

    2012-01-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica.

  5. Scanning surface potential microscopy of spore adhesion on surfaces.

    Science.gov (United States)

    Lee, I; Chung, E; Kweon, H; Yiacoumi, S; Tsouris, C

    2012-04-01

    The adhesion of spores of Bacillus anthracis - the cause of anthrax and a likely biological threat - to solid surfaces is an important consideration in cleanup after an accidental or deliberate release. However, because of safety concerns, directly studying B. anthracis spores with advanced instrumentation is problematic. As a first step, we are examining the electrostatic potential of Bacillus thuringiensis (Bt), which is a closely related species that is often used as a simulant to study B. anthracis. Scanning surface potential microscopy (SSPM), also known as Kelvin probe force microscopy (KPFM), was used to investigate the influence of relative humidity (RH) on the surface electrostatic potential of Bt that had adhered to silica, mica, or gold substrates. AFM/SSPM side-by-side images were obtained separately in air, at various values of RH, after an aqueous droplet with spores was applied on each surface and allowed to dry before measurements. In the SSPM images, a negative potential on the surface of the spores was observed compared with that of the substrates. The surface potential decreased as the humidity increased. Spores were unable to adhere to a surface with an extremely negative potential, such as mica. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  7. Dipole-dipole dispersion interactions between neutrons

    OpenAIRE

    Babb, James F.; Higa, Renato; Hussein, Mahir S.

    2016-01-01

    We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the $\\Delta$-resonance ($J^{\\pi}$ = + 3/2, I = 3/2). We found b...

  8. Influence of the Dirac-Hartree-Fock starting potential on the parity-nonconserving electric-dipole-transition amplitudes in cesium and thallium

    Science.gov (United States)

    Perger, W. F.; Das, B. P.

    1987-01-01

    The parity-nonconserving electric-dipole-transition amplitudes for the 6s1/2-7s1/2 transition in cesium and the 6p1/2-7p1/2 transition in thallium have been calculated by the Dirac-Hartree-Fock method. The effects of using different Dirac-Hartree-Fock atomic core potentials are examined and the transition amplitudes for both the length and velocity gauges are given. It is found that the parity-nonconserving transition amplitudes exhibit a greater dependence on the starting potential for thallium than for cesium.

  9. Tailoring surface plasmon resonance and dipole cavity plasmon modes of scattering cross section spectra on the single solid-gold/gold-shell nanorod

    International Nuclear Information System (INIS)

    Chou Chau, Yuan-Fong; Lim, Chee Ming; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Chiang, Hai-Pang

    2016-01-01

    Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.

  10. Iron ore deposits model using geoelectrical resistivity method with dipole-dipole array

    Directory of Open Access Journals (Sweden)

    Octova Adree

    2017-01-01

    Full Text Available Mining industry is an industry with very high risk (losses. In order that mining activities can be run well, then the potential of the Earth’s resources must be known for sure. one of the Earth’s resources of high economic value is the iron ore. Iron ore is rarely found in a free state in nature, it is usually associated with other minerals and exposed randomly. With these properties, iron ore needs to be modeled before doing mining activities in order to avoid large losses. Iron ore deposits can be modeled with geoelectrical resistivity method. Dipole-dipole array will produce good imaging both vertically and laterally. From the measurement results of geoelectrical resistivity with dipole-dipole array will be obtained the value of measuring the current and potential difference. This value will generate into 2D and 3D model of the cross section of the iron ore deposits. One of the areas in West Sumatra has the potential for iron ore. Five lines were applied in this area. The result of cross section got the iron minerals associated with quartzite at 30 meters depth below the surface.

  11. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  12. Calculation of electrical potentials on the surface of a realistic head model by finite differences

    International Nuclear Information System (INIS)

    Lemieux, L.; McBride, A.; Hand, J.W.

    1996-01-01

    We present a method for the calculation of electrical potentials at the surface of realistic head models from a point dipole generator based on a 3D finite-difference algorithm. The model was validated by comparing calculated values with those obtained algebraically for a three-shell spherical model. For a 1.25 mm cubic grid size, the mean error was 4.9% for a superficial dipole (3.75 mm from the inner surface of the skull) pointing in the radial direction. The effect of generator discretization and node spacing on the accuracy of the model was studied. Three values of the node spacing were considered: 1, 1.25 and 1.5 mm. The mean relative errors were 4.2, 6.3 and 9.3%, respectively. The quality of the approximation of a point dipole by an array of nodes in a spherical neighbourhood did not depend significantly on the number of nodes used. The application of the method to a conduction model derived from MRI data is demonstrated. (author)

  13. An Accurate Potential Energy Surface for H2O

    Science.gov (United States)

    Schwenke, David W.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have carried out extensive high quality ab initio electronic structure calculations of the ground state potential energy surface (PES) and dipole moment function (DMF) for H2O. A small adjustment is made to the PES to improve the agreement of line positions from theory and experiment. The theoretical line positions are obtained from variational ro-vibrational calculations using the exact kinetic energy operator. For the lines being fitted, the root-mean-square error was reduced from 6.9 to 0.08 /cm. We were then able to match 30,092 of the 30,117 lines from the HITRAN 96 data base to theoretical lines, and 80% of the line positions differed less than 0.1 /cm. About 3% of the line positions in the experimental data base appear to be incorrect. Theory predicts the existence of many additional weak lines with intensities above the cutoff used in the data base. To obtain results of similar accuracy for HDO, a mass dependent correction to the PH is introduced and is parameterized by simultaneously fitting line positions for HDO and D2O. The mass dependent PH has good predictive value for T2O and HTO. Nonadiabatic effects are not explicitly included. Line strengths for vibrational bands summed over rotational levels usually agree well between theory and experiment, but individual line strengths can differ greatly. A high temperature line list containing about 380 million lines has been generated using the present PES and DMF

  14. Possible displacement of mercury's dipole

    International Nuclear Information System (INIS)

    Ng, K.H.; Beard, D.B.

    1979-01-01

    Earlier attempts to model the Hermean magnetospheric field based on a planet-centered magnetic multipole field have required the addition of a quadrupole moment to obtain a good fit to space vehicle observations. In this work we obtain an equally satisfactory fit by assuming a null quadrupole moment and least squares fitting of the displacement of the planetary dipole from the center of the planet. We find a best fit for a dipole displacement from the planet center of 0.033 R/sub m/ away from the solar direction, 0.025 R/sub m/ toward dawn in the magnetic equatorial plane, and 0.189 R/sub m/ northward along the magnetic dipole axis, where R/sub m/ is the planet radius. Therefore the presence of a magnetic quadrupole moment is not ruled out. The compressed dipole field more completely represents the field in the present work than in previous work where the intrinsic quadrupole field was not included in the magnetopause surface and field calculations. Moreover, we have corrected a programing error in previous work in the computation of dipole tilt lambda away from the sun. We find a slight increase for the planet dipole moment of 190γR/sub m/ 3 and a dipole tilt angle lambda away from the sun. We find a slight increase for the planet moment of 190γR/sub m/ 3 and a dipole tilt angle lambda of only 1.2 0 away from the sun. All other parameters are essentially unchanged

  15. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  16. Dipole-dipole dispersion interactions between neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Babb, James F. [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Higa, Renato [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Hussein, Mahir S. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo (Brazil); Universidade de Sao Paulo, Instituto de Estudos Avancados, Sao Paulo (Brazil); Departamento de Fisica, Instituto Tecnologico de Aeronautica, CTA, Sao Jose dos Campos (Brazil)

    2017-06-15

    We investigate the long-range interactions between two neutrons utilizing recent data on the neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron with a proton. We also assess the importance of the first pion production threshold and first excited state of the nucleon, the Δ-resonance (J{sup π} = +3/2, I = 3/2). We found both dynamical effects to be quite relevant for distances r between ∝ 50 fm up to ∝ 10{sup 3} fm in the nn system, the neutron-wall system and in the wall-neutron-wall system, reaching the expected asymptotic limit beyond that. Relevance of our findings to the confinement of ultra cold neutrons inside bottles is discussed. (orig.)

  17. Toward accurate prediction of potential energy surfaces and the spectral density of hydrogen bonded systems

    International Nuclear Information System (INIS)

    Rekik, Najeh

    2014-01-01

    Despite the considerable progress made in quantum theory and computational methods, detailed descriptions of the potential energy surfaces of hydrogen-bonded systems have not yet been achieved. In addition, the hydrogen bond (H-bond) itself is still so poorly understood at the fundamental level that it remains unclear exactly what geometry constitutes a “real” H-bond. Therefore, in order to investigate features essential for hydrogen bonded complexes, a simple, efficient, and general method for calculating matrix elements of vibrational operators capable of describing the stretching modes and the H-bond bridges of hydrogen-bonded systems is proposed. The derived matrix elements are simple and computationally easy to evaluate, which makes the method suitable for vibrational studies of multiple-well potentials. The method is illustrated by obtaining potential energy surfaces for a number of two-dimensional systems with repulsive potentials chosen to be in Gaussian form for the stretching mode and of the Morse-type for the H-bond bridge dynamics. The forms of potential energy surfaces of weak and strong hydrogen bonds are analyzed by varying the asymmetry of the Gaussian potential. Moreover, the choice and applicability of the selected potential for the stretching mode and comparison with other potentials used in the area of hydrogen bond research are discussed. The approach for the determination of spectral density has been constructed in the framework of the linear response theory for which spectral density is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The approach involves anharmonic coupling between the high frequency stretching vibration (double well potential) and low-frequency donor-acceptor stretching mode (Morse potential) as well as the electrical anharmonicity of the dipole moment operator of the fast mode. A direct relaxation mechanism is incorporated through a time decaying exponential

  18. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  19. Potential energy surface of triplet O4.

    Science.gov (United States)

    Paukku, Yuliya; Varga, Zoltan; Truhlar, Donald G

    2018-03-28

    We present a global ground-state potential energy surface (PES) for the triplet spin state of O 4 that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation in electronically adiabatic spin-conserving O 2 -O 2 collisions. The surface is based on MS-CASPT2/maug-cc-pVTZ electronic structure calculations with scaled external correlation; the active space has 16 electrons in 12 orbitals. The global ground-state potential energy surface was fitted by a many-body approach with an accurate O-O pairwise interaction and a fit of the many-body interaction potential to 10 180 electronic structure data points. The many-body fit is based on permutationally invariant polynomials in terms of bond-order functions of the six interatomic distances; the bond-order functions are mixed exponential-Gaussian functions. The geometries calculated and used for the fit include geometry scans corresponding to dissociative and vibrationally excited diatom-diatom collisions of O 2 , scans corresponding to O 3 interacting with O, additional geometries identified by running trajectories, and geometries along linear synchronous transit paths connecting randomly selected points. The global O 4 PES includes subsurfaces describing the interaction of diatomic molecules with other diatomic molecules or interactions of triatomic molecules and an atom. The interaction of ozone with a ground-state oxygen atom occurs on the triplet O 4 surface, and our surface includes high-energy points with O 3 -O geometries as well as O 2 -O 2 geometries and O 2 -O-O geometries.

  20. A skull-based multiple dipole phantom for EEG and MEG studies

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, M.E.; Leahy, R.M. [University of Southern California, Los Angeles, CA (United States); Mosher, J.C. [Los Alamos National Lab., NM (United States)

    1996-07-01

    A versatile phantom for use in evaluating forward and inverse methods for MEG and EEG has been designed and is currently being constructed. The phantom consists of three major components: (i) a 32-element cur- rent dipole array, (ii) a PC-controlled dipole driver with 32 isolated channels allowing independent control of each dipole, (iii) spherical and human-skull mounts in which the dipole array is placed. Materials were selected throughout the phantom to produce minimal field distortions and artifacts to enable acquisition of high quality EEG and MEG data. The dipoles are made from a rigid narrow (0.84 mm) stainless steel coax cable. The dipole drivers can be configured as either current or voltage sources, are independently programmable and fully isolated, and are capable of producing arbitrary bipolar waveforms up to a 200 Hz bandwidth. The spherical mount is a single shell sphere filled with conductive gelatin. The human skull mount has three shells: ``brain`` (conducting gelatin), ``skull`` (the skull is impregnated with a low conductivity conducting gelatin), and ``scalp`` (a thin layer of rubber latex mixed with NaCl to achieve a conductivity matched to the brain). The conductivities will be adjusted to achieve approximately an 80:1:80 ratio. Data collected to date from the spherical phantom shows excellent agreement between measured surface potentials and that predicted from theory (27 of the 32 dipoles give better than 99.9% rms fit) and negligible leakage between dipoles. We are currently completing construction of the skull mount.

  1. Solvents level dipole moments.

    Science.gov (United States)

    Liang, Wenkel; Li, Xiaosong; Dalton, Larry R; Robinson, Bruce H; Eichinger, Bruce E

    2011-11-03

    The dipole moments of highly polar molecules measured in solution are usually smaller than the molecular dipole moments that are calculated with reaction field methods, whereas vacuum values are routinely calculated in good agreement with available vapor phase data. Whether from Onsager's theory (or variations thereof) or from quantum mechanical methods, the calculated molecular dipoles in solution are found to be larger than those measured. The reason, of course, is that experiments measure the net dipole moment of solute together with the polarized (perturbed) solvent "cloud" surrounding it. Here we show that the reaction field charges that are generated in the quantum mechanical self-consistent reaction field (SCRF) method give a good estimate of the net dipole moment of the solute molecule together with the moment arising from the reaction field charges. This net dipole is a better description of experimental data than the vacuum dipole moment and certainly better than the bare dipole moment of the polarized solute molecule.

  2. Raising the last LEP dipole

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The last of the 3280 dipole magnets from the Large Electron-Positron (LEP) collider is seen on its journey to the surface on 12 February 2002. The LEP era, which began at CERN in 1989 and ended 2000, comes to an end.

  3. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  4. Surface Resistance Measurements and Estimate of the Beam-Induced Resistive Wall Heating of the LHC Dipole Beam Screen

    CERN Document Server

    Caspers, Friedhelm; Ruggiero, F; Tan, J

    1999-01-01

    An estimate of the resistive losses in the LHC beam screen is given from cold surface resistance measurements using the shielded pair technique, with particular emphasis on the effect of a high magnetic field. Two different copper coating methods, namely electro-deposition and co-lamination, have been evaluated. Experimental data are compared with theories including the anomalous skin effect and the magneto-resistance effect. It is shown whether the theory underestimates or not the losses depends strongly on the RRR value, on the magnetic field and on the surface characteristics. In the pessimistic case and for nominal machine parameters, the estimated beam-induced resistive wall heating can be as large as 260 mW/m for two circulating beams.

  5. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  6. Enhanced Light Output of Dipole Source in GaN-Based Nanorod Light-Emitting Diodes by Silver Localized Surface Plasmon

    Directory of Open Access Journals (Sweden)

    Huamao Huang

    2014-01-01

    Full Text Available The light output of dipole source in three types of light-emitting diodes (LEDs, including the conventional planar LED, the nanorod LED, and the localized surface plasmon (LSP assisted LED by inserting silver nanoparticles in the gaps between nanorods, was studied by use of two-dimensional finite difference time domain method. The height of nanorod and the size of silver nanoparticles were variables for discussion. Simulation results show that a large height of nanorod induces strong wavelength selectivity, which can be significantly enhanced by LSP. On condition that the height of nanorod is 400 nm, the diameter of silver nanoparticle is 100 nm, and the wavelength is 402.7 nm, the light-output efficiency for LSP assisted LED is enhanced by 190% or 541% as compared to the nanorod counterpart or the planar counterpart, respectively. The space distribution of Poynting vector was present to demonstrate the significant enhancement of light output at the resonant wavelength of LSP.

  7. High-field dipoles for future accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S.L.

    1984-09-01

    This report presents the concept for building superconducting accelerator dipoles with record high fields. Economic considerations favor the highest possible current density in the windings. Further discussion indicates that there is an optimal range of pinning strength for a superconducting material and that it is not likely for multifilamentary conductors to ever equal the potential performance of tape conductors. A dipole design with a tape-wound, inner high-field winding is suggested. Methods are detailed to avoid degradation caused by flux jumps and to overcome problems with the dipole ends. Concerns for force support structure and field precision are also addressed. An R and D program leading to a prototype 11-T dipole is outlined. Past and future importance of superconductivity to high-energy physics is evident from a short historical survey. Successful dipoles in the 10- to 20-T range will allow interesting options for upgrading present largest accelerators.

  8. Theoretical study on the ground state of the polar alkali-metal-barium molecules: Potential energy curve and permanent dipole moment

    International Nuclear Information System (INIS)

    Gou, Dezhi; Kuang, Xiaoyu; Gao, Yufeng; Huo, Dongming

    2015-01-01

    In this paper, we systematically investigate the electronic structure for the 2 Σ + ground state of the polar alkali-metal-alkaline-earth-metal molecules BaAlk (Alk = Li, Na, K, Rb, and Cs). Potential energy curves and permanent dipole moments (PDMs) are determined using power quantum chemistry complete active space self-consistent field and multi-reference configuration interaction methods. Basic spectroscopic constants are derived from ro-vibrational bound state calculation. From the calculations, it is shown that BaK, BaRb, and BaCs molecules have moderate values of PDM at the equilibrium bond distance (BaK:1.62 D, BaRb:3.32 D, and BaCs:4.02 D). Besides, the equilibrium bond length (4.93 Å and 5.19 Å) and dissociation energy (0.1825 eV and 0.1817 eV) for the BaRb and BaCs are also obtained

  9. Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: an event-related potential and dipole-model analysis.

    Science.gov (United States)

    Giard, M H; Lavikahen, J; Reinikainen, K; Perrin, F; Bertrand, O; Pernier, J; Näätänen, R

    1995-01-01

    Abstract The present study analyzed the neural correlates of acoustic stimulus representation in echoic sensory memory. The neural traces of auditory sensory memory were indirectly studied by using the mismatch negativity (MMN), an event-related potential component elicited by a change in a repetitive sound. The MMN is assumed to reflect change detection in a comparison process between the sensory input from a deviant stimulus and the neural representation of repetitive stimuli in echoic memory. The scalp topographies of the MMNs elicited by pure tones deviating from standard tones by either frequency, intensity, or duration varied according to the type of stimulus deviance, indicating that the MMNs for different attributes originate, at least in part, from distinct neural populations in the auditory cortex. This result was supported by dipole-model analysis. If the MMN generator process occurs where the stimulus information is stored, these findings strongly suggest that the frequency, intensity, and duration of acoustic stimuli have a separate neural representation in sensory memory.

  10. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  11. Electric dipole moments reconsidered

    International Nuclear Information System (INIS)

    Rupertsberger, H.

    1989-01-01

    The electric dipole moments of elementary particles, atoms, molecules and their connection to the electric susceptibility are discussed for stationary states. Assuming rotational invariance it is emphasized that for such states only in the case of a parity and time reversal violating interaction the considered particles can obtain a nonvanishing expectation value for the electric dipole moment. 1 fig., 13 refs. (Author)

  12. Monolayer Phases of a Dipolar Perylene Derivative on Au(111) and Surface Potential Build-Up in Multilayers.

    Science.gov (United States)

    Niederhausen, Jens; Kersell, Heath R; Christodoulou, Christos; Heimel, Georg; Wonneberger, Henrike; Müllen, Klaus; Rabe, Jürgen P; Hla, Saw-Wai; Koch, Norbert

    2016-04-19

    9-(Bis-p-tert-octylphenyl)-amino-perylene-3,4-dicarboxy anhydride (BOPA-PDCA) is a strongly dipolar molecule representing a group of asymmetrically substituted perylenes that are employed in dye-sensitized solar cells and hold great promise for discotic liquid crystal applications. Thin BOPA-PDCA films with orientated dipole moments can potentially be used to tune the energy-level alignment in electronic devices and store information. To help assessing these prospects, we here elucidate the molecular self-assembly and electronic structure of BOPA-PCDA employing room temperature scanning tunneling microscopy and spectroscopy in combination with ultraviolet and X-ray photoelectron spectroscopies. BOPA-PCDA monolayers on Au(111) exclusively form in-plane antiferroelectric phases. The molecular arrangements, the increase of the average number of molecules per unit cell via ripening, and the rearrangement upon manipulation with the STM tip indicate an influence of the dipole moment on the molecular assembly and the rearrangement. A slightly preferred out-of-plane orientation of the molecules in the multilayer induces a surface potential of 1.2 eV. This resembles the giant surface potential effect that was reported for vacuum-deposited tris(8-hydroxyquinoline)aluminum and deemed applicable for data storage. Notably, the surface potential in the case of BOPA-PDCA can in part be reversibly removed by visible light irradiation.

  13. Lepton dipole moments

    CERN Document Server

    Marciano, William J

    2010-01-01

    This book provides a self-contained description of the measurements of the magnetic dipole moments of the electron and muon, along with a discussion of the measurements of the fine structure constant, and the theory associated with magnetic and electric dipole moments. Also included are the searches for a permanent electric dipole moment of the electron, muon, neutron and atomic nuclei. The related topic of the transition moment for lepton flavor violating processes, such as neutrinoless muon or tauon decays, and the search for such processes are included as well. The papers, written by many o

  14. Optical dipole mirror for cold atoms based on a metallic diffraction grating

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Bartoszek-Bober, Dobroslawa; Panas, Roman

    2014-01-01

    We report on the realization of a plasmonic dipole mirror for cold atoms based on a metallic grating coupler. A cloud of atoms is reflected by the repulsive potential generated by surface plasmon polaritons (SPPs) excited on a reflection gold grating by a 780 nm laser beam. Experimentally...

  15. Optical dipole mirror for cold atoms based on a metallic diffraction grating

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Bartoszek-Bober, Dobroslawa; Panas, Roman

    We report on the realization of a plasmonic dipole mirror for cold atoms based on a metallic grating coupler. A cloud of atoms is reflected by the repulsive potential generated by surface plasmon polaritons (SPPs) excited on a reflection gold grating by a 780 nm laser beam. Experimentally...

  16. Urban Surfaces and Heat Island Mitigation Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Hashem; Akbari, Hashem; Shea Rose, Leanna

    2007-06-14

    Data on materials and surface types that comprise a city, i.e. urban fabric, are needed in order to estimate the effects of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city. We discuss the results of a semi-automatic statistical approach used to develop data on surface-type distribution and urban-fabric makeup using aerial color orthophotography, for four metropolitan areas of Chicago, IL, Houston, TX, Sacramento, CA, and Salt Lake City, UT. The digital high resolution (0.3 to 0.5-m) aerial photographs for each of these metropolitan areas covers representative urban areas ranging from 30 km{sup 2} to 52 km{sup 2}. Major land-use types examined included: commercial, residential, industrial, educational, and transportation. On average, for the metropolitan areas studied, vegetation covers about 29-41% of the area, roofs 19-25%, and paved surfaces 29-39%. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the tree canopies, vegetation covers about 20-37% of the area, roofs 20-25%, and paved surfaces 29-36%.

  17. Some dipole shower studies

    Science.gov (United States)

    Cabouat, Baptiste; Sjöstrand, Torbjörn

    2018-03-01

    Parton showers have become a standard component in the description of high-energy collisions. Nowadays most final-state ones are of the dipole character, wherein a pair of partons branches into three, with energy and momentum preserved inside this subsystem. For initial-state showers a dipole picture is also possible and commonly used, but the older global-recoil strategy remains a valid alternative, wherein larger groups of partons share the energy-momentum preservation task. In this article we introduce and implement a dipole picture also for initial-state radiation in Pythia, and compare with the existing global-recoil one, and with data. For the case of Deeply Inelastic Scattering we can directly compare with matrix element expressions and show that the dipole picture gives a very good description over the whole phase space, at least for the first branching.

  18. Interaction of counter-streaming plasma flows in dipole magnetic field

    OpenAIRE

    Shaikhislamov, I F; Posukh, V G; Melekhov, A V; Prokopov, P A; Boyarintsev, E L; Zakharov, Yu P; Ponomarenko, A G

    2017-01-01

    Transient interaction of counter-streaming super-sonic plasma flows in dipole magnetic dipole is studied in laboratory experiment. First quasi-stationary flow is produced by teta-pinch and forms a magnetosphere around the magnetic dipole while laser beams focused at the surface of the dipole cover launch second explosive plasma expanding from inner dipole region outward. Laser plasma is energetic enough to disrupt magnetic field and to sweep through the background plasma for large distances. ...

  19. Frequency response in surface-potential driven electrohydrodynamics

    DEFF Research Database (Denmark)

    Ejsing, Louise Wellendorph; Smistrup, Kristian; Pedersen, Christian Møller

    2006-01-01

    capacitance where the net flow rate is, in general, zero while harmonic rolls as well as time-averaged vortexlike components may exist depending on the spatial symmetry and extension of the surface potential. In general, the system displays a resonance behavior at a frequency corresponding to the inverse RC...... time of the system. Different surface potentials share the common feature that the resonance frequency is inversely proportional to the characteristic length scale of the surface potential. For the asymptotic frequency dependence above resonance we find a omega(-2) power law for surface potentials...

  20. Electric Dipole Antenna: A Source of Gravitational Radiation

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2013-07-01

    Full Text Available In this article, the gravitational scalar potential due to an oscillating electric dipole antenna placed in empty space is derived. The gravitational potential obtained propagates as a wave. The gravitational waves have phase velocity equal to the speed of light in vacuum (c at the equatorial plane of the electric dipole antenna, unlike electromagnetic waves from the dipole antenna that cancel out at the equatorial plane due to charge symmetry.

  1. Bernoulli potential at a superconductor surface

    Czech Academy of Sciences Publication Activity Database

    Lipavský, Pavel; Koláček, Jan; Mareš, Jiří J.; Morawetz, K.

    2001-01-01

    Roč. 65, - (2001), s. 012507-1-012507-3 ISSN 0163-1829 R&D Projects: GA ČR GA202/00/0643; GA ČR GA202/99/0410; GA AV ČR IAA1010806; GA AV ČR IAA1010919 Institutional research plan: CEZ:AV0Z1010914 Keywords : Hall effect * Bernoulli potential Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.070, year: 2001

  2. The electric potential of the lunar surface

    Science.gov (United States)

    Fenner, M. A.; Freeman, J. W., Jr.; Hills, H. K.

    1973-01-01

    Acceleration and detection of the lunar thermal ionosphere in the presence of the lunar electric field yields a value of at least +10 V for the lunar electric potential for solar zenith angles between approximately 20 and 45 deg and in the magnetosheath or solar wind. An enhanced positive ion flux is observed with the ALSEP Suprathermal Ion Detector when a pre-acceleration voltage attains certain values. This enhancement is greater when the moon is in the solar wind as opposed to the magnetosheath.

  3. Lunar electric fields, surface potential and associated plasma sheaths

    Science.gov (United States)

    Freeman, J. W.; Ibrahim, M.

    1975-01-01

    A review is given of studies of the electric-field environment of the moon. Surface electric potentials are reported for the dayside and terminator regions, electron and ion densities in the plasma sheath adjacent to each surface-potential regime are evaluated, and the corresponding Debye lengths are estimated. The electric fields, which are approximated by the surface potential over the Debye length, are shown to be at least three orders of magnitude higher than the pervasive solar-wind electric field and to be confined to within a few tens of meters of the lunar surface.

  4. Green's functions potential fields on surfaces

    CERN Document Server

    Melnikov, Yuri A

    2017-01-01

    This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.

  5. Surface Potential of Polycrystalline Hematite in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Tajana Preočanin

    2011-01-01

    Full Text Available The surface potential of polycrystalline hematite in aqueous sodium perchlorate environment as a function of pH was examined. Surface potential of hematite was obtained from measured electrode potential of a nonporous polycrystalline hematite electrode. Acidic solution was titrated with base, and the backward titration with acid was performed. Substantial hysteresis was obtained which enabled location of the point of zero potential and equilibrium values of surface potentials. The theoretical interpretation of the equilibrium data was performed by applying the surface complexation model and the thermodynamic equilibrium constants for the first and the second step of surface protonation was obtained as logK1∘=11.3;logK2∘=2.8.

  6. Surface potential modeling and reconstruction in Kelvin probe force microscopy.

    Science.gov (United States)

    Xu, Jie; Wu, Yangqing; Li, Wei; Xu, Jun

    2017-09-08

    Kelvin probe force microscopy (KPFM) measurement has been extensively applied in metallic, semiconductor and organic electronic or photovoltaic devices, to characterize the local contact potential difference or surface potential of the samples at the nanoscale. Here, a comprehensive modeling of surface potential in KPFM is established, from the well-known single capacitance model to a precise electrodynamic model, considering the long range property of the electrostatic force in KPFM. The limitations and relations of different models are also discussed. Besides, the feedback condition of the KPFM system is reconsidered and modified, showing that the influence of the cantilever has been overestimated by about 20% in previous reports. Afterwards, the surface potential of charged Si-nanocrystals is reconstructed based on the electrodynamic model, and the calculated surface charge density is very consistent with the macroscopic capacitance-voltage (C-V) measurement. A deep understanding and correct reconstruction of surface potential is crucial to the quantitative analysis of KPFM results.

  7. Photon scattering by the giant dipole resonance

    International Nuclear Information System (INIS)

    Bowles, T.J.; Holt, R.J.; Jackson, H.E.; McKeown, R.D.; Specht, J.R.

    1979-01-01

    Although many features of the giant dipole resonance are well known, the coupling between the basic dipole oscillation and other nuclear collective degrees of freedom such as surface vibrations and rotations is poorly understood. This aspect was investigated by elastic and inelastic bremsstrahlung scattering of tagged photons over the energy range 15 to 22 MeV. Target nuclei were 60 Ni, 52 Cr, 56 Fe, 92 Mo, and 96 Mo. Scattering and absorption cross sections are tabulated, along with parameters obtained from a two-Lorentzian analysis of the scattering cross sections; measured spectra are shown. It was necessary to remove Thomson scattering from the experimental results. It was found that coupling to surface vibrations in the giant dipole resonance is much weaker than the dynamic collective model suggests. The elastic scattering cross section for all targets but 60 Ni showed structure that is not evident in the absorption cross section measurement. 12 figures, 2 tables

  8. Potential energy surface and rovibrational energy levels of the H2-CS van der Waals complex.

    Science.gov (United States)

    Denis-Alpizar, Otoniel; Stoecklin, Thierry; Halvick, Philippe; Dubernet, Marie-Lise; Marinakis, Sarantos

    2012-12-21

    Owing to its large dipole, astrophysicists use carbon monosulfide (CS) as a tracer of molecular gas in the interstellar medium, often in regions where H(2) is the most abundant collider. Predictions of the rovibrational energy levels of the weakly bound complex CS-H(2) (not yet observed) and also of rate coefficients for rotational transitions of CS in collision with H(2) should help to interpret the observed spectra. This paper deals with the first goal, i.e., the calculation of the rovibrational energy levels. A new four-dimensional intermolecular potential energy surface for the H(2)-CS complex is presented. Ab initio potential energy calculations were carried out at the coupled-cluster level with single and double excitations and a perturbative treatment of triple excitations, using a quadruple-zeta basis set and midbond functions. The potential energy surface was obtained by an analytic fit of the ab initio data. The equilibrium structure of the H(2)-CS complex is found to be linear with the carbon pointing toward H(2) at the intermolecular separation of 8.6 a(o). The corresponding well depth is -173 cm(-1). The potential was used to calculate the rovibrational energy levels of the para-H(2)-CS and ortho-H(2)-CS complexes. The present work provides the first theoretical predictions of these levels. The calculated dissociation energies are found to be 35.9 cm(-1) and 49.9 cm(-1), respectively, for the para and ortho complexes. The second virial coefficient for the H(2)-CS pair has also been calculated for a large range of temperature. These results could be used to assign future experimental spectra and to check the accuracy of the potential energy surface.

  9. Effects of dipole-dipole interaction between cigar-shaped BECs of cold alkali atoms: towards inverse-squared interactions

    Science.gov (United States)

    Yu, Yue; Luo, Zhuxi; Wang, Ziqiang

    2014-07-01

    We show that the dipole-dipole coupling between Wannier modes in cigar-shaped Bose-Einstein condensates (BECs) is significantly enhanced while the short-range coupling is strongly suppressed. As a result, the dipole-dipole interaction can become the dominant interaction between ultracold alkali Bose atoms. In the long length limit of a cigar-shaped BEC, the resulting effective one-dimensional models possess an effective inverse squared interacting potential, the Calogero-Sutherland potential, which plays a fundamental role in many fields of contemporary physics; but its direct experimental realization has been a challenge for a long time. We propose to realize the Calogero-Sutherland model in ultracold alkali Bose atoms and study the effects of the dipole-dipole interaction.

  10. Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: A simulation study

    Science.gov (United States)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2018-01-01

    Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.

  11. Representing Global Reactive Potential Energy Surfaces Using Gaussian Processes.

    Science.gov (United States)

    Kolb, Brian; Marshall, Paul; Zhao, Bin; Jiang, Bin; Guo, Hua

    2017-04-06

    Representation of multidimensional global potential energy surfaces suitable for spectral and dynamical calculations from high-level ab initio calculations remains a challenge. Here, we present a detailed study on constructing potential energy surfaces using a machine learning method, namely, Gaussian process regression. Tests for the 3 A″ state of SH 2 , which facilitates the SH + H ↔ S( 3 P) + H 2 abstraction reaction and the SH + H' ↔ SH' + H exchange reaction, suggest that the Gaussian process is capable of providing a reasonable potential energy surface with a small number (∼1 × 10 2 ) of ab initio points, but it needs substantially more points (∼1 × 10 3 ) to converge reaction probabilities. The implications of these observations for construction of potential energy surfaces are discussed.

  12. Ab initio adiabatic and quasidiabatic potential energy surfaces of H ...

    Indian Academy of Sciences (India)

    s12039-015-1022-8. Ab initio adiabatic and quasidiabatic potential energy surfaces of H. ++. CN system. BHARGAVA ANUSURI and SANJAY KUMAR. ∗. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.

  13. Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime

    Science.gov (United States)

    Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.

    2017-10-01

    We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.

  14. Surface motion and confinement potential for a microwave confined corona

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1979-07-01

    Approximate time dependent solutions for surface velocities and potentials are given for a plane polarized microwave field confining a hot, over-dense plasma corona. Steady state solutions to Poissons' equation can be applied to the time dependent case, provided transit time effects are included. The product of ion pressure and potential wave (surface) velocity gives an average heating rate approx. 7/32 NKT 0 V/sub theta/ directly to the ions

  15. High-accuracy water potential energy surface for the calculation of infrared spectra

    Science.gov (United States)

    Mizus, Irina I.; Kyuberis, Aleksandra A.; Zobov, Nikolai F.; Makhnev, Vladimir Yu.; Polyansky, Oleg L.; Tennyson, Jonathan

    2018-03-01

    Transition intensities for small molecules such as water and CO2 can now be computed with such high accuracy that they are being used to systematically replace measurements in standard databases. These calculations use high-accuracy ab initio dipole moment surfaces and wave functions from spectroscopically determined potential energy surfaces (PESs). Here, an extra high-accuracy PES of the water molecule (H216O) is produced starting from an ab initio PES which is then refined to empirical rovibrational energy levels. Variational nuclear motion calculations using this PES reproduce the fitted energy levels with a standard deviation of 0.011 cm-1, approximately three times their stated uncertainty. The use of wave functions computed with this refined PES is found to improve the predicted transition intensities for selected (problematic) transitions. A new room temperature line list for H216O is presented. It is suggested that the associated set of line intensities is the most accurate available to date for this species. This article is part of the theme issue `Modern theoretical chemistry'.

  16. High-accuracy water potential energy surface for the calculation of infrared spectra.

    Science.gov (United States)

    Mizus, Irina I; Kyuberis, Aleksandra A; Zobov, Nikolai F; Makhnev, Vladimir Yu; Polyansky, Oleg L; Tennyson, Jonathan

    2018-03-13

    Transition intensities for small molecules such as water and CO 2 can now be computed with such high accuracy that they are being used to systematically replace measurements in standard databases. These calculations use high-accuracy ab initio dipole moment surfaces and wave functions from spectroscopically determined potential energy surfaces (PESs). Here, an extra high-accuracy PES of the water molecule (H 2 16 O) is produced starting from an ab initio PES which is then refined to empirical rovibrational energy levels. Variational nuclear motion calculations using this PES reproduce the fitted energy levels with a standard deviation of 0.011 cm -1 , approximately three times their stated uncertainty. The use of wave functions computed with this refined PES is found to improve the predicted transition intensities for selected (problematic) transitions. A new room temperature line list for H 2 16 O is presented. It is suggested that the associated set of line intensities is the most accurate available to date for this species.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  17. Dissecting an LHC dipole

    CERN Multimedia

    2004-01-01

    The cold mass of a 15-metre main dipole magnet has some fifteen different components. All the main components are manufactured under CERN's direct responsibility. Four of them transit through CERN before being shipped to the dipole assembly contractors, namely the cable, which constitutes the magnet's superconducting core (see Bulletin 14/2004), the beam screens, the heat exchanger tubes and the cold bore beam tubes. The two latter components transit via Building 927 where they undergo part of the production process. The 58-mm diameter heat exchanger tubes will remove heat from the magnets using superfluid helium. The 53-mm diameter cold bore tubes will be placed under vacuum to allow the twin beams to circulate around the LHC.

  18. Potential utility of the thematic mapper for surface mine monitoring

    International Nuclear Information System (INIS)

    Irons, J.R.; Lachowski, H.M.

    1981-01-01

    One of many potential applications of the thematic mapper (TM) is surface mine monitoring. To assess this potential, data acquired by an aircraft multispectral scanner over Pennsylvania surface mines were preprocessed to simulate the anticipated spectral, spatial, and radiometric characteristics of TM data. False color imagery and thematic maps were derived from the simulated data and compared to imagery and maps derived from LANDSAT multispectral scanner subsystems data. On the basis of this comparison, TM data should definitely increase the detail and accuracy of remotely acquired surface mine information and may enable the remote determination of compliance with reclamation regulations

  19. ALICE dipole and decoration

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The ALICE cavern receives a painting made specially to mark the 50th anniversary of CERN that is mounted on the L3 solenoid magnet, reused from the LEP experiment that ran from 1989 to 2000. The dipole, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid. These muons are heavy electrons that interact less with matter allowing them to be studied at large distances from the interaction point.

  20. Giant Primeval Magnetic Dipoles

    Science.gov (United States)

    Thompson, Christopher

    2017-07-01

    Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.

  1. Dipole defects in beryl

    International Nuclear Information System (INIS)

    Holanda, B A; Cordeiro, R C; Blak, A R

    2010-01-01

    Dipole defects in gamma irradiated and thermally treated beryl (Be 3 Al 2 Si 6 O 18 ) samples have been studied using the Thermally Stimulated Depolarization Currents (TSDC) technique. TSDC experiments were performed in pink (morganite), green (emerald), blue (aquamarine) and colourless (goshenite) natural beryl. TSDC spectra present dipole peaks at 190K, 220K, 280K and 310K that change after gamma irradiation and thermal treatments. In morganite samples, for thermal treatments between 700K and 1100K, the 280K peak increase in intensity and the band at 220K disappears. An increase of the 280K peak and a decrease of the 190K peak were observed in the TSDC spectra of morganite after a gamma irradiation of 25kGy performed after the thermal treatments. In the case of emerald samples, thermal treatments enhanced the 280K peak and gamma irradiation partially destroyed this band. The goshenite TSDC spectra present only one band at 280K that is not affected either by thermal treatments or by gamma irradiation. All the observed peaks are of dipolar origin because the intensity of the bands is linearly dependent on the polarization field, behaviour of dipole defects. The systematic study, by means of TSDC measurements, of ionizing irradiation effects and thermal treatments in these crystals makes possible a better understanding of the role played by the impurities in beryl crystals.

  2. Osteogenic potential of laser modified and conditioned titanium zirconium surfaces

    Directory of Open Access Journals (Sweden)

    P David Charles

    2016-01-01

    Full Text Available Statement of Problem: The osseointegration of dental implant is related to their composition and surface treatment. Titanium zirconium (TiZr has been introduced as an alternative to the commercially pure titanium and its alloys as dental implant material, which is attributed to its superior mechanical and biological properties. Surface treatments of TiZr have been introduced to enhance their osseointegration ability; however, reliable, easy to use surface modification technique has not been established. Purpose: The purpose of this study was to evaluate and compare the effect of neodymium-doped yttrium aluminum garnet (Nd-YAG laser surface treatment of TiZr implant alloy on their osteogenic potential. Materials and Methods: Twenty disc-shaped samples of 5 mm diameter and 2 mm height were milled from the TiZr alloy ingot. The polished discs were ultrasonically cleaned in distilled water. Ten samples each were randomly selected as Group A control samples and Group B consisted of Nd-YAG laser surface etched and conditioned test samples. These were evaluated for cellular response. Cellular adhesion and proliferation were quantified, and the results were statistically analyzed using nonparametric analysis. Cellular morphology was observed using electron and epiflurosence microscopy. Results: Nd-YAG laser surface modified and conditioned TiZr samples increased the osteogenic potential. Conclusion: Nd-YAG laser surface modification of TiZr, improves the cellular activity, surface roughness, and wettability, thereby increasing the osteogenic potential.

  3. Neutral dipole-dipole dimers: A new field in science

    Science.gov (United States)

    Kosower, Edward M.; Borz, Galina

    2018-03-01

    Dimer formation with dipole neutralization produces species such as low polarity water (LPW) compatible with hydrophobic surfaces (Phys. Chem. Chem. Phys. 2015, 17, 24895-24900) Dimerization and dipole neutralization occurs for N-methylacetamide on polyethylene, a behavior drastically different from its contortions in acetonitrile on AgBr:AgCl planar crystals (AgX) (ChemPhysChem 2014, 15, 3598-3607). The weak infrared absorption of the amide dimer on polyethylene is shown experimentally. Dimerization of palmitic acid is shown along with some of the many ramifications for intracellular systems. Polyoligomers of water are present on polyethylene surfaces. Some high resolution spectra of three of the polyoligomers of water are shown along with a mechanistic scheme for polyoligomer formation and dissolution. The structures of some of the oligomers are known from spectroscopic studies of water on AgX. The scope of the article begins with PE, generally accepted as hydrophobic. The IR of PE revealed not only that water was present but that it appeared in two forms, oligomers (O) and polyoligomers (PO). How did we recognize what they were? These species had been observed as especially strong "marker" peaks in the spectra1 of water placed on planar AgX, a platform developed by Katzir and his coworkers [6]. But there was a problem: the proximity to PE of oligomers with substantial (calculated) dipole moments and thus polarity, including cyclic hexamers of water (chair and boat forms), the cyclic pentamer, the books I and II, and the cyclic trimer [7a]. Another link was needed, a role perfectly fit by the already cited low polarity water (LPW). The choice was experimentally supported by the detection of low intensity absorption in the bending region.Some important generalities flow from these results. What other dimers might be present in the biological or chemical world? Palmitic acid dimer (PAD) would be a candidate for decreasing the polarity of the acid (PA). Another

  4. On the dipole approximation with error estimates

    Science.gov (United States)

    Boßmann, Lea; Grummt, Robert; Kolb, Martin

    2018-01-01

    The dipole approximation is employed to describe interactions between atoms and radiation. It essentially consists of neglecting the spatial variation of the external field over the atom. Heuristically, this is justified by arguing that the wavelength is considerably larger than the atomic length scale, which holds under usual experimental conditions. We prove the dipole approximation in the limit of infinite wavelengths compared to the atomic length scale and estimate the rate of convergence. Our results include N-body Coulomb potentials and experimentally relevant electromagnetic fields such as plane waves and laser pulses.

  5. Ab initio Potential Energy Surface for H-H2

    Science.gov (United States)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  6. Installation Strategy for the LHC Main Dipoles

    CERN Multimedia

    Fartoukh, Stephane David

    2004-01-01

    All positions in the LHC machine are not equivalent in terms of beam requirements on the geometry and the field quality of the main dipoles. In the presence of slightly or strongly out-of tolerance magnets, a well-defined installation strategy will therefore contribute to preserve or even optimize the performance of the machine. Based on the present status of the production, we have anticipated a list of potential issues (geometry, transfer function, field direction and random b3) which, combined by order of priority, have been taken into account to define a simple but efficient installation algorithm for the LHC main dipoles. Its output is a prescription for installing the available dipoles in sequence while reducing to an absolute minimum the number of holes required by geometry or FQ issues.

  7. The Contribution of Surface Potential to Diverse Problems in Electrostatics

    Science.gov (United States)

    Horenstein, M.

    2015-10-01

    Electrostatics spans many different subject areas. Some comprise “good electrostatics,” where charge is used for desirable purposes. Such areas include industrial manufacturing, electrophotography, surface modification, precipitators, aerosol control, and MEMS. Other areas comprise “bad electrostatics,” where charge is undesirable. Such areas include hazardous discharges, ESD, health effects, nuisance triboelectrification, particle contamination, and lightning. Conference proceedings such as this one inevitably include papers grouped around these topics. One common thread throughout is the surface potential developed when charge resides on an insulator surface. Often, the charged insulator will be in intimate contact with a ground plane. At other times, the charged insulator will be isolated. In either case, the resulting surface potential is important to such processes as propagating brush discharges, charge along a moving web, electrostatic biasing effects in MEMS, non-contacting voltmeters, field-effect transistor sensors, and the maximum possible charge on a woven fabric.

  8. Probing the rate-determining region of the potential energy surface for a prototypical ion-molecule reaction.

    Science.gov (United States)

    Xie, Changjian; Liu, Xinguo; Sweeny, Brendan C; Miller, Thomas M; Ard, Shaun G; Shuman, Nicholas S; Viggiano, Albert A; Guo, Hua

    2018-03-13

    We report a joint experimental-theoretical study of the F -  + HCl → HF + Cl - reaction kinetics. The experimental measurement of the rate coefficient at several temperatures was made using the selected ion flow tube method. Theoretical rate coefficients are calculated using the quasi-classical trajectory method on a newly developed global potential energy surface, obtained by fitting a large number of high-level ab initio points with augmentation of long-range electrostatic terms. In addition to good agreement between experiment and theory, analyses suggest that the ion-molecule reaction rate is significantly affected by shorter-range interactions, in addition to the traditionally recognized ion-dipole and ion-induced dipole terms. Furthermore, the statistical nature of the reaction is assessed by comparing the measured and calculated HF product vibrational state distributions to that predicted by the phase space theory.This article is part of the theme issue 'Modern theoretical chemistry'. © 2018 The Author(s).

  9. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    DEFF Research Database (Denmark)

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and double......-phosgene surfaces were found to have absolute minima of -72.1, -140.4, and -326.6 cm -1 at distances between the rare-gas atom and the phosgene center of mass of 3.184, 3.254, and 3.516 Å, respectively. The potentials were further used in the evaluation of rovibrational states and the rotational constants...

  10. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  11. Reversible Compositional Control of Oxide Surfaces by Electrochemical Potentials

    KAUST Repository

    Mutoro, Eva

    2012-01-05

    Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically/ionically conducting, and thus, they have been used in a number of solid-state devices such as solid oxide fuel cells (SOFCs) and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface compositions is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface compositional changes of La 0.8Sr 0.2CoO 3-δ (LSC 113), (La 0.5Sr 0.5) 2CoO 4±δ (LSC 214), and LSC 214-decorated LSC 113 films (LSC 113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr were found for the LSC 113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites. © 2011 American Chemical Society.

  12. Effective medium potentials for molecule-surface interactions: H2 on Cu and Ni surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet

    1989-01-01

    outside metal surfaces and the applicability is illustrated for H2 adsorbing on various Cu and Ni surfaces. Although very approximate, the calculated potentials seem to include a number of features observed experimentally: Ni is more active in dissociating H2 than Cu, and open surfaces are more active...... than close-packed ones. Moreover, the method is simple enough that one can contemplate studying variations in dissociation pathways over the surface unit cell. For the Cu surfaces these variations are substantial accounting for at least part of the variation of the sticking coefficient with the kinetic...

  13. Lunar Surface Potential Increases during Terrestrial Bow Shock Traversals

    Science.gov (United States)

    Collier, Michael R.; Stubbs, Timothy J.; Hills, H. Kent; Halekas, Jasper; Farrell, William M.; Delory, Greg T.; Espley, Jared; Freeman, John W.; Vondrak, Richard R.; Kasper, Justin

    2009-01-01

    Since the Apollo era the electric potential of the Moon has been a subject of interest and debate. Deployed by three Apollo missions, Apollo 12, Apollo 14 and Apollo 15, the Suprathermal Ion Detector Experiment (SIDE) determined the sunlit lunar surface potential to be about +10 Volts using the energy spectra of lunar ionospheric thermal ions accelerated toward the Moon. We present an analysis of Apollo 14 SIDE "resonance" events that indicate the lunar surface potential increases when the Moon traverses the dawn bow shock. By analyzing Wind spacecraft crossings of the terrestrial bow shock at approximately this location and employing current balancing models of the lunar surface, we suggest causes for the increasing potential. Determining the origin of this phenomenon will improve our ability to predict the lunar surface potential in support of human exploration as well as provide models for the behavior of other airless bodies when they traverse similar features such as interplanetary shocks, both of which are goals of the NASA Lunar Science Institute's Dynamic Response of the Environment At the Moon (DREAM) team.

  14. Modeling the Electric Potential and Surface Charge Density Near Charged Thunderclouds

    Science.gov (United States)

    Neel, Matthew Stephen

    2018-03-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and cloud-to-ground lightning. We wish to examine the latter form, in which upward leaders from Earth connect with downward leaders from the cloud to form a plasma channel and produce lightning. Much of the literature indicates that the lower part of a thundercloud becomes negatively charged while the upper part becomes positively charged via convective charging, although the opposite polarity can certainly exist along with various, complex intra-cloud currents. It is estimated that >90% of cloud-to-ground lightning is "negative lightning," or the flow of charges from the bottom of the cloud, while the remaining the flow of charges from the top of the cloud. We wish to understand the electric potential surrounding charged thunderclouds as well as the resulting charge density on the surface of Earth below them. In this paper we construct a simple and adaptable model that captures the very basic features of the cloud/ground system and that exhibits conditions favorable for both forms of lightning. In this way, we provide a practical application of electrostatic dipole physics as well as the method of images that can serve as a starting point for further modeling and analysis by students.

  15. Surface potential of the water liquid-vapor interface

    Science.gov (United States)

    Wilson, Michael A.; Pohorille, Andrew; Pratt, Lawrence R.

    1988-01-01

    An analysis of an extended molecular dynamics calculation of the surface potential (SP) of the water liquid-vapor interface is presented. The SP predicted by the TIP4P model is -(130 + or - 50) mV. This value is of reasonable magnitude but of opposite sign to the expectations based on laboratory experiments. The electrostatic potential shows a nonmonotonic variation with depth into the liquid.

  16. Lack of screening in the continuous dipole systems

    International Nuclear Information System (INIS)

    Park, Y.M.; Princeton Univ., NJ

    1979-01-01

    We study continuos statistical systems interacting via a regularized dipole potential in the grand canonical ensemble. In the explicity given region of high temperature (or low density) we show that the effective potential between two parallel dipoles is not absolutely integrable (it is, however, square integrable), which implies that the effective potential does not fall faster than /x/ -3 in some directions. (orig.) 891 HJ/orig. 892 MKO

  17. Emerging interface dipole versus screening effect in copolymer/metal nano-layered systems

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, V., E-mail: v.torrisi@unict.it [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania (Italy); Ruffino, F. [Dipartimento di Fisica ed Astronomia-Università di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy); Liscio, A. [Istituto per la Sintesi e la Fotoreattività CNR, via Gobetti 101, 40129, Bologna (Italy); Grimaldi, M.G. [Dipartimento di Fisica ed Astronomia-Università di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy); Marletta, G. [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania (Italy)

    2015-12-30

    Graphical abstract: - Highlights: • Gold/copolymer multilayered thin films are prepared. • Mapping of the multilayers surface potential are performed by Kelvin Probe Force Microscopy. • Surface potential is controlled by the thickness and the surface coverage of the gold layer. • The work function of the gold layer is influenced by the underlying copolymer layer. - Abstract: Despite to the importance on the charge carrier injection and transport at organic/metal interface, there is yet an incomplete estimation of the various contribution to the overall dipole. This work shows how the mapping of the surface potential performed by Kelvin Probe Force Microscopy (KPFM) allows the direct observation of the interface dipole within an organic/metal multilayered structure. Moreover, we show how the sub-surface sensitivity of the KPFM depends on the thickness and surface coverage of the metallic layer. This paper proposes a way to control the surface potential of the exposed layer of an hybrid layered system by controlling the interface dipole at the organic/metal interface as a function of the nanometer scale thickness and the surface coverage of the metallic layer. We obtained a layered system constituted by repeated sequence of a copolymer film, poly(n-butylacrylate)-b-polyacrilic acid, and Au layer. We compared the results obtained by means of scanning probe microscopy technique with the results of the KPFM technique, that allows us to obtain high-contrast images of the underlying layer of copolymer behind a typical threshold, on the nanoscale, of the thickness of the metal layer. We considered the effect of the morphology of the gold layer on the covered area at different thicknesses by using the scanning electron microscopy technique. This finding represents a step forward towards the using of dynamic atomic force microscopy based characterization to explore the electrical properties of the sub-surface states of layered nanohybrid, that is a critical point for

  18. Agronomic potential of some agricultural wastes as surface mulches ...

    African Journals Online (AJOL)

    Studies were carried out at the Teaching and Research Farm of the University of Cape Coast, in the minor seasons of 1992 and 1993, to assess the agronomic potential of some common agricultural wastes as surface mulches in terms of weed control, nematode population in soil, root-knot incidence and growth and yield of ...

  19. Constructing ab initio and empirical potential energy surfaces for water

    International Nuclear Information System (INIS)

    Kain, Jacqueline Sophie

    2001-01-01

    The infrared spectrum of water is possibly one of the most well studied and yet portions of it are still poorly understood. Recently, significant advances have been made in assigning water spectra using variational nuclear calculations. The major factor determining the accuracy of ro-vibrational spectra of water is the accuracy of the underlying Potential Energy Surface. Even the most accurate ab initio Potential Energy Surface does not reproduce the Born-Oppenheimer surface to sufficient accuracy for spectroscopic studies. Furthermore, effects beyond this model such as the adiabatic correction, the relativistic correction and the non-adiabatic correction have to be considered. This thesis includes a discussion on how the relativistic correction was calculated, for the water molecule, from first-order perturbation theory. The relativistic correction improved vibrational stretching motion while making the prediction of the bending modes far worse. For rotational motion the relativistic effect had an increasing effect with increasing Ka. A further alteration to the ab initio calculations is introduced by adjusting the barrier to linearity in the water potential. This alteration to the barrier was considered in order to compensate for the lack of convergence of quantum chemical calculations of the Born-Oppenheimer surface. This barrier attempts to represent the change in the potential from linear to equilibrium. We show the improvements this has on the calculated energy levels by comparison with the HITRAN database. This then led the way to the improved spectroscopic potential presented here in this thesis. This new spectroscopic potential reduces the overall standard deviation significantly for vibrational and rotational energy levels. (author)

  20. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  1. Magnetic dipoles and electric currents

    OpenAIRE

    Corbó, Guido; Testa, Massimo

    2009-01-01

    We discuss several similarities and differences between the concepts of electric and magnetic dipoles. We then consider the relation between the magnetic dipole and a current loop and show that in the limit of a pointlike circuit, their magnetic fields coincide. The presentation is accessible to undergraduate students with a knowledge of the basic ideas of classical electromagnetism.

  2. Three-dimensional potential energy surface of Ar–CO

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, Yoshihiro, E-mail: y-sumiyoshi@gunma-u.ac.jp [Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510 (Japan); Endo, Yasuki [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)

    2015-01-14

    A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.

  3. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  4. Surface deformation during an action potential in pearled cells

    Science.gov (United States)

    Mussel, Matan; Fillafer, Christian; Ben-Porath, Gal; Schneider, Matthias F.

    2017-11-01

    Electric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of polymer material (extracellular matrix, cell wall material, etc.). It was recently demonstrated in excitable plant cells (Chara braunii) that the rigid external layer (cell wall) hinders the underlying deformation. When the cell membrane was separated from the cell wall by osmosis, a mechanical deformation, in the micrometer range, was observed upon excitation of the cell. The underlying mechanism of this mechanical pulse has, to date, remained elusive. Herein we report that Chara cells can undergo a pearling instability, and when the pearled fragments were excited even larger and more regular cell shape changes were observed (˜10 -100 μ m in amplitude). These transient cellular deformations were captured by a curvature model that is based on three parameters: surface tension, bending rigidity, and pressure difference across the surface. In this paper these parameters are extracted by curve-fitting to the experimental cellular shapes at rest and during excitation. This is a necessary step to identify the mechanical parameters that change during an action potential.

  5. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  6. In vitro studies on the cytotoxic potential of surface sealants.

    Science.gov (United States)

    Zingler, S; Matthei, B; Kohl, A; Saure, D; Ludwig, B; Diercke, K; Lux, C J; Erber, R

    2015-01-01

    The objective of this in vitro study was an initial screening of the cytotoxic potential of widely used smooth enamel surface sealants. A total of 20 products were allocated to four groups based on their chemical composition: (1) filled resin-based sealants, (2) unfilled resin-based sealants, (3) a resin-modified, glass ionomer-based sealant, and (4) silicone-based sealants. All materials were applied to human enamel slices both in accordance with manufacturers' instructions and in additional experiments applying 50% undercuring and 50% overcuring. An agar overlay assay was then used to test the specimens following ISO 10933. The cytotoxic potential of each material was interpreted based on a reaction index that summarized the decolorization and lysis scores obtained. The cytotoxic potential decreased as follows: unfilled resin-based sealants > filled resin-based sealants > resin-modified, glass ionomer-based sealant > silicone-based sealants. In 75% of the resin-based products, deliberate undercuring was associated with more extensive decolorization zones, leading to higher rates of cytotoxic potential in two of those products. Overcuring, by contrast, was associated with a tendency for smaller decolorization zones in 50% of the resin-based products. Surface sealants derived from resin monomers exhibited cytotoxic potential in the agar overlay assay. There is also evidence of a possible association with curing, as undercuring can increase the cytotoxic potential, whereas normal curing (as per manufacturers' instructions) or overcuring may help minimize such effects. More research into the biological implications of these materials is needed, especially with regard to their potential impact on the adjacent gingiva.

  7. Dipole vortices in the Great Australian Bight

    DEFF Research Database (Denmark)

    Cresswell, George R.; Lund-Hansen, Lars C.; Nielsen, Morten Holtegaard

    2015-01-01

    Shipboard measurements from late 2006 made by the Danish Galathea 3 Expedition and satellite sea surface temperature images revealed a chain of cool and warm mushroom' dipole vortices that mixed warm, salty, oxygen-poor waters on and near the continental shelf of the Great Australian Bight (GAB......) with cooler, fresher, oxygen-rich waters offshore. The alternating jets' flowing into the mushrooms were directed mainly northwards and southwards and differed in temperature by only 1.5 degrees C; however, the salinity difference was as much as 0.5, and therefore quite large. The GAB waters were slightly...... denser than the cooler offshore waters. The field of dipoles evolved and distorted, but appeared to drift westwards at 5km day-1 over two weeks, and one new mushroom carried GAB water southwards at 7km day(-1). Other features encountered between Cape Leeuwin and Tasmania included the Leeuwin Current...

  8. Nuclear momentum distribution and potential energy surface in hexagonal ice

    Science.gov (United States)

    Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele

    2011-03-01

    The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.

  9. Ferroelectric Dipole Electrets Prepared from Soft and Hard PZT Ceramics in Electrostatic Vibration Energy Harvesters

    International Nuclear Information System (INIS)

    Asanuma, H; Oguchi, H; Hara, M; Kuwano, H

    2013-01-01

    Aiming at longer stability of surface potential, we propose a ferroelectric dipole electret (FDE) prepared from hard ferroelectric material. We compared output power of electrostatic vibration energy harvester and surface potential stability between FDEs prepared from soft and hard PZT ceramics, as well as a CYTOP polymer electret. The hard FDE showed a seven-fold increase in output power over the soft FDE and nine-fold increase over the CYTOP polymer electret. The hard FDE also showed longer stability of surface potential than that of the soft FDE, whereas the stability of the hard FDE was not yet comparable to that of CYTOP polymer electret. A FDE prepared from harder PZT ceramic (with higher coercive electric field and Curie temperature) may provide more stability in surface potential

  10. LHC Dipoles Accelerate

    CERN Multimedia

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  11. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  12. Interaction between two magnetic dipoles in a uniform magnetic field

    Science.gov (United States)

    Ku, J. G.; Liu, X. Y.; Chen, H. H.; Deng, R. D.; Yan, Q. X.

    2016-02-01

    A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  13. Interaction between two magnetic dipoles in a uniform magnetic field

    Directory of Open Access Journals (Sweden)

    J. G. Ku

    2016-02-01

    Full Text Available A new formula for the interaction force between two magnetic dipoles in a uniform magnetic field is derived taking their mutual magnetic interaction into consideration and used to simulate their relative motion. Results show that when the angle β between the direction of external magnetic field and the centerline of two magnetic dipoles is 0 ° or 90 °, magnetic dipoles approach each other or move away from each other in a straight line, respectively. And the time required for them to contact each other from the initial position is related to the specific susceptibility and the diameter of magnetic particles, medium viscosity and magnetic field strength. When β is between 0 ° and 90 °, magnetic dipole pair performs approximate elliptical motion, and the motion trajectory is affected by the specific susceptibility, diameter and medium viscosity but not magnetic field strength. However, time required for magnetic dipoles to complete the same motion trajectory is shorter when adopting stronger magnetic field. Moreover, the subsequent motion trajectory of magnetic dipoles is ascertained once the initial position is set in a predetermined motion trajectory. Additionally, magnetic potential energy of magnetic dipole pairs is transformed into kinetic energy and friction energy during the motion.

  14. Dipoles, unintentional antennas and EMC

    Directory of Open Access Journals (Sweden)

    Berend Danker

    2008-01-01

    Full Text Available Radiated emissions from equipment commonly originate from electronic circuits that act as electric dipoles created by the signal voltage between the signal conductors or as magnetic dipoles formed by the signal current flowing in a loop. Direct emission is mostly small, but circuits often couple to long conductors or large wiring loops which act as antennas and are efficient radiators. A comparable situation exists when short dipole antennas or small wiring loops receive ambient noise (susceptibility. Usually the amplitude of noise sources or the susceptibility of circuits is an invariable. The dipole strength increases with the distance between the conductors and the area. Shielding and proper grounding decreases the interaction via unintentional antennas. Short-circuiting and the insertion of lossy ferrite cores reduce the efficiency of unintentional antennas.

  15. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    Science.gov (United States)

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  16. Is there a fundamental cosmological dipole?

    CERN Document Server

    Perivolaropoulos, Leandros

    2014-01-01

    Early hints for deviation from the cosmological principle and statistical isotropy are being accumulated. After reviewing these hints, I focus on four cosmologically observed axes which appear to be either marginally consistent or in conflict with the standard ΛCDM isotropic and homogeneous cosmology. These axes are abnormally aligned with each other and include: (a) The Fine Structure Constant α Dipole (b) the Dark Energy Dipole (c) the Dark Velocity Flow and (d) the CMB Maximum Temperature Asymmetry. I also discuss a simple physical model (extended topological quintessence) that has the potential to explain the existence and alignment of these axes. The model is based on the recent formation of a global monopole with Hubble scale core by an O(3) symmetric scalar field, non-minimally coupled to electromagnetism.

  17. Changes of Surface Electric Potential of Bones Depending on Their Age

    OpenAIRE

    Freimanis, E; Dehtjars, J; Vendiņa, V

    2014-01-01

    The aim of this research was to determine how surface electric potential of bones changes with their age and how it correlates with mechanical properties of bones. Surface electric potential was measured in 6 cross-sectional zones of the tibia. Changes of bones surface electric potential with age were determined and correlations between surface electric potential and mechanical properties were derived.

  18. Dipole Map For Divertor Tokamaks

    International Nuclear Information System (INIS)

    Ali, Halima; Punjabi, Alkesh; Boozer, Allen

    2003-01-01

    Heat flux impinging on the collector plates of divertor tokamaks can be prodigious. Therefore, the problem of spreading the heat flux on plates is a crucial issue for divertor tokamaks such as ITER. Here we use method of maps /1,2/ to investigate this problem. Magnetic field lines in non-axisymmetric divertor tokamaks are a one and a half degree of freedom Hamiltonian system /1-3/. We represent the unperturbed magnetic topology by the Symmetric Simple Map (SSM) /4/ given by yn+1 = yn + 2kxn - 2k2yn (1 - yn), xn+1 = xn - kyn (1 - yn) - 2k2yn+1 (1 - yn+1). The effects of a current carrying coil placed externally across from X-point is represented by Dipole Map (DP) /4,5/ given by x n+1 = x n + 2δs 3 x n+1 (y n - y s + s/[x n+1 2 + (y n - y s + s) 2 ] 2 ), y n+1 = y n + δs 3 x n+1 ((y n - y s + s) 2 - x n+1 2 /[x n+1 2 + (y n - y s + s) 2 ] 2 ) δ is amplitude of high MN magnetic perturbation, s is the distance of coil from last good surface across from X point, and is the y coordinate of last good surface where it crosses the axis joining X point and O point across from X point. We fix k=0.3 and s = (1/2)|y s |. We calculate the increase in width of stochastic layer and area of footprint of field lines on divertor plate as δ is increased. We also calculate how connection length, toroidal and poloidal circuits and their fractal structures, the number, location and density of hot spots change with δ. Finally, we make conclusions about how the heat flux can be possibly controlled and reduced by applying external magnetic perturbation in divertor tokamaks

  19. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    Science.gov (United States)

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  20. Surface-wave potential for triggering tectonic (nonvolcanic) tremor

    Science.gov (United States)

    Hill, D.P.

    2010-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle is anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45?? incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia mega-thrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction, ????? 0.2). However, documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, is associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (?? ~ 0.6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  1. CO dimer: new potential energy surface and rovibrational calculations.

    Science.gov (United States)

    Dawes, Richard; Wang, Xiao-Gang; Carrington, Tucker

    2013-08-15

    The spectrum of CO dimer was investigated by solving the rovibrational Schrödinger equation on a new potential energy surface constructed from coupled-cluster ab initio points. The Schrödinger equation was solved with a Lanczos algorithm. Several 4D (rigid monomer) global ab initio potential energy surfaces (PESs) were made using a previously reported interpolating moving least-squares (IMLS) fitting procedure specialized to describe the interaction of two linear fragments. The potential has two nonpolar minima giving rise to a complicated set of energy level stacks, which are very sensitive to the shapes and relative depths of the two wells. Although the CO dimer has defied previous attempts at an accurate purely ab initio description our best surface yields results in good agreement with experiment. Root-mean-square (rms) fitting errors of less than 0.1 cm(-1) were obtained for each of the fits using 2226 ab initio data at different levels. This allowed direct assessment of the quality of various levels of ab initio theory for prediction of spectra. Our tests indicate that standard CCSD(T) is slow to converge the interaction energy even when sextuple zeta bases as large as ACV6Z are used. The explicitly correlated CCSD(T)-F12b method was found to recover significantly more correlation energy (from singles and doubles) at the CBS limit. Correlation of the core-electrons was found to be important for this system. The best PES was obtained by extrapolation of calculations at the CCSD(T)(AE)-F12b/CVnZ-F12 (n = 3,4) levels. The calculated energy levels were compared to 105 J ≤ 10 levels from experiment. The rms error for 68 levels with J ≤ 6 is only 0.29 cm(-1). The calculated energy levels were assigned stack labels using several tools. New stacks were found. One of them, stack y1, has an energy lower than many previously known stacks and may be observable.

  2. Ion-dipole interactions in concentrated organic electrolytes.

    Science.gov (United States)

    Chagnes, Alexandre; Nicolis, Stamatios; Carré, Bernard; Willmann, Patrick; Lemordant, Daniel

    2003-06-16

    An algorithm is proposed for calculating the energy of ion-dipole interactions in concentrated organic electrolytes. The ion-dipole interactions increase with increasing salt concentration and must be taken into account when the activation energy for the conductivity is calculated. In this case, the contribution of ion-dipole interactions to the activation energy for this transport process is of the same order of magnitude as the contribution of ion-ion interactions. The ion-dipole interaction energy was calculated for a cell of eight ions, alternatingly anions and cations, placed on the vertices of an expanded cubic lattice whose parameter is related to the mean interionic distance (pseudolattice theory). The solvent dipoles were introduced randomly into the cell by assuming a randomness compacity of 0.58. The energy of the dipole assembly in the cell was minimized by using a Newton-Raphson numerical method. The dielectric field gradient around ions was taken into account by a distance parameter and a dielectric constant of epsilon = 3 at the surfaces of the ions. A fair agreement between experimental and calculated activation energy has been found for systems composed of gamma-butyrolactone (BL) as solvent and lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate (LiAsF6), and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) as salts.

  3. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    International Nuclear Information System (INIS)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  4. Exploring Multiple Potential Energy Surfaces: Photochemistry of Small Carbonyl Compounds

    Directory of Open Access Journals (Sweden)

    Satoshi Maeda

    2012-01-01

    Full Text Available In theoretical studies of chemical reactions involving multiple potential energy surfaces (PESs such as photochemical reactions, seams of intersection among the PESs often complicate the analysis. In this paper, we review our recipe for exploring multiple PESs by using an automated reaction path search method which has previously been applied to single PESs. Although any such methods for single PESs can be employed in the recipe, the global reaction route mapping (GRRM method was employed in this study. By combining GRRM with the proposed recipe, all critical regions, that is, transition states, conical intersections, intersection seams, and local minima, associated with multiple PESs, can be explored automatically. As illustrative examples, applications to photochemistry of formaldehyde and acetone are described. In these examples as well as in recent applications to other systems, the present approach led to discovery of many unexpected nonadiabatic pathways, by which some complicated experimental data have been explained very clearly.

  5. Improved DFT Potential Energy Surfaces via Improved Densities.

    Science.gov (United States)

    Kim, Min-Cheol; Park, Hansol; Son, Suyeon; Sim, Eunji; Burke, Kieron

    2015-10-01

    Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases.

  6. Near Surface Seismic Reflection Imaging: Great Potential Under Critical Eye

    Science.gov (United States)

    Miller, R. D.; Peterie, S.; Judy, B. E.

    2014-12-01

    Seismic-reflection imaging has long been a mainstay in the oil and gas exploration community with mind boggling advancements in just the last decade, but its application to engineering, environmental, and groundwater problems has not seen the same level of utilization. A great deal of the problem lies in the many assumptions that are valid for deep exploration that are violated in the very complex near surface. Large channel systems with acquisition geometries conducive for both deep and shallow targets are many times assumed to be capable of extending the imaging depth window. In reality, constraints of the source and sensor/recording systems must be considered, where large powerful sources are needed to image exploration depths while low-energy, high-frequency sources are required for the shallow and thin targets in the near surface. Attempts to make one size fit all will result in artifacts that result in bogus images and characterizations in the shallow subsurface.Narrow optimum offsets, highly attenuative materials, extreme velocity variability, wavefield interference, and low signal-to-noise ratios provide an ideal breeding ground for the generation of artifacts on near-surface seismic-reflection data. With the cost of shallow reflection data being so high relative to other geophysical methods and invasive sampling, sometimes a single failure can hinder the growth in the use of the method. The method is extremely powerful and has the potential to provide vast quantities of information critical to understand the distributed hydrogeological and biogeochemical processes that elude borehole investigations. It is imperative that data be acquired in its rawest possible form and be processed with an eye to each operation. Cost savings sometimes result in one-size-fits-all acquisition and automated processing flows. Attention to detail and following signal from origination to characterization is essential.

  7. A new dipole index of the salinity anomalies of the tropical Indian Ocean.

    Science.gov (United States)

    Li, Junde; Liang, Chujin; Tang, Youmin; Dong, Changming; Chen, Dake; Liu, Xiaohui; Jin, Weifang

    2016-04-07

    With the increased interest in studying the sea surface salinity anomaly (SSSA) of the tropical Indian Ocean during the Indian Ocean Dipole (IOD), an index describing the dipole variability of the SSSA has been pursued recently. In this study, we first use a regional ocean model with a high spatial resolution to produce a high-quality salinity simulation during the period from 1982 to 2014, from which the SSSA dipole structure is identified for boreal autumn. On this basis, by further analysing the observed data, we define a dipole index of the SSSA between the central equatorial Indian Ocean (CEIO: 70°E-90°E, 5°S-5°N) and the region off the Sumatra-Java coast (SJC: 100°E-110°E, 13°S-3°S). Compared with previous SSSA dipole indices, this index has advantages in detecting the dipole signals and in characterizing their relationship to the sea surface temperature anomaly (SSTA) dipole variability. Finally, the mechanism of the SSSA dipole is investigated by dynamical diagnosis. It is found that anomalous zonal advection dominates the SSSA in the CEIO region, whereas the SSSA in the SJC region are mainly influenced by the anomalous surface freshwater flux. This SSSA dipole provides a positive feedback to the formation of the IOD events.

  8. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  9. Delta self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Olsen, Thomas; Engelund, Mads

    2008-01-01

    is a density-functional method closely resembling standard density-functional theory (DFT), the only difference being that in Delta SCF one or more electrons are placed in higher lying Kohn-Sham orbitals instead of placing all electrons in the lowest possible orbitals as one does when calculating the ground......-photoemission spectroscopy measurements. This comparison shows that the modified Delta SCF method gives results in close agreement with experiment, significantly closer than the comparable methods. For N2 adsorbed on ruthenium (0001) we map out a two-dimensional part of the potential energy surfaces in the ground state...

  10. Homogenization mechanism of the residual surface potential of insulating specimens under electron beam irradiation

    International Nuclear Information System (INIS)

    Li Jingjing; Zhang Haibo; Feng Renjian

    2007-01-01

    A homogenized surface potential is desirable for the observation of a pre-irradiated insulating specimen using a scanning electron microscope because the residual surface potential may affect the imaging properties of the specimen. To homogenize the residual surface potential, the specimen should be subjected to the irradiation of an electron beam with the total electron yield greater than one. The expression of the equilibrium potential is derived based on the charge balance condition in the equilibrium state and the potential value is found to increase mainly with the secondary electron (SE) yield and the most probable emission energy of SEs. Further numerical calculations of SE trajectories show that affected by different surface potentials, SEs leave or return to the specimen surface to change the net charge flux into the specimen. This thereby increases the surface potential below the equilibrium potential and decreases that above the equilibrium potential, homogenizing the surface potential

  11. Surface Dipole Control of Liquid Crystal Alignment

    Czech Academy of Sciences Publication Activity Database

    Schwartz, J. J.; Mendoza, A.M.; Wattanatorn, N.; Zhao, Y.; Nguyen, V.T.; Spokoyny, A.M.; Mirkin, CH.A.; Baše, Tomáš; Weiss, P. S.

    2016-01-01

    Roč. 138, č. 18 (2016), s. 5957-5967 ISSN 0002-7863 Institutional support: RVO:61388980 Keywords : Self-assembled monolayers * Deposited gold-films * Carboranethiol isomers Subject RIV: CA - Inorganic Chemistry Impact factor: 13.858, year: 2016

  12. 5cm aperture dipole studies

    International Nuclear Information System (INIS)

    McInturff, A.D.; Bossert, R.; Carson, J.; Fisk, H.E.; Hanft, R.; Kuchnir, M.; Lundy, R.; Mantech, P.; Strait, J.

    1986-01-01

    The results obtained during the evolution of the design, construction, and testing program of the design ''B'' dipole are presented here. Design ''B'' is one of the original three competing designs for the Superconducting Super Collider ''SSC'' arc dipoles. The final design parameters were as follows: air cored (less than a few percent of the magnetic field derived from any iron present), aluminum collared, two layered winding, 5.5T maximum operating field, and a 5 cm cold aperture. There have been fourteen 64 cm long 5 cm aperture model dipoles cold tested (at 4.3K and less) in this program so far. There was a half length full size (6m) mechanical analog (M-10) built and tested to check the cryostat's mechanical design under ramping and quench conditions. Several deviations from the ''Tevatron'' dipole fabrication technique were incorporated, for example the use of aluminum collars instead of stainless steel. The winding technique variations explored were ''dry welding,'' a technique with the cable covered with Kapton insulation only and ''wet winding'' where the Kapton was covered with a light coat of ''B'' stage epoxy. Test data include quench currents, field quality (Fourier multipole co-efficients), coil magnetization, conductor current performance, and coil loading. Quench current, loss per cycle, and harmonics were measured as a function of the magnitude and rate of change of the magnetic field, and helium bath temperature

  13. Particle electric dipole-moments

    Energy Technology Data Exchange (ETDEWEB)

    Pendlebury, J.M. [Sussex Univ., Brighton (United Kingdom)

    1997-04-01

    The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.

  14. Potential Energy Surface of NO on Pt(997: Adsorbed States and Surface Diffusion

    Directory of Open Access Journals (Sweden)

    N. Tsukahara

    2012-01-01

    Full Text Available The potential energy surface (PES of NO on Pt(997 has been elucidated: the adsorption states and diffusion processes of NO on Pt(997 at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS and scanning tunneling microscopy (STM. When NO molecules adsorb on a surface at a low temperature (11 K, each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997: a bridge site of the upper step, an fcc- (or hcp- hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.

  15. Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons.

    Science.gov (United States)

    Kerckhoff, Joseph; Mabuchi, Hideo

    2009-08-17

    Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on (39)K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions. (c) 2009 Optical Society of America

  16. Multiscale dipole relaxation in dielectric materials

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2016-01-01

    Dipole relaxation from thermally induced perturbations is investigated on different length scales for dielectric materials. From the continuum dynamical equations for the polarisation, expressions for the transverse and longitudinal dipole autocorrelation functions are derived in the limit where...

  17. The influence of Indian Ocean Dipole (IOD) on biogeochemistry of ...

    Indian Academy of Sciences (India)

    nature can be clearly seen in the subsurface due to the large heat capacity of the oceans. This subsur- face dipole can also affect surface CHLA through its influence on nutrients entrainment into the mixed layer. The CHLA showed large spatial vari- ability with low in boxes 2 and 3 compared to the other boxes (figure 4).

  18. A study of the giant dipole resonance in doubly even tellurium and cerium isotopes

    International Nuclear Information System (INIS)

    Lepretre, A.; Beil, H.; Bergere, R.; Carlos, P.; Fagot, J.; Miniac, A. de; Veyssiere, A.

    1976-01-01

    The partial photoneutron cross sections [sigma(γ,n)+sigma(γ,pn)] and sigma(γ,2n) of 124 Te, 126 Te, 128 Te, 130 Te and 140 Ce, 142 Ce were measured in the giant dipole resonance region by means of the monochromatic photon beam installation at SACLAY. Absolute total photoneutron cross sections, Lorentz line parameters and integrated cross sections are evaluated. The experimental behaviour of the GDR for the above nuclei and in particular its spreading, is then tentatively interpreted in terms of the improved dynamic collective model using the concept of potential energy surfaces. (Auth.)

  19. Potential energy surface for ? dissociation including spin-orbit effects

    Science.gov (United States)

    Siebert, Matthew R.; Aquino, Adelia J. A.; de Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-01

    Previous experiments [J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation ( ? ) and found a one-dimensional distribution of translational energy, an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction ? → C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single-point (energy) calculations, and multi-reference energy calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the ? reactant has a substantial effect on the role of the SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for ? similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for ? , similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcalmol-1. Also, we find that, for this system, coupled-cluster single-point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  20. Dynamics of a nonlinear dipole vortex

    DEFF Research Database (Denmark)

    Hesthaven, J.S.; Lynov, Jens-Peter; Nielsen, A.H.

    1995-01-01

    A localized stationary dipole solution to the Euler equations with a relationship between the vorticity and streamfunction given as omega=-psi+psi(3) is presented. By numerical integration of the Euler equations this dipole is shown to be unstable. However, the initially unstable dipole reorganiz...

  1. Descent of the last LHC dipole magnet

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    The last of 1746 superconducting magnets is lowered into the LHC tunnel via a specially constructed pit at 12:00 on 26 April. This 15-m long dipole magnet is one of 1232 dipoles positioned around the 27-km circumference of the collider. Dipole magnets produce a magnetic field that bends the particle beams around the circular accelerator.

  2. Dipole and spin-dipole strength distributions in isotopes

    Indian Academy of Sciences (India)

    Necla Cakmak

    2018-01-03

    Jan 3, 2018 ... and 14 and the giant resonances in the energy region of. 19–27 MeV were found to be predominantly excited by. L = 1 transition [19]. Also, the angular distributions of double differential cross-section were measured for. 40Ca(p, p ) reaction at 319 MeV [20]. The spin-dipole resonance has a total measured ...

  3. Surface grafted polymer brushes: potential applications in dengue biosensors

    International Nuclear Information System (INIS)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco; Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de

    2013-01-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar + ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  4. Surface grafted polymer brushes: potential applications in dengue biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Baratela, Fernando Jose Costa; Higa, Olga Zazuco, E-mail: ozahiga@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Faria, Henrique Antonio Mendonca de; Queiroz, Alvaro Antonio Alencar de, E-mail: alencar@unifei.edu.br [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Fisica e Quimica

    2013-07-01

    A polymer brush membrane-based ultrasensitive biosensor for dengue diagnosis was constructed using poly(hydroxyethyl methacrylate) (PHEMA) brushes immobilized onto low density polyethylene (LDPE) films. LDPE surface films were initially modified by Ar{sup +} ion irradiation to activate the polymer surface. Subsequently, graft polymerization of 2-hydroxyethyl methacrylate onto the activated LDPE surface was carried out under aqueous conditions to create patterned polymer brushes of PHEMA. The grafted PHEMA brushes were characterized by Fourier transform-infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle analysis. The SEM observations showed that selective surface activation with Ar+ implantation and graft polymerization on the selectively activated surface had occurred. The PHEMA brushes were electrically characterized in the presence of concentrations of human immunoglobulin (IgG). The proposed amperometric biosensor was successfully used for determination of IgG in physiologic samples with excellent responses. (author)

  5. Dipole magnet shuttle system

    International Nuclear Information System (INIS)

    Zinszer, A.; Pidcoe, S.; Spann, K.

    1992-01-01

    A transport system has been developed to move major magnet subassemblies between tool stations. The need existed to find a more efficient solution than overhead cranes to handle large parts. The argument against overhead cranes includes safety concerns, work disruption, particulate contamination and meeting the assembly rate requirements of ten magnets per day. The shuttle transport system represents a major effort of coordination between the various tool suppliers and General Dynamics to design a universal device capable of bridging the gap from single wound coils to a complete CDM. Effort was directed to systematically minimize material handling and related equipment by interfacing a completed assembly directly into the next work station or tool without losing its orientation or changing pickup points. The shuttle transport system is made up of a common transport device which can automatically go to any preprogrammed address on the factory floor. Each station has unique attachment tooling which can interface with the shuttle and the next assembly station. The shuttle can also circulate attachment tools back to their point of origin. Additional benefits of this system include inherent part protection, flow control, reduced banking or inventory, and potential for automatic control

  6. Technology of superconducting accelerator dipoles

    International Nuclear Information System (INIS)

    Hassenzahl, W.V.; Meuser, R.B.; Taylor, C.

    1983-06-01

    We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value

  7. Aperture measurements with AC dipole

    CERN Document Server

    Fuster Martinez, Nuria; Dilly, Joschua Werner; Nevay, Laurence James; Bruce, Roderik; Tomas Garcia, Rogelio; Redaelli, Stefano; Persson, Tobias Hakan Bjorn; CERN. Geneva. ATS Department

    2018-01-01

    During the MDs performed on the 15th of September and 29th of November 2017, we measured the LHC global aperture at injection with a new AC dipole method as well as using the Transverse Damper (ADT) blow-up method used during the 2017 LHC commissioning for benchmarking. In this note, the MD procedure is presented as well as the analysis of the comparison between the two methods. The possible benefits of the new method are discussed.

  8. Wegner Estimates for Some Random Operators with Anderson-type Surface Potentials

    Science.gov (United States)

    Kitagaki, Yoshihiko

    2010-03-01

    For Schrödinger operator with random potentials concentrated near a surface, Wegner-type estimates are proven by using the spectral averaging method of Combes, Hislop and Klopp. These estimates allow us to show the local regularity of the integrated density of surface states at the gap of the background periodic operator. Acoustic operator with random surface potentials is treated similarly.

  9. Nuclear stimulated desorption as a potential tool for surface study

    International Nuclear Information System (INIS)

    Nir, Dror.

    1993-03-01

    The described research work constitutes a base for an experimental method to be implemented in the study of solid surfaces. Nuclear Stimulated Desorption (NSD) is a new mode of experimentation in thin film and surface physics. It Is based on the interplay between nuclear phenomena (reactions and spontaneous decays), and atomic - scale induced effects on surfaces and very thin films. One may distinguish between two generically different relationships between the two. First, the dynamics of the nuclear reaction -primarily the recoil of the nucleus - may effect the position of the atom or molecule containing it. Second, the nuclear reaction (or decay) may serve as an analytical indicator of the whereabouts of the atom, or molecule, in question. In nuclear stimulated desorption, both thee aspects combine in an essential way. Namely, one employs a series of two consecutive decays (normally weak decays or isomeric transition) . The first of these decays causes the nucleus to desorb from a surface onto which it had been placed; the second serves to determine the position of the daughter and thereby the characteristics of the primary desorption . The essential feature in NSD is that it occurs almost exclusively from the outermost surface layer. This is because we choose to work with nuclei whose recoil energy Is of the same order of magnitude of the binding energy of the atom to the surface . Furthermore, the desorption probability and its angular (and temporal) characteristics, depend on the features (topology, morphology) of its immediate neighborhood. This work describes experiments which were designed to give relevant, phenomenological information about the outgoing flux of the radioactive daughters (for specifically chosen nuclear species) , and in particular the magnitude of the flux, its time dependence and its charged state. In addition. the basic phenomena itself is being distinguished from competing processes (thermal desorption, in particular). We will now

  10. Investigating the time-dependent zeta potential of wood surfaces.

    Science.gov (United States)

    Muff, Livius F; Luxbacher, Thomas; Burgert, Ingo; Michen, Benjamin

    2018-05-15

    This work reports on streaming potential measurements through natural capillaries in wood and investigates the cause of a time-dependent zeta potential measured during the equilibration of wood cell-walls with an electrolyte solution. For the biomaterial, this equilibration phase takes several hours, which is much longer than for many other materials that have been characterized by electrokinetic measurements. During this equilibration phase the zeta potential magnitude is decaying due to two parallel mechanisms: (i) the swelling of the cell-wall which causes a dimensional change reducing the charge density at the capillary interface; (ii) the transport of ions from the electrolyte solution into the permeable cell-wall which alters the electrical potential at the interface by internal charge compensation. The obtained results demonstrate the importance of equilibration kinetics for an accurate determination of the zeta potential, especially for materials that interact strongly with the measurement electrolyte. Moreover, the change in zeta potential with time can be correlated with the bulk swelling of wood if the effect of electrolyte ion diffusion is excluded. This study shows the potential of streaming potential measurements of wood, and possibly of other hygroscopic and nanoporous materials, to reveal kinetic information about their interaction with liquids, such as swelling and ion uptake. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Potential energy surfaces for Ж = , Ne- Ba nuclei

    Indian Academy of Sciences (India)

    112Ba nu- clei in an axially deformed relativistic mean field approach. A quadratic constraint scheme is applied to determine the complete energy surface for a wide range of the quadrupole deformation. The NL3, NL-RA1 and TM1 parameter sets ...

  12. Effect of potential attraction term on surface tension of ionic liquids

    Science.gov (United States)

    Vaziri, N.; Khordad, R.; Rezaei, G.

    2018-03-01

    In this work, we have studied the effect of attraction term of molecular potential on surface tension of ionic liquids (ILs). For this purpose, we have introduced two different potential models to obtain analytical expressions for the surface tension of ILs. The introduced potential models have different attraction terms. The obtained surface tensions in this work have been compared with other theoretical methods and also experimental data. Using the calculated surface tension, the sound velocity is also estimated. We have studied the structural effects on the surface tensions of imidazolium-based ionic liquids. It is found that the cation alkyl chain length and the anion size play important roles to the surface tension of the selected ionic liquids. The calculated surface tensions show a good harmony with experimental data. It is clear that the attraction term of molecular potential has an important role on surface tension and sound velocity of our system.

  13. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  14. Wright Valley Sediments as Potential Analogs for Martian Surface Processes

    Science.gov (United States)

    Englert, P. A. J.; Bishop, J. L.; Patel, S.; Gibson, E. K.; Koeberl, C.

    2015-12-01

    The Antarctic Dry Valleys (ADV) may provide a unique terrestrial analog for current Martian surface processes. The Wright Valley located in the ADV contains streams, lakes and ponds that host highly saline, sedimentary environments. This project highlights comparisons of formation and salt accumulation processes at the Don Juan Pond (DJP) and Don Quixote Pond (DQP). These are located in the north and south forks of the Wright Valley, which are unique areas where unusual terrestrial processes can be studied. DQP is located in the western part of the north fork about 100 m above mean seawater level. The DQP Valley walls are up to 2500 m high and the brine is seasonally frozen. DJP from the south fork is located ~9 km west of Lake Vanda. The basin floor is 117 m above mean seawater level with activity to the north and south rising above 1000 m. The DJP brine does not freeze and may be a model environment for Ca and Cl weathering and distribution on Mars. Our findings indicate that DJP and DQP have formed in similar climatic and geological environments, but likely experienced different formation conditions. Samples were collected from surface, soil pits and depth profiles during the 1979/1980, the 1990/1991 and the 2005/2006 field seasons. Elemental abundances and mineralogy were evaluated for several sets of sediments. The DJP basin shows low surface abundances of halite and relatively high abundances of sulfates throughout with gypsum or anhydrite dominating at different locations. The DQP area has high surface abundances of halite with gypsum present as the major sulfate. Two models have been proposed to explain these differences: DQP may have formed through a combination of shallow and some deep groundwater influx, while deep groundwater upwelling likely played the dominant role of salt formation at DJP. Our study seeks to understand the formation of DQP and DJP as unique terrestrial processes and as models for Ca, Cl, and S weathering and distribution on Mars.

  15. Adsorption of lysozyme on base metal surfaces in the presence of an external electric potential.

    Science.gov (United States)

    Ei Ei, Htwe; Nakama, Yuhi; Tanaka, Hiroshi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2016-11-01

    The impact of external electric potential on the adsorption of a protein to base metal surfaces was examined. Hen egg white lysozyme (LSZ) and six types of base metal plates (stainless steel SUS316L (St), Ti, Ta, Zr, Cr, or Ni) were used as the protein and adsorption surface, respectively. LSZ was allowed to adsorb on the surface under different conditions (surface potential, pH, electrolyte type and concentration, surface material), which was monitored using an ellipsometer. LSZ adsorption was minimized in the potential range above a certain threshold and, in the surface potential range below the threshold, decreasing the surface potential increased the amount of protein adsorbed. The threshold potential for LSZ adsorption was shifted toward a positive value with increasing pH and was lower for Ta and Zr than for the others. A divalent anion salt (K2SO4) as an electrolyte exhibited the adsorption of LSZ in the positive potential range while a monovalent salt (KCl) did not. A comprehensive consideration of the obtained results suggests that two modes of interactions, namely the electric force by an external electric field and electrostatic interactions with ionized surface hydroxyl groups, act on the LSZ molecules and determine the extent of suppression of LSZ adsorption. All these findings appear to support the view that a base metal surface can be controlled for the affinity to a protein by manipulating the surface electric potential as has been reported on some electrode materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. AutoDipole - Automated generation of dipole subtraction terms -

    Science.gov (United States)

    Hasegawa, K.; Moch, S.; Uwer, P.

    2010-10-01

    We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with n external particles our Mathematica package generates all dipole terms, allowing for both massless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed. Program summaryProgram title: AutoDipole Catalogue identifier: AEGO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 138 042 No. of bytes in distributed program, including test data, etc.: 1 117 665 Distribution format: tar.gz Programming language: Mathematica and Fortran Computer: Computers running Mathematica (version 7.0) Operating system: The package should work on every Linux system supported by Mathematica. Detailed tests have been performed on Scientific Linux as supported by DESY and CERN and on openSUSE and Debian. RAM: Depending on the complexity of the problem, recommended at least 128 MB RAM Classification: 11.5 External routines: MadGraph (including HELAS library) available under http://madgraph.hep.uiuc.edu/ or http://madgraph.phys.ucl.ac.be/ or http://madgraph.roma2.infn.it/. A copy of the tar file, MG_ME_SA_V4.4.30, is included in the AutoDipole distribution package. Nature of problem: Computation of next-to-leading order QCD corrections to scattering cross sections, regularization of real emission contributions. Solution method: Catani-Seymour subtraction method for massless and massive partons [1,2]; Numerical evaluation of subtracted matrix elements interfaced to MadGraph [3-5] (stand-alone version) using

  17. Coupling between crossed dipole feeds

    DEFF Research Database (Denmark)

    Andersen, J.; Schjær-Jacobsen, Hans; Lessow, H.

    1974-01-01

    as a function of orientation and feeding network properties. The antennas are used as feeds for a parabolic reflector, and the effect of coupling on the secondary fields is analyzed. Especially significant is the polarization loss and it may, to some extent, be reduced by a proper choice of feeding network.......Various effects of coupling between crossed-dipole antennas are analyzed and by using an arbitrary feeding network some generality is preserved. With one cross excited and another cross acting as a parasitic loaded antenna, coupling losses and gain and polarization losses are presented...

  18. Electric and Magnetic Dipole Moments

    CERN Multimedia

    CERN. Geneva

    2005-01-01

    The stringent limit on the electric dipole moment of the neutron forced the issue on the strong CP-problem. The most elegant solution of which is the axion field proposed by Peccei and Quinn. The current limit on the QCD parameter theta coming from the limit on the neutron EDM is of order 10-10. I am going to describe the present status on the neutron EDM searches and further prospects on getting down to theta_qcd sensitivity of 10-13 with the new deuteron EDM in storage rings proposal. For completeness the current status and prospects of the muon g-2 experiment will also be given.

  19. Spontaneous Interfacial Dipole Orientation Effect of Acetic Acid Solubilized PFN.

    Science.gov (United States)

    Wang, Cong; Luo, Yinqi; Zheng, Jieming; Liu, Linlin; Xie, Zengqi; Huang, Fei; Yang, Bing; Ma, Yuguang

    2018-03-28

    Poly[(9,9-dioctyl-2,7-fluorene)- alt-(9,9-bis(3'-( N, N-dimethylamino)propyl)-2,7-fluorene)] (PFN) is a very important interfacial modifier in organic photovoltaic and organic light-emitting diodes to improve device performance, where their molecular dipole has been regarded to play a key role. In this work, we have reported a spontaneous interfacial dipole orientation effect in acetic acid dissolved PFN, which is strongly related to the interfacial dipole and the corresponding device performance. In direct spin-coating, the interfacial dipole is 1.08 Debye with interfacial contact angle 84.8°, whereas after self-assembly of 10 min, the interfacial dipole is balanced at 4.21 Debye, with the interfacial contact angle decreasing to 76.8°. Without strong interaction with the substrate, the energy of upward amine groups is much lower than that of downward ones in theoretical simulation, which would be the driving force of this spontaneous process. The preferred conformations of PFN molecules on hydroxylated substrates have over 99% amine groups outward, and the theoretical average dipole calculated from the weight of these conformations is 4.48 Debye, which is close to the experimental result and indicates a high ratio of upward amine groups in self-assembled films. This effect obviously changes the device performance, such as an obvious positive threshold voltage shift in transistors and a distinct increase of the short-circuit current/open-circuit voltage in organic solar cells. This effect provides a deeper understanding of the PFN interlayer mechanism and has potential application in optoelectronic devices.

  20. Numerical Based Linear Model for Dipole Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Li,Y.; Krinsky, S.; Rehak, M.

    2009-05-04

    In this paper, we discuss an algorithm for constructing a numerical linear optics model for dipole magnets from a 3D field map. The difference between the numerical model and K. Brown's analytic approach is investigated and clarified. It was found that the optics distortion due to the dipoles' fringe focusing must be properly taken into account to accurately determine the chromaticities. In NSLS-II, there are normal dipoles with 35-mm gap and dipoles for infrared sources with 90-mm gap. This linear model of the dipole magnets is applied to the NSLS-II lattice design to match optics parameters between the DBA cells having dipoles with different gaps.

  1. Calculation of the surface potential and surface charge density by measurement of the three-phase contact angle.

    Science.gov (United States)

    Horiuchi, H; Nikolov, A; Wasan, D T

    2012-11-01

    The silica/silicon wafer is widely used in the semiconductor industry in the manufacture of electronic devices, so it is essential to understand its physical chemistry and determine the surface potential at the silica wafer/water interface. However, it is difficult to measure the surface potential of a silica/silicon wafer directly due to its high electric resistance. In the present study, the three-phase contact angle (TPCA) on silica is measured as a function of the pH. The surface potential and surface charge density at the silica/water surface are calculated by a model based on the Young-Lippmann equation in conjunction with the Gouy-Chapman model for the electric double layer. In measurements of the TPCA on silica, two distinct regions were identified with a boundary at pH 9.5-showing a dominance of the surface ionization of silanol groups below pH 9.5 and a dominance of the dissolution of silica into the aqueous solution above pH 9.5. Since the surface chemistry changes above pH 9.5, the model is applied to solutions below pH 9.5 (ionization dominant) for the calculation of the surface potential and surface charge density at the silica/aqueous interface. In order to evaluate the model, a galvanic mica cell was made of a mica sheet and the surface potential was measured directly at the mica/water interface. The model results are also validated by experimental data from the literature, as well as the results obtained by the potentiometric titration method and the electro-kinetic measurements. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Oxathiiranes 8 On the OCS2 Singlet Potential Energy Surface

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1982-01-01

    as the fragmentations of the possible intermediates 1–5 have been studied theoretically within the semiempirical cndo/B framework as conceivable ground-state reactions. On the basis of mo correlations and potential energy changes along the reaction paths, supplementary with previously reported experimental data...

  3. Calculation of surface potentials at the silica-water interface using molecular dynamics: Challenges and opportunities

    Science.gov (United States)

    Lowe, Benjamin M.; Skylaris, Chris-Kriton; Green, Nicolas G.; Shibuta, Yasushi; Sakata, Toshiya

    2018-04-01

    Continuum-based methods are important in calculating electrostatic properties of interfacial systems such as the electric field and surface potential but are incapable of providing sufficient insight into a range of fundamentally and technologically important phenomena which occur at atomistic length-scales. In this work a molecular dynamics methodology is presented for interfacial electric field and potential calculations. The silica-water interface was chosen as an example system, which is highly relevant for understanding the response of field-effect transistors sensors (FET sensors). Detailed validation work is presented, followed by the simulated surface charge/surface potential relationship. This showed good agreement with experiment at low surface charge density but at high surface charge density the results highlighted challenges presented by an atomistic definition of the surface potential. This methodology will be used to investigate the effect of surface morphology and biomolecule addition; both factors which are challenging using conventional continuum models.

  4. The peculiar acceleration of the Local Group as deduced from the optical and IRAS flux dipoles

    International Nuclear Information System (INIS)

    Lahav, O.; Lynden-Bell, D.

    1988-01-01

    The relation between the peculiar acceleration of the Local Group and the surface brightness dipole moments of all-sky optical and IRAS samples is studied. Our revised optical dipole lies within 7 0 of the direction of the Local Group's motion through the Microwave Background Radiation (MBR). The directions of the optical, IRAS and MBR dipoles are all consistent with each other. To analyse the optical dipole we have calculated diameter functions for the UGC and ESO galaxy catalogues from redshift surveys. Most of the optical dipole arises from the Centaurus-Virgo direction and from the 'Local Void' on the opposite side of the sky. The sources of the IRAS dipole are more evenly distributed around the sky. A simple 'shell model', fitted to the variation of the dipoles as a function of flux, suggests that the dipoles arise from galaxies whose recession velocities are smaller than 4000 kms -1 . We find a high Ω 0 value for the IRAS sample and a low one for the optical sample. These results may be reconciled if the optical galaxy distribution is more biased relative to the matter distribution than the IRAS galaxy distribution. (author)

  5. A method to assess the loss of a dipole antenna for ultra-high-field MRI.

    Science.gov (United States)

    Chen, Gang; Collins, Christopher M; Sodickson, Daniel K; Wiggins, Graham C

    2018-03-01

    To describe a new bench measurement based on quality (Q) factors to estimate the coil noise relative to the sample noise of dipole antennas at 7 T. Placing a dipole antenna close to a highly conductive sample surrogate (HCSS) greatly reduces radiation loss, and using Q HCSS gives a more accurate estimate of coil resistance than Q unloaded . Instead of using the ratio of unloaded and sample-loaded Q factors, the ratio of HCSS-loaded and sample-loaded Q factors should be used at ultra-high fields. A series of simulations were carried out to analyze the power budget of sample-loaded or HCSS-loaded dipole antennas. Two prototype dipole antennas were also constructed for bench measurements to validate the simulations. Simulations showed that radiation loss was suppressed when the dipole antenna was HCSS-loaded, and coil loss was largely the same as when the dipole was loaded by the sample. Bench measurements also showed good alignment with simulations. Using the ratio Q HCSS /Q loaded gives a good estimate of the coil loss for dipole antennas at 7 T, and provides a convenient bench measurement to predict the body noise dominance of dipole antenna designs. The new approach also applies to conventional surface loop coils at ultra-high fields. Magn Reson Med 79:1773-1780, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Muon Dipole Moment Experiments Interpretation and Prospects

    CERN Document Server

    Feng, J L; Shadmi, Y; Feng, Jonathan L; Matchev, Konstantin T.; Shadmi, Yael

    2001-01-01

    We examine the prospects for discovering new physics through muon dipole moments. The current deviation in $g_{\\mu}-2$ may be due entirely to the muon's {\\em electric} dipole moment. We note that the precession frequency in the proposed BNL muon EDM experiment is also subject to a similar ambiguity, but this can be resolved by up-down asymmetry measurements. We then review the theoretical expectations for the muon's electric dipole moment in supersymmetric models.

  7. The ALICE muon spectrometer dipole magnet

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The ALICE detector consists of two large magnets, the huge red solenoid which can be seen on the right, and the blue dipole magnet. The solenoid was used for the L3 experiment when LEP was in use between 1989 and 2000, but the dipole has been built especially for the new ALICE detector. The dipole was successfully tested on 14 July 2005 when it ran at the operating current of 6 kiloamps for 24 hours.

  8. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the CO, HB, HF and LiH molecules are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. The possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment is discussed. (Author) [pt

  9. Electric dipole moment of diatomic molecules

    International Nuclear Information System (INIS)

    Rosato, A.

    1983-01-01

    The electric dipole moment of some diatomic molecules is calculated using the Variational Cellular Method. The results obtained for the molecules CO, HB, HF and LiH are compared with other calculations and with experimental data. It is shown that there is strong dependence of the electric dipole moment with respect to the geometry of the cells. It is discussed the possibility of fixing the geometry of the problem by giving the experimental value of the dipole moment. (Author) [pt

  10. Erosive potential of energy drinks on the dentine surface.

    Science.gov (United States)

    Pinto, Shelon C S; Bandeca, Matheus C; Silva, Carolina N; Cavassim, Rodrigo; Borges, Alvaro H; Sampaio, José E C

    2013-02-19

    Considering the current high consumption of energy drinks, the aim of the present study is to evaluate the influence of energy drinks in removing the smear layer and exposing dentinal tubules on root surface. Dentine root surfaces were exposed using a diamond bur. Forty movements of scaling were performed in the area prepared in order to create a smear layer. One hundred and thirty specimens were obtained from 35 teeth. Specimens were randomly distributed into 12 groups (n = 10) and divided into subgroups according to the application: topical (n = 5) and friction (n = 5). Twelve energy drinks were evaluated: RedBull, Burn, TNT, Flash Power, Flying Horse, Sports Drink, Ionic, Hot Power, Army Power, Gladiator and Bug. Distilled water was used as a control group. The specimens were analysed by scanning electron microscopy. Topical application: a significant influence of energy drinks on smear layer removal was found for FlyingHorse and Bug when compared with the control group. Friction application: significant smear layer removal was found for Burn, FlyingHorse, Gladiator, SportsDrinks, when compared with the control group. Comparing the different application forms, a statistically significant difference was found for Army Power. Considering the significant smear layer removal, energy drinks can be an important etiological factor for cervical dentine hypersensitivity.

  11. Influence of surface conductivity on the apparent zeta potential of calcite.

    Science.gov (United States)

    Li, Shuai; Leroy, Philippe; Heberling, Frank; Devau, Nicolas; Jougnot, Damien; Chiaberge, Christophe

    2016-04-15

    Zeta potential is a physicochemical parameter of particular importance in describing the surface electrical properties of charged porous media. However, the zeta potential of calcite is still poorly known because of the difficulty to interpret streaming potential experiments. The Helmholtz-Smoluchowski (HS) equation is widely used to estimate the apparent zeta potential from these experiments. However, this equation neglects the influence of surface conductivity on streaming potential. We present streaming potential and electrical conductivity measurements on a calcite powder in contact with an aqueous NaCl electrolyte. Our streaming potential model corrects the apparent zeta potential of calcite by accounting for the influence of surface conductivity and flow regime. We show that the HS equation seriously underestimates the zeta potential of calcite, particularly when the electrolyte is diluted (ionic strength ⩽ 0.01 M) because of calcite surface conductivity. The basic Stern model successfully predicted the corrected zeta potential by assuming that the zeta potential is located at the outer Helmholtz plane, i.e. without considering a stagnant diffuse layer at the calcite-water interface. The surface conductivity of calcite crystals was inferred from electrical conductivity measurements and computed using our basic Stern model. Surface conductivity was also successfully predicted by our surface complexation model. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Potential surface for the collinear collision of Ne and H/sub 2//sup +/. [eendoergicity, surface parametrization

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, E.F.; Siu, A.K.Q.; Chapman, F.M. Jr.; Matcha, R.L.

    1976-09-01

    A potential energy surface for the Ne--H/sub 2//sup +/ reaction has been obtained in the LCAO--MO--SCF approximation. Analysis of the surface indicates that the reaction Ne+H/sub 2//sup +/..-->..NeH/sup +/+H should proceed with an endoergicity of 12 kcal/mole, in agreement with the experimental results of Chupka and Russell. Several procedures for parameterizing a diatomics-in-molecules (DIM) representation of the NeH/sub 2//sup +/ surface are considered. The results show that an accurate representation of the SCF surface can be obtained from the DIM model using a minimum of diatomic and triatomic data. (AIP)

  13. Surface Plasmon Polaritons Probed with Cold Atoms

    DEFF Research Database (Denmark)

    Kawalec, Tomasz; Sierant, Aleksandra; Panas, Roman

    2017-01-01

    We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have determined the absolute value of the surface plasmon polariton (SPP) intensity, reaching 90 times the intensity...

  14. Electrohydrodynamics of binary electrolytes driven by modulated surface potentials

    DEFF Research Database (Denmark)

    Mortensen, Asger; Olesen, Laurits Højgaard; Belmon, L.

    2005-01-01

    We study the electrohydrodynamics of the Debye screening layer that arises in an aqueous binary solution near a planar insulating wall when applying a spatially modulated ac voltage. Combining this with first order perturbation theory we establish the governing equations for the full nonequilibrium...... problem and obtain analytic solutions in the bulk for the pressure and velocity fields of the electrolyte and for the electric potential. We find good agreement between the numerics of the full problem and the analytics of the linear theory. Our work provides the theoretical foundations of circuit models...

  15. Design of a model dipole magnet for the SSC high energy booster

    International Nuclear Information System (INIS)

    Hassan, N.; Couzens, K.; Dwyer, S.; Jaisle, A.; Jayakumar, R.; Krishnamurthy, S.; Mihelic, R.; Phillips, S.; Puri, R.K.; Sarna, K.

    1994-01-01

    A superconducting model dipole magnet has been designed to serve as a vehicle in an R ampersand D program to develop a dipole magnet for potential use in the SSC High Energy Booster. The objective has been to use the Brookhaven National Laboratory (BNL) and Fermi National Accelerator Laboratory (FNAL) 50 mm aperture dipole designs to the maximum possible extent for design of a dipole magnet with the same size aperture and a field intensity of 6.67 T. Objectives of this program have also included an evaluation of magnet cross section designs which provides increased margin and includes a field quality iteration on BNL and FNAL dipole designs. The salient parameters of this magnet are listed. In this paper the 2D magnetic and mechanical design of the cold mass in conceptual and detailed form is presented

  16. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    International Nuclear Information System (INIS)

    Crusius, Johann-Philipp; Hassel, Egon; Hellmann, Robert; Bich, Eckard

    2014-01-01

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C 2 H 4 O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide

  17. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Crusius, Johann-Philipp, E-mail: johann-philipp.crusius@uni-rostock.de; Hassel, Egon [Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock (Germany); Hellmann, Robert; Bich, Eckard [Institut für Chemie, Universität Rostock, 18059 Rostock (Germany)

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  18. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  19. Ab Initio and DFT Potential Energy Surfaces for Cyanuric Chloride Reactions

    National Research Council Canada - National Science Library

    Pai, Sharmila

    1998-01-01

    ... on the potential energy surface were calculated using the 6-31G and 6-311 +Gbasis sets. DFT(B3LYP) geometry optimizations and zero-point corrections for critical points on the potential energy surface were calculated with the 6-31G, 6-311...

  20. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  1. Characterization of electrical conductivity of carbon fiber reinforced plastic using surface potential distribution

    Science.gov (United States)

    Kikunaga, Kazuya; Terasaki, Nao

    2018-04-01

    A new method of evaluating electrical conductivity in a structural material such as carbon fiber reinforced plastic (CFRP) using surface potential is proposed. After the CFRP was charged by corona discharge, the surface potential distribution was measured by scanning a vibrating linear array sensor along the object surface with a high spatial resolution over a short duration. A correlation between the weave pattern of the CFRP and the surface potential distribution was observed. This result indicates that it is possible to evaluate the electrical conductivity of a material comprising conducting and insulating regions.

  2. Prediction of hydrocarbon surface seepage potential using infiltrometer data

    Science.gov (United States)

    Connors, J. J.; Jackson, J. L.; Engle, R. A.; Connors, J. L.

    2017-12-01

    Environmental regulations addressing above-ground storage tank (AST) spill control activities typically require owners/operators to demonstrate that local soil permeability values are low enough to adequately contain released liquids while emergency-response procedures are conducted. Frequently, geotechnical borings and soil samples/analyses, and/or monitoring well slug-test analyses, are used to provide hydraulic conductivity data for the required calculations. While these techniques are useful in assessing hydrological characteristics of the subsurface, they do not always assess the uppermost surface soil layer, where the bulk of the containment can occur. This layer may have been subject to long-term permeability-reduction by activities such as compaction by vehicular and foot traffic, micro-coatings by hydrophobic pollutants, etc. This presentation explores the usefulness of dual-ring infiltrometers, both in field and bench-scale tests, to rapidly acquire actual hydraulic conductivity values of surficial soil layers, which can be much lower than subsurface values determined using more traditional downhole geotechnical and hydrogeological approaches.

  3. Dissociative chemisorption of methane on Ni(111) using a chemically accurate fifteen dimensional potential energy surface.

    Science.gov (United States)

    Zhou, Xueyao; Nattino, Francesco; Zhang, Yaolong; Chen, Jun; Kroes, Geert-Jan; Guo, Hua; Jiang, Bin

    2017-11-22

    A fifteen-dimensional global potential energy surface for the dissociative chemisorption of methane on the rigid Ni(111) surface is developed by a high fidelity fit of ∼200 000 DFT energy points computed using a specific reaction parameter density functional designed to reproduce experimental data. The permutation symmetry and surface periodicity are rigorously enforced using the permutation invariant polynomial-neural network approach. The fitting accuracy of the potential energy surface is thoroughly investigated by examining both static and dynamical attributes of CHD 3 dissociation on the frozen surface. This potential energy surface is expected to be chemically accurate as after correction for surface temperature effects it reproduces the measured initial sticking probabilities of CHD 3 on Ni(111) for various incidence conditions.

  4. Observation of band bending of metal/high-k Si capacitor with high energy x-ray photoemission spectroscopy and its application to interface dipole measurement

    Science.gov (United States)

    Kakushima, K.; Okamoto, K.; Tachi, K.; Song, J.; Sato, S.; Kawanago, T.; Tsutsui, K.; Sugii, N.; Ahmet, P.; Hattori, T.; Iwai, H.

    2008-11-01

    Band bendings of Si substrates have been observed using hard x-ray photoemission spectroscopy. With a capability of collecting photoelectrons generated as deep as 40 nm, the binding energy shift in a core level caused by the potential profile at the surface of the substrate results in a spectrum broadening. The broadening is found to be significant when heavily doped substrates are used owing to its steep potential profile. The surface potential of the substrate can be obtained by deconvolution of the spectrum. This method has been applied to observe the band bending profile of metal-oxide-semiconductor capacitors with high-k gate dielectrics. By comparing the band bending profiles of heavily-doped n+- and p+-Si substrates, the interface dipoles presented at interfaces can be estimated. In the case of W gated La2O3/La-silicate capacitor, an interface dipole to shift the potential of -0.45 V has been estimated at La-silicate/Si interface, which effectively reduces the apparent work function of W. On the other hand, an interface dipole of 0.03-0.07 V has been found to exist at Hf-silicate/SiO2 interface for W gated HfO2/Hf-silicate/SiO2 capacitor.

  5. Slice of LHC dipole wiring

    CERN Multimedia

    Dipole model slice made in 1994 by Ansaldo. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. 50’000 tonnes of steel sheets are used to make the magnet yokes that keep the wiring firmly in place. The yokes constitute approximately 80% of the accelerator's weight and, placed side by side, stretch over 20 km!

  6. Radiation forces in the discrete dipole approximation

    NARCIS (Netherlands)

    Hoekstra, A.G.; Frijlink, M.O.; Waters, L.B.F.M.; Sloot, P.M.A.

    2001-01-01

    The theory of the discrete-dipole approximation (DDA) for light scattering is extended to allow for the calculation of radiation forces on each dipole in the DDA model. Starting with the theory of Draine and Weingartner [Astrophys. J. 470, 551 (1996)] we derive an expression for the radiation force

  7. Iron saturation control in RHIC dipole magnets

    International Nuclear Information System (INIS)

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    The Relativistic Heavy Ion Collider (RHIC) will require 360 dipoles of 80 mm bore. This paper discusses the field perturbations produced by the saturation of the yoke iron. Changes have been made to the yoke to reduce these perturbations, in particular, decapole -4 . Measurements and calculations for 6 series of dipole magnets are presented. 2 refs., 2 figs., 1 tab

  8. Electric dipoles on the Bloch sphere

    OpenAIRE

    Vutha, Amar C.

    2014-01-01

    The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.

  9. Giant dipole resonance by many levels theory

    International Nuclear Information System (INIS)

    Mondaini, R.P.

    1977-01-01

    The many levels theory is applied to photonuclear effect, in particular, in giant dipole resonance. A review about photonuclear dipole absorption, comparing with atomic case is done. The derivation of sum rules; their modifications by introduction of the concepts of effective charges and mass and the Siegert theorem. The experimental distributions are compared with results obtained by curve adjustment. (M.C.K.) [pt

  10. Measurement of the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Dress, W.B.; Perrin, P.; Miller, P.D.; Pendlebury, J.M.; Ramsey, N.F.

    1975-01-01

    Experiments have been performed in view of improving the accuracy in measuring the electric dipole moment of the neutron (EDM). This EDM is written as eD where e is the electron charge and D the dipole length. The analysis of the data indicates that /D/ 24 cm with 90% confidence [fr

  11. FOHI-D: An iterative Hirshfeld procedure including atomic dipoles

    Science.gov (United States)

    Geldof, D.; Krishtal, A.; Blockhuys, F.; Van Alsenoy, C.

    2014-04-01

    In this work, a new partitioning method based on the FOHI method (fractional occupation Hirshfeld-I method) will be discussed. The new FOHI-D method uses an iterative scheme in which both the atomic charge and atomic dipole are calculated self-consistently. In order to induce the dipole moment on the atom, an electric field is applied during the atomic SCF calculations. Based on two sets of molecules, the atomic charge and intrinsic atomic dipole moment of hydrogen and chlorine atoms are compared using the iterative Hirshfeld (HI) method, the iterative Stockholder atoms (ISA) method, the FOHI method, and the FOHI-D method. The results obtained are further analyzed as a function of the group electronegativity of Boyd et al. [J. Am. Chem. Soc. 110, 4182 (1988); Boyd et al., J. Am. Chem. Soc. 114, 1652 (1992)] and De Proft et al. [J. Phys. Chem. 97, 1826 (1993)]. The molecular electrostatic potential (ESP) based on the HI, ISA, FOHI, and FOHI-D charges is compared with the ab initio ESP. Finally, the effect of adding HI, ISA, FOHI, and FOHI-D atomic dipoles to the multipole expansion as a function of the precision of the ESP is analyzed.

  12. FOHI-D: An iterative Hirshfeld procedure including atomic dipoles

    International Nuclear Information System (INIS)

    Geldof, D.; Blockhuys, F.; Van Alsenoy, C.; Krishtal, A.

    2014-01-01

    In this work, a new partitioning method based on the FOHI method (fractional occupation Hirshfeld-I method) will be discussed. The new FOHI-D method uses an iterative scheme in which both the atomic charge and atomic dipole are calculated self-consistently. In order to induce the dipole moment on the atom, an electric field is applied during the atomic SCF calculations. Based on two sets of molecules, the atomic charge and intrinsic atomic dipole moment of hydrogen and chlorine atoms are compared using the iterative Hirshfeld (HI) method, the iterative Stockholder atoms (ISA) method, the FOHI method, and the FOHI-D method. The results obtained are further analyzed as a function of the group electronegativity of Boyd et al. [J. Am. Chem. Soc. 110, 4182 (1988); Boyd et al., J. Am. Chem. Soc. 114, 1652 (1992)] and De Proft et al. [J. Phys. Chem. 97, 1826 (1993)]. The molecular electrostatic potential (ESP) based on the HI, ISA, FOHI, and FOHI-D charges is compared with the ab initio ESP. Finally, the effect of adding HI, ISA, FOHI, and FOHI-D atomic dipoles to the multipole expansion as a function of the precision of the ESP is analyzed

  13. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay [Massachusetts Institute of Technology, Cambridge, MA (United States); Mauel, Michael [Columbia Univ., New York, NY (United States)

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m-3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.

  14. Dipole localization using simulated intracerebral EEG.

    Science.gov (United States)

    Chang, Nathalie; Gulrajani, Ramesh; Gotman, Jean

    2005-11-01

    In the clinical interpretation of intracerebral EEGs, epileptic foci are commonly identified by visually analyzing the amplitude of the potentials. This is potentially misleading since electrodes record activity from several sources, but the nearest ones generate large amplitudes that can overpower distant sources. Our objective was to improve foci detection in intracerebral recordings by applying source localization methods. Data were simulated by placing 3 sources in a semi-infinite medium near 3 intracerebral electrodes. Potentials were generated and contaminated with white and correlated noise. Two inverse problem algorithms, beamforming and RAP-MUSIC, were used to calculate equivalent dipoles. Simulations for each noise types showed that the two methods detected the source locations accurately, with RAP-MUSIC reporting lower orientation errors. With correlated noise, beamforming reconstructed original source waveforms poorly. A spatial resolution analysis was performed, in which beamforming adequately distinguished sources separated by 1.2 cm, whereas RAP-MUSIC separated sources as close as 0.4-0.6 cm. Both source localization methods proved useful in detecting the location of dipolar sources based on simulated intracerebral potentials. For all simulations, RAP-MUSIC was more accurate than beamforming. It is possible to use source localization methods traditionally applied to scalp recordings for improving source detection from intracerebral recordings.

  15. Global diabatic potential energy surfaces and quantum dynamical studies for the Li(2p) + H2(X(1)Σ(+)g) → LiH(X(1)Σ(+)) + H reaction.

    Science.gov (United States)

    He, Di; Yuan, Jiuchuang; Li, Huixing; Chen, Maodu

    2016-04-29

    The global diabatic potential energy surfaces which are correlated with the ground state 1A' and the excited state 2A' of the Li(2p) + H2 reaction are presented in this study. The multi-reference configuration interaction method and large basis sets (aug-cc-pVQZ for H atom and cc-pwCVQZ for Li atom) were employed in the ab initio single-point energy calculations. The diabatic potential energies were generated by the diabatization scheme based on transition dipole moment operators. The neural network method was utilized to fit the matrix elements of the diabatic energy surfaces, and the root mean square errors were extremely small (3.69 meV for , 5.34 meV for and 5.06 meV for ). The topographical features of the diabatic potential energy surfaces were characterized and the surfaces were found to be sufficiently smooth for the dynamical calculation. The crossing seam of the conical intersections between the and surfaces were pinpointed. Based on this new analytical diabatic potential energy surfaces, time-dependent wave packet calculation were conducted to investigate the mechanism of the title reaction. At low collision energies, the product LiH molecule tends to forward scattering, while at high collision energies, the forward and backward scatterings exist simultaneously.

  16. Effects of flexoelectricity and surface elasticity on piezoelectric potential in a bent ZnO nanowire

    Science.gov (United States)

    Zhang, Shuangzhe; Yao, Haiyan; Fan, Wenliang; Hao, Yu; Wu, Xudong; Hou, Dongyuan

    2017-01-01

    In this work, a rapid model is established to study the effects of flexoelectricity and surface elasticity on the piezoelectric potential of a bent ZnO nanowire. Based on the piezoelectric theory and core-surface model, the distribution of piezoelectric potential of the ZnO nanowire is investigated. The analytical solution shows that the flexoelectricity and surface elasticity both significantly influence the piezoelectric potential. However, the effect of flexoelectricity is longitudinal dependent, which vanishes on the top side of nanowire, but only left surface elasticity effect on the potential. Simulation results show that the maximum value of potential on the top side of nanowire is about ± 220.5mV, of which result is lower compared to other theoretical models, but it should be more reasonable.

  17. Potential sputtering from a Si surface by very highly charged ion impact

    International Nuclear Information System (INIS)

    Tona, Masahide; Watanabe, Hirofumi; Takahashi, Satoshi; Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Sakurai, Makoto; Yamada, Chikashi; Ohtani, Shunsuke

    2007-01-01

    We have observed radiation effect in collision of slow highly charged ions with the following target materials; a SiO 2 thin film, a Si(1 1 1)-(7 x 7) surface and a hydrogen terminated Si(1 1 1)-(1 x 1) surface. Secondary ion mass spectrometry and scanning tunneling microscopy revealed some features due to 'potential sputtering'; (a) strong dependence of secondary particle emission on the surface condition, (b) high yield of positive ion emission including cluster fragments and (c) creation of nanometer sized surface structure. The mechanism for the potential sputtering is briefly discussed, based on the 'Coulomb explosion' model

  18. Cardiac Body Surface Potentials in Rats with Experimental Pulmonary Hypertension during Ventricular Depolarization.

    Science.gov (United States)

    Suslonova, O V; Smirnova, S L; Roshchevskaya, I M

    2016-11-01

    The spatial and the amplitude-temporal parameters of cardiac body surface potentials were examined in female Wistar rats with experimental pulmonary hypertension during ventricular depolarization. The cardiac body surface potentials have been led from 64 subcutaneous electrodes evenly distributed across the chest surface prior to and 4 weeks after subcutaneous injection of a single dose of monocrotaline (60 mg/kg). Right ventricular hypertrophy and electrophysiological remodeling of the heart developed in rats with experimental pulmonary hypertension in 4 weeks after monocrotaline injection; these changes led to a significant increase in amplitude and temporal characteristics of the cardioelectric field on the body surface in comparison with the initial state.

  19. Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering.

    Science.gov (United States)

    Schreck, Simon; Pietzsch, Annette; Kennedy, Brian; Såthe, Conny; Miedema, Piter S; Techert, Simone; Strocov, Vladimir N; Schmitt, Thorsten; Hennies, Franz; Rubensson, Jan-Erik; Föhlisch, Alexander

    2016-01-29

    Thermally driven chemistry as well as materials' functionality are determined by the potential energy surface of a systems electronic ground state. This makes the potential energy surface a central and powerful concept in physics, chemistry and materials science. However, direct experimental access to the potential energy surface locally around atomic centers and to its long-range structure are lacking. Here we demonstrate how sub-natural linewidth resonant inelastic soft x-ray scattering at vibrational resolution is utilized to determine ground state potential energy surfaces locally and detect long-range changes of the potentials that are driven by local modifications. We show how the general concept is applicable not only to small isolated molecules such as O2 but also to strongly interacting systems such as the hydrogen bond network in liquid water. The weak perturbation to the potential energy surface through hydrogen bonding is observed as a trend towards softening of the ground state potential around the coordinating atom. The instrumental developments in high resolution resonant inelastic soft x-ray scattering are currently accelerating and will enable broad application of the presented approach. With this multidimensional potential energy surfaces that characterize collective phenomena such as (bio)molecular function or high-temperature superconductivity will become accessible in near future.

  20. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross

  1. Effect of remote sea surface temperature change on tropical cyclone potential intensity.

    Science.gov (United States)

    Vecchi, Gabriel A; Soden, Brian J

    2007-12-13

    The response of tropical cyclone activity to global warming is widely debated. It is often assumed that warmer sea surface temperatures provide a more favourable environment for the development and intensification of tropical cyclones, but cyclone genesis and intensity are also affected by the vertical thermodynamic properties of the atmosphere. Here we use climate models and observational reconstructions to explore the relationship between changes in sea surface temperature and tropical cyclone 'potential intensity'--a measure that provides an upper bound on cyclone intensity and can also reflect the likelihood of cyclone development. We find that changes in local sea surface temperature are inadequate for characterizing even the sign of changes in potential intensity, but that long-term changes in potential intensity are closely related to the regional structure of warming; regions that warm more than the tropical average are characterized by increased potential intensity, and vice versa. We use this relationship to reconstruct changes in potential intensity over the twentieth century from observational reconstructions of sea surface temperature. We find that, even though tropical Atlantic sea surface temperatures are currently at a historical high, Atlantic potential intensity probably peaked in the 1930s and 1950s, and recent values are near the historical average. Our results indicate that--per unit local sea surface temperature change--the response of tropical cyclone activity to natural climate variations, which tend to involve localized changes in sea surface temperature, may be larger than the response to the more uniform patterns of greenhouse-gas-induced warming.

  2. Dipole-Assisted Self-Assembly of Light-Emitting p-nP Needles on Mica

    DEFF Research Database (Denmark)

    Balzer, Frank; Rubahn, Horst-Günter

    2001-01-01

    We report on dipole-assisted, self-assembled formation of p-6P and p-5P needles on cleaved and heated mica (0001) surfaces. Low-energy electron diffraction (LEED) reveals that the needles are single crystalline with the (1) face parallel to the surface, consisting of parallel stacks of laying...... molecules oriented along the direction of microscopic dipoles on the mica surface. They have submicrometer cross-sectional dimensions and lengths as large as millimeters. Moreover, due to the strong dipole confinement of individual molecules, the needles form large domains with parallel oriented entities...

  3. Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Gavnholt, Jeppe; Schiøtz, Jakob

    2009-01-01

    We present a model for desorption induced by (multiple) electronic transitions [DIET (DIMET)] based on potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on various...... transition-metal surfaces and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a simple Hamiltonian describing the system with parameters obtained from the excited-state potential energy surface and show that this model can describe desorption dynamics...... in both the DIET and DIMET regimes and reproduce the power-law behavior observed experimentally. We observe that the internal stretch degree of freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the coupling to the surface is strong....

  4. Surface potential effects in low-energy current image diffraction patterns observed on the Al(001) surface

    International Nuclear Information System (INIS)

    Fine structure observed in high-resolution low-energy electron diffraction (LEED) measurements near the energy threshold for emergence of new beams has been attributed to surface barrier effects. Recently, the surface barrier has been suggested as the source of the fine structure observed in current image diffraction (CID) patterns obtained by rastering the primary beam across an Al(001) crystal surface at a constant energy. This suggestion was based on kinematic arguments which correlated the emergence angle for a new electron beam with the observed structure in the CID pattern. In this work, the angular dependence of the elastic component of the total crystal reflectivity is calculated at constant energy. The calculations are based on full dynamical theories such as used in LEED but incorporating different surface barrier models to account for the saturating image potential. The results are compared with the experimental CID results

  5. Constraints on exotic dipole-dipole couplings between electrons at the micron scale

    Science.gov (United States)

    Kotler, Shlomi; Ozeri, Roee; Jackson Kimball, Derek

    2015-05-01

    Until recently, the magnetic dipole-dipole coupling between electrons had not been directly observed experimentally. This is because at the atomic scale dipole-dipole coupling is dominated by the exchange interaction and at larger distances the dipole-dipole coupling is overwhelmed by ambient magnetic field noise. In spite of these challenges, the magnetic dipole-dipole interaction between two electron spins separated by 2.4 microns was recently measured using the valence electrons of trapped Strontium ions [S. Kotler, N. Akerman, N. Navon, Y. Glickman, and R. Ozeri, Nature 510, 376 (2014)]. We have used this measurement to directly constrain exotic dipole-dipole interactions between electrons at the micron scale. For light bosons (mass 0.1 eV), we find that coupling constants describing pseudoscalar and axial-vector mediated interactions must be | gPegPe/4 πℏc | <= 1 . 5 × 10-3 and | gAegAe/4 πℏc | <= 1 . 2 × 10-17 , respectively, at the 90% confidence level. These bounds significantly improve on previous constraints in this mass range: for example, the constraints on axial-vector interactions are six orders of magnitude stronger than electron-positron constraints based on positronium spectroscopy. Supported by the National Science Foundation, I-Core: the Israeli excellence center, and the European Research Council.

  6. Mixed Potential Energy Surfaces of the Ultrafast Isomerization of Retinal in Bacteriorhodopsin

    OpenAIRE

    Prokhorenko Valentyn I.; Morizumi Takefumi; Halpin Alexei; Johnson Philip J. M.; Ernst Oliver P.; Dwayne Miller R. J.

    2013-01-01

    We observe, using electronic two-dimensional photon echo spectroscopy, that the cis and trans potential energy surfaces of the ultrafast isomerization of retinal in bacteriorhodopsin are mixed via the hydrogen out of plane (HOOP) mode.

  7. Mixed Potential Energy Surfaces of the Ultrafast Isomerization of Retinal in Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Prokhorenko Valentyn I.

    2013-03-01

    Full Text Available We observe, using electronic two-dimensional photon echo spectroscopy, that the cis and trans potential energy surfaces of the ultrafast isomerization of retinal in bacteriorhodopsin are mixed via the hydrogen out of plane (HOOP mode.

  8. Quantum Nuclear Extension of Electron Nuclear Dynamics on Folded Effective-Potential Surfaces

    DEFF Research Database (Denmark)

    Hall, B.; Deumens, E.; Ohrn, Y.

    2014-01-01

    A perennial problem in quantum scattering calculations is accurate theoretical treatment of low energy collisions. We propose a method of extracting a folded, nonadiabatic, effective potential energy surface from electron nuclear dynamics (END) trajectories; we then perform nuclear wave packet...

  9. SSC collider dipole magnet end mechanical design

    Energy Technology Data Exchange (ETDEWEB)

    Delchamps, S.W.; Bossert, R.C.; Carson, J.; Ewald, K.; Fulton, H.; Kerby, J.; Koska, W.; Strait, J.; Wake, S.M. (Fermi National Accelerator Lab., Batavia, IL (USA)); Leung, K.K. (Superconducting Super Collider Lab., Dallas, TX (USA))

    1991-05-01

    This paper describes the mechanical design of the ends of Superconducting Super Collider dipole magnets to be constructed and tested at Fermilab. Coil end clamps, end yoke configuration, and end plate design are discussed. Loading of the end plate by axial Lorentz forces is discussed. Relevant data from 40 mm and 50 mm aperture model dipole magnets built and tested at Fermilab are presented. In particular, the apparent influence of end clamp design on the quench behavior of model SSC dipoles is described. 8 refs., 3 figs.

  10. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    2001-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  11. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    1999-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  12. First Principle Calculation of Electronic, Optical Properties and Photocatalytic Potential of CuO Surfaces

    OpenAIRE

    Ahmad, Faozan

    2016-01-01

    We have performed DFT calculations of electronic structure, optical properties and photocatalytic potential of the low-index surfaces of CuO. Photocatalytic reaction on the surface of semiconductor requires the appropriate band edge of the semiconductor surface to drive redox reactions. The calculation begins with the electronic structure of bulk system; it aims to determine realistic input parameters and band gap prediction. CuO is an antiferromagnetic material with strong electronic correla...

  13. The neutron electric dipole moment

    International Nuclear Information System (INIS)

    He, X.G.; McKellar, B.H.J.; Pakvasa, S.

    1989-01-01

    A systematic study was made of the electric dipole moment (EDM) of neutron D n in various models of CP violation. It was found that in the standard KM model with 3 families the neutron EDM is in the range 1.4x10 -33 ≤ D n ≤ 1.6x10 -31 ecm; that the two Higgs doublet model has approximately the same value of D n as the standard model; that D n in the Weinberg model is predicted to satisfy D n > 10 -25 ecm; that in a class of left-right symmetric models D n is of the order of 10 -26-11 ecm; that in supersymmetric models D n is of the order 10 -22 φ ecm with φ being the possible phase difference of the phases of gluino mass and the gluino-quark-smark mixing matrix and that the strong CP parameter θ is found to be θ -9 , using the present experimental limit that D n -25 ecm with 90% confidence. 65 refs., 10 figs

  14. Superconducting Coil of Po Dipole

    CERN Multimedia

    1983-01-01

    The Po superconducting dipole was built as a prototype beam transport magnet for the SPS extracted proton beam P0. Its main features were: coil aperture 72 mm, length 5 m, room-temperature yoke, NbTi cable conductor impregnated with solder, nominal field 4.2 T at 4.7 K (87% of critical field). It reached its nominal field without any quench.After this successful test up to its nominal field of 4.2 T, the power was not raised to reach a quench. The magnet was not installed in a beam and had no other further use. Nevertheless its construction provided knowledges and experience which became useful in the design and construction of the LHC magnets. The photo shows a detail of the inner layer winding before superposing the outer layer to form the complete coil of a pole. Worth noticing is the interleaved glass-epoxy sheet (white) with grooved channels for the flow of cooling helium. See also 8211532X.

  15. Ion-step method for surface potential sensing of silicon nanowires

    NARCIS (Netherlands)

    Chen, S.; van Nieuwkasteele, Jan William; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    This paper presents a novel stimulus-response method for surface potential sensing of silicon nanowire (Si NW) field-effect transistors. When an "ion-step" from low to high ionic strength is given as a stimulus to the gate oxide surface, an increase of double layer capacitance is therefore expected.

  16. The sand extraction potential of embedded land surface lowering in the Netherlands

    NARCIS (Netherlands)

    Meulen, M.J. van der; Kleine, M.P.E. de; Veldkamp, J.G.; Dubelaar, C.W.; Pietersen, H.S.

    2004-01-01

    In the Netherlands, mineral extraction by means of dredging or quarrying meets with considerable societal resistance. Land surface lowering prior to large land reconstruction projects may raise fewer objections. We have calculated the potential yields of sand and gravel from land surface lowering

  17. The sand extraction potential of embedded land surface lowering in the Netherlands

    NARCIS (Netherlands)

    Van der Meulen, M.J.; De Kleine, M.P.E.; Veldkamp, J.G.; Dubbelaar, C.W.; Pietersen, H.S.

    2004-01-01

    In the Netherlands, mineral extraction by means of dredging or quarrying meets with considerable societal resistance. Land surface lowering prior to large land reconstruction projects may raise fewer objections. We have calculated the potential yields of sand and gravel form land surface lowering

  18. Characterization of the surface of protein-adsorbed dental materials by wetting and streaming potential measurements

    NARCIS (Netherlands)

    Matsumura, H.; Kawasaki, K.; Okumura, N.; Kambara, M.; Norde, W.

    2003-01-01

    In this study we have elucidated the water-wettability and the electrokinetic surface potential of protein-covered dental materials. The proteins used here as typical proteins were human serum albumin and lysozyme from hen*s egg. The wettability (hydrophobicity/hydrophilicity) and the surface

  19. Characterization of the surface of protein-adsorbed dental materials by wetting and streaming potential measurements

    NARCIS (Netherlands)

    Matsumura, H; Kawasaki, K; Okumura, N; Kambara, M; Norde, W

    2003-01-01

    In this study we have elucidated the water-wettability and the electrokinetic surface potential of protein-covered dental materials. The proteins used here as typical proteins were human serum albumin and lysozyme from hen's egg. The wettability (hydrophobicity/hydrophilicity) and the surface

  20. Operador dipolo-dipolo na base de momento angular: um complemento ao estudo de ressonância magnética nuclear Dipole-dipole operator in angular momentum basis: a complementary study in nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Rita de Cássia de Oliveira Sebastião

    2008-01-01

    Full Text Available The relationship between the magnetic dipole-dipole potential energy function and its quantum analogue is presented in this work. It is assumed the reader is familiar with the classical expression of the dipolar interaction and has basic knowledge of the quantum mechanics of angular momentum. Except for these two points only elementary steps are involved.

  1. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites.

    Science.gov (United States)

    Lopes, M A; Monteiro, F J; Santos, J D; Serro, A P; Saramago, B

    1999-06-15

    Wettability and zeta potential studies were performed to characterize the hydrophobicity, surface tension, and surface charge of P2O5-glass-reinforced hydroxyapatite composites. Quantitative phase analysis was performed by the Rietveld method using GSAS software applied to X-ray diffractograms. Surface charge was assessed by zeta potential measurements. Protein adsorption studies were performed using vitronectin. Contact angles and surface tensions variation with time were determined by the sessile and pendent drop techniques, respectively, using ADSA-P software. The highest (-18.1 mV) and lowest (-28.7 mV) values of zeta potential were found for hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), respectively, with composite materials presenting values in between. All studied bioceramic materials showed similar solid surface tension. For HA and beta-TCP, solid surface tensions of 46.7 and 45.3 mJ/m2, respectively, were obtained, while composites presented intermediate surface tension values. The dispersive component of surface tension was the predominant one for all materials studied. Adhesion work values between the vitronectin solution and HA and beta-TCP were found to be 79.8 and 88.0 mJ/m2, respectively, while the 4.0 wt % glass composites showed slightly lower values than the 2.5 wt % ones. The presence of beta-TCP influenced surface charge, hydrophobicity, and protein adsorption of the glass-reinforced HA composites, and therefore indirectly affected cell-biomaterial interactions.

  2. In situ visualization and detection of surface potential variation of mono and multilayer MoS2 under different humidities using Kelvin probe force microscopy.

    Science.gov (United States)

    Feng, Yulin; Zhang, Kailiang; Li, Hui; Wang, Fang; Zhou, Baozeng; Fang, Mingxu; Wang, Weichao; Wei, Jun; Wong, H S Philip

    2017-06-30

    The surface potential (SP) variations in mono and multilayer molybdenum disulfide (MoS 2 ) are visualized in situ and detected using Kelvin probe force microscopy (KPFM) in different humidity conditions for the first time. N-type doping, which originates from the SiO 2 substrate, is discovered in the exfoliated MoS 2 and is accompanied by a screening length of five layers. The influence of water, which serves as an environmental gating for MoS 2 , is investigated by controlling the relative humidities (RHs) in the environmental chamber. A monotonic decrease in the SP is observed when the threshold concentration is achieved. This corresponds to the Fermi level variation, which is dominated by different processes. The results also indicate that water adsorption could result in MoS 2 p-type doping and provide compensation that partially counteracts the substrate effect. Under this condition, the interlayer screening effect is influenced because of the water dipole-induced electric field. Density functional theory calculations are performed to determine the band structure variations and the interactions between water molecules and between water molecules and the MoS 2 surface in mono and trilayer MoS 2 under different RHs. The calculations are in excellent agreement with the experimental results. We propose that in situ measurements of the SP using KPFM under different environmental regimes is a noninvasive and effective method to provide real-time visualization and detection of electronic property variations in two-dimensional materials.

  3. Interaction of H2 with simple metal surfaces - A model based on the anisotropic effective medium theory

    Science.gov (United States)

    Karimi, M.; Ila, D.; Dalins, I.; Vidali, G.

    1990-01-01

    Calculations are presented for the interaction of H2 with surfaces of Cu, Ag, Au and Al. The repulsive part of the potential is evaluated using the results of anisotropic effective medium theory (AEMT) while the attractive part is calculated from anisotropic damped dipole-dipole and damped dipole-quadrupole interactions. The model does not have any fitting parameters and its predictions are in excellent agreement with the available experimental data. The anisotropy of H2 is included in the model but our results show that this effect is very small.

  4. Streaming potential revisited: the influence of convection on the surface conductivity.

    Science.gov (United States)

    Saini, Rakesh; Garg, Abhinandan; Barz, Dominik P J

    2014-09-16

    Electrokinetic phenomena play an important role in the electrical characterization of surfaces. In terms of planar or porous substrates, streaming potential and/or streaming current measurements can be used to determine the zeta potential of the substrates in contact with aqueous electrolytes. In this work, we perform electrical impedance spectroscopy measurements to infer the electrical resistance in a microchannel with the same conditions as for a streaming potential experiment. Novel correlations are derived to relate the streaming current and streaming potential to the Reynolds number of the channel flow. Our results not only quantify the influence of surface conductivity, and here especially the contribution of the stagnant layer, but also reveal that channel resistance and therefore zeta potential are influenced by the flow in the case of low ionic strengths. We conclude that convection can have a significant impact on the electrical double layer configuration which is reflected by changes in the surfaces conductivity.

  5. Ab initio potential energy surfaces for the ground (X1A') and excited (A1A'') electronic states of HGeBr and the Absorption and emission spectra of HGeBr/DGeBr.

    Science.gov (United States)

    Lin, Sen; Xie, Daiqian; Guo, Hua

    2009-07-02

    We report global potential energy surfaces for both the ground (X(1)A') and the excited (A(1)A'') electronic states of HGeBr as well as the transition dipole moment surface between them using an internally contracted multireference configuration interaction method with the Davidson correction and an augmented correlation-consistent polarized valence quadruple-zeta basis set. Vibrational energy levels of HGeBr and DGeBr are calculated on both the ground and the excited electronic states and found in good agreement with the available experimental band origins. In addition, the A(1)A''-X(1)A' absorption and emission spectra of the two isotopomers were obtained, and an excellent agreement with the available experimental spectra was found.

  6. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  7. Full-dimensional diabatic potential energy surfaces including dissociation: the ²E″ state of NO₃.

    Science.gov (United States)

    Eisfeld, Wolfgang; Vieuxmaire, Olivier; Viel, Alexandra

    2014-06-14

    A scheme to produce accurate full-dimensional coupled diabatic potential energy surfaces including dissociative regions and suitable for dynamical calculations is proposed. The scheme is successfully applied to model the two-sheeted surface of the (2)E″ state of the NO3 radical. An accurate potential energy surface for the NO₃⁻ anion ground state is developed as well. Both surfaces are based on high-level ab initio calculations. The model consists of a diabatic potential matrix, which is expanded to higher order in terms of symmetry polynomials of symmetry coordinates. The choice of coordinates is key for the accuracy of the obtained potential energy surfaces and is discussed in detail. A second central aspect is the generation of reference data to fit the expansion coefficients of the model for which a stochastic approach is proposed. A third ingredient is a new and simple scheme to handle problematic regions of the potential energy surfaces, resulting from the massive undersampling by the reference data unavoidable for high-dimensional problems. The final analytical diabatic surfaces are used to compute the lowest vibrational levels of NO₃⁻ and the photo-electron detachment spectrum of NO₃⁻ leading to the neutral radical in the (2)E″ state by full dimensional multi-surface wave-packet propagation for NO3 performed using the Multi-Configuration Time Dependent Hartree method. The achieved agreement of the simulations with available experimental data demonstrates the power of the proposed scheme and the high quality of the obtained potential energy surfaces.

  8. Induced dipole in vanadium-doped zinc oxide nanosheets and its effects on photoelectrochemical water splitting

    Science.gov (United States)

    Lee, Song Mi; Shin, Sung-Ho; Nah, Junghyo; Lee, Min Hyung

    2017-09-01

    Appropriate control of energy band bending at the interface between semiconductors and electrolytes are closely related to performance of photoelectrochemical (PEC) water splitting. Dipoles formed near the surface of semiconductors induces energy band bending at the interface. Energy band bending control has been demonstrated by employing charged molecules and piezoelectric materials. However, chemical and piezoelectric approaches have demerit of chemical instability and inducement of instantaneous dipole, respectively. To overcome these problems, we adopted the ferroelectric material for PEC water splitting, where spontaneous dipoles in the material can be oriented by applying external electric field. In this work, we hydrothermally synthesized vanadium (V)-doped ferroelectric ZnO nanosheets and employed to systematically investigate the dipole effect on performance of V-doped ZnO PEC for water oxidation. Consequently, positively polarized V-doped ZnO photoanode exhibits 125% enhanced water splitting efficiency compared to negatively polarized ones due to favorable band bending for carrier transport from semiconductor to water.

  9. Plasmonic functionalities based on detuned electrical dipoles

    DEFF Research Database (Denmark)

    Pors, Anders Lambertus; Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2013-01-01

    We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells...

  10. Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians.

    Science.gov (United States)

    Zheng, Jingjing; Frisch, Michael J

    2017-12-12

    An efficient geometry optimization algorithm based on interpolated potential energy surfaces with iteratively updated Hessians is presented in this work. At each step of geometry optimization (including both minimization and transition structure search), an interpolated potential energy surface is properly constructed by using the previously calculated information (energies, gradients, and Hessians/updated Hessians), and Hessians of the two latest geometries are updated in an iterative manner. The optimized minimum or transition structure on the interpolated surface is used for the starting geometry of the next geometry optimization step. The cost of searching the minimum or transition structure on the interpolated surface and iteratively updating Hessians is usually negligible compared with most electronic structure single gradient calculations. These interpolated potential energy surfaces are often better representations of the true potential energy surface in a broader range than a local quadratic approximation that is usually used in most geometry optimization algorithms. Tests on a series of large and floppy molecules and transition structures both in gas phase and in solutions show that the new algorithm can significantly improve the optimization efficiency by using the iteratively updated Hessians and optimizations on interpolated surfaces.

  11. Magnetic dipole interactions in crystals

    Science.gov (United States)

    Johnston, David C.

    2016-01-01

    The influence of magnetic dipole interactions (MDIs) on the magnetic properties of local-moment Heisenberg spin systems is investigated. A general formulation is presented for calculating the eigenvalues λ and eigenvectors μ ̂ of the MDI tensor of the magnetic dipoles in a line (one dimension, 1D), within a circle (2D) or a sphere (3D) of radius r surrounding a given moment μ⃗i for given magnetic propagation vectors k for collinear and coplanar noncollinear magnetic structures on both Bravais and non-Bravais spin lattices. Results are calculated for collinear ordering on 1D chains, 2D square and simple-hexagonal (triangular) Bravais lattices, 2D honeycomb and kagomé non-Bravais lattices, and 3D cubic Bravais lattices. The λ and μ ̂ values are compared with previously reported results. Calculations for collinear ordering on 3D simple tetragonal, body-centered tetragonal, and stacked triangular and honeycomb lattices are presented for c /a ratios from 0.5 to 3 in both graphical and tabular form to facilitate comparison of experimentally determined easy axes of ordering on these Bravais lattices with the predictions for MDIs. Comparisons with the easy axes measured for several illustrative collinear antiferromagnets (AFMs) are given. The calculations are extended to the cycloidal noncollinear 120∘ AFM ordering on the triangular lattice where λ is found to be the same as for collinear AFM ordering with the same k. The angular orientation of the ordered moments in the noncollinear coplanar AFM structure of GdB4 with a distorted stacked 3D Shastry-Sutherland spin-lattice geometry is calculated and found to be in disagreement with experimental observations, indicating the presence of another source of anisotropy. Similar calculations for the undistorted 2D and stacked 3D Shastry-Sutherland lattices are reported. The thermodynamics of dipolar magnets are calculated using the Weiss molecular field theory for quantum spins, including the magnetic transition

  12. The PyPES library of high quality semi-global potential energy surfaces.

    Science.gov (United States)

    Sibaev, Marat; Crittenden, Deborah L

    2015-11-05

    In this article, we present a Python-based library of high quality semi-global potential energy surfaces for 50 polyatomic molecules with up to six atoms. We anticipate that these surfaces will find widespread application in the testing of new potential energy surface construction algorithms and nuclear ro-vibrational structure theories. To this end, we provide the ability to generate the energy derivatives required for Taylor series expansions to sixth order about any point on the potential energy surface in a range of common coordinate systems, including curvilinear internal, Cartesian, and normal mode coordinates. The PyPES package, along with FORTRAN, C, MATLAB and Mathematica wrappers, is available at http://sourceforge.net/projects/pypes-lib. © 2015 Wiley Periodicals, Inc.

  13. Surface potential measurement of negative-ion-implanted insulators by analysing secondary electron energy distribution

    International Nuclear Information System (INIS)

    Toyota, Yoshitaka; Tsuji, Hiroshi; Nagumo, Syoji; Gotoh, Yasuhito; Ishikawa, Junzo; Sakai, Shigeki.

    1994-01-01

    The negative ion implantation method we have proposed is a noble technique which can reduce surface charging of isolated electrodes by a large margin. In this paper, the way to specify the surface potential of negative-ion-implanted insulators by the secondary electron energy analysis is described. The secondary electron energy distribution is obtained by a retarding field type energy analyzer. The result shows that the surface potential of fused quartz by negative-ion implantation (C - with the energy of 10 keV to 40 keV) is negatively charged by only several volts. This surface potential is extremely low compared with that by positive-ion implantation. Therefore, the negative-ion implantation is a very effective method for charge-up free implantation without charge compensation. (author)

  14. Non-stationary magnetoencephalography by Bayesian filtering of dipole models

    Science.gov (United States)

    Somersalo, E.; Voutilainen, A.; Kaipio, J. P.

    2003-10-01

    In this paper, we consider the biomagnetic inverse problem of estimating a time-varying source current from magnetic field measurements. It is assumed that the data are severely corrupted by measurement noise. This setting is a model for magnetoencephalography (MEG) when the dynamic nature of the source prevents us from effecting noise reduction by averaging over consecutive measurements. Thus, the potential applications of this approach include the single trial estimation of the brain activity, in particular from the spontaneous MEG data. Our approach is based on non-stationary Bayesian estimation, and we propose the use of particle filters. The source model in this work is either a single dipole or multiple dipole model. Part of the problem consists of the model determination. Numerical simulations are presented.

  15. Biofilm formation by Listeria monocytogenes on stainless steel surface and biotransfer potential

    Directory of Open Access Journals (Sweden)

    Maíra Maciel Mattos de Oliveira

    2010-03-01

    Full Text Available An experimental model was proposed to study biofilm formation by Listeria monocytogenes ATCC 19117 on AISI 304 (#4 stainless steel surface and biotransfer potential during this process. In this model, biofilm formation was conducted on the surface of stainless steel coupons, set on a stainless steel base with 4 divisions, each one supporting 21 coupons. Trypic Soy Broth was used as bacterial growth substrate, with incubation at 37 ºC and stirring of 50 rpm. The number of adhered cells was determined after 3, 48, 96, 144, 192 and 240 hours of biofilm formation and biotransfer potential from 96 hours. Stainless steel coupons were submitted to Scanning Electron Microscopy (SEM after 3, 144 and 240 hours. Based on the number of adhered cells and SEM, it was observed that L. monocytogenes adhered rapidly to the stainless steel surface, with mature biofilm being formed after 240 hours. The biotransfer potential of bacterium to substrate occurred at all the stages analyzed. The rapid capacity of adhesion to surface, combined with biotransfer potential throughout the biofilm formation stages, make L. monocytogenes a potential risk to the food industry. Both the experimental model developed and the methodology used were efficient in the study of biofilm formation by L. monocytogenes on stainless steel surface and biotransfer potential.

  16. Full kinetic simulations of plasma flow interactions with meso- and microscale magnetic dipoles

    International Nuclear Information System (INIS)

    Ashida, Y.; Yamakawa, H.; Usui, H.; Miyake, Y.; Shinohara, I.; Funaki, I.; Nakamura, M.

    2014-01-01

    determined to be in the direction of the electron and ion gyrations, which are the same in both the upstream and downstream regions. The present analysis on the formation of a magnetosphere in the regime of a microscale magnetic dipole is significant for understanding the solar wind response to the crustal magnetic anomalies on the Moon surface, such as were recently observed by spacecraft

  17. Disordered electrical potential observed on the surface of SiO2 by electric field microscopy

    International Nuclear Information System (INIS)

    GarcIa, N; Yan Zang; Ballestar, A; Barzola-Quiquia, J; Bern, F; Esquinazi, P

    2010-01-01

    The electrical potential on the surface of ∼300 nm thick SiO 2 grown on single-crystalline Si substrates has been characterized at ambient conditions using electric field microscopy. Our results show an inhomogeneous potential distribution with fluctuations up to ∼0.4 V within regions of 1 μm. The potential fluctuations observed at the surface of these usual dielectric holders of graphene sheets should induce strong variations in the graphene charge densities and provide a simple explanation for some of the anomalous behaviors of the transport properties of graphene.

  18. Infrared spectroscopy of the Ar-C2HD complex: Potential energy surfaces

    International Nuclear Information System (INIS)

    Bemish, R.J.; Miller, R.E.

    1996-01-01

    The argon-acetylene complex has been studied by a number of experimental and theoretical groups, with the aim in mind of determining an accurate potential energy surface for this system. Both microwave and infrared spectroscopy have provided detailed rotational and vibrational constants for this system. In addition, scattering experiments have been reported and ab initio calculation performed. Even with all of this, there are still some fundamental questions that remain unanswered with regards to the shape of the potential surface. The authors will review some of this work to outline the current situation. In the present study, the authors have obtained high resolution infrared spectra of the Ar-C 2 HD complex with the aim of providing additional molecular constants that could be used to help constrain the potential. Collocation calculations are reported, using a number of potential surfaces, for this and the normal isotopomer. This additional data helps to answer some of these open questions

  19. Extremely Low Frequency (ELF) Propagation Formulas for Dipole Sources Radiating in a Spherical Earth-Ionosphere Waveguide

    National Research Council Canada - National Science Library

    Casey, Joseph

    2002-01-01

    .... In these formulas, the earth and ionosphere boundaries are modeled as scalar surface impedances. The spherical waveguide formulas are applied to predict the electromagnetic fields produced by vertical and horizontal electric dipoles...

  20. A Rotating-Bears Optical Dipole Trap for Cold Aatoms

    International Nuclear Information System (INIS)

    Friedman, N.; Ozeri, R.; Khaykovich, L.; Davidson, N.

    1999-01-01

    In the last few years, several optical dipole traps for cold atoms were demonstrated and used to study cold atomic collisions, long atomic coherence times and quantum collective effects. Blue-detuned dipole traps, where repulsive light forces confines atoms mostly in dark, offer long storage, and photon-scattering times, combined with strong confinement forces. Unfortunately, such blue-detuned dipole traps involve complicated light intensity distributions that require either multiple laser beams or complicated phase elements. Here, we propose and demonstrate a novel configuration for a single-beam blue-detuned dipole trap, which enables larger trapping volume, and fast temporal changes in the trap size and shape. Our trap consists of a tightly-focused laser beam which is rapidly rotated (with rotation frequency up to 400 khz) with two orthogonal acousto optical scanners. For very high rotation frequencies the atoms feel a time-averaged static dipole potential. Therefore, when the radius of rotation is larger than the beam size, a dark volume which is completely surrounded by light is obtained around the focal region. By changing the rotation radius and the trapping laser intensity and detuning, the trap dimensions and oscillation frequency could be changed over a large parameter range. In particular trap diameters were changed between 50 to 220 microns and trap length was changed between 3.5 to 16 mm. ∼10 6 atoms were loaded into the rotating-beam dipole trap from a magneto optical trap. The density of the trapped atoms was 4x10 10 atoms/cm 3 ,their temperature was -6 pK. and the trap (1/e) lifetime was 0.65 sec, limited by collisions with background atoms. When the rotation frequency was decreased below the oscillation frequency of the atoms in the trap, the trap became unstable, and a sharp reduction of the trap lifetime was observed, in agreement with our theoretical analysis. Finally, we demonstrated adiabatic compression of atoms in the trap by decreasing

  1. Electrocardiogram: his bundle potentials can be recorded noninvasively beat by beat on surface electrocardiogram.

    Science.gov (United States)

    Wang, Gaopin; Liu, Renguang; Chang, Qinghua; Xu, Zhaolong; Zhang, Yingjie; Pan, Dianzhu

    2017-03-15

    The micro waveform of His bundle potential can't be recorded beat-to-beat on surface electrocardiogram yet. We have found that the micro-wavelets before QRS complex may be related to atrioventricular conduction system potentials. This study is to explore the possibility of His bundle potential can be noninvasively recorded on surface electrocardiogram. We randomized 65 patients undergoing radiofrequency catheter ablation of paroxysmal superventricular tachycardia (exclude overt Wolff-Parkinson-White syndrome) to receive "conventional electrocardiogram" and "new electrocardiogram" before the procedure. His bundle electrogram was collected during the procedure. Comparative analysis of PA s (PA interval recorded on surface electrocardiogram), AH s (AH interval recorded on surface electrocardiogram) and HV s (HV interval recorded on surface electrocardiogram) interval recorded on surface "new electrocardiogram" and PA, AH, HV interval recorded on His bundle electrogram was investigated. There was no difference (P > 0.05) between groups in HV s interval (49.63 ± 6.19 ms) and HV interval (49.35 ± 6.49 ms). Results of correlational analysis found that HV S interval was significantly positively associated with HV interval (r = 0.929; P electrocardiogram. Noninvasive His bundle potential tracing might represent a new method for locating the site of atrioventricular block and identifying the origin of a wide QRS complex.

  2. The Effect of Images on Surface Potential and Resistance Calculation of Grounding Systems

    Directory of Open Access Journals (Sweden)

    MARTINS, A.

    2015-05-01

    Full Text Available In the grounding systems with a two layers soil, the calculation of the surface potential using the image method is sometimes impossible due to singularities, avoiding researchers to use the method for electrodes in the bottom layer. In the literature this problem solution is refereed as unreliable or solved with other more complex methods. This paper presents a new approach to calculate the surface potentials in a two. layer soil, for electrodes in the bottom layer, when images are at surface. The singularities in computing surface voltage, when the first image upwards lies at surface, are analysed and it's shown that a small change in top layer thickness allows an approximate solution. Surface potentials due to grid conductor are also considered and the values of resistance are compared with those from other methodologies. Singularities for a ground rod that crosses the two layers are also treated. The obtained values of resistance are not satisfactory, due to lower segments images that overlap the upper segments. This paper also proposes shifting the surface of the upper part of the ground rod, in the upper layer, or taking the modulus of the mutual resistance, to overcome this difficulty.

  3. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Science.gov (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  4. Analyses of a Dipole Antenna Loaded by a Cylindrical Shell of Double Negative (DNG Metamaterial

    Directory of Open Access Journals (Sweden)

    Khan M. Z. Shams

    2007-01-01

    Full Text Available The current distribution, input impedance, and radiation pattern of a cylindrical dipole antenna enclosed by a thin cylindrical shell of double negative (DNG metamaterial are computed using the piecewise sinusoidal Galerkin formulation. In the presence of the DNG shell, the dipole antenna exhibits three interesting characteristics. The input impedance shows potentials for wide bandwidth due to the relative insensitivity of the impedance with frequency. Within specific ranges of DNG material parameter values, the dipole shows resonance at much lower frequencies than its resonant frequency in free space. The dipole does not show change in the direction of the principal beam nor does it show signs of beam splitting and side lobes even when the antenna length approaches one and a half wavelength.

  5. High volume hydraulic fracturing operations: potential impacts on surface water and human health.

    Science.gov (United States)

    Mrdjen, Igor; Lee, Jiyoung

    2016-08-01

    High volume, hydraulic fracturing (HVHF) processes, used to extract natural gas and oil from underground shale deposits, pose many potential hazards to the environment and human health. HVHF can negatively affect the environment by contaminating soil, water, and air matrices with potential pollutants. Due to the relatively novel nature of the process, hazards to surface waters and human health are not well known. The purpose of this article is to link the impacts of HVHF operations on surface water integrity, with human health consequences. Surface water contamination risks include: increased structural failure rates of unconventional wells, issues with wastewater treatment, and accidental discharge of contaminated fluids. Human health risks associated with exposure to surface water contaminated with HVHF chemicals include increased cancer risk and turbidity of water, leading to increased pathogen survival time. Future research should focus on modeling contamination spread throughout the environment, and minimizing occupational exposure to harmful chemicals.

  6. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)

    2007-07-04

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  7. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P

    2007-01-01

    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  8. τ dipole moments via radiative leptonic τ decays

    Energy Technology Data Exchange (ETDEWEB)

    Eidelman, S. [Budker Institute of Nuclear Physics SB RAS,Novosibirsk 630090 (Russian Federation); Novosibirsk State University,Novosibirsk 630090 (Russian Federation); Epifanov, D. [Budker Institute of Nuclear Physics SB RAS,Novosibirsk 630090 (Russian Federation); Novosibirsk State University,Novosibirsk 630090 (Russian Federation); The University of Tokyo,7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 (Japan); Fael, M. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern, CH-3012 Bern (Switzerland); Mercolli, L. [Federal Office of Public Health FOPH,CH-3003 Bern (Switzerland); Passera, M. [INFN - Sezione di Padova,I-35131 Padova (Italy)

    2016-03-21

    We propose a new method to probe the magnetic and electric dipole moments of the τ lepton using precise measurements of the differential rates of radiative leptonic τ decays at high-luminosity B factories. Possible deviations of these moments from the Standard Model values are analyzed in an effective Lagrangian approach, thus providing model-independent results. Analytic expressions for the relevant non-standard contributions to the differential decay rates are presented. Earlier proposals to probe the τ dipole moments are examined. A detailed feasibility study of our method is performed in the conditions of the Belle and Belle II experiments at the KEKB and Super-KEKB colliders, respectively. This study shows that our approach, applied to the planned full set of Belle II data for radiative leptonic τ decays, has the potential to improve the present experimental bound on the τ anomalous magnetic moment. On the contrary, its foreseen sensitivity is not expected to lower the current experimental limit on the τ electric dipole moment.

  9. Elastic dipoles of point defects from atomistic simulations

    Science.gov (United States)

    Varvenne, Céline; Clouet, Emmanuel

    2017-12-01

    The interaction of point defects with an external stress field or with other structural defects is usually well described within continuum elasticity by the elastic dipole approximation. Extraction of the elastic dipoles from atomistic simulations is therefore a fundamental step to connect an atomistic description of the defect with continuum models. This can be done either by a fitting of the point-defect displacement field, by a summation of the Kanzaki forces, or by a linking equation to the residual stress. We perform here a detailed comparison of these different available methods to extract elastic dipoles, and show that they all lead to the same values when the supercell of the atomistic simulations is large enough and when the anharmonic region around the point defect is correctly handled. But, for small simulation cells compatible with ab initio calculations, only the definition through the residual stress appears tractable. The approach is illustrated by considering various point defects (vacancy, self-interstitial, and hydrogen solute atom) in zirconium, using both empirical potentials and ab initio calculations.

  10. Acoustic dispersion in a two-dimensional dipole system

    International Nuclear Information System (INIS)

    Golden, Kenneth I.; Kalman, Gabor J.; Donko, Zoltan; Hartmann, Peter

    2008-01-01

    We calculate the full density response function and from it the long-wavelength acoustic dispersion for a two-dimensional system of strongly coupled point dipoles interacting through a 1/r 3 potential at arbitrary degeneracy. Such a system has no random-phase-approximation (RPA) limit and the calculation has to include correlations from the outset. We follow the quasilocalized charge (QLC) approach, accompanied by molecular-dynamics (MD) simulations. Similarly to what has been recently reported for the closely spaced classical electron-hole bilayer [G. J. Kalman et al., Phys. Rev. Lett. 98, 236801 (2007)] and in marked contrast to the RPA, we report a long-wavelength acoustic phase velocity that is wholly maintained by particle correlations and varies linearly with the dipole moment p. The oscillation frequency, calculated both in an extended QLC approximation and in the Singwi-Tosi-Land-Sjolander approximation [Phys. Rev. 176, 589 (1968)], is invariant in form over the entire classical to quantum domains all the way down to zero temperature. Based on our classical MD-generated pair distribution function data and on ground-state energy data generated by recent quantum Monte Carlo simulations on a bosonic dipole system [G. E. Astrakharchik et al., Phys. Rev. Lett. 98, 060405 (2007)], there is a good agreement between the QLC approximation kinetic sound speeds and the standard thermodynamic sound speeds in both the classical and quantum domains

  11. MRD-CI potential surfaces using balanced basis sets. IV. The H2 molecule and the H3 surface

    International Nuclear Information System (INIS)

    Wright, J.S.; Kruus, E.

    1986-01-01

    The utility of midbond functions in molecular calculations was tested in two cases where the correct results are known: the H 2 potential curve and the collinear H 3 potential surface. For H 2 , a variety of basis sets both with and without bond functions was compared to the exact nonrelativistic potential curve of Kolos and Wolniewicz [J. Chem. Phys. 43, 2429 (1965)]. It was found that optimally balanced basis sets at two levels of quality were the double zeta single polarization plus sp bond function basis (BF1) and the triple zeta double polarization plus two sets of sp bond function basis (BF2). These gave bond dissociation energies D/sub e/ = 4.7341 and 4.7368 eV, respectively (expt. 4.7477 eV). Four basis sets were tested for basis set superposition errors, which were found to be small relative to basis set incompleteness and therefore did not affect any conclusions regarding basis set balance. Basis sets BF1 and BF2 were used to construct potential surfaces for collinear H 3 , along with the corresponding basis sets DZ*P and TZ*PP which contain no bond functions. Barrier heights of 12.52, 10.37, 10.06, and 9.96 kcal/mol were obtained for basis sets DZ*P, TZ*PP, BF1, and BF2, respectively, compared to an estimated limiting value of 9.60 kcal/mol. Difference maps, force constants, and relative rms deviations show that the bond functions improve the surface shape as well as the barrier height

  12. Reiterated inclusions of dipoles in a dense plasma

    International Nuclear Information System (INIS)

    Naouri, Gerard

    1983-01-01

    This thesis introduces a simple model made up for the calculation of pressure effects in dense and partially ionized 3 D two component plasma. The technic used is the description of the overlapping of atomic orbitals by means of interacting dipoles incased in one another. By iteration of this procedure we get an effective two-body potential which allows us to calculate line shifts of hydrogenic ions. In conclusion we suggest a possible improvement of the method by substituting a self consistent potential to the Debye one for the calculation of the wave functions. [fr

  13. Dynamic dipole-dipole interactions between excitons in quantum dots of different sizes

    DEFF Research Database (Denmark)

    Matsueda, Hideaki; Leosson, Kristjan; Xu, Zhangcheng

    2004-01-01

    A model of the resonance dynamic dipole-dipole interaction between excitons confined in quantum dots (QDs) of different sizes at close enough distance is given in terms of parity inheritance and exchange of virtual photons. Microphotoluminescence spectra of GaAs-AlGaAs coupled QDs are proposed to...

  14. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks

    International Nuclear Information System (INIS)

    Kolb, Brian; Zhao, Bin; Guo, Hua; Li, Jun; Jiang, Bin

    2016-01-01

    The applicability and accuracy of the Behler-Parrinello atomistic neural network method for fitting reactive potential energy surfaces is critically examined in three systems, H + H 2 → H 2 + H, H + H 2 O → H 2 + OH, and H + CH 4 → H 2 + CH 3 . A pragmatic Monte Carlo method is proposed to make efficient choice of the atom-centered mapping functions. The accuracy of the potential energy surfaces is not only tested by fitting errors but also validated by direct comparison in dynamically important regions and by quantum scattering calculations. Our results suggest this method is both accurate and efficient in representing multidimensional potential energy surfaces even when dissociation continua are involved.

  15. Conduction abnormalities in the right ventricular outflow tract in Brugada syndrome detected body surface potential mapping.

    Science.gov (United States)

    Guillem, Maria S; Climent, Andreu M; Millet, Jose; Berne, Paola; Ramos, Rafael; Brugada, Josep; Brugada, Ramon

    2010-01-01

    Brugada syndrome (BrS) causes sudden death in patients with structurally normal hearts. Manifestation of BrS in the ECG is dynamical and most patients do not show unequivocal signs of the syndrome during ECG screening. We have obtained 67-lead body surface potential mapping recordings of 25 patients with BrS and analyzed their spatial distribution of surface potentials during ventricular activation. Six patients presented spontaneous type I ECGs during the recording. These patients showed non-dipolarities in isopotential maps at the right ventricular outflow tract (RVOT) region during the development of terminal R waves in right precordial leads. Same finding was observed in 95% of BrS patients not presenting a type I ECG. Conduction delay in the RVOT may be a consistent finding in BrS patients that can be identified by Body Surface Potential Mapping.

  16. Electric Field and Potential Distributions along Surface of Silicone Rubber Polymer Insulators Using Finite Element Method

    OpenAIRE

    B. Marungsri; W. Onchantuek; A. Oonsivilai

    2008-01-01

    This paper presents the simulation the results of electric field and potential distributions along surface of silicone rubber polymer insulators. Near the same leakage distance subjected to 15 kV in 50 cycle salt fog ageing test, alternate sheds silicone rubber polymer insulator showed better contamination performance than straight sheds silicone rubber polymer insulator. Severe surface ageing was observed on the straight sheds insulator. The objective of this work is to ...

  17. Image potential resonances of the aluminum (100) surface; Bildpotentialresonanzen der Aluminium-(100)-Oberflaeche

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Matthias

    2011-07-08

    Image-potential resonances on the (100) surface of pure Aluminum are investigated experimentally and theoretically. The experiments are conducted both energy- and time-resolved using the method of two-photon photoemission spectroscopy. The main attention of the theoretical examination and extensive numerical calculations is devoted to the interaction between surface and bulk states. Image-potential resonances on Al(100) are a system in which a complete series of discrete Rydberg states strongly couples to a continuum of states. As a simple metal it also provides a good opportunity to test theoretical models of the structure of the potential at metal surfaces. This work represents the first high-resolution investigation of image-potential resonances with such strong resonance character. For the first time, it is demonstrated experimentally that isolated image-potential resonances exist on an Aluminum surface. On the (100) surface of Aluminum the second through fifth image-potential resonance are resolved and both, their energies and lifetimes are measured. The binding energies of the image-potential resonances form a Rydberg series of states {epsilon}{sub n}=-(0,85 eV)/((n+a){sup 2}). Within the accuracy of the measurement it is not necessary to introduce a quantum defect a (a=0.022{+-}0.035). Using angle-resolved two-photon photoemission spectroscopy the effective mass of electrons in the second image-potential resonance is measured to 1.01{+-}0.11 electron masses. The lifetimes of the resonances increase as {tau}{sub n} = (1.0{+-}0.2)fs.n{sup 3} starting from n=2. Calculations using the density matrix formalism show that the experimentally observed lifetimes can be explained well by electrons decaying into the bulk. The effect of resonance trapping leads to extended lifetimes in the process. Contrary to common theoretical models of image-potential states at metal surfaces the first image-potential resonance cannot be observed in two-photon photoemission on Al(100

  18. Single-ion and pair-interaction potentials near simple metal surfaces

    International Nuclear Information System (INIS)

    Barnett, R.N.; Barrera, R.G.; Cleveland, C.L.; Landman, U.

    1983-01-01

    Presented is a model for semi-infinite simple metals which does not require crystalline order or a single species, and thus is applicable to problems of defect energetics near the surface and random-alloy surfaces as well as ideal metal surfaces. The formulation is based on the use of ionic pseudopotentials and linear-response theory. An expression for the total energy is obtained which depends explicitly on ionic species and position. This expression is decomposed into a density-dependent term and single-ion and ionic pair-interaction potential terms. The single-ion potentials oscillate about a constant bulk value, with the magnitude of the oscillation decreasing rapidly away from the surface. The interaction between pairs of ions near the surface is shown to be a noncentral force interaction which differs significantly from the central-force bulk pair potential. The effect of quantum interference in the response of the semi-infinite electron gas to the ions is seen in both the single-ion and the pair-interaction potentials. Results are presented for the simple metals sodium, potassium, and rubidium

  19. A many-body embedded atom potential for describing ejection of atoms from surfaces

    International Nuclear Information System (INIS)

    Garrison, B.J.; Walzl, K.; El-Maazawi, M.; Winograd, N.; Reimann, C.T.; Deaven, D.M.

    1989-01-01

    In this paper, we show that many-body interactions are important for describing the energy- and angle-resolved distributions of neutral Rh atoms ejected from keV-ion-bombarded Rh{111}. We compare separate classical-dynamics simulations of the sputtering process assuming either a many-body potential or a pairwise additive potential. The most dramatic difference between the many-body potential and the pair potential is the predicted kinetic energy distributions. The pair-potential kinetic energy distribution peaks at ∼ 2 eV, whereas the many-body potential predicts a broader peak at ∼ 4 eV, giving much better agreement with experiment. This difference between the model potentials is due to the predicted nature of the attractive interaction in the surface region through which all ejecting particles pass. (author)

  20. LHC dipoles: the countdown has begun

    CERN Document Server

    Patrice Loiez

    2002-01-01

    At the entrance to the fourth floor corridor of the LHC-MMS (Main Magnets and Superconductors) Group in building 30, the Director-General has unveiled an electronic information panel indicating the number of LHC dipoles still to be delivered and the days remaining to the deadline (30 June 2006). The panel was the idea of Lucio Rossi, leader of the MMS Group, which is responsible for the construction of the dipole magnets. The unveiling ceremony took place on the morning of Friday 11 October 2002, at the end of a drink held to celebrate with MMS group and the LHC top management the exceptional performance of the latest dipoles, built by the French consortium Alstom-Jeumont. They are the first dipoles to achieve a magnetic field of 9 tesla in one go without quenching, thus exceeding the nominal operating field of 8.3 tesla. The challenge is now to increase the production rate from 2 to 35 dipoles per month by 2004 in order to meet the deadline, while maintaining this quality. Photo 01: The Director-General Luci...

  1. Radiation induced luminescence from a dipole immersed in a thin film

    International Nuclear Information System (INIS)

    Nkoma, J.S.

    1990-08-01

    Luminescence is modelled as electromagnetic radiation from a dipole immersed in a thin film. Maxwell's equations are solved for the cases when the dipole in the thin film is oriented normal and parallel to the interfaces. Expressions for emitted electric fields outside the thin film are derived and are found to have a resonant denominator that vanishes at the surface polariton excitation frequencies for a thin film. Luminescent spectra are plotted and peaks are found that are identified to be associated with both surface response and bulk response. Numerical results are presented to illustrate the model by considering a vacuum-GaP-sapphire system. (author). 9 refs, 5 figs

  2. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    Science.gov (United States)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  3. Characterization of interfacial effects in organic macrocycles Langmuir and Langmuir-Blodgett layers studied by surface potential and FT-IR spectroscopy examination

    Energy Technology Data Exchange (ETDEWEB)

    Boguta, Andrzej [Faculty of Technical Physics, Institute of Physics, Poznan University of Technology, Nieszawska 13a, 60 - 965 Poznan (Poland); Wrobel, Danuta [Faculty of Technical Physics, Institute of Physics, Poznan University of Technology, Nieszawska 13a, 60 - 965 Poznan (Poland)]. E-mail: wrobel@phys.put.poznan.pl; Bartczak, Adam [Faculty of Technical Physics, Institute of Physics, Poznan University of Technology, Nieszawska 13a, 60 - 965 Poznan (Poland); Swietlik, Roman [Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60 - 197 Poznan (Poland); Stachowiak, Zdzislaw [Central Laboratory of Accumulators and Cells, Forteczna 12, 61 - 362 Poznan (Poland); Ion, Rodica M. [Department of Chemical Analysis, Institute for Chemical Research ICECHIM, Splaiul Independentei 202, Bucharest 79611 (Romania)

    2004-10-15

    Surface potential (SP) examination and FT-IR (infrared) reflection-absorption spectra were used for the characterization of interfacial effects in organic dye thin layer on solid substrates. Surface potentials of magnesium tetranaphtylporphyrin (MgTNP), magnesium or lead phthalocyanine monolayer on the water subphase were measured and the dipole moments of the investigated dyes were evaluated (1.07 D, 0.52 D and 0.31 D for MgTNP, MgPc and PbPc, respectively). The differences between the dipolar moment values were attributed to the differences between porphyrin and phthalocyanines molecular structures and to the differences in metal electronegativity and metal ion distortion in the molecular frame. Also asymmetry in the covalent linkage and coordination bonding in the center of the molecular skeleton and the differences in polarisablility of the dye molecules as sources of the difference in the dipolar moment values were taken into consideration. The FT-IR reflection-absorption spectra were used for the characterization of the magnesium phthalocyanines Langmuir-Blodgett (LB) layer formed on semiconducting (In{sub 2}O{sub 3}) or Au substrates. The modification of the IR spectra upon Langmuir-Blodgett dye layer deposition was attributed to the redistribution of electrons at the semiconducting (metallic)/dye layer interface and to different substrate morphology. The difference in the band splitting for dye on Au and In{sub 2}O{sub 3} was related to the smaller amount of charge transferred to the dye film from In{sub 2}O{sub 3} than from Au substrate and to the changes in the topology of the different substrates after coating with the dye layer.

  4. Dipole-Dipole Resistivity Measurements of Weathered Soils Over ...

    African Journals Online (AJOL)

    These were characterized by the H, A, Q and K- type curves which corresponded to the resistivity sequence r1>r2r2>r3, r1r3 respectively. Over the Birimian rocks, near surface resistiv-ity values ranged from100-600 ohm-m within the depths from 0-9 m. A moderately resistive stra-tum with values ranging from 200-500 ...

  5. Transition Dipole Moments and Transition Probabilities of the CN Radical

    Science.gov (United States)

    Yin, Yuan; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2018-04-01

    This paper studies the transition probabilities of electric dipole transitions between 10 low-lying states of the CN radical. These states are X2Σ+, A2Π, B2Σ+, a4Σ+, b4Π, 14Σ‑, 24Π, 14Δ, 16Σ+, and 16Π. The potential energy curves are calculated using the CASSCF method, which is followed by the icMRCI approach with the Davidson correction. The transition dipole moments between different states are calculated. To improve the accuracy of potential energy curves, core–valence correlation and scalar relativistic corrections, as well as the extrapolation of potential energies to the complete basis set limit are included. The Franck–Condon factors and Einstein coefficients of emissions are calculated. The radiative lifetimes are determined for the vibrational levels of the A2Π, B2Σ+, b4Π, 14Σ‑, 24Π, 14Δ, and 16Π states. According to the transition probabilities and radiative lifetimes, some guidelines for detecting these states spectroscopically are proposed. The spin–orbit coupling effect on the spectroscopic and vibrational properties is evaluated. The splitting energy in the A2Π state is determined to be 50.99 cm‑1, which compares well with the experimental ones. The potential energy curves, transition dipole moments, spectroscopic parameters, and transition probabilities reported in this paper can be considered to be very reliable. The results obtained here can be used as guidelines for detecting these transitions, in particular those that have not been measured in previous experiments or have not been observed in the Sun, comets, stellar atmospheres, dark interstellar clouds, and diffuse interstellar clouds.

  6. Dipole moment dark matter at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Barger, Vernon [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Keung, Wai-Yee [Department of Physics, University of Illinois at Chicago, IL 60607 (United States); Marfatia, Danny, E-mail: marfatia@ku.edu [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Tseng, Po-Yan [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2012-10-22

    Monojet and monophoton final states with large missing transverse energy (E/{sub T}) are important for dark matter (DM) searches at colliders. We present analytic expressions for the differential cross sections for the parton-level processes, qq{sup Macron }(qg){yields}g(q){chi}{chi}{sup Macron} and qq{sup Macron }{yields}{gamma}{chi}{chi}{sup Macron }, for a neutral DM particle with a magnetic dipole moment (MDM) or an electric dipole moment (EDM). We collectively call such DM candidates dipole moment dark matter (DMDM). We also provide monojet cross sections for scalar, vector and axial-vector interactions. We then use ATLAS/CMS monojet+E/{sub T} data and CMS monophoton+E/{sub T} data to constrain DMDM. We find that 7 TeV LHC bounds on the MDM DM-proton scattering cross section are about six orders of magnitude weaker than on the conventional spin-independent cross section.

  7. Perturbative odderon in the dipole model

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.; Szymanowski, Lech; Wallon, Samuel

    2004-01-01

    We show that, in the framework of Mueller's dipole model, the perturbative QCD odderon is described by the dipole model equivalent of the BFKL equation with a C-odd initial condition. The eigenfunctions and eigenvalues of the odderon solution are the same as for the dipole BFKL equation and are given by the functions E n,ν and χ(n,ν) correspondingly, where the C-odd initial condition allows only for odd values of n. The leading high-energy odderon intercept is given by α odd -1=((2α s N c )/(π))χ(n=1,ν=0)=0 in agreement with the solution found by Bartels, Lipatov and Vacca. We proceed by writing down an evolution equation for the odderon including the effects of parton saturation. We argue that saturation makes the odderon solution a decreasing function of energy

  8. What is the dual of a dipole?

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)]. E-mail: l.f.alday@phys.uu.nl; Boer, Jan de [Instituut voor Theoretische Fysica, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)]. E-mail: jdeboer@science.uva.nl; Messamah, Ilies [Instituut voor Theoretische Fysica, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)]. E-mail: imessama@science.uva.nl

    2006-07-03

    We study gravitational solutions that admit a dual CFT description and carry non-zero dipole charge. We focus on the black ring solution in AdS{sub 3}xS{sup 3} and extract from it the one-point functions of all CFT operators dual to scalar excitations of the six-dimensional metric. In the case of small black rings, characterized by the level N, angular momentum J and dipole charge q{sub 3}, we show how the large N and J dependence of the one-point functions can be reproduced, under certain assumptions, directly from a suitable ensemble in the dual CFT. Finally we present a simple toy model that describes the thermodynamics of the small black ring for arbitrary values of the dipole charge.

  9. Transportation studies: 40-MM collider dipole magnets

    International Nuclear Information System (INIS)

    Daly, E.

    1992-01-01

    Several fully functional 40-mm Collider Dipole Magnets (CDM) were instrumented with accelerometers to monitor shock and vibration loads during transport. The magnets were measured with optical tooling telescopes before and after transport. Changes in mechanical alignment due to shipping and handling were determined. The mechanical stability of the cryogen lines were checked using the same method. Field quality and dipole angle were measured warm before and after transport to determine changes in these parameters. Power spectra were calculated for accelerometers located on the cold mass, vacuum vessel, and trailer bed. Where available, plots of field quality and dipole roll both before and after were created. Shipping loads measured were largest in the vertical direction, where most of the structural deformation of the magnet was evident. It was not clear that magnetic performance was affected by the shipping and handling environment

  10. Perturbative odderon in the dipole model

    Energy Technology Data Exchange (ETDEWEB)

    Kovchegov, Yuri V.; Szymanowski, Lech; Wallon, Samuel

    2004-04-29

    We show that, in the framework of Mueller's dipole model, the perturbative QCD odderon is described by the dipole model equivalent of the BFKL equation with a C-odd initial condition. The eigenfunctions and eigenvalues of the odderon solution are the same as for the dipole BFKL equation and are given by the functions E{sup n,{nu}} and {chi}(n,{nu}) correspondingly, where the C-odd initial condition allows only for odd values of n. The leading high-energy odderon intercept is given by {alpha}{sub odd}-1=((2{alpha}{sub s}N{sub c})/({pi})){chi}(n=1,{nu}=0)=0 in agreement with the solution found by Bartels, Lipatov and Vacca. We proceed by writing down an evolution equation for the odderon including the effects of parton saturation. We argue that saturation makes the odderon solution a decreasing function of energy.

  11. Potential and Kinetic Electron Emissions from HOPG Surface Irradiated by Highly Charged Xenon and Neon Ions

    International Nuclear Information System (INIS)

    Yu-Yu, Wang; Yong-Tao, Zhao; Jian-Rong, Sun; De-Hui, Li; Jin-Yu, Li; Ping-Zhi, Wang; Guo-Qing, Xiao; Abdul, Qayyum

    2011-01-01

    Highly charged 129 Xe q+ (q = 10−30) and 40 Ne q+ (q = 4−8) ion-induced secondary electron emissions on the surface of highly oriented pyrolytic graphite (HOPG) are reported. The total secondary electron yield is measured as a function of the potential energy of incident ions. The experimental data are used to separate contributions of kinetic and potential electron yields. Our results show that about 4.5% and 13.2% of ion's potential energies are consumed in potential electron emission due to different Xe q+ -HOPG and Ne q+ -HOPG combinations. A simple formula is introduced to estimate the fraction of ion's potential energy for potential electron emission. (atomic and molecular physics)

  12. Study of surface potential contamination in radioisotope and radiopharmaceutical production facilities and alternative solutions

    International Nuclear Information System (INIS)

    Suhaedi Muhammad; Rimin Sumantri; Farida Tusafariah; Djarwanti Rahayu Pipin Soedjarwo

    2013-01-01

    Radioisotope and radiopharmaceutical production facilities that exist in their operations around the world in the form of radiological impacts of radiation exposure, contamination of surface and air contamination. Given the number of existing open source in radioisotope and radiopharmaceutical production facility, then the possibility of surface contamination in the work area is quite high. For that to protect the safety and health of both workers, the public and the environment, then the licensee must conduct an inventory of some of the potential that could result in contamination of surfaces in radioisotope and radiopharmaceutical production facilities. Several potential to cause surface contamination in radioisotope and radiopharmaceutical production facilities consist of loss of resources, the VAC system disorders, impaired production facilities, limited resources and lack of work discipline and radioactive waste handling activities. From the study of some potential, there are several alternative solutions that can be implemented by the licensee to address the contamination of the surface so as not to cause adverse radiological impacts for both radiation workers, the public or the environment. (author)

  13. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  14. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity, moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  15. Spatial distribution of potential near surface moisture flux at Yucca Mountain

    International Nuclear Information System (INIS)

    Flint, A.L.; Flint, L.E.

    1994-01-01

    An estimate of the areal distribution of present-day surface liquid moisture flux at Yucca Mountain was made using field measured water contents and laboratory measured rock properties. Using available data for physical and hydrologic properties (porosity, saturated hydraulic conductivity moisture retention functions) of the volcanic rocks, surface lithologic units that are hydrologically similar were delineated. Moisture retention and relative permeability functions were assigned to each surface unit based on the similarity of the mean porosity and saturated hydraulic conductivity of the surface unit to laboratory samples of the same lithology. The potential flux into the mountain was estimated for each surface hydrologic unit using the mean saturated hydraulic conductivity for each unit and assuming all matrix flow. Using measured moisture profiles for each of the surface units, estimates were made of the depth at which seasonal fluctuations diminish and steady state downward flux conditions are likely to exist. The hydrologic properties at that depth were used with the current relative saturation of the tuff, to estimate flux as the unsaturated hydraulic conductivity. This method assumes a unit gradient. The range in estimated flux was 0.02 mm/yr for the welded Tiva Canyon to 13.4 mm/yr for the nonwelded Paintbrush Tuff. The areally averaged flux was 1.4 mm/yr. The major zones of high flux occur to the north of the potential repository boundary where the nonwelded tuffs are exposed in the major drainages

  16. Lunar Surface Electric Potential Changes Associated with Traversals through the Earth's Foreshock

    Science.gov (United States)

    Collier, Michael R.; Hills, H. Kent; Stubbs, Timothy J.; Halekas, Jasper S.; Delory, Gregory T.; Espley, Jared; Farrell, William M.; Freeman, John W.; Vondrak, Richard

    2011-01-01

    We report an analysis of one year of Suprathermal Ion Detector Experiment (SIDE) Total Ion Detector (TID) resonance events observed between January 1972 and January 1973. The study includes only those events during which upstream solar wind conditions were readily available. The analysis shows that these events are associated with lunar traversals through the dawn flank of the terrestrial magnetospheric bow shock. We propose that the events result from an increase in lunar surface electric potential effected by secondary electron emission due to primary electrons in the Earth's foreshock region (although primary ions may play a role as well). This work establishes (1) the lunar surface potential changes as the Moon moves through the terrestrial bow shock, (2) the lunar surface achieves potentials in the upstream foreshock region that differ from those in the downstream magnetosheath region, (3) these differences can be explained by the presence of energetic electron beams in the upstream foreshock region and (4) if this explanation is correct, the location of the Moon with respect to the terrestrial bow shock influences lunar surface potential.

  17. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...... Institute of Physics. [http://dx.doi.org/10.1063/1.4742153]...

  18. Dipyridamole Body Surface Potential Mapping: Noninvasive Differentiation of Syndrome X from Coronary Artery Disease

    Czech Academy of Sciences Publication Activity Database

    Boudík, F.; Anger, Z.; Aschermann, M.; Vojáček, J.; Tomečková, Marie

    2002-01-01

    Roč. 35, č. 3 (2002), s. 181-191 ISSN 0022-0736 R&D Projects: GA MZd IZ4038 Keywords : body surface potential mapping * dipyridamole * coronary artery disease * syndrome X Subject RIV: BD - Theory of Information Impact factor: 0.599, year: 2002

  19. Nanoscale surface potential imaging of the photocatalytic TiO2 films on aluminum

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Dirscherl, Kai; Canulescu, Stela

    2013-01-01

    The change in the surface potential of TiO2 coatings upon UV-illumination was investigated on the nanoscale using Scanning Kelvin Probe Force microscopy and on the micro-scale using photo-electrochemical measurements. A good correlation between the two techniques was obtained. The changes in the ...

  20. A new analytical potential energy surface for the adsorption systemk CO/Cu(100)

    NARCIS (Netherlands)

    Marquardt, R.; Cuvelier, F.; Olsen, R.A.; Baerends, E.J.; Tremblay, J.C.; Saalfrank, P.

    2010-01-01

    Electronic structure data and analytical representations of the potential energy surface for the adsorption of carbon monoxide on a crystalline copper Cu(100) substrate are reviewed. It is found that a previously published and widely used analytical hypersurface for this process [J. C. Tully, M.

  1. Ab initio potential-energy surface and rovibrational states of the HCN-HCl complex

    NARCIS (Netherlands)

    Avoird, A. van der; Pedersen, T.B.; Dhont, G.S.F.; Fernandez, B.; Koch, H.

    2006-01-01

    A four-dimensional intermolecular potential-energy surface has been calculated for the HCN-HCl complex, with the use of the coupled cluster method with single and double excitations and noniterative inclusion of triples. Data for more than 13 000 geometries were represented by an angular expansion

  2. Dipole localization using beamforming and RAP-MUSIC on simulated intracerebral recordings.

    Science.gov (United States)

    Chang, N; Gotman, J; Gulrajani, R

    2004-01-01

    Interpreting intracerebral recordings in the search of an epileptic focus can be difficult because the amplitude of the potentials are misleading. Small generators located near the electrode site generate large potentials, which could swamp the signal of a nearby epileptic focus. In order to address this problem, two inverse problem algorithms, beamforming and recursively applied and projected multiple signal classification (RAP-MUSIC), were used with simulated intracerebral potentials to calculate equivalent dipole positions. Three dipoles were positioned in an infinite plane medium near three intracerebral electrodes. The potentials generated by the dipoles were simulated and contaminated with white noise. Initial localization simulations showed that both methods detected the sources accurately with RAP-MUSIC reporting lower orientation errors. A spatial resolution analysis for both methods was undertaken in which two dipoles were placed on a plane with the same orientation and overlapping time-courses. Beamforming was able to adequately distinguish the sources for separation distances of 1.2 cm, whereas RAP-MUSIC managed to separate the sources for dipoles as close as 0.4-0.6 cm.

  3. Dipole strength distributions from HIGS Experiments

    Directory of Open Access Journals (Sweden)

    Werner V.

    2015-01-01

    76Ge and 76Se, in order to investigate their dipole response up to the neutron separation threshold. Gamma-ray beams from bremsstrahlung at the S-DALINAC and from Compton-backscattering at HIGS have been used to measure absolute cross sections and parities of dipole excited states, respectively. The HIGS data allows for indirect measurement of averaged branching ratios, which leads to significant corrections in the observed excitation cross sections. Results are compared to statistical calculations, to test photon strength functions and the Axel-Brink hypothesis

  4. Intrinsic Charge Trapping Observed as Surface Potential Variations in diF-TES-ADT Films.

    Science.gov (United States)

    Hoffman, Benjamin C; McAfee, Terry; Conrad, Brad R; Loth, Marsha A; Anthony, John E; Ade, Harald W; Dougherty, Daniel B

    2016-08-24

    Spatial variations in surface potential are measured with Kelvin probe force microscopy for thin films of 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophenes (diF-TES-ADT) grown on SiO2 and silane-treated SiO2 substrates by organic molecular beam deposition. The variations are observed both between and within grains of the polycrystalline organic film and are quantitatively different than electrostatic variations on the substrate surfaces. The skewness of surface potential distributions is larger on SiO2 than on HMDS-treated substrates. This observation is attributed to the impact of substrate functionalization on minimizing intrinsic crystallographic defects in the organic film that can trap charge.

  5. Impact of organic overlayers on a-Si:H/c-Si surface potential

    KAUST Repository

    Seif, Johannes P.

    2017-04-11

    Bilayers of intrinsic and doped hydrogenated amorphous silicon, deposited on crystalline silicon (c-Si) surfaces, simultaneously provide contact passivation and carrier collection in silicon heterojunction solar cells. Recently, we have shown that the presence of overlaying transparent conductive oxides can significantly affect the c-Si surface potential induced by these amorphous silicon stacks. Specifically, deposition on the hole-collecting bilayers can result in an undesired weakening of contact passivation, thereby lowering the achievable fill factor in a finished device. We test here a variety of organic semiconductors of different doping levels, overlaying hydrogenated amorphous silicon layers and silicon-based hole collectors, to mitigate this effect. We find that these materials enhance the c-Si surface potential, leading to increased implied fill factors. This opens opportunities for improved device performance.

  6. AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential

    Directory of Open Access Journals (Sweden)

    Simons Janet

    2011-01-01

    Full Text Available Abstract Thiol self-assembled monolayers (SAMs are widely used in many nano- and bio-technology applications. We report a new approach to create and characterize a thiol SAMs micropattern with alternating charges on a flat gold-coated substrate using atomic force microscopy (AFM and Kelvin probe force microscopy (KPFM. We produced SAMs-patterns made of alternating positively charged, negatively charged, and hydrophobic-terminated thiols by an automated AFM-assisted manipulation, or nanografting. We show that these thiol patterns possess only small topographical differences as revealed by AFM, and distinguished differences in surface potential (20-50 mV, revealed by KPFM. The pattern can be helpful in the development of biosensor technologies, specifically for selective binding of biomolecules based on charge and hydrophobicity, and serve as a model for creating surfaces with quantified alternating surface potential distribution.

  7. Potential dependence of surface crystal structure of iron passive films in borate buffer solution

    International Nuclear Information System (INIS)

    Deng, Huihua; Nanjo, Hiroshi; Qian, Pu; Santosa, Arifin; Ishikawa, Ikuo; Kurata, Yoshiaki

    2007-01-01

    The effect of passivation potential on surface crystal structure, apparent thickness and passivity of oxide films formed on pure iron prepared by plasma sputter deposition was investigated. The crystallinity was improved with passivation potential and the width of atomically flat terraces was expanded to 6 nm when passivating at 750 mV for 15 min, as observed by ex situ scanning tunneling microscopy (STM) after aging in air (<30% RH). Apparent thickness and passivity are linearly dependent on passivation potential. The former weakly depends on passivation duration, the latter strongly depends on passivation duration. This is well explained by the correlation between crystal structure and passivity

  8. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  9. Epitaxial strain relaxation by provoking edge dislocation dipoles

    Science.gov (United States)

    Soufi, A.; El-Hami, K.

    2018-02-01

    Thin solid films have been used in various devices and engineering systems such as rapid development of highly integrated electronic circuits, the use of surface coatings to protect structural materials in high temperature environments, and thin films are integral parts of many micro-electro-mechanical systems designed to serve as sensors, actuators. Among techniques of ultra-thin films deposition, the heteroepitaxial method becomes the most useful at nanoscale level to obtain performed materials in various applications areas. On the other hand, stresses that appeared during the elaboration of thin films could rise deformations and fractures in materials. The key solution to solve this problem at the nanoscale level is the nucleation of interface dislocations from free surfaces. By provoking edge dislocation dipoles we obtained a strain relaxation in thin films. Moreover, the dynamic of nucleation in edge dislocations from free lateral surfaces was also studied.

  10. Evaluation of surface charge density and surface potential by electrophoretic mobility for solid lipid nanoparticles and human brain-microvascular endothelial cells.

    Science.gov (United States)

    Kuo, Yung-Chih; Chen, I-Chun

    2007-09-27

    Electrophoretic mobility, zeta potential, surface charge density, and surface potential of cacao butter-based solid lipid nanoparticles (SLN) and human brain-microvascular endothelial cells (HBMEC) were analyzed in this study. Electrophoretic mobility and zeta potential were determined experimentally. Surface charge density and surface potential were evaluated theoretically via incorporation of ion condensation theory with the relationship between surface charge density and surface potential. The results revealed that the lower the pH value, the weaker the electrostatic properties of the negatively charged SLN and HBMEC. A higher content of cacao butter or a slower stirring rate yielded a larger SLN and stronger surface electricity. On the contrary, storage led to instability of SLN suspension and weaker electrical behavior because of hydrolysis of ionogenic groups on the particle surfaces. Also, high H+ concentration resulted in excess adsorption of H+ onto HBMEC, rendering charge reversal and cell death. The largest normalized discrepancy between surface potential and zeta potential occurred at pH = 7. For a fixed biocolloidal species, the discrepancy was nearly invariant at high pH value. However, the discrepancy followed the order of electrical intensity for HBMEC system at low pH value because mammalian cells were sensitive to H+. The present study provided a practical method to obtain surface charge properties by capillary electrophoresis.

  11. ALICE Muon Arm Dipole Magnet - Conceptual Design Report

    CERN Document Server

    Swoboda, D; CERN. Geneva

    1998-01-01

    A large Dipole Magnet is required for the Muon Arm spectrometer of the ALICE experiment 1,2[Figure 1]. The main parameters and basic design options of the dipole magnet have been described in 3. The absence of criteria for the necessary symmetry and homogeneity of the magnetic field has lead to a design dominated by economical and feasibility considerations. List of Figures: Figure 1 ALICE Experiment. Figure 2 Dipole Magnet Assembly. Figure 3 Dipole Magnet Yoke. Figure 4 Dipole Magnet Coil System. Figure 5 Schematic of Heat Screen. Figure 6 Dipole Magnet Moving Base.

  12. Antarctic ice shelf potentially stabilized by export of meltwater in surface river

    Science.gov (United States)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-04-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks—interconnected streams, ponds and rivers—on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf’s meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica—contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  13. Insight into induced charges at metal surfaces and biointerfaces using a polarizable Lennard-Jones potential.

    Science.gov (United States)

    Geada, Isidro Lorenzo; Ramezani-Dakhel, Hadi; Jamil, Tariq; Sulpizi, Marialore; Heinz, Hendrik

    2018-02-19

    Metallic nanostructures have become popular for applications in therapeutics, catalysts, imaging, and gene delivery. Molecular dynamics simulations are gaining influence to predict nanostructure assembly and performance; however, instantaneous polarization effects due to induced charges in the free electron gas are not routinely included. Here we present a simple, compatible, and accurate polarizable potential for gold that consists of a Lennard-Jones potential and a harmonically coupled core-shell charge pair for every metal atom. The model reproduces the classical image potential of adsorbed ions as well as surface, bulk, and aqueous interfacial properties in excellent agreement with experiment. Induced charges affect the adsorption of ions onto gold surfaces in the gas phase at a strength similar to chemical bonds while ions and charged peptides in solution are influenced at a strength similar to intermolecular bonds. The proposed model can be applied to complex gold interfaces, electrode processes, and extended to other metals.

  14. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, J.M.; Hsieh, S.J.; Monahan, J.; Gewirth, A.A. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-03

    Adhesion force measurements are used to determine the potential dependence of the force of adhesion between a Si{sub 3}N{sub 4} cantilever and a Au(111) surface modified by the underpotential deposition (upd) of Bi or Cu in acid solution or by oxide formation. The measured work of adhesion is near zero for most of the potential region examined in Bi upd but rises after the formation of a full Bi monolayer. The work of adhesion is high at positive potentials for Cu upd but then decreases as the Cu partial and full monolayers are formed. The work of adhesion is low in the oxide region on Au(111) but rises following the sulfate disordering transition at 1.1 V vs NHE. These results are interpreted in terms of the degree of solvent order on the electrode surface.

  15. Electric dipole moment searches using the isotope 129-xenon

    Energy Technology Data Exchange (ETDEWEB)

    Kuchler, Florian

    2014-11-13

    Two new complementary experiments searching for a permanent electric dipole moment (EDM) of 129-xenon are presented. Besides demonstration of a sensitivity improvement by employing established methods and a highly sensitive SQUID detection system the progress towards a novel measurement approach is discussed. The new method introduces time-varying electric fields and a liquid hyper-polarized xenon sample with a potential improvement in sensitivity of three orders of magnitude. The search for EDMs is motivated by their symmetry-breaking nature. A non-zero EDM provides a new source of CP violation to solve the mystery of the huge excess of matter over anti-matter in our Universe.

  16. The Role of Anion Adsorption in the Effect of Electrode Potential on Surface Plasmon Resonance Response.

    Science.gov (United States)

    Laurinavichyute, Veronika K; Nizamov, Shavkat; Mirsky, Vladimir M

    2017-06-20

    Surface plasmon resonance, being widely used in bioanalytics and biotechnology, is influenced by the electrical potential of the resonant gold layer. To evaluate the mechanism of this effect, we have studied it in solutions of various inorganic electrolytes. The magnitude of the effect decreases according to the series: KBr>KCl>KF>NaClO 4 . The data were treated by using different models of the interface. A quantitative description was obtained for the model, which takes into account the local dielectric function of gold being affected by the free electron charge, diffuse ionic layer near the gold/water interface, and specific adsorption of halides to the gold surface with partial charge transfer. Taking into account that most biological experiments are performed in chloride-containing solutions, detailed analysis of the model at these conditions was performed. The results indicate that the chloride adsorption is the main mechanism for the influence of potential on the surface plasmon resonance. The dependencies of surface concentration and residual charge of chloride on the applied potential were determined. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Global potential energy surface of ground state singlet spin O4

    Science.gov (United States)

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2018-02-01

    A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2-O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

  18. Scanning tunneling potentiometry, charge transport, and Landauer's resistivity dipole from the quantum to the classical transport regime

    Science.gov (United States)

    Morr, Dirk K.

    2017-05-01

    Using the nonequilibrium Keldysh formalism, we investigate the spatial relation between the electrochemical potential measured in scanning tunneling potentiometry, and local current patterns over the entire range from the quantum to the classical transport regime. These quantities show similar spatial patterns near the quantum limit but are related by Ohm's law only in the classical regime. We demonstrate that defects induce a Landauer residual resistivity dipole in the electrochemical potential with the concomitant spatial current pattern representing the field lines of the dipole.

  19. LHC Dipoles: The countdown has begun

    CERN Multimedia

    2002-01-01

    One of the LHC dipole magnets has just achieved a record magnetic field of 9 Tesla in one go without quenching. The challenge now is to increase the production rate to 35 magnets a month by 2004. As a new information panel in Building 30 shows, the countdown has begun.

  20. Results on Fermilab main injector dipole measurements

    International Nuclear Information System (INIS)

    Brown, B.C.; Baiod, R.; DiMarco, J.; Glass, H.D.; Harding, D.J.; Martin, P.S.; Mishra, S.; Mokhtarani, A.; Orris, D.F.; russell, O.A.; Tompkins, J.C.; Walbridge, D.G.C.

    1995-06-01

    Measurements of the Productions run of Fermilab Main Injector Dipole magnets is underway. Redundant strength measurements provide a set of data which one can fit to mechanical and magnetic properties of the assembly. Plots of the field contribution from the steel supplement the usual plots of transfer function (B/I) vs. I in providing insight into the measured results

  1. Dipole operator constraints on composite Higgs models.

    Science.gov (United States)

    König, Matthias; Neubert, Matthias; Straub, David M

    Flavour- and CP-violating electromagnetic or chromomagnetic dipole operators in the quark sector are generated in a large class of new physics models and are strongly constrained by measurements of the neutron electric dipole moment and observables sensitive to flavour-changing neutral currents, such as the [Formula: see text] branching ratio and [Formula: see text]. After a model-independent discussion of the relevant constraints, we analyze these effects in models with partial compositeness, where the quarks get their masses by mixing with vector-like composite fermions. These scenarios can be seen as the low-energy limit of composite Higgs or warped extra dimensional models. We study different choices for the electroweak representations of the composite fermions motivated by electroweak precision tests as well as different flavour structures, including flavour anarchy and [Formula: see text] or [Formula: see text] flavour symmetries in the strong sector. In models with "wrong-chirality" Yukawa couplings, we find a strong bound from the neutron electric dipole moment, irrespective of the flavour structure. In the case of flavour anarchy, we also find strong bounds from flavour-violating dipoles, while these constraints are mild in the flavour-symmetric models.

  2. Forced flow cooling of ISABELLE dipole magnets

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Aggus, J.; Brown, D.P.; Kassner, D.A.; Sondericker, J.H.; Strobridge, T.R.

    1976-01-01

    The superconducting magnets for ISABELLE will use a forced flow supercritical helium cooling system. In order to evaluate this cooling scheme, two individual dipole magnets were first tested in conventional dewars using pool boiling helium. These magnets were then modified for forced flow cooling and retested with the identical magnet coils. The first evaluation test used a l m-long ISA model dipole magnet whose pool boiling performance had been established. The same magnet was then retested with forced flow cooling, energizing it at various operating temperatures until quench occurred. The magnet performance with forced flow cooling was consistent with data from the previous pool boiling tests. The next step in the program was a full-scale ISABELLE dipole ring magnet, 4.25 m long, whose performance was first evaluated with pool boiling. For the forced flow test the magnet was shrunk-fit into an unsplit laminated core encased in a stainless steel cylinder. The high pressure gas is cooled below 4 K by a helium bath which is pumped below atmospheric pressure with an ejector nozzle. The performance of the full-scale dipole magnet in the new configuration with forced flow cooling, showed a 10 percent increase in the attainable maximum current as compared to the pool boiling data

  3. Installation of the ALICE dipole magnet

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The large dipole magnet is installed on the ALICE detector at CERN. This magnet, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid (in the background). These muons are heavy electrons that interact less with matter, allowing them to traverse the main section of the detector.

  4. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  5. Scattering properties of point dipole interactions

    DEFF Research Database (Denmark)

    Zolotaryuk, Alexander; Christiansen, Peter Leth; Iermakova, S.V.

    2006-01-01

    dipole interactions with a renormalized coupling constant are analysed. Depending on the parameter values, all these interactions being self-adjoint extensions of the one-dimensional Schrodinger operator are shown to be divided into four types: (i) interactions will full transparency, (ii) non...

  6. Supersymmetric relations among electromagnetic dipole operators

    International Nuclear Information System (INIS)

    Graesser, Michael; Thomas, Scott

    2002-01-01

    Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagrammatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and standard model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2x10 -3 . Likewise the current bound on μ→eγ decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, δm μ-tildee-tilde) 2 /m l-tilde) 2 , is less than 10 -4 . These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan β

  7. Toroidal Dipole Moment of a Massless Neutrino

    International Nuclear Information System (INIS)

    Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes

    2009-01-01

    We obtain the toroidal dipole moment of a massless neutrino τ v l M using the results for the anapole moment of a massless Dirac neutrino a v l D , which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2) L x U(1) Y .

  8. Two-dimensional potential and charge distributions of positive surface streamer

    International Nuclear Information System (INIS)

    Tanaka, Daiki; Matsuoka, Shigeyasu; Kumada, Akiko; Hidaka, Kunihiko

    2009-01-01

    Information on the potential and the field profile along a surface discharge is required for quantitatively discussing and clarifying the propagation mechanism. The sensing technique with a Pockels crystal has been developed for directly measuring the potential and electric field distribution on a dielectric material. In this paper, the Pockels sensing system consists of a pulse laser and a CCD camera for measuring the instantaneous two-dimensional potential distribution on a 25.4 mm square area with a 50 μm sampling pitch. The temporal resolution is 3.2 ns which is determined by the pulse width of the laser emission. The transient change in the potential distribution of a positive surface streamer propagating in atmospheric air is measured with this system. The electric field and the charge distributions are also calculated from the measured potential profile. The propagating direction component of the electric field near the tip of the propagating streamer reaches 3 kV mm -1 . When the streamer stops, the potential distribution along a streamer forms an almost linear profile with the distance from the electrode, and its gradient is about 0.5 kV mm -1 .

  9. Critical insight into the influence of the potential energy surface on fission dynamics

    International Nuclear Information System (INIS)

    Mazurek, K.; Schmitt, C.; Wieleczko, J. P.; Ademard, G.; Nadtochy, P. N.

    2011-01-01

    The present work is dedicated to a careful investigation of the influence of the potential energy surface on the fission process. The time evolution of nuclei at high excitation energy and angular momentum is studied by means of three-dimensional Langevin calculations performed for two different parametrizations of the macroscopic potential: the Finite Range Liquid Drop Model (FRLDM) and the Lublin-Strasbourg Drop (LSD) prescription. Depending on the mass of the system, the topology of the potential throughout the deformation space of interest in fission is observed to noticeably differ within these two approaches, due to the treatment of curvature effects. When utilized in the dynamical calculation as the driving potential, the FRLDM and LSD models yield similar results in the heavy-mass region, whereas the predictions can be strongly dependent on the Potential Energy Surface (PES) for medium-mass nuclei. In particular, the mass, charge, and total kinetic energy distributions of the fission fragments are found to be narrower with the LSD prescription. The influence of critical model parameters on our findings is carefully investigated. The present study sheds light on the experimental conditions and signatures well suited for constraining the parametrization of the macroscopic potential. Its implication regarding the interpretation of available experimental data is briefly discussed.

  10. Atom diffraction reveals the impact of atomic core electrons on atom-surface potentials.

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2010-12-03

    We measured ratios of van der Waals potential coefficients (C3) for different atoms (Li, Na, K, and Rb) interacting with the same surface by studying atom diffraction from a nanograting. These measurements are a sensitive test of atomic structure calculations because C3 ratios are strongly influenced by core electrons and only weakly influenced by the permittivity and geometry of the surface. Our measurement uncertainty of 2% in the ratio C(3)(K)/C(3)(Na) is close to the uncertainty of the best theoretical predictions, and some of these predictions are inconsistent with our measurement.

  11. On the instabilities of a potential vortex with a free surface

    DEFF Research Database (Denmark)

    Mougel, J.; Fabre, D.; Lacaze, L.

    2017-01-01

    In this paper, we address the linear stability analysis of a confined potential vortex with a free surface. This particular flow has been recently used by Tophoj et al. (Phys. Rev. Lett., vol. 110(19), 2013, article 194502) as a model for the swirling flow of fluid in an open cylindrical containe...... the numerical and theoretical analysis presented. These different methods and observations allow to support the unstable wave coupling mechanism as the physical process at the origin of the polygonal patterns observed in free-surface rotating flows....

  12. Potential energy surfaces for N = Z, 20Ne-112Ba nuclei

    International Nuclear Information System (INIS)

    Mehta, M.S.; Gupta, Raj K.; Jha, T.K.; Patra, S.K.

    2004-01-01

    We have calculated the potential energy surfaces for N = Z, 20 Ne- 112 Ba nuclei in an axially deformed relativistic mean field approach. A quadratic constraint scheme is applied to determine the complete energy surface for a wide range of the quadrupole deformation. The NL3, NL-RAl and TM1 parameter sets are used. The phenomenon of (multiple) shape coexistence is studied and the calculated ground and excited state binding energies, quadrupole deformation parameters and root mean square (rms) charge radii are compared with the available experimental data and other theoretical predictions. (author)

  13. Surface-active biopolymers from marine bacteria for potential biotechnological applications

    Directory of Open Access Journals (Sweden)

    Karina Sałek

    2016-03-01

    Full Text Available Surface-active agents are amphiphilic chemicals that are used in almost every sector of modern industry, the bulk of which are produced by organo-chemical synthesis. Those produced from biological sources (biosurfactants and bioemulsifiers, however, have gained increasing interest in recent years due to their wide structural and functional diversity, lower toxicities and high biodegradability, compared to their chemically-synthesised counterparts. This review aims to present a general overview on surface-active agents, including their classification, where new types of these biomolecules may lay awaiting discovery, and some of the main bottlenecks for their industrial-scale production. In particular, the marine environment is highlighted as a largely untapped source for discovering new types of surface-active agents. Marine bacteria, especially those living associated with micro-algae (eukaryotic phytoplankton, are a highly promising source of polymeric surface-active agents with potential biotechnological applications. The high uronic acids content of these macromolecules has been linked to conferring them with amphiphilic qualities, and their high structural diversity and polyanionic nature endows them with the potential to exhibit a wide range of functional diversity. Production yields (e.g. by fermentation for most microbial surface-active agents have often been too low to meet the volume demands of industry, and this principally remains as the most important bottleneck for their further commercial development. However, new developments in recombinant and synthetic biology approaches can offer significant promise to alleviate this bottleneck. This review highlights a particular biotope in the marine environment that offers promise for discovering novel surface-active biomolecules, and gives a general overview on specific areas that researchers and the industry could focus work towards increasing the production yields of microbial surface

  14. Feet on the potential energy surface, head in the pi clouds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Quentin [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This work presents explorations of the potential energy surface of clusters of atoms and of the interactions between molecules. First, structures of small aluminum clusters are examined and classified as ground states, transition states, or higher-order saddle points. Subsequently, the focus shifts to dispersion-dominated π-π interactions when the potential energy surfaces of benzene, substituted benzene, and pyridine dimers are explored. Because DNA nucleotide bases can be thought of as substituted heterocycles, a natural extension of the substituted benzene and pyridine investigations is to model paired nucleotide bases. Finally, the success of the dispersion studies inspires the development of an extension to the computational method used, which will enable the dispersion energy to be modeled – and the potential energy surface explored – in additional chemical systems. The effective fragment potential (EFP) method is described, as well as various quantum mechanical methods. An ab inito quantum mechanical study of 13-atom aluminum clusters is described. EFP studies of aromatic dimers are reported in which dispersion energy makes a significant contribution to the attraction between monomers. Theory and code development toward a means of computing dispersion energy in mixed ab inito-EFP systems are described.

  15. Potential energy surfaces for alkali plus noble gas pairs: a systematic comparison

    Science.gov (United States)

    Blank, L. Aaron; Kedziora, Gary S.; Weeks, David E.

    2010-02-01

    Optically Pumped Alkali Lasers (OPAL) involve interactions of alkali atoms with a buffer gas typically consisting of a noble gas together with C2H4. Line broadening mechanisms are of particular interest because they can be used to match a broad optical pumping source with relatively narrow alkali absorption spectra. To better understand the line broadening processes at work in OPAL systems we focus on the noble gas collisional partners. A matrix of potential energy surfaces (PES) has been generated at the multi-configurational self consistent field (MCSCF) level for M + Ng, where M=Li, Na, K, Rb, Cs and Ng=He, Ne, Ar. The PES include the X2Σ ground state surface and the A2II, B2Σ excited state surfaces. In addition to the MCSCF surfaces, PES for Li+He have been calculated at the multi-reference singles and doubles configuration interaction (MRSDCI) level with spin-orbit splitting effects included. These surfaces provide a way to check the qualitative applicability of the MCSCF calculations. They also exhibit the avoided crossing between the B2Σ and A2II1/2 surfaces that is partially responsible for collision induced relaxation from the 2P3/2 to the 2P1/2 atomic levels.

  16. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2017-02-12

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained. - Highlights: • High frequency electrostatic wave propagation is investigated in a dense semi-bounded quantum plasma. • The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. • The quantum effect enhances the frequency of the wave especially in the high wave number regime. • The frequency of surface wave is found to be always lower than that of the bulk wave. • The group velocity of the surface wave for various quantum wave number is also obtained.

  17. Simulation of structure and annihilation of screw dislocation dipoles

    DEFF Research Database (Denmark)

    Rasmussen, Torben; Vegge, Tejs; Leffers, Torben

    2000-01-01

    Large scale atomistic simulations are used to investigate the properties of screw dislocation dipoles in copper. Spontaneous annihilation is observed for dipole heights less than 1 nm. Equilibrated dipoles of heights larger than 1 nm adopt a skew configuration due to the elastic anisotropy of Cu....... The equilibrium splitting width of the screw dislocations decreases with decreasing dipole height, as expected from elasticity theory. The energy barriers, and corresponding transition states for annihilation of stable dipoles are determined for straight and for flexible dislocations for dipole heights up to 5.......2 nm. In both cases the annihilation is initiated by cross-slip of one of the dislocations. For straight dislocations the activation energy shows a linear dependence on the inverse dipole height, and for flexible dislocations the dependence is roughly linear for the dipoles investigated....

  18. Fast representation of dipole-dipole geoelectrical data with pseudosections for regional surveys

    Directory of Open Access Journals (Sweden)

    M. Giudici

    2000-06-01

    Full Text Available I propose a fast method for constructing pseudosections of apparent resistivity from geoelectrical data collected for deep studies with continuous polar dipole-dipole arrays. Once a vertical section is fixed, each value of apparent resistivity is assigned to a point on the section and finally pseudosections are obtained by interpolation. This allows the geophysicist to represent a large amount of data in a fast and simple way, to perform a qualitative interpretation and to facilitate the quantitative interpretation.

  19. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    Science.gov (United States)

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  20. Potentialities of some surface characterization techniques for the development of titanium biomedical alloys

    Directory of Open Access Journals (Sweden)

    P.S. Vanzillotta

    2004-09-01

    Full Text Available Bone formation around a metallic implant is a complex process that involves micro- and nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM and the chemical state (XPS of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

  1. Metrological Aspects of Surface Topographies Produced by Different Machining Operations Regarding Their Potential Functionality

    Directory of Open Access Journals (Sweden)

    Żak Krzysztof

    2017-06-01

    Full Text Available This paper presents a comprehensive methodology for measuring and characterizing the surface topographies on machined steel parts produced by precision machining operations. The performed case studies concern a wide spectrum of topographic features of surfaces with different geometrical structures but the same values of the arithmetic mean height Sa. The tested machining operations included hard turning operations performed with CBN tools, grinding operations with Al2O3 ceramic and CBN wheels and superfinish using ceramic stones. As a result, several characteristic surface textures with the Sa roughness parameter value of about 0.2 μm were thoroughly characterized and compared regarding their potential functional capabilities. Apart from the standard 2D and 3D roughness parameters, the fractal, motif and frequency parameters were taken in the consideration.

  2. Stair-Step Particle Flux Spectra on the Lunar Surface: Evidence for Nonmonotonic Potentials?

    Science.gov (United States)

    Collier, Michael R.; Newheart, Anastasia; Poppe, Andrew R.; Hills, H. Kent; Farrell, William M.

    2016-01-01

    We present examples of unusual "stair-step" differential flux spectra observed by the Apollo 14 Suprathermal Ion Detector Experiment on the lunar dayside surface in Earth's magnetotail. These spectra exhibit a relatively constant differential flux below some cutoff energy and then drop off precipitously, by about an order of magnitude or more, at higher energies. We propose that these spectra result from photoions accelerated on the lunar dayside by nonmonotonic potentials (i.e.,potentials that do not decay to zero monotonically) and present a model for the expected differential flux. The energy of the cutoff and the magnitude of the differential flux are related to the properties of the local space environment and are consistent with the observed flux spectra. If this interpretation is correct, these surface-based ion observations provide a unique perspective that both complements and enhances the conclusions obtained by remote-sensing orbiter observations on the Moon's exospheric and electrostatic properties.

  3. Prediction of Tetraoxygen Reaction Mechanism with Sulfur Atom on the Singlet Potential Energy Surface

    Directory of Open Access Journals (Sweden)

    Ashraf Khademzadeh

    2014-01-01

    Full Text Available The mechanism of S+O4 (D2h reaction has been investigated at the B3LYP/6-311+G(3df and CCSD levels on the singlet potential energy surface. One stable complex has been found for the S+O4 (D2h reaction, IN1, on the singlet potential energy surface. For the title reaction, we obtained four kinds of products at the B3LYP level, which have enough thermodynamic stability. The results reveal that the product P3 is spontaneous and exothermic with −188.042 and −179.147 kcal/mol in Gibbs free energy and enthalpy of reaction, respectively. Because P1 adduct is produced after passing two low energy level transition states, kinetically, it is the most favorable adduct in the 1S+1O4 (D2h atmospheric reactions.

  4. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    International Nuclear Information System (INIS)

    Osborn, David L.

    2017-01-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  5. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    Science.gov (United States)

    Osborn, David L.

    2017-05-01

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.

  6. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters

    Directory of Open Access Journals (Sweden)

    Vitaly V. Chaban

    2016-06-01

    Full Text Available Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden–Fletcher–Goldfarb–Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  7. Dynamical image potential and induced forces for charged particles moving parallel to a solid surface

    International Nuclear Information System (INIS)

    Arista, N.R.

    1994-01-01

    The dynamical image potential and ensuing forces induced by a charged particle moving parallel to a solid surface are investigated by using a dielectric formulation for semi-infinite dispersive media. The adiabatic behavior of the field in the asymptotic range is discussed in a general way using a multipole expansion. Several calculations illustrate the behavior of the field using both a simple model, where the surface response is approximated by a single plasma resonance, and a more realistic representation of the medium based upon the empirical information on the optical constants for various solids (Al, Cu, Ag, and Au). The model parameters may be adjusted to provide very good agreement with the optical-data integrations of the stopping and lateral forces on the moving charge. On the other hand, important differences in the description of the wake potential using either the simple plasma resonance model, or the optical-data representation, are obtained for Cu, Ag, and Au

  8. Modification of transition's factor in the compact surface-potential-based MOSFET model

    Directory of Open Access Journals (Sweden)

    Kevkić Tijana

    2016-01-01

    Full Text Available The modification of an important transition's factor which enables continual behavior of the surface potential in entire useful range of MOSFET operation is presented. The various modifications have been made in order to obtain an accurate and computationally efficient compact MOSFET model. The best results have been achieved by introducing the generalized logistic function (GL in fitting of considered factor. The smoothness and speed of the transition of the surface potential from the depletion to the strong inversion region can be controlled in this way. The results of the explicit model with this GL functional form for transition's factor have been verified extensively with the numerical data. A great agreement was found for a wide range of substrate doping and oxide thickness. Moreover, the proposed approach can be also applied on the case where quantum mechanical effects play important role in inversion mode.

  9. Evaluation of the immunodiagnostic potential of a recombinant surface protein domain from Acanthamoeba castellanii.

    Science.gov (United States)

    Sánchez, Alemao G Carpinteyro; Virginio, Veridiana Gomes; Maschio, Vinicius José; Ferreira, Henrique Bunselmeyer; Rott, Marilise Brittes

    2016-10-01

    Acanthamoeba spp. are free-living protists widely distributed in environment, able to cause keratitis, encephalitis and skin lesions in humans and animals. Acanthamoeba spp. exist in two forms: an infective trophozoite and a dormant cyst. Several factors contribute to the pathogenesis of Acanthamoeba spp. The parasite adhesion to the host cell is the primary step for infection and is mediated by a mannose binding-protein, expressed in the surface and considered the main pathogenicity factor in Acanthamoeba spp. So far, there was no evidence of another surface protein of Acanthamoeba spp. relevant for host invasion or infection by these organisms. The aims of this study were to identify and characterize an Acanthamoeba castellanii surface protein and to evaluate its diagnostic potential. In silico predictions of surface proteins allowed to identify the A. castellanii calreticulin as a possible surface antigen. The coding sequence of a predicted extracellular domain of A. castellanii calreticulin was cloned by in vivo homologous recombination and the recombinant polypeptide (AcCRT29-130) was produced. Its immunodiagnostic potential was assessed in a recombinant antigen-based ELISA with sera from experimentally infected rats that developed keratitis and encephalitis, and sera from patients with encephalitis. The AcCRT29-130 was significantly more recognized by sera from encephalitis infected rats in comparison with the non-infected controls. Human sera from encephalitis patients, however presented no significant response. These results showed the AcCRT29-130 potential for A. castellanii infection immunodiagnosis in animals, with further studies being required for assessment of its use for human infections.

  10. Exploring a potential energy surface by machine learning for characterizing atomic transport

    Science.gov (United States)

    Kanamori, Kenta; Toyoura, Kazuaki; Honda, Junya; Hattori, Kazuki; Seko, Atsuto; Karasuyama, Masayuki; Shitara, Kazuki; Shiga, Motoki; Kuwabara, Akihide; Takeuchi, Ichiro

    2018-03-01

    We propose a machine-learning method for evaluating the potential barrier governing atomic transport based on the preferential selection of dominant points for atomic transport. The proposed method generates numerous random samples of the entire potential energy surface (PES) from a probabilistic Gaussian process model of the PES, which enables defining the likelihood of the dominant points. The robustness and efficiency of the method are demonstrated on a dozen model cases for proton diffusion in oxides, in comparison with a conventional nudge elastic band method.

  11. Physisorbed H{sub 2}@Cu(100) surface: Potential and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Eddy; Houriez, Céline; Mitrushchenkov, Alexander O.; Guitou, Marie; Chambaud, Gilberte, E-mail: gilberte.chambaud@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, Champs sur Marne, F-77454 Marne-la-Vallée (France)

    2015-02-07

    Using an embedding approach, a 2-D potential energy function has been calculated to describe the physisorption interaction of H{sub 2} with a Cu(100) surface. For this purpose, a cluster model of the system calculated with highly correlated wavefunctions is combined with a periodic Density-Functional-Theory method using van der Waals-DF2 functional. Rotational and vibrational energy levels of physisorbed H{sub 2}, as well as D{sub 2} and HD, are calculated using the 2D embedding corrected potential energy function. The calculated transitions are in a very good agreement with Electron-Energy-Loss-Spectroscopy observations.

  12. Giant dipole resonances in hot nuclear matter in the model of self-relaxing mean field

    International Nuclear Information System (INIS)

    Okolowicz, J.; Ploszajczak, M.; Drozdz, S.; Caurier, E.

    1989-01-01

    The extended time-dependent Hartree-Fock approach is applied for the description of the isovector giant dipole resonance in 40 Ca at finite temperatures. The thermalization process is described using the relaxation-time ansatz for the collision integral. Strong inhibition of the giant-dipole-resonance γ-decay is found due to the fast vaporization of the nuclear surface for thermal excitation energies above E * /A ≅ 4.5 MeV. This pre-equilibrium emission of particles in the vapor phase is associated with the radial expansion of nucleus and with the vanishing particle binding energies mainly for protons. (orig.)

  13. Electromagnetic Radiation from Arbitrarily Shaped Microstrip Antenna Using the Equivalent Dipole-Moment Method

    Directory of Open Access Journals (Sweden)

    Jiade Yuan

    2012-01-01

    Full Text Available The equivalent dipole-moment method (EDM is extended and applied in the analysis of electromagnetic (EM radiation by arbitrarily shaped microstrip antenna in this paper. The method of moments (MoM is used to solve the volume-surface integral equation (VSIE. A strip model is applied in the treatment of the feeding probe of the microstrip antenna, in which the discretized triangular elements of the excitation source are equivalent as dipole models. The proposed approach is sufficiently versatile in handling arbitrarily shaped microstrip antenna and is easily constructed through a simple procedure. Numerical results are given to demonstrate the accuracy and efficiency of this method.

  14. Potential Predictability of the Sea-Surface Temperature Forced Equatorial East Africa Short Rains Interannual Variability in the 20th Century

    Science.gov (United States)

    Bahaga, T. K.; Gizaw, G.; Kucharski, F.; Diro, G. T.

    2014-12-01

    In this article, the predictability of the 20th century sea-surface temperature (SST) forced East African short rains variability is analyzed using observational data and ensembles of long atmospheric general circulation model (AGCM) simulations. To our knowledge, such an analysis for the whole 20th century using a series of AGCM ensemble simulations is carried out here for the first time. The physical mechanisms that govern the influence of SST on East African short rains in the model are also investigated. It is found that there is substantial skill in reproducing the East African short rains variability, given that the SSTs are known. Consistent with previous recent studies, it is found that the Indian Ocean and in particular the western pole of the Indian Ocean dipole (IOD) play a dominant role for the prediction skill, whereas SSTs outside the Indian Ocean play a minor role. The physical mechanism for the influence of the western Indian Ocean on East African rainfall in the model is consistent with previous findings and consists of a gill-type response to a warm (cold) anomaly that induces a westerly(easterly) low-level flow anomaly over equatorial Africa and leads to moisture flux convergence (divergence) over East Africa. On the other hand, a positive El Nino-Southern Oscillation (ENSO) anomaly leads to a spatially non-coherent reducing effect over parts of East Africa, but the relationship is not strong enough to provide any predictive skill in our model. The East African short rains prediction skill is also analyzed within a model-derived potential predictability framework and it is shown that the actual prediction skill is broadly consistent with the model potential prediction skill. Low-frequency variations of the prediction skill are mostly related to SSTs outside the Indian Ocean region and are likely due to an increased interference of ENSO with the Indian Ocean influence on East African short rains after the mid-1970s climate shift.

  15. Rotational Energy Transfer of N2 Gas Determined Using a New Ab Initio Potential Energy Surface

    Science.gov (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Rotational energy transfer between two N2 molecules is a fundamental process of some importance. Exchange is expected to play a role, but its importance is somewhat uncertain. Rotational energy transfer cross sections of N2 also have applications in many other fields including modeling of aerodynamic flows, laser operations, and linewidth analysis in nonintrusive laser diagnostics. A number of N2-N2 rigid rotor potential energy surface (PES) has been reported in the literature.

  16. OPERATION MODES AND CHARACTERISTICS OF PLASMA DIPOLE ANTENNA

    Directory of Open Access Journals (Sweden)

    Nikolay Nikolaevich Bogachev

    2014-02-01

    Full Text Available Existence modes of  surface electromagnetic wave on a plasma cylinder, operating modes and characteristics of the plasma antenna were studied in this paper. Solutions of the dispersion equation of surface wave were obtained for a plasma cylinder with finite radius for different plasma density values. Operation modes of the plasma asymmetric dipole antenna with finite length and radius were researched by numerical simulation. The electric field distributions of  the plasma antenna in near antenna field and the radiation pattern were obtained. These characteristics were compared to characteristics of the similar metal antenna. Numerical models verification was carried out by comparing of the counted and measured metal antenna radiation patterns.

  17. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  18. Surface potential at the hematite (001) crystal plane in aqueous environments and the effects of prolonged aging in water

    Science.gov (United States)

    Lützenkirchen, Johannes; Preočanin, Tajana; Stipić, Filip; Heberling, Frank; Rosenqvist, Jörgen; Kallay, Nikola

    2013-11-01

    The surface potentials of a (0 0 1) terminated hematite crystal that was annealed at high-temperature were measured as a function of pH by means of the corresponding single crystal electrode. The surface potential at a given pH did not depend on the electrolyte concentration, and was found to exhibit an inflection point. The shape of the function is in phenomenological agreement with the presence of two distinct surface terminations (O and Fe) that have been previously reported for this surface. Aging of the annealed hematite surface, in aqueous electrolyte medium over 2 weeks, leads to a drastic change in the surface potential pH curve. The surface potential becomes that of the ideal O termination. While the O termination data can be modeled using the MUSIC approach, the initial sample that is expected to correspond to the two-domain surface with O and Fe terminations cannot be described within the MUSIC approach based on previously published surface diffraction data. However, the experimental data fall between the O and Fe termination limiting cases when the point of zero potential is placed at the inflection point. The fact that a surface with the two terminations cannot be modeled may be attributed to various issues, three of which are discussed: (i) the general difficulty to average the potential arising from both terminations, which furthermore are short-circuited via the crystal, (ii) the difficulty of treating patchwise heterogeneous surfaces in surface complexation models, and (iii) the incapability of surface complexation models in their present form to describe potential gradients within the solid. Conclusively, we interpret our results as a transformation from a bi-domain surface, to a single domain surface over time under conditions where bulk hematite solubility is low. Accordingly, the oxygen terminated domain should be the more stable one at this single crystal surface at our experimental conditions.

  19. Molecular dynamics of polarizable point dipole models for molten NaI. Comparison with first principles simulations

    Directory of Open Access Journals (Sweden)

    Trullàs J.

    2011-05-01

    Full Text Available Molecular dynamics simulations of molten NaI at 995 K have been carried out using polarizable ion models based on rigid ion pair potentials to which the anion induced dipole polarization is added. The polarization is added in such a way that point dipoles are induced on the anions by both local electric field and deformation short-range damping interactions that oppose the electrically induced dipole moments. The structure and self-diffusion results are compared with those obtained by Galamba and Costa Cabral using first principles Hellmann-Feynman molecular dynamics simulations and using classical molecular dynamics of a shell model which allows only the iodide polarization

  20. CONSTRAINING THE NFW POTENTIAL WITH OBSERVATIONS AND MODELING OF LOW SURFACE BRIGHTNESS GALAXY VELOCITY FIELDS

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher

    2009-01-01

    We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.

  1. Potential of hyperspectral imaging to assess the stability of mudflat surfaces by mapping sediment characteristics

    Science.gov (United States)

    Smith, Geoff; Thomson, Andrew; Moller, Iris; Kromkamp, Jacco

    2003-03-01

    This work assessed the suitability of hyperspectral data for estimating mudflat surface characteristics related to stability. Due to the inaccessibility of intertidal areas, precise ground-based measurements of mudflat stability are difficult to conduct. Remote sensing can provide full spatial coverage and non-intrusive measurement. As stability changes on mudflats are linked to subtle differences in mudflat surface characteristics, they can potentially be mapped by hyperspectral data. Hyperspectral images were collected along with near contemporary ground measurements. An unsupervised classification gave a map which confirmed that a channel bar was mainly sand whereas soft mud dominated an adjacent embayment. Multiple regression analysis was used to relate surface characteristics to hyperspectral data to construct regression equations. Erosion shear stress was estimated directly from the hyperspectral data and also by a relationship with the surface characteristics. The results of the thematic class map matched well with the known situation at the site during image acquisition. The maps of surface characteristics highlighted the additional information that can be extracted from hyperspectral data. Stability maps, based on the erosion shear stress, can be used as a basis for predicting the likely future behaviour in this dynamic environment and will be of use for coastal zone management.

  2. Fractal analysis as a potential tool for surface morphology of thin films

    Science.gov (United States)

    Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.

    2017-12-01

    Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.

  3. Review: the potential impact of surface crystalline states of titanium for biomedical applications.

    Science.gov (United States)

    Barthes, Julien; Ciftci, Sait; Ponzio, Florian; Knopf-Marques, Helena; Pelyhe, Liza; Gudima, Alexandru; Kientzl, Imre; Bognár, Eszter; Weszl, Miklós; Kzhyshkowska, Julia; Vrana, Nihal Engin

    2018-05-01

    In many biomedical applications, titanium forms an interface with tissues, which is crucial to ensure its long-term stability and safety. In order to exert control over this process, titanium implants have been treated with various methods that induce physicochemical changes at nano and microscales. In the past 20 years, most of the studies have been conducted to see the effect of topographical and physicochemical changes of titanium surface after surface treatments on cells behavior and bacteria adhesion. In this review, we will first briefly present some of these surface treatments either chemical or physical and we explain the biological responses to titanium with a specific focus on adverse immune reactions. More recently, a new trend has emerged in titanium surface science with a focus on the crystalline phase of titanium dioxide and the associated biological responses. In these recent studies, rutile and anatase are the major two polymorphs used for biomedical applications. In the second part of this review, we consider this emerging topic of the control of the crystalline phase of titanium and discuss its potential biological impacts. More in-depth analysis of treatment-related surface crystalline changes can significantly improve the control over titanium/host tissue interface and can result in considerable decreases in implant-related complications, which is currently a big burden on the healthcare system.

  4. Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism

    Science.gov (United States)

    Wilson, Eric H.; Atreya, Sushil K.; Kaiser, Ralf I.; Mahaffy, Paul R.

    2016-08-01

    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4-). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 107 molecules cm-2 s-1 sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  5. Nanostructured lipid carrier surface modified with Eudragit RS 100 and its potential ophthalmic functions

    Science.gov (United States)

    Zhang, Wenji; Li, Xuedong; Ye, Tiantian; Chen, Fen; Yu, Shihui; Chen, Jianting; Yang, Xinggang; Yang, Na; Zhang, Jinsong; Liu, Jinlu; Pan, Weisan; Kong, Jun

    2014-01-01

    This study was carried out to evaluate the ocular performance of a cationic Eudragit (EDU) RS 100-coated nanostructured lipid carrier (NLC). The genistein encapsulated NLC (GEN-NLC) was produced using the melt-emulsification technique followed by surface absorption of EDU RS 100. The EDU RS 100 increased the surface zeta potential from −7.46 mV to +13.60 mV, by uniformly forming a spherical coating outside the NLC surface, as shown by transmission electron microscopy images. The EDU RS 100 on the NLC surface effectively improved the NLC stability by inhibiting particle size growth. The obtained EDU RS 100-GEN-NLC showed extended precorneal clearance and a 1.22-fold increase in AUC (area under the curve) compared with the bare NLC in a Gamma scintigraphic evaluation. The EDU RS 100 modification also significantly increased corneal penetration producing a 3.3-fold increase in apparent permeability coefficients (Papp) compared with references. Draize and cytotoxicity testing confirmed that the developed EDU RS 100-GEN-NLC was nonirritant to ocular tissues and nontoxic to corneal cells. These results indicate that the NLC surface modified by EDU RS 100 significantly improves the NLC properties and exhibits many advantages for ocular use. PMID:25246787

  6. Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities.

    Science.gov (United States)

    Muto, Masaki; Nojima, Daisuke; Yue, Liang; Kanehara, Hideyuki; Naruse, Hideaki; Ujiro, Asuka; Yoshino, Tomoko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2017-03-01

    Microalgae have been accepted as a promising feedstock for biodiesel production owing to their capability of converting solar energy into lipids through photosynthesis. However, the high capital and operating costs, and high energy consumption, are hampering commercialization of microalgal biodiesel. In this study, the surface-floating microalga, strain AVFF007 (tentatively identified as Botryosphaerella sudetica), which naturally forms a biofilm on surfaces, was characterized for use in biodiesel production. The biofilm could be conveniently harvested from the surface of the water by adsorbing onto a polyethylene film. The lipid productivity of strain AVFF007 was 46.3 mg/L/day, allowing direct comparison to lipid productivities of other microalgal species. The moisture content of the surface-floating biomass was 86.0 ± 1.2%, which was much lower than that of the biomass harvested using centrifugation. These results reveal the potential of this surface-floating microalgal species as a biodiesel producer, employing a novel biomass harvesting and dewatering strategy. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  8. Beyond Massive MIMO: The Potential of Data Transmission With Large Intelligent Surfaces

    Science.gov (United States)

    Hu, Sha; Rusek, Fredrik; Edfors, Ove

    2018-05-01

    In this paper, we consider the potential of data-transmission in a system with a massive number of radiating and sensing elements, thought of as a contiguous surface of electromagnetically active material. We refer to this as a large intelligent surface (LIS). The "LIS" is a newly proposed concept, which conceptually goes beyond contemporary massive MIMO technology, that arises from our vision of a future where man-made structures are electronically active with integrated electronics and wireless communication making the entire environment "intelligent". We consider capacities of single-antenna autonomous terminals communicating to the LIS where the entire surface is used as a receiving antenna array. Under the condition that the surface-area is sufficiently large, the received signal after a matched-filtering (MF) operation can be closely approximated by a sinc-function-like intersymbol interference (ISI) channel. We analyze the capacity per square meter (m^2) deployed surface, \\hat{C}, that is achievable for a fixed transmit power per volume-unit, \\hat{P}. Moreover, we also show that the number of independent signal dimensions per m deployed surface is 2/\\lambda for one-dimensional terminal-deployment, and \\pi/\\lambda^2 per m^2 for two and three dimensional terminal-deployments. Lastly, we consider implementations of the LIS in the form of a grid of conventional antenna elements and show that, the sampling lattice that minimizes the surface-area of the LIS and simultaneously obtains one signal space dimension for every spent antenna is the hexagonal lattice. We extensively discuss the design of the state-of-the-art low-complexity channel shortening (CS) demodulator for data-transmission with the LIS.

  9. Proper construction of ab initio global potential surfaces with accurate long-range interactions

    International Nuclear Information System (INIS)

    Ho, Tak-San; Rabitz, Herschel

    2000-01-01

    An efficient procedure based on the reproducing kernel Hilbert space interpolation method is presented for constructing intermolecular potential energy surfaces (PES) using not only calculated ab initio data but also a priori information on long-range interactions. Explicitly, use of the reciprocal power reproducing kernel on the semiinfinite interval [0,∞) yields a set of exact linear relations between dispersion (multipolar) coefficients and PES data points at finite internuclear separations. Consequently, given a combined set of ab initio data and the values of dispersion (multipolar) coefficients, the potential interpolation problem subject to long-range interaction constraints can be solved to render globally smooth, asymptotically accurate ab initio potential energy surfaces. Very good results have been obtained for the one-dimensional He-He potential curve and the two-dimensional Ne-CO PES. The construction of the Ne-CO PES was facilitated by invoking a new reproducing kernel for the angular coordinate based on the optimally stable and shape-preserving Bernstein basis functions. (c) 2000 American Institute of Physics

  10. Nano surface engineering of Mn 2 O 3 for potential light-harvesting application

    KAUST Repository

    Kar, Prasenjit

    2015-01-01

    Manganese oxides are well known applied materials including their use as efficient catalysts for various environmental applications. Multiple oxidation states and their change due to various experimental conditions are concluded to be responsible for their multifaceted functionality. Here we demonstrate that the interaction of a small organic ligand with one of the oxide varieties induces completely new optical properties and functionalities (photocatalysis). We have synthesized Mn2O3 microspheres via a hydrothermal route and characterized them using scanning electron microscopy (SEM), X-ray diffraction (XRD) and elemental mapping (EDAX). When the microspheres are allowed to interact with the biologically important small ligand citrate, nanometer-sized surface functionalized Mn2O3 (NPs) are formed. Raman and Fourier transformed infrared spectroscopy confirm the covalent attachment of the citrate ligand to the dangling bond of Mn at the material surface. While cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) analysis confirm multiple surface charge states after the citrate functionalization of the Mn2O3 NPs, new optical properties of the surface engineered nanomaterials in terms of absorption and emission emerge consequently. The engineered material offers a novel photocatalytic functionality to the model water contaminant methylene blue (MB). The effect of doping other metal ions including Fe3+ and Cu2+ on the optical and catalytic properties is also investigated. In order to prepare a prototype for potential environmental application of water decontamination, we have synthesized and duly functionalized the material on the extended surface of a stainless steel metal mesh (size 2 cm × 1.5 cm, pore size 150 μm × 200 μm). We demonstrate that the functionalized mesh always works as a "physical" filter of suspended particulates. However, it works as a "chemical" filter (photocatalyst) for the potential water soluble contaminant (MB) in the presence

  11. Electromagnetic core-mantle coupling associated with changes in the geomagnetic dipole field

    International Nuclear Information System (INIS)

    Watanabe, Hidehumi; Yukutake, Takesi.

    1975-01-01

    On a shelluar earth model electromagnetic coupling between the mantle and the core is investigated when the geomagnetic dipole field changes its intensity. Besides electromagnetic interaction between the dipole change and the relative slip of the mantle to the core, coupling of the dipole change with shear motions within the core is considered. If, in the core, the dipole change is limited within a surface layer shallower than a few hundred kilometers, the electromagnetic interaction gives the same order of magnitudes and phases of mantle oscillation as suggested from observation for three different periods, 8000, 400 and 65 years, provided that the electrical conductivity of the bottom part of the mantle is 10 -9 to 10 -8 emu. It is shown that mean motion of the surface shells of the core thus calculated is compatible with the observed variations in the drift velocity of the geomagnetic secular change. Except for surface shells, those in the deep interior is confirmed to oscillate almost with the same angular velocity, like a rigid rotation, for all the periods. (auth.)

  12. Determination of electrostatic potential distribution by atomic force microscopy (AFM) on model silica and alumina surfaces in aqueous electrolyte solutions

    International Nuclear Information System (INIS)

    Yelken, Gulnihal Ozek; Polat, Mehmet

    2014-01-01

    Graphical abstract: - Highlights: • Atomic force microscopy was employed to quantitatively determine the surface potential on silica and alumina surfaces immersed in aqueous electrolyte solutions at various pH values using the DLVO theory. • Potential distributions could be presented in the form of a potential map by repeating the procedure on multiple locations on these surfaces. • The average potential of the distributions agreed very well with the surface potentials measured by electrophoretic techniques. • Several experimental procedures required to achieve the very sensitive force measurements were outlined and demonstrated. - Abstract: AFM was employed as a physicochemical probe to determine the electrostatic potential distribution quantitatively on selected ideal oxide surfaces (quartz 0 0 0 1 and sapphire 0 0 0 1) in aqueous media. The force of interaction between a silicon nitride tip and the oxide surface was measured at a given point under well-defined solution conditions. Relevant theories were used to isolate the electrostatic component from the total force of interaction which was then employed to estimate the surface potential at that point. Repeating the procedure on selected locations generated a potential map of the surface. Comparison of these potentials with those obtained from independent electrokinetic measurements confirmed the validity of the approach

  13. Dynamical dipole mode in fusion reactions

    Science.gov (United States)

    Pierroutsakou, D.; Martin, B.; Agodi, C.; Alba, R.; Baran, V.; Boiano, A.; Cardella, G.; Colonna, M.; Coniglione, R.; De Filippo, E.; Del Zoppo, A.; Di Toro, M.; Inglima, G.; Glodariu, T.; La Commara, M.; Maiolino, C.; Mazzocco, M.; Pagano, A.; Piattelli, P.; Pirrone, S.; Rizzo, C.; Romoli, M.; Sandoli, M.; Santonocito, D.; Sapienza, P.; Signorini, C.

    2009-05-01

    We investigated the dynamical dipole mode, related with entrance channel charge asymmetry effects, in the 40Ar+92Zr and 36Ar+96Zr fusion reactions at Elab = 15.1 A and 16 A MeV, respectively. These reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the A = 126 mass energy region, identical spin distribution at an average excitation energy of about 280 MeV. The compound nucleus average excitation energy and average mass were deduced by the analysis of the light charged particle energy spectra. By studying the γ-ray energy spectra and the γ-ray angular distributions of the considered reactions, the dynamical nature of the prompt radiation related to the dynamical dipole mode was evidenced. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

  14. Dynamical dipole mode in fusion reactions

    International Nuclear Information System (INIS)

    Pierroutsakou, D.; Boiano, A.; Romoli, M.; Martin, B.; Inglima, G.; La Commara, M.; Sandoli, M.; Agodi, C.; Alba, R.; Coniglione, R.; Zoppo, A. Del; Maiolino, C.; Piattelli, P.; Santonocito, D.; Sapienza, P.; Baran, V.; Glodariu, T.; Cardella, G.; De Filippo, E.; Pagano, A.

    2009-01-01

    We investigated the dynamical dipole mode, related with entrance channel charge asymmetry effects, in the 40 Ar+ 92 Zr and 36 Ar+ 96 Zr fusion reactions at E lab = 15.1 A and 16 A MeV, respectively. These reactions populate, through entrance channels having different charge asymmetries, a compound nucleus in the A = 126 mass energy region, identical spin distribution at an average excitation energy of about 280 MeV. The compound nucleus average excitation energy and average mass were deduced by the analysis of the light charged particle energy spectra. By studying the γ-ray energy spectra and the γ-ray angular distributions of the considered reactions, the dynamical nature of the prompt radiation related to the dynamical dipole mode was evidenced. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

  15. THE SNS RING DIPOLE MAGNETIC FIELD QUALITY.

    Energy Technology Data Exchange (ETDEWEB)

    WANDERER,P.; JACKSON,J.; JAIN,A.; LEE,Y.Y.; MENG,W.; PAPAPHILIPPOU,I.; SPATARO,C.; TEPIKIAN,S.; TSOUPAS,N.; WEI,J.

    2002-06-03

    The large acceptance and compact size of the Spallation Neutron Source (SNS) ring implies the use of short, large aperture dipole magnets, with significant end field errors. The SNS will contain 32 such dipoles. We report magnetic field measurements of the first 16 magnets. The end field errors have been successfully compensated by the use of iron bumps. For 1.0 GeV protons, the magnets have been shimmed to meet the 0.01% specification for rms variation of the integral field. At 1.3 GeV, the rms variation is 0.036%. The load on the corrector system at 1.3 GeV will be reduced by the use of sorting.

  16. Trapped field internal dipole superconducting motor generator

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Downers Grove, IL)

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  17. The LHC AC Dipole system: an introduction

    CERN Document Server

    Serrano, J; CERN. Geneva. BE Department

    2010-01-01

    The LHC AC Dipole is an instrument to study properties of the LHC lattice by inducing large transverse displacements in the beam. These displacements are generated by exciting the beam with an oscillating magnetic field at a frequency close to the tune. This paper presents the system requirements and the technical solution chosen to meet them, based of high-power audio amplifiers and a resonant parallel RLC circuit.

  18. Electric dipole moment of light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Benjamin [Los Alamos National Laboratory; Afnan, I R [Los Alamos National Laboratory

    2010-01-01

    We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.

  19. Potential effects of groundwater and surface water contamination in an urban area, Qus City, Upper Egypt

    Science.gov (United States)

    Abdalla, Fathy; Khalil, Ramadan

    2018-05-01

    The potential effects of anthropogenic activities, in particular, unsafe sewage disposal practices, on shallow groundwater in an unconfined aquifer and on surface water were evaluated within an urban area by the use of hydrogeological, hydrochemical, and bacteriological analyses. Physicochemical and bacteriological data was obtained from forty-five sampling points based on33 groundwater samples from variable depths and 12 surface water samples. The pollution sources are related to raw sewage and wastewater discharges, agricultural runoff, and wastewater from the nearby Paper Factory. Out of the 33 groundwater samples studied, 17 had significant concentrations of NO3-, Cl- and SO42-, and high bacteria counts. Most of the water samples from the wells contained high Fe, Mn, Pb, Zn, Cd, and Cr. The majority of surface water samples presented high NO3- concentrations and high bacteria counts. A scatter plot of HCO3- versus Ca indicates that 58% of the surface water samples fall within the extreme contamination zone, while the others are within the mixing zone; whereas 94% of groundwater samples showed evidence of mixing between groundwater and wastewater. The bacteriological assessment showed that all measured surface and groundwater samples contained Escherichia coli and total coliform bacteria. A risk map delineated four classes of contamination, namely, those sampling points with high (39.3%), moderate (36.3%), low (13.3%), and very low (11.1%) levels of contamination. Most of the highest pollution points were in the middle part of the urban area, which suffers from unmanaged sewage and industrial effluents. Overall, the results demonstrate that surface and groundwater in Qus City are at high risk of contamination by wastewater since the water table is shallow and there is a lack of a formal sanitation network infrastructure. The product risk map is a useful tool for prioritizing zones that require immediate mitigation and monitoring.

  20. Potential energy surface of triplet N{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G., E-mail: truhlar@umn.edu [Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431 (United States)

    2016-01-14

    We present a global ground-state triplet potential energy surface for the N{sub 2}O{sub 2} system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N{sub 2}, O{sub 2}, and nitric oxide (NO), the interaction of a triatomic molecule (N{sub 2}O and NO{sub 2}) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances.

  1. Dipole operator constraints on composite Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Matthias [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Neubert, Matthias [Johannes Gutenberg University, PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Mainz (Germany); Cornell University, Department of Physics, LEPP, Ithaca, NY (United States); Straub, David M. [Excellence Cluster Universe, Technische Universitaet Muenchen, Garching (Germany)

    2014-07-15

    Flavour- and CP-violating electromagnetic or chromomagnetic dipole operators in the quark sector are generated in a large class of new physics models and are strongly constrained by measurements of the neutron electric dipolemoment and observables sensitive to flavour-changing neutral currents, such as the B→ X{sub s}γ branching ratio and ε'/ε. After a model-independent discussion of the relevant constraints, we analyze these effects in models with partial compositeness, where the quarks get their masses by mixing with vector-like composite fermions. These scenarios can be seen as the low-energy limit of composite Higgs or warped extra dimensional models. We study different choices for the electroweak representations of the composite fermions motivated by electroweak precision tests as well as different flavour structures, including flavour anarchy and U(3){sup 3} or U(2){sup 3} flavour symmetries in the strong sector. In models with ''wrong-chirality'' Yukawa couplings, we find a strong bound from the neutron electric dipole moment, irrespective of the flavour structure. In the case of flavour anarchy, we also find strong bounds from flavour-violating dipoles, while these constraints are mild in the flavour-symmetric models. (orig.)

  2. SPS Dipole Multipactor Test and TEWave Diagnostics

    CERN Document Server

    Caspers, F; Edwards, P; Federmann, S; Holz, M; Taborelli, M

    2013-01-01

    Electron cloud accumulation in particle accelerators can be mitigated by coating the vacuum beam pipe with thin films of low secondary electron yield (SEY) material. The SEY of small coated samples are usually measured in the laboratory. To further test the properties of different coating materials, RF-induced multipacting in a coaxial waveguide configuration can be performed. The technique is applied to two main bending dipoles of the SPS, where the RF power is fed through a tungsten wire stretched along the vacuum chamber (6.4 m). A dipole with a bare stainless steel chamber shows a clear power threshold initiating an abrupt rise in reflected power and pressure. The effect is enhanced at RF frequencies corresponding to electron cyclotron resonances for given magnetic fields. Preliminary results show that the dipole with a carbon coated vacuum chamber does not exhibit any pressure rise or reflected RF power up to the maximum available input power. In the case of a large scale coating production this techniqu...

  3. Bent Solenoids with Superimposed Dipole Fields

    Energy Technology Data Exchange (ETDEWEB)

    Meinke, Rainer, B.; Goodzeit, Carl, L.

    2000-03-21

    A conceptual design and manufacturing technique were developed for a superconducting bent solenoid magnet with a superimposed dipole field that would be used as a dispersion device in the cooling channel of a future Muon Collider. The considered bent solenoid is equivalent to a 180° section of a toroid with a major radius of ~610 mm and a coil aperture of ~416 mm. The required field components of this magnet are 4 tesla for the solenoid field and 1 tesla for the superimposed dipole field. A magnet of this size and shape, operating at these field levels, has to sustain large Lorentz forces resulting in a maximum magnetic pressure of about 2,000 psi. A flexible round mini-cable with 37 strands of Cu-NbTi was selected as the superconductor. Detailed magnetic analysis showed that it is possible to obtain the required superimposed dipole field by tilting the winding planes of the solenoid by ~25°. A complete structural analysis of the coil support system and the helium containment vessel under thermal, pressure, and Lorentz force loads was carried out using 3D finite element models of the structures. The main technical issues were studied and solutions were worked out so that a highly reliable magnet of this type can be produced at an affordable cost.

  4. Direct amplitude detuning measurement with ac dipole

    Directory of Open Access Journals (Sweden)

    S. White

    2013-07-01

    Full Text Available In circular machines, nonlinear dynamics can impact parameters such as beam lifetime and could result in limitations on the performance reach of the accelerator. Assessing and understanding these effects in experiments is essential to confirm the accuracy of the magnetic model and improve the machine performance. A direct measurement of the machine nonlinearities can be obtained by characterizing the dependency of the tune as a function of the amplitude of oscillations (usually defined as amplitude detuning. The conventional technique is to excite the beam to large amplitudes with a single kick and derive the tune from turn-by-turn data acquired with beam position monitors. Although this provides a very precise tune measurement it has the significant disadvantage of being destructive. An alternative, nondestructive way of exciting large amplitude oscillations is to use an ac dipole. The perturbation Hamiltonian in the presence of an ac dipole excitation shows a distinct behavior compared to the free oscillations which should be correctly taken into account in the interpretation of experimental data. The use of an ac dipole for direct amplitude detuning measurement requires careful data processing allowing one to observe the natural tune of the machine; the feasibility of such a measurement is demonstrated using experimental data from the Large Hadron Collider. An experimental proof of the theoretical derivations based on measurements performed at injection energy is provided as well as an application of this technique at top energy using a large number of excitations on the same beam.

  5. Effects of geometric modulation and surface potential heterogeneity on electrokinetic flow and solute transport in a microchannel

    Science.gov (United States)

    Bera, Subrata; Bhattacharyya, S.

    2018-04-01

    A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst-Planck equations for the distribution of ions; and the Navier-Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in

  6. Isovector giant dipole resonance in hot rotating light nuclei in the calcium region

    International Nuclear Information System (INIS)

    Shanmugam, G.; Thiagasundaram, M.

    1989-01-01

    The isovector giant dipole resonances in hot rotating light nuclei in the calcium region are studied using a rotating anisotropic harmonic oscillator potential and a separable dipole-dipole residual interaction. The influence of temperature on the isovector giant dipole resonance is assumed to occur through the change of deformation of the average field only. Calculations are performed for the three nuclei /sup 40,42/Ca and /sup 46/Ti which have spherical, oblate, and prolate ground states, respectively, to see how their shape transitions at higher excited states affect the isovector giant resonance frequencies built on them. It is seen that, while the width fluctuations present at T = 0 vanish at T = 0.5 MeV in /sup 40,42/Ca, they persist up to T = 1.5 MeV in the case of /sup 46/Ti. This behavior brings out the role of temperature on shell effects which in turn affects the isovector giant dipole resonance widths

  7. Fabrication and component testing results for a Nb3Sn dipole magnet

    International Nuclear Information System (INIS)

    Dell'Orco, D.; Scanlan, R.M.; Taylor, C.E.; Lietzke, A.; Caspi, S.; van Oort, J.M.; McInturff, A.D.

    1994-10-01

    At present, the maximum field achieved in accelerator R ampersand D dipoles is slightly over 10T, with NbTi conductor at 1.8 K. Although Nb 3 Sn has the potential to achieve much higher fields, none of the previous dipoles constructed from Nb 3 Sn have broken the 10T barrier. We report here on the construction of a dipole with high current density Nb 3 Sn with a predicted short sample limit of 13T. A wind and react technique, followed by epoxy impregnation of the fiberglass insulated coils, was used. The problems identified with the use of Nb 3 SD in earlier dipole magnets were investigated in a series of supplemental tests. This includes measurement of the degradation of J c with transverse strain, cabling degradation, joint resistance measurements, and epoxy strength tests. In addition, coff assembly techniques were developed to ensure that adequate prestress could be applied without damaging the reacted Nb 3 Sn cable. We report here the results of these tests and the construction status of this 50 mm bore dipole

  8. Ab initio treatment of the chemical reaction precursor complex Br(2P)-HCN. 1. Adiabatic and diabatic potential surfaces

    NARCIS (Netherlands)

    Fishchuk, A.V.; Merritt, J.M.; Avoird, A. van der

    2007-01-01

    The three adiabatic potential surfaces of the Br(P-2)-HCN complex that correlate to the P-2 ground state of the Br atom were calculated ab initio. With the aid of a geometry-dependent diabatic mixing angle, also calculated ab initio, these adiabatic potential surfaces were transformed into a set of

  9. Potential sputtering of target ions by Ar q+, Pb q+ projectiles from a silicon surface

    International Nuclear Information System (INIS)

    Wang, T.S.; Zhao, Y.T.; Peng, H.B.; Wang, S.W.; Fang, Y.; Ding, D.J.; Xiao, G.Q.

    2007-01-01

    Highly charged ions have been expected to be a powerful tool for the surface modification in nano-scale. The potential sputtering of highly charged ions on semi-conductors has the potential to be applied in the micro electronics and nano-technology. In this work, the Ar q+ and Pb q+ ions produced by an electron cyclotron resonance ion source have been used as projectiles to study their potential sputtering on silicon surface. The relative sputtering ion yield is measured with a micro-channel plate, correlated to the incidence angle, charge state and velocity of ions. The experimental results show evidently charge dependence and velocity dependence. The yield induced by the ions changes steeply with the incidence angle, which is much larger than the impact of single charged ion with the same velocity. In the case of Pb 36+ impact, a significant enhancement of the yield has been observed, while the q > 20. At the same time, the yield increases proportionally with the ion velocity. However, in the case of Ar 16+ , the yield decreases versus the increase of the velocity

  10. Measurement of the electric potential at the surface of nonuniformly charged polypropylene nonwoven media

    Science.gov (United States)

    Fatihou, Ali; Zouzou, Noureddine; Iuga, Gheorghe; Dascalescu, Lucian

    2015-10-01

    The aim of this paper is to establish the conditions in which the vibrating capacitive probe of an electrostatic voltmeter could be employed for mapping the electric potential at the surface of non-uniformly charged insulating bodies. A first set of experiments are performed on polypropylene non-woven media (thickness: 0.4 mm; fiber diameter: 20 μm) in ambient air. In a second set of experiments the non-uniformity of charge is simulated using five copper strips (width: 2 mm or 3 mm; distance between strips: 2 mm). All the strips are connected to a high-voltage supply (Vs = 1000 V). The sample carrier is attached to a computer-controlled positioning system that transfers it under the capacitive probe (TREK, model 3451) of an electrostatic voltmeter (TREK, model 1341B). The measurements are performed at various relative speeds Vb between the sample and the probe, and for various sample rates Fe. A first set of experiments point out that the electric potential displayed by the electrostatic voltmeter depends on the spacing h between the sample and the probe. The diameter D of the spot “seen” by the probe is approximately D ≈ 8h/3. From the second set of experiments performed with the test plate, it can be concluded that the surface potential can be measured with the media in motion, but the accuracy is limited by the spatial resolution defined by k = Vb/Fe.

  11. Multiparametric Kelvin Probe Force Microscopy for the Simultaneous Mapping of Surface Potential and Nanomechanical Properties.

    Science.gov (United States)

    Xie, Hui; Zhang, Hao; Hussain, Danish; Meng, Xianghe; Song, Jianmin; Sun, Lining

    2017-03-21

    We report high-resolution multiparametric kelvin probe force microscopy (MP-KPFM) measurements for the simultaneous quantitative mapping of the contact potential difference (CPD) and nanomechanical properties of the sample in single-pass mode. This method combines functionalities of the force-distance-based atomic force microscopy and amplitude-modulation (AM) KPFM to perform measurements in single-pass mode. During the tip-sample approach-and-retract cycle, nanomechanical measurements are performed for the retract part of nanoindentation, and the CPD is measured by the lifted probe with a constant tip-sample distance. We compare the performance of the proposed method with the conventional KPFMs by mapping the CPD of multilayer graphene deposited on n-doped silicon, and the results demonstrate that MP-KPFM has comparable performance to AM-KPFM. In addition, the experimental results of a custom-fabricated polymer grating with heterogeneous surfaces validate the multiparametric imaging capability of the MP-KPFM. This method can have potential applications in finding the inherent link between nanomechanical properties and the surface potential of the materials, such as the quantification of the electromechanical response of the deformed piezoelectric materials.

  12. Modeling Images of Natural 3D Surfaces: Overview and Potential Applications

    Science.gov (United States)

    Jalobeanu, Andre; Kuehnel, Frank; Stutz, John

    2004-01-01

    Generative models of natural images have long been used in computer vision. However, since they only describe the of 2D scenes, they fail to capture all the properties of the underlying 3D world. Even though such models are sufficient for many vision tasks a 3D scene model is when it comes to inferring a 3D object or its characteristics. In this paper, we present such a generative model, incorporating both a multiscale surface prior model for surface geometry and reflectance, and an image formation process model based on realistic rendering, the computation of the posterior model parameter densities, and on the critical aspects of the rendering. We also how to efficiently invert the model within a Bayesian framework. We present a few potential applications, such as asteroid modeling and Planetary topography recovery, illustrated by promising results on real images.

  13. CASSCF/CI calculations of electronic states and potential energy surfaces of PtH2

    International Nuclear Information System (INIS)

    Balasubramanian, K.

    1987-01-01

    Complete active space MCSCF followed by MRSDCI (multireference singles and doubles configuration interaction) calculations are carried out on the electronic states of PtH 2 . Spin--orbit interaction is introduced using a relativistic configuration interaction scheme on PtH + whose d orbital Mulliken population is close to that of the d population of PtH 2 and thus enables calculation of spin--orbit splittings for the electronic states of PtH 2 . The bending potential energy surfaces of the 1 A 1 and 3 A 1 states are obtained. The 1 A 1 surface has a bent minimum and dissociates almost without a barrier into Pt( 1 S 0 ) and H 2 , while the 3 A 1 state has a large (--55 kcal/mol) barrier to dissociation into Pt( 3 D 3 )+H 2 . The ground state of PtH 2 is a bent 1 A 1 state (θ = 85 0 )

  14. Rotational Energy Transfer of N2 Determined Using a New Ab Initio Potential Energy Surface

    Science.gov (United States)

    Huo, Winifred M.; Stallcop, James R.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    A new N2-N2 rigid-rotor surface has been determined using extensive Ab Initio quantum chemistry calculations together with recent experimental data for the second virial coefficient. Rotational energy transfer is studied using the new potential energy surface (PES) employing the close coupling method below 200 cm(exp -1) and coupled state approximation above that. Comparing with a previous calculation based on the PES of van der Avoird et al.,3 it is found that the new PES generally gives larger cross sections for large (delta)J transitions, but for small (delta)J transitions the cross sections are either comparable or smaller. Correlation between the differences in the cross sections and the two PES will be attempted. The computed cross sections will also be compared with available experimental data.

  15. New two-loop contribution to electric dipole moment in supersymmetric theories

    CERN Document Server

    Chang, Darwin; Pilaftsis, Apostolos; Chang, Darwin; Keung, Wai-Yee; Pilaftsis, Apostolos

    1999-01-01

    We calculate a new type of two-loop contributions to the electric dipole moments of the electron and neutron in supersymmetric theories. The new contributions are originated from the potential CP violation in the trilinear couplings of the Higgs bosons to the scalar-top or the scalar-bottom quarks. These couplings were previously very weakly constrained. The electric dipole moments are induced through a mechanism analogous to that due to Barr and Zee. We find observable effects for a sizeable portion of the parameter space related to the third generation scalar-quarks in the minimal supersymmetric standard model which cannot be excluded by earlier considerations.

  16. Wash-off potential of urban use insecticides on concrete surfaces.

    Science.gov (United States)

    Jiang, Weiying; Lin, Kunde; Haver, Darren; Qin, Sujie; Ayre, Gilboa; Spurlock, Frank; Gan, Jay

    2010-06-01

    Contamination of surface aquatic systems by insecticides is an emerging concern in urban watersheds, but sources of contamination are poorly understood, hindering development of regulatory or mitigation strategies. Hardscapes such as concrete surfaces are considered an important facilitator for pesticide runoff following applications around homes. However, pesticide behavior on concrete has seldom been studied, and standardized evaluation methods are nonexistent. In the present study, a simple batch method for measuring pesticide wash-off potential from concrete surfaces was developed, and the dependence of washable pesticide residues was evaluated on pesticide types, formulations, time exposed to outdoor conditions, and number of washing cycles. After application to concrete, the washable fraction of four pyrethroids (bifenthrin, permethrin, cyfluthrin, and cyhalothrin) and fipronil rapidly decreased, with half-lives residues were still found in the wash-off solution for most treatments after 112 d. The slow decrease may be attributed to a fraction of pesticides being isolated from degradation or volatilization after retention below the concrete surface. Wash-off potential was consistently higher for solid formulations than for liquid formulations, implying an increased runoff contamination risk for granular and powder formulations. Trace levels of pyrethroids were detected in the wash-off solution even after 14 washing-drying cycles over 42 d under outdoor conditions. Results from the present study suggest that pesticide residues remain on concrete and are available for contaminating runoff for a prolonged time. Mechanisms for the long persistence were not clearly known from the present study and merit further investigation. Copyright 2010 SETAC.

  17. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake

    Directory of Open Access Journals (Sweden)

    Yi-Min Wang

    2014-12-01

    Full Text Available Many crop plants are exposed to heavy metals and other metals that may intoxicate the crop plants themselves or consumers of the plants. The rhizotoxicity of heavy metals is influenced strongly by the root cell plasma membrane (PM surface’s electrical potential (ψ0. The usually negative ψ0 is created by negatively charged constituents of the PM. Cations in the rooting medium are attracted to the PM surface and anions are repelled. Addition of ameliorating cations (e.g., Ca2+ and Mg2+ to the rooting medium reduces the effectiveness of cationic toxicants (e.g., Cu2+ and Pb2+ and increases the effectiveness of anionic toxicants (e.g., SeO42− and H2AsO4−. Root growth responses to ions are better correlated with ion activities at PM surfaces ({IZ}0 than with activities in the bulk-phase medium ({IZ}b (IZ denotes an ion with charge Z. Therefore, electrostatic effects play a role in heavy metal toxicity that may exceed the role of site-specific competition between toxicants and ameliorants. Furthermore, ψ0 controls the transport of ions across the PM by influencing both {IZ}0 and the electrical potential difference across the PM from the outer surface to the inner surface (Em,surf. Em,surf is a component of the driving force for ion fluxes across the PM and controls ion-channel voltage gating. Incorporation of {IZ}0 and Em,surf into quantitative models for root metal toxicity and uptake improves risk assessments of toxic metals in the environment. These risk assessments will improve further with future research on the application of electrostatic theory to heavy metal phytotoxicity in natural soils and aquatic environments.

  18. Virtual gravitational dipoles: The key for the understanding of the Universe?

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2014-01-01

    Before the end of this decade, three competing experiments (ALPHA, AEGIS and GBAR) will discover if atoms of antihydrogen fall up or down. We wonder what the major changes in astrophysics and cosmology would be if it is experimentally confirmed that antimatter falls upwards. The key point is: If antiparticles have negative gravitational charge, the quantum vacuum, well established in the Standard Model of Particles and Fields, contains virtual gravitational dipoles. The main conclusions are: (1) the physical vacuum enriched with gravitational dipoles is compatible with a cyclic universe alternatively dominated by matter and antimatter, without initial singularity and without need for cosmic inflation; (2) the virtual dipoles might explain the phenomena usually attributed to dark matter and dark energy. While what we have presented is still far from a complete theory, hopefully it can stimulate a radically different and potentially important way of thinking.

  19. Theoretical characterization of the potential energy surface for H + O2 yields HO2(asterisk) yields HO + O. II - The potential for H atom exchange in HO2

    Science.gov (United States)

    Walch, Stephen P.; Rohlfing, Celeste Mcmichael

    1989-01-01

    The results of CASSCF multireference contracted CI calculations with large ANO basis sets are presented for the exchange region of the HO2 potential-energy surface. The saddle point for H atom exchange is about 13 kcal/mol below the energy of H + O2; therefore, this region of the surface should be accessible during H + O2 recombination and methathesis reactions.

  20. Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran.

    Science.gov (United States)

    Dehghani, Sharareh; Moore, Farid; Keshavarzi, Behnam; Hale, Beverley A

    2017-02-01

    In this study a total of 30 street dusts and 10 surface soils were collected in the central district of Tehran and analyzed for major potentially toxic metals. Street dust was found to be greatly enriched in Sb, Pb, Cu and Zn and moderately enriched in Cr, Mn, Mo and Ni. Contamination of Cu, Sb, Pb and Zn was clearly related to anthropogenic sources such as brake wear, tire dust, road abrasion and fossil fuel combustion. Spatial distribution of pollution load index in street dust suggested that industries located south-west of the city intensify street dust pollution. Microscopic studies revealed six dominant group of morphological structures in calculation of the exposurethe street dusts and surface soils, with respect to different geogenic and anthropogenic sources. The BCR (the European Community Bureau of Reference) sequential extraction results showed that Sb, Ni, Mo, As and Cr bonded to silicates and sulfide minerals were highly resistant to dissolution. In contrast, Zn, Cd, and Mn were mostly associated with the exchangeable phase and thus would be easily mobilized in the environment. Cu was the most abundant metal in the reducible fraction, indicating its adsorption to iron and manganese oxy-hydroxides. Pb was equally extracted from exchangeable and reducible fractions. Anthropogenic sources related to traffic apparently play a small role in Cr, Ni and Mo contamination and dispersed them as bioavailable forms but with reduced mobility and bioavailablity due to high potential of complexation and adsorption to organic matter and iron and manganese oxy-hydroxides. Calculated Hazard Index (HI) suggests ingestion as the most important pathway for the majority of PTMs in children and dermal contact as the main exposure route for Cr, Cd and Sb for adults. The HIs and fractionation pattern of elements revealed Pb as the sole element that bears potential health risk in street dust and surface soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Mining for diagnostic information in body surface potential maps: A comparison of feature selection techniques

    Directory of Open Access Journals (Sweden)

    McCullagh Paul J

    2005-09-01

    Full Text Available Abstract Background In body surface potential mapping, increased spatial sampling is used to allow more accurate detection of a cardiac abnormality. Although diagnostically superior to more conventional electrocardiographic techniques, the perceived complexity of the Body Surface Potential Map (BSPM acquisition process has prohibited its acceptance in clinical practice. For this reason there is an interest in striking a compromise between the minimum number of electrocardiographic recording sites required to sample the maximum electrocardiographic information. Methods In the current study, several techniques widely used in the domains of data mining and knowledge discovery have been employed to mine for diagnostic information in 192 lead BSPMs. In particular, the Single Variable Classifier (SVC based filter and Sequential Forward Selection (SFS based wrapper approaches to feature selection have been implemented and evaluated. Using a set of recordings from 116 subjects, the diagnostic ability of subsets of 3, 6, 9, 12, 24 and 32 electrocardiographic recording sites have been evaluated based on their ability to correctly asses the presence or absence of Myocardial Infarction (MI. Results It was observed that the wrapper approach, using sequential forward selection and a 5 nearest neighbour classifier, was capable of choosing a set of 24 recording sites that could correctly classify 82.8% of BSPMs. Although the filter method performed slightly less favourably, the performance was comparable with a classification accuracy of 79.3%. In addition, experiments were conducted to show how (a features chosen using the wrapper approach were specific to the classifier used in the selection model, and (b lead subsets chosen were not necessarily unique. Conclusion It was concluded that both the filter and wrapper approaches adopted were suitable for guiding the choice of recording sites useful for determining the presence of MI. It should be noted however

  2. Identifying Key Issues and Potential Solutions for Integrated Arrival, Departure, Surface Operations by Surveying Stakeholder Preferences

    Science.gov (United States)

    Aponso, Bimal; Coppenbarger, Richard A.; Jung, Yoon; Quon, Leighton; Lohr, Gary; O’Connor, Neil; Engelland, Shawn

    2015-01-01

    NASA's Aeronautics Research Mission Directorate (ARMD) collaborates with the FAA and industry to provide concepts and technologies that enhance the transition to the next-generation air-traffic management system (NextGen). To facilitate this collaboration, ARMD has a series of Airspace Technology Demonstration (ATD) sub-projects that develop, demonstrate, and transitions NASA technologies and concepts for implementation in the National Airspace System (NAS). The second of these sub-projects, ATD-2, is focused on the potential benefits to NAS stakeholders of integrated arrival, departure, surface (IADS) operations. To determine the project objectives and assess the benefits of a potential solution, NASA surveyed NAS stakeholders to understand the existing issues in arrival, departure, and surface operations, and the perceived benefits of better integrating these operations. NASA surveyed a broad cross-section of stakeholders representing the airlines, airports, air-navigation service providers, and industry providers of NAS tools. The survey indicated that improving the predictability of flight times (schedules) could improve efficiency in arrival, departure, and surface operations. Stakeholders also mentioned the need for better strategic and tactical information on traffic constraints as well as better information sharing and a coupled collaborative planning process that allows stakeholders to coordinate IADS operations. To assess the impact of a potential solution, NASA sketched an initial departure scheduling concept and assessed its viability by surveying a select group of stakeholders for a second time. The objective of the departure scheduler was to enable flights to move continuously from gate to cruise with minimal interruption in a busy metroplex airspace environment using strategic and tactical scheduling enhanced by collaborative planning between airlines and service providers. The stakeholders agreed that this departure concept could improve schedule

  3. Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection

    International Nuclear Information System (INIS)

    Tsai, Chia-Chang; Chiang, Pei-Ling; Lin, Tsung-Wu; Chen, Yit-Tsong; Sun, Chih-Jung; Tsai, Ming-Hsueh; Chang, Yun-Chorng

    2011-01-01

    Using a silicon nanowire field-effect transistor (SiNW-FET) for biomolecule detections, we selected 3-(mercaptopropyl)trimethoxysilane (MPTMS), N-[6-(biotinamido)hexyl]-3 ' -(2 ' -pyridyldithio) propionamide (biotin-HPDP), and avidin, respectively, as the designated linker, receptor, and target molecules as a study model, where the biotin molecules were modified on the SiNW-FET to act as a receptor for avidin. We applied high-resolution scanning Kelvin probe force microscopy (KPFM) to detect the modified/bound biomolecules by measuring the induced change of the surface potential (ΔΦ s ) on the SiNW-FET under ambient conditions. After biotin-immobilization and avidin-binding, the ΔΦ s on the SiNW-FET characterized by KPFM was demonstrated to correlate to the conductance change inside the SiNW-FET acquired in aqueous solution. The ΔΦ s values on the SiNW-FET caused by the same biotin-immobilization and avidin-binding were also measured from drain current versus gate voltage curves (I d -V g ) in both aqueous condition and dried state. For comparison, we also study the ΔΦ s values on a Si wafer caused by the same biotin-immobilization and avidin-binding through KPFM and ζ potential measurements. This study has demonstrated that the surface potential measurement on a SiNW-FET by KPFM can be applied as a diagnostic tool that complements the electrical detection with a SiNW-FET sensor. Although the KPFM experiments were carried out under ambient conditions, the measured surface properties of a SiNW-FET are qualitatively valid compared with those obtained by other biosensory techniques performed in liquid environment.

  4. Potential and Actual impacts of deforestation and afforestation on land surface temperature

    Science.gov (United States)

    Li, Yan; Zhao, Maosheng; Mildrexler, David J.; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Zhao, Fang; Li, Shuangcheng; Wang, Kaicun

    2016-12-01

    Forests are undergoing significant changes throughout the globe. These changes can modify water, energy, and carbon balance of the land surface, which can ultimately affect climate. We utilize satellite data to quantify the potential and actual impacts of forest change on land surface temperature (LST) from 2003 to 2013. The potential effect of forest change on temperature is calculated by the LST difference between forest and nearby nonforest land, whereas the actual impact on temperature is quantified by the LST trend difference between deforested (afforested) and nearby unchanged forest (nonforest land) over several years. The good agreement found between potential and actual impacts both at annual and seasonal levels indicates that forest change can have detectable impacts on surface temperature trends. That impact, however, is different for maximum and minimum temperatures. Overall, deforestation caused a significant warming up to 0.28 K/decade on average temperature trends in tropical regions, a cooling up to -0.55 K/decade in boreal regions, a weak impact in the northern temperate regions, and strong warming (up to 0.32 K/decade) in the southern temperate regions. Afforestation induced an opposite impact on temperature trends. The magnitude of the estimated temperature impacts depends on both the threshold and the data set (Moderate Resolution Imaging Spectroradiometer and Landsat) by which forest cover change is defined. Such a latitudinal pattern in temperature impact is mainly caused by the competing effects of albedo and evapotranspiration on temperature. The methodology developed here can be used to evaluate the temperature change induced by forest cover change around the globe.

  5. Kinetics studies of the F + HCl → HF + Cl reaction on an accurate potential energy surface

    Science.gov (United States)

    Lu, Dandan; Zhang, Ying; Li, Jun

    2018-02-01

    A full-dimensional electronic ground state potential energy surface for the hydrogen abstraction reaction F + HCl → HF + Cl is developed by using the permutation invariant polynomial neural network approach based on 6509 points computed at the level of CCSD(T)-F12a/AVTZ. Spin-orbit correction is also taken into account at the complete active space self-consistent field level. Theoretical thermal rate coefficients determined by the ring polymer molecular dynamics (RPMD) approach agree well with experiment, validating the accuracy of the PES. Kinetic isotope effect is also investigated.

  6. An experimental approach for measuring surface potential and second crossover energy in insulators

    International Nuclear Information System (INIS)

    Fakhfakh, S; Jbara, O; Rondot, S; Rau, E I; Fakhfakh, Z

    2008-01-01

    The goal of this work is to first measure the second crossover energy E 2S under stationary electron irradiation (charging conditions) and then to show that the charge balance occurs at this beam energy and not at E 2C , the energy deduced from non-charging conditions (short pulse irradiation) as commonly assumed. The experimental procedure is based on simultaneous time dependent measurements of surface potential, leakage and displacement currents. The study is illustrated by the estimate of the real landing energy of primary electrons E L and the second crossover energy E 2S for soda-lime glass

  7. An experimental approach for measuring surface potential and second crossover energy in insulators

    Energy Technology Data Exchange (ETDEWEB)

    Fakhfakh, S; Jbara, O; Rondot, S [UTAP/LASSI, EA 3802 Faculte des Sciences, BP 1039, 51687 Reims Cedex 2 (France); Rau, E I [Institute of Microelectronics Technology of Russian Academy of Science, 142432, Chernogolovka, Moscow District (Russian Federation); Fakhfakh, Z [LaMaCop, Faculte des Sciences, Route Soukra Km 3, BP 802, CP 3018 Sfax (Tunisia)], E-mail: slimfakhfakh@yahoo.fr

    2008-05-21

    The goal of this work is to first measure the second crossover energy E{sub 2S} under stationary electron irradiation (charging conditions) and then to show that the charge balance occurs at this beam energy and not at E{sub 2C}, the energy deduced from non-charging conditions (short pulse irradiation) as commonly assumed. The experimental procedure is based on simultaneous time dependent measurements of surface potential, leakage and displacement currents. The study is illustrated by the estimate of the real landing energy of primary electrons E{sub L} and the second crossover energy E{sub 2S} for soda-lime glass.

  8. A New Potential Energy Surface for N+O2: Is There an NOO Minimum?

    Science.gov (United States)

    Walch, Stephen P.

    1995-01-01

    We report a new calculation of the N+02 potential energy surface using complete active space self-consistent field internally contracted configuration interaction with the Dunning correlation consistent basis sets. The peroxy isomer of N02 is found to be a very shallow minimum separated from NO+O by a barrier of only 0.3 kcal/mol (excluding zero-point effects). The entrance channel barrier height is estimated to be 8.6 kcal/mol for ICCI+Q calculations correlating all but the Ols and N1s electrons with a cc-p VQZ basis set.

  9. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  10. Critical points of the conformational potential energy surface of carbonic acid: H 2CO 3

    Science.gov (United States)

    Janoschek, Rudolf; Csizmadia, Imre G.

    1993-12-01

    The conformational potential energy surface E  E( T1, T2) of H 2CO 3, where T1 is the torsional angle for HO 1CO 2 and T2 is the torsional angle for O 1CO 2H, revealed that the anti—anti conformation is the global minimum. Additional local minima were also found. The next higher energy conformation was the syn—anti conformation, and a degenerate pair of right handed and left handed helical conformations were the highest on the energy scale. The syn—syn conformation turned out to be a transition structure sandwiched between the two helical conformation.

  11. An algorithm to use higher order invariants for modelling potential energy surface of nanoclusters

    Science.gov (United States)

    Jindal, Shweta; Bulusu, Satya S.

    2018-02-01

    In order to fit potential energy surface (PES) of gold nanoclusters, we have integrated bispectrum features with artificial neural network (ANN) learning technique in this work. We have also devised an algorithm for selecting the frequencies that need to be coupled for extracting the phase information between different frequency bands. We have found that higher order invariant like bispectrum is highly efficient in exploring the PES as compared to other invariants. The sensitivity of bispectrum can also be exploited in acting as an order parameter for calculating many thermodynamic properties of nanoclusters.

  12. Potential of surface-eroding poly(ethylene carbonate) for drug delivery to macrophages

    DEFF Research Database (Denmark)

    Bohr, Adam; Water, Jorrit J; Wang, Yingya

    2016-01-01

    Films composed of poly(ethylene carbonate) (PEC), a biodegradable polymer, were compared with poly(lactide-co-glycolide) (PLGA) films loaded with and without the tuberculosis drug rifampicin to study the characteristics and performance of PEC as a potential carrier for controlled drug delivery...... surface erosion (by cholesterol esterase). Drug release studies performed with polymer films indicated a diffusion/erosion dependent delivery behavior for PLGA while an almost zero-order drug release profile was observed from PEC due to the controlled polymer degradation process. When exposed to polymer...... for controlled drug release and could provide superior performance to PLGA for some drug delivery applications including the treatment of macrophage infections....

  13. Potential Energy Surfaces of the Even-Even 230-238 U Isotopes

    Directory of Open Access Journals (Sweden)

    Sohair M. Diab

    2008-07-01

    Full Text Available Nuclear structure of 230-238 U isotopes hav been studied in the frame work of the interacting boson approximation model (IBM-1. The contour plot of the potential energy surfaces, $V(eta,gamma$, shows that all nuclei are deformed and have rotational characters, $SU(3$. Levels energy spectra belonging to the $gsb$, $eta $, $gamma $ bands, electromagnetic transition rates $B(E1$ and $ B(E2$, quadrupole moment $Q_0 $, deformation parameter are $eta_2$ and the strength of the electric monopole transitions $X(E0/E2$ are calculated. The calculated values are compared with the available theoretical and experimental data and show reasonable agreement.

  14. Potential Energy Surfaces of the Even-Even 230-238 U Isotopes

    Directory of Open Access Journals (Sweden)

    Diab S. M.

    2008-07-01

    Full Text Available Nuclear structure of 230 - 238 U isotopes have been studied in the frame work of the in- teracting boson approximation model (IBM-I. The contour plot of the potential energy surfaces, V ( ; , shows that all nuclei are deformed and have rotational char- acters, SU (3 . Levels energy spectra belonging to the gsb , , bands, electromagnetic transition rates B ( E 1 and B ( E 2 , quadrupole moment Q 0 , deformation parameterare 2 and the strength of the electric monopole transitions X ( E 0 =E 2 are calculated. The calculated values are compared with the available theoretical and experimental data and show reasonable agreement.

  15. Modeling Potential Energy Surfaces: From First-Principle Approaches to Empirical Force Fields

    Directory of Open Access Journals (Sweden)

    Pietro Ballone

    2013-12-01

    Full Text Available Explicit or implicit expressions of potential energy surfaces (PES represent the basis of our ability to simulate condensed matter systems, possibly understanding and sometimes predicting their properties by purely computational methods. The paper provides an outline of the major approaches currently used to approximate and represent PESs and contains a brief discussion of what still needs to be achieved. The paper also analyses the relative role of empirical and ab initio methods, which represents a crucial issue affecting the future of modeling in chemical physics and materials science.

  16. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    Science.gov (United States)

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen

  17. Evaluation of Surface Water Harvesting Potential in Aq Emam Watershed System in the Golestan Province

    Directory of Open Access Journals (Sweden)

    s. nazaryan

    2016-02-01

    Full Text Available Introduction : Given its low and sparse precipitation both in spatial and temporal scales, Iran is nestled in an arid and semiarid part of the world. On the other hand, because of population growth, urbanization and the development of agriculture and industry sector is frequently encountered with increasing water demand. The increasing trend of water demand will widen the gap between water supply and demand in the future. This, in turn, necessitates urgent attention to the fundamentals of economic planning and allocation of water resources. Considering the limited resources and the declining water table and salinization of groundwater, especially in semi-arid areas forces us to exploit surface waters. When we evaluate the various methods of collecting rainwater, surface water that is the outcome of rainfall-runoff responses in a basin, is found to be a potential source of water and it can be useful to meet some of our water demand if managed properly. Water shortages in arid areas are critical, serious and persistent. Thus, water harvesting is an effective and economic goal. The most important step in the implementation of rain water harvesting systems is proper site selection that could cause significant savings in time and cost. In this study the potential of surface waters in the Aq Emam catchment in the east Golestan province was evaluated. The purpose of this study is to provide a framework for locating areas with water harvesting potential. Materials and Methods: For spatial evaluation of potential runoff, first, the amount of runoff is calculated using curve number and runoff potential maps were prepared with three classes: namely, the potential for low, medium and high levels. Finally, to identify suitable areas for rain water harvesting, rainfall maps, soil texture, slope and land use were weighted and multiplied based on their importance in order to determine the appropriate areas to collect runoff Results and Discussion : The results

  18. Review of singular potential integrals for method of moments solutions of surface integral equations

    Directory of Open Access Journals (Sweden)

    A. Tzoulis

    2004-01-01

    Full Text Available Accurate evaluation of singular potential integrals is essential for successful method of moments (MoM solutions of surface integral equations. In mixed potential formulations for metallic and dielectric scatterers, kernels with 1/R and r1/R singularities must be considered. Several techniques for the treatment of these singularities will be reviewed. The most common approach solves the MoM source integrals analytically for specific observation points, thus regularizing the integral. However, in the case of r1/R a logarithmic singularity remains for which numerical evaluation of the testing integral is still difficult. A recently by Yl¨a-Oijala and Taskinen proposed remedy to this issue is discussed and evaluated within a hybrid finite element – boundary integral technique. Convergence results for the MoM coupling integrals are presented where also higher-order singularity extraction is considered.

  19. Constructing Potential Energy Surfaces for Polyatomic Systems: Recent Progress and New Problems

    Directory of Open Access Journals (Sweden)

    J. Espinosa-Garcia

    2012-01-01

    Full Text Available Different methods of constructing potential energy surfaces in polyatomic systems are reviewed, with the emphasis put on fitting, interpolation, and analytical (defined by functional forms approaches, based on quantum chemistry electronic structure calculations. The different approaches are reviewed first, followed by a comparison using the benchmark H + CH4 and the H + NH3 gas-phase hydrogen abstraction reactions. Different kinetics and dynamics properties are analyzed for these reactions and compared with the available experimental data, which permits one to estimate the advantages and disadvantages of each method. Finally, we analyze different problems with increasing difficulty in the potential energy construction: spin-orbit coupling, molecular size, and more complicated reactions with several maxima and minima, which test the soundness and general applicability of each method. We conclude that, although the field of small systems, typically atom-diatom, is mature, there still remains much work to be done in the field of polyatomic systems.

  20. Determination of the potential energy surfaces of refrigerant mixtures and their gas transport coefficients

    Directory of Open Access Journals (Sweden)

    Song Bo

    2017-01-01

    Full Text Available In this work, the inversion scheme was used to determine the potential energy surfaces of five polar refrigerant mixtures. The systems studied here are R123-R134a, R123-R142b, R123-R152a, R142b-R134a, and R142b-R152a. The low density transport coefficients of the refrigerant mixtures were calculated from the new invert potentials by the classical kinetic theory. The viscosity coefficient, binary diffusion coefficient, and thermal diffusion factor were computed for the temperature range from 313.15-973.15 K. The agreement with the NIST viscosity data demonstrates that the present calculated values are accurate enough to supplement experimental data over an extended temperature range. Correlations of the transport properties were also provided for the refrigerant mixtures at equimolar ratios.

  1. Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol.

    Science.gov (United States)

    Xu, Xuefei; Yang, Ke R; Truhlar, Donald G

    2013-08-13

    Complete-active-space self-consistent-field (CASSCF) calculations provide useful reference wave functions for configuration interaction or perturbation theory calculations of excited-state potential energy surfaces including dynamical electron correlation. However, the canonical molecular orbitals (MOs) of CASSCF calculations usually have mixed character in regions of strong interaction of two or more electronic states; therefore, they are unsuitable for diabatization using the configurational uniformity approach. Here, CASSCF diabatic MOs for phenol have been obtained by the 4-fold way, and comparison to the CASSCF canonical MOs shows that they are much smoother. Using these smooth CASSCF diabatic MOs, we performed direct diabatization calculations for the three low-lying states ((1)ππ, (1)ππ*, and (1)πσ*) and their diabatic (scalar) couplings at the dynamically correlated multiconfiguration quasidegenerate perturbation theory (MC-QDPT) level. We present calculations along the O-H stretching and C-C-O-H torsion coordinates for the nonadiabatic photodissociation of phenol to the phenoxyl radical and hydrogen atom. The seams of (1)ππ*/(1)πσ* and (1)ππ/(1)πσ* diabatic crossings are plotted as functions of these coordinates. We also present diabatization calculations for displacements along the out-of-plane ring distortion modes 16a and 16b of the phenyl group. The dominant coupling modes of the two conical intersections ((1)ππ*/(1)πσ* and (1)ππ/(1)πσ*) are discussed. The present diabatization method is confirmed to be valid even for significantly distorted ring structures by diabatization calculations along a reaction path connecting the planar equilibrium geometry of phenol to its strongly distorted prefulvenic form. The present work provides insight into the mode specificity of phenol photodissociation and shows that diabatization at the MC-QDPT level employing CASSCF diabatic MOs can be a good starting point for multidimensional dynamics

  2. Coil end design for the LHC dipole magnet

    International Nuclear Information System (INIS)

    Brandt, J.S.

    1996-01-01

    This paper describes the design of the coil ends for the Large Hadron Collider dipole magnets of the CERN European Laboratory for Particle Physics in Switzerland. This alternative to existing European designs was provided by Fermi National Accelerator Laboratory by agreement between CERN and the United States. The superconducting cable paths are determined from both magnetic and mechanical considerations. The coil end parts used to shape and constrain the conductors in the coil ends are designed using the developable surface, grouped end approach. This method allows the analysis of strain energy within the conductor groups, and the optimization of mechanical factors during the design. Design intent and implementation are discussed. Inner and outer coil design challenges and end analysis are detailed

  3. Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore.

    Science.gov (United States)

    Fischer, Cornelius; Finkeldei, Sarah; Brandt, Felix; Bosbach, Dirk; Luttge, Andreas

    2015-08-19

    The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.

  4. Exercise body surface potential mapping in single and multiple coronary artery disease

    International Nuclear Information System (INIS)

    Montague, T.J.; Witkowski, F.X.; Miller, R.M.; Johnstone, D.E.; MacKenzie, R.B.; Spencer, C.A.; Horacek, B.M.

    1990-01-01

    Body surface ST integral maps were recorded in 36 coronary artery disease (CAD) patients at: rest; peak, angina-limited exercise; and, 1 and 5 min of recovery. They were compared to maps of 15 CAD patients who exercised to fatigue, without angina, and eight normal subjects. Peak exercise heart rates were similar (NS) in all groups. With exercise angina, patients with two and three vessel CAD had significantly (p less than 0.05) greater decrease in the body surface sum of ST integral values than patients with single vessel CAD. CAD patients with exercise fatigue, in the absence of angina, had decreased ST integrals similar (NS) to patients with single vessel CAD who manifested angina and the normal control subjects. There was, however, considerable overlap among individuals; some patients with single vessel CAD had as much exercise ST integral decrease as patients with three vessel CAD. All CAD patients had persistent ST integral decreases at 5 min of recovery and there was a direct correlation of the recovery and peak exercise ST changes. Exercise ST changes correlated, as well, with quantitative CAD angiographic scores, but not with thallium perfusion scores. These data suggest exercise ST integral body surface mapping allows quantitation of myocardium at ischemic risk in patients with CAD, irrespective of the presence or absence of ischemic symptoms during exercise. A major potential application of this technique is selection of CAD therapy guided by quantitative assessment of ischemic myocardial risk

  5. Do surfaces of positive electrostatic potential on different halogen derivatives in molecules attract? like attracting like!

    Science.gov (United States)

    Varadwaj, Arpita; Varadwaj, Pradeep R; Yamashita, Koichi

    2018-03-15

    Coulomb's law states that like charges repel, and unlike charges attract. However, it has recently been theoretically revealed that two similarly charged conducting spheres will almost always attract each other when both are in close proximity. Using multiscale first principles calculations, we illustrate practical examples of several intermolecular complexes that are formed by the consequences of attraction between positive atomic sites of similar or dissimilar electrostatic surface potential on interacting molecules. The results of the quantum theory of atoms in molecules and symmetry adapted perturbation theory support the attraction between the positive sites, characterizing the F•••X (X = F, Cl, Br) intermolecular interactions in a series of 20 binary complexes as closed-shell type, although the molecular electrostatic surface potential approach does not (a failure!). Dispersion that has an r -6 dependence, where r is the equilibrium distance of separation, is found to be the sole driving force pushing the two positive sites to attract. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Ab Initio Potential Energy Surfaces and the Calculation of Accurate Vibrational Frequencies

    Science.gov (United States)

    Lee, Timothy J.; Dateo, Christopher E.; Martin, Jan M. L.; Taylor, Peter R.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Due to advances in quantum mechanical methods over the last few years, it is now possible to determine ab initio potential energy surfaces in which fundamental vibrational frequencies are accurate to within plus or minus 8 cm(exp -1) on average, and molecular bond distances are accurate to within plus or minus 0.001-0.003 Angstroms, depending on the nature of the bond. That is, the potential energy surfaces have not been scaled or empirically adjusted in any way, showing that theoretical methods have progressed to the point of being useful in analyzing spectra that are not from a tightly controlled laboratory environment, such as vibrational spectra from the interstellar medium. Some recent examples demonstrating this accuracy will be presented and discussed. These include the HNO, CH4, C2H4, and ClCN molecules. The HNO molecule is interesting due to the very large H-N anharmonicity, while ClCN has a very large Fermi resonance. The ab initio studies for the CH4 and C2H4 molecules present the first accurate full quartic force fields of any kind (i.e., whether theoretical or empirical) for a five-atom and six-atom system, respectively.

  7. On the potential application of land surface models for drought monitoring in China

    Science.gov (United States)

    Zhang, Liang; Zhang, Huqiang; Zhang, Qiang; Li, Yaohui; Zhao, Jianhua

    2017-05-01

    The potential of using land surface models (LSMs) to monitor near-real-time drought has not been fully assessed in China yet. In this study, we analyze the performance of such a system with a land surface model (LSM) named the Australian Community Atmosphere Biosphere Land Exchange model (CABLE). The meteorological forcing datasets based on reanalysis products and corrected by observational data have been extended to near-real time for semi-operational trial. CABLE-simulated soil moisture (SM) anomalies are used to characterize drought spatial and temporal evolutions. One outstanding feature in our analysis is that with the same meteorological data, we have calculated a range of drought indices including Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI). We have assessed the similarity among these indices against observed SM over a number of regions in China. While precipitation is the dominant factor in the drought development, relationships between precipitation, evaporation, and soil moisture anomalies vary significantly under different climate regimes, resulting in different characteristics of droughts in China. The LSM-based trial system is further evaluated for the 1997/1998 drought in northern China and 2009/2010 drought in southwestern China. The system can capture the severities and temporal and spatial evolutions of these drought events well. The advantage of using a LSM-based drought monitoring system is further demonstrated by its potential to monitor other consequences of drought impacts in a more physically consistent manner.

  8. Phonon-mediated decay of an atom in a surface-induced potential

    International Nuclear Information System (INIS)

    Kien, Fam Le; Hakuta, K.; Dutta Gupta, S.

    2007-01-01

    We study phonon-mediated transitions between translational levels of an atom in a surface-induced potential. We present a general master equation governing the dynamics of the translational states of the atom. In the framework of the Debye model, we derive compact expressions for the rates for both upward and downward transitions. Numerical calculations for the transition rates are performed for a deep silica-induced potential allowing for a large number of bound levels as well as free states of a cesium atom. The total absorption rate is shown to be determined mainly by the bound-to-bound transitions for deep bound levels and by bound-to-free transitions for shallow bound levels. Moreover, the phonon emission and absorption processes can be orders of magnitude larger for deep bound levels as compared to the shallow bound ones. We also study various types of transitions from free states. We show that, for thermal atomic cesium with a temperature in the range from 100 μK to 400 μK in the vicinity of a silica surface with a temperature of 300 K, the adsorption (free-to-bound decay) rate is about two times larger than the heating (free-to-free upward decay) rate, while the cooling (free-to-free downward decay) rate is negligible

  9. Ground and excited state dipole moments of some flavones using solvatochromic methods: An experimental and theoretical study

    Science.gov (United States)

    Kumar, Sanjay; Kapoor, Vinita; Bansal, Ritu; Tandon, H. C.

    2018-03-01

    The absorption and fluorescence characteristics of biologically active flavone derivatives 6-Hydroxy-7,3‧,4‧,5‧-tetramethoxyflavone (6HTMF) and 7-Hydroxy-6,3‧,4‧,5‧-tetramethoxyflavone (7HTMF) are studied at room temperature (298 K) in solvents of different polarities. Excited state dipole moments of these compounds have been determined using the solvatochromic shift method based on the microscopic solvent polarity parameter ETN . Dipole moments in excited state were found to be higher than those in the ground state in both the molecules. A reasonable agreement has been observed between experimental and theoretically calculated dipole moments (using AM1 method). Slightly large value of ground and excited state dipole moments of 7HTMF than 6HTMF are in conformity with predicted electrostatic potential maps. Our results would be helpful in understanding use of these compounds as tunable dye lasers, optical brighteners and biosensors.

  10. A Comparison of Streaming and Microelectrophoresis Methods for Obtaining the zeta Potential of Granular Porous Media Surfaces.

    Science.gov (United States)

    Johnson

    1999-01-01

    The electrokinetic behavior of granular quartz sand in aqueous solution is investigated by both microelectrophoresis and streaming potential methods. zeta potentials of surfaces composed of granular quartz obtained via streaming potential methods are compared to electrophoretic mobility zeta potential values of colloid-sized quartz fragments. The zeta values generated by these alternate methods are in close agreement over a wide pH range and electrolyte concentrations spanning several orders of magnitude. Streaming measurements performed on chemically heterogeneous mixtures of physically homogeneous sand are shown to obey a simple mixing model based on the surface area-weighted average of the streaming potentials associated with the individual end members. These experimental results support the applicability of the streaming potential method as a means of determining the zeta potential of granular porous media surfaces. Copyright 1999 Academic Press.

  11. Potential Release of Manufactured Nano Objects During Sanding of Nano-Coated Wood Surfaces.

    Science.gov (United States)

    Fransman, Wouter; Bekker, Cindy; Tromp, Peter; Duis, Willem B

    2016-08-01

    Increasing production and applications of manufactured nano objects (MNOs) have become a source for human exposure and therefore raise concerns and questions about the possible health effects. In this study, the potential release of nano objects, their agglomerates, and aggregates (NOAA) as a result of sanding of hardwood treated with MNOs-containing coating was examined. Two types of MNO-containing coating were compared with untreated hardwood that allowed the evaluation of the influence of the chemical composition on the release of particles. Furthermore, the rotation speed of the sander and the grit size of the sanding paper were varied in order to assess their influence on the release of particles.Measurements were conducted in a gas-tight chamber with a volume of 19.5 m(3) in which ventilation was minimized during experiments. Particle size distributions were assessed by scanning mobility particle sizer , aerodynamic particle sizer, and electrical low pressure impactor. Furthermore, aerosol number concentrations (Nanotracer), active surface area (LQ1), and fractionated mass (Cascade Impactor) were measured before, during, and after sanding. Scanning electron microscope/energy dispersive X-ray (SEM/EDX) analysis was performed to adequately characterize the morphology, size, and chemical composition of released particles.SEM/EDX analysis indicated that sanding surfaces treated with MNO-containing coating did not release the designated MNO as free primary particles. In both coatings, clusters of MNO were perceived embedded in and attached to micro-sized wood and/or coating particles created by sanding the coated surface. Real-time measurements indicated a lower release of micro-sized particles from sanding of surfaces treated with Coating I than from sanding untreated surfaces or surfaces treated with Coating II. A substantial increase in nanosized and a slight increase in micro-sized particles was perceived as the rotation speed of the sander increased. However

  12. Isoscalar and isovector collective dipole states

    International Nuclear Information System (INIS)

    Poelhekken, T.D.

    1989-01-01

    This thesis presents an experimental study on the excitation of isoscalar and isovector dipole collective states by inelastic alpha scattering. In ch. 2 the experimental techniques and the characteristics of the α-particle and the γ-ray detection system are summarized. The details of the relevant theory, such as the distorted-wave Born approximation (DWBA) formalism, the energy-weighted sum rules and the α-γ angular correlations are given in ch. 3. Ch. 4 presents the results of the search for low-energy isoscalar giant dipole resonance (ISLEDR) strength by studying inelastic scattering at very forward angles, including 0 deg, of 120 MeV α-particles in coincidence with γ-ray decay. For the identification of these ISLEDR states use has been made of the fact that the α-γ angular correlations show a very characteristic pattern for γ-decay to the ) + ground state of the nuclei. Results are shown for 208 Pb, 90 Zr, 58 Ni and 40 Ca. A second experiment used the same reaction but focussed on the excitation of the isovector giant dipole resonance (IVGDR) in 208 Pb, located in a different excitation energy region (ch. 5). With the help of the (α,α'γ)-reaction it could be shown that at most 12 (± 4) % of the observed resonance strength around 13.6MeV in 208 Pb could be caused by IVGDR excitation. Finally a summary is presented in ch. 6 together with the future prospects for this particular branch in the field of giant resonances. (author). 209 refs.; 68 figs.; 42 tabs

  13. Surface-wave potential for triggering tectonic (nonvolcanic) tremor-corrected

    Science.gov (United States)

    Hill, David P.

    2012-01-01

    Source processes commonly posed to explain instances of remote dynamic triggering of tectonic (nonvolcanic) tremor by surface waves include frictional failure and various modes of fluid activation. The relative potential for Love- and Rayleigh-wave dynamic stresses to trigger tectonic tremor through failure on critically stressed thrust and vertical strike-slip faults under the Coulomb-Griffith failure criteria as a function of incidence angle are anticorrelated over the 15- to 30-km-depth range that hosts tectonic tremor. Love-wave potential is high for strike-parallel incidence on low-angle reverse faults and null for strike-normal incidence; the opposite holds for Rayleigh waves. Love-wave potential is high for both strike-parallel and strike-normal incidence on vertical, strike-slip faults and minimal for ~45° incidence angles. The opposite holds for Rayleigh waves. This pattern is consistent with documented instances of tremor triggered by Love waves incident on the Cascadia megathrust and the San Andreas fault (SAF) in central California resulting from shear failure on weak faults (apparent friction is μ* ≤ 0:2). Documented instances of tremor triggered by surface waves with strike-parallel incidence along the Nankai megathrust beneath Shikoku, Japan, however, are associated primarily with Rayleigh waves. This is consistent with the tremor bursts resulting from mixed-mode failure (crack opening and shear failure) facilitated by near-lithostatic ambient pore pressure, low differential stress, with a moderate friction coefficient (μ ~ 0:6) on the Nankai subduction interface. Rayleigh-wave dilatational stress is relatively weak at tectonic tremor source depths and seems unlikely to contribute significantly to the triggering process, except perhaps for an indirect role on the SAF in sustaining tremor into the Rayleigh-wave coda that was initially triggered by Love waves.

  14. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas

    International Nuclear Information System (INIS)

    Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian

    2012-01-01

    The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)

  15. Temperature dependence of giant dipole resonance width

    International Nuclear Information System (INIS)

    Vdovin, A.I.; Storozhenko, A.N.

    2005-01-01

    The quasiparticle-phonon nuclear model extended to finite temperature within the framework of the thermo field dynamics is applied to calculate a temperature dependence of the spreading width Γ d own of a giant dipole resonance. Numerical calculations are made for 12S n and 208 Pb nuclei. It is found that the width Γ d own increases with T. The reason of this effect is discussed as well as a relation of the present approach to other ones existing in the literature

  16. Prototype steel-concrete LEP dipole magnet

    CERN Multimedia

    1981-01-01

    The magnetic field needed in the LEP dipole magnets was rather low, of a fraction of tesla. This lead to the conception of a novel yoke structure consisting of stacks of 1.5 mm thick low-carbon steel laminations spaced by 4.1 mm with the spaces filled with concrete. The excitation coils were also very simple: aluminium bars insulated by polyester boxes in this prototype, by glass-epoxy in the final magnets. For details see LEP-Note 118,1978 and LEP-Note 233 1980. See also 8111529,7908528X.

  17. Direct photons and dileptons via color dipoles

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Rezaeian, A.H.; Pirner, H.J.; Schmidt, Ivan

    2007-01-01

    Drell-Yan dilepton pair production and inclusive direct photon production can be described within a unified framework in the color dipole approach. The inclusion of non-perturbative primordial transverse momenta and DGLAP evolution is studied. We successfully describe data for dilepton spectra from 800-GeV pp collisions, inclusive direct photon spectra for pp collisions at RHIC energies √(s)=200 GeV, and for pp-bar collisions at tevatron energies √(s)=1.8 TeV, in a formalism that is free from any extra parameters

  18. Effective gluon operators and neutron dipole moment

    International Nuclear Information System (INIS)

    Bigi, I.; Ural'tsev, N.G.

    1991-01-01

    The role of the purely gluon CP odd six-dimension effective arising in various CP-breaking models is discussed. This operators of most interest in the nonminimal Higgs sector models, the right W models and supersymmetric theories, where it may induce the neutron dipole moment at the level of the experimental restriction. The method for evaluating the magnitude d n is proposed and the reasons are given in favor that the original Weiberg's estimate based on the naive Dimensional Analysis is overdone significantly. The Peccei -Quinn mechanism, impact on the magnitude of d n , which generally may be very essential, is discussed

  19. Electric dipole moment of 3He

    International Nuclear Information System (INIS)

    Avishai, Y.; Fabre de la Ripelle, M.

    1986-01-01

    The contribution of a CP-nonconserving nucleon-nucleon interaction to the electric dipole moment of 3 He is evaluated in view of a recent proposal for its experimental detection. We use two models of CP-nonconserving interactions in combination with a Reid soft-core strong nucleon-nucleon interaction. In the Kobayashi-Maskawa model of CP nonconservation the order of magnitude is 10 -30 eX while the presence of the theta term in the QCD Langrangian contributes an order of magnitude 10 -16 theta-bar e cm

  20. Prompt dipole radiation in fusion reactions

    International Nuclear Information System (INIS)

    Martin, B.; Pierroutsakou, D.; Agodi, C.; Alba, R.; Baran, V.; Boiano, A.; Cardella, G.; Colonna, M.; Coniglione, R.; De Filippo, E.; Del Zoppo, A.; Di Toro, M.; Inglima, G.; Glodariu, T.; La Commara, M.; Maiolino, C.; Mazzocco, M.; Pagano, A.; Piattelli, P.; Pirrone, S.

    2008-01-01

    The prompt γ-ray emission is investigated in the 16A MeV energy region by means of the 36,40 Ar + 96,92 Zr fusion reactions leading to a compound nucleus in the vicinity of 132 Ce. The dynamical nature of this radiation is confirmed. We show that the prompt γ radiation has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics

  1. Prompt dipole radiation in fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Martin, B. [Dipt. di Scienze Fisiche, Universita di Napoli ' Federico II' , via Cintia, 80125 Napoli (Italy); INFN, Sezione di Napoli, via Cintia, 80125 Napoli (Italy); Pierroutsakou, D. [INFN, Sezione di Napoli, via Cintia, 80125 Napoli (Italy)], E-mail: pierroutsakou@na.infn.it; Agodi, C.; Alba, R. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Baran, V. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); University of Bucharest (Romania); NIPNE-HH, 077125 Magurele (Romania); Boiano, A. [INFN, Sezione di Napoli, via Cintia, 80125 Napoli (Italy); Cardella, G. [INFN, Sezione di Catania, 95123 Catania (Italy); Colonna, M. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Dipartimento di Fisica, Universita di Catania, 95123 Catania (Italy); Coniglione, R. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); De Filippo, E. [INFN, Sezione di Catania, 95123 Catania (Italy); Del Zoppo, A. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Di Toro, M. [INFN, Laboratori Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Dipt. di Fisica, Universita di Catania, 95123 Catania (Italy); Inglima, G. [Dipt. di Scienze Fisiche, Universita di Napoli ' Federico II' , via Cintia, 80125 Napoli (Italy); INFN, Sezione di Napoli, via Cintia, 80125 Napoli (Italy); Glodariu, T. [NIPNE-HH, 077125 Magurele (Romania); La Commara, M. [Dipt. di Scienze Fisiche, Univ. di Napoli ' Federico II' , via Cintia, 80125 Napoli (Italy); INFN, Sezione di Napoli, via Cintia, 80125 Napoli (Italy); Maiolino, C. [INFN, Lab. Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Mazzocco, M. [Dipt. di Fisica and INFN, Sezione di Padova, 35131 Padova (Italy); Pagano, A. [INFN, Sezione di Catania, 95123 Catania (Italy); Piattelli, P. [INFN, Lab. Nazionali del Sud, via S. Sofia, 95123 Catania (Italy); Pirrone, S. [INFN, Sezione di Catania, 95123 Catania (Italy)] (and others)

    2008-06-12

    The prompt {gamma}-ray emission is investigated in the 16A MeV energy region by means of the {sup 36,40}Ar + {sup 96,92}Zr fusion reactions leading to a compound nucleus in the vicinity of {sup 132}Ce. The dynamical nature of this radiation is confirmed. We show that the prompt {gamma} radiation has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

  2. Prompt dipole radiation in fusion reactions

    Science.gov (United States)

    Martin, B.; Pierroutsakou, D.; Agodi, C.; Alba, R.; Baran, V.; Boiano, A.; Cardella, G.; Colonna, M.; Coniglione, R.; De Filippo, E.; Del Zoppo, A.; Di Toro, M.; Inglima, G.; Glodariu, T.; La Commara, M.; Maiolino, C.; Mazzocco, M.; Pagano, A.; Piattelli, P.; Pirrone, S.; Rizzo, C.; Romoli, M.; Sandoli, M.; Santonocito, D.; Sapienza, P.; Signorini, C.

    2008-06-01

    The prompt γ-ray emission is investigated in the 16 A MeV energy region by means of the 36,40Ar + 96,92Zr fusion reactions leading to a compound nucleus in the vicinity of 132Ce. The dynamical nature of this radiation is confirmed. We show that the prompt γ radiation has an angular distribution pattern consistent with a dipole oscillation along the symmetry axis of the dinuclear system. The data are compared with calculations based on a collective bremsstrahlung analysis of the reaction dynamics.

  3. Neutron Electric Dipole Moment on the Lattice

    Directory of Open Access Journals (Sweden)

    Yoon Boram

    2018-01-01

    Full Text Available For the neutron to have an electric dipole moment (EDM, the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.

  4. Neutron Electric Dipole Moment on the Lattice

    Science.gov (United States)

    Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan

    2018-03-01

    For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.

  5. Electric dipole moment: theory and experiments

    International Nuclear Information System (INIS)

    Hinds, E.

    2002-01-01

    There are 2 motivations for studying electric dipole moments (EDM): 1) EDM is deeply connected to CP violation (since it violates T symmetry) and to the matter-antimatter asymmetry of the universe, and 2) EDM is effectively zero in standard model but big enough to measure in non-standard models and serves as a direct test of physics beyond the standard model. In this series of slides the author reviews various experiments concerning EDM: the mercury EDM experiment, the neutron EDM experiment, the thallium EDM experiment and the ytterbium EDM experiment, and considers the implications of their results on supersymmetry

  6. EDM: Neutron electric dipole moment measurement

    Directory of Open Access Journals (Sweden)

    Peter Fierlinger

    2016-02-01

    Full Text Available An electric dipole moment (EDM of the neutron would be a clear sign of new physics beyond the standard model of particle physics. The search for this phenomenon is considered one of the most important experiments in fundamental physics and could provide key information on the excess of matter versus antimatter in the universe. With high measurement precision, this experiment aims to ultimately achieve a sensitivity of 10-28 ecm, a 100-fold improvement in the sensitivity compared to the state-of-the-art. The EDM instrument is operated by an international collaboration based at the Technische Universität München.

  7. Giant dipole resonance in hot nuclei

    International Nuclear Information System (INIS)

    Mau, N.V.

    1993-01-01

    Giant resonances built on an excited state of the nucleus at a finite temperature T are studied. The following questions are investigated: how long such collective effects occur in a nucleus when T increases. How the properties of the giant resonances vary when the temperature increases. How the study of giant resonances in hot nuclei can give information on the structure of the nucleus in a highly excited state. The special case of the giant dipole resonance is studied. Some of the experimental results are reviewed and in their theoretical interpretation is discussed. (K.A.). 56 refs., 20 figs., 4 tabs

  8. Dipole Magnetization Effect to Kerosene Characteristics

    OpenAIRE

    Mochamad Chalid; Nelson Saksono; Adiwar Adiwar; Nono Darsono

    2010-01-01

    Investigation of kerosene characteristics has been done by ex-situ dipole magnetization. The results  show that magnetization technique can be able to influence kerosene characteristics. Polarity and viscosity of the kerosene are observed by measuring refractive index and viscosity. An hour of 4330 Gauss flux magnetic will increase refractive index from 1.447 to 1.449 and decrease the viscosity from 1.278 to 1.256. Those changing support de-clustering occurrence and polarity increment of...

  9. Novel Electrically Small Spherical Electric Dipole Antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2010-01-01

    This paper introduces a novel electrically small spherical meander antenna. Horizontal sections of the meander are composed of wire loops, radii of which are chosen so that the whole structure is conformal to a sphere of radius a. To form the meander the loops are connected by wires at a meridian...... plane. The antenna operates as an electric dipole, i.e. it radiates the TM10 spherical mode. The antenna is self-resonant and can be matched to a wide range of input feed lines without an external matching network. In this paper, a spherical meander antenna of the size ka = 0.27 and the input impedance...

  10. Colloid properties of hydrophobic modified alginate: Surface tension, ζ-potential, viscosity and emulsification.

    Science.gov (United States)

    Wu, Zongmei; Wu, Jie; Zhang, Ruling; Yuan, Shichao; Lu, Qingliang; Yu, Yueqin

    2018-02-01

    Micelle properties of hydrophobic modified alginate (HM-alginate) in various dispersion media have been studied by surface tension, ζ-potential, and viscosity measurements. Effect of salt on micelle properties showed that the presence of counter ion weakened the repulsive interaction between surfactant ions, decreased the critical micelle concentration (CMC) value of the HM-alginate, reduced the effective volume dimensions of HM-alginate and hence viscosity, which coincide with the corresponding ζ-potential values. Soy oil-in-water emulsions, stabilized solely by HM-alginate, were produced in high speed homogenization conditions and their stability properties were studied by visual inspection, optical microscopy and droplet size measurements. The results showed that emulsions (oil-water ratio was 1:7) containing 15mg/mL HM-alginate presented better stability during 15days storage, which stating clearly that HM-alginate is an effective emulsifier to stabilize oil-in-water emulsions. The herein presented homogeneous method for preparation of emulsion has the potential to be used in food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Spontaneous dipole-dipole interactions in many-body, driven, dissipative Rydberg systems

    Science.gov (United States)

    Maslek, James; Boulier, Thomas; Magnan, Eric; Bracamontes, Carlos; Young, Jeremy; Gorshkov, Alexey; Rolston, Steve; Porto, Trey

    We observe unexpected dipole-dipole interactions leading to the violation of a forbidden transition to the 18s manifold of ultra-cold 87 Rb atoms in a 3D optical lattice, as well as an increase in the linewidth of the allowed two photon rydberg transition. At increasing two photon Rabi frequency, a new resonance appears 10 MHz detuned from the main rydberg transition. Due to the selection rules of the circularly-polarized 2-photon excitation, the | F = 1 , mF = - 1 > state, which lies roughly 10 MHz away, should be inaccessible, and is not present at rabi frequencies less than 60kHz. We interpret this as a mixing of both the accessible and forbidden 18s states, which comes from the dipole-dipole interaction between these states and the populations of nearby p states, which are induced from blackbody decay from the. | 18 s , F = 2 , mF = - 2 > state. These p states are created faster than the timescales of the experiment, making their effect instant. We observe that the pumping rates of these resonances tend to the same value as the rabi frequency gets large enough, showing a complete mixing of the states. This phenomenon occurs due to the finite lifetimes of rydberg atoms and occurs in highly excited many-body systems. It is relevant for a wide array of proposals, including rydberg dressing

  12. Long-term dipole-dipole resistivity monitoring at the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Wilt, M.; Goldstein, N.E.; Sasaki, Y.

    1984-04-01

    Dipole-dipole resistivity measurements for the combined purposes of reservoir delineation and reservoir monitoring were first made at Cerro Prieto in 1978 and have continued on approximately an annual basis since then. Two 20 km-long dipole-dipole lines with permanently emplaced electrodes at 1-km spacings were established over the field area. Resistivity remeasurements have been made on one line at 6- to 18-month intervals using a 25 kW generator capable of up to 80A output and a microprocessor-controlled signal-averaging receiver. This high-power, low-noise system provides highly accurate measurements even at large transmitter receiver separations. Standard error calculations for collected data indicate errors less than 5% for all points. Results from four years of monitoring (1979-1983) indicate a 5% average annual increase in apparent resistivity over the present production area, and larger decreases in apparent resistivity in the region to the east. The increase in resistivity in the production zone is most likely due to dilution of reservoir fluids with fresher water, as evidenced by a drop in chloride content of produced waters. The area of decreasing resistivity east of the reservoir is associated with a steeply dipping conductive body, a zone of higher thermal gradients and an increase in shale thickness in the section. Decreasing resistivity in this area may be caused by an influx of high temperature, saline water from depths of 3/sup +/ km through a sandy gap in the shales.

  13. Emitter-Wrap-Through Photovoltaic Dipole Antenna with Solar Concentrator

    OpenAIRE

    Roo Ons, Maria; Shynu, S.; Ammann, Max; McCormack, Sarah; Norton, Brian

    2009-01-01

    A novel photovoltaic dipole antenna employing a solar concentrator as a reflector is proposed. Four identical emitter-wrap-through rear contact solar cells connected in series as a folded dipole are simultaneously used for power generation and as the antenna radiating element, which is located in the focal line of a parabolic solar concentrator. The parabolic structure acts as a solar concentrator for the photovoltaic cells as well as a reflector for the folded dipole antenna. Full-wave elect...

  14. SSC superconducting dipole magnet cryostat model style B construction experience

    International Nuclear Information System (INIS)

    Engler, N.H.; Bossert, R.C.; Carson, J.A.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Niemann, R.C.; Sorensen, D.; Zink, R.

    1989-03-01

    A program to upgrade the full scale SSC dipole magnet cryostat model function and assembly methods has resulted in a series of dipole magnets designated as style B construction. New design features and assembly techniques have produced a magnet and cryostat assembly that is the basis for Phase 1 of the SSC dipole magnet industrialization program. Details of the assembly program, assembly experience, and comparison to previous assembly experiences are presented. Improvements in magnet assembly techniques are also evaluated. 6 refs., 5 figs

  15. Potentiating the antibacterial effect of silver nanospheres by surface-capping with chlorhexidine gluconate

    Energy Technology Data Exchange (ETDEWEB)

    Priyadarshini, Balasankar Meera; Fawzy, Amr S., E-mail: denasfmf@nus.edu.sg [National University of Singapore, Discipline of Oral Sciences, Faculty of Dentistry (Singapore)

    2017-04-15

    In this work, the commercial polyvinylpyrrolidone (PVP)-capped silver nanospheres (Ag-NSP) were surface decorated with chlorhexidine gluconate (CHXg) for potentiating the antibacterial properties of Ag-NSP. Different formulations of CHXg-loaded Ag-NSP (Ag-NSP/CHXg) were prepared by varying the incubation times (0.5, 1.5, and 3 h). A thorough characterization of Ag-NSP/CHXg nanospheres has been carried out by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive surface elemental composition spectral analysis (SEM/EDX), Fourier transform infrared spectroscopy (FTIR), percentage (%) CHXg loading efficiency (LE), in vitro CHXg and Ag{sup +} ion release, antibacterial/biofilm inhibition assay, and human mesenchymal stem cells (hMSCs) cytotoxicity evaluation. DLS measured nanospheres to be <160 nm and indicated that CHXg treatment drastically shifted the surface charge from negative to high positive values, with homogenous distribution. TEM revealed spherical Ag-NSP/CHXg nanospheres with a clearly visible surface coating of CHXg. FTIR confirmed association of CHXg with Ag-NSP nanospheres, whereas SEM/EDX data verified presence of spectral peaks specific to silver (Ag), CHXg, and PVP. The %LE gradually increased with increasing incubation times. In vitro CHXg release exhibited a bi-phasic fashion showing maximum release of ~74.83 ± 20.67% from Ag-NSP/CHXg-3h at 14 days. A slow release of Ag{sup +} ions was detected; however, the surface decoration of Ag-NSP substantially hampered/restricted the liberation of ions. Agar well diffusion, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H–tetrazolium), and crystal violet assay suggested good antibacterial/antibiofilm activity of Ag-NSP/CHXg that correlated with the increasing %LE of nanospheres. hMSCs cytotoxicity study showed low toxicity properties of all nanosphere formulations, except for Ag-NSP/CHXg-3h, affecting the cell viability at all

  16. Search for the permanent electric dipole moment of 129Xe

    Science.gov (United States)

    Sachdeva, Natasha; Chupp, Timothy; Gong, Fei; Babcock, Earl; Salhi, Zahir; Burghoff, Martin; Fan, Isaac; Killian, Wolfgang; Knappe-Grüneberg, Silvia; Schabel, Allard; Seifert, Frank; Trahms, Lutz; Voigt, Jens; Degenkolb, Skyler; Fierlinger, Peter; Krägeloh, Eva; Lins, Tobias; Marino, Michael; Meinel, Jonas; Niessen, Benjamin; Stuiber, Stefan; Terrano, William; Kuchler, Florian; Singh, Jaideep

    2017-09-01

    CP-violation in Beyond-the-Standard-Model physics, necessary to explain the baryon asymmetry, gives rise to permanent electric dipole moments (EDMs). EDM measurements of the neutron, electron, paramagnetic and diamagnetic atoms constrain CP-violating parameters. The current limit for the 129Xe EDM is 6 ×10-27 e . cm (95 % CL). The HeXeEDM experiment at FRM-II (Munich Research Reactor) and BMSR-2 (Berlin Magnetically Shielded Room) uses a stable magnetic field in a magnetically shielded room and 3He comagnetometer with potential to improve the limit by two orders of magnitude. Polarized 3He and 129Xe free precession is detected with SQUID magnetometers in the presence of applied electric and magnetic fields. Conclusions from recent measurements will be presented.

  17. Variation of the electronic dipole polarizability on the reaction path.

    Science.gov (United States)

    Jędrzejewski, Mateusz; Ordon, Piotr; Komorowski, Ludwik

    2013-10-01

    The reaction force and the electronic flux, first proposed by Toro-Labbé et al. (J Phys Chem A 103:4398, 1999) have been expressed by the existing conceptual DFT apparatus. The critical points (extremes) of the chemical potential, global hardness and softness have been identified by means of the existing and computable energy derivatives: the Hellman-Feynman force, nuclear reactivity and nuclear stiffness. Specific role of atoms at the reaction center has been unveiled by indicating an alternative method of calculation of the reaction force and the reaction electronic flux. The electron dipole polarizability on the IRC has been analyzed for the model reaction HF + CO→HCOF. The electron polarizability determined on the IRC α e (ξ) was found to be reasonably parallel to the global softness curve S(ξ). The softest state on the IRC (not TS) coincides with zero electronic flux.

  18. Adsorption of oriented carborane dipoles on a silver surface

    Czech Academy of Sciences Publication Activity Database

    Vetushka, Aliaksi; Bernard, L.; Guseva, O.; Bastl, Zdeněk; Plocek, Jiří; Tomandl, Ivo; Fejfar, Antonín; Baše, Tomáš; Schmutz, P.

    2016-01-01

    Roč. 253, č. 3 (2016), 591-600 ISSN 0370-1972 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G; GA ČR GAP205/10/0348 Institutional support: RVO:68378271 ; RVO:61388955 ; RVO:61388980 ; RVO:61389005 Keywords : carborane * Kelvin probe force microscopy * self-assembled monolayers * time-of-flight secondary ion mass spectrometry * X-ray photoelectron spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism; CF - Physical ; Theoretical Chemistry (UFCH-W); CA - Inorganic Chemistry (UACH-T) Impact factor: 1.674, year: 2016

  19. Contribution of the surface dipole to deformation of superconductors

    Czech Academy of Sciences Publication Activity Database

    Lipavský, Pavel; Morawetz, K.; Koláček, Jan; Brandt, E. H.; Schreiber, M.

    2008-01-01

    Roč. 77, č. 1 (2008), 014506/1-014506/6 ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100712 Grant - others:UK-MFF(CZ) GA202/07/0597 Institutional research plan: CEZ:AV0Z10100521 Source of funding: V - iné verejné zdroje Keywords : superconductivity * Ginzburg-Landau theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  20. Measurement of the b hadron lifetime with the dipole method

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Walther, S. M.; Wanke, R.; Wolf, B.; Zimmermann, A.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; St. Denis, R.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Valassi, A.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barbeiro, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-09-01

    A measurement of the average lifetime of b hadrons has been performed with dipole method on a sample of 260 000 hadronic Z decays recorded with the ALEPH detector during 1991. The dipole is the distance between the vertices built in the opposite hemispheres. The mean dipole is extracted from all the events without attempting b enrichment. Comparing the average of the data dipole distribution with a Monte Carlo calibration curve obtained with different b lifetimes, an average b hadron lifetime of 1.51±0.08 ps is extracted.

  1. Enhanced terahertz magnetic dipole response by subwavelength fiber

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Shadrivov, Ilya V.; Miroshnichenko, Andrey E.

    2018-01-01

    Dielectric sub-wavelength particles have opened up a new platform for realization of magnetic light. Recently, we have demonstrated that a dipole emitter by a sub-wavelength fiber leads to an enhanced magnetic response. Here, we experimentally demonstrate an enhanced magnetic dipole source......-fiber system excited by a magnetic source. This coupled magnetic dipole and optical fiber system can be considered a unit cell of metasurfaces for manipulation of terahertz radiation and is a proof-of-concept of a possibility to achieve enhanced radiation of a dipole source in proximity of a sub...

  2. Dipole and quadrupole forces exerted on atoms in laser fields: The nonperturbative approach

    International Nuclear Information System (INIS)

    Sindelka, Milan; Moiseyev, Nimrod; Cederbaum, Lorenz S.

    2006-01-01

    Manipulation of cold atoms by lasers has so far been studied solely within the framework of the conventional dipole approximation, and the atom-light interaction has been treated using low order perturbation theory. Laser control of atomic motions has been ascribed exclusively to the corresponding light-induced dipole forces. In this work, we present a general theory to derive the potential experienced by an atom in a monochromatic laser field in a context analogous to the Born-Oppenheimer approximation for molecules in the field-free case. The formulation goes beyond the dipole approximation and gives rise to the field-atom coupling potential terms which so far have not been taken into consideration in theoretical or experimental studies. Contrary to conventional approaches, our method is based upon the many electron Floquet theory and remains valid also for high intensity laser fields (i.e., for a strongly nonperturbative atom-light interaction). As an illustration of the developed theory, we investigate the trapping of cold atoms in optical lattices. We find that for some atoms for specific laser parameters, despite the absence of the dipole force, the laser trapping is still possible due to the electric quadrupole forces. Namely, we show that by using realistic laser parameters one can form a quadrupole optical lattice which is sufficiently strong to trap Ca and Na atoms

  3. Ab initio potential energy surfaces and quantum dynamics for polyatomic bimolecular reactions.

    Science.gov (United States)

    Fu, Bina; Zhang, Donghui

    2018-03-26

    There has been great progress in the development of potential energy surfaces (PESs) and quantum dynamics calculations in the gas phase. The establishment of fitting procedure for highly accurate PESs and new developments in quantum reactive scattering on reliable PESs allow accurate characterization of reaction dynamics beyond triatomic systems. This review will give the recent development in our group in constructing ab initio PESs based on the neural networks, and the time-dependent wave packet calculations for bimolecular reactions beyond three atoms. Bimolecular reactions of current interest to the community, namely, OH+H2, H+H2O, OH+CO, H+CH4 and Cl+CH4 are focused on. Quantum mechanical characterization of these reactions uncovers interesting dynamical phenomena with an unprecedented level of sophistication, and has greatly advanced our understanding of polyatomic reaction dynamics.

  4. Implementation and interpretation of surface potential decay measurements on corona-charged non-woven fabrics

    International Nuclear Information System (INIS)

    Tabti, B; Antoniu, A; Plopeanu, M; Dascalescu, L; Yahiaoui, B; Bendahmane, B

    2011-01-01

    The aim of this paper is to discuss the peculiarities of the surface potential decay (SPD) curves obtained for certain non-woven media. The experiments were performed on samples of non-woven poly-propylene (PP) sheets, which are typically employed in the construction of air filters for heat, ventilation and air conditioning. The samples were in contact with a grounded plane, in order to: (1) ensure better charging and measurement reproducibility; (2) simulate the worst situation of practical interest. They were charged using either a high-voltage wire-type dual electrode or a triode-type electrode arrangement. The aspect of the SPD curves depends on the electrode configuration. When the electric field is strong enough, it can activate charge injection at the insulator-metal interface and extrinsic conduction.

  5. Evaluation of the potential for surface faulting at TA-63. Final report

    International Nuclear Information System (INIS)

    Kolbe, T.; Sawyer, J.; Springer, J.; Olig, S.; Hemphill-Haley, M.; Wong, I.; Reneau, S.

    1995-01-01

    This report describes an investigation of the potential for surface faulting at the proposed sites for the Radioactive Liquid Waste Treatment Facility (RL)WF) and the Hazardous Waste Treatment Facility at TA-63 and TA-52 (hereafter TA-63), Los Alamos National Laboratory (LANL). This study was performed by Woodward-Clyde Federal Services (WCFS) at the request of the LANL. The projections of both the Guaje Mountain and Rendija Canyon faults are mapped in the vicinity of TA-63. Based on results obtained in the ongoing Seismic Hazard Evaluation Program of the LANL, displacement may have occurred on both the Guaje Mountain and Rendija Canyon faults in the past 11,000 years (Holocene time). Thus, in accordance with US Department of Energy (DOE) Orders and Standards for seismic hazards evaluations and the US Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) Regulations for seismic standard requirements, a geologic study of the proposed TA-63 site was conducted

  6. Interaction of C2H with molecular hydrogen: Ab initio potential energy surface and scattering calculations

    Science.gov (United States)

    Dagdigian, Paul J.

    2018-01-01

    The potential energy surface (PES) describing the interaction of the ethynyl (C2H) radical in its ground X˜ 2Σ+ electronic state with molecular hydrogen has been computed through restricted coupled cluster calculations including single, double, and (perturbative) triple excitations [RCCSD(T)], with the assumption of fixed molecular geometries. The computed points were fit to an analytical form suitable for time-independent quantum scattering calculations of rotationally inelastic cross sections and rate constants. A representative set of energy dependent state-to-state cross sections is presented and discussed. The PES and cross sections for collisions of H2(j = 0) are compared with a previous study [F. Najar et al., Chem. Phys. Lett. 614, 251 (2014)] of collisions of C2H with H2 treated as a spherical collision partner. Good agreement is found between the two sets of calculations when the H2 molecule in the present calculation is spherically averaged.

  7. Implementation and interpretation of surface potential decay measurements on corona-charged non-woven fabrics

    Science.gov (United States)

    Tabti, B.; Antoniu, A.; Plopeanu, M.; Yahiaoui, B.; Bendahmane, B.; Dascalescu, L.

    2011-06-01

    The aim of this paper is to discuss the peculiarities of the surface potential decay (SPD) curves obtained for certain non-woven media. The experiments were performed on samples of non-woven poly-propylene (PP) sheets, which are typically employed in the construction of air filters for heat, ventilation and air conditioning. The samples were in contact with a grounded plane, in order to: (1) ensure better charging and measurement reproducibility; (2) simulate the worst situation of practical interest. They were charged using either a high-voltage wire-type dual electrode or a triode-type electrode arrangement. The aspect of the SPD curves depends on the electrode configuration. When the electric field is strong enough, it can activate charge injection at the insulator-metal interface and extrinsic conduction.

  8. Ab initio potential energy surface and vibration-rotation energy levels of beryllium monohydroxide.

    Science.gov (United States)

    Koput, Jacek

    2017-01-05

    The accurate potential energy surface of beryllium monohydroxide, BeOH, in its ground electronic state X 2A' has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality. The higher-order electron correlation, scalar relativistic, and adiabatic effects were taken into account. The BeOH molecule was confirmed to be bent at equilibrium, with the BeOH angle of 141.2° and the barrier to linearity of 129 cm -1 . The vibration-rotation energy levels of the BeOH and BeOD isotopologues were predicted using a variational approach and compared with recent experimental data. The results can be useful in a further analysis of high-resolution vibration-rotation spectra of these interesting species. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Ab initio potential energy surface and vibration-rotation energy levels of sulfur dioxide.

    Science.gov (United States)

    Koput, Jacek

    2017-05-05

    An accurate potential energy surface of sulfur dioxide, SO 2 , in its ground electronic state X∼ 1A1 has been determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent basis sets up to septuple-zeta quality. The results obtained with the conventional and explicitly correlated coupled-cluster methods are compared. The role of the core-electron correlation, higher-order valence-electron correlation, scalar relativistic, and adiabatic effects in determining the structure and dynamics of the SO 2 molecule is discussed. The vibration-rotation energy levels of the 32 SO 2 and 34 SO 2 isotopologues were predicted using a variational approach. It was shown that the inclusion of the aforementioned effects was mandatory to attain the "spectroscopic" accuracy. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Contrasting optical properties of surface waters across the Fram Strait and its potential biological implications

    DEFF Research Database (Denmark)

    Pavlov, Alexey K.; Granskog, Mats A.; Stedmon, Colin A.

    2015-01-01

    Spitsbergen Current (WSC) differ with regards to temperature, salinity and optical properties. We present data on absorption properties of CDOM and particles across the Fram Strait (along 79° N), comparing Polar and Atlantic surface waters in September 2009 and 2010. CDOM absorption of Polar water in the EGC...... budget in the upper 0-10m shifts across Fram Strait. Under water spectral irradiance profiles were generated using ECOLIGHT 5.4.1 and the results indicate that the shift in composition between dissolved and particulate material does not influence substantially the penetration of photosynthetic active...... radiation (PAR, 400-700nm), but does result in notable differences in ultraviolet (UV) light penetration, with higher attenuation in the EGC. Future changes in the Arctic Ocean system will likely affect EGC through diminishing sea-ice cover and potentially increasing CDOM export due to increase in river...

  11. Influence of electrolytes on growth, phototropism, nutation and surface potential in etiolated cucumber seedlings

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1993-01-01

    A variety of electrolytes (10-30 mol m-3) increased the relative growth rate of etiolated cucumber (Cucumis sativus L. cv. Burpee's Pickler) hypocotyls by 20-50% relative to water-only controls. The nonelectrolyte mannitol inhibited growth by 10%. All salts tested were effective, regardless of chemical composition or valence. Measurements of cell-sap osmolality ruled out an osmotic mechanism for the growth stimulation by electrolytes. This, and the nonspecificity of the response, indicate that an electrical property of the solutions was responsible for their growth-stimulating activity. Measurements of surface electrical potential supported this reasoning. Treatment with electrolytes also enhanced nutation and altered the pattern of phototropic curvature development. A novel analytical method for quantitating these effects on growth was developed. The evidence indicates that electrolytes influence an electrophysiological parameter that is involved in the control of cell expansion and the coordination of growth underlying tropisms and nutations.

  12. Potentiating the antibacterial effect of silver nanospheres by surface-capping with chlorhexidine gluconate

    Science.gov (United States)

    Priyadarshini, Balasankar Meera; Fawzy, Amr S.

    2017-04-01

    In this work, the commercial polyvinylpyrrolidone (PVP)-capped silver nanospheres (Ag-NSP) were surface decorated with chlorhexidine gluconate (CHXg) for potentiating the antibacterial properties of Ag-NSP. Different formulations of CHXg-loaded Ag-NSP (Ag-NSP/CHXg) were prepared by varying the incubation times (0.5, 1.5, and 3 h). A thorough characterization of Ag-NSP/CHXg nanospheres has been carried out by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive surface elemental composition spectral analysis (SEM/EDX), Fourier transform infrared spectroscopy (FTIR), percentage (%) CHXg loading efficiency (LE), in vitro CHXg and Ag+ ion release, antibacterial/biofilm inhibition assay, and human mesenchymal stem cells (hMSCs) cytotoxicity evaluation. DLS measured nanospheres to be fashion showing maximum release of 74.83 ± 20.67% from Ag-NSP/CHXg-3h at 14 days. A slow release of Ag+ ions was detected; however, the surface decoration of Ag-NSP substantially hampered/restricted the liberation of ions. Agar well diffusion, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), and crystal violet assay suggested good antibacterial/antibiofilm activity of Ag-NSP/CHXg that correlated with the increasing %LE of nanospheres. hMSCs cytotoxicity study showed low toxicity properties of all nanosphere formulations, except for Ag-NSP/CHXg-3h, affecting the cell viability at all proposed concentrations and exposure time points. CHXg accentuated the antibacterial properties of Ag-NSP.

  13. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    Science.gov (United States)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  14. Beyond Massive MIMO: The Potential of Positioning With Large Intelligent Surfaces

    Science.gov (United States)

    Hu, Sha; Rusek, Fredrik; Edfors, Ove

    2018-04-01

    We consider the potential for positioning with a system where antenna arrays are deployed as a large intelligent surface (LIS), which is a newly proposed concept beyond massive-MIMO where future man-made structures are electronically active with integrated electronics and wireless communication making the entire environment \\lq\\lq{}intelligent\\rq\\rq{}. In a first step, we derive Fisher-information and Cram\\'{e}r-Rao lower bounds (CRLBs) in closed-form for positioning a terminal located perpendicular to the center of the LIS, whose location we refer to as being on the central perpendicular line (CPL) of the LIS. For a terminal that is not on the CPL, closed-form expressions of the Fisher-information and CRLB seem out of reach, and we alternatively find approximations of them which are shown to be accurate. Under mild conditions, we show that the CRLB for all three Cartesian dimensions ($x$, $y$ and $z$) decreases quadratically in the surface-area of the LIS, except for a terminal exactly on the CPL where the CRLB for the $z$-dimension (distance from the LIS) decreases linearly in the same. In a second step, we analyze the CRLB for positioning when there is an unknown phase $\\varphi$ presented in the analog circuits of the LIS. We then show that the CRLBs are dramatically increased for all three dimensions but decrease in the third-order of the surface-area. Moreover, with an infinitely large LIS the CRLB for the $z$-dimension with an unknown $\\varphi$ is 6 dB higher than the case without phase uncertainty, and the CRLB for estimating $\\varphi$ converges to a constant that is independent of the wavelength $\\lambda$. At last, we extensively discuss the impact of centralized and distributed deployments of LIS, and show that a distributed deployment of LIS can enlarge the coverage for terminal-positioning and improve the overall positioning performance.

  15. N-Terminal Plasmodium vivax Merozoite Surface Protein-1, a Potential Subunit for Malaria Vivax Vaccine

    Directory of Open Access Journals (Sweden)

    Fernanda G. Versiani

    2013-01-01

    Full Text Available The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America. Plasmodium vivax started to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack of in vitro cultures for P. vivax represents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1, which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.

  16. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques.

    Science.gov (United States)

    Soares, Fabiano Araujo; Carvalho, João Luiz Azevedo; Miosso, Cristiano Jacques; de Andrade, Marcelino Monteiro; da Rocha, Adson Ferreira

    2015-09-17

    In surface electromyography (surface EMG, or S-EMG), conduction velocity (CV) refers to the velocity at which the motor unit action potentials (MUAPs) propagate along the muscle fibers, during contractions. The CV is related to the type and diameter of the muscle fibers, ion concentration, pH, and firing rate of the motor units (MUs). The CV can be used in the evaluation of contractile properties of MUs, and of muscle fatigue. The most popular methods for CV estimation are those based on maximum likelihood estimation (MLE). This work proposes an algorithm for estimating CV from S-EMG signals, using digital image processing techniques. The proposed approach is demonstrated and evaluated, using both simulated and experimentally-acquired multichannel S-EMG signals. We show that the proposed algorithm is as precise and accurate as the MLE method in typical conditions of noise and CV. The proposed method is not susceptible to errors associated with MUAP propagation direction or inadequate initialization parameters, which are common with the MLE algorithm. Image processing -based approaches may be useful in S-EMG analysis to extract different physiological parameters from multichannel S-EMG signals. Other new methods based on image processing could also be developed to help solving other tasks in EMG analysis, such as estimation of the CV for individual MUs, localization and tracking of innervation zones, and study of MU recruitment strategies.

  17. Non-additivity of molecule-surface van der Waals potentials from force measurements

    Science.gov (United States)

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G.; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F. Stefan

    2014-11-01

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  18. Non-additivity of molecule-surface van der Waals potentials from force measurements.

    Science.gov (United States)

    Wagner, Christian; Fournier, Norman; Ruiz, Victor G; Li, Chen; Müllen, Klaus; Rohlfing, Michael; Tkatchenko, Alexandre; Temirov, Ruslan; Tautz, F Stefan

    2014-11-26

    Van der Waals (vdW) forces act ubiquitously in condensed matter. Despite being weak on an atomic level, they substantially influence molecular and biological systems due to their long range and system-size scaling. The difficulty to isolate and measure vdW forces on a single-molecule level causes our present understanding to be strongly theory based. Here we show measurements of the attractive potential between differently sized organic molecules and a metal surface using an atomic force microscope. Our choice of molecules and the large molecule-surface separation cause this attraction to be purely of vdW type. The experiment allows testing the asymptotic vdW force law and its validity range. We find a superlinear growth of the vdW attraction with molecular size, originating from the increased deconfinement of electrons in the molecules. Because such non-additive vdW contributions are not accounted for in most first-principles or empirical calculations, we suggest further development in that direction.

  19. Neospora caninum surface antigen (p40) is a potential diagnostic marker for cattle neosporosis.

    Science.gov (United States)

    He, Pengfei; Li, Jianhua; Gong, Pengtao; Liu, Chengwu; Zhang, Guocai; Yang, Ju; Tuo, Wenbin; Yang, Bintong; Zhang, Xichen

    2013-05-01

    Neospora caninum is an intracellular protozoan that infects domestic and wild canids as well as many warm-blooded animals as shown by the isolation of viable parasites. The effectiveness of diagnostic tests for detecting specific antibodies against N. caninum is hampered by potential cross-reaction with other Coccidia. So, there is currently an urgent need for a sensitive and specific diagnostic assay for detecting N. caninum in animals. The N. caninum 40-kD surface antigen (p40), similar to NcSAG1 and NcSRS2, was shown to belong to surface antigen super family and thus represents an excellent marker for the diagnosis of neosporosis. In order to test the hypothesis, recombinant Ncp40 (rNcp40) was expressed in Escherichia coli, and an indirect ELISA test was developed using recombinant NCp40 antigen for N. caninum serodiagnosis. The antigen used in this study did not have cross-reactivity with anti-Toxoplasma gondii serum. Anti-p40 antibodies were detected by ELISA in the sera of Yellow cattle and were compared with (IFAT). Optimal sensitivity and specificity (98.2 and 98.6 %) were identified by IFAT. Additionally, 37 positive sera of T. gondii were detected and there was no significant difference with the negative serum of N. caninum. The rNcp40 ELISA developed here provides a specific and sensitive assay for detecting neosporosis in cattle.

  20. Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces.

    LENUS (Irish Health Repository)

    Colombo, John S

    2012-09-01

    This study investigated the influence of smooth, roughened, and tricalcium phosphate (TCP)-coated roughened titanium-aluminum-vanadium (Ti-6Al-4V) surfaces on the osteogenic potential of rat bone marrow stromal cells (BMSCs).