Bag model with diffuse surface
International Nuclear Information System (INIS)
Phatak, S.C.
1986-01-01
The constraint of a sharp bag boundary in the bag model is relaxed in the present work. This has been achieved by replacing the square-well potential of the bag model by a smooth scalar potential and introducing a term similar to the bag pressure term. The constraint of the conservation of the energy-momentum tensor is used to obtain an expression for the added bag pressure term. The model is then used to determine the static properties of the nucleon. The calculation shows that the rms charge radius and the nucleon magnetic moment are larger than the corresponding bag model values. Also, the axial vector coupling constant and the πNN coupling constant are in better agreement with the experimental values
Molecular Modeling of Diffusion on a Crystalline PETN Surface
Energy Technology Data Exchange (ETDEWEB)
Lin, P; Khare, R; Gee, R H; Weeks, B L
2007-07-13
Surface diffusion on a PETN crystal was investigated by treating the surface diffusion as an activated process in the formalism of transition state theory. In particular, surface diffusion on the (110) and (101) facets, as well as diffusion between these facets, were considered. We successfully obtained the potential energy barriers required for PETN surface diffusion. Our results show that the (110) surface is more thermally active than the (101) surface and PETN molecules mainly diffuses from the (110) to (101) facet. These results are in good agreement with experimental observations and previous simulations.
Convergence of surface diffusion parameters with model crystal size
Cohen, Jennifer M.; Voter, Arthur F.
1994-07-01
A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.
A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices
International Nuclear Information System (INIS)
Ionescu, M.
1977-01-01
An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)
Modeling the erythemal surface diffuse irradiance fraction for Badajoz, Spain
Sanchez, Guadalupe; Serrano, Antonio; Cancillo, María Luisa
2017-10-01
Despite its important role on the human health and numerous biological processes, the diffuse component of the erythemal ultraviolet irradiance (UVER) is scarcely measured at standard radiometric stations and therefore needs to be estimated. This study proposes and compares 10 empirical models to estimate the UVER diffuse fraction. These models are inspired from mathematical expressions originally used to estimate total diffuse fraction, but, in this study, they are applied to the UVER case and tested against experimental measurements. In addition to adapting to the UVER range the various independent variables involved in these models, the total ozone column has been added in order to account for its strong impact on the attenuation of ultraviolet radiation. The proposed models are fitted to experimental measurements and validated against an independent subset. The best-performing model (RAU3) is based on a model proposed by Ruiz-Arias et al. (2010) and shows values of r2 equal to 0.91 and relative root-mean-square error (rRMSE) equal to 6.1 %. The performance achieved by this entirely empirical model is better than those obtained by previous semi-empirical approaches and therefore needs no additional information from other physically based models. This study expands on previous research to the ultraviolet range and provides reliable empirical models to accurately estimate the UVER diffuse fraction.
A model for diffuse and global irradiation on horizontal surface
International Nuclear Information System (INIS)
Jain, P.C.
1984-01-01
The intensity of the direct radiation and the diffuse radiation at any time on a horizontal surface are each expressed as fractions of the intensity of the extraterrestrial radiation. Using these and assuming a random distribution of the bright sunshine hours and not too wide variations in the values of the transmission coefficients, a number of relations for estimating the global and the diffuse irradiation are derived. Two of the relations derived are already known empirically. The formulation lends more confidence in the use of the already empirically known relations providing them a theoretical basis, and affords more flexibility to the estimation techniques by supplying new equations. The study identifies three independent basic parameters and the constants appearing in the various equations as simple functions of these three basic parameters. Experimental data for the diffuse irradiation, the global irradiation and the bright sunshine duration for Macerata (Italy), Salisbury and Bulawayo (Zimbabwe) is found to show good correlation for the linear equations, and the nature and the interrelationships of the constants are found to be as predicted by the theory
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen
2005-01-01
The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...
Free surface modelling with two-fluid model and reduced numerical diffusion of the interface
International Nuclear Information System (INIS)
Strubelj, Luka; Tiselj, Izrok
2008-01-01
Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening
Memory Effects and Coverage Dependence of Surface Diffusion in a Model Adsorption System
DEFF Research Database (Denmark)
Vattulainen, Ilpo Tapio; Ying, S. C.; Ala-Nissila, T.
1999-01-01
We study the coverage dependence of surface diffusion coefficients for a strongly interacting adsorption system O/W(110) via Monte Carlo simulations of a lattice-gas model. In particular, we consider the nature and emergence of memory effects as contained in the corresponding correlation factors...... diffusion is found to decay following a power law after an initial transient period. This behavior persists until the hydrodynamic regime is reached, after which the memory effect decays exponentially. The time required to reach the hydrodynamical regime and the related exponential decay is strongly...
Second generation diffusion model of interacting gravity waves on the surface of deep fluid
Directory of Open Access Journals (Sweden)
A. Pushkarev
2004-01-01
Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.
International Nuclear Information System (INIS)
El-Nashar, H.F.; Cerdeira, H.A.
1998-08-01
We introduce a ballistic deposition model for two kinds of particles (active and inactive) in (2+1) dimensions upon introducing the surface diffusion for the inactive particles. A morphological structural transition is found as the probability of being the inactive particle increases. This transition is well defined by the change in the behavior of the surface width when it is plotted versus time and probability. The exponents α and β calculated for different values of probability show the same behavior. The presence of both types of particles issues three different processes that control the growing surface: overhanging, nonlocal growth and diffusion. It finally leads to a morphological structural transition where the universality changes away from that of Kardar-Parisi-Zhang, in (2+1) dimensions, but not into Edwards-Wilkinson's. (author)
An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface
Directory of Open Access Journals (Sweden)
Yan-Zi Yu
2015-01-01
Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.
Modeling diffuse sources of surface water contamination with plant protection products
Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David
2015-04-01
Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff
Luther, M. R.
1981-01-01
The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.
Directory of Open Access Journals (Sweden)
Xuefeng Zhang
2015-01-01
Full Text Available Sequential, adaptive, and gradient diffusion filters are implemented into spatial multiscale three-dimensional variational data assimilation (3DVAR as alternative schemes to model background error covariance matrix for the commonly used correction scale method, recursive filter method, and sequential 3DVAR. The gradient diffusion filter (GDF is verified by a two-dimensional sea surface temperature (SST assimilation experiment. Compared to the existing DF, the new GDF scheme shows a superior performance in the assimilation experiment due to its success in extracting the spatial multiscale information. The GDF can retrieve successfully the longwave information over the whole analysis domain and the shortwave information over data-dense regions. After that, a perfect twin data assimilation experiment framework is designed to study the effect of the GDF on the state estimation based on an intermediate coupled model. In this framework, the assimilation model is subject to “biased” initial fields from the “truth” model. While the GDF reduces the model bias in general, it can enhance the accuracy of the state estimation in the region that the observations are removed, especially in the South Ocean. In addition, the higher forecast skill can be obtained through the better initial state fields produced by the GDF.
International Nuclear Information System (INIS)
Khorasanizadeh, H.; Mohammadi, K.; Mostafaeipour, A.
2014-01-01
Highlights: • Optimum tilt angles of solar surfaces in the Iranian city of Tabass are determined. • Due to lack of measured diffuse data, a new two variables diffuse model is established. • The monthly optimum tilt varies between 0° and 64° and the best annual tilt is 32°. • The semi-yearly tilt strategy of 10° for warm and 55° for cold periods are suggested. • Radiation components obtained for horizontal, tilted and vertical surfaces are compared. - Abstract: In this study the optimum tilt angle for south-facing solar surfaces in Tabass, Iran, for the fixed monthly, seasonal, semi-yearly and yearly adjustments were calculated. Due to lack of measured diffuse solar radiation data, to predict the horizontal diffuse radiation nine diffuse models from three different categories were established. Based on some statistical indicators the three degree model, in which both clearness index and relative sunshine duration are variables, was recognized the best. The monthly optimum tilt varies from 0° in June and July up to 64° in December and the yearly optimum tilt is around 32°, which is very close to latitude of Tabass (33.36°). For different adjustments, particularly for a vertically mounted surface, the received monthly mean daily solar radiation components and the annual solar energy gains were calculated and compared. Total yearly extra solar gain for the monthly, seasonal, semi-yearly and yearly optimally adjusted surfaces compared to that of horizontal surface are 23.15%, 21.55%, 21.23% and 13.76%, respectively. The semi-yearly tilt adjustment of 10° for warm period (April–September) and 55° for cold period (October–March) is highly recommended, since it provides almost the same level of annual solar energy gain as those of monthly and seasonal adjustments
Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi
2015-11-15
Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Posadillo, R.; Lopez Luque, R.
2009-01-01
The performance of three diffuse hourly irradiation models on tilted surfaces was evaluated by making a database of hourly global and diffuse solar irradiation on a horizontal surface, as well as global solar irradiation on a tilted surface, recorded in a solar radiation station located at Cordoba University (Spain). The method for a comparison of the performance of these models was developed from a study of the 'utilizable energy' statistics, a value representing, for a specific period of time, the mean monthly radiation that exceeded a critical level of radiation. This model comparison method seemed to us to be highly suitable since it provides a way of comparing the capacity of these models to estimate, however, much energy is incident on a tilted surface above a critical radiation level. Estimated and measured values were compared using the normalized RMBE and RRMSE statistics. According to the results of the method let us verify that, of the three models evaluated, one isotropic and two anisotropic, the Reindl et al. anisotropic model was the one giving the best results.
Modelling of Innovation Diffusion
Directory of Open Access Journals (Sweden)
Arkadiusz Kijek
2010-01-01
Full Text Available Since the publication of the Bass model in 1969, research on the modelling of the diffusion of innovation resulted in a vast body of scientific literature consisting of articles, books, and studies of real-world applications of this model. The main objective of the diffusion model is to describe a pattern of spread of innovation among potential adopters in terms of a mathematical function of time. This paper assesses the state-of-the-art in mathematical models of innovation diffusion and procedures for estimating their parameters. Moreover, theoretical issues related to the models presented are supplemented with empirical research. The purpose of the research is to explore the extent to which the diffusion of broadband Internet users in 29 OECD countries can be adequately described by three diffusion models, i.e. the Bass model, logistic model and dynamic model. The results of this research are ambiguous and do not indicate which model best describes the diffusion pattern of broadband Internet users but in terms of the results presented, in most cases the dynamic model is inappropriate for describing the diffusion pattern. Issues related to the further development of innovation diffusion models are discussed and some recommendations are given. (original abstract
Specular and diffuse object extraction from a LiDAR derived Digital Surface Model (DSM)
International Nuclear Information System (INIS)
Saraf, N M; Hamid, J R A; Kamaruddin, M H
2014-01-01
This paper intents to investigate the indifferent behaviour quantitatively of target objects of interest due to specular and diffuse reflectivity based on generated LiDAR DSM of the study site in Ampang, Kuala Lumpur. The LiDAR data to be used was initially checked for its reliability and accuracy. The point cloud LiDAR data was converted to raster to allow grid analysis of the next process of generating the DSM and DTM. Filtering and masking were made removing the features of interest (i.e. building and tree) and other unwanted above surface features. A normalised DSM and object segmentation approach were conducted on the trees and buildings separately. Error assessment and findings attained were highlighted and documented. The result of LiDAR verification certified that the data is reliable and useable. The RMSE obtained is within the tolerance value of horizontal and vertical accuracy (x, y, z) i.e. 0.159 m, 0.211 m 0.091 m respectively. Building extraction inclusive of roof top based on slope and contour analysis undertaken indicate the capability of the approach while single tree extraction through aspect analysis appears to preserve the accuracy of the extraction accordingly. The paper has evaluated the suitable methods of extracting non-ground features and the effective segmentation of the LiDAR data
Vorticity models of ocean surface diffusion in coastal jets and eddies
Cano, D.; Matulka, A.; Sekula, E.
2010-05-01
We present and discuss the use of multi-fractal techniques used to investigete vorticity and jet dynamical state of these features detected in the sea surface as well as to identify possible local parametrizations of turbulent diffusion in complex non-homogeneous flows. We use a combined vorticity/energy equation to parametrize mixing at the Rossby Deformation Radius, which may be used even in non Kolmogorov types of flows. The vorticity cascade is seen to be different to the energy cascade and may have important cnsecuences in pollutant dispersion prediction, both in emergency accidental releases and on a day to day operational basis. We also identify different SAR signatures of river plumes near the coast, which are usefull to provide calibrations for the different local configurations that allow to predict the behaviour of different tracers and tensioactives in the coastal sea surface area by means of as a geometrical characterization of the vorticity and velocity maps which induce local mixing and dilution jet processes. The satellite-borne SAR seems to be a good system for the identification of dynamic. lt is also a convenient tool to investigate the eddy structures of a certain area where the effect of bathymetry and local currents are important in describing the ocean surface behavior. Maximum eddy size agrees remarkably well with the limit imposed by the local Rossby deformation radius using the usual thermocline induced stratification, Redondo and Platonov (2000). The Rossby deformation radius, defined as Rd = (N/f)h, where N is the Brunt-Vaisalla frequency, f is the local Coriolis parameter (f=2Osin(lat), where O is the rotation of the earth as function of the latitude), The role of buoyancy may be also detected by seasonal changes in h, the thermocline depth, with these considerations Rd is ranged between 6 and 30 Km. Bezerra M.O., Diez M., Medeiros C. Rodriguez A., Bahia E., Sanchez Arcilla A and Redondo J.M. (1998) "Study on the influence of waves on
Theory and experiments on surface diffusion
Energy Technology Data Exchange (ETDEWEB)
Silvestri, W.L.
1998-11-01
The following topics were dealt with: adatom formation and self-diffusion on the Ni(100) surface, helium atom scattering measurements, surface-diffusion parameter measurements, embedded atom method calculations.
Czech Academy of Sciences Publication Activity Database
Mašín, Martin; Vattulainen, I.; Ala-Nissila, T.; Chvoj, Zdeněk
2007-01-01
Roč. 126, č. 11 (2007), 114705/1-114705/8 ISSN 0021-9606 R&D Projects: GA AV ČR IAA1010207 Institutional research plan: CEZ:AV0Z10100521 Keywords : surface diffusion * vicinal surfaces * non-equilibrium effects * Monte-Carlo simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.044, year: 2007
2015-01-01
state estimation and forecast in real applica- tions using general circulation models (GCMs). In addition, other spatial multiscale variational analysis...Journal of Geophysical Research C: Oceans, vol. 102, no. 3, pp. 5655–5667, 1997. [15] P. C. Chu, W. Guihua, and Y. Chen, “Japan Sea thermohaline ...structure and circulation . Part III: autocorrelation functions,” Journal of Physical Oceanography, vol. 32, no. 12, pp. 3596–3615, 2002. [16] K.-A. Park and J
Surface diffusion studies by optical diffraction techniques
International Nuclear Information System (INIS)
Xiao, X.D.
1992-11-01
The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect
Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film
Kurachi, Ikuo; Yoshioka, Kentaro
2015-09-01
An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.
Nanoscale topography influences polymer surface diffusion.
Wang, Dapeng; He, Chunlin; Stoykovich, Mark P; Schwartz, Daniel K
2015-02-24
Using high-throughput single-molecule tracking, we studied the diffusion of poly(ethylene glycol) chains at the interface between water and a hydrophobic surface patterned with an array of hexagonally arranged nanopillars. Polymer molecules displayed anomalous diffusion; in particular, they exhibited intermittent motion (i.e., immobilization and "hopping") suggestive of continuous-time random walk (CTRW) behavior associated with desorption-mediated surface diffusion. The statistics of the molecular trajectories changed systematically on surfaces with pillars of increasing height, exhibiting motion that was increasingly subdiffusive and with longer waiting times between diffusive steps. The trajectories were well-described by kinetic Monte Carlo simulations of CTRW motion in the presence of randomly distributed permeable obstacles, where the permeability (the main undetermined parameter) was conceptually related to the obstacle height. These findings provide new insights into the mechanisms of interfacial transport in the presence of obstacles and on nanotopographically patterned surfaces.
Surface modifications by field induced diffusion.
Directory of Open Access Journals (Sweden)
Martin Olsen
Full Text Available By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.
Fractal model of anomalous diffusion.
Gmachowski, Lech
2015-12-01
An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.
Diffuse reflection of ultracold neutrons from low-roughness surfaces
Energy Technology Data Exchange (ETDEWEB)
Atchison, F.; Daum, M.; Henneck, R.; Horisberger, M.; Kirch, K.; Lauss, B.; Mtchedlishvili, A.; Meier, M.; Petzoldt, G.; Schelldorfer, R.; Zsigmond, G. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Heule, S.; Knecht, A. [Paul Scherrer Institut, PSI, Villigen (Switzerland); University Zuerich, Zuerich (Switzerland); Kasprzak, M. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Stefan Meyer Institut, Vienna (Austria); Kuzniak, M. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Jagiellonian University, Smoluchowski Institute of Physics, Cracow (Poland); Plonka-Spehr, C. [Institut Laue Langevin, ILL, Grenoble (France); Straumann, U. [University Zuerich, Zuerich (Switzerland)
2010-04-15
We report a measurement of the reflection of ultracold neutrons from flat, large-area plates of different Fermi potential materials with low surface roughness. The results were used to test two diffuse reflection models, the well-known Lambert model and the micro-roughness model which is based on wave scattering. The Lambert model fails to reproduce the diffuse reflection data. The surface roughness b and correlation length w, obtained by fitting the micro-roughness model to the data are in the range 1{<=}b{<=}3 nm and 10{<=}w{<=}120 nm, in qualitative agreement with independent measurements using atomic force microscopy. (orig.)
Diffuse reflection of ultracold neutrons from low-roughness surfaces
International Nuclear Information System (INIS)
Atchison, F.; Daum, M.; Henneck, R.; Horisberger, M.; Kirch, K.; Lauss, B.; Mtchedlishvili, A.; Meier, M.; Petzoldt, G.; Schelldorfer, R.; Zsigmond, G.; Heule, S.; Knecht, A.; Kasprzak, M.; Kuzniak, M.; Plonka-Spehr, C.; Straumann, U.
2010-01-01
We report a measurement of the reflection of ultracold neutrons from flat, large-area plates of different Fermi potential materials with low surface roughness. The results were used to test two diffuse reflection models, the well-known Lambert model and the micro-roughness model which is based on wave scattering. The Lambert model fails to reproduce the diffuse reflection data. The surface roughness b and correlation length w, obtained by fitting the micro-roughness model to the data are in the range 1≤b≤3 nm and 10≤w≤120 nm, in qualitative agreement with independent measurements using atomic force microscopy. (orig.)
Linear response theory of activated surface diffusion with interacting adsorbates
Energy Technology Data Exchange (ETDEWEB)
Marti' nez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A.S.; Vega, J.L. [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rojas-Lorenzo, G. [Instituto Superior de Tecnologi' as y Ciencias Aplicadas, Ave. Salvador Allende, esq. Luaces, 10400 La Habana (Cuba); Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain); Miret-Artes, S., E-mail: s.miret@imaff.cfmac.csic.es [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain)
2010-05-12
Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.
Heat diffusion in fractal geometry cooling surface
Directory of Open Access Journals (Sweden)
Ramšak Matjaz
2012-01-01
Full Text Available In the paper the numerical simulation of heat diffusion in the fractal geometry of Koch snowflake is presented using multidomain mixed Boundary Element Method. The idea and motivation of work is to improve the cooling of small electronic devices using fractal geometry of surface similar to cooling ribs. The heat diffusion is assumed as the only principle of heat transfer. The results are compared to the heat flux of a flat surface. The limiting case of infinite small fractal element is computed using Richardson extrapolation.
Diffusion of particles, adsorbed on a reconstructive surface
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
532-535, - (2003), s. 588-593 ISSN 0039-6028 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : models of surface kinetics * non-equilibrium thermodynamics and statistical mechanics * surface diffusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.063, year: 2003
Reactive solid surface morphology variation via ionic diffusion.
Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih
2012-08-14
In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.
Matsuno, T; Niida, T; Tsurumaki, H; Namiki, A
2005-01-08
We studied coverage dependence of time-of-flight (TOF) spectra of D2 molecules thermally desorbed from the D/Si(100) surface. The mean translational energies Et of desorbed D2 molecules were found to increase from 0.20+/-0.05 eV to 0.40+/-0.04 eV as the desorption coverage window was decreased from 1.0 ML> or =thetaD> or =0.9 ML to 0.2 ML> or =thetaD> or =0 ML, being consistent with the kinetics switch predicted in the interdimer mechanism. The measured TOF spectra were deconvoluted into 2H, 3H, and 4H components by a curve fitting method along the principle of detailed balance. As a result, it turned out that the desorption kinetics changes from the 4H to the 3H situation at high coverage above thetaD=0.9 ML, while the 2H desorption is dominant for a quite wide coverage region up to thetaD=0.8 ML. A dynamic desorption mechanism by which the desorption is promoted by D-atom diffusion to dangling bonds was proposed. 2005 American Institute of Physics.
Kuscu, Murat; Akan, Ozgur B
2018-01-01
We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.
Investigation of ion diffusion towards plasmonic surfaces
International Nuclear Information System (INIS)
Gmucova, K.; Nadazdy, V.; Vojtko, A.; Majkova, E.; Kotlar, M.
2013-01-01
Plasmonic sensors have recently attracted much attention. The past few decades have seen a massive and continued interest in studying electrochemical processes at artificially structured electrodes. Such electrochemical sensors provide sensitive, selective, and easy to use approaches to the detection of many chemical species, e.g. environmental pollutants, biomolecules, drugs etc. The issue raised in this paper is to study the kinetic of the diffusion towards plasmonic surfaces in dark and under illumination with white LED diode. The possibility to use anomalous charge transfer towards plasmonic surfaces in electrochemical sensorics will be discussed, too. (authors)
Lindvall, Jenny; Svensson, Gunilla; Caballero, Rodrigo
2017-06-01
Simulations with the Community Atmosphere Model version 5 (CAM5) are used to analyze the sensitivity of the large-scale circulation to changes in parameterizations of orographic surface drag and vertical diffusion. Many GCMs and NWP models use enhanced turbulent mixing in stable conditions to improve simulations, while CAM5 cuts off all turbulence at high stabilities and instead employs a strong orographic surface stress parameterization, known as turbulent mountain stress (TMS). TMS completely dominates the surface stress over land and reduces the near-surface wind speeds compared to simulations without TMS. It is found that TMS is generally beneficial for the large-scale circulation as it improves zonal wind speeds, Arctic sea level pressure and zonal anomalies of the 500-hPa stream function, compared to ERA-Interim. It also alleviates atmospheric blocking frequency biases in the Northern Hemisphere. Using a scheme that instead allows for a modest increase of turbulent diffusion at higher stabilities only in the planetary boundary layer (PBL) appears to in some aspects have a similar, although much smaller, beneficial effect as TMS. Enhanced mixing throughout the atmospheric column, however, degrades the CAM5 simulation. Evaluating the simulations in comparison with detailed measurements at two locations reveals that TMS is detrimental for the PBL at the flat grassland ARM Southern Great Plains site, giving too strong wind turning and too deep PBLs. At the Sodankylä forest site, the effect of TMS is smaller due to the larger local vegetation roughness. At both sites, all simulations substantially overestimate the boundary layer ageostrophic flow.
Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors
DEFF Research Database (Denmark)
Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.
2012-01-01
This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....
Slowdown of surface diffusion during early stages of bacterial colonization
Vourc'h, T.; Peerhossaini, H.; Léopoldès, J.; Méjean, A.; Chauvat, F.; Cassier-Chauvat, C.
2018-03-01
We study the surface diffusion of the model cyanobacterium Synechocystis sp. PCC6803 during the incipient stages of cell contact with a glass surface in the dilute regime. We observe a twitching motility with alternating immobile tumble and mobile run periods, resulting in a normal diffusion described by a continuous-time random walk with a coefficient of diffusion D . Surprisingly, D is found to decrease with time down to a plateau. This is observed only when the cyanobacterial cells are able to produce released extracellular polysaccharides, as shown by a comparative study between the wild-type strain and various polysaccharides-depleted mutants. The analysis of the trajectories taken by the bacterial cells shows that the temporal characteristics of their intermittent motion depend on the instantaneous fraction of visited sites during diffusion. This describes quantitatively the time dependence of D , related to the progressive surface coverage by the polysaccharides. The observed slowdown of the surface diffusion may constitute a basic precursor mechanism for microcolony formation and provides clues for controlling biofilm formation.
Directory of Open Access Journals (Sweden)
J. Y. Tang
2013-02-01
Full Text Available We describe a new top boundary condition (TBC for representing the air–soil diffusive exchange of a generic volatile tracer. This new TBC (1 accounts for the multi-phase flow of a generic tracer; (2 accounts for effects of soil temperature, pH, solubility, sorption, and desorption processes; (3 enables a smooth transition between wet and dry soil conditions; (4 is compatible with the conductance formulation for modeling air–water volatile tracer exchange; and (5 is applicable to site, regional, and global land models.
Based on the new TBC, we developed new formulations for bare-soil resistance and corresponding soil evaporation efficiency. The new soil resistance is predicted as the reciprocal of the harmonic sum of two resistances: (1 gaseous and aqueous molecular diffusion and (2 liquid mass flow resulting from the hydraulic pressure gradient between the soil surface and center of the topsoil control volume. We compared the predicted soil evaporation efficiency with those from several field and laboratory soil evaporation measurements and found good agreement with the typically observed two-stage soil evaporation curves. Comparison with the soil evaporation efficiency equation of Lee and Pielke (1992; hereafter LP92 indicates that their equation can overestimate soil evaporation when the atmospheric resistance is low and underestimate soil evaporation when the soil is dry. Using a synthetic inversion experiment, we demonstrated that using inverted soil resistance data from field measurements to derive empirical soil resistance formulations resulted in large uncertainty because (1 the inverted soil resistance data are always severely impacted by measurement error and (2 the derived empirical equation is very sensitive to the number of data points and the assumed functional form of the resistance.
We expect the application of our new TBC in land models will provide a consistent representation for the diffusive tracer
Energy Technology Data Exchange (ETDEWEB)
Olin, M.; Valkiainen, M.; Aalto, H. [VTT Chemical Technology, Espoo (Finland)
1997-12-01
This report includes both experimental and modelling parts. Also, a novel approach to the diffusion experiments is introduced, where ions of the same electric charge diffuse in opposite directions through the same rock sample. Six rock-types from Olkiluoto radioactive waste disposal investigation site were used in the experiments: granite, weathered granite, mica gneiss, weathered mica gneiss, tonalite and altered mica gneiss/migmatite. The experiments consisted of the determination of the effective diffusion coefficient and the rock capacity factor for tritium, chloride (Cl-36) and sodium (Na-22). The modelling consisted of a chemical model for small pores (< 100 nm), a model for counter ion diffusion and models for the laboratory experiments. 21 refs.
In vivo facilitated diffusion model.
Directory of Open Access Journals (Sweden)
Maximilian Bauer
Full Text Available Under dilute in vitro conditions transcription factors rapidly locate their target sequence on DNA by using the facilitated diffusion mechanism. However, whether this strategy of alternating between three-dimensional bulk diffusion and one-dimensional sliding along the DNA contour is still beneficial in the crowded interior of cells is highly disputed. Here we use a simple model for the bacterial genome inside the cell and present a semi-analytical model for the in vivo target search of transcription factors within the facilitated diffusion framework. Without having to resort to extensive simulations we determine the mean search time of a lac repressor in a living E. coli cell by including parameters deduced from experimental measurements. The results agree very well with experimental findings, and thus the facilitated diffusion picture emerges as a quantitative approach to gene regulation in living bacteria cells. Furthermore we see that the search time is not very sensitive to the parameters characterizing the DNA configuration and that the cell seems to operate very close to optimal conditions for target localization. Local searches as implied by the colocalization mechanism are only found to mildly accelerate the mean search time within our model.
A new model of anomalous phosphorus diffusion in silicon
International Nuclear Information System (INIS)
Budil, M.; Poetzl, H.; Stingeder, G.; Grasserbauer, M.
1989-01-01
A model is presented to describe the 'kink and tail' diffusion of phosphorus. The diffusion behaviour of phosphorus is expplained by the motion of phosphorus-interstitial and phosphorus-vacancy pairs in different charge states. The model yields the enhancement of diffusion in the tail region depending on surface concentration. Furthermore it yields the same selfdiffusion coefficient for interstitials as the gold diffusion experiments. A transformation of the diffusion equation was found to reduce the number of simulation equations. (author) 7 refs., 5 figs
Diffusion of particles on the patchwise bivariate surfaces
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
2015-01-01
Roč. 458, Feb (2015), s. 27-34 ISSN 0921-4526 R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941; GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : kinetic Monte Carlo simulations * lattice-gas model * patchwise lattice * surface diffusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.352, year: 2015
Extending the diffusion approximation to the boundary using an integrated diffusion model
Energy Technology Data Exchange (ETDEWEB)
Chen, Chen; Du, Zhidong; Pan, Liang, E-mail: liangpan@purdue.edu [School of Mechanical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States)
2015-06-15
The widely used diffusion approximation is inaccurate to describe the transport behaviors near surfaces and interfaces. To solve such stochastic processes, an integro-differential equation, such as the Boltzmann transport equation (BTE), is typically required. In this work, we show that it is possible to keep the simplicity of the diffusion approximation by introducing a nonlocal source term and a spatially varying diffusion coefficient. We apply the proposed integrated diffusion model (IDM) to a benchmark problem of heat conduction across a thin film to demonstrate its feasibility. We also validate the model when boundary reflections and uniform internal heat generation are present.
Extending the diffusion approximation to the boundary using an integrated diffusion model
Directory of Open Access Journals (Sweden)
Chen Chen
2015-06-01
Full Text Available The widely used diffusion approximation is inaccurate to describe the transport behaviors near surfaces and interfaces. To solve such stochastic processes, an integro-differential equation, such as the Boltzmann transport equation (BTE, is typically required. In this work, we show that it is possible to keep the simplicity of the diffusion approximation by introducing a nonlocal source term and a spatially varying diffusion coefficient. We apply the proposed integrated diffusion model (IDM to a benchmark problem of heat conduction across a thin film to demonstrate its feasibility. We also validate the model when boundary reflections and uniform internal heat generation are present.
Diffusion and surface alloying of gradient nanostructured metals
Directory of Open Access Journals (Sweden)
Zhenbo Wang
2017-03-01
Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.
Single atom self-diffusion on nickel surfaces
International Nuclear Information System (INIS)
Tung, R.T.; Graham, W.R.
1980-01-01
Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)
Modeling of Reaction Processes Controlled by Diffusion
International Nuclear Information System (INIS)
Revelli, Jorge
2003-01-01
Stochastic modeling is quite powerful in science and technology.The technics derived from this process have been used with great success in laser theory, biological systems and chemical reactions.Besides, they provide a theoretical framework for the analysis of experimental results on the field of particle's diffusion in ordered and disordered materials.In this work we analyze transport processes in one-dimensional fluctuating media, which are media that change their state in time.This fact induces changes in the movements of the particles giving rise to different phenomena and dynamics that will be described and analyzed in this work.We present some random walk models to describe these fluctuating media.These models include state transitions governed by different dynamical processes.We also analyze the trapping problem in a lattice by means of a simple model which predicts a resonance-like phenomenon.Also we study effective diffusion processes over surfaces due to random walks in the bulk.We consider different boundary conditions and transitions movements.We derive expressions that describe diffusion behaviors constrained to bulk restrictions and the dynamic of the particles.Finally it is important to mention that the theoretical results obtained from the models proposed in this work are compared with Monte Carlo simulations.We find, in general, excellent agreements between the theory and the simulations
Self-diffusion on copper surfaces
DEFF Research Database (Denmark)
Hansen, L.; Stoltze, Per; Jacobsen, Karsten Wedel
1991-01-01
The diffusion paths and activation energies of a Cu adatom on Cu(100), Cu(111), and Cu(110) are studied using the effective-medium theory to calculate the energetics. For the (100) and (110) faces, diffusion via an exchange mechanism is found to be important. The transition state for these paths ...
Bulk and surface controlled diffusion of fission gas atoms
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders D. [Los Alamos National Laboratory
2012-08-09
in UO{sub 2{+-}x}, which compare favorably to available experiments. This is an extension of previous work [13]. In particular, it applies improved chemistry models for the UO{sub 2{+-}x} nonstoichiometry and its impact on the fission gas activation energies. The derivation of these models follows the approach that used in our recent study of uranium vacancy diffusion in UO{sub 2} [14]. Also, based on the calculated DFT data we analyze vacancy enhanced diffusion mechanisms in the intermediate temperature regime. In addition to vacancy enhanced diffusion we investigate species transport on the (111) UO{sub 2} surface. This is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation, for which surface diffusion could be the rate-limiting transport step. Diffusion of such bubbles constitutes an alternative mechanism for mass transport in these materials.
Friction and diffusion dynamics of adsorbates at surfaces
Fusco, C.
2005-01-01
A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it
Radiation induced diffusion as a method to protect surface
International Nuclear Information System (INIS)
Baumvol, I.J.R.
1980-01-01
Radiation induced diffusion forms a coating adeherent and without interface on the surface of metalic substrates. This coating improves the behaviour of metal to corrosion and abrasion. The effect of radiation induced diffusion of tin and calcium on pure iron surface is described and analyzed in this work. (author) [pt
DEFF Research Database (Denmark)
Hjelt, T.; Vattulainen, Ilpo Tapio
2000-01-01
studies with chains of different lengths lead to a conclusion that, for a single diffusing chain, the memory contribution in E-A(T) decreases along with an increasing chain length and is almost negligible in the case of very long chains. Finally, we close this work by discussing our results in light......We study the coverage dependence of surface diffusion for chainlike molecules by the fluctuating-bond model with a Monte Carlo dynamics. The model includes short-ranged excluded volume interactions between different chains as well as an intrachain bond angle potential to describe the chain...... stiffness. Our primary aim is to consider the role played by chain stiffness and the resulting memory effects in tracer diffusion, and in particular their role in the effective tracer diffusion barrier E-A(T) extracted from the well-known Arrhenius form. We show that the memory effects in tracer diffusion...
Modeling Internet Diffusion in Developing Countries
Directory of Open Access Journals (Sweden)
Scott McCoy
2012-04-01
Full Text Available Despite the increasing importance of the Internet, there is little work that addresses the degree to which the models and theories of Internet diffusion in developed countries can be applied to Internet diffusion in developing countries. This paper presents the first attempt to address this issue through theory driven modeling of Internet diffusion. Consistent with previous research, our findings suggest that economic development and technology infrastructure are musts for Internet diffusion. Interestingly, users’ cognition and government policies can accelerate Internet diffusion only after a certain level of human rights has been reached in a developing country.
Stochastic models of technology diffusion
Energy Technology Data Exchange (ETDEWEB)
Horner, S.M.
1978-01-01
Simple stochastic models of epidemics have often been employed by economists and sociologists in the study of the diffusion of information or new technology. In the present theoretical inquiry the properties of a family of models related to these epidemic processes are investigated, and use of the results in the study of technical change phenomena is demonstrated. A moving limit to the level of productivity of capital is hypothesized, the exact increment is determined exogenously by basic or applied research carried on outside the industry. It is this level of latent productivity (LPRO) which fills the role of the ''disease'' which ''spreads'' through the industry. In the single advance models, LPRO is assumed to have moved forward at some point in time, after which an individual firm may advance to the limit by virtue of its own research and development or through imitation of the successful efforts of another firm. In the recurrent advance models, LPRO is assumed to increase at either a constant absolute or relative rate. The firms, in the course of their research and imitation efforts, follow behind LPRO. Using the methods of stochastic processes, it is shown that these models are equivalent to ergodic Markov chains. Based on an assumption of constant intensity of R and D effort, it is shown how the single and recurrent advance models reflect on Joseph Schumpeter's hypothesis that more concentrated industries tend to be more technologically advanced than less concentrated. The results corroborate the weakest version of the hypothesis: monopoly prices need not be higher than competitive prices.
Fractal model of anomalous diffusion
Gmachowski, Lech
2015-01-01
An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An...
Diffuse radiation models and monthly-average, daily, diffuse data for a wide latitude range
International Nuclear Information System (INIS)
Gopinathan, K.K.; Soler, A.
1995-01-01
Several years of measured data on global and diffuse radiation and sunshine duration for 40 widely spread locations in the latitude range 36° S to 60° N are used to develop and test models for estimating monthly-mean, daily, diffuse radiation on horizontal surfaces. Applicability of the clearness-index (K) and sunshine fraction (SSO) models for diffuse estimation and the effect of combining several variables into a single multilinear equation are tested. Correlations connecting the diffuse to global fraction (HdH) with K and SSO predict Hd values more accurately than their separate use. Among clearness-index and sunshine-fraction models, SSO models are found to have better accuracy if correlations are developed for wide latitude ranges. By including a term for declinations in the correlation, the accuracy of the estimated data can be marginally improved. The addition of latitude to the equation does not help to improve the accuracy further. (author)
Industrial diffusion models and technological standardization
International Nuclear Information System (INIS)
Carrillo-Hermosilla, J.
2007-01-01
Conventional models of technology diffusion have typically focused on the question of the rate of diffusion at which one new technology is fully adopted. The model described here provides a broader approach, from the perspective the extension of the diffusion of multiple technologies, and the related phenomenon of standardization. Moreover, most conventional research has characterized the diffusion process in terms of technology attributes or adopting firms attributes. Alternatively, we propose here a wide-ranging and consistent taxonomy of the relationships between the circumstances of an industry and the attributes of the technology standardization processes taking place within it. (Author) 100 refs
Nucleation of reaction-diffusion waves on curved surfaces
International Nuclear Information System (INIS)
Kneer, Frederike; Schöll, Eckehard; Dahlem, Markus A
2014-01-01
We study reaction-diffusion waves on curved two-dimensional surfaces, and determine the influence of curvature upon the nucleation and propagation of spatially localized waves in an excitable medium modelled by the generic FitzHugh–Nagumo model. We show that the stability of propagating wave segments depends crucially on the curvature of the surface. As they propagate, they may shrink to the uniform steady state, or expand, depending on whether they are smaller or larger, respectively, than a critical nucleus. This critical nucleus for wave propagation is modified by the curvature acting like an effective space-dependent local spatial coupling, similar to diffuson, thus extending the regime of propagating excitation waves beyond the excitation threshold of flat surfaces. In particular, a negative gradient of Gaussian curvature Γ, as on the outside of a torus surface (positive Γ), when the wave segment symmetrically extends into the inside (negative Γ), allows for stable propagation of localized wave segments remaining unchanged in size and shape, or oscillating periodically in size. (paper)
Diffusion in condensed matter methods, materials, models
Kärger, Jörg
2005-01-01
Diffusion as the process of particle transport due to stochastic movement is a phenomenon of crucial relevance for a large variety of processes and materials. This comprehensive, handbook- style survey of diffusion in condensed matter gives detailed insight into diffusion as the process of particle transport due to stochastic movement. Leading experts in the field describe in 23 chapters the different aspects of diffusion, covering microscopic and macroscopic experimental techniques and exemplary results for various classes of solids, liquids and interfaces as well as several theoretical concepts and models. Students and scientists in physics, chemistry, materials science, and biology will benefit from this detailed compilation.
DEFF Research Database (Denmark)
Mejlbro, Leif
1996-01-01
Fick's Second Law of Diffusion with time-dependent diffusioncoefficient and surface concentration is solved. Mimicking the classicalsolution, special time-dependent surface concentration functions areconsidered. These models are used in giving estimates of the lifetimeof the structure, when the c...... the concrete cover is given, as well as estimatesof the thickness of the concrete cover, when the expected lifetime is given.*Note: Book tilte: Durability of Concrete in Saline Environment...
Energy Technology Data Exchange (ETDEWEB)
Avila, R.E., E-mail: ravila@cchen.c [Departamento de Materiales Nucleares, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile); Pena, L.A.; Jimenez, J.C. [Departamento de Produccion y Servicios, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile)
2010-10-30
The release of tritium from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles, in batch experiments, is studied by means of temperature programmed desorption. Data reduction focuses on the analysis of the non-oxidized and oxidized tritium components in terms of release limited by diffusion from the bulk of ceramic grains, or by first or second order surface desorption. By analytical and numerical methods the in-furnace tritium release is deconvoluted from the ionization chamber transfer functions, for which a semi-empirical form is established. The release from Li{sub 2}TiO{sub 3} follows second order desorption kinetics, requiring a temperature for a residence time of 1 day (T{sub 1dRes}) of 620 K, and 603 K, of the non-oxidized, and the oxidized components, respectively. The release from Li{sub 2}ZrO{sub 3} appears as limited by either diffusion from the bulk of the ceramic grains, or by first order surface desorption, the first possibility being the more probable. The respective values of T{sub 1dRes} for the non-oxidized component are 661 K, according to the first order surface desorption model, and 735 K within the bulk diffusion limited model.
Diffusion processes in bombardment-induced surface topography
International Nuclear Information System (INIS)
Robinson, R.S.
1984-01-01
The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)
Nonthermal Effects of Photon Illumination on Surface Diffusion
International Nuclear Information System (INIS)
Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E.G.
1998-01-01
Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally for the first time. Activation energies and preexponential factors for diffusion of germanium and indium on silicon change substantially in response to illumination by photons having energies greater than the substrate band gap. Results depend on doping type. Ionization of surface vacancies by photogenerated charge carriers seems to play a key role. The results have significant implications for aspects of microelectronics fabrication governed by surface mobility. copyright 1998 The American Physical Society
Cu diffusion across a clean Si(111) surface
Dolbak, A E; Olshanetskij, B Z
2001-01-01
Cu diffusion across a clean Si(111) surface has been studied by the Auger electron spectroscopy and the low energy electron diffraction. It has been established that enhanced copper density areas with noticeable boundaries manifest themselves and a Si(111) - 5 x 5 - Cu surface phase is formed as a result of diffusion. It has been shown that the copper transport along Si(111) surface goes on according to a solid state spreading process, which is known as the unwinding carpet mechanism. The temperature dependence for the Cu diffusion coefficients D sub C sub u on the Si(111) surface is obtained and this dependence takes the form: D sub C sub u = 10 sup 4 exp(-1.9/kT) cm sup 2 /s
Modifying glass surfaces via internal diffusion
DEFF Research Database (Denmark)
Smedskjaer, M.M.; Yue, Y.Z.; Deubener, J.
2010-01-01
The surface chemistry and structure of iron-bearing silicate glasses have been modified by means of heat-treatment around the glass transition temperature under different gaseous media at ambient pressure. When the glasses are heat-treated in atmospheric air, oxidation of Fe2+ to Fe3+ occurs, which......- ions in the network and their strong attraction to the modifying ions, whereas the latter is due to the requirement of the charge neutrality. The role of N3- in driving OD is verified by the composition profile of the surface layer of the glass treated in pure N-2 gas. The OD exerts pronounced impacts...
Diffusion of N adatoms on the Fe(100) surface
DEFF Research Database (Denmark)
Pedersen, M. Ø.; Österlund, L.; Mortensen, Jens Jørgen
2000-01-01
The diffusion of individual N adatoms on Fe(100) has been studied using scanning tunneling microscopy and ab initio density functional theory (DFT) calculations. The measured diffusion barrier for isolated N adatoms is E-d = (0.92 +/- 0.04) eV, with a prefactor of nu(0) = 4.3 x 10(12) s(-1), which...... is in quantitative agreement with the DFT calculations. Thr; diffusion is strongly coupled to lattice distortions. and. as a consequence, the presence of other N adatoms introduces an anisotropy in the diffusion. Based on experimentally determined values of the diffusion barriers and adsorbate......-adsorbate: interactions, the potential energy surface experienced by a N adatom is determined....
Sedimentary radioactive tracers and diffusive models
International Nuclear Information System (INIS)
Carroll, J.; Lerche, I.
2010-01-01
This paper examines the underlying assumptions and consequences of applying a steady-state equation to sediment profiles of radioactive tracers in order to deconvolute sedimentation from bioturbation processes modelled as a diffusive type process. Several factors follow immediately from this investigation: (i)if the observed radioactive concentration increases with depth over any finite depth range then the proposed steady-state, constant flux equation is not applicable. Any increase in radioactive concentration with depth implies a negative mixing coefficient which is a physical impossibility; (ii)when the radioactive concentration systematically decreases with increasing sedimentary depth then solutions to the steady-state conservation equation exist only when either the constant solid state flux to the sediment surface is small enough so that a positive mixing coefficient results or when the mixing coefficient is small enough so that a positive flux results. If the radioactive concentration, porosity and/or density of the solid phase are such that the proposed equation is inappropriate (because no physically acceptable solution exists) then one must abandon the proposed steady-state equation. Further: if the flux of solid sediment to the sediment surface varies with time then, of course, a steady-state conservation equation is also inappropriate. Simple examples illustrate that the assumption of steady-state restricts the applicability of this modelling approach to a relatively small sub-set of expected situations in the real world.
A tracer diffusion model derived from microstructure
International Nuclear Information System (INIS)
Lehikoinen, Jarmo; Muurinen, Arto; Olin, Markus
2012-01-01
Document available in extended abstract form only. Full text of publication follows: Numerous attempts have been made to explain the tracer diffusion of various solutes in compacted clays. These attempts have commonly suffered from an inability to describe the diffusion of uncharged and charged solutes with a single unified model. Here, an internally consistent approach to describing the diffusion of solutes in a heterogeneous porous medium, such as compacted bentonite, in terms of its microstructure is presented. The microstructure is taken to be represented by a succession of unit cells, which consist of two consecutive regions (Do, 1996). In the first region, the diffusion is viewed to occur in two parallel paths: one through microcrystalline units (micropores) and the other through meso-pores between the microcrystalline units. Solutes exiting these two paths are then joined together to continue diffusing through the second, disordered, region, connecting the two adjacent microcrystalline units. Adsorption (incl. co-ion exclusion) is thought to occur in the micropores, whereas meso-pores and the disordered region accommodate free species alone. Co-ions are also assumed to experience transfer resistance into and out of the micropores, which is characterized in the model by a transmission coefficient. Although the model is not new per se, its application to compacted clays has never been attempted before. It is shown that in the limit of strong adsorption, the effective diffusivity is limited from above only by the microstructural parameters of the model porous medium. As intuitive and logical as this result may appear, it has not been proven before. In the limit of vanishing disordered region, the effective diffusivity is no longer explicitly constrained by any of the model parameters. The tortuosity of the diffusion path, i.e. the quotient of the actual diffusion path length in the porous-medium coordinates and the characteristic length of the laboratory frame
Diffusion of bacteriophages through artificial biofilm models.
Hu, Jun; Miyanaga, Kazuhiko; Tanji, Yasunori
2012-01-01
The simple two-chamber diffusion method was improved to study the diffusion properties of bacteriophage (phage) T4 through a model biofilm agarose gel membrane (AGM) embedded with dead host Escherichia coli K12 cells. The apparent diffusion coefficient (D(app) ) of phage T4 was calculated to be 2.4 × 10(-12) m(2) /s in 0.5% AGM, which was lower than the coefficient of 4.2 × 10(-12) m(2) /s in 0.5% AGM without host cells. The phage adsorption process by dead host cells slowed the apparent phage diffusion. The Langmuir adsorption equation was used to simulate phage adsorption under different multiplicity of infections (MOIs); the maximum adsorbed phage MOI was calculated to be 417 PFU/CFU, and the Langmuir adsorption constant K(L) was 6.9 × 10(-4) CFU/PFU. To evaluate the effects of phage proliferation on diffusion, a simple syringe-based biofilm model was developed. The phage was added into this homogenous biofilm model when the host cells were in an exponential growth phase, and the apparent diffusion coefficient was greatly enhanced. We concluded that D(app) of phages through biofilms could be distinctly affected by phage adsorption and proliferation, and that the idea of D(app) and these methods can be used to study diffusion properties through real biofilms. Copyright © 2011 American Institute of Chemical Engineers (AIChE).
Effects of quenched impurities on surface diffusion, spreading, and ordering of O/W(110)
DEFF Research Database (Denmark)
Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.
2002-01-01
We study how quenched impurities affect the surface diffusion and ordering of strongly interacting adsorbate atoms on surfaces. To this end, we carry out Monte Carlo simulations for a lattice-gas model of O/W(110), including small concentrations of immobile impurities which block their adsorption...
Semiconductor surface diffusion: Nonthermal effects of photon illumination
International Nuclear Information System (INIS)
Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E. G.
2000-01-01
Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally. Activation energies and pre-exponential factors for diffusion of germanium, indium, and antimony on silicon change by up to 0.3 eV and two orders of magnitude, respectively, in response to illumination by photons having energies greater than the substrate band gap. The parameters decrease for n-type material and increase for p-type material. Aided by results from photoreflectance spectroscopy, we suggest that motion of the surface quasi-Fermi-level for minority carriers accounts for much of the effect by changing the charge states of surface vacancies. An additional adatom-vacancy complexation mechanism appears to operate on p-type substrates. The results have significant implications for aspects of microelectronics fabrication by rapid thermal processing that are governed by surface mobility. (c) 2000 The American Physical Society
DIFFUSION MECHANISM OF CU ADATOMS ON A CU(001) SURFACE
BARKEMA, GT; BREEMAN, M; PASQUARELLO, A; CAR, R
1994-01-01
Ab initio calculations on surface diffusion of Cu adatoms on Cu(001) are presented. The hopping mechanism with a calculated energy barrier of 0.69 eV is found to be favorable over the exchange mechanism with 0.97 eV. We find from the geometry relaxations that adatoms are significantly attracted to
Interferometric method for measuring high velocities of diffuse surfaces
International Nuclear Information System (INIS)
Maron, Y.
1978-01-01
An interferometric method for measuring the displacement of diffuse surfaces moving with velocities of a few microsecond is presented. The method utilizes the interference between two light beams reflected from a constant area of the moving surface at two different angles. It enables the detection of high rate velocity variations. Light source of a fairly low temporal coherence and power around 100mW is needed. (author)
Agent-based modelling of cholera diffusion
Augustijn-Beckers, Petronella; Doldersum, Tom; Useya, Juliana; Augustijn, Dionysius C.M.
2016-01-01
This paper introduces a spatially explicit agent-based simulation model for micro-scale cholera diffusion. The model simulates both an environmental reservoir of naturally occurring V.cholerae bacteria and hyperinfectious V. cholerae. Objective of the research is to test if runoff from open refuse
Mockler, Eva; Reaney, Simeon; Mellander, Per-Erik; Wade, Andrew; Collins, Adrian; Arheimer, Berit; Bruen, Michael
2017-04-01
The agricultural sector is the most common suspected source of nutrient pollution in Irish rivers. However, it is also often the most difficult source to characterise due to its predominantly diffuse nature. Particulate phosphorus in surface water and dissolved phosphorus in groundwater are of particular concern in Irish water bodies. Hence the further development of models and indices to assess diffuse sources of contaminants are required for use by the Irish Environmental Protection Agency (EPA) to provide support for river basin planning. Understanding connectivity in the landscape is a vital component of characterising the source-pathway-receptor relationships for water-borne contaminants, and hence is a priority in this research. The DIFFUSE Project will focus on connectivity modelling and incorporation of connectivity into sediment, nutrient and pesticide risk mapping. The Irish approach to understanding and managing natural water bodies has developed substantially in recent years assisted by outputs from multiple research projects, including modelling and analysis tools developed during the Pathways and CatchmentTools projects. These include the Pollution Impact Potential (PIP) maps, which are an example of research output that is used by the EPA to support catchment management. The PIP maps integrate an understanding of the pollution pressures and mobilisation pathways and, using the source-pathways-receptor model, provide a scientific basis for evaluation of mitigation measures. These maps indicate the potential risk posed by nitrate and phosphate from diffuse agricultural sources to surface and groundwater receptors and delineate critical source areas (CSAs) as a means of facilitating the targeting of mitigation measures. Building on this previous research, the DIFFUSE Project will develop revised and new catchment managements tools focused on connectivity, sediment, phosphorus and pesticides. The DIFFUSE project will strive to identify the state
Dimer-flipping-assisted diffusion on a Si(001) surface
International Nuclear Information System (INIS)
Zi, J.; Min, B. J.; Lu, Y.; Wang, C. Z.; Ho, K. M.
2000-01-01
The binding sites and diffusion pathways of Si adatoms on a c(4x2) reconstructed Si(001) surface are investigated by a tight-binding method with an environment-dependent silicon potential in conjunction with ab initio calculations using the Car--Parrinello method. A new diffusion pathway along the trough edge driven by dimer flipping is found with a barrier of 0.74 eV, comparable to that of 0.68 eV along the top of the dimer rows
International Nuclear Information System (INIS)
Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Koehler, Stephan; Jones, Kevin C.; Tysklind, Mats; Wiberg, Karin
2010-01-01
The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day -1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons. - The fate of hydrophobic organic contaminants in a boreal forest catchment is connected to the flux of dissolved organic carbon and seasonal deposition.
Zhan, Hanyu; Voelz, David G.
2016-12-01
The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.
Parameter estimation in fractional diffusion models
Kubilius, Kęstutis; Ralchenko, Kostiantyn
2017-01-01
This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides s...
Technological diffusion in the Ramsey model
Czech Academy of Sciences Publication Activity Database
Duczynski, Petr
2002-01-01
Roč. 1, č. 3 (2002), s. 243-250 ISSN 1607-0704 Institutional research plan: CEZ:AV0Z7085904 Keywords : neoclassical growth model * technological diffusion Subject RIV: AH - Economics http://www.ijbe.org/table%20of%20content/pdf/vol1-3/06.pdf
Diffusion of Macromolecules in Model Oral Biofilms▿
Takenaka, Shoji; Pitts, Betsey; Trivedi, Harsh M.; Stewart, Philip S.
2009-01-01
The diffusive penetration of fluorescently tagged macromolecular solutes into model oral biofilms was visualized by time-lapse microscopy. All of the solutes tested, including dextrans, proteases, green fluorescent protein, and immunoglobulin G, accessed the interior of cell clusters 100 to 200 μm in diameter within 3 min or less. PMID:19168660
International Nuclear Information System (INIS)
Cousty, J.P.
1981-12-01
In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr
Directory of Open Access Journals (Sweden)
E. L. Davin
2012-05-01
Full Text Available The influence of land processes and in particular of diffuse/direct radiation partitioning on surface fluxes and associated regional-scale climate feedbacks is investigated using ERA-40 driven simulations over Europe performed with the COSMO-CLM^{2} Regional Climate Model (RCM. Two alternative Land Surface Models (LSMs, a 2nd generation LSM (TERRA_ML and a more advanced 3rd generation LSM (Community Land Model version 3.5, and two versions of the atmospheric component are tested, as well as a revised coupling procedure allowing for variations in diffuse/direct light partitioning at the surface, and their accounting by the land surface component.
Overall, the RCM performance for various variables (e.g., surface fluxes, temperature and precipitation is improved when using the more advanced 3rd generation LSM. These improvements are of the same order of magnitude as those arising from a new version of the atmospheric component, demonstrating the benefit of using a realistic representation of land surface processes for regional climate simulations. Taking into account the variability in diffuse/direct light partitioning at the surface further improves the model performance in terms of summer temperature variability at the monthly and daily time scales. Comparisons with observations show that the RCM realistically captures temporal variations in diffuse/direct light partitioning as well as the evapotranspiration sensitivity to these variations. Our results suggest that a modest but consistent fraction (up to 3 % of the overall variability in summer temperature can be explained by variations in the diffuse to direct ratio.
NEW CAR DEMAND MODELING AND FORECASTING USING BASS DIFFUSION MODEL
Zuhaimy Ismail; Noratikah Abu
2013-01-01
Forecasting model of new product demand has been developed and applied to forecast new vehicle demand in Malaysia. Since the publication of the Bass model in 1969, innovation of new diffusion theory has sparked considerable research among marketing science scholars, operational researchers and mathematicians. The building of Bass diffusion model for forecasting new product within the Malaysian society is presented in this study. The proposed model represents the spread level of new Proton car...
Diffuse solar radiation estimation models for Turkey's big cities
International Nuclear Information System (INIS)
Ulgen, Koray; Hepbasli, Arif
2009-01-01
A reasonably accurate knowledge of the availability of the solar resource at any place is required by solar engineers, architects, agriculturists, and hydrologists in many applications of solar energy such as solar furnaces, concentrating collectors, and interior illumination of buildings. For this purpose, in the past, various empirical models (or correlations) have been developed in order to estimate the solar radiation around the world. This study deals with diffuse solar radiation estimation models along with statistical test methods used to statistically evaluate their performance. Models used to predict monthly average daily values of diffuse solar radiation are classified in four groups as follows: (i) From the diffuse fraction or cloudness index, function of the clearness index, (ii) From the diffuse fraction or cloudness index, function of the relative sunshine duration or sunshine fraction, (iii) From the diffuse coefficient, function of the clearness index, and (iv) From the diffuse coefficient, function of the relative sunshine duration or sunshine fraction. Empirical correlations are also developed to establish a relationship between the monthly average daily diffuse fraction or cloudness index (K d ) and monthly average daily diffuse coefficient (K dd ) with the monthly average daily clearness index (K T ) and monthly average daily sunshine fraction (S/S o ) for the three big cities by population in Turkey (Istanbul, Ankara and Izmir). Although the global solar radiation on a horizontal surface and sunshine duration has been measured by the Turkish State Meteorological Service (STMS) over all country since 1964, the diffuse solar radiation has not been measured. The eight new models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in three big cites are validated, and thus, the most accurate model is selected for guiding future projects. The new models are then compared with the 32 models available in the
Modelling Thermal Diffusivity of Differently Textured Soils
Lukiashchenko, K. I.; Arkhangelskaya, T. A.
2018-02-01
A series of models has been proposed for estimating thermal diffusivity of soils at different water contents. Models have been trained on 49 soil samples with the texture range from sands to silty clays. The bulk density of the studied soils varied from 0.86 to 1.82 g/cm3; the organic carbon was between 0.05 and 6.49%; the physical clay ranged from 1 to 76%. The thermal diffusivity of undisturbed soil cores measured by the unsteady-state method varied from 0.78×10-7 m2/s for silty clay at the water content of 0.142 cm3/cm3 to 10.09 × 10-7 m2/s for sand at the water content of 0.138 cm3/cm3. Each experimental curve was described by the four-parameter function proposed earlier. Pedotransfer functions were then developed to estimate the parameters of the thermal diffusivity vs. water content function from data on soil texture, bulk density, and organic carbon. Models were tested on 32 samples not included in the training set. The root mean square errors of the best-performing models were 17-38%. The models using texture data performed better than the model using only data on soil bulk density and organic carbon.
International Nuclear Information System (INIS)
Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian
2012-01-01
The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)
Cleaning of diffusion bonding surface by argon ion bombardment treatment
Wang, Airu; Ohashi, Osamu; Yamaguchi, Norio; Aoki, Masanori; Higashi, Yasuo; Hitomi, Nobuteru
2003-05-01
The specimens of oxygen-free high conductivity copper, SUS304L stainless steel and pure iron were treated by argon ion bombardment and then were bonded by diffusion bonding method. The effects of argon ion bombardment treatment on faying surface morphology, tensile strength of bonding joints and inclusions at the fracture surface were investigated. The results showed that argon ion bombardment treatment was effective to remove the oxide film and contamination at the faying surface and improve the quality of joints. The tensile strength of the bonded joints was improved, and minimum bonding temperature to make the metallic bonding at the interface was lowered by argon ion bombardment treatment. At the joints with argon ion bombardment treatment, ductile fractured surface was seen and the amount of inclusions was obviously decreased.
Simulation of near-surface proton-stimulated diffusion of boron in silicon
International Nuclear Information System (INIS)
Aleksandrov, O. V.; Kozlovski, V. V.
2008-01-01
A quantitative model for near-surface redistribution of doping impurity in silicon in the course of proton-stimulated diffusion is developed for the first time. According to the model, the near-surface peak of the impurity concentration is caused by migration of neutral impurity-self-interstitial pairs to the surface with subsequent decomposition of these pairs and accumulation of the impurity at the silicon surface within a thin layer (referred to as δ-doped layer). The depletion and enhancement regions that are found deeper than the near-surface concentration peak are caused by expulsion of ionized impurity by an electric field from the near-surface region of the field penetration. The field appears due to the charge formed in the natural-oxide film at the silicon surface as a result of irradiation with protons. The diffusion-kinetic equations for the impurity, self-interstitials, vacancies, and impurity-self-interstitial pairs were solved numerically simultaneously with the Poisson equation. It is shown that the results of calculations are in quantitative agreement with experimental data on the proton-stimulated diffusion of boron impurity in the near-surface region of silicon
Estimation and prediction under local volatility jump-diffusion model
Kim, Namhyoung; Lee, Younhee
2018-02-01
Volatility is an important factor in operating a company and managing risk. In the portfolio optimization and risk hedging using the option, the value of the option is evaluated using the volatility model. Various attempts have been made to predict option value. Recent studies have shown that stochastic volatility models and jump-diffusion models reflect stock price movements accurately. However, these models have practical limitations. Combining them with the local volatility model, which is widely used among practitioners, may lead to better performance. In this study, we propose a more effective and efficient method of estimating option prices by combining the local volatility model with the jump-diffusion model and apply it using both artificial and actual market data to evaluate its performance. The calibration process for estimating the jump parameters and local volatility surfaces is divided into three stages. We apply the local volatility model, stochastic volatility model, and local volatility jump-diffusion model estimated by the proposed method to KOSPI 200 index option pricing. The proposed method displays good estimation and prediction performance.
Optimal information diffusion in stochastic block models.
Curato, Gianbiagio; Lillo, Fabrizio
2016-09-01
We use the linear threshold model to study the diffusion of information on a network generated by the stochastic block model. We focus our analysis on a two-community structure where the initial set of informed nodes lies only in one of the two communities and we look for optimal network structures, i.e., those maximizing the asymptotic extent of the diffusion. We find that, constraining the mean degree and the fraction of initially informed nodes, the optimal structure can be assortative (modular), core-periphery, or even disassortative. We then look for minimal cost structures, i.e., those for which a minimal fraction of initially informed nodes is needed to trigger a global cascade. We find that the optimal networks are assortative but with a structure very close to a core-periphery graph, i.e., a very dense community linked to a much more sparsely connected periphery.
Modification of the glass surface induced by redox reactions and internal diffusion processes
DEFF Research Database (Denmark)
Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng
In this paper we report a novel way to modify the glass surface in favor of some physical performances. The main step is to perform iso-thermal treatments on the selected silicate glasses containing transition metal at temperatures near the glass transition temperature for various durations under...... different gases. As a result, we have observed a striking phenomenon, i.e., the outward diffusion of divalent cations occurs not only under an oxidizing atmosphere of heat-treatment, but also under nitrogen, even under reducing atmospheres like H2/N2 (10/90). The extent of the cationic diffusion depends...... on temperature and duration of heat-treatments. The mechanism of the diffusion depends on the type of the gases used for the heat-treatments. In this paper we propose several possible models describing mechanisms of the cationic diffusion, and hence, of the formation of the nano-layer. We also report the effect...
Laser-induced generation of surface periodic structures in media with nonlinear diffusion
Zhuravlev, V. M.; Zolotovskii, I. O.; Korobko, D. A.; Morozov, V. M.; Svetukhin, V. V.; Yavtushenko, I. O.; Yavtushenko, M. S.
2017-12-01
A model of fast formation of high-contrast periodic structure appearing on a semiconductor surface under action of laser radiation is proposed. The process of growing a surface structure due to the interaction surface plasmon- polaritons excited on nonequilibrium electrons with incident laser radiation are considered in the framework of a medium with nonlinear diffusion of nonequilibrium carriers (defects). A resonance effect of superfast pico- and subpicosecond amplification of the plasmon-polariton structure generated on the surface, the realization of which can result in a high-contrast defect lattice.
Lohmann, R.; Jurado Cojo, E.; Dijkstra, H.A.; Dachs, J.
2013-01-01
Here we estimate the importance of vertical eddy diffusion in removing perfluorooctanoic acid (PFOA) from the surface Ocean and assess its importance as a global sink. Measured water column profiles of PFOA were reproduced by assuming that vertical eddy diffusion in a 3-layer ocean model is the sole
Modeling the reemergence of information diffusion in social network
Yang, Dingda; Liao, Xiangwen; Shen, Huawei; Cheng, Xueqi; Chen, Guolong
2018-01-01
Information diffusion in networks is an important research topic in various fields. Existing studies either focus on modeling the process of information diffusion, e.g., independent cascade model and linear threshold model, or investigate information diffusion in networks with certain structural characteristics such as scale-free networks and small world networks. However, there are still several phenomena that have not been captured by existing information diffusion models. One of the prominent phenomena is the reemergence of information diffusion, i.e., a piece of information reemerges after the completion of its initial diffusion process. In this paper, we propose an optimized information diffusion model by introducing a new informed state into traditional susceptible-infected-removed model. We verify the proposed model via simulations in real-world social networks, and the results indicate that the model can reproduce the reemergence of information during the diffusion process.
Anomalous diffusion in a symbolic model
International Nuclear Information System (INIS)
Ribeiro, H V; Lenzi, E K; Mendes, R S; Santoro, P A
2011-01-01
In this work, we investigate some statistical properties of symbolic sequences generated by a numerical procedure in which the symbols are repeated following the power-law probability density. In this analysis, we consider that the sum of n symbols represents the position of a particle in erratic movement. This approach reveals a rich diffusive scenario characterized by non-Gaussian distribution and, depending on the power-law exponent or the procedure used to build the walker, we may have superdiffusion, subdiffusion or usual diffusion. Additionally, we use the continuous-time random walk framework to compare the analytic results with the numerical data, thereby finding good agreement. Because of its simplicity and flexibility, this model can be a candidate for describing real systems governed by power-law probability densities.
Macroscopic diffusion models for precipitation in crystalline gallium arsenide
Energy Technology Data Exchange (ETDEWEB)
Kimmerle, Sven-Joachim Wolfgang
2009-09-21
Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins- Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, and is well understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)
The studies of scale surface produced on outer diffusion layers
Directory of Open Access Journals (Sweden)
J. Augustyn-Pieniążek
2011-04-01
Full Text Available In this study at attempt was made to examine the scale formed on ferritic-austenitic duplex type steel subjected to previous thermochemical treatment. The treatment consisted in diffusion aluminising in a metallising mixture composed of Fe-Al powder. As an activator, ammonium chloride (NH4Cl added in an amount of 2 wt.% was used. Then, both the base material and samples with the diffusiondeposited surface layers were oxidised at 1000°C in the air. Thus formed scales were identified by light microscopy, SEM and X-ray phase analysis. The aim of the oxidation tests carried out under isothermal conditions was to compare the scale morphology when obtained on untreated substrate material and on the surface layers rich in aluminium.
Cheng, S. J.; Steiner, A. L.; Nadelhoffer, K. J.
2014-12-01
Accurately modeling atmospheric CO2 removal by terrestrial ecosystems requires an understanding of how atmospheric conditions change the rate of photosynthesis across major vegetation types. Diffuse light, which is created from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. To determine how cloud conditions affect carbon uptake through its influence on diffuse light, we quantify the relationship between cloud optical thickness, which indicates surface light attenuation by clouds, and surface diffuse light. We then examine the relationship between cloud optical thickness and gross primary productivity (GPP) to determine whether cloud properties could modulate GPP in temperate ecosystems. Surface diffuse light and GPP data are obtained from publically available Ameriflux data (Mead Crop sites, University of Michigan Biological Station, Morgan Monroe, and Howland Forest) and cloud optical thickness data over the Ameriflux sites are retrieved from NASA's Moderate Resolution Imaging Spetroradiometer. We compare the response of GPP to cloud optical thickness between croplands and forests, as well as within ecosystem types to determine ecosystem-specific responses and the role of plant community composition on ecosystem-level GPP under varying cloud conditions. By linking atmospheric cloud properties to surface light conditions and ecosystem carbon fluxes, we refine understanding of land-atmosphere carbon cycling and how changes in atmospheric cloud conditions may influence the future of the land carbon sink.
Lunar surface vehicle model competition
1990-01-01
During Fall and Winter quarters, Georgia Tech's School of Mechanical Engineering students designed machines and devices related to Lunar Base construction tasks. These include joint projects with Textile Engineering students. Topics studied included lunar environment simulator via drop tower technology, lunar rated fasteners, lunar habitat shelter, design of a lunar surface trenching machine, lunar support system, lunar worksite illumination (daytime), lunar regolith bagging system, sunlight diffusing tent for lunar worksite, service apparatus for lunar launch vehicles, lunar communication/power cables and teleoperated deployment machine, lunar regolith bag collection and emplacement device, soil stabilization mat for lunar launch/landing site, lunar rated fastening systems for robotic implementation, lunar surface cable/conduit and automated deployment system, lunar regolith bagging system, and lunar rated fasteners and fastening systems. A special topics team of five Spring quarter students designed and constructed a remotely controlled crane implement for the SKITTER model.
Generating a Simulated Fluid Flow Over an Aircraft Surface Using Anisotropic Diffusion
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.
Reaction-diffusion pulses: a combustion model
International Nuclear Information System (INIS)
Campos, Daniel; Llebot, Josep Enric; Fort, Joaquim
2004-01-01
We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations
Direct measurement of Cu surface self-diffusion on a checked surface
International Nuclear Information System (INIS)
Cousty, Jacques; Peix, Roger; Perraillon, Bernard.
1976-01-01
A radiotracer technique ( 64 Cu) was developed to measure surface diffusion on copper surfaces of total impurity concentration not exceeding some 10 -3 monolayers. The apparatus used consists of a slow electron diffraction device, an Auger analysis spectrometer (CMA), an ion gun and an evaporation device assembled in an ultra-vacuum chamber holding a residual pressure below 10 -10 Torr. A sample handler enables the surface studied to be positioned in front of each of these instruments. During the diffusion treatment the chemical composition of the surface is checked intermittently, and afterwards the spread of the deposit is measured outside the ultravacuum chamber. Slices several microns thick are removed and dissolved separately in dishes containing HNO 3 . The activity is then measured with a flow counter [fr
The significance of vertical moisture diffusion on drifting snow sublimation near snow surface
Huang, Ning; Shi, Guanglei
2017-12-01
Sublimation of blowing snow is an important parameter not only for the study of polar ice sheets and glaciers, but also for maintaining the ecology of arid and semi-arid lands. However, sublimation of near-surface blowing snow has often been ignored in previous studies. To study sublimation of near-surface blowing snow, we established a sublimation of blowing snow model containing both a vertical moisture diffusion equation and a heat balance equation. The results showed that although sublimation of near-surface blowing snow was strongly reduced by a negative feedback effect, due to vertical moisture diffusion, the relative humidity near the surface does not reach 100 %. Therefore, the sublimation of near-surface blowing snow does not stop. In addition, the sublimation rate near the surface is 3-4 orders of magnitude higher than that at 10 m above the surface and the mass of snow sublimation near the surface accounts for more than half of the total snow sublimation when the friction wind velocity is less than about 0.55 m s-1. Therefore, the sublimation of near-surface blowing snow should not be neglected.
Speckle noise reduction for computer generated holograms of objects with diffuse surfaces
Symeonidou, Athanasia; Blinder, David; Ahar, Ayyoub; Schretter, Colas; Munteanu, Adrian; Schelkens, Peter
2016-04-01
Digital holography is mainly used today for metrology and microscopic imaging and is emerging as an important potential technology for future holographic television. To generate the holographic content, computer-generated holography (CGH) techniques convert geometric descriptions of a 3D scene content. To model different surface types, an accurate model of light propagation has to be considered, including for example, specular and diffuse reflection. In previous work, we proposed a fast CGH method for point cloud data using multiple wavefront recording planes, look-up tables (LUTs) and occlusion processing. This work extends our method to account for diffuse reflections, enabling rendering of deep 3D scenes in high resolution with wide viewing angle support. This is achieved by modifying the spectral response of the light propagation kernels contained by the look-up tables. However, holograms encoding diffuse reflective surfaces depict significant amounts of speckle noise, a problem inherent to holography. Hence, techniques to improve the reduce speckle noise are evaluated in this paper. Moreover, we propose as well a technique to suppress the aperture diffraction during numerical, viewdependent rendering by apodizing the hologram. Results are compared visually and in terms of their respective computational efficiency. The experiments show that by modelling diffuse reflection in the LUTs, a more realistic yet computationally efficient framework for generating high-resolution CGH is achieved.
Azimi, Mohammad; Jamali, Yousef; Mofrad, Mohammad R K
2011-01-01
Diffusion plays a key role in many biochemical reaction systems seen in nature. Scenarios where diffusion behavior is critical can be seen in the cell and subcellular compartments where molecular crowding limits the interaction between particles. We investigate the application of a computational method for modeling the diffusion of molecules and macromolecules in three-dimensional solutions using agent based modeling. This method allows for realistic modeling of a system of particles with different properties such as size, diffusion coefficients, and affinity as well as the environment properties such as viscosity and geometry. Simulations using these movement probabilities yield behavior that mimics natural diffusion. Using this modeling framework, we simulate the effects of molecular crowding on effective diffusion and have validated the results of our model using Langevin dynamics simulations and note that they are in good agreement with previous experimental data. Furthermore, we investigate an extension of this framework where single discrete cells can contain multiple particles of varying size in an effort to highlight errors that can arise from discretization that lead to the unnatural behavior of particles undergoing diffusion. Subsequently, we explore various algorithms that differ in how they handle the movement of multiple particles per cell and suggest an algorithm that properly accommodates multiple particles of various sizes per cell that can replicate the natural behavior of these particles diffusing. Finally, we use the present modeling framework to investigate the effect of structural geometry on the directionality of diffusion in the cell cytoskeleton with the observation that parallel orientation in the structural geometry of actin filaments of filopodia and the branched structure of lamellipodia can give directionality to diffusion at the filopodia-lamellipodia interface.
Averaging of diffusing contaminant concentrations in atmosphere surface layer
International Nuclear Information System (INIS)
Ivanov, E.A.; Ramzina, T.V.
1985-01-01
Calculations permitting to average concentration fields of diffusing radioactive contaminant coming from the NPP exhaust stack in the atmospheric surface layer are given. Formulae of contaminant concentration field calculation are presented; it depends on the average wind direction value (THETA) for time(T) and stability of this direction (σsub(tgTHETA) or σsub(THETA)). Probability of wind direction deviation from the average value for time T is satisfactory described by the Gauss law. With instability increase in the atmosphere σ increases, when wind velocity increasing the values of σ decreases for all types of temperature gradients. Nonuniformity of σ value dependence on averaging time T is underlined, that requires accurate choice of σsub(tgTHETA) and σsub(THETA) parameters in calculations
Correlation and dating of Quaternary alluvial-fan surfaces using scarp diffusion
Hsu, Leslie; Pelletier, Jon D.
2004-06-01
Great interest has recently been focused on dating and interpreting alluvial-fan surfaces. As a complement to the radiometric methods often used for surface-exposure dating, this paper illustrates a rapid method for correlating and dating fan surfaces using the cross-sectional shape of gullies incised into fan surfaces. The method applies a linear hillslope-diffusion model to invert for the diffusivity age, κt (m 2), using an elevation profile or gradient (slope) profile. Gullies near the distal end of fan surfaces are assumed to form quickly following fan entrenchment. Scarps adjacent to these gullies provide a measure of age. The method is illustrated on fan surfaces with ages of approximately 10 ka to 1.2 Ma in the arid southwestern United States. Two areas of focus are Death Valley, California, and the Ajo Mountains piedmont, Arizona. Gully-profile morphology is measured in two ways: by photometrically derived gradient (slope) profiles and by ground-surveyed elevation profiles. The κt values determined using ground-surveyed profiles are more consistent than those determined using photo-derived κt values. However, the mean κt values of both methods are comparable. The photometric method provides an efficient way to quantitatively and objectively correlate and relatively-date alluvial-fan surfaces. The κt values for each surface are determined to approximately 30-50% accuracy.
Generating a Simulated Fluid Flow over a Surface Using Anisotropic Diffusion
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2016-01-01
A fluid-flow simulation over a computer-generated surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using the gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and the gradient vector.
Diffusion model for fluidized-bed drying.
Zoglio, M A; Streng, W H; Carstensen, J T
1975-11-01
A sucrose-lactose-starch granulation was used to study particulate motion and attrition in a fluid bed dryer. There is some classification of material in the dryer as drying proceeds; fine particles are dried faster and become less dense, and the less dry but denser large particles show some (although not great) accumulation tendencies in the lower central area. Unlike countercurrent rotary drying, fluid bed drying cannot be accounted for by water diffusion inside the granule as the rate-limiting step. In its place, a model of external water vapor diffusion is proposed and is supported by vapor-concentration curves and by the linear dependence of the rate constants on the linear air velocities. The dried granulation exhibits the same trend as does countercurrent dried material in that larger particles have higher moisture contents than do smaller particles. Quantitative relationships between content of moisture and size were developed and are supported by experimental data. The granulation, upon storage, does not equilibrate, indicating that this type of water distribution is a problem in batch process granulations as well as in the earlier reported case of granulations for continuous production.
Circumnutation modeled by reaction-diffusion equations
Energy Technology Data Exchange (ETDEWEB)
Lubkin, S.R.
1992-01-01
In studies of biological oscillators, plants are only rarely examined. The authors study a common sub-diurnal oscillation of plants, called circumnutation. Based on experimental evidence that the oscillations consist of a turgor wave traveling around a growing plant part, circumnutation is modeled by a nonlinear reaction-diffusion system with cylindrical geometry. Because of its simplicity, and because biological oscillations are so common, an oscillatory [lambda]-[omega] reaction-diffusion system is chosen for the model. The authors study behavior of traveling waves in [lambda]-[omega] systems. The authors show the existence of Hopf bifurcations and the stability of the limit cycles born at the Hopf bifurcation for some parameter values. Using a Lindstedt-type perturbation scheme, the authors construct periodic solutions of the [lambda]-[omega] system near a Hopf bifurcation and show that the periodic solutions superimposed on the original traveling wave have the effect of altering its overall frequency and amplitude. Circumnutating plants generally display a strong directional preference to their oscillations, which is species-dependent. Circumnutation is modeled by a [lambda]-[omega] system on an annulus of variable width, which does not possess reflection symmetry about any axis. The annulus represents a region of high potassium concentration in the cross-section of the stem. The asymmetry of the annulus represents the anatomical asymmetry of the plant. Traveling waves are constructed on this variable-width annulus by a perturbation scheme, and perturbing the width of the annulus alters the amplitude and frequency of traveling waves on the domain by a small (order [epsilon][sup 2]) amount. The speed, frequency, and stability are unaffected by the direction of travel of the wave on the annulus. This indicates that the [lambda]-[omega] system on a variable-width domain cannot account for directional preferences of traveling waves in biological systems.
Hydrological land surface modelling
DEFF Research Database (Denmark)
Ridler, Marc-Etienne Francois
and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface......Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... hydrological and tested by assimilating synthetic hydraulic head observations in a catchment in Denmark. Assimilation led to a substantial reduction of model prediction error, and better model forecasts. Also, a new assimilation scheme is developed to downscale and bias-correct coarse satellite derived soil...
Hydrological land surface modelling
DEFF Research Database (Denmark)
Ridler, Marc-Etienne Francois
Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...... hydrological and tested by assimilating synthetic hydraulic head observations in a catchment in Denmark. Assimilation led to a substantial reduction of model prediction error, and better model forecasts. Also, a new assimilation scheme is developed to downscale and bias-correct coarse satellite derived soil...
Modeling dendrite density from magnetic resonance diffusion measurements
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Kroenke, CD; Østergaard, Leif
2007-01-01
Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal in this mo......Diffusion-weighted imaging (DWI) provides a noninvasive tool to probe tissue microstructure. We propose a simplified model of neural cytoarchitecture intended to capture the essential features important for water diffusion as measured by NMR. Two components contribute to the NMR signal...... in this model: (i) the dendrites and axons, which are modeled as long cylinders with two diffusion coefficients, parallel (DL) and perpendicular (DT) to the cylindrical axis, and (ii) an isotropic monoexponential diffusion component describing water diffusion within and across all other structures, i...
International Nuclear Information System (INIS)
Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping
2015-01-01
Highlights: • Fractal theory is introduced into the prediction of VOC diffusion coefficient. • MSFC model of the diffusion coefficient is developed for porous building materials. • The MSFC model contains detailed pore structure parameters. • The accuracy of the MSFC model is verified by independent experiments. - Abstract: Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber.
Energy Technology Data Exchange (ETDEWEB)
Liu, Yanfeng, E-mail: lyfxjd@163.com; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping
2015-12-15
Highlights: • Fractal theory is introduced into the prediction of VOC diffusion coefficient. • MSFC model of the diffusion coefficient is developed for porous building materials. • The MSFC model contains detailed pore structure parameters. • The accuracy of the MSFC model is verified by independent experiments. - Abstract: Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber.
Directory of Open Access Journals (Sweden)
Rajneesh Kumar
2014-01-01
Full Text Available The present investigation deals with the propagation of Rayleigh type surface waves in an isotropic microstretch thermoelastic diffusion solid half space under a layer of inviscid liquid. The secular equation for surface waves in compact form is derived after developing the mathematical model. The dispersion curves giving the phase velocity and attenuation coefficients with wave number are plotted graphically to depict the effect of an imperfect boundary alongwith the relaxation times in a microstretch thermoelastic diffusion solid half space under a homogeneous inviscid liquid layer for thermally insulated, impermeable boundaries and isothermal, isoconcentrated boundaries, respectively. In addition, normal velocity component is also plotted in the liquid layer. Several cases of interest under different conditions are also deduced and discussed.
Inward Cationic Diffusion and Formation of Silica-Rich Surface Nanolayer of Glass
DEFF Research Database (Denmark)
Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng
2009-01-01
This paper reports a chemical approach for obtaining a silica-rich nanolayer on the surface of a vanadium-bearing silicate glass. The approach involves depletion of earth alkaline ions (Mg2+ and Ca2+) from the glass surface by means of inward diffusion of those ions, i.e., diffusion from the surf......This paper reports a chemical approach for obtaining a silica-rich nanolayer on the surface of a vanadium-bearing silicate glass. The approach involves depletion of earth alkaline ions (Mg2+ and Ca2+) from the glass surface by means of inward diffusion of those ions, i.e., diffusion from...
Transition from diffusive to localized regimes in surface corrugated waveguides
Energy Technology Data Exchange (ETDEWEB)
Garcia-Martin, A.; Saenz, J. J. [Universidad Autonoma de Madrid, Madrid (Spain); Nieto-Vesperinas, M. [Instituto de Ciencias de Materiales de Madrid, Madrid (Spain)
2001-03-01
Exact calculations of transmission and reflection coefficients in surface randomly corrugated waveguides are presented. The elastic scattering of diffuse light classical waves from a rough surface induces a diffusive transport along the waveguide axis. As the length of the corrugated part of the waveguide increases, a transition from the diffusive to the localized regime is observed. This involves an analogy with electron conduction in nano wires, and hence, a concept analogous to that of resistance can be introduced. An oscillatory behavior of different transport properties (elastic mean free path, localization length, enhanced backscattering), versus the wavelength is predicted. An analysis of the transmission coefficients (transmitted speckle) shows that as the length of the corrugated part of the waveguide increases there is a strong preference to forward coupling through the lowest mode. This marks a clear anisotropy in the forward propagation which is absent in the case of volume disorder. The statistics of reflection coefficients is analyzed, first using random matrix theory (Rm) to analytically deduce the probability densities in the localization regime, afterwards exact numerical calculations of the coupling to backward modes in surface corrugated waveguides will be put forward for comparison. We show that the reflected speckle distribution are independent of the transport regime, at variance with the regime transition found in the transmission case. Despite the strong anisotropy, the analysis of the probability distributions of both transmitted and reflected waves confirms the distributions predicted by Random Matrix Theory for volume disorder. [Spanish] Presentamos calculos exactos de los coeficientes de transmision y reflexion en guias de onda con desorden de superficie. La dispersion elastica de luz difusa o de otras ondas clasicas por una superficie rugosa induce un transporte difusivo a lo largo del eje de la guia. A medida que la longitud de la zona
Matrix diffusion model. In situ tests using natural analogues
International Nuclear Information System (INIS)
Rasilainen, K.
1997-11-01
Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories
Matrix diffusion model. In situ tests using natural analogues
Energy Technology Data Exchange (ETDEWEB)
Rasilainen, K. [VTT Energy, Espoo (Finland)
1997-11-01
Matrix diffusion is an important retarding and dispersing mechanism for substances carried by groundwater in fractured bedrock. Natural analogues provide, unlike laboratory or field experiments, a possibility to test the model of matrix diffusion in situ over long periods of time. This thesis documents quantitative model tests against in situ observations, done to support modelling of matrix diffusion in performance assessments of nuclear waste repositories. 98 refs. The thesis includes also eight previous publications by author.
Predictive Surface Complexation Modeling
Energy Technology Data Exchange (ETDEWEB)
Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences
2016-11-29
Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO_{2} and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.
Inclusion of the diffuseness in the schematic model of heavy ion collisions
International Nuclear Information System (INIS)
Marta, H.D.
1989-01-01
The schematic model of central heavy ion collisions developed by Swiatecki includes the Coulomb and surface contributions to the potential energy of the system and one-body dissipation. This model is extended by considering the diffuseness of the nuclear surface; this has the implication that we must consider the proximity forces in the dynamics of the collisions. For the sake of simplicity we work with symmetrical systems. The results of the model studied are compared with experimental data and with other theoretical calculations. We conclude that the detailed consideration of the diffuseness of the nuclear surfaces does not substantially change the results of the schematic model for sharp surfaces in which the diffuseness is considered only through the parameters. (author) [pt
Shankar, Varun; Wright, Grady B; Kirby, Robert M; Fogelson, Aaron L
2016-06-01
In this paper, we present a method based on Radial Basis Function (RBF)-generated Finite Differences (FD) for numerically solving diffusion and reaction-diffusion equations (PDEs) on closed surfaces embedded in ℝ d . Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scattered nodes representing the surface and normal vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby avoiding coordinate distortions and singularities. We also present an optimization procedure that allows for the stabilization of the discrete differential operators generated by our RBF-FD method by selecting shape parameters for each stencil that correspond to a global target condition number. We show the convergence of our method on two surfaces for different stencil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric surfaces and more general surfaces represented by point clouds.
The Wafer and Diffusion Lot Dependence of Surface Effects Resulting from Ionizing Radiation,
An investigation of the wafer and diffusion lot dependence of surface effects resulting from ionizing radiation was conducted by irradiating samples...of transistors. The transistors were selected by the wafer and diffusion lot from which they were produced. Both NPN and PNP transistors were...the diffusion lot . With the PNP’s which were not effected to the same extent as the NPN’s the dependence on the wafer or diffusion lot was not
Reaction-diffusion modeling of hydrogen in beryllium
Energy Technology Data Exchange (ETDEWEB)
Wensing, Mirko; Matveev, Dmitry; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany)
2016-07-01
Beryllium will be used as first-wall material for the future fusion reactor ITER as well as in the breeding blanket of DEMO. In both cases it is important to understand the mechanisms of hydrogen retention in beryllium. In earlier experiments with beryllium low-energy binding states of hydrogen were observed by thermal desorption spectroscopy (TDS) which are not yet well understood. Two candidates for these states are considered: beryllium-hydride phases within the bulk and surface effects. The retention of deuterium in beryllium is studied by a reaction rate approach using a coupled reaction diffusion system (CRDS)-model relying on ab initio data from density functional theory calculations (DFT). In this contribution we try to assess the influence of surface recombination.
Models for the estimation of diffuse solar radiation for typical cities in Turkey
International Nuclear Information System (INIS)
Bakirci, Kadir
2015-01-01
In solar energy applications, diffuse solar radiation component is required. Solar radiation data particularly in terms of diffuse component are not readily affordable, because of high price of measurements as well as difficulties in their maintenance and calibration. In this study, new empirical models for predicting the monthly mean diffuse solar radiation on a horizontal surface for typical cities in Turkey are established. Therefore, fifteen empirical models from studies in the literature are used. Also, eighteen diffuse solar radiation models are developed using long term sunshine duration and global solar radiation data. The accuracy of the developed models is evaluated in terms of different statistical indicators. It is found that the best performance is achieved for the third-order polynomial model based on sunshine duration and clearness index. - Highlights: • Diffuse radiation is given as a function of clearness index and sunshine fraction. • The diffuse radiation is an important parameter in solar energy applications. • The diffuse radiation measurement is for limited periods and it is very rare. • The new models can be used to estimate monthly average diffuse solar radiation. • The accuracy of the models is evaluated on the basis of statistical indicators
Diffusion models in metamorphic thermo chronology: philosophy and methods
International Nuclear Information System (INIS)
Munha, Jose Manuel; Tassinari, Colombo Celso Gaeta
1999-01-01
Understanding kinetics of diffusion is of major importance to the interpretation of isotopic ages in metamorphic rocks. This paper provides a review of concepts and methodologies involved on the various diffusion models that can be applied to radiogenic systems in cooling rocks. The central concept of closure temperature is critically discussed and quantitative estimates for the various diffusion models are evaluated, in order to illustrate the controlling factors and the limits of their practical application. (author)
Adatom surface diffusion of catalytic metals on the anatase TiO2(101) surface.
Alghannam, Afnan; Muhich, Christopher L; Musgrave, Charles B
2017-02-08
Titanium oxide is often decorated with metal nano-particles and either serves as a catalyst support or enables photocatalytic activity. The activity of these systems degrades over time due to catalytic particle agglomeration and growth by Ostwald ripening where adatoms dissociate from metal particles, diffuse across the surface and add to other metal particles. In this work, we use density functional theory calculations to study the diffusion mechanisms of select group VIII and 1B late-transition metal adatoms commonly used in catalysis and photocatalysis (Au, Ag, Cu, Pt, Rh, Ni, Co and Fe) on the anatase TiO 2 (101) surface. All metal adatoms preferentially occupy the bridge site between two 2-fold-coordinated oxygen anions (O 2c ). Surface migration was investigated by calculating the minimum energy pathway from one bridge site to another along three pathways: two in the [010] direction along a row of surface O 2c anions and one in the [101[combining macron
Toro-Mendoza, Jhoan; Rodriguez-Lopez, Gieberth; Paredes-Altuve, Oscar
2017-03-29
Here, the effect of the elastic response of the surface on the translational diffusion coefficient of a partly submerged-in-water spherical Brownian particle is considered. The elastic nature of the surface, mediated by the surface tension, generates an additional dissipative mechanism. Therefore, the collisions at the surface contribute to the diffusion as the source of the driving force and the dissipation results from the combined action of both elastic reaction of the surface and viscous dissipation. However, it can be estimated that the surface elastic mechanism is several orders of magnitude greater than the viscous one. This simple yet physically plausible approach leads us to assume that the diffusion on the surface is proportional to a power of the number of collisions and, consequently, the dissipative mechanisms are proportional to an inverse power of it. The lowering in dimensionality from 3 (bulk) to 2 (surface) also contributes to the decrease of diffusion. This model allows the reproduction of the reported experimental values of the surface/bulk dissipative force ratio. Additionally, we also compared the traditional viscous approach with other theoretical hydrodynamic treatments of the problem, which drastically failed to explain the experiments.
Modelling Nanoparticle Diffusion into Cancer Tumors
Podduturi, Vishwa Priya; Derosa, Pedro
2011-03-01
Cancer is one of the major, potentially deadly diseases and has been for years. Non-specific delivery of the drug can damage healthy tissue seriously affecting in many cases the patient's living condition. Nanoparticles are being used for a targeted drug delivery thereby reducing the dose. In addition, metallic nanoparticles are being used in thermal treatment of cancer cells where nanoparticles help concentrate heat in the tumor and away from living tissue. We proposed a model that combines random walk with diffusion principles. The particle drift velocity is taken from the Hagen-Poiseuille equation and the velocity profile of the particle at the pores in the capillary wall is obtained using the Coventorware software. Pressure gradient and concentration gradient through the capillary wall are considered. Simulations are performed in Matlab using the Monte Carlo technique. Number of particles leaving the blood vessel through a pore is obtained as a function of blood pressure, the osmotic pressure, temperature, particle concentration, blood vessel radius, and pore size, and the relative effect of each of the parameters is discussed.
A variable-order fractal derivative model for anomalous diffusion
Directory of Open Access Journals (Sweden)
Liu Xiaoting
2017-01-01
Full Text Available This paper pays attention to develop a variable-order fractal derivative model for anomalous diffusion. Previous investigations have indicated that the medium structure, fractal dimension or porosity may change with time or space during solute transport processes, results in time or spatial dependent anomalous diffusion phenomena. Hereby, this study makes an attempt to introduce a variable-order fractal derivative diffusion model, in which the index of fractal derivative depends on temporal moment or spatial position, to characterize the above mentioned anomalous diffusion (or transport processes. Compared with other models, the main advantages in description and the physical explanation of new model are explored by numerical simulation. Further discussions on the dissimilitude such as computational efficiency, diffusion behavior and heavy tail phenomena of the new model and variable-order fractional derivative model are also offered.
Radon diffusion through multilayer earthen covers: models and simulations
Energy Technology Data Exchange (ETDEWEB)
Mayer, D.W.; Oster, C.A.; Nelson, R.W.; Gee, G.W.
1981-09-01
A capability to model and analyze the fundamental interactions that influence the diffusion of radon gas through uranium mill tailings and cover systems has been investigated. The purpose of this study is to develop the theoretical basis for modeling radon diffusion and to develop an understanding of the fundamental interactions that influence radon diffusion. This study develops the theoretical basis for modeling radon diffusion in one, two and three dimensions. The theory has been incorporated into three computer models that are used to analyze several tailings and cover configurations. This report contains a discussion of the theoretical basis for modeling radon diffusion, a discussion of the computer models used to analyze uranium mill tailings and multilayered cover systems, and presents the results that have been obtained.
Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure
Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.
2017-07-01
Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.
Sooting Characteristics and Modeling in Counterflow Diffusion Flames
Wang, Yu
2013-11-01
Soot formation is one of the most complex phenomena in combustion science and an understanding of the underlying physico-chemical mechanisms is important. This work adopted both experimental and numerical approaches to study soot formation in laminar counterfl ow diffusion flames. As polycyclic aromatic hydrocarbons (PAHs) are the precursors of soot particles, a detailed gas-phase chemical mechanism describing PAH growth upto coronene for fuels with 1 to 4 carbon atoms was validated against laminar premixed and counter- flow diffusion fl ames. Built upon this gas-phase mechanism, a soot model was then developed to describe soot inception and surface growth. This soot model was sub- sequently used to study fuel mixing effect on soot formation in counterfl ow diffusion flames. Simulation results showed that compared to the baseline case of the ethylene flame, the doping of 5% (by volume) propane or ethane in ethylene tends to increase the soot volume fraction and number density while keeping the average soot size almost unchanged. These results are in agreement with experimental observations. Laser light extinction/scattering as well as laser induced fluorescence techniques were used to study the effect of strain rate on soot and PAH formation in counterfl ow diffusion ames. The results showed that as strain rate increased both soot volume fraction and PAH concentrations decreased. The concentrations of larger PAH were more sensitive to strain rate compared to smaller ones. The effect of CO2 addition on soot formation was also studied using similar experimental techniques. Soot loading was reduced with CO2 dilution. Subsequent numerical modeling studies were able to reproduce the experimental trend. In addition, the chemical effect of CO2 addition was analyzed using numerical data. Critical conditions for the onset of soot were systematically studied in counterfl ow diffusion ames for various gaseous hydrocarbon fuels and at different strain rates. A sooting
Likelihood functions for state space models with diffuse initial conditions
Koopman, S.J.; Shephard, N.; de Vos, A.F.
2010-01-01
State space models with non-stationary processes and/or fixed regression effects require a state vector with diffuse initial conditions. Different likelihood functions can be adopted for the estimation of parameters in time-series models with diffuse initial conditions. In this article, we consider
Likelihood functions for state space models with diffuse initial conditions
Francke, M.K.; Koopmans, S.J.; de Vos, A.F.
2008-01-01
State space models with nonstationary processes and fixed regression effects require a state vector with diffuse initial conditions. Different likelihood functions can be adopted for the estimation of parameters in time series models with diffuse initial conditions. In this paper we consider
Some Problems in Using Diffusion Models for New Products.
Bernhardt, Irwin; Mackenzie, Kenneth D.
This paper analyzes some of the problems of using diffusion models to formulate marketing strategies for new products. Though future work in this area appears justified, many unresolved problems limit its application. There is no theory for adoption and diffusion processes; such a theory is outlined in this paper. The present models are too…
One-dimensional diffusion model in an Inhomogeneous region
CSIR Research Space (South Africa)
Fedotov, I
2006-01-01
Full Text Available A one-dimensional model is developed to describe atomic diffusion in a graphite tube atomizer for electrothermal atomic adsorption spectrometry. The underlying idea of the model is the solution of an inhomogeneous one-dimensional diffusion equation...
Reaction-diffusion models of decontamination
DEFF Research Database (Denmark)
Hjorth, Poul G.
A contaminant, which also contains a polymer is in the form of droplets on a solid surface. It is to be removed by the action of a decontaminant, which is applied in aqueous solution. The contaminant is only sparingly soluble in water, so the reaction mechanism is that it slowly dissolves...... in the aqueous solution and then is oxidized by the decontaminant. The polymer is insoluble in water, and so builds up near the interface, where its presence can impede the transport of contaminant. In these circumstances, Dstl wish to have mathematical models that give an understanding of the process, and can...
Cho, S. Y.; Yetter, R. A.; Dryer, F. L.
1992-01-01
Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.
Effect of surface diffusion on morphology and scaling properties during glancing angle deposition
Mukherjee, Srijit
The objective of this research work is to study the effect of surface diffusion on the morphology of porous thin films grown by Glancing Angle Deposition (GLAD) wherein atomic shadowing is the dominant physical phenomenon responsible for growth of isolated nano-rod structures. The morphology has been analyzed in terms of change in the width of the nanorods w at a given height h as well as changes in scaling relations as a function of diffusion length scale. Atomic shadowing during kinetically limited physical vapor deposition causes a chaotic instability in the layer morphology that leads to nanorod growth. GLAD experiments indicate that the rod morphology, in turn, exhibits a chaotic instability with increasing surface diffusion. The measured rod width versus growth temperature converges onto a single curve for metallic systems when normalized by the melting point Tm. A model based on mean field nucleation theory reveals a transition from a two- to three-dimensional growth regime at (0.20 +/- 0.03) x Tm and an activation energy for diffusion on curved surfaces of (2.46 +/- 0.02) x kTm. The consistency in the GLAD data suggests that the effective mass transport on a curved surface is described by a single normalized activation energy that is applicable to all elemental metals. Metallic nanorods grown by GLAD at Ts = 300--1123 K exhibit self-affine scaling, where the average rod width w increases with height h according to w ∝ h p. The growth exponent p for the investigated metals (Ta, Nb, Cr and Al) varies with temperature and material but collapses onto a single curve when plotted against the homologous temperature theta = Ts/Tm. It decreases from p = 0.5 at theta = 0 to 0.39 at theta = 0.22, consistent with reported theoretical predictions, but exhibits a transition to an anomalous value of p = 0.7 at theta = 0.26, followed by a decrease to 0.33 at theta = 0.41. The change in the scaling relations has been related to changes in the surface roughness of the
Lévy flight with absorption: A model for diffusing diffusivity with long tails
Jain, Rohit; Sebastian, K. L.
2017-03-01
We consider diffusion of a particle in rearranging environment, so that the diffusivity of the particle is a stochastic function of time. In our previous model of "diffusing diffusivity" [Jain and Sebastian, J. Phys. Chem. B 120, 3988 (2016), 10.1021/acs.jpcb.6b01527], it was shown that the mean square displacement of particle remains Fickian, i.e., ∝T at all times, but the probability distribution of particle displacement is not Gaussian at all times. It is exponential at short times and crosses over to become Gaussian only in a large time limit in the case where the distribution of D in that model has a steady state limit which is exponential, i.e., πe(D ) ˜e-D /D0 . In the present study, we model the diffusivity of a particle as a Lévy flight process so that D has a power-law tailed distribution, viz., πe(D ) ˜D-1 -α with 0 <α <1 . We find that in the short time limit, the width of displacement distribution is proportional to √{T }, implying that the diffusion is Fickian. But for long times, the width is proportional to T1 /2 α which is a characteristic of anomalous diffusion. The distribution function for the displacement of the particle is found to be a symmetric stable distribution with a stability index 2 α which preserves its shape at all times.
Asymptotic solutions of diffusion models for risk reserves
Directory of Open Access Journals (Sweden)
S. Shao
2003-01-01
Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.
Dynamic hysteresis modeling including skin effect using diffusion equation model
Energy Technology Data Exchange (ETDEWEB)
Hamada, Souad, E-mail: souadhamada@yahoo.fr [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Louai, Fatima Zohra, E-mail: fz_louai@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Nait-Said, Nasreddine, E-mail: n_naitsaid@yahoo.com [LSP-IE: Research Laboratory, Electrical Engineering Department, University of Batna, 05000 Batna (Algeria); Benabou, Abdelkader, E-mail: Abdelkader.Benabou@univ-lille1.fr [L2EP, Université de Lille1, 59655 Villeneuve d’Ascq (France)
2016-07-15
An improved dynamic hysteresis model is proposed for the prediction of hysteresis loop of electrical steel up to mean frequencies, taking into account the skin effect. In previous works, the analytical solution of the diffusion equation for low frequency (DELF) was coupled with the inverse static Jiles-Atherton (JA) model in order to represent the hysteresis behavior for a lamination. In the present paper, this approach is improved to ensure the reproducibility of measured hysteresis loops at mean frequency. The results of simulation are compared with the experimental ones. The selected results for frequencies 50 Hz, 100 Hz, 200 Hz and 400 Hz are presented and discussed.
Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test
Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.
2018-02-01
Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K to 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ∼2200 K is inferred (1σ uncertainty of ∼200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.
A fractional motion diffusion model for grading pediatric brain tumors.
Karaman, M Muge; Wang, He; Sui, Yi; Engelhard, Herbert H; Li, Yuhua; Zhou, Xiaohong Joe
2016-01-01
To demonstrate the feasibility of a novel fractional motion (FM) diffusion model for distinguishing low- versus high-grade pediatric brain tumors; and to investigate its possible advantage over apparent diffusion coefficient (ADC) and/or a previously reported continuous-time random-walk (CTRW) diffusion model. With approval from the institutional review board and written informed consents from the legal guardians of all participating patients, this study involved 70 children with histopathologically-proven brain tumors (30 low-grade and 40 high-grade). Multi- b -value diffusion images were acquired and analyzed using the FM, CTRW, and mono-exponential diffusion models. The FM parameters, D fm , φ , ψ (non-Gaussian diffusion statistical measures), and the CTRW parameters, D m , α , β (non-Gaussian temporal and spatial diffusion heterogeneity measures) were compared between the low- and high-grade tumor groups by using a Mann-Whitney-Wilcoxon U test. The performance of the FM model for differentiating between low- and high-grade tumors was evaluated and compared with that of the CTRW and the mono-exponential models using a receiver operating characteristic (ROC) analysis. The FM parameters were significantly lower ( p CTRW model. Similar to the CTRW model, the FM model can improve differentiation between low- and high-grade pediatric brain tumors over ADC.
Kovacik, Dusan; Rahel, Jozef; Kubincova, Jana; Zahoranova, Anna; Cernak, Mirko
2009-10-01
In recent years, low temperature atmospheric pressure plasma surface treatments have become a hot topic because of the potential of fast and efficient in-line processing fabrication without expensive vacuum equipment. A major problem of atmospheric pressure treatment in air is insufficient treatment uniformity because, particularly at the higher plasma power densities, the air plasma has the tendency of filamentation and transition into an arc discharge. Diffuse coplanar surface barrier discharge (DCSBD) plasma source has been developed to overcome these problems. This type of discharge enables to generate macroscopically homogeneous thin (˜ 0.3 mm) plasma layer with power density of some 100 W/cm^3 practically in any gas without admixture of He. It was found that the ambient air plasma of DCSBD is capable to make lightweight polypropylene nonwoven fabrics permanently hydrophilic, without any pinholing and with low power consumption of some 1 kWh/kg.
A new model of tail diffusion of phosphorus and boron in silicon
International Nuclear Information System (INIS)
Morehead, F.F.; Lever, R.F.
1986-01-01
It is well known that high surface concentration phosphorus diffusion leads to deeply penetrating tails in its concentration profile. At 700 0 C the tail diffusivity exceeds that of low concentration phosphorus by a factor of a thousand. Less spectacular, but very significant tailing also affects boron, making the conventional models contained in commonly available process simulation programs quite inaccurate for boron diffusions with high surface concentrations. The authors show that the observed tailing can be accounted for by a model whose central assumption is the local equality of dopant and oppositely directed defect fluxes. As predicted by the model, the effect is greatest for normal processing at low temperatures for high surface concentrations. It is minimal for the high temperatures of rapid thermal annealing and unrelated to transient effects
Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping
2015-12-15
Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
Impact of morphology on diffusive dynamics on curved surfaces.
Kusters, Remy; Storm, Cornelis
2014-03-01
Diffusive processes on nonplanar substrates are deeply relevant for cellular function and transport and increasingly used to probe and characterize the behavior of proteins in membranes. We present analytical and numerical analyses of in-plane diffusion of discrete particles on curved geometries reflecting various generic motifs in biology and explore, in particular, the effect that the shape of the substrate has on the characteristic time scales of diffusive processes. To this end, we consider both collective measures (the relaxation of concentration profiles towards equilibrium) and single-particle measures (escape rates and first passage times of individual diffusing molecules): the first relevant for the correct interpretation of FRAP experiments in curved environments; the second, for single-particle tracking probes. Each of these measures is sensitively affected by the morphology of the substrate, and we find that the exit rate out of a domain is not uniquely set by the size of its boundary, illustrating the general principle we reveal: By varying the shape of a substrate, Nature can control the diffusive time scales in a microenvironment without changing the bare substrate properties.
Impact of morphology on diffusive dynamics on curved surfaces
Kusters, Remy; Storm, Cornelis
2014-03-01
Diffusive processes on nonplanar substrates are deeply relevant for cellular function and transport and increasingly used to probe and characterize the behavior of proteins in membranes. We present analytical and numerical analyses of in-plane diffusion of discrete particles on curved geometries reflecting various generic motifs in biology and explore, in particular, the effect that the shape of the substrate has on the characteristic time scales of diffusive processes. To this end, we consider both collective measures (the relaxation of concentration profiles towards equilibrium) and single-particle measures (escape rates and first passage times of individual diffusing molecules): the first relevant for the correct interpretation of FRAP experiments in curved environments; the second, for single-particle tracking probes. Each of these measures is sensitively affected by the morphology of the substrate, and we find that the exit rate out of a domain is not uniquely set by the size of its boundary, illustrating the general principle we reveal: By varying the shape of a substrate, Nature can control the diffusive time scales in a microenvironment without changing the bare substrate properties.
Modeling complex diffusion mechanisms in L12-structured compounds
International Nuclear Information System (INIS)
Zacate, M. O.; Lape, M.; Stufflebeam, M.; Evenson, W. E.
2010-01-01
We report on a procedure developed to create stochastic models of hyperfine interactions for complex diffusion mechanisms and demonstrate its application to simulate perturbed angular correlation spectra for the divacancy and 6-jump cycle diffusion mechanisms in L1 2 -structured compounds.
Modeling complex diffusion mechanisms in L1 2 -structured compounds
Zacate, M. O.; Lape, M.; Stufflebeam, M.; Evenson, W. E.
2010-04-01
We report on a procedure developed to create stochastic models of hyperfine interactions for complex diffusion mechanisms and demonstrate its application to simulate perturbed angular correlation spectra for the divacancy and 6-jump cycle diffusion mechanisms in L12-structured compounds.
Simple Brownian diffusion an introduction to the standard theoretical models
Gillespie, Daniel T
2013-01-01
Brownian diffusion, the motion of large molecules in a sea of very many much smaller molecules, is topical because it is one of the ways in which biologically important molecules move about inside living cells. This book presents the mathematical physics that underlies the four simplest models of Brownian diffusion.
A transformation approach to modeling multi-modal diffusions
DEFF Research Database (Denmark)
Forman, Julie Lyng; Sørensen, Michael
2014-01-01
of the underlying simple diffusion including its mixing rates and distributions of first passage times. Likelihood inference and martingale estimating functions are considered in the case of a discretely observed bimodal diffusion. It is further demonstrated that model parameters can be identified and estimated...
Wind Power in Europe. A Simultaneous Innovation-Diffusion Model
International Nuclear Information System (INIS)
Soederholm, P.; Klaassen, G.
2007-01-01
The purpose of this paper is to provide a quantitative analysis of innovation and diffusion in the European wind power sector. We derive a simultaneous model of wind power innovation and diffusion, which combines a rational choice model of technological diffusion and a learning curve model of dynamic cost reductions. These models are estimated using pooled annual time series data for four European countries (Denmark, Germany, Spain and the United Kingdom) over the time period 1986-2000. The empirical results indicate that reductions in investment costs have been important determinants of increased diffusion of wind power, and these cost reductions can in turn be explained by learning activities and public R and D support. Feed-in tariffs also play an important role in the innovation and diffusion processes. The higher the feed-in price the higher, ceteris paribus, the rate of diffusion, and we present some preliminary empirical support for the notion that the impact on diffusion of a marginal increase in the feed-in tariff will differ depending on the support system used. High feed-in tariffs, though, also have a negative effect on cost reductions as they induce wind generators to choose high-cost sites and provide fewer incentives for cost cuts. This illustrates the importance of designing an efficient wind energy support system, which not only promotes diffusion but also provides continuous incentives for cost-reducing innovations
Predicting the weathering of fuel and oil spills: A diffusion-limited evaporation model.
Kotzakoulakis, Konstantinos; George, Simon C
2018-01-01
The majority of the evaporation models currently available in the literature for the prediction of oil spill weathering do not take into account diffusion-limited mass transport and the formation of a concentration gradient in the oil phase. The altered surface concentration of the spill caused by diffusion-limited transport leads to a slower evaporation rate compared to the predictions of diffusion-agnostic evaporation models. The model presented in this study incorporates a diffusive layer in the oil phase and predicts the diffusion-limited evaporation rate. The information required is the composition of the fluid from gas chromatography or alternatively the distillation data. If the density or a single viscosity measurement is available the accuracy of the predictions is higher. Environmental conditions such as water temperature, air pressure and wind velocity are taken into account. The model was tested with synthetic mixtures, petroleum fuels and crude oils with initial viscosities ranging from 2 to 13,000 cSt. The tested temperatures varied from 0 °C to 23.4 °C and wind velocities from 0.3 to 3.8 m/s. The average absolute deviation (AAD) of the diffusion-limited model ranged between 1.62% and 24.87%. In comparison, the AAD of a diffusion-agnostic model ranged between 2.34% and 136.62% against the same tested fluids. Copyright © 2017 Elsevier Ltd. All rights reserved.
Laser-induced desorption determinations of surface diffusion on Rh(111)
International Nuclear Information System (INIS)
Seebauer, E.G.; Schmidt, L.D.
1987-01-01
Surface diffusion of hydrogen, deuterium and CO on Rh(111) has been investigated by laser-induced thermal desorption (LITD) and compared with previous results for these species on Pt(111) and on other metals. For deuterium in the coverage range 0.02 0 - 8 x 10 -2 cm 2 /s, with a diffusion activation energy 3.7 0 rises from 10 -3 to 10 -2 cm 2 /s between θ = 0.01 and 0.40. Values of E/sub diff/ on different surfaces appear to correlate with differences in heats of adsorption in different binding states which form saddle point configurations in surface diffusion. In addition, oxidation reactions on Rh and on several other transition metal surfaces may be limited to CO or H surface diffusion. 30 refs., 3 figs., 1 tab
Modeling cation diffusion in compacted water-saturated Na-bentonite at low ionic strength
International Nuclear Information System (INIS)
Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.
2007-01-01
Sodium bentonites are used as barrier materials for the isolation of landfills and are under consideration for a similar use in the subsurface storage of high-level radioactive waste. The performance of these barriers is determined in large part by molecular diffusion in the bentonite pore space. We tested two current models of cation diffusion in bentonite against experimental data on the relative apparent diffusion coefficients of two representative cations, sodium and strontium. On the 'macropore/nanopore' model, solute molecules are divided into two categories, with unequal pore-scale diffusion coefficients, based on location: in macropores or in interlayer nanopores. On the 'surface diffusion' model, solute molecules are divided into categories based on chemical speciation: dissolved or adsorbed. The macropore/nanopore model agrees with all experimental data at partial montmorillonite dry densities ranging from 0.2 (a dilute bentonite gel) to 1.7 kg dm -3 (a highly compacted bentonite with most of its pore space located in interlayer nanopores), whereas the surface diffusion model fails at partial montmorillonite dry densities greater than about 1.2 kg dm -3
Modeling cation diffusion in compacted water-saturatedNa-bentonite at low ionic strength
Energy Technology Data Exchange (ETDEWEB)
Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.
2007-08-28
Sodium bentonites are used as barrier materials for the isolation of landfills and are under consideration for a similar use in the subsurface storage of high-level radioactive waste. The performance of these barriers is determined in large part by molecular diffusion in the bentonite pore space. We tested two current models of cation diffusion in bentonite against experimental data on the relative apparent diffusion coefficients of two representative cations, sodium and strontium. On the 'macropore/nanopore' model, solute molecules are divided into two categories, with unequal pore-scale diffusion coefficients, based on location: in macropores or in interlayer nanopores. On the 'surface diffusion' model, solute molecules are divided into categories based on chemical speciation: dissolved or adsorbed. The macropore/nanopore model agrees with all experimental data at partial montmorillonite dry densities ranging from 0.2 (a dilute bentonite gel) to 1.7 kg dm{sup -3} (a highly compacted bentonite with most of its pore space located in interlayer nanopores), whereas the surface diffusion model fails at partial montmorillonite dry densities greater than about 1.2 kg dm{sup -3}.
CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER–SEGEL MODEL
CARRILLO, JOSÉ ANTONIO
2012-12-01
A parabolic-parabolic (Patlak-)Keller-Segel model in up to three space dimensions with nonlinear cell diffusion and an additional nonlinear cross-diffusion term is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical concentration. For arbitrarily small cross-diffusion coefficients and for suitable exponents of the nonlinear diffusion terms, the global-in-time existence of weak solutions is proved, thus preventing finite-time blow up of the cell density. The global existence result also holds for linear and fast diffusion of the cell density in a certain parameter range in three dimensions. Furthermore, we show L∞ bounds for the solutions to the parabolic-elliptic system. Sufficient conditions leading to the asymptotic stability of the constant steady state are given for a particular choice of the nonlinear diffusion exponents. Numerical experiments in two and three space dimensions illustrate the theoretical results. © 2012 World Scientific Publishing Company.
Velimirović Ljubica S.; Stanković Mića S.; Radivojević Grozdana
2002-01-01
In tins paper we consider conoid surfaces as frequently used surfaces in building techniques, mainly as daring roof structures. Different types of conoids are presented using the programme package Mathematica. We describe the generation of conoids and by means of parametric representation we get their graphics. The geometric approach offers a wide range of possibilities in the research of complicated spatial surface systems.
Boron Diffusion in Surface-Treated Framing Lumber
Patricia K. Lebow; Stan T. Lebow; Steven A. Halverson
2013-01-01
The extent of boron penetration in framing lumber treated by spray applications during construction is not well quantified. This study evaluated the effect of formulation and concentration on diffusion of boron in lumber specimens that were equilibrated in conditions that produced wood moisture contents of 18 to 21 percent. One set of specimens was pressure treated...
Pricing Participating Products under a Generalized Jump-Diffusion Model
Directory of Open Access Journals (Sweden)
Tak Kuen Siu
2008-01-01
Full Text Available We propose a model for valuing participating life insurance products under a generalized jump-diffusion model with a Markov-switching compensator. It also nests a number of important and popular models in finance, including the classes of jump-diffusion models and Markovian regime-switching models. The Esscher transform is employed to determine an equivalent martingale measure. Simulation experiments are conducted to illustrate the practical implementation of the model and to highlight some features that can be obtained from our model.
WWER radial reflector modeling by diffusion codes
International Nuclear Information System (INIS)
Petkov, P. T.; Mittag, S.
2005-01-01
The two commonly used approaches to describe the WWER radial reflectors in diffusion codes, by albedo on the core-reflector boundary and by a ring of diffusive assembly size nodes, are discussed. The advantages and disadvantages of the first approach are presented first, then the Koebke's equivalence theory is outlined and its implementation for the WWER radial reflectors is discussed. Results for the WWER-1000 reactor are presented. Then the boundary conditions on the outer reflector boundary are discussed. The possibility to divide the library into fuel assembly and reflector parts and to generate each library by a separate code package is discussed. Finally, the homogenization errors for rodded assemblies are presented and discussed (Author)
Diffusion model for ultrasound-modulated light.
Hollmann, Joseph L; Horstmeyer, Roarke; Yang, Changhuei; DiMarzio, Charles A
2014-03-01
Researchers use ultrasound (US) to modulate diffusive light in a highly scattering medium like tissue. This paper analyzes the US-optical interaction in the scattering medium and derives an expression for the US-modulated optical radiance. The diffusion approximation to the radiative transport equation is employed to develop a Green's function for US-modulated light. The predicted modulated fluence and flux are verified using finite-difference time-domain simulations. The Green's function is then utilized to illustrate the modulated reflectance as the US-optical interaction increases in depth. The intent of this paper is to focus on high US frequencies necessary for high-resolution imaging because they are of interest for applications such as phase conjugation.
Dynamic Diffusion Estimation in Exponential Family Models
Czech Academy of Sciences Publication Activity Database
Dedecius, Kamil; Sečkárová, Vladimíra
2013-01-01
Roč. 20, č. 11 (2013), s. 1114-1117 ISSN 1070-9908 R&D Projects: GA MŠk 7D12004; GA ČR GA13-13502S Keywords : diffusion estimation * distributed estimation * paremeter estimation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.639, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/dedecius-0396518.pdf
International Nuclear Information System (INIS)
Sada, Koichi; Michioka, Takenobu; Ichikawa, Yoichi
2002-01-01
Because effluent gas is sometimes released from low positions, viz., near the ground surface and around buildings, the effects caused by buildings within the site area are not negligible for gas diffusion predictions. For these reasons, the effects caused by buildings for gas diffusion are considered under the terrain following calculation coordinate system in this report. Numerical calculation meshes on the ground surface are treated as the building with the adaptation of wall function techniques of turbulent quantities in the flow calculations using a turbulence closure model. The reflection conditions of released particles on building surfaces are taken into consideration in the diffusion calculation using the Lagrangian particle model. Obtained flow and diffusion calculation results are compared with those of wind tunnel experiments around the building. It was apparent that features observed in a wind tunnel, viz., the formation of cavity regions behind the building and the gas diffusion to the ground surface behind the building, are also obtained by numerical calculation. (author)
International Nuclear Information System (INIS)
Smirnova, E.S.; Chuvil'deev, V.N.
1998-01-01
The model is suggested which describes the influence of large-angle grain boundary migration on a diffusion controlled creep rate in polycrystalline materials (Coble creep). The model is based on the concept about changing the value of migrating boundary free volume when introducing dislocations distributed over the grain bulk into this boundary. Expressions are obtained to calculate the grain boundary diffusion coefficient under conditions of boundary migration and the parameter, which characterized the value of Coble creep acceleration. A comparison is made between calculated and experimental data for Cd, Co and Fe
Potential Energy Surface of NO on Pt(997: Adsorbed States and Surface Diffusion
Directory of Open Access Journals (Sweden)
N. Tsukahara
2012-01-01
Full Text Available The potential energy surface (PES of NO on Pt(997 has been elucidated: the adsorption states and diffusion processes of NO on Pt(997 at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS and scanning tunneling microscopy (STM. When NO molecules adsorb on a surface at a low temperature (11 K, each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997: a bridge site of the upper step, an fcc- (or hcp- hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.
Smith, Rachel A; Kim, Youllee; Zhu, Xun; Doudou, Dimi Théodore; Sternberg, Eleanore D; Thomas, Matthew B
2018-01-01
This study documents an investigation into the adoption and diffusion of eave tubes, a novel mosquito vector control, during a large-scale scientific field trial in West Africa. The diffusion of innovations (DOI) and the integrated model of behavior (IMB) were integrated (i.e., innovation attributes with attitudes and social pressures with norms) to predict participants' (N = 329) diffusion intentions. The findings showed that positive attitudes about the innovation's attributes were a consistent positive predictor of diffusion intentions: adopting it, maintaining it, and talking with others about it. As expected by the DOI and the IMB, the social pressure created by a descriptive norm positively predicted intentions to adopt and maintain the innovation. Drawing upon sharing research, we argued that the descriptive norm may dampen future talk about the innovation, because it may no longer be seen as a novel, useful topic to discuss. As predicted, the results showed that as the descriptive norm increased, the intention to talk about the innovation decreased. These results provide broad support for integrating the DOI and the IMB to predict diffusion and for efforts to draw on other research to understand motivations for social diffusion.
Diffuse Scattering Model of Indoor Wideband Propagation
DEFF Research Database (Denmark)
Franek, Ondrej; Andersen, Jørgen Bach; Pedersen, Gert Frølund
2011-01-01
This paper presents a discrete-time numerical algorithm for computing field distribution in indoor environment by diffuse scattering from walls. Calculations are performed for a rectangular room with semi-reflective walls. The walls are divided into 0.5 x 0.5 m segments, resulting in 2272 wall...... intensity in all locations eventually follows exponential decay with the same slope and approximately the same level for given delay. These observations are shown to be in good agreement with theory and previous measurements—the slopes of the decay curves for measurement, simulation and theory are found...
Boron Diffused Thermoluminescent Surface Layer in LiF TLDs for Skin Dose Assessments
DEFF Research Database (Denmark)
Christensen, Poul; Majborn, Benny
1980-01-01
A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry.......A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry....
Modelling land surface - atmosphere interactions
DEFF Research Database (Denmark)
Rasmussen, Søren Højmark
related to inaccurate land surface modelling, e.g. enhanced warm bias in warm dry summer months. Coupling the regional climate model to a hydrological model shows the potential of improving the surface flux simulations in dry periods and the 2 m air temperature in general. In the dry periods......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...
Kaul, Neerej; Agrawal, Himani; Paradkar, A R; Mahadik, K R
2005-08-31
A multifactor optimization technique is successfully applied to study the effect of simultaneously varying the system variables on feasibility of nevirapine analysis by packed column supercritical fluid chromatography (PC-SFC). The optimal conditions were determined with the aid of the response surface methodology using 3(3) factorial designs. The method is based on methanol-modified carbon dioxide as the mobile phase at flow rate of 3.0 ml/min with elution through a JASCO Finepak SIL-5, [C18 (5-micron, 25 cm x 4.6 mm, i.d.)] column using photodiode array detection. The method has been successfully used to analyze commercial solid dosage form to assess the chromatographic performance of SFC system. The present work briefs the thermodynamic applications of PC-SFC with an emphasis on the results of nevirapine. The foremost of such applications is the determination of solute diffusion coefficient in supercritical mobile phase by Taylor-Aris peak broadening technique.
Extrusion analysis of buffer using diffusion model
International Nuclear Information System (INIS)
Sugino, H.; Kanno, T.
1999-11-01
The buffer material that will be buried as a component of the engineered barriers system swells when saturation by groundwater. As a result of this swelling, buffer material may penetrate into the peripheral rock zone surrounding the buffer through open fractures. If sustained for extremely in long-period of time. The buffer material extrusion could lead to reduction of buffer density, which may in turn degrade the assumed performance assessment properties (e.g., permeability, diffusion coefficient). JNC has been conducted the study of bentonite extrusion into fractures of rock mass as a part of high level waste research. In 1997, JNC has reported the test results concerning buffer material extrusion and buffer material erosion. These tests have been done using test facilities in Geological Isolation Basic Research Facility. After 1997, JNC also conducted analytical study of buffer material extrusion. This report describes the analysis results of this study which are reflected to the H12 report. In this analysis, the diffusion coefficient was derived as a function of the swelling pressure and the viscosity resistance of the buffer materials. Thus, the reduction in density of buffer materials after emplacement in saturated rock was assessed. The assessment was made assuming parallel-plate radial fractures initially filled by water only. Because fractures in natural rock masses inevitably have mineral inclusions inside of them and fractures orientation leads to fractures intersecting other fractures, this analysis gives significantly conservative conditions with respect to long-term extrusion of buffer and possible decrease in buffer density. (author)
Evaluation of the Thermodynamic Models for the Thermal Diffusion Factor
DEFF Research Database (Denmark)
Gonzalez-Bagnoli, Mariana G.; Shapiro, Alexander; Stenby, Erling Halfdan
2003-01-01
Over the years, several thermodynamic models for the thermal diffusion factors for binary mixtures have been proposed. The goal of this paper is to test some of these models in combination with different equations of state. We tested the following models: those proposed by Rutherford and Drickamer...... we applied different thermodynamic models, such as the Soave-Redlich-Kwong and the Peng-Robinson equations of state. The necessity to try different thermo-dynamic models is caused by the high sensitivity of the thermal diffusion factors to the values of the partial molar properties. Two different...
Dynamics and Stability of Self-similar Pinch-off via Surface Diffusion
Bernoff, Andrew J.; Bertozzi, Andrea L.; Witelski, Thomas P.
1998-11-01
The motion of an interface via BBW.html>surface diffusion is a well-known model in the study of thin solid filaments with application to such fields as integrated circuit technology. The interface moves with a normal velocity proportional to minus the surface Laplacian of its mean curvature. This flow conserves the volume enclosed inside the surface while minimizing its surface area. A cylindrical surface is unstable to long-wave perturbations, analogous to the Rayleigh instability in fluid dynamics. The initial instability leads to a conical pinch-off of the cylinder to form isolated spheres. We examine the structure of the pinch-off, showing it has self-similar structure, using asymptotic, numerical and analytical methods. In addition to a previously known solution(Wong et al. Scripta Mater.) 39(1):55, 1998, we find a countable set of similarity solutions, each with a different cone angle. We develop a stability theory in similarity variables that selects the original similarity solution as the only linearly stable one and consequently the only observable one. We confirm this theory via numerical simulations, using self-similar adaptive mesh refinement, of the pinch-off.
Reflection of diffuse light from dielectric one-dimensional rough surfaces.
González-Alcalde, Alma K; Méndez, Eugenio R; Terán, Emiliano; Cuppo, Fabio L S; Olivares, J A; García-Valenzuela, Augusto
2016-03-01
We study the reflection of diffuse light from 1D randomly rough dielectric interfaces. Results for the reflectance under diffuse illumination are obtained by rigorous numerical simulations and then contrasted with those obtained for flat surfaces. We also explore the possibility of using perturbation theories and conclude that they are limited for this type of study. Numerical techniques based on Kirchhoff approximation and reduced Rayleigh equations yield better results. We find that, depending on the refractive index contrast and nature of the irregularities, the roughness can increase or decrease the diffuse reflectance of the surface.
International Nuclear Information System (INIS)
Tamura, Junji; Kido, Hiroko; Hato, Shinji; Homma, Toshimitsu
2009-03-01
Straight-line or segmented plume models as atmospheric diffusion models are commonly used in probabilistic accident consequence assessment (PCA) codes due to cost and time savings. The PCA code, OSCAAR developed by Japan Atomic Energy Research Institute (Present; Japan Atomic Energy Agency) uses the variable puff trajectory model to calculate atmospheric transport and dispersion of released radionuclides. In order to investigate uncertainties involved with the structure of the atmospheric dispersion/deposition model in OSCAAR, we have introduced the more sophisticated computer codes that included regional meteorological models RAMS and atmospheric transport model HYPACT, which were developed by Colorado State University, and comparative analyses between OSCAAR and RAMS/HYPACT have been performed. In this study, model verification of OSCAAR and RAMS/HYPACT was conducted using data of long term atmospheric diffusion experiments, which were carried out in Tokai-mura, Ibaraki-ken. The predictions by models and the results of the atmospheric diffusion experiments indicated relatively good agreements. And it was shown that model performance of OSCAAR was the same degree as it of RAMS/HYPACT. (author)
Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W
2010-12-21
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at
Mechanism of diffusive transport in molecular spider models
Semenov, Oleg; Olah, Mark J.; Stefanovic, Darko
2011-02-01
Recent advances in single-molecule chemistry have led to designs for artificial multipedal walkers that follow tracks of chemicals. We investigate the motion of a class of walkers, called molecular spiders, which consist of a rigid chemically inert body and several flexible enzymatic legs. The legs can reversibly bind to chemical substrates on a surface and through their enzymatic action convert them to products. The legs can also reversibly bind to products, but at a different rate. Antal and Krapivsky have proposed a model for molecular spider motion over regular one-dimensional lattices [T. Antal and P. L. Krapivsky, Phys. Rev. ENATUAS1539-375510.1103/PhysRevE.76.021121 76, 021121 (2007).]. In the model the legs hop from site to site under constraints imposed by connection to a common body. The first time a leg visits a site, the site is an uncleaved substrate, and the leg hops from this site only once it has cleaved it into a product. This cleavage happens at a rate rr=1. The effect of cleavage is to slow down the hopping rate for legs that visit a site for the first time. Along with the constraints imposed on the legs, this leads to an effective bias in the direction of unvisited sites that decreases the average time needed to visit n sites. The overall motion, however, remains diffusive in the long time limit. We have reformulated the Antal-Krapivsky model as a continuous-time Markov process and simulated many traces of this process using kinetic Monte Carlo techniques. Our simulations show a previously unpredicted transient behavior wherein spiders with small r values move superdiffusively over significant distances and times. We explain this transient period of superdiffusive behavior by describing the spider process as switching between two metastates: a diffusive state D wherein the spider moves in an unbiased manner over previously visited sites, and a boundary state B wherein the spider is on the boundary between regions of visited and unvisited sites
Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.
Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis
2017-09-01
Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.
Flux-limited diffusion models in radiation hydrodynamics
International Nuclear Information System (INIS)
Pomraning, G.C.; Szilard, R.H.
1993-01-01
The authors discuss certain flux-limited diffusion theories which approximately describe radiative transfer in the presence of steep spatial gradients. A new formulation is presented which generalizes a flux-limited description currently in widespread use for large radiation hydrodynamic calculations. This new formation allows more than one Case discrete mode to be described by a flux-limited diffusion equation. Such behavior is not extant in existing formulations. Numerical results predicted by these flux-limited diffusion models are presented for radiation penetration into an initially cold halfspace. 37 refs., 5 figs
Modelling thermal radiation in buoyant turbulent diffusion flames
Consalvi, J. L.; Demarco, R.; Fuentes, A.
2012-10-01
This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.
A desk study of surface diffusion and mass transport in clay
International Nuclear Information System (INIS)
Cook, A.J.
1988-09-01
The concept of a geological barrier to radionuclide migration from theoretical radioactive waste repositories has drawn attention to the physico-chemical properties of clays, which are traditionally regarded as retarding media. This report addresses the different mechanisms of transport of radionuclides through clay and in particular focuses on the surface diffusion movement of sorbed cations. The relative contributory importance of the different transport mechanisms is governed by the pore size distributions and interconnections within the clay fabric. Surface diffusion data in the literature have been from experiments using compacted montmorillonite and biotite gneiss. A possible programme of laboratory work is outlined, based on diffusion experiments, which describes the way of measuring the effect of surface diffusion more accurately in clays, mudstones and shales. (author)
Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.
Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter
2015-05-21
Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.
Weak diffusion limits of dynamic conditional correlation models
DEFF Research Database (Denmark)
Hafner, Christian M.; Laurent, Sebastien; Violante, Francesco
by a diffusion matrix of reduced rank. The degeneracy is due to perfect collinearity between the innovations of the volatility and correlation dynamics. For the special case of constant conditional correlations, a non-degenerate diffusion limit can be obtained. Alternative sets of conditions are considered......The properties of dynamic conditional correlation (DCC) models are still not entirely understood. This paper fills one of the gaps by deriving weak diffusion limits of a modified version of the classical DCC model. The limiting system of stochastic differential equations is characterized...... for the rate of convergence of the parameters, obtaining time-varying but deterministic variances and/or correlations. A Monte Carlo experiment confirms that the quasi approximate maximum likelihood (QAML) method to estimate the diffusion parameters is inconsistent for any fixed frequency, but that it may...
Alternative model of random surfaces
International Nuclear Information System (INIS)
Ambartzumian, R.V.; Sukiasian, G.S.; Savvidy, G.K.; Savvidy, K.G.
1992-01-01
We analyse models of triangulated random surfaces and demand that geometrically nearby configurations of these surfaces must have close actions. The inclusion of this principle drives us to suggest a new action, which is a modified Steiner functional. General arguments, based on the Minkowski inequality, shows that the maximal distribution to the partition function comes from surfaces close to the sphere. (orig.)
Diffusion of actinides in glasses containing model radioactive wastes
International Nuclear Information System (INIS)
Ivanov, I.A.; Sedov, V.M.; Gulin, A.N.; Shatkov, V.M.; Shashukov, E.A.
1990-01-01
Diffusion coefficients of 237 Np, 239 Pu and 241 Am radionuclides in two model alumophosphate and alumoborosilicate glasses at the temperatures, somewhat lower than their transformation temperature, were determined. It is ascertained that actinides are one of the least mobile elements. It is shown that the glass crystallization results in the increase of 237 Np diffusion mobility. Low enough amount of water absorbed by crystallized alumophosphate glass intensifies low-temperature migration of 237 Np
International Nuclear Information System (INIS)
Jakob, A.
2004-07-01
In this report a comprehensive overview on the matrix diffusion of solutes in fractured crystalline rocks is presented. Some examples from observations in crystalline bedrock are used to illustrate that matrix diffusion indeed acts on various length scales. Fickian diffusion is discussed in detail followed by some considerations on rock porosity. Due to the fact that the dual-porosity medium model is a very common and versatile method for describing solute transport in fractured porous media, the transport equations and the fundamental assumptions, approximations and simplifications are discussed in detail. There is a variety of geometrical aspects, processes and events which could influence matrix diffusion. The most important of these, such as, e.g., the effect of the flow-wetted fracture surface, channelling and the limited extent of the porous rock for matrix diffusion etc., are addressed. In a further section open issues and unresolved problems related to matrix diffusion are mentioned. Since matrix diffusion is one of the key retarding processes in geosphere transport of dissolved radionuclide species, matrix diffusion was consequently taken into account in past performance assessments of radioactive waste repositories in crystalline host rocks. Some issues regarding matrix diffusion are site-specific while others are independent of the specific situation of a planned repository for radioactive wastes. Eight different performance assessments from Finland, Sweden and Switzerland were considered with the aim of finding out how matrix diffusion was addressed, and whether a consistent picture emerges regarding the varying methodology of the different radioactive waste organisations. In the final section of the report some conclusions are drawn and an outlook is given. An extensive bibliography provides the reader with the key papers and reports related to matrix diffusion. (author)
Urban stormwater inundation simulation based on SWMM and diffusive overland-flow model.
Chen, Wenjie; Huang, Guoru; Zhang, Han
2017-12-01
With rapid urbanization, inundation-induced property losses have become more and more severe. Urban inundation modeling is an effective way to reduce these losses. This paper introduces a simplified urban stormwater inundation simulation model based on the United States Environmental Protection Agency Storm Water Management Model (SWMM) and a geographic information system (GIS)-based diffusive overland-flow model. SWMM is applied for computation of flows in storm sewer systems and flooding flows at junctions, while the GIS-based diffusive overland-flow model simulates surface runoff and inundation. One observed rainfall scenario on Haidian Island, Hainan Province, China was chosen to calibrate the model and the other two were used for validation. Comparisons of the model results with field-surveyed data and InfoWorks ICM (Integrated Catchment Modeling) modeled results indicated the inundation model in this paper can provide inundation extents and reasonable inundation depths even in a large study area.
Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO _{2} (110)
Energy Technology Data Exchange (ETDEWEB)
Goldman, Nir; Browning, Nigel D.
2011-06-16
Gold clusters on rutile TiO_{2} are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO_{2}(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.
Shao, Yuan; Ramachandran, Sandhya; Arnold, Susan; Ramachandran, Gurumurthy
2017-03-01
The use of the turbulent eddy diffusion model and its variants in exposure assessment is limited due to the lack of knowledge regarding the isotropic eddy diffusion coefficient, D T . But some studies have suggested a possible relationship between D T and the air changes per hour (ACH) through a room. The main goal of this study was to accurately estimate D T for a range of ACH values by minimizing the difference between the concentrations measured and predicted by eddy diffusion model. We constructed an experimental chamber with a spatial concentration gradient away from the contaminant source, and conducted 27 3-hr long experiments using toluene and acetone under different air flow conditions (0.43-2.89 ACHs). An eddy diffusion model accounting for chamber boundary, general ventilation, and advection was developed. A mathematical expression for the slope based on the geometrical parameters of the ventilation system was also derived. There is a strong linear relationship between D T and ACH, providing a surrogate parameter for estimating D T in real-life settings. For the first time, a mathematical expression for the relationship between D T and ACH has been derived that also corrects for non-ideal conditions, and the calculated value of the slope between these two parameters is very close to the experimentally determined value. The values of D T obtained from the experiments are generally consistent with values reported in the literature. They are also independent of averaging time of measurements, allowing for comparison of values obtained from different measurement settings. These findings make the use of turbulent eddy diffusion models for exposure assessment in workplace/indoor environments more practical.
International Nuclear Information System (INIS)
Olague, N.E.; Price, L.L.
1991-01-01
The greater confinement disposal (GCD) project is an ongoing project examining the disposal of orphan wastes in Area 5 of the Nevada Test Site. One of the major tasks for the project is performance assessment. With regard to performance assessment, a preliminary conceptual model for ground-water flow and radionuclide transport to the accessible environment at the GCD facilities has been developed. One of the transport pathways that has been postulated is diffusion of radionuclides in the liquid phase upward to the land surface. This pathway is not usually considered in a performance assessment, but is included in the GCD conceptual model because of relatively low recharge estimates at the GCD site and the proximity of the waste to the land surface. These low recharge estimates indicate that convective flow downward to the water table may be negligible; thus, diffusion upward to the land surface may then become important. As part of a preliminary performance assessment which considered a basecase scenario and a climate-change scenario, a first approximation for modeling the liquid-diffusion pathway was formulated. The model includes an analytical solution that incorporates both diffusion and radioactivity decay. Overall, these results indicate that, despite the configuration of the GCD facilities that establishes the need for considering the liquid-diffusion pathway, the GCD disposal concept appears to be a technically feasible method for disposing of orphan wastes. Future analyses will consist of investigating the underlying assumptions of the liquid-diffusion model, refining the model is necessary, and reducing uncertainty in the input parameters. 11 refs., 6 figs
Cohabitation reaction-diffusion model for virus focal infections
Amor, Daniel R.; Fort, Joaquim
2014-12-01
The propagation of virus infection fronts has been typically modeled using a set of classical (noncohabitation) reaction-diffusion equations for interacting species. However, for some single-species systems it has been recently shown that noncohabitation reaction-diffusion equations may lead to unrealistic descriptions. We argue that previous virus infection models also have this limitation, because they assume that a virion can simultaneously reproduce inside a cell and diffuse away from it. For this reason, we build a several-species cohabitation model that does not have this limitation. Furthermore, we perform a sensitivity analysis for the most relevant parameters of the model, and we compare the predicted infection speed with observed data for two different strains of the T7 virus.
RETADD: a Regional Trajectory And Diffusion-Deposition model
Energy Technology Data Exchange (ETDEWEB)
Begovich, C. L.; Murphy, B. D.; Nappo, Jr., C. J.
1978-06-01
The Regional Trajectory and Diffusion-Deposition Model (RETADD) is based upon a version of the National Oceanic and Atmospheric Administration Air Resources Laboratory's Regional-Continental Scale Transport, Diffusion, and Deposition Model. The FORTRAN IV computer model uses a trajectory analysis technique for estimating the transport and long-range diffusion of material emitted from a point source. The wind trajectory portion of the code uses observed upper air winds to compute the transport of the material. Ground level concentrations and depositions are computed by using the Gaussian plume equation for wind trajectories projected forward in time. Options are included to specify an upper bound for the mixed layer and a chemical decomposition rate for the effluent. The limitations to the technique are discussed, the equations and model are described, and listings of the program, input, and output are included.
Self-similar Gaussian processes for modeling anomalous diffusion
Lim, S. C.; Muniandy, S. V.
2002-08-01
We study some Gaussian models for anomalous diffusion, which include the time-rescaled Brownian motion, two types of fractional Brownian motion, and models associated with fractional Brownian motion based on the generalized Langevin equation. Gaussian processes associated with these models satisfy the anomalous diffusion relation which requires the mean-square displacement to vary with tα, 0Brownian motion and time-rescaled Brownian motion all have the same probability distribution function, the Slepian theorem can be used to compare their first passage time distributions, which are different. Finally, in order to model anomalous diffusion with a variable exponent α(t) it is necessary to consider the multifractional extensions of these Gaussian processes.
Modelling and simulation of diffusive processes methods and applications
Basu, SK
2014-01-01
This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport
A model of non-Gaussian diffusion in heterogeneous media
Lanoiselée, Yann; Grebenkov, Denis S.
2018-04-01
Recent progress in single-particle tracking has shown evidence of the non-Gaussian distribution of displacements in living cells, both near the cellular membrane and inside the cytoskeleton. Similar behavior has also been observed in granular materials, turbulent flows, gels and colloidal suspensions, suggesting that this is a general feature of diffusion in complex media. A possible interpretation of this phenomenon is that a tracer explores a medium with spatio-temporal fluctuations which result in local changes of diffusivity. We propose and investigate an ergodic, easily interpretable model, which implements the concept of diffusing diffusivity. Depending on the parameters, the distribution of displacements can be either flat or peaked at small displacements with an exponential tail at large displacements. We show that the distribution converges slowly to a Gaussian one. We calculate statistical properties, derive the asymptotic behavior and discuss some implications and extensions.
The parton model for the diffusion
International Nuclear Information System (INIS)
Ducati, M.B. Gay; Machado, M.V.T.
1999-01-01
We analyze the Buchmueller-Hebecker model for diffraction processes, point out its predictions to the diffractive structure function F D(3) 2 (x IP , β,Q 2 ). The break of factorization for the F D93) 2 present in recent H1 data is well described introducing an extra soft (reggeon) contribution as an extension to the model. (author)
Modelling land surface - atmosphere interactions
DEFF Research Database (Denmark)
Rasmussen, Søren Højmark
The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...
Nitrogen diffusion in near-surface range of ion doped molybdenum
Zamalin, E Y
2001-01-01
The dynamics of change in nitrogen near-the-surface concentration in the Mo ion-alloyed monocrystalline foil is studied through the Auger-electron spectroscopy and the secondary ion mass spectrometry. The implantation dose constituted 5 x 10 sup 1 sup 7 ion/cm sup 2 and the implantation energy equaled 50 and 100 keV. The samples diffusion annealing was performed at the temperature of 800-900 deg C. The evaluation of the nitrogen diffusion coefficient indicates the values by 3-5 orders lesser than the diffusion coefficient in the nitrogen solid-state solution in the molybdenum. At the same time the molybdenum self-diffusion coefficient value is by 3-5 orders lesser as compared to the obtained value. The supposition is made, the the surplus nitrogen relative to the solubility limit is deposited on the radiation defects and in the process of the diffusion annealing it nitrates together with them
A combinatorial model of malware diffusion via bluetooth connections.
Directory of Open Access Journals (Sweden)
Stefano Merler
Full Text Available We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy and closed form (more complex but efficiently computable expression.
A combinatorial model of malware diffusion via bluetooth connections.
Merler, Stefano; Jurman, Giuseppe
2013-01-01
We outline here the mathematical expression of a diffusion model for cellphones malware transmitted through Bluetooth channels. In particular, we provide the deterministic formula underlying the proposed infection model, in its equivalent recursive (simple but computationally heavy) and closed form (more complex but efficiently computable) expression.
Theoretical studies of mutual diffusivities and surface properties in ...
Indian Academy of Sciences (India)
properties, thus underlining the importance of thermodynamic studies for liquid binary alloys. In this study, the transport and surface properties of Cd–Ga liquid alloys are determined from energetics and derivatives from experimental thermodynamic data. Cd–Ga alloys have been studied by many authors [14–16]. The alloy ...
Surface modification of polyethylene by diffuse barrier discharge plasma
Czech Academy of Sciences Publication Activity Database
Novák, I.; Števiar, M.; Popelka, A.; Chodák, I.; Mosnáček, J.; Špírková, Milena; Janigová, I.; Kleinová, A.; Sedliačik, J.; Šlouf, Miroslav
2013-01-01
Roč. 53, č. 3 (2013), s. 516-523 ISSN 0032-3888 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : low-density polyethylene * plasma discharge * surface modification Subject RIV: JI - Composite Materials Impact factor: 1.441, year: 2013
Ensemble based Assimilation of SMOS Surface Soil Moisture into the Surfex 11-layer Diffusion Scheme
Blyverket, Jostein; Hamer, Paul; Svendby, Tove; Lahoz, William
2017-04-01
The Soil Moisture and Ocean Salinity (SMOS) satellite samples soil moisture at a spatial scale of ˜40 km and in the top ˜5 cm of the soil, depending on land cover and soil type. Remote sensing products have a limited spatial and temporal cover, with a re-visit time of 3 days close to the Equator for SMOS. These factors make it difficult to monitor the hydrological cycle over e.g., Northern Areas where there is a strong topography, fractal coastline and long periods of snow cover, all of which affect the SMOS soil moisture retrieval. Until now simple 3-layer force and restore models have been used to close the spatial (vertical/horizontal) and temporal gaps of soil moisture from remote sensing platforms. In this study we have implemented the Ensemble Transform Kalman Filter (ETKF) into the Surfex land surface model, and used the ISBA diffusion scheme with 11-vertical layers. In contrast to the rapid changing surface layer, the slower changing root zone soil moisture is important for long term evapotranspiration and water supply. By combining a land surface model with satellite observations using data assimilation we can provide a better estimate of the root zone soil moisture at regional scales. The Surfex model runs are done for a European domain, from 1 July 2012 to 1 August 2013. For validation of our model setup, we compare with in situ stations from the International Soil Moisture Network (ISMN) and the Norwegian Water and Energy Authorities (NVE); we also compare against the ESA CCI soil moisture product v02.2, which does not include SMOS soil moisture data. SMOS observations and open loop model runs are shown to exhibit large biases, these are removed before assimilation by a linear rescaling technique. Information from the satellite is transferred into deeper layers of the model using data assimilation, improving the root zone product when validated against in situ stations. The improved correlation between the assimilated product and the in situ values
Numerical modelling of swirling diffusive flames
Directory of Open Access Journals (Sweden)
Parra-Santos Teresa
2016-01-01
Full Text Available Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.
Modeling and Analysis of Epidemic Diffusion with Population Migration
Directory of Open Access Journals (Sweden)
Ming Liu
2013-01-01
Full Text Available An improved Susceptible-Infected-Susceptible (SIS epidemic diffusion model with population migration between two cities is modeled. Global stability conditions for both the disease-free equilibrium and the endemic equilibrium are analyzed and proved. The main contribution of this paper is reflected in epidemic modeling and analysis which considers unequal migration rates, and only susceptible individuals can migrate between the two cities. Numerical simulation shows when the epidemic diffusion system is stable, number of infected individuals in one city can reach zero, while the number of infected individuals in the other city is still positive. On the other hand, decreasing population migration in only one city seems not as effective as improving the recovery rate for controlling the epidemic diffusion.
The Role of Lattice Vibrations in Adatom Diffusion at Metal Stepped Surfaces
International Nuclear Information System (INIS)
Durakanoglu, S.
2004-01-01
Diffusion of a single atom on metal surfaces remains a subject of continuing interest in the surface science community because of the important role it plays in several technologically important phenomena such as thin-film and eptaxial growth, catalysis and chemical reactions. Except for a few studies, most of theoretical works, ranging from molecular dynamic simulations to first principle electronic structure calculations, are devoted to determination of the characteristics of the diffusion processes and the energy barriers, neglecting the contribution of lattice vibrations in adatom diffusion. However, in a series of theoretical works on self-diffusion on the flat surfaces of Cu(100), Ag(100) and Ni(100), Ulrike et al.[1-3], showed that the vibrational contributions are important and should be included in any complete description of the temperature dependence of the diffusion coefficient. In this work, it is our aim to examine the role of lattice vibrations in adatom diffusion at stepped surfaces of Cu(100) and Ni(100) within the framework of transition state theory. Ehrlich-Shwoebel energy barriers for an adatom diffusing over a step-edge are calculated through the inclusion of vibrational internal energy. Local vibrational density of states, main ingredient to the vibrational thermodynamic functions, are calculated in the harmonic approximation, using real space Green's function method with the force constants derived from interaction potentials based on the embedded atom method. We emphasize the sensitivity of the local vibrational density of states to the local atomic environment. We, furthermore, discuss the contribution of thermodynamic functions calculated from local vibrational density of states to the prefactors in diffusion coefficient
Parameter optimization for surface flux transport models
Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.
2017-11-01
Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.
Assessing Quasi-Steady State in Evaporation of Sessile Drops by Diffusion Models
Martin, Cameron; Nguyen, Hoa; Kelly-Zion, Peter; Pursell, Chris
2017-11-01
The vapor distributions surrounding sessile drops of methanol are modeled as the solutions of the steady-state and transient diffusion equations using Matlab's PDE Toolbox. The goal is to determine how quickly the transient diffusive transport reaches its quasi-steady state as the droplet geometry is varied between a Weber's disc, a real droplet shape, and a spherical cap with matching thickness or contact angle. We assume that the only transport mechanism at work is diffusion. Quasi-steady state is defined using several metrics, such as differences between the transient and steady-state solutions, and change in the transient solution over time. Knowing the vapor distribution, the gradient is computed to evaluate the diffusive flux. The flux is integrated along the surface of a control volume surrounding the drop to obtain the net rate of diffusion out of the volume. Based on the differences between the transient and steady-state diffusive fluxes at the discrete points along the control-volume surface, the time to reach quasi-steady state evaporation is determined and is consistent with other proposed measurements. By varying the dimensions of the control volume, we can also assess what regimes have equivalent or different quasi-steady states for different droplet geometries. Petroleum Research Fund.
A diffusive ink transport model for lipid dip-pen nanolithography.
Urtizberea, A; Hirtz, M
2015-10-14
Despite diverse applications, phospholipid membrane stacks generated by dip-pen nanolithography (DPN) still lack a thorough and systematic characterization that elucidates the whole ink transport process from writing to surface spreading, with the aim of better controlling the resulting feature size and resolution. We report a quantitative analysis and modeling of the dependence of lipid DPN features (area, height and volume) on dwell time and relative humidity. The ink flow rate increases with humidity in agreement with meniscus size growth, determining the overall feature size. The observed time dependence indicates the existence of a balance between surface spreading and the ink flow rate that promotes differences in concentration at the meniscus/substrate interface. Feature shape is controlled by the substrate surface energy. The results are analyzed within a modified model for the ink transport of diffusive inks. At any humidity the dependence of the area spread on the dwell time shows two diffusion regimes: at short dwell times growth is controlled by meniscus diffusion while at long dwell times surface diffusion governs the process. The critical point for the switch of regime depends on the humidity.
Energy Technology Data Exchange (ETDEWEB)
Lawrenz, M.
2007-10-30
In the present work the dynamics of CO-molecules on a stepped Pt(111)-surface induced by fs-laser pulses at low temperatures was studied by using laser spectroscopy. In the first part of the work, the laser-induced diffusion for the CO/Pt(111)-system could be demonstrated and modelled successfully for step diffusion. At first, the diffusion of CO-molecules from the step sites to the terrace sites on the surface was traced. The experimentally discovered energy transfer time of 500 fs for this process confirms the assumption of an electronically induced process. In the following it was explained how the experimental results were modelled. A friction coefficient which depends on the electron temperature yields a consistent model, whereas for the understanding of the fluence dependence and time-resolved measurements parallel the same set of parameters was used. Furthermore, the analysis was extended to the CO-terrace diffusion. Small coverages of CO were adsorbed to the terraces and the diffusion was detected as the temporal evolution of the occupation of the step sites acting as traps for the diffusing molecules. The additional performed two-pulse correlation measurements also indicate an electronically induced process. At the substrate temperature of 40 K the cross-correlation - where an energy transfer time of 1.8 ps was extracted - suggests also an electronically induced energy transfer mechanism. Diffusion experiments were performed for different substrate temperatures. (orig.)
Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations
Energy Technology Data Exchange (ETDEWEB)
Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)
2013-09-30
Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo_{2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo_{2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft^{2} at a feed pressure of only 20 psig. The highest H_{2}/N_{2} selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo_{2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo_{2}C catalyst layers. We have fabricated a Mo_{2}C/V composite membrane that in pure gas testing delivered a H_{2} flux of 238 SCFH/ft^{2} at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft^{2}.psi. However, during testing of a Mo_{2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft^{2}.psi was obtained which was stable during the entire test, meeting the permeance associated with
Ku, Bon Ki; Kulkarni, Pramod
2012-05-01
We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.
Directory of Open Access Journals (Sweden)
Martin Hofmann
2017-02-01
Full Text Available We present a new model for the calculation of the diffuse fraction of the global solar irradiance for solar system simulations. The importance of an accurate estimation of the horizontal diffuse irradiance is highlighted by findings that an inaccurately calculated diffuse irradiance can lead to significant over- or underestimations in the annual energy yield of a photovoltaic (PV system by as much as 8%. Our model utilizes a time series of global irradiance in one-minute resolution and geographical information as input. The model is validated by measurement data of 28 geographically and climatologically diverse locations worldwide with one year of one-minute data each, taken from the Baseline Surface Radiation Network (BSRN. We show that on average the mean absolute deviation of the modelled and the measured diffuse irradiance is reduced from about 12% to about 6% compared to three reference models. The maximum deviation is less than 20%. In more than 80% of the test cases, the deviation is smaller 10%. The root mean squared error (RMSE of the calculated diffuse fractions is reduced by about 18%.
Diffusion approximation of neuronal models revisited
Czech Academy of Sciences Publication Activity Database
Čupera, Jakub
2014-01-01
Roč. 11, č. 1 (2014), s. 11-25 ISSN 1547-1063. [International Workshop on Neural Coding (NC) /10./. Praha, 02.09.2012-07.09.2012] R&D Projects: GA ČR(CZ) GAP103/11/0282 Institutional support: RVO:67985823 Keywords : stochastic model * neuronal activity * first-passage time Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.840, year: 2014
Diffusion in energy materials: Governing dynamics from atomistic modelling
Parfitt, D.; Kordatos, A.; Filippatos, P. P.; Chroneos, A.
2017-09-01
Understanding diffusion in energy materials is critical to optimising the performance of solid oxide fuel cells (SOFCs) and batteries both of which are of great technological interest as they offer high efficiency for cleaner energy conversion and storage. In the present review, we highlight the insights offered by atomistic modelling of the ionic diffusion mechanisms in SOFCs and batteries and how the growing predictive capability of high-throughput modelling, together with our new ability to control compositions and microstructures, will produce advanced materials that are designed rather than chosen for a given application. The first part of the review focuses on the oxygen diffusion mechanisms in cathode and electrolyte materials for SOFCs and in particular, doped ceria and perovskite-related phases with anisotropic structures. The second part focuses on disordered oxides and two-dimensional materials as these are very promising systems for battery applications.
MESOI: an interactive Lagrangian trajectory puff diffusion model
Energy Technology Data Exchange (ETDEWEB)
Ramsdell, J.V.; Athey, G.F.
1981-12-01
MESOI is an interactive Lagrangian trajectory puff diffusion model based on an earlier model by Start and Wendell at the Air Resources Laboratory Field Office at Idaho Falls, Idaho. Puff trajectories are determined using spatially and temporally varying wind fields. Diffusion in the puffs is computed as a function of distance traveled and atmospheric stability. Exposures are computed at nodes of a 31 by 31 grid. There is also provision for interpolation of short term exposures at off-grid locations. This report discusses: the theoretical bases of the model, the numerical approach used in the model, and the sensitivity and accuracy of the model. It contains a description of the computer program and a listing of the code. MESOI is written in FORTRAN. A companion report (Athey, Allwine and Ramsdell, 1981) contains a user's guide to MESOI and documents utility programs that maintain the data files needed by the model.
American Society for Testing and Materials. Philadelphia
2008-01-01
1.1 This test method provides procedures for measuring the leach rates of elements from a solidified matrix material, determining if the releases are controlled by mass diffusion, computing values of diffusion constants based on models, and verifying projected long-term diffusive releases. This test method is applicable to any material that does not degrade or deform during the test. 1.1.1 If mass diffusion is the dominant step in the leaching mechanism, then the results of this test can be used to calculate diffusion coefficients using mathematical diffusion models. A computer program developed for that purpose is available as a companion to this test method (Note 1). 1.1.2 It should be verified that leaching is controlled by diffusion by a means other than analysis of the leach test solution data. Analysis of concentration profiles of species of interest near the surface of the solid waste form after the test is recommended for this purpose. 1.1.3 Potential effects of partitioning on the test results can...
Entry and diffusion of electrolytic hydrogen in some surface treated steels
International Nuclear Information System (INIS)
Waheed, A.F.M.
1986-01-01
Hydrogen diffusion and permeation through metals specially ferrous material is a subject that has a large volume of researches. the most important reason is the technological importance associated with the degradation of ferrous materials resulting from hydrogen absorption. The embrittling effect of hydrogen in steels and the catastrophic nature of failures caused by hydrogen embrittlement has led also to the importance of understanding hydrogen entry and surface processes. the effect of surface treatment of some types of steels on hydrogen entry and diffusion at room temperature (25 degree C) was studied. the two types of steels used in this study are plain carbon steel and low alloy steel
Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface
Directory of Open Access Journals (Sweden)
Muhammad Qasim
2013-01-01
Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.
Regularization modeling for large-eddy simulation of diffusion flames
Geurts, Bernardus J.; Wesseling, P.; Oñate, E.; Périaux, J.
We analyze the evolution of a diffusion flame in a turbulent mixing layer using large-eddy simulation. The large-eddy simulation includes Leray regularization of the convective transport and approximate inverse filtering to represent the chemical source terms. The Leray model is compared to the more
Mathematical models for drug diffusion through the compartments of ...
African Journals Online (AJOL)
M.A. Khanday
2016-07-26
Jul 26, 2016 ... quadratic shape function.10. Moreover, Khanday and. Najar11,12 established the mathematical models on oxygen transport in biological tissues through capillary bed using both analytical and numerical methods. In this study, we extended the diffusion of drug in blood and tissue using three mathemat-.
Three dimensional simulated modelling of diffusion capacitance of ...
African Journals Online (AJOL)
A three dimensional (3-D) simulated modelling was developed to analyse the excess minority carrier density in the base of a polycrystalline bifacial silicon solar cell. The concept of junction recombination velocity was ado-pted to quantify carrier flow through the junction, and to examine the solar cell diffusion capacitance for ...
Analytically solvable models of reaction-diffusion systems
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E P; Kassner, K [Institut fuer Theoretische Physik, Otto-von-Guericke-Universitaet, Universitaetsplatz 2, 39106 Magdeburg (Germany)
2004-05-01
We consider a class of analytically solvable models of reaction-diffusion systems. An analytical treatment is possible because the nonlinear reaction term is approximated by a piecewise linear function. As particular examples we choose front and pulse solutions to illustrate the matching procedure in the one-dimensional case.
Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model
Wang, Sheng; Liu, Wenbin; Guo, Zhengguang; Wang, Weiming
2013-01-01
We investigate the traveling wave solutions in a reaction-diffusion epidemic model. The existence of the wave solutions is derived through monotone iteration of a pair of classical upper and lower solutions. The traveling wave solutions are shown to be unique and strictly monotonic. Furthermore, we determine the critical minimal wave speed.
DEFF Research Database (Denmark)
Scheel Larsen, Poul; Riisgård, H.U.
1997-01-01
Transient concentration distributions of flagellate cells (Rhodomonas sp.) measured in laboratory experiments (Riisgård et al., 1996 a,b) have been examined to develop a diffusion model for the process of phytoplankton depletion in stagnant seawater above populations of benthic filter......-feeders, the polychaete Nereis diversicolor and the ascidian Ciona intestinalis, respectively. The model is based on sinks located at inhalant openings and Fick's law with an effective diffusivity that decreases with distance above the bottom due to the biomixing generated by exhalant and inhalant feeding currents. For N....... diversicolor, having inhalant and exhalant openings flush with the sediment surface and a moderate exhalant jet velocity of about 0.01 m s-1, concentration boundary layer growth is retarded and limited by the low values of diffusivity prevailing at heights greater than about 0.05 m above the bottom. For C...
Passive Frequency Selective Surface Array as a Diffuser for Destroying Millimeter Wave Coherence
Directory of Open Access Journals (Sweden)
Saiful Islam
2008-01-01
Full Text Available This paper presents the design, construction, and testing of grounded frequency selective surface (FSS array as a diffuser for destroying millimeter wave coherence which is used to eliminate speckle in active millimeter wave imaging. To create stochastically independent illumination patterns, we proposed a diffuser based on random-phase distributions obtained by changing the incident frequency. The random-phase diffuser was obtained by mixing up the phase relations between the cells of a deterministic function (e.g., beam splitter. The slot length of FSS is the main design parameter used to optimize the phase shifting properties of the array. The critical parameters of the diffuser array design, such as phase relation with slot lengths, losses, and bandwidth, are discussed. We designed the FSS arrays with finite integral technique (FIT, fabricated by etching technique, and characterized the S-parameters with a free-space MVNA, and measured the radiation patterns with a BWO in motorized setup.
Modeling Radiation Belt Electron Dynamics with the DREAM3D Diffusion Model
Energy Technology Data Exchange (ETDEWEB)
Tu, Weichao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cunningham, Gregory S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henderson, Michael G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morley, Steven K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Blake, Bernard J. [The Aerospace Corporation, El Segundo, CA (United States); Baker, Daniel N. [Lab. for Atmospheric and Space Physics, Boulder, CO (United States); Spence, Harlan [Univ. of New Hampshire, Durham, NH (United States)
2014-02-14
The simulation results from our 3D diffusion model on the CRRES era suggest; our model captures the general variations of radiation belt electrons, including the dropouts and the enhancements; the overestimations inside the plasmapause can be improved by increasing the PA diffusion from hiss waves; and that better D_{LL} and wave models are required.
Image Restoration for Fluorescence Planar Imaging with Diffusion Model
Directory of Open Access Journals (Sweden)
Xuanxuan Zhang
2017-01-01
Full Text Available Fluorescence planar imaging (FPI is failure to capture high resolution images of deep fluorochromes due to photon diffusion. This paper presents an image restoration method to deal with this kind of blurring. The scheme of this method is conceived based on a reconstruction method in fluorescence molecular tomography (FMT with diffusion model. A new unknown parameter is defined through introducing the first mean value theorem for definite integrals. System matrix converting this unknown parameter to the blurry image is constructed with the elements of depth conversion matrices related to a chosen plane named focal plane. Results of phantom and mouse experiments show that the proposed method is capable of reducing the blurring of FPI image caused by photon diffusion when the depth of focal plane is chosen within a proper interval around the true depth of fluorochrome. This method will be helpful to the estimation of the size of deep fluorochrome.
Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix B
El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and O) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and O2 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.
Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix J
El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2003-01-01
The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and 0) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and 02 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.
Leaky-box approximation to the fractional diffusion model
International Nuclear Information System (INIS)
Uchaikin, V V; Sibatov, R T; Saenko, V V
2013-01-01
Two models based on fractional differential equations for galactic cosmic ray diffusion are applied to the leaky-box approximation. One of them (Lagutin-Uchaikin, 2000) assumes a finite mean free path of cosmic ray particles, another one (Lagutin-Tyumentsev, 2004) uses distribution with infinite mean distance between collision with magnetic clouds, when the trajectories have form close to ballistic. Calculations demonstrate that involving boundary conditions is incompatible with spatial distributions given by the second model.
Energy Technology Data Exchange (ETDEWEB)
Lai, Vincent; Khong, Pek Lan [University of Hong Kong, Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Lee, Victor Ho Fun; Lam, Ka On; Sze, Henry Chun Kin [University of Hong Kong, Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, Pok Fu Lam (China); Chan, Queenie [Philips Healthcare, Hong Kong, Shatin, New Territories (China)
2015-06-01
To determine the utility of stretched exponential diffusion model in characterisation of the water diffusion heterogeneity in different tumour stages of nasopharyngeal carcinoma (NPC). Fifty patients with newly diagnosed NPC were prospectively recruited. Diffusion-weighted MR imaging was performed using five b values (0-2,500 s/mm{sup 2}). Respective stretched exponential parameters (DDC, distributed diffusion coefficient; and alpha (α), water heterogeneity) were calculated. Patients were stratified into low and high tumour stage groups based on the American Joint Committee on Cancer (AJCC) staging for determination of the predictive powers of DDC and α using t test and ROC curve analyses. The mean ± standard deviation values were DDC = 0.692 ± 0.199 (x 10{sup -3} mm{sup 2}/s) for low stage group vs 0.794 ± 0.253 (x 10{sup -3} mm{sup 2}/s) for high stage group; α = 0.792 ± 0.145 for low stage group vs 0.698 ± 0.155 for high stage group. α was significantly lower in the high stage group while DDC was negatively correlated. DDC and α were both reliable independent predictors (p < 0.001), with α being more powerful. Optimal cut-off values were (sensitivity, specificity, positive likelihood ratio, negative likelihood ratio) DDC = 0.692 x 10{sup -3} mm{sup 2}/s (94.4 %, 64.3 %, 2.64, 0.09), α = 0.720 (72.2 %, 100 %, -, 0.28). The heterogeneity index α is robust and can potentially help in staging and grading prediction in NPC. (orig.)
Robust and fast nonlinear optimization of diffusion MRI microstructure models.
Harms, R L; Fritz, F J; Tobisch, A; Goebel, R; Roebroeck, A
2017-07-15
Advances in biophysical multi-compartment modeling for diffusion MRI (dMRI) have gained popularity because of greater specificity than DTI in relating the dMRI signal to underlying cellular microstructure. A large range of these diffusion microstructure models have been developed and each of the popular models comes with its own, often different, optimization algorithm, noise model and initialization strategy to estimate its parameter maps. Since data fit, accuracy and precision is hard to verify, this creates additional challenges to comparability and generalization of results from diffusion microstructure models. In addition, non-linear optimization is computationally expensive leading to very long run times, which can be prohibitive in large group or population studies. In this technical note we investigate the performance of several optimization algorithms and initialization strategies over a few of the most popular diffusion microstructure models, including NODDI and CHARMED. We evaluate whether a single well performing optimization approach exists that could be applied to many models and would equate both run time and fit aspects. All models, algorithms and strategies were implemented on the Graphics Processing Unit (GPU) to remove run time constraints, with which we achieve whole brain dataset fits in seconds to minutes. We then evaluated fit, accuracy, precision and run time for different models of differing complexity against three common optimization algorithms and three parameter initialization strategies. Variability of the achieved quality of fit in actual data was evaluated on ten subjects of each of two population studies with a different acquisition protocol. We find that optimization algorithms and multi-step optimization approaches have a considerable influence on performance and stability over subjects and over acquisition protocols. The gradient-free Powell conjugate-direction algorithm was found to outperform other common algorithms in terms of
Czech Academy of Sciences Publication Activity Database
Kromka, Alexander; Čech, J.; Kozak, Halyna; Artemenko, Anna; Ižák, Tibor; Čermák, Jan; Rezek, Bohuslav; Černák, M.
2015-01-01
Roč. 252, č. 11 (2015), s. 2602-2607 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : atmospheric plasma * diamond nanoparticles * diffuse coplanar surface barrier discharge * FTIR * XPS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.522, year: 2015
INTRODUCTION: Surface Dynamics, Phonons, Adsorbate Vibrations and Diffusion
Bruch, L. W.
2004-07-01
understanding of the underlying factors determining the optical quality of GaInNAs, such as composition, growth and annealing conditions. We are still far from establishing an understanding of the band structure and its dependence on composition. Fundamental electronic interactions such as electron-electron and electron-phonon scattering, dependence of effective mass on composition, strain and orientation, quantum confinement effects, effects of localized nitrogen states on high field transport and on galvanometric properties, and mechanisms for light emission in these materials, are yet to be fully understood. Nature and formation mechanisms of grown-in and processing-induced defects that are important for material quality and device performance are still unknown. Such knowledge is required in order to design strategies to efficiently control and eliminate harmful defects. For many potential applications (such as solar cells, HBTs) it is essential to get more information on the transport properties of dilute nitride materials. The mobility of minority carriers is known to be low in GaInNAs and related material. The experimental values are far from reaching the theoretical ones, due to defects and impurities introduced in the material during the growth. The role of the material inhomogeneities on the lateral carrier transport also needs further investigation. From the device's point of view most attention to date has been focused on the GaInNAs/GaAs system, mainly because of its potential for optoelectronic devices covering the 1.3-1.55 µm data and telecommunications wavelength bands. As is now widely appreciated, these GaAs-compatible structures allow monolithic integration of AlGaAs-based distributed Bragg reflector mirrors (DBRs) for vertical cavity surface-emitting lasers with low temperature sensitivity and compatibility with AlOx-based confinement techniques. In terms of conventional edge-emitting lasers (EELs), the next step is to extend the wavelength range for cw room
Directory of Open Access Journals (Sweden)
Chih-Chun Hsieh
2012-01-01
Full Text Available This study performs a precipitation examination of the phase using the general diffusion equation with comparison to the Vitek model in dissimilar stainless steels during multipass welding. Experimental results demonstrate that the diffusivities (, , and of Cr, Ni, and Si are higher in -ferrite than (, , and in the phase, and that they facilitate the precipitation of the σ phase in the third pass fusion zone. The Vitek diffusion equation can be modified as follows: .
Fractional Heat Conduction Models and Thermal Diffusivity Determination
Directory of Open Access Journals (Sweden)
Monika Žecová
2015-01-01
Full Text Available The contribution deals with the fractional heat conduction models and their use for determining thermal diffusivity. A brief historical overview of the authors who have dealt with the heat conduction equation is described in the introduction of the paper. The one-dimensional heat conduction models with using integer- and fractional-order derivatives are listed. Analytical and numerical methods of solution of the heat conduction models with using integer- and fractional-order derivatives are described. Individual methods have been implemented in MATLAB and the examples of simulations are listed. The proposal and experimental verification of the methods for determining thermal diffusivity using half-order derivative of temperature by time are listed at the conclusion of the paper.
Diffusion in higher dimensional SYK model with complex fermions
Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong
2018-01-01
We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.
A Diffusion Model for Two-sided Service Systems
Homma, Koichi; Yano, Koujin; Funabashi, Motohisa
A diffusion model is proposed for two-sided service systems. ‘Two-sided’ refers to the existence of an economic network effect between two different and interrelated groups, e.g., card holders and merchants in an electronic money service. The service benefit for a member of one side depends on the number and quality of the members on the other side. A mathematical model by J. H. Rohlfs explains the network (or bandwagon) effect of communications services. In Rohlfs' model, only the users' group exists and the model is one-sided. This paper extends Rohlfs' model to a two-sided model. We propose, first, a micro model that explains individual behavior in regard to service subscription of both sides and a computational method that drives the proposed model. Second, we develop macro models with two diffusion-rate variables by simplifying the micro model. As a case study, we apply the models to an electronic money service and discuss the simulation results and actual statistics.
Characterization and modeling of thermal diffusion and aggregation in nanofluids.
Energy Technology Data Exchange (ETDEWEB)
Gharagozloo, Patricia E.; Goodson, Kenneth E. (Stanford University, Stanford, CA)
2010-05-01
Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.
Surface self-diffusion of adatom on Pt cluster with truncated octahedron structure
Energy Technology Data Exchange (ETDEWEB)
Yang Jianyu, E-mail: wuliyangjianyu@yahoo.com.c [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Hu Wangyu, E-mail: wangyuhu2001@yahoo.com.c [Department of Applied Physics, Hunan University, Changsha 410082 (China); Chen Shuguang [Department of Applied Physics, Hunan University, Changsha 410082 (China)
2010-05-03
Surface diffusion of single Pt adatom on Pt cluster with truncated octahedron structure is investigated through a combination of molecular dynamics and nudged elastic band method. Using an embedded atom method to describe the atomic interactions, the minimum energy paths are determined and the energy barriers for adatom diffusion across and along step are evaluated. The diffusion of adatom crossing step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets has a surprisingly low barrier of 0.03 eV, which is 0.12 eV lower than the barrier for adatom diffusion from {l_brace}111{r_brace} to neighboring {l_brace}111{r_brace} facet. Owing to the small barrier of adatom diffusion across the step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets, the diffusion of adatom along the step edge cannot occur. The molecular dynamics simulations at low temperatures also support these results. Our results show that mass transport will prefer step with {l_brace}100{r_brace} microfacet and the Pt clusters can have only {l_brace}111{r_brace} facets in epitaxial growth.
Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.
2013-10-01
a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.
An innovation diffusion model for new mobile technologies acceptance
Directory of Open Access Journals (Sweden)
Barkoczia Nadi
2017-01-01
Full Text Available This paper aims to approach the diffusion model developed in 1960 by Frank Bass has been utilized to study the distribution of different types of new products and services. The Bass Model helps by describing the process in which new products are adopted in a market. This model is a useful tool for predicting the first purchase of an innovative product for which there are competing alternatives on the market. It also provides the innovator with information regarding the size of customers and the adoption time for the product. The second part of the paper is dedicated to a monographic study of specific conceptual correlations between the diffusion of technology and marketing management that emphasizes technological uncertainty and market uncertainty as major risks to innovative projects. In the final section, the results of empirical research conducted in Baia-Mare, Romania will be presented in a way that uses diffusion Bass model to estimate the adoption period for new mobile technologies.
Modeling information diffusion in time-varying community networks
Cui, Xuelian; Zhao, Narisa
2017-12-01
Social networks are rarely static, and they typically have time-varying network topologies. A great number of studies have modeled temporal networks and explored social contagion processes within these models; however, few of these studies have considered community structure variations. In this paper, we present a study of how the time-varying property of a modular structure influences the information dissemination. First, we propose a continuous-time Markov model of information diffusion where two parameters, mobility rate and community attractiveness, are introduced to address the time-varying nature of the community structure. The basic reproduction number is derived, and the accuracy of this model is evaluated by comparing the simulation and theoretical results. Furthermore, numerical results illustrate that generally both the mobility rate and community attractiveness significantly promote the information diffusion process, especially in the initial outbreak stage. Moreover, the strength of this promotion effect is much stronger when the modularity is higher. Counterintuitively, it is found that when all communities have the same attractiveness, social mobility no longer accelerates the diffusion process. In addition, we show that the local spreading in the advantage group has been greatly enhanced due to the agglomeration effect caused by the social mobility and community attractiveness difference, which thus increases the global spreading.
Energy Technology Data Exchange (ETDEWEB)
Manuel, Lozano [Iowa State Univ., Ames, IA (United States)
1996-01-12
The transport of atoms or molecules over surfaces has been an important area of study for several decades now, with its progress generally limited by the available experimental techniques to characterize the phenomena. A number of methods have been developed over the years to measure surface diffusion yet only very few systems have been characterized to this day mainly due to the physical limitations inherent in these available methods. Even the STM with its astonishing atomically-resolved images of the surface has been limited in terms of its capability to determine mass transport properties. This is because the STM is inherently a ``slow`` instrument, i.e., a finite time is needed for signal averaging in order to produce the image. A need exists for additional surface diffusion measurement techniques, ideally ones which are able to study varied systems and measure a wide range of diffusion rates. The STM (especially because of its highly local nature) presents itself as a promising tool to conduct dynamical studies if its poor time resolution during ``normal operation`` can somehow be overcome. The purpose of this dissertation is to introduce a new technique of using the STM to measure adatom mobility on surfaces -- one with a capacity to achieve excellent time resolution.
International Nuclear Information System (INIS)
Kim, Sung Hoon
2001-01-01
Planarization of the free-standing diamond film surface as smooth as possible could be obtained by using the hydrogen plasma etching with the diffusion of the carbon species into the metal alloy (Fe, Cr, Ni). For this process, we placed the free-standing diamond film between the metal alloy and the Mo substrate like a metal-diamond-molybdenum (MDM) sandwich. We set the sandwich-type MDM in a microwave-plasma-enhanced chemical vapor deposition (MPECVD) system. The sandwich-type MDM was heated over ca. 1000 .deg. C by using the hydrogen plasma. We call this process as the hydrogen plasma etching with carbon diffusion process. After etching the free-standing diamond film surface, we investigated surface roughness, morphologies, and the incorporated impurities on the etched diamond film surface. Finally, we suggest that the hydrogen plasma etching with carbon diffusion process is an adequate etching technique for the fabrication of the diamond film surface applicable to electronic devices
Diffusion of C and Cr During Creation of Surface Layer on Cast Steel Casting
Directory of Open Access Journals (Sweden)
Szajnar J.
2014-10-01
Full Text Available In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.
Impurity diffusion, point defect engineering, and surface/interface passivation in germanium
Chroneos, Alexander I.
2012-01-26
In recent years germanium has been emerging as a mainstream material that could have important applications in the microelectronics industry. The principle aim of this study is to review investigations of the diffusion of technologically important p- and n-type dopants as well as surface and interface passivation issues in germanium. The diffusion of impurities in germanium is interrelated to the formation of clusters whenever possible, and possibilities for point defect engineering are discussed in view of recent results. The importance of electrically active defects on the Ge surface and interfaces is addressed considering strategies to suppress them and to passivate the surfaces/interfaces, bearing in mind their importance for advanced devices. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxidative Corrosion of the UO _{2} (001) Surface by Nonclassical Diffusion
Energy Technology Data Exchange (ETDEWEB)
Stubbs, Joanne E.; Biwer, Craig A.; Chaka, Anne M. [Pacific Northwest; Ilton, Eugene S. [Pacific Northwest; Du, Yingge [Pacific Northwest; Bargar, John R. [Stanford Synchrotron; Eng, Peter J.
2017-11-07
Uranium oxide is central to every stage of the nuclear fuel cycle, from mining through fuel fabrication and use, to waste disposal and environmental cleanup. Its chemical and mechanical stability are intricately linked to the concentration of interstitial O atoms within the structure and the oxidation state of U. We have previously shown that during corrosion of the UO2 (111) surface under either 1 atm O2 gas or oxygenated water at room temperature, oxygen interstitials diffuse into the substrate to form a superlattice with three-layer periodicity. In the current study, we present results from surface x-ray scattering that reveal the structure of the oxygen diffusion profile beneath the (001) surface. The first few layers below the surface oscillate strongly in their surface-normal lattice parameters, suggesting preferential interstitial occupation of every other layer below the surface, which is geometrically consistent with the interstitial network that forms below the oxidized (111) surface. Deeper layers are heavily contracted and indicate that the oxidation front penetrates ~52 Å below the (001) surface after 21 days of dry O2 gas exposure at ambient pressure and temperature. X-ray photoelectron spectroscopy indicates U is present as U(IV), U(V), and U(VI).
Social influence and perceptual decision making: a diffusion model analysis.
Germar, Markus; Schlemmer, Alexander; Krug, Kristine; Voss, Andreas; Mojzisch, Andreas
2014-02-01
Classic studies on social influence used simple perceptual decision-making tasks to examine how the opinions of others change individuals' judgments. Since then, one of the most fundamental questions in social psychology has been whether social influence can alter basic perceptual processes. To address this issue, we used a diffusion model analysis. Diffusion models provide a stochastic approach for separating the cognitive processes underlying speeded binary decisions. Following this approach, our study is the first to disentangle whether social influence on decision making is due to altering the uptake of available sensory information or due to shifting the decision criteria. In two experiments, we found consistent evidence for the idea that social influence alters the uptake of available sensory evidence. By contrast, participants did not adjust their decision criteria.
Thermomechanics of damageable materials under diffusion: modelling and analysis
Roubíček, Tomáš; Tomassetti, Giuseppe
2015-12-01
We propose a thermodynamically consistent general-purpose model describing diffusion of a solute or a fluid in a solid undergoing possible phase transformations and damage, beside possible visco-inelastic processes. Also heat generation/consumption/transfer is considered. Damage is modelled as rate-independent. The applications include metal-hydrogen systems with metal/hydride phase transformation, poroelastic rocks, structural and ferro/para-magnetic phase transformation, water and heat transport in concrete, and if diffusion is neglected, plasticity with damage and viscoelasticity, etc. For the ensuing system of partial differential equations and inclusions, we prove existence of solutions by a carefully devised semi-implicit approximation scheme of the fractional-step type.
Hydrodynamic and diffusive mixing in ICF implosion modeling
Ames, Alexander; Weber, Chris; Cook, Andy
2017-11-01
Inertial confinement fusion requires efficient spherical compression of a deuterium-tritium gas mixture by a shock-driven implosion. The performance of the implosion is limited by several phenomena, including differential acceleration of deuterium and tritium ions, and mixing due to the Richtmyer-Meshkov and Rayleigh-Taylor instabilities. The MIRANDA radiation hydrodynamics code at LLNL has recently incorporated multi-species diffusion and multi-group radiation transport models. This enables modeling of the impact of diffusive mixing on the fuel, as well as investigation of ablative Rayleigh-Taylor instability growth and resultant hydrodynamic mixing using single-group and multiple-group radiation drives. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Modeling and Analysis of New Products Diffusion on Heterogeneous Networks
Directory of Open Access Journals (Sweden)
Shuping Li
2014-01-01
Full Text Available We present a heterogeneous networks model with the awareness stage and the decision-making stage to explain the process of new products diffusion. If mass media is neglected in the decision-making stage, there is a threshold whether the innovation diffusion is successful or not, or else it is proved that the network model has at least one positive equilibrium. For networks with the power-law degree distribution, numerical simulations confirm analytical results, and also at the same time, by numerical analysis of the influence of the network structure and persuasive advertisements on the density of adopters, we give two different products propagation strategies for two classes of nodes in scale-free networks.
A new approach to the problem of bulk-mediated surface diffusion.
Berezhkovskii, Alexander M; Dagdug, Leonardo; Bezrukov, Sergey M
2015-08-28
This paper is devoted to bulk-mediated surface diffusion of a particle which can diffuse both on a flat surface and in the bulk layer above the surface. It is assumed that the particle is on the surface initially (at t = 0) and at time t, while in between it may escape from the surface and come back any number of times. We propose a new approach to the problem, which reduces its solution to that of a two-state problem of the particle transitions between the surface and the bulk layer, focusing on the cumulative residence times spent by the particle in the two states. These times are random variables, the sum of which is equal to the total observation time t. The advantage of the proposed approach is that it allows for a simple exact analytical solution for the double Laplace transform of the conditional probability density of the cumulative residence time spent on the surface by the particle observed for time t. This solution is used to find the Laplace transform of the particle mean square displacement and to analyze the peculiarities of its time behavior over the entire range of time. We also establish a relation between the double Laplace transform of the conditional probability density and the Fourier-Laplace transform of the particle propagator over the surface. The proposed approach treats the cases of both finite and infinite bulk layer thicknesses (where bulk-mediated surface diffusion is normal and anomalous at asymptotically long times, respectively) on equal footing.
Attempt to model laboratory-scale diffusion and retardation data
Hölttä, P.; Siitari-Kauppi, M.; Hakanen, M.; Tukiainen, V.
2001-02-01
Different approaches for measuring the interaction between radionuclides and rock matrix are needed to test the compatibility of experimental retardation parameters and transport models used in assessing the safety of the underground repositories for the spent nuclear fuel. In this work, the retardation of sodium, calcium and strontium was studied on mica gneiss, unaltered, moderately altered and strongly altered tonalite using dynamic fracture column method. In-diffusion of calcium into rock cubes was determined to predict retardation in columns. In-diffusion of calcium into moderately and strongly altered tonalite was interpreted using a numerical code FTRANS. The code was able to interprete in-diffusion of weakly sorbing calcium into the saturated porous matrix. Elution curves of calcium for the moderately and strongly altered tonalite fracture columns were explained adequately using FTRANS code and parameters obtained from in-diffusion calculations. In this paper, mass distribution ratio values of sodium, calcium and strontium for intact rock are compared to values, previously obtained for crushed rock from batch and crushed rock column experiments. Kd values obtained from fracture column experiments were one order of magnitude lower than Kd values from batch experiments.
Modelling and control of a diffusion/LPCVD furnace
Dewaard, H.; Dekoning, W. L.
1988-12-01
Heat transfer inside a cylindrical resistance diffusion/Low Pressure Chemical Vapor Deposition (LPCVD) furnace is studied with the aim of developing an improved temperature controller. A model of the thermal behavior is derived, which covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. Currently used temperature controllers are shown to be highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the LQG (linear quadratic Gaussian) type is proposed which features direct wafer temperature control. Some simulation results are given.
Analysis of a diffuse interface model of multispecies tumor growth
Czech Academy of Sciences Publication Activity Database
Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.
2017-01-01
Roč. 30, č. 4 (2017), s. 1639-1658 ISSN 0951-7715 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Cahn-Hilliard equation * Darcy law * diffuse interface model Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6544/aa6063/meta
An elemental diffusion description for LTE plasma models
Energy Technology Data Exchange (ETDEWEB)
Hartgers, A; Heijden, H W P van der; Beks, M L; Dijk, J van; Mullen, J A M van der [Department of Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)
2005-09-21
A novel method to describe diffusive processes in plasmas in local thermodynamic equilibrium (LTE) was developed, based on the transport of elements instead of individual species. This method combines the elegance of the LTE description of a chemical composition with the flexibility of explicit transport for each element. A simple model of a metal halide lamp containing Hg dosed with NaI is used to illustrate the method.
An epidemic model of rumor diffusion in online social networks
Cheng, Jun-Jun; Liu, Yun; Shen, Bo; Yuan, Wei-Guo
2013-01-01
So far, in some standard rumor spreading models, the transition probability from ignorants to spreaders is always treated as a constant. However, from a practical perspective, the case that individual whether or not be infected by the neighbor spreader greatly depends on the trustiness of ties between them. In order to solve this problem, we introduce a stochastic epidemic model of the rumor diffusion, in which the infectious probability is defined as a function of the strength of ties. Moreover, we investigate numerically the behavior of the model on a real scale-free social site with the exponent γ = 2.2. We verify that the strength of ties plays a critical role in the rumor diffusion process. Specially, selecting weak ties preferentially cannot make rumor spread faster and wider, but the efficiency of diffusion will be greatly affected after removing them. Another significant finding is that the maximum number of spreaders max( S) is very sensitive to the immune probability μ and the decay probability v. We show that a smaller μ or v leads to a larger spreading of the rumor, and their relationships can be described as the function ln(max( S)) = Av + B, in which the intercept B and the slope A can be fitted perfectly as power-law functions of μ. Our findings may offer some useful insights, helping guide the application in practice and reduce the damage brought by the rumor.
Directed Diffusion Modelling for Tesso Nilo National Parks Case Study
Yasri, Indra; Safrianti, Ery
2018-01-01
— Directed Diffusion (DD has ability to achieve energy efficiency in Wireless Sensor Network (WSN). This paper proposes Directed Diffusion (DD) modelling for Tesso Nilo National Parks (TNNP) case study. There are 4 stages of scenarios involved in this modelling. It’s started by appointing of sampling area through GPS coordinate. The sampling area is determined by optimization processes from 500m x 500m up to 1000m x 1000m with 100m increment in between. The next stage is sensor node placement. Sensor node is distributed in sampling area with three different quantities i.e. 20 nodes, 30 nodes and 40 nodes. One of those quantities is choose as an optimized sensor node placement. The third stage is to implement all scenarios in stages 1 and stages 2 on DD modelling. In the last stage, the evaluation process to achieve most energy efficient in the combination of optimized sampling area and optimized sensor node placement on Direct Diffusion (DD) routing protocol. The result shows combination between sampling area 500m x 500m and 20 nodes able to achieve energy efficient to support a forest preventive fire system at Tesso Nilo National Parks.
Directory of Open Access Journals (Sweden)
Louena Shtrepi
2017-02-01
Full Text Available Simulations of the acoustic effects that diffusive surfaces have on the objective acoustic parameters and on sound perception have not yet been fully understood. To this end, acoustic simulations have been performed in Odeon in the model of a variable-acoustic concert hall. This paper is presented as a follow-up study to a previous paper that dealt with in-field measurements only. As in measurements, a diffusive and a reflective condition of one of the lateral walls have been considered in the room models. Two modeling alternatives of the diffusive condition, that is, (a a flat surface with high scattering coefficient applied; and (b a triangular relief modeled including edge diffraction, have been investigated. Objective acoustic parameters, such as early decay time (EDT, reverberation time (T30, clarity (C80, definition (D50, and interaural cross correlation (IACC, have been compared between the two conditions. Moreover, an auditory experiment has been performed to determine the maximum distance from a diffusive surface at which the simulated acoustic scattering effects are still audible. Although the simulated objective results showed a good match with measured values, the subjective results showed that the differences between the diffuse and reflective conditions become significant when model (b is used.
An axisymmetric non-hydrostatic model for double-diffusive water systems
Hilgersom, Koen; Zijlema, Marcel; van de Giesen, Nick
2018-02-01
The three-dimensional (3-D) modelling of water systems involving double-diffusive processes is challenging due to the large computation times required to solve the flow and transport of constituents. In 3-D systems that approach axisymmetry around a central location, computation times can be reduced by applying a 2-D axisymmetric model set-up. This article applies the Reynolds-averaged Navier-Stokes equations described in cylindrical coordinates and integrates them to guarantee mass and momentum conservation. The discretized equations are presented in a way that a Cartesian finite-volume model can be easily extended to the developed framework, which is demonstrated by the implementation into a non-hydrostatic free-surface flow model. This model employs temperature- and salinity-dependent densities, molecular diffusivities, and kinematic viscosity. One quantitative case study, based on an analytical solution derived for the radial expansion of a dense water layer, and two qualitative case studies demonstrate a good behaviour of the model for seepage inflows with contrasting salinities and temperatures. Four case studies with respect to double-diffusive processes in a stratified water body demonstrate that turbulent flows are not yet correctly modelled near the interfaces and that an advanced turbulence model is required.
Diffusion Modeling: A Study of the Diffusion of “Jatropha Curcas ...
African Journals Online (AJOL)
Consequently, the study recommended the use of diffusion networks which integrate interpersonal networks, and multimedia strategies for the effective diffusion of innovation such as Jacodiesel in Adamawa State and other parts of the country. Keywords: Sustainability, Diffusion, Innovation, Communicative Influence, ...
Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.
2015-12-01
Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models
Modeling diffusion of adsorbed polymer with explicit solvent.
Desai, Tapan G; Keblinski, Pawel; Kumar, Sanat K; Granick, Steve
2007-05-25
Computer simulations of a polymer chain of length N strongly adsorbed at the solid-liquid interface in the presence of explicit solvent are used to delineate the factors affecting the N dependence of the polymer lateral diffusion coefficient, D(||). We find that surface roughness has a large influence, and D(||) scales as D(||) approximately N(-x), with x approximately 3/4 and x approximately 1 for ideal smooth and corrugated surfaces, respectively. The first result is consistent with the hydrodynamics of a "particle" of radius of gyration R(G) approximately N(nu) (nu=0.75) translating parallel to a planar interface, while the second implies that the friction of the adsorbed chains dominates. These results are discussed in the context of recent measurements.
Performance modeling of parallel algorithms for solving neutron diffusion problems
International Nuclear Information System (INIS)
Azmy, Y.Y.; Kirk, B.L.
1995-01-01
Neutron diffusion calculations are the most common computational methods used in the design, analysis, and operation of nuclear reactors and related activities. Here, mathematical performance models are developed for the parallel algorithm used to solve the neutron diffusion equation on message passing and shared memory multiprocessors represented by the Intel iPSC/860 and the Sequent Balance 8000, respectively. The performance models are validated through several test problems, and these models are used to estimate the performance of each of the two considered architectures in situations typical of practical applications, such as fine meshes and a large number of participating processors. While message passing computers are capable of producing speedup, the parallel efficiency deteriorates rapidly as the number of processors increases. Furthermore, the speedup fails to improve appreciably for massively parallel computers so that only small- to medium-sized message passing multiprocessors offer a reasonable platform for this algorithm. In contrast, the performance model for the shared memory architecture predicts very high efficiency over a wide range of number of processors reasonable for this architecture. Furthermore, the model efficiency of the Sequent remains superior to that of the hypercube if its model parameters are adjusted to make its processors as fast as those of the iPSC/860. It is concluded that shared memory computers are better suited for this parallel algorithm than message passing computers
Analysis on a diffusive SIS epidemic model with logistic source
Li, Bo; Li, Huicong; Tong, Yachun
2017-08-01
In this paper, we are concerned with an SIS epidemic reaction-diffusion model with logistic source in spatially heterogeneous environment. We first discuss some basic properties of the parabolic system, including the uniform upper bound of solutions and global stability of the endemic equilibrium when spatial environment is homogeneous. Our primary focus is to determine the asymptotic profile of endemic equilibria (when exist) if the diffusion (migration) rate of the susceptible or infected population is small or large. Combined with the results of Li et al. (J Differ Equ 262:885-913, 2017) where the case of linear source is studied, our analysis suggests that varying total population enhances persistence of infectious disease.
Thermodynamic modelling of fast dopant diffusion in Si
Saltas, V.; Chroneos, A.; Vallianatos, F.
2018-04-01
In the present study, nickel and copper fast diffusion in silicon is investigated in the framework of the cBΩ thermodynamic model, which connects point defect parameters with the bulk elastic and expansion properties. All the calculated point defect thermodynamic properties (activation Gibbs free energy, activation enthalpy, activation entropy, and activation volume) exhibit temperature dependence due to the non-linear anharmonic behavior of the isothermal bulk modulus of Si. Calculated activation enthalpies (0.15-0.16 eV for Ni and 0.17-0.19 eV for Cu) are in agreement with the reported experimental results. Small values of calculated activation volumes for both dopants (˜4% of the mean atomic volume) are consistent with the interstitial diffusion of Ni and Cu in Si.
Continuum modelling of silicon diffusion in indium gallium arsenide
Aldridge, Henry Lee, Jr.
A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point
Surface EXAFS - A mathematical model
International Nuclear Information System (INIS)
Bateman, J.E.
2002-01-01
Extended X-ray absorption fine structure (EXAFS) studies are a powerful technique for studying the chemical environment of specific atoms in a molecular or solid matrix. The study of the surface layers of 'thick' materials introduces special problems due to the different escape depths of the various primary and secondary emission products which follow X-ray absorption. The processes are governed by the properties of the emitted fluorescent photons or electrons and of the material. Their interactions can easily destroy the linear relation between the detected signal and the absorption cross-section. Also affected are the probe depth within the surface and the background superimposed on the detected emission signal. A general mathematical model of the escape processes is developed which permits the optimisation of the detection modality (X-rays or electrons) and the experimental variables to suit the composition of any given surface under study
Directory of Open Access Journals (Sweden)
Xi Shao
2016-03-01
Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.
Lerch, W.; Stolwijk, N. A.
1998-02-01
Rapid thermal annealing was used for short-time diffusion experiments of gold in dislocation-free floating-zone silicon of {100} orientation at 1050 °C and 1119 °C. Concentration-depth profiles measured by the spreading-resistance technique are well described within the framework of the kick-out mechanism involving generation of silicon self-interstitials. More specifically, the gold-incorporation rate appears to be controlled by the outdiffusion of excess self-interstitials towards the surfaces. As a special feature, the measurements reveal a continuous increase of the gold boundary concentration which approaches the pertaining solubility limit only after prolonged annealing. This can be interpreted in terms of a limited effectiveness of gold-alloyed {100} silicon surfaces as sinks for self-interstitials. The validity of this interpretation is supported by computer modeling of the experimental data yielding finite values for the self-interstitial surface-annihilation velocity.
A generative model for resolution enhancement of diffusion MRI data.
Yap, Pew-Thian; An, Hongyu; Chen, Yasheng; Shen, Dinggang
2013-01-01
The advent of diffusion magnetic resonance imaging (DMRI) presents unique opportunities for the exploration of white matter connectivity in vivo and non-invasively. However, DMRI suffers from insufficient spatial resolution, often limiting its utility to the studying of only major white matter structures. Many image enhancement techniques rely on expensive scanner upgrades and complex time-consuming sequences. We will instead take a post-processing approach in this paper for resolution enhancement of DMRI data. This will allow the enhancement of existing data without re-acquisition. Our method uses a generative model that reflects the image generation process and, after the parameters of the model have been estimated, we can effectively sample high-resolution images from this model. More specifically, we assume that the diffusion-weighted signal at each voxel is an agglomeration of signals from an ensemble of fiber segments that can be oriented and located freely within the voxel. Our model for each voxel therefore consists of an arbitrary number of signal generating fiber segments, and the model parameters that need to be determined are the locations and orientations of these fiber segments. Solving for these parameters is an ill-posed problem. However, by borrowing information from neighboring voxels, we show that this can be solved by using Markov chain Monte Carlo (MCMC) methods such as the Metropolis-Hastings algorithm. Preliminary results indicate that out method substantially increases structural visibility in both subcortical and cortical regions.
A discrete model to study reaction-diffusion-mechanics systems.
Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V
2011-01-01
This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.
Turbulent diffusion modelling for windflow and dispersion analysis
International Nuclear Information System (INIS)
Bartzis, J.G.
1988-01-01
The need for simple but reliable models for turbulent diffusion for windflow and atmospheric dispersion analysis is a necessity today if one takes into consideration the relatively high demand in computer time and costs for such an analysis, arising mainly from the often large solution domains needed, the terrain complexity and the transient nature of the phenomena. In the accident consequence assessment often there is a need for a relatively large number of cases to be analysed increasing further the computer time and costs. Within the framework of searching for relatively simple and universal eddy viscosity/diffusivity models, a new three dimensional non isotropic model is proposed applicable to any domain complexity and any atmospheric stability conditions. The model utilizes the transport equation for turbulent kinetic energy but introduces a new approach in effective length scale estimation based on the flow global characteristics and local atmospheric stability. The model is discussed in detail and predictions are given for flow field and boundary layer thickness. The results are compared with experimental data with satisfactory results
A discrete model to study reaction-diffusion-mechanics systems.
Directory of Open Access Journals (Sweden)
Louis D Weise
Full Text Available This article introduces a discrete reaction-diffusion-mechanics (dRDM model to study the effects of deformation on reaction-diffusion (RD processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material. Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.
International Nuclear Information System (INIS)
Bourg, Ian C.; Sposito, Garrison; Bourg, Alain C.M.
2008-01-01
Assessments of bentonite barrier performance in waste management scenarios require an accurate description of the diffusion of water and solutes through the barrier. A two-compartment macropore/nanopore model (on which smectite interlayer nanopores are treated as a distinct compartment of the overall pore space) was applied to describe the diffusion of 22 Na + in compacted, water-saturated Na-bentonites and then compared with the well-known surface diffusion model. The two-compartment model successfully predicted the observed weak ionic strength dependence of the apparent diffusion coefficient (D a ) of Na + , whereas the surface diffusion model did not, thus confirming previous research indicating the strong influence of interlayer nanopores on the properties of smectite clay barriers. Since bentonite mechanical properties and pore water chemistry have been described successfully with two-compartment models, the results in the present study represent an important contribution toward the construction of a comprehensive two-compartment model of compacted bentonite barriers
Eaves, Nick A.; Zhang, Qingan; Liu, Fengshan; Guo, Hongsheng; Dworkin, Seth B.; Thomson, Murray J.
2016-10-01
Mitigation of soot emissions from combustion devices is a global concern. For example, recent EURO 6 regulations for vehicles have placed stringent limits on soot emissions. In order to allow design engineers to achieve the goal of reduced soot emissions, they must have the tools to so. Due to the complex nature of soot formation, which includes growth and oxidation, detailed numerical models are required to gain fundamental insights into the mechanisms of soot formation. A detailed description of the CoFlame FORTRAN code which models sooting laminar coflow diffusion flames is given. The code solves axial and radial velocity, temperature, species conservation, and soot aggregate and primary particle number density equations. The sectional particle dynamics model includes nucleation, PAH condensation and HACA surface growth, surface oxidation, coagulation, fragmentation, particle diffusion, and thermophoresis. The code utilizes a distributed memory parallelization scheme with strip-domain decomposition. The public release of the CoFlame code, which has been refined in terms of coding structure, to the research community accompanies this paper. CoFlame is validated against experimental data for reattachment length in an axi-symmetric pipe with a sudden expansion, and ethylene-air and methane-air diffusion flames for multiple soot morphological parameters and gas-phase species. Finally, the parallel performance and computational costs of the code is investigated.
Application of the evolution theory in modelling of innovation diffusion
Directory of Open Access Journals (Sweden)
Krstić Milan
2016-01-01
Full Text Available The theory of evolution has found numerous analogies and applications in other scientific disciplines apart from biology. In that sense, today the so-called 'memetic-evolution' has been widely accepted. Memes represent a complex adaptable system, where one 'meme' represents an evolutional cultural element, i.e. the smallest unit of information which can be identified and used in order to explain the evolution process. Among others, the field of innovations has proved itself to be a suitable area where the theory of evolution can also be successfully applied. In this work the authors have started from the assumption that it is also possible to apply the theory of evolution in the modelling of the process of innovation diffusion. Based on the conducted theoretical research, the authors conclude that the process of innovation diffusion in the interpretation of a 'meme' is actually the process of imitation of the 'meme' of innovation. Since during the process of their replication certain 'memes' show a bigger success compared to others, that eventually leads to their natural selection. For the survival of innovation 'memes', their manifestations are of key importance in the sense of their longevity, fruitfulness and faithful replicating. The results of the conducted research have categorically confirmed the assumption of the possibility of application of the evolution theory with the innovation diffusion with the help of innovation 'memes', which opens up the perspectives for some new researches on the subject.
Different approach to the modeling of nonfree particle diffusion
Buhl, Niels
2018-03-01
A new approach to the modeling of nonfree particle diffusion is presented. The approach uses a general setup based on geometric graphs (networks of curves), which means that particle diffusion in anything from arrays of barriers and pore networks to general geometric domains can be considered and that the (free random walk) central limit theorem can be generalized to cover also the nonfree case. The latter gives rise to a continuum-limit description of the diffusive motion where the effect of partially absorbing barriers is accounted for in a natural and non-Markovian way that, in contrast to the traditional approach, quantifies the absorptivity of a barrier in terms of a dimensionless parameter in the range 0 to 1. The generalized theorem gives two general analytic expressions for the continuum-limit propagator: an infinite sum of Gaussians and an infinite sum of plane waves. These expressions entail the known method-of-images and Laplace eigenfunction expansions as special cases and show how the presence of partially absorbing barriers can lead to phenomena such as line splitting and band gap formation in the plane wave wave-number spectrum.
Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media
Directory of Open Access Journals (Sweden)
Albinali Ali
2016-07-01
Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.
A reaction-diffusion model of cholinergic retinal waves.
Directory of Open Access Journals (Sweden)
Benjamin Lansdell
2014-12-01
Full Text Available Prior to receiving visual stimuli, spontaneous, correlated activity in the retina, called retinal waves, drives activity-dependent developmental programs. Early-stage waves mediated by acetylcholine (ACh manifest as slow, spreading bursts of action potentials. They are believed to be initiated by the spontaneous firing of Starburst Amacrine Cells (SACs, whose dense, recurrent connectivity then propagates this activity laterally. Their inter-wave interval and shifting wave boundaries are the result of the slow after-hyperpolarization of the SACs creating an evolving mosaic of recruitable and refractory cells, which can and cannot participate in waves, respectively. Recent evidence suggests that cholinergic waves may be modulated by the extracellular concentration of ACh. Here, we construct a simplified, biophysically consistent, reaction-diffusion model of cholinergic retinal waves capable of recapitulating wave dynamics observed in mice retina recordings. The dense, recurrent connectivity of SACs is modeled through local, excitatory coupling occurring via the volume release and diffusion of ACh. In addition to simulation, we are thus able to use non-linear wave theory to connect wave features to underlying physiological parameters, making the model useful in determining appropriate pharmacological manipulations to experimentally produce waves of a prescribed spatiotemporal character. The model is used to determine how ACh mediated connectivity may modulate wave activity, and how parameters such as the spontaneous activation rate and sAHP refractory period contribute to critical wave size variability.
Compact Models for Defect Diffusivity in Semiconductor Alloys.
Energy Technology Data Exchange (ETDEWEB)
Wright, Alan F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Nanostructure Physics Department; Lee, Stephen R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Materials Sciences Department; Foiles, Stephen M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Computational Materials and Data Science Department
2017-09-01
Predicting transient effects caused by short - pulse neutron irradiation of electronic devices is an important part of Sandia's mission. For example , predicting the diffusion of radiation - induced point defects is needed with in Sandia's Qualification Alternative to the Sandia Pulsed Reactor (QASPR) pro gram since defect diffusion mediates transient gain recovery in QASPR electronic devices. Recently, the semiconductors used to fabricate radiation - hard electronic devices have begun to shift from silicon to III - V compounds such as GaAs, InAs , GaP and InP . An advantage of this shift is that it allows engineers to optimize the radiation hardness of electronic devices by using alloy s such as InGaAs and InGaP . However, the computer codes currently being used to simulate transient radiation effects in QASP R devices will need to be modified since they presume that defect properties (charge states, energy levels, and diffusivities) in these alloys do not change with time. This is not realistic since the energy and properties of a defect depend on the types of atoms near it and , therefore, on its location in the alloy. In particular, radiation - induced defects are created at nearly random locations in an alloy and the distribution of their local environments - and thus their energies and properties - evolves with time as the defects diffuse through the alloy . To incorporate these consequential effects into computer codes used to simulate transient radiation effects, we have developed procedures to accurately compute the time dependence of defect energies and properties and then formulate them within compact models that can be employed in these computer codes. In this document, we demonstrate these procedures for the case of the highly mobile P interstitial (I P ) in an InGaP alloy. Further dissemination only as authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE
Emulation of a Kalman Filter algorithm on a diffusive flood wave propagation model
Pannekoucke, O.; Ricci, S. M.; Ninove, F.; Thual, O.
2011-12-01
River stream flow forecasting is a critical issue for the security of people and infrastructures, the function of power plants, and water resources management. The benefit of data assimilation for free-surface flow simulation and flood forecasting has already been demonstrated as it is applied to optimize model parameters and to improve simulated water level and discharge state [1]. The correction of the hydraulic state with a Kalman Filter algorithm implies the propagation of the background error covariance matrix B by the dynamics of the model. This step requires the formulation and the integration in time of the tangent linear approximation of the model, which is generally fastidious and costly. The aim of this study is to describe the evolution of the background error covariance function with the Kalman Filter algorithm applied to a 1D diffuse flood wave propagation model. For this simplified model, the formulation of the tangent linear model as well as the propagation of B is affordable as opposed as for an operational hydraulics model solving the shallow water equations. Starting from Gaussian background covariance functions, it was first shown that the diffusive flood wave propagation model increases the correlation length and that the propagated covariance function can be approximated by a Gaussian. Working with a steady observation network, it was then demonstrated that the analysis and propagation steps of the Kalman Filter modify the covariance function at the observation point. The resulting covariance function at the observation point is inhomogeneous, with a shorter correlation length downstream of the observation point than upstream. The diagnosed correlation lengths [2] were used to build a parametrized covariance matrix using a diffusion operator with an inhomogenous diffusion coefficient [3]. This approach led to the formulation of a parametrized background error covariance matrix where the evolution of the covariance function with the Kalman
Residual sweeping errors in turbulent particle pair diffusion in a Lagrangian diffusion model.
Directory of Open Access Journals (Sweden)
Nadeem A Malik
Full Text Available Thomson, D. J. & Devenish, B. J. [J. Fluid Mech. 526, 277 (2005] and others have suggested that sweeping effects make Lagrangian properties in Kinematic Simulations (KS, Fung et al [Fung J. C. H., Hunt J. C. R., Malik N. A. & Perkins R. J. J. Fluid Mech. 236, 281 (1992], unreliable. However, such a conclusion can only be drawn under the assumption of locality. The major aim here is to quantify the sweeping errors in KS without assuming locality. Through a novel analysis based upon analysing pairs of particle trajectories in a frame of reference moving with the large energy containing scales of motion it is shown that the normalized integrated error [Formula: see text] in the turbulent pair diffusivity (K due to the sweeping effect decreases with increasing pair separation (σl, such that [Formula: see text] as σl/η → ∞; and [Formula: see text] as σl/η → 0. η is the Kolmogorov turbulence microscale. There is an intermediate range of separations 1 < σl/η < ∞ in which the error [Formula: see text] remains negligible. Simulations using KS shows that in the swept frame of reference, this intermediate range is large covering almost the entire inertial subrange simulated, 1 < σl/η < 105, implying that the deviation from locality observed in KS cannot be atributed to sweeping errors. This is important for pair diffusion theory and modeling. PACS numbers: 47.27.E?, 47.27.Gs, 47.27.jv, 47.27.Ak, 47.27.tb, 47.27.eb, 47.11.-j.
Surface effects on tritium diffusion in materials in a radiation environment
International Nuclear Information System (INIS)
Caskey, G.R. Jr.
1975-01-01
Tritium transport and distribution in a material are controlled by chemical potential and thermal gradients and cross-coupling to impurities and defects. Surfaces influence tritium diffusion by acting as sources and sinks for defects and impurities, and surface films restricting tritium transfer between the solid and surrounding fluids. Radiation directly affects boundary processes such as dissociation or adsorption, may erode a surface film or the surface itself, and introduces defects and impurities into the solid by radiation damage, transmutation, or ion implantation, thereby modifying tritium transport within the solid and its transfer across external interfaces. There have been no definitive investigations of these effects, but their practical significance has been demonstrated in tritium release or absorption studies with stainless steel, Zircaloy, niobium, and other materials. (auth)
Parametric pattern selection in a reaction-diffusion model.
Directory of Open Access Journals (Sweden)
Michael Stich
Full Text Available We compare spot patterns generated by Turing mechanisms with those generated by replication cascades, in a model one-dimensional reaction-diffusion system. We determine the stability region of spot solutions in parameter space as a function of a natural control parameter (feed-rate where degenerate patterns with different numbers of spots coexist for a fixed feed-rate. While it is possible to generate identical patterns via both mechanisms, we show that replication cascades lead to a wider choice of pattern profiles that can be selected through a tuning of the feed-rate, exploiting hysteresis and directionality effects of the different pattern pathways.
Analysis of a diffuse interface model of multispecies tumor growth
Czech Academy of Sciences Publication Activity Database
Dai, M.; Feireisl, Eduard; Rocca, E.; Schimperna, G.; Schonbek, M.E.
2017-01-01
Roč. 30, č. 4 (2017), s. 1639-1658 ISSN 0951-7715 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : Cahn-Hilliard equation * Darcy law * diffuse interface model Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6544/aa6063/meta;jsessionid=73B30CFD9F74DD027762D29C83D3094F.c3.iopscience.cld.iop.org
Reading and a diffusion model analysis of reaction time.
Naples, Adam; Katz, Leonard; Grigorenko, Elena L
2012-01-01
Processing speed is associated with reading performance. However, the literature is not clear either on the definition of processing speed or on why and how it contributes to reading performance. In this study we demonstrated that processing speed, as measured by reaction time, is not a unitary construct. Using the diffusion model of two-choice reaction time, we assessed processing speed in a series of same-different reaction time tasks for letter and number strings. We demonstrated that the association between reaction time and reading performance is driven by processing speed for reading-related information, but not motor or sensory encoding speed.
Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air
Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO
2018-01-01
Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.
Self-diffusion dynamic behavior of atomic clusters on Re(0 0 0 1) surface
Energy Technology Data Exchange (ETDEWEB)
Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu, E-mail: wangyuhu2001cn@yahoo.com.cn [Department of Applied Physics, Hunan University, Changsha 410082 (China); Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)
2009-08-15
Using molecular dynamics simulations and a modified analytic embedded atom potential, the self-diffusion dynamics of rhenium atomic clusters up to seven atoms on Re(0 0 0 1) surface have been studied in the temperature ranges from 600 K to 1900 K. The simulation time varies from 20 ns to 200 ns according to the cluster sizes and the temperature. The heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center, and diffusion prefactors D{sub 0} and activation energies E{sub a} are derived from the Arrhenius relation. It is found that the Arrhenius relation of the adatom can be divided into two parts at different temperature range. The activation energy of clusters increases with the increasing of the atom number in clusters. The prefactor of the heptamer is 2-3 orders of magnitude higher than a usual prefactor because of a large number of nonequivalent diffusion processes. The trimer and heptamer are the nuclei at different temperature range according to the nucleation theory.
SHIR competitive information diffusion model for online social media
Liu, Yun; Diao, Su-Meng; Zhu, Yi-Xiang; Liu, Qing
2016-11-01
In online social media, opinion divergences and differentiations generally exist as a result of individuals' extensive participation and personalization. In this paper, a Susceptible-Hesitated-Infected-Removed (SHIR) model is proposed to study the dynamics of competitive dual information diffusion. The proposed model extends the classical SIR model by adding hesitators as a neutralized state of dual information competition. It is both hesitators and stable spreaders that facilitate information dissemination. Researching on the impacts of diffusion parameters, it is found that the final density of stiflers increases monotonically as infection rate increases and removal rate decreases. And the advantage information with larger stable transition rate takes control of whole influence of dual information. The density of disadvantage information spreaders slightly grows with the increase of its stable transition rate, while whole spreaders of dual information and the relaxation time remain almost unchanged. Moreover, simulations imply that the final result of competition is closely related to the ratio of stable transition rates of dual information. If the stable transition rates of dual information are nearly the same, a slightly reduction of the smaller one brings out a significant disadvantage in its propagation coverage. Additionally, the relationship of the ratio of final stiflers versus the ratio of stable transition rates presents power characteristic.
A chaotic model for advertising diffusion problem with competition
Ip, W. H.; Yung, K. L.; Wang, Dingwei
2012-08-01
In this article, the author extends Dawid and Feichtinger's chaotic advertising diffusion model into the duopoly case. A computer simulation system is used to test this enhanced model. Based on the analysis of simulation results, it is found that the best advertising strategy in duopoly is to increase the advertising investment to reach the best Win-Win situation where the oscillation of market portion will not occur. In order to effectively arrive at the best situation, we define a synthetic index and two thresholds. An estimation method for the parameters of the index and thresholds is proposed in this research. We can reach the Win-Win situation by simply selecting the control parameters to make the synthetic index close to the threshold of min-oscillation state. The numerical example and computational results indicated that the proposed chaotic model is useful to describe and analyse advertising diffusion process in duopoly, it is an efficient tool for the selection and optimisation of advertising strategy.
Water Diffusion Modelling of CFB Fly Ash Thermoset Composite
Directory of Open Access Journals (Sweden)
Villa Ralph P.
2016-01-01
Full Text Available The shift in coal-fired power plants from pulverized coal (PC boiler technology into the greener circulating fluidized bed (CFB boiler technology resulted into a major deviation in the properties of the waste fly ash generated making it less suitable for its previous application as additives for construction materials. A new market for CFB fly ash had to be found for it not to end up as a zero value by-product. Using CFB fly ash as filler for thermoset composites is a new and remarkable application. Only a few studies, however, have been done to characterize the properties of this new material. Further experimentation and analysis may be costly and time-consuming since common procedures are material destructive. A computer-aided modeling of the composite’s water sorption behavior was done. The effect of particle loading, size and shape were considered. These properties were varied and the resulting overall diffusivities were compared to previous experimental studies. The comparison of the model and experimental diffusivity values showed satisfactory results. This model may then provide a cheaper and more time-efficient method for the characterization of the water sorption properties of CFB fly ash thermoset composites. In the future, this may lead to further studies on its application as a green material.
Sagis, L.M.C.
2001-01-01
In this paper we developed an expression for the coefficient for plane-parallel diffusion for an arbitrarily curved fluid–fluid interface. The expression is valid for ordinary diffusion in binary mixtures, with isotropic bulk phases and an interfacial region that is isotropic in the plane parallel
Modeling surface imperfections in thin films and nanostructured surfaces
DEFF Research Database (Denmark)
Hansen, Poul-Erik; Madsen, J. S.; Jensen, S. A.
2017-01-01
Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection...
A new model for diffusion bonding and its application to duplex alloys
Energy Technology Data Exchange (ETDEWEB)
Orhan, N. [Firat Univ., Elazig (Turkey). Dept. of Metall.; Aksoy, M.; Eroglu, M. [Department of Metallurgical and Materials Engineering, Faculty of Engineering, University of Firat, Elazig (Turkey)
1999-11-01
Diffusion bonding is an advanced bonding process in which two materials, similar or dissimilar, can be bonded in solid state. This provides to bond materials in a wide range from low carbon steels to ceramics and composites which cannot be bonded with conventional welding methods. One of the major advantages of this method is to produce new bimetal or dissimilar material couples. The process is diffusion-based and occurs in solid state and because of its increasing use as a commercial process. The estimation of final bonding time is very important but difficult without experiments for many materials. In this study, therefore, a new mathematical model is presented to predict the final bonding time for a sound bonding interface prior to bonding practice. Being different from the previous models, this model assumes a new surface morphology as a sine wave and a new creep mechanism for duplex alloys. The mechanisms operating during diffusion bonding are based on those in pressure sintering studies but here mass transfer by evaporation has been ignored. The driving forces and rate terms for those mechanisms have been altered to reflect the difference of the geometries of the two processes. Also the effect of grain size has been included in the model in case of joining fine-grained materials. In determining diffusion coefficients for duplex alloys, Darken's equation for binary alloys has been used. Depending on this new approach, it was shown that a more realistic final bonding time could be predicted for duplex alloys by comparing the results from this new model with those from the previous ones. As a result, it was determined that the new model could be used in order to estimate the final bonding time of the duplex alloys for a sound bond interface and the relationships between its parameters safely. The predictions from this new model show a very good agreement between practice and theory. (orig.)
Won, Yong Sun; Lee, Jinuk; Kim, Changsung Sean; Park, Sung-Soo
2009-02-01
The adsorption, diffusion, and dissociation of precursor species, MMGa (monomethylgallium) and NH 3, on the GaN (0 0 0 1) surface have been investigated using the DFT (density functional theory) calculation combined with a GaN (0 0 0 1) surface cluster model. The energetics of NH 3(ad) dissociation on the surface proposed of NH 3(ad) via NH 2(ad) to NH(ad) was facile with small activation barriers. A combined analysis with surface diffusion of adatoms demonstrated Ga(ad) and NH(ad) become primary reactant species for 2D film growth, and N(ad) develops into a nucleation center. Our studies suggest the control of NH 3(ad) dissociation are essential to improve epitaxial film quality as well as Ga-rich condition. In addition, the adsorbability of H(ad)s resulted from NH 3(ad) dissociation were found to influence on the surface chemistry during film growth.
Modeling the Determinants Influencing the Diffusion of Mobile Internet
Alwahaishi, Saleh; Snášel, Václav
2013-04-01
Understanding individual acceptance and use of Information and Communication Technology (ICT) is one of the most mature streams of information systems research. In Information Technology and Information System research, numerous theories are used to understand users' adoption of new technologies. Various models were developed including the Innovation Diffusion Theory, Theory of Reasoned Action, Theory of Planned Behavior, Technology Acceptance Model, and recently, the Unified Theory of Acceptance and Use of Technology. This research composes a new hybrid theoretical framework to identify the factors affecting the acceptance and use of Mobile Internet -as an ICT application- in a consumer context. The proposed model incorporates eight constructs: Performance Expectancy (PE), Effort Expectancy (EE), Facilitating Conditions (FC), Social Influences (SI), Perceived Value (PV), Perceived Playfulness (PP), Attention Focus (AF), and Behavioral intention (BI). Individual differences-namely, age, gender, education, income, and experience are moderating the effects of these constructs on behavioral intention and technology use.
Rowthu, Sriharitha; Balic, Edin E.; Hoffmann, Patrik
2017-12-01
Accomplishing mechanically robust omniphobic surfaces is a long-existing challenge, and can potentially find applications in bioengineering, tribology and paint industries. Slippery liquid impregnated mesoporous α-Al2O3 interfaces are achieved with water, alkanes, water based and oil based high viscosity acrylic paints. Incredibly high abrasion-resistance (wear coefficients ≤10‑8 mm3 N‑1 m‑1) and ultra-low friction coefficients (≥0.025) are attained, attributing to the hard alumina matrix and continuous replenishment of perfluoropolyether aided by capillarity and surface diffusion processes. A variety of impregnating liquids employed suggest that large molecules, faster surface diffusion and lowest evaporation rate generate the rare combination of high wear-resistance and omniphobicity. It is noteworthy that these novel liquid impregnated Al2O3 composites exhibit outstanding load bearing capacity up to 350 MPa; three orders of magnitude higher than achievable by the state of the art omniphobic surfaces. Further, our developed thermodynamic calculations suggest that the relative thermodynamic stability of liquid impregnated composites is linearly proportional to the spreading coefficient (S) of the impregnating liquid with the matrix material and is an important tool for the selection of an appropriate matrix material for a given liquid.
Global existence and asymptotic behaviour for a degenerate diffusive SEIR model
Directory of Open Access Journals (Sweden)
T. Aliziane
2005-02-01
Full Text Available In this paper we analyze the global existence and asymptotic behavior of a reaction diffusion system with degenerate diffusion arising in modeling the spatial spread of an epidemic disease.
Introducing serendipity in a social network model of knowledge diffusion
International Nuclear Information System (INIS)
Cremonini, Marco
2016-01-01
Highlights: • Serendipity as a control mechanism for knowledge diffusion in social network. • Local communication enhanced in the periphery of a network. • Prevalence of hub nodes in the network core mitigated. • Potential disruptive effect on network formation of uncontrolled serendipity. - Abstract: In this paper, we study serendipity as a possible strategy to control the behavior of an agent-based network model of knowledge diffusion. The idea of considering serendipity in a strategic way has been first explored in Network Learning and Information Seeking studies. After presenting the major contributions of serendipity studies to digital environments, we discuss the extension to our model: Agents are enriched with random topics for establishing new communication according to different strategies. The results show how important network properties could be influenced, like reducing the prevalence of hubs in the network’s core and increasing local communication in the periphery, similar to the effects of more traditional self-organization methods. Therefore, from this initial study, when serendipity is opportunistically directed, it appears to behave as an effective and applicable approach to social network control.
Modeling viscosity and diffusion of plasma mixtures across coupling regimes
Arnault, Philippe
2014-10-01
Viscosity and diffusion of plasma for pure elements and multicomponent mixtures are modeled from the high-temperature low-density weakly coupled regime to the low-temperature high-density strongly coupled regime. Thanks to an atom in jellium modeling, the effect of electron screening on the ion-ion interaction is incorporated through a self-consistent definition of the ionization. This defines an effective One Component Plasma, or an effective Binary Ionic Mixture, that is representative of the strength of the interaction. For the viscosity and the interdiffusion of mixtures, approximate kinetic expressions are supplemented by mixing laws applied to the excess viscosity and self-diffusion of pure elements. The comparisons with classical and quantum molecular dynamics results reveal deviations in the range 20--40% on average with almost no predictions further than a factor of 2 over many decades of variation. Applications in the inertial confinement fusion context could help in predicting the growth of hydrodynamic instabilities.
A microscopic multiphase diffusion model of viable epidermis permeability.
Nitsche, Johannes M; Kasting, Gerald B
2013-05-21
A microscopic model of passive transverse mass transport of small solutes in the viable epidermal layer of human skin is formulated on the basis of a hexagonal array of cells (i.e., keratinocytes) bounded by 4-nm-thick, anisotropic lipid bilayers and separated by 1-μm layers of extracellular fluid. Gap junctions and tight junctions with adjustable permeabilities are included to modulate the transport of solutes with low membrane permeabilities. Two keratinocyte aspect ratios are considered to represent basal and spinous cells (longer) and granular cells (more flattened). The diffusion problem is solved in a unit cell using a coordinate system conforming to the hexagonal cross section, and an efficient two-dimensional treatment is applied to describe transport in both the cell membranes and intercellular spaces, given their thinness. Results are presented in terms of an effective diffusion coefficient, D¯(epi), and partition coefficient, K¯(epi/w), for a homogenized representation of the microtransport problem. Representative calculations are carried out for three small solutes-water, L-glucose, and hydrocortisone-covering a wide range of membrane permeability. The effective transport parameters and their microscopic interpretation can be employed within the context of existing three-layer models of skin transport to provide more realistic estimates of the epidermal concentrations of topically applied solutes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
SCIMAP: Modelling Diffuse Pollution in Large River Basins
Milledge, D.; Heathwaite, L.; Lane, S. N.; Reaney, S. M.
2009-12-01
Polluted rivers are a problem for the plants and animals that require clean water to survive. Watershed scale processes can influence instream aquatic ecosystems by delivering fine sediment, solutes and organic matter from diffuse sources. To improve our rivers we need to identify the pollution sources. Models can help us to do this but these rarely address the extent to which risky land uses are hydrologically-connected, and hence able to deliver, to the drainage network. Those that do tend to apply a full hydrological scheme, which is unfeasible for large watersheds. Here we develop a risk-based modelling framework, SCIMAP, for diffuse pollution from agriculture (Nitrate, Phosphate and Fine Sediment). In each case the basis of the analysis is the joint consideration of the probability of a unit of land (25 m2 cell) producing a particular environmental risk and then of that risk reaching the river. The components share a common treatment of hydrological connectivity but differ in their treatment of each pollution type. We test and apply SCIMAP using spatially-distributed instream water quality data for some of the UK’s largest catchments to infer the processes and the associated process parameters that matter in defining their concentrations. We use these to identify a series of risky field locations, where this land use is readily connected to the river system by overland flow.
Energy Technology Data Exchange (ETDEWEB)
Arguelles O, J. L.; Corona R, M. A. [Universidad Autonoma de San Luis Potosi, Doctorado Institucional en Ingenieria y Ciencia de Materiales, San Luis Potosi 78000, SLP (Mexico); Marquez H, A.; Saldana R, A. L.; Saldana R, A. [Universidad de Guanajuato, Ingenieria Mecanica Agricola DICIVA, Irapuato, Guanajuato 36500 (Mexico); Moreno P, J., E-mail: amarquez@ugto.mx [Universidad de Guanajuato, Departamento de Minas, Metalurgia y Geologia, Ex-Hacienda San Matias s/n, Guanajuato, Guanajuato 36020 (Mexico)
2017-11-01
In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co{sub 2}B, Cr B and Mo{sub 2}B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)
Advection and diffusion in random media implications for sea surface temperature anomalies
Piterbarg, Leonid I
1997-01-01
The book presents the foundations of the theory of turbulent transport within the context of stochastic partial differential equations. It serves to establish a firm connection between rigorous and non-rigorous results concerning turbulent diffusion. Mathematically all of the issues addressed in this book are concentrated around a single linear equation: stochastic advection-diffusion (transport) equation. There is no attempt made to derive universal statistics for turbulent flow. Instead emphasis is placed on a statistical description of a passive scalar (tracer) under given velocity statistics. An application concerning transport of sea surface temperature anomalies reconciles the developed theory and a highly practical issue of modern physical oceanography by using the newly designed inversion techniques which take advantage of powerful maximum likelihood and autoregressive estimators. Audience: Graduate students and researchers in mathematics, fluid dynamics, and physical oceanography.
International Nuclear Information System (INIS)
Arguelles O, J. L.; Corona R, M. A.; Marquez H, A.; Saldana R, A. L.; Saldana R, A.; Moreno P, J.
2017-01-01
In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co 2 B, Cr B and Mo 2 B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)
Yamamoto, Takehiro; Emura, Chie; Oya, Masashi
2016-12-01
The growth of a biofilm begins with the adhesion of bacteria to a solid surface. Consequently, biofilm growth can be managed by the control of bacterial adhesion. Recent experimental studies have suggested that bacterial adhesion can be controlled by modifying a solid surface using nanostructures. Computational prediction and analysis of bacterial adhesion behavior are expected to be useful for the design of effective arrangements of nanostructures for controlling bacterial adhesion. The present study developed a cellular automaton (CA) model for bacterial adhesion simulation that could describe both the diffusive motion of bacteria and dependence of their adhesion patterns on the distance between nanostructures observed in experimental studies. The diffusive motion was analyzed by the moment scaling spectrum theory, and the present model was confirmed to describe subdiffusion behavior due to obstacles. Adhesion patterns observed in experimental studies can be successfully simulated by introducing CA rules to describe a mechanism by which bacteria tend to move to increase the area of contact with nanostructures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modelling thermal radiation and soot formation in buoyant diffusion flames
International Nuclear Information System (INIS)
Demarco Bull, R.A.
2012-01-01
The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)
Bioadhesion to model thermally responsive surfaces
Andrzejewski, Brett Paul
This dissertation focuses on the characterization of two surfaces: mixed self-assembled monolayers (SAMs) of hexa(ethylene glycol) and alkyl thiolates (mixed SAM) and poly(N-isopropylacrylamide) (PNIPAAm). The synthesis of hexa(ethylene gylcol) alkyl thiol (C11EG 6OH) is presented along with the mass spectrometry and nuclear magnetic resonance results. The gold substrates were imaged prior to SAM formation with atomic force micrscopy (AFM). Average surface roughness of the gold substrate was 0.44 nm, 0.67 nm, 1.65 nm for 15, 25 and 60 nm gold thickness, respectively. The height of the mixed SAM was measured by ellipsometry and varied from 13 to 28°A depending on surface mole fraction of C11EG6OH. The surface mole fraction of C11EG6OH for the mixed SAM was determined by X-ray photoelectron spectroscopy (XPS) with optimal thermal responsive behavior in the range of 0.4 to 0.6. The mixed SAM surface was confirmed to be thermally responsive by contact angle goniometry, 35° at 28°C and ˜55° at 40°C. In addition, the mixed SAM surfaces were confirmed to be thermally responsive for various aqueous mediums by tensiometry. Factors such as oxygen, age, and surface mole fraction and how they affect the thermal responsive of the mixed SAM are discussed. Lastly, rat fibroblasts were grown on the mixed SAM and imaged by phase contrast microscopy to show inhibition of attachment at temperatures below the molecular transition. Qualitative and quantitative measurements of the fibroblast adhesion data are provided that support the hypothesis of the mixed SAM exhibits a dominantly non-fouling molecular conformation at 25°C whereas it exhibits a dominantly fouling molecular conformation at 40°C. The adhesion of six model proteins: bovine serum albumin, collagen, pyruvate kinase, cholera toxin subunit B, ribonuclease, and lysozyme to the model thermally responsive mixed SAM were examined using AFM. All six proteins possessed adhesion to the pure component alkyl thiol, in
Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.
Directory of Open Access Journals (Sweden)
Sorenson Donna J
2009-12-01
Full Text Available Abstract Background Patients with traumatic brain injury (TBI often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. Methods Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI. Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p Results The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. Conclusions MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.
Directory of Open Access Journals (Sweden)
Goyal M.
2017-12-01
Full Text Available In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.
Goyal, M.; Goyal, R.; Bhargava, R.
2017-12-01
In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.
International Nuclear Information System (INIS)
Cardon, Clement
2016-01-01
This Ph.D. topic is focused on the modelling of stratification kinetics for an oxide-metal corium pool (U-O-Zr-steel system) in terms of multicomponent and multiphase diffusion. This work is part of a larger research effort for the development of a detailed corium pool modelling based on a CFD approach for thermal hydraulics. The overall goal is to improve the understanding of the involved phenomena and obtain closure laws for integral macroscopic models. The phase-field method coupled with an energy functional using the CALPHAD method appears to be relevant for this purpose. In a first part, we have developed a diffuse interface model in order to describe the diffusion process in the U-O system. This model has been coupled with a CALPHAD thermodynamic database and its parameterization has been developed with, in particular, an up-scaling procedure related to the interface thickness. Then, within the framework of a modelling for the U-O-Zr ternary system, we have proposed a generalization of the diffuse interface model through an assumption of local equilibrium for redox mechanisms. A particular attention was paid to the model analysis by 1D numerical simulations with a special focus on the steady state composition profiles. Finally we have applied this model to the U-O-Zr-Fe system. For that purpose, we have considered a configuration close to small-scale experimental tests of oxide-metal corium pool stratification. (author) [fr
Energy Technology Data Exchange (ETDEWEB)
Placidi, E., E-mail: ernesto.placidi@ism.cnr.it; Arciprete, F. [Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Latini, V.; Latini, S.; Patella, F. [Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Magri, R. [Dipartimento di Scienze Fisiche, Informatiche e Matematiche (FIM), Università di Modena e Reggio Emilia, and Centro S3 CNR-Istituto Nanoscienze, Via Campi 213/A, 4100 Modena (Italy); Scuderi, M.; Nicotra, G. [CNR-IMM, Strada VIII, 5, 95121 Catania (Italy)
2014-09-15
An innovative multilayer growth of InAs quantum dots on GaAs(100) is demonstrated to lead to self-aggregation of correlated quantum dot chains over mesoscopic distances. The fundamental idea is that at critical growth conditions is possible to drive the dot nucleation only at precise locations corresponding to the local minima of the Indium chemical potential. Differently from the known dot multilayers, where nucleation of new dots on top of the buried ones is driven by the surface strain originating from the dots below, here the spatial correlations and nucleation of additional dots are mostly dictated by a self-engineering of the surface occurring during the growth, close to the critical conditions for dot formation under the fixed oblique direction of the incoming As flux, that drives the In surface diffusion.
A self-consistent spin-diffusion model for micromagnetics
Abert, Claas
2016-12-17
We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.
Decomposition in aluminium alloys: diffuse scattering and crystal modelling
International Nuclear Information System (INIS)
Aslam-Malik, A.
1995-01-01
In the present study the microstructure of metastable precipitates in Al-Ag and Al-Cu, so called pre-precipitates or Guinier-Preston (GP) zones, was investigated. In both systems important aspects of the microstructure are still controversially discussed. In Al-Ag two forms of GP zones are suggested; depending on the aging temperatures above or below about 443 K, ε- or η-zones should evolve. Differences between these two types of zones may be due to differences in internal order and/or composition. In Al-Cu the characterization of GP I zones is difficult because of the strong atomic displacements around the zones. The proper separation of short-range order and displacement scattering within a diffuse scattering experiment is still under discussion. The technique used to determine the short-range order in both alloys was diffuse scattering with neutrons and X-rays. To separate short-range order and displacement scattering, the methods of Georgopoulos-Cohen (X-ray scattering) and Borie-Sparks (neutron scattering) were used. Of main importance is the optimization of the scattering contrast and thus the scattering contribution due to short-range order. Short-range order scattering is rationalized in terms of pair correlations. Crystals may subsequently be modelled to visualize the microstructure. The Al-Ag system was investigated by diffuse X-ray wide-angle scattering and small-angle neutron scattering. The small-angle neutron scattering measurement was necessary since the GP zones in Al-Ag are almost spherical and the main scattering contribution is found close to the origin of reciprocal space. The small-angle scattering is not that important in the case of Al-Cu because the main scattering extends along (100) owing to the planar character of the GP I zones on (100) lattice planes. (author) 24 figs., 10 tabs., refs
Influence of surface hydroxylation on the Ru atom diffusion on the ZrO2(101) surface: A DFT study
Tosoni, Sergio; Pacchioni, Gianfranco
2017-10-01
The adsorption and diffusion of ruthenium adatoms on the (101) surface of tetragonal zirconia was studied by means of periodic Density Functional Theory (PBE+U) calculations. The surface termination has a decisive role in determining the diffusion capability of the adsorbed Ru atoms. On the defect-free and fully dehydroxylated surface, Ru adatoms have several stable adsorption sites with adsorption energies as large as 2.5-2.9 eV However, the kinetic diffusion barriers between adjacent adsorption sites are around 0.5-0.6 eV, indicating a rather fast diffusion process. Surface oxygen vacancies, if present, strongly bind ruthenium adatoms and act as nucleation sites. On hydroxylated surfaces, the adsorption energy of Ru atoms is comparable to the dehydroxylated case, but the kinetic barriers for diffusion are remarkably higher, thus indicating that adsorbed species are less mobile in presence of surface OH groups. The effect is more pronounced for high concentrations of OH groups, since this results in hydrogen bonded hydroxyl units that further limit the diffusion process. These results indicate a possible way to increase the life-time of Rusbnd ZrO2 heterogeneous catalysts by tuning the level of surface hydroxylation, in order to slow down sintering of metal particles via Ostwald ripening process.
Modeling Periodic Impulsive Effects on Online TV Series Diffusion.
Fu, Peihua; Zhu, Anding; Fang, Qiwen; Wang, Xi
Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR)-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data. We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution. We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation. To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public social communities
Modeling Periodic Impulsive Effects on Online TV Series Diffusion.
Directory of Open Access Journals (Sweden)
Peihua Fu
Full Text Available Online broadcasting substantially affects the production, distribution, and profit of TV series. In addition, online word-of-mouth significantly affects the diffusion of TV series. Because on-demand streaming rates are the most important factor that influences the earnings of online video suppliers, streaming statistics and forecasting trends are valuable. In this paper, we investigate the effects of periodic impulsive stimulation and pre-launch promotion on on-demand streaming dynamics. We consider imbalanced audience feverish distribution using an impulsive susceptible-infected-removed(SIR-like model. In addition, we perform a correlation analysis of online buzz volume based on Baidu Index data.We propose a PI-SIR model to evolve audience dynamics and translate them into on-demand streaming fluctuations, which can be observed and comprehended by online video suppliers. Six South Korean TV series datasets are used to test the model. We develop a coarse-to-fine two-step fitting scheme to estimate the model parameters, first by fitting inter-period accumulation and then by fitting inner-period feverish distribution.We find that audience members display similar viewing habits. That is, they seek new episodes every update day but fade away. This outcome means that impulsive intensity plays a crucial role in on-demand streaming diffusion. In addition, the initial audience size and online buzz are significant factors. On-demand streaming fluctuation is highly correlated with online buzz fluctuation.To stimulate audience attention and interpersonal diffusion, it is worthwhile to invest in promotion near update days. Strong pre-launch promotion is also a good marketing tool to improve overall performance. It is not advisable for online video providers to promote several popular TV series on the same update day. Inter-period accumulation is a feasible forecasting tool to predict the future trend of the on-demand streaming amount. The buzz in public
Baum, K.; Hartmann, R.; Bischoff, T.; Himmelreich, F.; Heverhagen, J. T.
2011-07-01
In recent years optical methods became increasingly popular for pre-clinical research and small animal imaging. One main field in biomedical optics research is the diffuse optical tomography (DOT). Many new systems were invented for small animal imaging and breast cancer detection. In combination with the progress in the development of optical markers, optical detectors and near infrared light sources, these new systems have become a formidable source of information. Most of the systems detect the transmitted light which passes through an object and one observes the intensity variations on the detector side. The biggest challenge for all diffuse optical tomography systems is the enormous scattering of light in tissues and tissue-like phantoms resulting in loss of image information. Many systems work with contact gels and optical fibers that have direct contact with the object to neglect the light path between surface and detector. Highly developed mathematic models and reconstruction algorithms based on FEM and Monte Carlo simulations describe the light transport inside tissues and determine differences in absorption and scattering coefficients inside. The proposed method allows a more exact description of the orientation of surface elements from semi-transparent objects towards the detector. Using Polarization Difference Imaging (PDI) in combination with structured light 3D-scanning, it is possible to separate information from the surface from that of the subsurface. Thus, the actual surface shape can be determined. Furthermore, overlaying byproducts caused by inter-reflections and multiple scattering can be filtered from the basic image information with this method. To enhance the image quality, the intensity dispersion between surface and camera is calculated and the creation of 3D-FEM-meshes simplified.
Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes
DEFF Research Database (Denmark)
Starke, Jens; Reichert, Christian; Eiswirth, Markus
2007-01-01
Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can......, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspondence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena...
Simulating watercolor by modeling diffusion, pigment, and paper fibers
Small, David
1991-08-01
This paper explores a parallel approach to the problem of predicting the actions of pigment and water when applied to paper fibers. This work was done on the Connection Machine II, whose parallel architecture allows one to cast the problem as that of a complex cellular automata. One defines simple rules for the behavior of each cell based on the state of that cell and its immediate neighbors. By repeating the computation for each cell in the paper over many time steps, elaborate and realistic behaviors can be achieved. The simulation takes into account diffusion, surface tension, gravity, humidity, paper absorbency and the molecular weight of each pigment. At each time step a processor associated with each fiber in the paper computes water and pigment gradients, surface tension and gravitational forces, and decides if there should be any movement of material. Pigment and water can be applied and removed (blotting) with masks created from type or scanned images. Use of a parallel processor simplifies the creation and testing of software, and variables can be stored and manipulated at highprecision. The resulting simulation runs at approximately one-tenth real time.
DEFF Research Database (Denmark)
Vattulainen, Ilpo Tapio; Hjelt, T.; Ala-Nissila, T.
2000-01-01
We study the diffusive dynamics of adparticles in two model systems with strong interactions by considering the decay of the single-particle velocity correlation function phi (t). In accordance with previous studies, we find phi (t) to decay nonexponentially and follow a power-law phi (t)similar ......We study the diffusive dynamics of adparticles in two model systems with strong interactions by considering the decay of the single-particle velocity correlation function phi (t). In accordance with previous studies, we find phi (t) to decay nonexponentially and follow a power-law phi (t...... be rationalized in terms of interaction effects. Namely, x is typically larger than two in cases where repulsive adparticle-adparticle interactions dominate, while attractive interactions lead to x...
Govers, G.; Campforts, B.; Schwanghart, W.
2016-12-01
Landscape evolution models (LEM) allow studying the earth surface response to a changing climatic and tectonic forcing. While much effort has been devoted to the development of LEMs that simulate a wide range of processes, the numerical accuracy of these models has received much less attention. Most LEMs use first order accurate numerical methods that suffer from substantial numerical diffusion. Numerical diffusion particularly affects the solution of the advection equation and thus the simulation of retreating landforms such as cliffs and river knickpoints with potential unquantified consequences for the integrated response of the simulated landscape. Here we present TTLEM, a spatially explicit, raster based LEM for the study of fluvially eroding landscapes in TopoToolbox 2. TTLEM prevents numerical diffusion by implementing a higher order flux limiting total volume method that is total variation diminishing (TVD-TVM) and solves the partial differential equations of river incision and tectonic displacement. We show that the choice of the TVD-TVM to simulate river incision significantly influences the evolution of simulated landscapes and the spatial and temporal variability of catchment wide erosion rates. Furthermore, a 2D TVD-TVM accurately simulates the evolution of landscapes affected by lateral tectonic displacement, a process whose simulation is hitherto largely limited to LEMs with flexible spatial discretization. By providing accurate numerical schemes on rectangular grids, TTLEM is a widely accessible LEM that is compatible with GIS analysis functions from the TopoToolbox interface. The model code can be downloaded at: https://github.com/wschwanghart/topotoolbox
Analytical model of diffuse reflectance spectrum of skin tissue
Energy Technology Data Exchange (ETDEWEB)
Lisenko, S A; Kugeiko, M M; Firago, V A [Belarusian State University, Minsk (Belarus); Sobchuk, A N [B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk (Belarus)
2014-01-31
We have derived simple analytical expressions that enable highly accurate calculation of diffusely reflected light signals of skin in the spectral range from 450 to 800 nm at a distance from the region of delivery of exciting radiation. The expressions, taking into account the dependence of the detected signals on the refractive index, transport scattering coefficient, absorption coefficient and anisotropy factor of the medium, have been obtained in the approximation of a two-layer medium model (epidermis and dermis) for the same parameters of light scattering but different absorption coefficients of layers. Numerical experiments on the retrieval of the skin biophysical parameters from the diffuse reflectance spectra simulated by the Monte Carlo method show that commercially available fibre-optic spectrophotometers with a fixed distance between the radiation source and detector can reliably determine the concentration of bilirubin, oxy- and deoxyhaemoglobin in the dermis tissues and the tissue structure parameter characterising the size of its effective scatterers. We present the examples of quantitative analysis of the experimental data, confirming the correctness of estimates of biophysical parameters of skin using the obtained analytical expressions. (biophotonics)
Modeling of interstitial diffusion of ion-implanted boron
International Nuclear Information System (INIS)
Velichko, O.I.; Knyazheva, N.V.
2009-01-01
A model of the interstitial diffusion of ion-implanted boron during rapid thermal annealing of silicon layers previously amorphized by implantation of germanium has been proposed. It is supposed that the boron interstitials are created continuously during annealing due to generation, dissolution, or rearrangement of the clusters of impurity atoms which are formed in the ion-implanted layers with impurity concentration above the solubility limit. The local elastic stresses arising due to the difference of boron atomic radius and atomic radius of silicon also contribute to the generation of boron interstitials. A simulation of boron redistribution during thermal annealing for 60 s at a temperature of 850 C has been carried out. The calculated profile agrees well with the experimental data. A number of the parameters of interstitial diffusion have been derived. In particular, the average migration length of nonequilibrium boron interstitials is equal to 12 nm. It was also obtained that approximately 1.94% of boron atoms were converted to the interstitial sites, participated in the fast interstitial migration, and then became immobile again transferring into a substitutional position or forming the electrically inactive complexes with crystal lattice defects. (authors)
Lai, King C.; Liu, Da-Jiang; Evans, James W.
2017-12-01
For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal (100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN˜ N-β with β =3 /2 . However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N mediated diffusion with small β moderate sizes 9 ≤N ≤O (102) ; the same also applies for N =Np+3 , Np+ 4 , ... (iii) facile diffusion but with large β >2 for N =Np+1 and Np+2 also for moderate sizes 9 ≤N ≤O (102) ; (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲β moderate size regime where we show that diffusivity cycles quasiperiodically from the slowest branch for Np+3 (not Np) to the fastest branch for Np+1 . Behavior is quantified by kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground-state and low-lying excited state cluster configurations, and also of kink populations.
A desk study of surface diffusion and mass transport in clay
International Nuclear Information System (INIS)
Cook, A.J.
1989-01-01
Research into the properties of clays as barrier materials for nuclear waste disposal has led to the realization that they have important transport properties which are relatively insignificant in most other geological materials. Sorption has always been regarded as a purely retarding mechanism, but laboratory experiments over the past decade have indicated that surface diffusion of sorbed cations is a potentially significant transport mechanism in both compacted montmorillonite, and biotite gneiss. The present desk study about these issues was part of the CEC coordinated project Mirage-Second phase, research area Natural analogues
Nano-pits on GaAs (1 0 0) surface: Preferential sputtering and diffusion
Energy Technology Data Exchange (ETDEWEB)
Kumar, Tanuj, E-mail: tanujkumar@cuh.ac.in [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh 123029 (India); Panchal, Vandana [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Kumar, Ashish; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)
2016-07-15
Self organized nano-structure array on the surfaces of semiconductors have potential applications in photonics, magnetic devices, photovoltaics, and surface-wetting tailoring etc. Therefore, the control over their dimensions is gaining scientific interest in last couple of decades. In this work, fabrication of pits of nano-dimensions is carried out on the GaAs (1 0 0) surface using 50 keV Ar{sup +} at normal incidence. Variation in fluence from 3 × 10{sup 17} ions/cm{sup 2} to 5 × 10{sup 18} ions/cm{sup 2} does not make a remarkable variation in the dimension of pits such as size and depth, which is confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). However the simultaneous dots formation is observed along with the pits at higher fluences. Average size of pits is found to be of 22 nm with depth of 1–5 nm for the used fluences. The importance of preferential sputtering of ‘As’ as compared to ‘Ga’ is estimated using energy dispersive X-ray analysis (EDX). The observed alteration in near surface composition shows the Ga enrichment of surface, which is not being much affected by variation in fluence. The growth evolution of pits and dots for the used experimental conditions is explained on the basis of ion beam induced preferential sputtering and surface diffusion.
Technology diffusion in energy-economy models: The case of Danish vintage models
DEFF Research Database (Denmark)
Klinge Jacobsen, Henrik
2000-01-01
Technological progress is an important issue in long-term energy demand projections and in environmental analyses. Different assumptions on technological progress and diffusion of new technologies are among the reasons for diverging results obtained using bottom-up and top-down models for analyzi...... of residential heat demand, fuel price increases are found to accelerate diffusion by increasing replacement rates for heating equipment....
The Analytical Diffusion-Expansion Model for Forbush Decreases Caused by Flux Ropes
Dumbovic, M.; Temmer, M.
2017-12-01
Identification and tracking of interplanetary coronal mass ejections (ICMEs) throughout the heliosphere is a growingly important aspect of space weather research. One of the "signatures" of ICME passage is the corresponding Forbush decrease (FD), a short term decrease in the galactic cosmic ray flux. These depressions are observed at the surface of the Earth for over 50 years, by several spacecraft in interplanetary space in the past couple of decades, and recently also on Mars' surface with Curiosity rover. In order to use FDs as ICME signatures efficiently, it is important to model ICME interaction with energetic particles by taking into account ICME evolution and constraining the model with observational data. We present an analytical diffusion-expansion FD model ForbMod which is based on the widely used approach of the initially empty, closed magnetic structure (i.e. flux rope) which fills up slowly with particles by perpendicular diffusion. The model is restricted to explain only the depression caused by the magnetic structure of the ICME and not of the associated shock. We use remote CME observations and a 3D reconstruction method (the Graduated Cylindrical Shell method) to constrain initial and boundary conditions of the FD model and take into account CME evolutionary properties by incorporating flux rope expansion. Several options of flux rope expansion are regarded as the competing mechanism to diffusion which can lead to different FD characteristics. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 745782.
Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N
2016-05-01
An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. The authors employed (a) data collected from 33 healthy subjects (20-59 yr, F: 15, M: 18) within the Human Connectome Project (HCP) on a customized 3 T scanner, and (b) data from 34 healthy subjects (26-61 yr, F: 5, M: 29) acquired on a clinical 3 T scanner. The DTI model was fitted to b-value =0 and b-value =1000 s/mm(2) data while the DKI model was fitted to data comprising b-value =0, 1000 and 3000/2500 s/mm(2) [for dataset (a)/(b), respectively] through nonlinear and weighted linear least squares algorithms. In addition to MK/RK/AK maps, MD/FA/MO/RD/AD maps were estimated from both models and both algorithms. Using tract-based spatial statistics, the authors tested the null hypothesis of zero difference between the two MD/FA/MO/RD/AD estimates in brain white matter for both datasets and both algorithms. DKI-derived MD/FA/RD/AD and MO estimates were significantly higher and lower, respectively, than corresponding DTI-derived estimates. All voxelwise differences extended over most of the white matter skeleton. Fractional differences between the two estimates [(DKI - DTI)/DTI] of most invariants were seen to vary with the invariant value itself as well as with MK
On one model problem for the reaction-diffusion-advection equation
Davydova, M. A.; Zakharova, S. A.; Levashova, N. T.
2017-09-01
The asymptotic behavior of the solution with boundary layers in the time-independent mathematical model of reaction-diffusion-advection arising when describing the distribution of greenhouse gases in the surface atmospheric layer is studied. On the basis of the asymptotic method of differential inequalities, the existence of a boundary-layer solution and its asymptotic Lyapunov stability as a steady-state solution of the corresponding parabolic problem is proven. One of the results of this work is the determination of the local domain of the attraction of a boundary-layer solution.
Modelling prospects for in situ matrix diffusion at Palmottu natural analogue site, SW Finland
International Nuclear Information System (INIS)
Rasilainen, K.; Suksi, J.
1994-01-01
Concentration distributions of natural decay chains 4n+2 and 4n+3 in crystalline rock intersected by a natural fracture were measured. Calcite coating on the same fracture surface was dated. Material properties of the rock matrix, and nuclide concentrations in groundwater were measured. The interpretation of the concentration distributions is based on the classical matrix diffusion concept. Although support was obtained, this calibration exercise does not yet validate the model. Besides initial and boundary conditions, matrix properties are uncertain due to the small amount of rock material. Experimental sorption data was not available, but its importance and the need for systematic studies was demonstrated. (orig.) (10 refs., 5 figs., 5 tabs.)
The modeling method of diffusion of radio activated materials in clay waste disposals
Energy Technology Data Exchange (ETDEWEB)
Saberi, Reza; Sepanloo, Kamran [NSTRI, Tehran (Iran, Islamic Republic of); Alinejad, Majid [Engineering Research Institute of Natural Hazard, Isfahan (Iran, Islamic Republic of); Mozaffari, Ali [KNT Univ. of Technology, Tehran (Iran, Islamic Republic of)
2017-02-15
New nuclear power plants are necessary to meet today's and future challenges of energy supply. Nuclear power is the only large-scale energy source that takes full responsibility for all its wastes. Nuclear wastes are particularly hazardous and hard to manage relative to different toxic industrial wastes. Three methods are presented and analysed to model the diffusion of the waste from the waste disposal to the bottom surface. For this purpose three software programmes such as ABAQUS, Matlab coding, Geostudio and ArcGIS have been applied.
Objective and Subjective Evaluation of Reflecting and Diffusing Surfaces in Auditoria
Cox, Trevor John
Available from UMI in association with The British Library. Requires signed TDF. The performance of reflectors and diffusers used in auditoria have been evaluated both objectively and subjectively. Two accurate systems have been developed to measure the scattering from surfaces via the cross correlation function. These have been used to measure the scattering from plane panels, curved panels and quadratic residue diffusers (QRDs). The scattering measurements have been used to test theoretical prediction methods based on the Helmholtz-Kirchhoff integral equation. Accurate prediction methods were found for all surfaces tested. The limitations of the more approximate methods have been defined. The assumptions behind Schroeder's design of the QRD have been tested and the local reacting admittance assumption found to be valid over a wide frequency range. It was found that the QRD only produces uniform scattering at low frequencies. For an on-axis source the scattering from a curved panel was as good as from a QRD. For an oblique source the QRD produced much more uniform scattering than the curved panel. The subjective measurements evaluated the smallest perceivable change in the early sound field, the part most influenced by reflectors and diffusers. A natural sounding simulation of a concert hall field within an anechoic chamber was used. Standard objective parameters were reasonable values when compared to values found in real halls and subjective preference measurements. A difference limen was measured for early lateral energy fraction (.048 +/-.005); inter aural cross correlation (.075 +/-.008); clarity index (.67 +/-.13 dB); and centre time (8.6 +/- 1.6 ms). It was found that: (i) when changes are made to diffusers and reflectors, changes in spatial impression will usually be larger than those in clarity; and (ii) acousticians can gain most by paying attention to lateral sound in auditoria. It was also found that: (i) diffuse reflections in the early sound field
A reaction-diffusion model of cytosolic hydrogen peroxide.
Lim, Joseph B; Langford, Troy F; Huang, Beijing K; Deen, William M; Sikes, Hadley D
2016-01-01
As a signaling molecule in mammalian cells, hydrogen peroxide (H2O2) determines the thiol/disulfide oxidation state of several key proteins in the cytosol. Localization is a key concept in redox signaling; the concentrations of signaling molecules within the cell are expected to vary in time and in space in manner that is essential for function. However, as a simplification, all theoretical studies of intracellular hydrogen peroxide and many experimental studies to date have treated the cytosol as a well-mixed compartment. In this work, we incorporate our previously reported reduced kinetic model of the network of reactions that metabolize hydrogen peroxide in the cytosol into a model that explicitly treats diffusion along with reaction. We modeled a bolus addition experiment, solved the model analytically, and used the resulting equations to quantify the spatiotemporal variations in intracellular H2O2 that result from this kind of perturbation to the extracellular H2O2 concentration. We predict that micromolar bolus additions of H2O2 to suspensions of HeLa cells (0.8 × 10(9)cells/l) result in increases in the intracellular concentration that are localized near the membrane. These findings challenge the assumption that intracellular concentrations of H2O2 are increased uniformly throughout the cell during bolus addition experiments and provide a theoretical basis for differing phenotypic responses of cells to intracellular versus extracellular perturbations to H2O2 levels. Copyright © 2015 Elsevier Inc. All rights reserved.
Modeling of immision from power plants using stream-diffusion model
International Nuclear Information System (INIS)
Kanevce, Lj.; Kanevce, G.; Markoski, A.
1996-01-01
Analyses of simple empirical and integral immision models, comparing with complex three dimensional differential models is given. Complex differential models needs huge computer power, so they can't be useful for practical engineering calculations. In this paper immision modeling, using stream-diffusion approach is presented. Process of dispersion is divided into two parts. First part is called stream part, it's near the source of the pollutants, and it's presented with defected turbulent jet in wind field. This part finished when the velocity of stream (jet) becomes equal with wind speed. Boundary conditions in the end of the first part, are initial for the second, called diffusion part, which is modeling with tri dimensional diffusion equation. Gradient of temperature, wind speed profile and coefficient of diffusion in this model must not be constants, they can change with the height. Presented model is much simpler than the complete meteorological differential models which calculates whole fields of meteorological parameters. Also, it is more complex and gives more valuable results for dispersion of pollutants from widely used integral and empirical models
Developing a laser shockwave model for characterizing diffusion bonded interfaces
Lacy, Jeffrey M.; Smith, James A.; Rabin, Barry H.
2015-03-01
The US National Nuclear Security Agency has a Global Threat Reduction Initiative (GTRI) with the goal of reducing the worldwide use of high-enriched uranium (HEU). A salient component of that initiative is the conversion of research reactors from HEU to low enriched uranium (LEU) fuels. An innovative fuel is being developed to replace HEU in high-power research reactors. The new LEU fuel is a monolithic fuel made from a U-Mo alloy foil encapsulated in Al-6061 cladding. In order to support the fuel qualification process, the Laser Shockwave Technique (LST) is being developed to characterize the clad-clad and fuel-clad interface strengths in fresh and irradiated fuel plates. LST is a non-contact method that uses lasers for the generation and detection of large amplitude acoustic waves to characterize interfaces in nuclear fuel plates. However, because the deposition of laser energy into the containment layer on a specimen's surface is intractably complex, the shock wave energy is inferred from the surface velocity measured on the backside of the fuel plate and the depth of the impression left on the surface by the high pressure plasma pulse created by the shock laser. To help quantify the stresses generated at the interfaces, a finite element method (FEM) model is being utilized. This paper will report on initial efforts to develop and validate the model by comparing numerical and experimental results for back surface velocities and front surface depressions in a single aluminum plate representative of the fuel cladding.
Zhao, Yanyun; Li, Chunjing; Huang, Bo; Liu, Shaojun; Huang, Qunying
2014-12-01
Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.
Energy Technology Data Exchange (ETDEWEB)
Thomas, Joan E.; Kelley, Michael J.
2008-06-01
Diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was used to characterize multi-layers of lysine, glutamic acid and salicylic acid on -alumina and kaolinite surfaces. The results agreed well with those previously obtained by ATR-IR in aqueous media where available, indicating that DRIFT may be regarded as effectively an in-situ spectroscopy for these materials. In the case of salicylic acid adsorption onto γ-alumina, DRIFTS was used to identify monolayer coverage and to detect molecules down to coverage of 3% of a monolayer. The spectroscopic results as to coverage were confirmed by analysis of the solutions used for treatment. The spectra obtained allowed identification of changes in the bonding environment with increasing surface coverage. DRIFTS, offers several advantages in terms of materials, experimental technique and data treatment, motivating further investigations.
Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder.
Landin-Romero, Ramón; Canales-Rodríguez, Erick J; Kumfor, Fiona; Moreno-Alcázar, Ana; Madre, Mercè; Maristany, Teresa; Pomarol-Clotet, Edith; Amann, Benedikt L
2017-01-01
The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.
Kapranov, Sergey V.; Kouzaev, Guennadi A.
2018-01-01
Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.
Modeling of three-dimensional diffusible resistors with the one-dimensional tube multiplexing method
International Nuclear Information System (INIS)
Gillet, Jean-Numa; Degorce, Jean-Yves; Meunier, Michel
2009-01-01
Electronic-behavior modeling of three-dimensional (3D) p + -π-p + and n + -ν-n + semiconducting diffusible devices with highly accurate resistances for the design of analog resistors, which are compatible with the CMOS (complementary-metal-oxide-semiconductor) technologies, is performed in three dimensions with the fast tube multiplexing method (TMM). The current–voltage (I–V) curve of a silicon device is usually computed with traditional device simulators of technology computer-aided design (TCAD) based on the finite-element method (FEM). However, for the design of 3D p + -π-p + and n + -ν-n + diffusible resistors, they show a high computational cost and convergence that may fail with fully non-separable 3D dopant concentration profiles as observed in many diffusible resistors resulting from laser trimming. These problems are avoided with the proposed TMM, which divides the 3D resistor into one-dimensional (1D) thin tubes with longitudinal axes following the main orientation of the average electrical field in the tubes. The I–V curve is rapidly obtained for a device with a realistic 3D dopant profile, since a system of three first-order ordinary differential equations has to be solved for each 1D multiplexed tube with the TMM instead of three second-order partial differential equations in the traditional TCADs. Simulations with the TMM are successfully compared to experimental results from silicon-based 3D resistors fabricated by laser-induced dopant diffusion in the gaps of MOSFETs (metal-oxide-semiconductor field-effect transistors) without initial gate. Using thin tubes with other shapes than parallelepipeds as ring segments with toroidal lateral surfaces, the TMM can be generalized to electronic devices with other types of 3D diffusible microstructures
Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium
International Nuclear Information System (INIS)
R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein
2004-01-01
FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were ∼ 4 x 10 -7 cm 2 /s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10 -5 to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form
Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium
Energy Technology Data Exchange (ETDEWEB)
R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein
2004-12-14
FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.
DEFF Research Database (Denmark)
Simonsen, Sebastian Bjerregaard; Johnsen, S. J.; Popp, T. J.
2011-01-01
O. A model treatment of the diffusion process of the firn and the ice is presented along with a method of retrieving the diffusion signal from the ice core record of water isotopes using spectral methods. The model shows how the diffusion process is highly dependent on the inter-annual variations......A new ice core paleothermometer is introduced based on the temperature dependent diffusion of the stable water isotopes in the firn. A new parameter called differential diffusion length is defined as the difference between the diffusion length of the two stable water isotopologues 2H1H16O and 1H218...... warmer than observed in other ice core based temperature reconstructions. The mechanisms behind this behaviour are not fully understood. The method shows the need of an expansion of high resolution stable water isotope datasets from ice cores. However, the new ice core paleothermometer presented here...
Agent-based Modeling Automated: Data-driven Generation of Innovation Diffusion Models
Jensen, T.; Chappin, E.J.L.
2016-01-01
Simulation modeling is useful to gain insights into driving mechanisms of diffusion of innovations. This study aims to introduce automation to make identification of such mechanisms with agent-based simulation modeling less costly in time and labor. We present a novel automation procedure in which
Willett, Chelsea D.; Fox, Matthew; Shuster, David L.
2017-11-01
Widely used to study surface processes and the development of topography through geologic time, (U-Th)/He thermochronometry in apatite depends on a quantitative description of the kinetics of 4He diffusion across a range of temperatures, timescales, and geologic scenarios. Empirical observations demonstrate that He diffusivity in apatite is not solely a function of temperature, but also depends on damage to the crystal structure from radioactive decay processes. Commonly-used models accounting for the influence of thermal annealing of radiation damage on He diffusivity assume the net effects evolve in proportion to the rate of fission track annealing, although the majority of radiation damage results from α-recoil. While existing models adequately quantify the net effects of damage annealing in many geologic scenarios, experimental work suggests different annealing rates for the two damage types. Here, we introduce an alpha-damage annealing model (ADAM) that is independent of fission track annealing kinetics, and directly quantifies the influence of thermal annealing on He diffusivity in apatite. We present an empirical fit to diffusion kinetics data and incorporate this fit into a model that tracks the competing effects of radiation damage accumulation and annealing on He diffusivity in apatite through geologic time. Using time-temperature paths to illustrate differences between models, we highlight the influence of damage annealing on data interpretation. In certain, but not all, geologic scenarios, the interpretation of low-temperature thermochronometric data can be strongly influenced by which model of radiation damage annealing is assumed. In particular, geologic scenarios involving 1-2 km of sedimentary burial are especially sensitive to the assumed rate of annealing and its influence on He diffusivity. In cases such as basement rocks in Grand Canyon and the Canadian Shield, (U-Th)/He ages predicted from the ADAM can differ by hundreds of Ma from those
Surface wind mixing in the Regional Ocean Modeling System (ROMS)
Robertson, Robin; Hartlipp, Paul
2017-12-01
Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.
Modelling of a diffusion-sorption experiment on sandstone
International Nuclear Information System (INIS)
Smith, P.A.
1989-11-01
The results of a diffusion-sorption experiment on a sample of Darley Dale sandstone, using simulated groundwater spiked with a mixture of 125 I, 85 Sr and 137 Cs, are modelled by a one-dimensional porous medium approach in which sorption is described by Freundlich isotherms. The governing equations are solved analytically for the special case of a linear isotherm, and numerically using the computer code RANCHDIFF for non-linear isotherms. A set of time-dependent, ordinary differential equations is obtained using the Lagrange interpolation technique and integrated by Gear's variable order predictor-corrector method. It is shown that the sorption behaviour of 85 Sr can be modelled successfully by a linear isotherm, using a sorption parameter consistent with batch-sorption tests. The behaviour of 137 Cs may be modelled by a non-linear isotherm, but the amount of 137 Cs sorbed is less than that anticipated from batch-sorption tests. 125 I is assumed to be non-sorbing and is used to determine the porosity of the sandstone. (author) 10 figs., 4 tabs., 6 refs
Reaction-diffusion model of hair-bundle morphogenesis.
Jacobo, Adrian; Hudspeth, A J
2014-10-28
The hair bundle, an apical specialization of the hair cell composed of several rows of regularly organized stereocilia and a kinocilium, is essential for mechanotransduction in the ear. Its precise organization allows the hair bundle to convert mechanical stimuli to electrical signals; mutations that alter the bundle's morphology often cause deafness. However, little is known about the proteins involved in the process of morphogenesis and how the structure of the bundle arises through interactions between these molecules. We present a mathematical model based on simple reaction-diffusion mechanisms that can reproduce the shape and organization of the hair bundle. This model suggests that the boundary of the cell and the kinocilium act as signaling centers that establish the bundle's shape. The interaction of two proteins forms a hexagonal Turing pattern--a periodic modulation of the concentrations of the morphogens, sustained by local activation and long-range inhibition of the reactants--that sets a blueprint for the location of the stereocilia. Finally we use this model to predict how different alterations to the system might impact the shape and organization of the hair bundle.
Reaction–diffusion model of hair-bundle morphogenesis
Jacobo, Adrian; Hudspeth, A. J.
2014-01-01
The hair bundle, an apical specialization of the hair cell composed of several rows of regularly organized stereocilia and a kinocilium, is essential for mechanotransduction in the ear. Its precise organization allows the hair bundle to convert mechanical stimuli to electrical signals; mutations that alter the bundle’s morphology often cause deafness. However, little is known about the proteins involved in the process of morphogenesis and how the structure of the bundle arises through interactions between these molecules. We present a mathematical model based on simple reaction–diffusion mechanisms that can reproduce the shape and organization of the hair bundle. This model suggests that the boundary of the cell and the kinocilium act as signaling centers that establish the bundle’s shape. The interaction of two proteins forms a hexagonal Turing pattern—a periodic modulation of the concentrations of the morphogens, sustained by local activation and long-range inhibition of the reactants—that sets a blueprint for the location of the stereocilia. Finally we use this model to predict how different alterations to the system might impact the shape and organization of the hair bundle. PMID:25313064
The dynamics of multimodal integration: The averaging diffusion model.
Turner, Brandon M; Gao, Juan; Koenig, Scott; Palfy, Dylan; L McClelland, James
2017-12-01
We combine extant theories of evidence accumulation and multi-modal integration to develop an integrated framework for modeling multimodal integration as a process that unfolds in real time. Many studies have formulated sensory processing as a dynamic process where noisy samples of evidence are accumulated until a decision is made. However, these studies are often limited to a single sensory modality. Studies of multimodal stimulus integration have focused on how best to combine different sources of information to elicit a judgment. These studies are often limited to a single time point, typically after the integration process has occurred. We address these limitations by combining the two approaches. Experimentally, we present data that allow us to study the time course of evidence accumulation within each of the visual and auditory domains as well as in a bimodal condition. Theoretically, we develop a new Averaging Diffusion Model in which the decision variable is the mean rather than the sum of evidence samples and use it as a base for comparing three alternative models of multimodal integration, allowing us to assess the optimality of this integration. The outcome reveals rich individual differences in multimodal integration: while some subjects' data are consistent with adaptive optimal integration, reweighting sources of evidence as their relative reliability changes during evidence integration, others exhibit patterns inconsistent with optimality.
Toward Information Diffusion Model for Viral Marketing in Business
Lulwah AlSuwaidan; Mourad Ykhlef
2016-01-01
Current obstacles in the study of social media marketing include dealing with massive data and real-time updates have motivated to contribute solutions that can be adopted for viral marketing. Since information diffusion and social networks are the core of viral marketing, this article aims to investigate the constellation of diffusion methods for viral marketing. Studies on diffusion methods for viral marketing have applied different computational methods, but a systematic investigation of t...
Surface-driven registration method for the structure-informed segmentation of diffusion MR images.
Esteban, Oscar; Zosso, Dominique; Daducci, Alessandro; Bach-Cuadra, Meritxell; Ledesma-Carbayo, María J; Thiran, Jean-Philippe; Santos, Andres
2016-10-01
Current methods for processing diffusion MRI (dMRI) to map the connectivity of the human brain require precise delineations of anatomical structures. This requirement has been approached by either segmenting the data in native dMRI space or mapping the structural information from T1-weighted (T1w) images. The characteristic features of diffusion data in terms of signal-to-noise ratio, resolution, as well as the geometrical distortions caused by the inhomogeneity of magnetic susceptibility across tissues hinder both solutions. Unifying the two approaches, we propose regseg, a surface-to-volume nonlinear registration method that segments homogeneous regions within multivariate images by mapping a set of nested reference-surfaces. Accurate surfaces are extracted from a T1w image of the subject, using as target image the bivariate volume comprehending the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) maps derived from the dMRI dataset. We first verify the accuracy of regseg on a general context using digital phantoms distorted with synthetic and random deformations. Then we establish an evaluation framework using undistorted dMRI data from the Human Connectome Project (HCP) and realistic deformations derived from the inhomogeneity fieldmap corresponding to each subject. We analyze the performance of regseg computing the misregistration error of the surfaces estimated after being mapped with regseg onto 16 datasets from the HCP. The distribution of errors shows a 95% CI of 0.56-0.66mm, that is below the dMRI resolution (1.25mm, isotropic). Finally, we cross-compare the proposed tool against a nonlinear b0-to-T2w registration method, thereby obtaining a significantly lower misregistration error with regseg. The accurate mapping of structural information in dMRI space is fundamental to increase the reliability of network building in connectivity analyses, and to improve the performance of the emerging structure-informed techniques for dMRI data
Surface photovoltage measurements and finite element modeling of SAW devices.
Energy Technology Data Exchange (ETDEWEB)
Donnelly, Christine
2012-03-01
Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form of the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.
International Nuclear Information System (INIS)
Goddard, P.J.
1989-01-01
The stomach is thought to be protected from luminal acid by a gastric mucosal barrier that restricts the diffusion of acid into tissue. This study tested the hypothesis that the hydrophobic luminal surface of canine gastric mucosa incubated in Ussing chambers, impedes the back-diffusion of luminal acid into the tissue. Isolated sheets of mucosa were treated with cimetidine to inhibit spontaneous acid secretion, and incubated under conditions that prevented significant secretion of luminal bicarbonate. By measuring acid loss from the luminal compartment using the pH-stat technique, acid back-diffusion was continuously monitored; potential difference (PD) was measured as an index of tissue viability. Tissue luminal surface hydrophobicity was estimated by contact angle analysis at the end of each experiment. Addition of 16,16-dimethyl prostaglandin E 2 to the nutrient compartment enhanced luminal surface hydrophobicity, but did not reduce acid back-diffusion in tissues that maintained a constant PD. 10 mM salicylate at pH 4.00 in the luminal compartment reduced surface hydrophobicity, but this decrease did not occur if 1 ug/ml prostaglandin was present in the nutrient solution. Despite possessing relatively hydrophilic and relatively hydrophobic surface properties, respectively, acid back-diffusion in the absence of salicylate was not significantly different between these two groups. Neither group maintained a PD after incubation with salicylate. Lastly, radiolabeled salicylate was used to calculate the free (non-salicylate associated) acid loss in tissues incubated with salicylate and/or prostaglandin. No significant correlation was found between free acid back-diffusion and luminal surface hydrophobicity. These data do not support the hypothesis that acid back-diffusion in impeded by the hydrophobic surface presented by isolated canine gastric mucosa
Coupled Gas-Liquid Diffusion in Porous Media Using the Dusty Gas Model
Webb, S. W.; Pruess, K.
2001-12-01
Numerous problems involve the simultaneous diffusion of chemical species in both aqueous and gaseous phases. Applications include diffusion of non-condensible gases including carbon sequestration, volatile organic compounds (VOCs), and chemicals from buried landmines. Diffusion in the unsaturated zone involves simultaneous transport in the aqueous and gaseous pathways. Calculation of diffusion in the individual phases is straightforward. However, for simultaneous diffusion in both phases, simply adding diffusive fluxes in gas and liquid phases will in general not be correct. Proper treatment of diffusion in multiphase conditions must take into account the coupling between diffusion and phase partitioning. Coupled gas-liquid diffusion was previously considered using Fick's law for both aqueous and gaseous diffusion. The diffusive strength term was harmonically weighted at the interface to enforce mass conservation. Results showed that the coupling effects are significant, and that uncoupled results can seriously underestimate diffusion across a capillary fringe. In the present work, the Dusty Gas Model (DGM) has been used to model gas diffusion. The DGM is a more fundamentally sound model for gas diffusion than Fick's law. However, the formulation of multiphase diffusion coupled with gas-liquid phase partitioning becomes considerably more complicated, and mass conservation must be explicitly imposed on each component through solution for the appropriate interface conditions. For higher permeability and trace gas conditions, the two models (Fick's law and DGM) give similar results as expected. However, for lower permeability media and non-trace gas conditions, significant differences exist. This work was supported by the U.S Department of Energy under Contracts No. DE-AC04-94AL85000 and DE-AC03-76SF00098.
Digital Repository Service at National Institute of Oceanography (India)
Jyothi, D; Murty, T.V.R.; Sarma, V.V.; Rao, D
of Marine Sciences Vol. 29, June 2000, pp. 185-187 Short Communication Computation of diffusion coefficients for waters of Gauthami Godavari estuary using one-dimensional advection-diffusion model D Jyothi, T V Ramana Murty, V V Sarma & D P Rao National... and April '96. Salinity was estimated using Kundsen's titration method 1 with an accuracy of ? O.OlxlO"3. Depth at the stations was measured using a portable echo sounder. The average depth along the 32 km stretch varied from 12 m at the mouth to 2 m...
Local environment dependance of the water diffusion energy barrier onto the (101) anatase surface
Agosta, Lorenzo; Gala, Fabrizio; Zollo, Giuseppe
2016-06-01
The adsorption properties of TiO2 surfaces with biological environments have shown to be very important for bio-compatibility properties. Interactions of biological molecules with inorganic materials in aqueous systems, are mediated by water molecules. Hence the understanding of the possible conformations that water molecules can assume on the inorganic surfaces it is very important. Many studies concerning the structural conformations of adsorbed water molecules on rutile and anatase, the most likely exposed surface phases, show that the first layer of adsorbed water molecules play a crucial role in mediating the structural and physical properties of the upper interacting environment layers. In this contest we performed a detailed analysis of the possible conformations of the first layer of water molecules adsorbed on the (101) TiO2 surface; total energy calculations and NEB techniques, in contest of the DFT theory, has been used to study the stability and the diffusion properties as a further insight of our previous studies about this topic.
Surface-complexation models for sorption onto heterogeneous surfaces
International Nuclear Information System (INIS)
Harvey, K.B.
1997-10-01
This report provides a description of the discrete-logK spectrum model, together with a description of its derivation, and of its place in the larger context of surface-complexation modelling. The tools necessary to apply the discrete-logK spectrum model are discussed, and background information appropriate to this discussion is supplied as appendices. (author)
Nonlinear variational models for reaction and diffusion systems
International Nuclear Information System (INIS)
Tanyi, G.E.
1983-08-01
There exists a natural metric w.r.t. which the density dependent diffusion operator is harmonic in the sense of Eells and Sampson. A physical corollary of this statement is the property that any two regular points on the orbit of a reaction or diffusion operator can be connected by a path along which the reaction rate is constant. (author)
Subgrid models for mass and thermal diffusion in turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Sharp, David H [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Li, Xiao - Lin [STONY BROOK UNIV; Gilmm, James G [STONY BROOK UNIV
2008-01-01
We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without
Synchronized stability in a reaction–diffusion neural network model
International Nuclear Information System (INIS)
Wang, Ling; Zhao, Hongyong
2014-01-01
The reaction–diffusion neural network consisting of a pair of identical tri-neuron loops is considered. We present detailed discussions about the synchronized stability and Hopf bifurcation, deducing the non-trivial role that delay plays in different locations. The corresponding numerical simulations are used to illustrate the effectiveness of the obtained results. In addition, the numerical results about the effects of diffusion reveal that diffusion may speed up the tendency to synchronization and induce the synchronized equilibrium point to be stable. Furthermore, if the parameters are located in appropriate regions, multiple unstability and bistability or unstability and bistability may coexist. - Highlights: • Point to non-trivial role that τ plays in different positions. • Diffusion speeds up the tendency to synchronization. • Diffusion induces the synchronized equilibrium point to be stable. • The coexistence of multiple unstability and bistability or unstability and bistability
Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu
2015-05-14
Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.
DEFF Research Database (Denmark)
Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.
2001-01-01
in D-C(theta) depend on the initial density gradient and the initial state from which the spreading starts. To this end, we carry out extensive Monte Carlo simulations for a lattice-gas model of the O/W(110) system. Studies of submonolayer spreading from an initially ordered p(2x1) phase at theta = 1....../2 reveal that the spreading and diffusion rates in directions parallel and perpendicular to rows of oxygen atoms are significantly different within the ordered phase. Aside from this effect, we find that the degree of ordering in the initial phase has a relatively small impact on the overall behavior of D...
Bounds for perpetual American option prices in a jump diffusion model
Ekström, Erik
2006-01-01
We provide bounds for perpetual American option prices in a jump diffusion model in terms of American option prices in the standard Black-Scholes model. We also investigate the dependence of the bounds on different parameters of the model.
Chakraverty, S; Sahoo, B K; Rao, T D; Karunakar, P; Sapra, B K
2018-02-01
Modelling radon transport in the earth crust is a useful tool to investigate the changes in the geo-physical processes prior to earthquake event. Radon transport is modeled generally through the deterministic advection-diffusion equation. However, in order to determine the magnitudes of parameters governing these processes from experimental measurements, it is necessary to investigate the role of uncertainties in these parameters. Present paper investigates this aspect by combining the concept of interval uncertainties in transport parameters such as soil diffusivity, advection velocity etc, occurring in the radon transport equation as applied to soil matrix. The predictions made with interval arithmetic have been compared and discussed with the results of classical deterministic model. The practical applicability of the model is demonstrated through a case study involving radon flux measurements at the soil surface with an accumulator deployed in steady-state mode. It is possible to detect the presence of very low levels of advection processes by applying uncertainty bounds on the variations in the observed concentration data in the accumulator. The results are further discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Gerde, P. [National Inst. for Working Life, Solna (Sweden); Muggenburg, B.A.; Thornton-Manning, J.R. [and others
1995-12-01
Most chemically induced lung cancer originates in the epithelial cells in the airways. Common conceptions are that chemicals deposited on the airway surface are rapidly absorbed through mucous membranes, limited primarily by the rate of blood perfusion in the mucosa. It is also commonly thought that for chemicals to induce toxicity at the site of entry, they must be either rapidly reactive, readily metabolizable, or especially toxic to the tissues at the site of entry. For highly lipophilic toxicants, there is a third option. Our mathematical model predicts that as lipophilicity increases, chemicals partition more readily into the cellular lipid membranes and diffuse more slowly through the tissues. Therefore, absorption of very lipophilic compounds will be almost entirely limited by the rate of diffusion through the epithelium rather than by perfusion of the capillary bed in the subepithelium. We have reported on a preliminary model for absorption through mucous membranes of any substance with a lipid/aqueous partition coefficient larger than one. The purpose of this work was to experimentally validate the model in Beagle dogs. This validated model on toxicant absorption in the airway mucosa will improve risk assessment of inhaled
DEFF Research Database (Denmark)
Liu, S.J.; Tao, H.Z.; Zhang, Y.F.
2015-01-01
We investigate the sodium inward diffusion (i.e., sodium diffusion from surface toward interior) in iron containing alkaline earth silicate glasses under reducing conditions around Tg and the induced surface crystallization. The surface crystallization is caused by formation of a silicate-gel layer...... first and then the growth of silica crystals on the glass surface. The type of alkaline earth cations has a strong impact on both the glass transition and the surface crystallization. In the Mg-containing glass, a quartz layer forms on the glass surface. This could be attributed to the fact that Mg2......+ ions have stronger bonds to oxygen and lower coordination number (4~5) than Ca2+, Sr2+ and Ba2+ ions. In contrast, a cristobalite layer forms in Ca-, Sr- and Ba-containing glasses....
Diffusion of surface-active amphiphiles in silicone-based fouling-release coatings
DEFF Research Database (Denmark)
Noguer, Albert Camós; Olsen, S. M.; Hvilsted, Søren
2017-01-01
Amphiphiles (i.e. amphiphilic molecules such as surfactants, block copolymers and similar compounds) are used in small amounts to modify the surface properties of polymeric materials. In silicone fouling-release coatings, PEG-based amphiphiles are added to provide biofouling-resistance. The success...... of the amphiphiles shows a weak dependency on their molecular weight, although this dependency is much less pronounced than for other rubbery polymeric materials. The biofouling-resistance properties in fouling-release coatings were also studied for these amphiphiles. It was found that the diffusion coefficient does...... not have any influence on the biofouling-resistance results for the studied compounds. Instead, the chemistry of the hydrophobic block of the amphiphiles is much more significant, with PEG-PDMS block copolymers showing the best properties among the studied compounds....
Surface Flux Modeling for Air Quality Applications
Directory of Open Access Journals (Sweden)
Limei Ran
2011-08-01
Full Text Available For many gasses and aerosols, dry deposition is an important sink of atmospheric mass. Dry deposition fluxes are also important sources of pollutants to terrestrial and aquatic ecosystems. The surface fluxes of some gases, such as ammonia, mercury, and certain volatile organic compounds, can be upward into the air as well as downward to the surface and therefore should be modeled as bi-directional fluxes. Model parameterizations of dry deposition in air quality models have been represented by simple electrical resistance analogs for almost 30 years. Uncertainties in surface flux modeling in global to mesoscale models are being slowly reduced as more field measurements provide constraints on parameterizations. However, at the same time, more chemical species are being added to surface flux models as air quality models are expanded to include more complex chemistry and are being applied to a wider array of environmental issues. Since surface flux measurements of many of these chemicals are still lacking, resistances are usually parameterized using simple scaling by water or lipid solubility and reactivity. Advances in recent years have included bi-directional flux algorithms that require a shift from pre-computation of deposition velocities to fully integrated surface flux calculations within air quality models. Improved modeling of the stomatal component of chemical surface fluxes has resulted from improved evapotranspiration modeling in land surface models and closer integration between meteorology and air quality models. Satellite-derived land use characterization and vegetation products and indices are improving model representation of spatial and temporal variations in surface flux processes. This review describes the current state of chemical dry deposition modeling, recent progress in bi-directional flux modeling, synergistic model development research with field measurements, and coupling with meteorological land surface models.
A reaction-diffusion model of CO2 influx into an oocyte
Somersalo, Erkki; Occhipinti, Rossana; Boron, Walter F.; Calvetti, Daniela
2012-01-01
We have developed and implemented a novel mathematical model for simulating transients in surface pH (pHS) and intracellular pH (pHi) caused by the influx of carbon dioxide (CO2) into a Xenopus oocyte. These transients are important tools for studying gas channels. We assume that the oocyte is a sphere surrounded by a thin layer of unstirred fluid, the extracellular unconvected fluid (EUF), which is in turn surrounded by the well-stirred bulk extracellular fluid (BECF) that represents an infinite reservoir for all solutes. Here, we assume that the oocyte plasma membrane is permeable only to CO2. In both the EUF and intracellular space, solute concentrations can change because of diffusion and reactions. The reactions are the slow equilibration of the CO2 hydration-dehydration reactions and competing equilibria among carbonic acid (H2CO3)/bicarbonate ( HCO3-) and a multitude of non-CO2/HCO3- buffers. Mathematically, the model is described by a coupled system of reaction-diffusion equations that—assuming spherical radial symmetry—we solved using the method of lines with appropriate stiff solvers. In agreement with experimental data (Musa-Aziz et al, PNAS 2009, 106:5406–5411), the model predicts that exposing the cell to extracellular 1.5% CO2/10 mM HCO3- (pH 7.50) causes pHi to fall and pHS to rise rapidly to a peak and then decay. Moreover, the model provides insights into the competition between diffusion and reaction processes when we change the width of the EUF, membrane permeability to CO2, native extra-and intracellular carbonic anhydrase-like activities, the non-CO2/HCO3- (intrinsic) intracellular buffering power, or mobility of intrinsic intracellular buffers. PMID:22728674
Minimal Model Theory for Log Surfaces
Fujino, Osamu
2012-01-01
We discuss the log minimal model theory for log surfaces. We show that the log minimal model program, the finite generation of log canonical rings, and the log abundance theorem for log surfaces hold true under assumptions weaker than the usual framework of the log minimal model theory.
Diffusion properties of model compounds in artificial sebum.
Valiveti, Satyanarayana; Lu, Guang Wei
2007-12-10
Sebaceous glands secrete an oily sebum into the hair follicle. Hence, it is necessary to understand the drug partition and diffusion properties in the sebum for the targeted delivery of therapeutic agents into the sebum-filled hair follicle. A new method was developed and used for determination of sebum flux of topical therapeutic agents and other model compounds. The drug transport through artificial sebum was conducted using sebum loaded filter (Transwell) as a membrane, drug suspensions as donor phases and HP-beta-CD buffer solution as a receiver phase. The experiment was performed at 37 degrees C for 2h. The results of the drug transport studies indicate that the flux (J(sebum)) through the artificial sebum is compound dependent and a bell-shaped curve was observed when logJ(s) versus alkyl side chain length of the compounds that proved to be different from the curves obtained upon plotting logJ skin versus clogP for the same compounds, indicating the possibility to select appropriate compounds for sebum targeted delivery based on the differences in the skin flux and sebum transport profiles of the molecules.
Liang, Yingjie; Chen, Wen
2018-03-01
Ultraslow diffusion has been observed in numerous complicated systems. Its mean squared displacement (MSD) is not a power law function of time, but instead a logarithmic function, and in some cases grows even more slowly than the logarithmic rate. The distributed-order fractional diffusion equation model simply does not work for the general ultraslow diffusion. Recent study has used the local structural derivative to describe ultraslow diffusion dynamics by using the inverse Mittag-Leffler function as the structural function, in which the MSD is a function of inverse Mittag-Leffler function. In this study, a new stretched logarithmic diffusion law and its underlying non-local structural derivative diffusion model are proposed to characterize the ultraslow diffusion in aging dense colloidal glass at both the short and long waiting times. It is observed that the aging dynamics of dense colloids is a class of the stretched logarithmic ultraslow diffusion processes. Compared with the power, the logarithmic, and the inverse Mittag-Leffler diffusion laws, the stretched logarithmic diffusion law has better precision in fitting the MSD of the colloidal particles at high densities. The corresponding non-local structural derivative diffusion equation manifests clear physical mechanism, and its structural function is equivalent to the first-order derivative of the MSD.
Diffusion in clay - experimental techniques and theoretical models
International Nuclear Information System (INIS)
Eriksen, T.E.; Jacobsson, A.
1984-01-01
A large number of experiments have been carried out by this and adjacent research groups to assess the diffusivity of a wide variety of dissolved species such as cations anions, macromolecules and gases in watersaturated clay at differing compaction. The results have been reported in a series of KBS-technical reports. This report is a summary of the experiences gained by these experiments. Recommended experimental methods are described and a methodology to treat and interpret the experimental data is outlined. The mechanisms for diffusion in clay are also discussed in some detail - especially the influence of charge, molecular size and hydrolysis of the diffusing species. (author)
Numerical vs. turbulent diffusion in geophysical flow modelling
International Nuclear Information System (INIS)
D'Isidoro, M.; Maurizi, A.; Tampieri, F.
2008-01-01
Numerical advection schemes induce the spreading of passive tracers from localized sources. The effects of changing resolution and Courant number are investigated using the WAF advection scheme, which leads to a sub-diffusive process. The spreading rate from an instantaneous source is compared with the physical diffusion necessary to simulate unresolved turbulent motions. The time at which the physical diffusion process overpowers the numerical spreading is estimated, and is shown to reduce as the resolution increases, and to increase as the wind velocity increases.
Diffraction and diffusion in room acoustics
DEFF Research Database (Denmark)
Rindel, Jens Holger; Rasmussen, Birgit
1996-01-01
Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....
Wang, Lingquan; Zeng, Zhong; Zhang, Liangqi; Qiao, Long; Zhang, Yi; Lu, Yiyu
2018-04-01
Navier-Stokes (NS) equations with no-slip boundary conditions fail to realistically describe micro-flows with considering nanoscale phenomena. Particularly, in kerogen pores, slip-flow and surface diffusion are important. In this study, we propose a new slip boundary scheme for the lattice Boltzmann (LB) method through the non-equilibrium extrapolation scheme to simulate the slip-flow considering surface diffusion effect. Meanwhile, the second-order slip velocity can be taken into account. The predicted characteristics in a two-dimensional micro-flow, including slip-velocity, velocity distribution along the flow direction with/without surface diffusion are present. The results in this study are compared with available analytical and reference results, and good agreements are achieved.
Nuclear interaction potential in a folded-Yukawa model with diffuse densities
International Nuclear Information System (INIS)
Randrup, J.
1975-09-01
The folded-Yukawa model for the nuclear interaction potential is generalized to diffuse density distributions which are generated by folding a Yukawa function into sharp generating distributions. The effect of a finite density diffuseness or of a finite interaction range is studied. The Proximity Formula corresponding to the generalized model is derived and numerical comparison is made with the exact results. (8 figures)
Time-varying boundaries for diffusion models of decision making and response time
Zhang, S.; Lee, M.D.; Vandekerckhove, J.; Maris, G.; Wagenmakers, E.-J.
2014-01-01
Diffusion models are widely-used and successful accounts of the time course of two-choice decision making. Most diffusion models assume constant boundaries, which are the threshold levels of evidence that must be sampled from a stimulus to reach a decision. We summarize theoretical results from
Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.
2011-01-01
This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint
A mathematical model in charactering chloride diffusivity in unsaturated cementitious material
Zhang, Y.; Ye, G.; Pecur, I.B.; Baricevic, A.; Stirmer, N; Bjegovic, D.
2017-01-01
In this paper, a new analytic model for predicting chloride diffusivity in unsaturated cementitious materials is developed based on conductivity theory and Nernst-Einstein equation. The model specifies that chloride diffusivity in unsaturated cementitious materials can be mathematically described as
A travelling wave model of ripple formation on ion bombarded surfaces
Energy Technology Data Exchange (ETDEWEB)
Numazawa, Satoshi, E-mail: s.numazawa@hzdr.de; Smith, Roger, E-mail: R.Smith@lboro.ac.uk
2013-05-15
We present a mathematical model describing surface modification resulting from atomic motion after ion bombardment. The model considers only the defect production and recovery process induced by the local atom rearrangement and is essentially independent of surface topography changes formed by both sputtering and surface diffusion. A stable analytic, travelling wave solution is presented for a specific incident angle, which agrees with experimental observation excellently.
International Nuclear Information System (INIS)
Lai, King C.; Liu, Da-Jiang; Evans, James W.
2017-01-01
For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal(100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN ~ N -β with β = 3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N = N p = L 2 or L(L+1), for L = 3, 4,… having unique ground state shapes, for moderate sizes 9 ≤ N ≤ O(10 2 ); the same also applies for N = N p +3, N p + 4,… (iii) facile diffusion but with large β > 2 for N = Np + 1 and N p + 2 also for moderate sizes 9 ≤ N ≤ O(10 2 ); (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲ β < 3/2, reflecting the quasi-facetted structure of clusters, for larger N = O(10 2 ) to N = O(10 3 ); and (v) classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where show that diffusivity cycles quasi-periodically from the slowest branch for N p + 3 (not Np) to the fastest branch for Np + 1. Behavior is quantified by Kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back-correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground state and low-lying excited state cluster configurations, and also of kink populations.
Modelling cell motility and chemotaxis with evolving surface finite elements.
Elliott, Charles M; Stinner, Björn; Venkataraman, Chandrasekhar
2012-11-07
We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction-diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html.
Diffusion-controlled reactions modeling in Geant4-DNA
International Nuclear Information System (INIS)
Karamitros, M.; Luan, S.; Bernal, M.A.; Allison, J.; Baldacchino, G.; Davidkova, M.; Francis, Z.; Friedland, W.; Ivantchenko, V.; Ivantchenko, A.; Mantero, A.; Nieminem, P.; Santin, G.; Tran, H.N.; Stepan, V.; Incerti, S.
2014-01-01
Context Under irradiation, a biological system undergoes a cascade of chemical reactions that can lead to an alteration of its normal operation. There are different types of radiation and many competing reactions. As a result the kinetics of chemical species is extremely complex. The simulation becomes then a powerful tool which, by describing the basic principles of chemical reactions, can reveal the dynamics of the macroscopic system. To understand the dynamics of biological systems under radiation, since the 80s there have been on-going efforts carried out by several research groups to establish a mechanistic model that consists in describing all the physical, chemical and biological phenomena following the irradiation of single cells. This approach is generally divided into a succession of stages that follow each other in time: (1) the physical stage, where the ionizing particles interact directly with the biological material; (2) the physico-chemical stage, where the targeted molecules release their energy by dissociating, creating new chemical species; (3) the chemical stage, where the new chemical species interact with each other or with the biomolecules; (4) the biological stage, where the repairing mechanisms of the cell come into play. This article focuses on the modeling of the chemical stage. Method This article presents a general method of speeding-up chemical reaction simulations in fluids based on the Smoluchowski equation and Monte-Carlo methods, where all molecules are explicitly simulated and the solvent is treated as a continuum. The model describes diffusion-controlled reactions. This method has been implemented in Geant4-DNA. The keys to the new algorithm include: (1) the combination of a method to compute time steps dynamically with a Brownian bridge process to account for chemical reactions, which avoids costly fixed time step simulations; (2) a k–d tree data structure for quickly locating, for a given molecule, its closest reactants. The
Directory of Open Access Journals (Sweden)
Eloise C. Tredenick
2017-05-01
Full Text Available The agricultural industry requires improved efficacy of sprays being applied to crops and weeds in order to reduce their environmental impact and deliver improved financial returns. Enhanced foliar uptake is one means of improving efficacy. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The usefulness of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted previously in the literature, as the results of each uptake experiment are specific to each formulation of active ingredient, plant species and environmental conditions. In this work we develop a mathematical model and numerical simulation for the uptake of hydrophilic ionic agrochemicals through aqueous pores in plant cuticles. We propose a novel, nonlinear, porous diffusion model for ionic agrochemicals in isolated cuticles, which extends simple diffusion through the incorporation of parameters capable of simulating: plant species variations, evaporation of surface droplet solutions, ion binding effects on the cuticle surface and swelling of the aqueous pores with water. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms. Major influencing factors have been found to be cuticle structure, including tortuosity and density of the aqueous pores, and to a lesser extent humidity and cuticle surface ion binding effects.
Tredenick, Eloise C; Farrell, Troy W; Forster, W Alison; Psaltis, Steven T P
2017-01-01
The agricultural industry requires improved efficacy of sprays being applied to crops and weeds in order to reduce their environmental impact and deliver improved financial returns. Enhanced foliar uptake is one means of improving efficacy. The plant leaf cuticle is known to be the main barrier to diffusion of agrochemicals within the leaf. The usefulness of a mathematical model to simulate uptake of agrochemicals in plant cuticles has been noted previously in the literature, as the results of each uptake experiment are specific to each formulation of active ingredient, plant species and environmental conditions. In this work we develop a mathematical model and numerical simulation for the uptake of hydrophilic ionic agrochemicals through aqueous pores in plant cuticles. We propose a novel, nonlinear, porous diffusion model for ionic agrochemicals in isolated cuticles, which extends simple diffusion through the incorporation of parameters capable of simulating: plant species variations, evaporation of surface droplet solutions, ion binding effects on the cuticle surface and swelling of the aqueous pores with water. We validate our theoretical results against appropriate experimental data, discuss the key sensitivities in the model and relate theoretical predictions to appropriate physical mechanisms. Major influencing factors have been found to be cuticle structure, including tortuosity and density of the aqueous pores, and to a lesser extent humidity and cuticle surface ion binding effects.
Dynamical modeling of surface tension
International Nuclear Information System (INIS)
Brackbill, J.U.; Kothe, D.B.
1996-01-01
In a recent review it is said that free-surface flows ''represent some of the difficult remaining challenges in computational fluid dynamics''. There has been progress with the development of new approaches to treating interfaces, such as the level-set method and the improvement of older methods such as the VOF method. A common theme of many of the new developments has been the regularization of discontinuities at the interface. One example of this approach is the continuum surface force (CSF) formulation for surface tension, which replaces the surface stress given by Laplace's equation by an equivalent volume force. Here, we describe how CSF might be made more useful. Specifically, we consider a derivation of the CSF equations from a minimization of surface energy as outlined by Jacqmin. This reformulation suggests that if one eliminates the computation of curvature in terms of a unit normal vector, parasitic currents may be eliminated For this reformulation to work, it is necessary that transition region thickness be controlled. Various means for this, in addition to the one discussed by Jacqmin are discussed
Atomistic simulation of the vacancy diffusion in (0 0 1) surface of MoTa alloy
Wang, Fang; Zhang, Jian-Min; Xu, Ke-Wei; Ji, Vincent
2009-08-01
The formation and diffusion of a single Mo or Ta vacancy in the (0 0 1) surface of the B 2-type MoTa alloy have been investigated by using modified analytical embedded-atom method (MAEAM). The results show that the effect of the surface on the vacancy is only down to the sixth layer. It is easier for the vacancy to form in the first layer. Comparing the migration energy of the vacancy migrating in the intra-layer, to the upper layer and to the nether layer via 2NN jump, we find that the vacancy in the first or second layer is preferred to migrate in intra-layer, and that in the third or fourth layer is favorable to migrate to the upper layer. Although 1NN jump will result in an anti-site so that a disorder in the order alloy, it may also occur due to the much lower migration energy especially for the vacancy in the second and third layer to migrate to the first and second layer, respectively.
International Nuclear Information System (INIS)
Mirigian, Stephen; Schweizer, Kenneth S.
2015-01-01
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry
Energy Technology Data Exchange (ETDEWEB)
Mirigian, Stephen, E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com [Departments of Materials Science and Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)
2015-12-28
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.
Directory of Open Access Journals (Sweden)
Ebadollah Naderi
2015-01-01
Full Text Available CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111 A-type (Cd terminated and B-type (Te terminated surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as Aa site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from Aa (occupied to Aa (empty site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type. Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.
Nonexistence of nonconstant steady-state solutions in a triangular cross-diffusion model
Lou, Yuan; Tao, Youshan; Winkler, Michael
2017-05-01
In this paper we study the Shigesada-Kawasaki-Teramoto model for two competing species with triangular cross-diffusion. We determine explicit parameter ranges within which the model exclusively possesses constant steady state solutions.
Hurdal, Monica K.; Striegel, Deborah A.
2011-11-01
Modeling and understanding cortical folding pattern formation is important for quantifying cortical development. We present a biomathematical model for cortical folding pattern formation in the human brain and apply this model to study diseases involving cortical pattern malformations associated with neural migration disorders. Polymicrogyria is a cortical malformation disease resulting in an excessive number of small gyri. Our mathematical model uses a Turing reaction-diffusion system to model cortical folding. The lateral ventricle (LV) and ventricular zone (VZ) of the brain are critical components in the formation of cortical patterning. In early cortical development the shape of the LV can be modeled with a prolate spheroid and the VZ with a prolate spheroid surface. We use our model to study how global cortex characteristics, such as size and shape of the LV, affect cortical pattern formation. We demonstrate increasing domain scale can increase the number of gyri and sulci formed. Changes in LV shape can account for sulcus directionality. By incorporating LV size and shape, our model is able to elucidate which parameters can lead to excessive cortical folding.
Prediction model for the diffusion length in silicon-based solar cells
Energy Technology Data Exchange (ETDEWEB)
Cheknane, A [Laboratoire d' Etude et Developpement des Materiaux Semiconducteurs et Dielectrques, Universite Amar Telidji de Laghouat, BP 37G, Laghouat 03000 (Algeria); Benouaz, T, E-mail: cheknanali@yahoo.co [Laboratoire de Modelisation, Universite Abou BakarBelkaid de Tlemcen Algerie (Algeria)
2009-07-15
A novel approach to compute diffusion lengths in solar cells is presented. Thus, a simulation is done; it aims to give computational support to the general development of a neural networks (NNs), which is a very powerful predictive modelling technique used to predict the diffusion length in mono-crystalline silicon solar cells. Furthermore, the computation of the diffusion length and the comparison with measurement data, using the infrared injection method, are presented and discussed.
Dynamic Factor Models for the Volatility Surface
DEFF Research Database (Denmark)
van der Wel, Michel; Ozturk, Sait R.; Dijk, Dick van
The implied volatility surface is the collection of volatilities implied by option contracts for different strike prices and time-to-maturity. We study factor models to capture the dynamics of this three-dimensional implied volatility surface. Three model types are considered to examine desirable...
DEFF Research Database (Denmark)
Vestergaard-Poulsen, Peter; Hansen, Brian; Østergaard, Leif
2007-01-01
PURPOSE: To understand the diffusion attenuated MR signal from normal and ischemic brain tissue in order to extract structural and physiological information using mathematical modeling, taking into account the transverse relaxation rates in gray matter. MATERIALS AND METHODS: We fit our diffusion...... compartment. A global optimum was found from a wide range of parameter permutations using cluster computing. We also present simulations of cell swelling and changes of exchange rate and intracellular diffusion as possible cellular mechanisms in ischemia. RESULTS: Our model estimates an extracellular volume...... fraction of 0.19 in accordance with the accepted value from histology. The absolute apparent diffusion coefficient obtained from the model was similar to that of experiments. The model and the experimental results indicate significant differences in diffusion and transverse relaxation between the tissue...
Continuous Mixed-Laplace Jump Diffusion Models for Stocks and Commodities
Directory of Open Access Journals (Sweden)
Donatien Hainaut
2017-07-01
Full Text Available This paper proposes two jump diffusion models with and without mean reversion,for stocks or commodities, capable to fit highly leptokurtic processes. The jump component is acontinuous mixture of independent point processes with Laplace jumps. As in financial markets,jumps are caused by the arrival of information and sparse information has usually more importancethan regular information, the frequencies of shocks are assumed inversely proportional to their averagesize. In this framework, we find analytical expressions for the density of jumps, for characteristicfunctions and moments of log-returns. Simple series developments of characteristic functions arealso proposed. Options prices or densities are retrieved by discrete Fourier transforms. An empiricalstudy demonstrates the capacity of our models to fit time series with a high kurtosis. The ContinuousMixed-Laplace Jump Diffusion (CMLJD is fitted to four major stocks indices (MSWorld, FTSE, S&Pand CAC 40, over a period of 10 years. The mean reverting CMLJD is fitted to four time series ofcommodity prices (Copper, Soy Beans, Crude Oil WTI and Wheat, observed on four years. Finally,examples of implied volatility surfaces for European Call options are presented. The sensitivity of thissurface to each parameters is analyzed.
Climate stability for a Sellers-type model. [atmospheric diffusive energy balance model
Ghil, M.
1976-01-01
We study a diffusive energy-balance climate model governed by a nonlinear parabolic partial differential equation. Three positive steady-state solutions of this equation are found; they correspond to three possible climates of our planet: an interglacial (nearly identical to the present climate), a glacial, and a completely ice-covered earth. We consider also models similar to the main one studied, and determine the number of their steady states. All the models have albedo continuously varying with latitude and temperature, and entirely diffusive horizontal heat transfer. The diffusion is taken to be nonlinear as well as linear. We investigate the stability under small perturbations of the main model's climates. A stability criterion is derived, and its application shows that the 'present climate' and the 'deep freeze' are stable, whereas the model's glacial is unstable. A variational principle is introduced to confirm the results of this stability analysis. For a sufficient decrease in solar radiation (about 2%) the glacial and interglacial solutions disappear, leaving the ice-covered earth as the only possible climate.
Telfeyan, Katherine; Ware, S. Doug; Reimus, Paul W.; Birdsell, Kay H.
2018-02-01
Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.
Telfeyan, Katherine; Ware, S Doug; Reimus, Paul W; Birdsell, Kay H
2018-02-01
Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating effective matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of effective matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than effective matrix diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields effective matrix diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired. Copyright © 2018 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Telfeyan, Katherine Christina [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ware, Stuart Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Birdsell, Kay Hanson [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-11-06
Diffusion cell and diffusion wafer experiments were conducted to compare methods for estimating matrix diffusion coefficients in rock core samples from Pahute Mesa at the Nevada Nuclear Security Site (NNSS). A diffusion wafer method, in which a solute diffuses out of a rock matrix that is pre-saturated with water containing the solute, is presented as a simpler alternative to the traditional through-diffusion (diffusion cell) method. Both methods yielded estimates of matrix diffusion coefficients that were within the range of values previously reported for NNSS volcanic rocks. The difference between the estimates of the two methods ranged from 14 to 30%, and there was no systematic high or low bias of one method relative to the other. From a transport modeling perspective, these differences are relatively minor when one considers that other variables (e.g., fracture apertures, fracture spacings) influence matrix diffusion to a greater degree and tend to have greater uncertainty than diffusion coefficients. For the same relative random errors in concentration measurements, the diffusion cell method yields diffusion coefficient estimates that have less uncertainty than the wafer method. However, the wafer method is easier and less costly to implement and yields estimates more quickly, thus allowing a greater number of samples to be analyzed for the same cost and time. Given the relatively good agreement between the methods, and the lack of any apparent bias between the methods, the diffusion wafer method appears to offer advantages over the diffusion cell method if better statistical representation of a given set of rock samples is desired.
Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja; Lukacova, Slávka; Kallehauge, Jesper F
2017-11-01
The clinical target volume (CTV) in radiotherapy is routinely based on gadolinium contrast enhanced T1 weighted (T1w + Gd) and T2 weighted fluid attenuated inversion recovery (T2w FLAIR) magnetic resonance imaging (MRI) sequences which have been shown to over- or underestimate the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve target definition in glioblastoma (GBM). Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation and a difference in white and gray matter diffusion of a ratio of 10. The tensor directionality was tested using an anisotropy weighting parameter set to zero (γ0) and twenty (γ20). The volumetric comparison was performed using Hausdorff distance, Dice similarity coefficient (DSC) and surface area. The median of the standard CTV (CTVstandard) was 180 cm 3 . The median surface area of CTVstandard was 211 cm 2 . The median surface area of respective CTV γ0 and CTV γ20 significantly increased to 338 and 376 cm 2 , respectively. The Hausdorff distance was greater than zero and significantly increased for both CTV γ0 and CTV γ20 with respective median of 18.7 and 25.2 mm. The DSC for both CTV γ0 and CTV γ20 were significantly below one with respective median of 0.74 and 0.72, which means that 74 and 72% of CTVstandard were included in CTV γ0 and CTV γ20, respectively. DTI driven growth models result in CTVs with a significantly increased surface area, a significantly increased Hausdorff distance and decreased overlap between the standard and model derived volume.
Lacitignola, Deborah; Bozzini, Benedetto; Frittelli, Massimo; Sgura, Ivonne
2017-07-01
The present paper deals with the pattern formation properties of a specific morpho-electrochemical reaction-diffusion model on a sphere. The physico-chemical background to this study is the morphological control of material electrodeposited onto spherical particles. The particular experimental case of interest refers to the optimization of novel metal-air flow batteries and addresses the electrodeposition of zinc onto inert spherical supports. Morphological control in this step of the high-energy battery operation is crucial to the energetic efficiency of the recharge process and to the durability of the whole energy-storage device. To rationalise this technological challenge within a mathematical modeling perspective, we consider the reaction-diffusion system for metal electrodeposition introduced in [Bozzini et al., J. Solid State Electr.17, 467-479 (2013)] and extend its study to spherical domains. Conditions are derived for the occurrence of the Turing instability phenomenon and the steady patterns emerging at the onset of Turing instability are investigated. The reaction-diffusion system on spherical domains is solved numerically by means of the Lumped Surface Finite Element Method (LSFEM) in space combined with the IMEX Euler method in time. The effect on pattern formation of variations in the domain size is investigated both qualitatively, by means of systematic numerical simulations, and quantitatively by introducing suitable indicators that allow to assign each pattern to a given morphological class. An experimental validation of the obtained results is finally presented for the case of zinc electrodeposition from alkaline zincate solutions onto copper spheres.
Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime
2014-07-01
We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid.
Klapp, Jaime; di G Sigalotti, Leonardo; Troconis, Jorge; Sira, Eloy; Pena, Franklin; ININ-IVIC Team; Cinvestav-UAM-A Team
2014-11-01
We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW) liquid drops using the method of Smoothed Particle Hydrodynamics (SPH). In contrast to previous SPH simulations of drop formation, our approach is fully adaptive and follows the diffuse interface model for a single-component fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere, with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation, are in good agreement with the results of independent numerical simulations and experimental data. The models also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this vdW fluid. Cinvestav-Abacus.
Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species
K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone
2011-01-01
In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...
Surface growth of two kinds of particles deposition models
International Nuclear Information System (INIS)
Wei Wang; Cerdeira, H.A.
1993-10-01
The surface kinetics with diffusion of two kinds of particles (A and C) deposition models, randomlike and ballisticlike depositing on a (1 + 1)-dimensional substrate, has been studied in this paper. The scaling behaviour of the surface width for these two models is obtained for various deposition probability P of particle C (the probability of particle A, being 1 - P). We found that both models have a scaling behaviour: the surface width growth only depends on the time, W ∼ t α(p) for the early stage and W ∼ t β(P) for the intermediate time, as well as W ∼ L z for the later time with different exponents α(P) and β(P) and z for two models. In addition, there is a phase transition when the saturation surface widths are scaled to the deposition probability P for both models W(t = ∞) ∼ P γ : before and after the transition the scaling exponent γ is different. This transition is interpreted as that there are different morphologic structures when the depositing probability for one kind of particle, particle C, is larger than a critical value P c . (author). 16 refs, 5 figs, 2 tabs
Kee, Kerk F; Sparks, Lisa; Struppa, Daniele C; Mannucci, Mirco A; Damiano, Alberto
2016-01-01
By integrating the simplicial model of social aggregation with existing research on opinion leadership and diffusion networks, this article introduces the constructs of simplicial diffusers (mathematically defined as nodes embedded in simplexes; a simplex is a socially bonded cluster) and simplicial diffusing sets (mathematically defined as minimal covers of a simplicial complex; a simplicial complex is a social aggregation in which socially bonded clusters are embedded) to propose a strategic approach for information diffusion of cancer screenings as a health intervention on Facebook for community cancer prevention and control. This approach is novel in its incorporation of interpersonally bonded clusters, culturally distinct subgroups, and different united social entities that coexist within a larger community into a computational simulation to select sets of simplicial diffusers with the highest degree of information diffusion for health intervention dissemination. The unique contributions of the article also include seven propositions and five algorithmic steps for computationally modeling the simplicial model with Facebook data.
Directory of Open Access Journals (Sweden)
Luisa Malaguti
2011-01-01
Full Text Available The paper deals with a degenerate reaction-diffusion equation, including aggregative movements and convective terms. The model also incorporates a real parameter causing the change from a purely diffusive to a diffusive-aggregative and to a purely aggregative regime. Existence and qualitative properties of traveling wave solutions are investigated, and estimates of their threshold speeds are furnished. Further, the continuous dependence of the threshold wave speed and of the wave profiles on a real parameter is studied, both when the process maintains its diffusion-aggregation nature and when it switches from it to another regime.
Diffusion of PAH in potato and carrot slices and application for a potato model
DEFF Research Database (Denmark)
Trapp, Stefan; Cammarano, A.; Capri, E.
2007-01-01
A method for quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through thin layers was applied to plant tissue. The method employs two silicone disks, one serving as source and one as sink for a series of PAHs diffusing through thin layers...... of water, potato tissue, and carrot tissue. Naphthalene, phenanthrene, anthracene, and fluoranthene served as model substances. Their transfer from source to sink disk was measured by HPLC to determine a velocity rate constant proportional to the diffusive conductivity. The diffusive flux through the plant...
Characteristics and Diffusion Model of the Individual Knowledge in the WeChat Mode
Directory of Open Access Journals (Sweden)
Zhang Lingzhi
2017-12-01
Full Text Available [Purpose/significance] According to the model of the individual knowledge diffusion, we conduct a behavior research and analyze the characteristics of that based on WeChat which is the most popular communication platform in China.[Method/process] By analyzing the methods of the diffusion on WeChat, we analyzed the characteristics of the individual knowledge diffusion. [Result/conclusion]The characteristics of the individual knowledge diffusion include real-time, short-term, speciality, friendship and transmission.
Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers
Mohammadi, V.; Nihtianov, S.
2016-01-01
The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and
Diffusion-controlled reactions modeling in Geant4-DNA
Czech Academy of Sciences Publication Activity Database
Karamitros, M.; Luan, S.; Bernal, M. A.; Allison, J.; Baldacchino, G.; Davídková, Marie; Francis, Z.; Friedland, W.; Ivanchenko, A.; Ivanchenko, V.; Mantero, A.; Nieminen, P.; Santin, G.; Tran, H. N.; Stepan, V.; Incerti, S.
2014-01-01
Roč. 274, OCT (2014), s. 841-882 ISSN 0021-9991 Institutional support: RVO:61389005 Keywords : chemical kinetics simulation * radiation chemistry * Fokker-Planck equation * Smoluchowski diffusion equation * Brownian bridge * dynamical time step s * k-d tree * radiolysis * radiobiology * Geant4-DNA * Brownian dynamics Subject RIV: BO - Biophysics Impact factor: 2.434, year: 2014
A model of modulated diffusion. I. Analytical results
International Nuclear Information System (INIS)
Bazzani, A.; Turcchetti, G.; Vaienti, S.
1994-01-01
We introduce an integrable isochronous system and perturb its frequency by an external-deterministic or purely random-noise. Under the perturbation the action variable evolves in time: the corresponding diffusion coefficient is exactly computed and its dependence on the magnitude of the perturbation is carefully investigated. Different behaviors are found and justified: the quasilinear approximation, the superlinear regime, and the ballistic motion
Comparison Of Diffuse Solar Radiation Models Using Data For ...
African Journals Online (AJOL)
Measurements of global solar radiation and sunshine duration data during the period from 1984 to 1999 were supplied by IITA (International Institute of Tropical Agriculture) at Onne. The data were used to establish empirical relationships that would connect the daily monthly average diffuse irradiation with both relative ...
Diffusion as a Ruler: Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport.
Hendel, Nathan L; Thomson, Matthew; Marshall, Wallace F
2018-02-06
An important question in cell biology is whether cells are able to measure size, either whole cell size or organelle size. Perhaps cells have an internal chemical representation of size that can be used to precisely regulate growth, or perhaps size is just an accident that emerges due to constraint of nutrients. The eukaryotic flagellum is an ideal model for studying size sensing and control because its linear geometry makes it essentially one-dimensional, greatly simplifying mathematical modeling. The assembly of flagella is regulated by intraflagellar transport (IFT), in which kinesin motors carry cargo adaptors for flagellar proteins along the flagellum and then deposit them at the tip, lengthening the flagellum. The rate at which IFT motors are recruited to begin transport into the flagellum is anticorrelated with the flagellar length, implying some kind of communication between the base and the tip and possibly indicating that cells contain some mechanism for measuring flagellar length. Although it is possible to imagine many complex scenarios in which additional signaling molecules sense length and carry feedback signals to the cell body to control IFT, might the already-known components of the IFT system be sufficient to allow length dependence of IFT? Here we investigate a model in which the anterograde kinesin motors unbind after cargo delivery, diffuse back to the base, and are subsequently reused to power entry of new IFT trains into the flagellum. By mathematically modeling and simulating such a system, we are able to show that the diffusion time of the motors can in principle be sufficient to serve as a proxy for length measurement. We found that the diffusion model can not only achieve a stable steady-state length without the addition of any other signaling molecules or pathways, but also is able to produce the anticorrelation between length and IFT recruitment rate that has been observed in quantitative imaging studies. Copyright © 2017 Biophysical
International Nuclear Information System (INIS)
Maurin, D.
2001-02-01
Dark matter is present at numerous scale of the universe (galaxy, cluster of galaxies, universe in the whole). This matter plays an important role in cosmology and can not be totally explained by conventional physic. From a particle physic point of view, there exists an extension of the standard model - supersymmetry - which predicts under certain conditions the existence of new stable and massive particles, the latter interacting weakly with ordinary matter. Apart from direct detection in accelerators, various indirect astrophysical detection are possible. This thesis focuses on one particular signature: disintegration of these particles could give antiprotons which should be measurable in cosmic rays. The present study evaluates the background corresponding to this signal i. e. antiprotons produced in the interactions between these cosmic rays and interstellar matter. In particular, uncertainties of this background being correlated to the uncertainties of the diffusion parameter, major part of this thesis is devoted to nuclei propagation. The first third of the thesis introduces propagation of cosmic rays in our galaxy, emphasizing the nuclear reaction responsibles of the nuclei fragmentation. In the second third, different models are reviewed, and in particular links between the leaky box model and the diffusion model are recalled (re-acceleration and convection are also discussed). This leads to a qualitative discussion about information that one can infer from propagation of these nuclei. In the last third, we finally present detailed solutions of the bidimensional diffusion model, along with constrains obtained on the propagation parameters. The latter is applied on the antiprotons background signal and it concludes the work done in this thesis. The propagation code for nuclei and antiprotons used here has proven its ability in data analysis. It would probably be of interest for the analysis of the cosmic ray data which will be taken by the AMS experiment on
Single-layer model for surface roughness.
Carniglia, C K; Jensen, D G
2002-06-01
Random roughness of an optical surface reduces its specular reflectance and transmittance by the scattering of light. The reduction in reflectance can be modeled by a homogeneous layer on the surface if the refractive index of the layer is intermediate to the indices of the media on either side of the surface. Such a layer predicts an increase in the transmittance of the surface and therefore does not provide a valid model for the effects of scatter on the transmittance. Adding a small amount of absorption to the layer provides a model that predicts a reduction in both reflectance and transmittance. The absorbing layer model agrees with the predictions of a scalar scattering theory for a layer with a thickness that is twice the rms roughness of the surface. The extinction coefficient k for the layer is proportional to the thickness of the layer.
Modeling complex diffusion mechanisms in L1{sub 2}-structured compounds
Energy Technology Data Exchange (ETDEWEB)
Zacate, M. O., E-mail: zacatem1@nku.edu; Lape, M. [Northern Kentucky University, Department of Physics and Geology (United States); Stufflebeam, M.; Evenson, W. E. [Utah Valley University, College of Science and Health (United States)
2010-04-15
We report on a procedure developed to create stochastic models of hyperfine interactions for complex diffusion mechanisms and demonstrate its application to simulate perturbed angular correlation spectra for the divacancy and 6-jump cycle diffusion mechanisms in L1{sub 2}-structured compounds.
Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow
Gonzalez, M.
2018-04-01
The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.
Czech Academy of Sciences Publication Activity Database
Svoboda, Jiří; Gamsjäger, E.; Fischer, F. D.; Kozeschnik, E.
2006-01-01
Roč. 27, č. 6 (2006), s. 622-628 ISSN 1547-7037 R&D Projects: GA AV ČR IAA200410601 Institutional research plan: CEZ:AV0Z20410507 Keywords : diffusion modelling * diffusivity coefficient * intrmetallic compound Subject RIV: JG - Metallurgy Impact factor: 0.427, year: 2006
A vintage model of technology diffusion: The effects of returns to disversity and learning by using
H.L.F. de Groot (Henri); M.W. Hofkes (Marjan); P. Mulder (Peter)
2003-01-01
textabstractThe diffusion of new technologies is a lengthy process and many firms continue to invest in relatively old technologies. This paper develops a vintage model of technology adoption and diffusion that aims at explaining these two phenomena. Our explanation for these phenomena emphasises
Rotational diffusion model with a variable collision distribution. II. The effect of energy transfer
Frenkel, D.; Wegdam, G.H.
1974-01-01
In this paper we present the results of model calculations on the rotational motion of linear molecules in dense systems. To this end we have developed a matrix description for the rotational diffusion, which is extended in this article to the J-diffusion limit. Closed expressions are obtained for
Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.
2016-10-01
Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the
Response Surface Modeling Using Multivariate Orthogonal Functions
Morelli, Eugene A.; DeLoach, Richard
2001-01-01
A nonlinear modeling technique was used to characterize response surfaces for non-dimensional longitudinal aerodynamic force and moment coefficients, based on wind tunnel data from a commercial jet transport model. Data were collected using two experimental procedures - one based on modem design of experiments (MDOE), and one using a classical one factor at a time (OFAT) approach. The nonlinear modeling technique used multivariate orthogonal functions generated from the independent variable data as modeling functions in a least squares context to characterize the response surfaces. Model terms were selected automatically using a prediction error metric. Prediction error bounds computed from the modeling data alone were found to be- a good measure of actual prediction error for prediction points within the inference space. Root-mean-square model fit error and prediction error were less than 4 percent of the mean response value in all cases. Efficacy and prediction performance of the response surface models identified from both MDOE and OFAT experiments were investigated.
Diffusion within the Cytoplasm: A Mesoscale Model of Interacting Macromolecules
Trovato, Fabio; Tozzini, Valentina
2014-01-01
Recent experiments carried out in the dense cytoplasm of living cells have highlighted the importance of proteome composition and nonspecific intermolecular interactions in regulating macromolecule diffusion and organization. Despite this, the dependence of diffusion-interaction on physicochemical properties such as the degree of poly-dispersity and the balance between steric repulsion and nonspecific attraction among macromolecules was not systematically addressed. In this work, we study the problem of diffusion-interaction in the bacterial cytoplasm, combining theory and experimental data to build a minimal coarse-grained representation of the cytoplasm, which also includes, for the first time to our knowledge, the nucleoid. With stochastic molecular-dynamics simulations of a virtual cytoplasm we are able to track the single biomolecule motion, sizing from 3 to 80 nm, on submillisecond-long trajectories. We demonstrate that the size dependence of diffusion coefficients, anomalous exponents, and the effective viscosity experienced by biomolecules in the cytoplasm is fine-tuned by the intermolecular interactions. Accounting only for excluded volume in these potentials gives a weaker size-dependence than that expected from experimental data. On the contrary, adding nonspecific attraction in the range of 1–10 thermal energy units produces a stronger variation of the transport properties at growing biopolymer sizes. Normal and anomalous diffusive regimes emerge straightforwardly from the combination of high macromolecular concentration, poly-dispersity, stochasticity, and weak nonspecific interactions. As a result, small biopolymers experience a viscous cytoplasm, while the motion of big ones is jammed because the entanglements produced by the network of interactions and the entropic effects caused by poly-dispersity are stronger. PMID:25468337
Diffusion Forecasting Model with Basis Functions from QR-Decomposition
Harlim, John; Yang, Haizhao
2017-12-01
The diffusion forecasting is a nonparametric approach that provably solves the Fokker-Planck PDE corresponding to Itô diffusion without knowing the underlying equation. The key idea of this method is to approximate the solution of the Fokker-Planck equation with a discrete representation of the shift (Koopman) operator on a set of basis functions generated via the diffusion maps algorithm. While the choice of these basis functions is provably optimal under appropriate conditions, computing these basis functions is quite expensive since it requires the eigendecomposition of an N× N diffusion matrix, where N denotes the data size and could be very large. For large-scale forecasting problems, only a few leading eigenvectors are computationally achievable. To overcome this computational bottleneck, a new set of basis functions constructed by orthonormalizing selected columns of the diffusion matrix and its leading eigenvectors is proposed. This computation can be carried out efficiently via the unpivoted Householder QR factorization. The efficiency and effectiveness of the proposed algorithm will be shown in both deterministically chaotic and stochastic dynamical systems; in the former case, the superiority of the proposed basis functions over purely eigenvectors is significant, while in the latter case forecasting accuracy is improved relative to using a purely small number of eigenvectors. Supporting arguments will be provided on three- and six-dimensional chaotic ODEs, a three-dimensional SDE that mimics turbulent systems, and also on the two spatial modes associated with the boreal winter Madden-Julian Oscillation obtained from applying the Nonlinear Laplacian Spectral Analysis on the measured Outgoing Longwave Radiation.
Empirically Grounded Agent-Based Models of Innovation Diffusion: A Critical Review
Zhang, Haifeng; Vorobeychik, Yevgeniy
2016-01-01
Innovation diffusion has been studied extensively in a variety of disciplines, including sociology, economics, marketing, ecology, and computer science. Traditional literature on innovation diffusion has been dominated by models of aggregate behavior and trends. However, the agent-based modeling (ABM) paradigm is gaining popularity as it captures agent heterogeneity and enables fine-grained modeling of interactions mediated by social and geographic networks. While most ABM work on innovation ...
The collective diffusion coefficient as a shape detector of the surface energy landscape
Mińkowski, Marcin; Załuska–Kotur, Magdalena A.
2018-01-01
The general expression for the diffusion coefficient for a dense, interacting particle system moving through a one-dimensional non-homogeneous energy potential is derived. Based on this expression, it is shown that the diffusion coefficient as a function of density depends to a great extent on the shape of the energy landscape. The presence of other particles affects the diffusion coefficient in another way as they pass through the same energy barriers, but set in a different order. The obtained result comes from a variational approach to diffusion and the interactions are taken into account using the transfer-matrix method. Interactions impact on the dynamics of the system, both by changing the equilibrium probabilities of the occupied states and by changing the barriers for the particle jumps. Several examples of diffusion in different energy potentials are presented and the dependence of the diffusion coefficient on potential and interactions is discussed.
Cheng-Wu, Li; Hong-Lai, Xue; Cheng, Guan; Wen-biao, Liu
2018-04-01
Statistical analysis shows that in the coal matrix, the diffusion coefficient for methane is time-varying, and its integral satisfies the formula μt κ /(1 + β κ ). Therefore, a so-called dynamic diffusion coefficient model (DDC model) is developed. To verify the suitability and accuracy of the DDC model, a series of gas diffusion experiments were conducted using coal particles of different sizes. The results show that the experimental data can be accurately described by the DDC and bidisperse models, but the fit to the DDC model is slightly better. For all coal samples, as time increases, the effective diffusion coefficient first shows a sudden drop, followed by a gradual decrease before stabilizing at longer times. The effective diffusion coefficient has a negative relationship with the size of the coal particle. Finally, the relationship between the constants of the DDC model and the effective diffusion coefficient is discussed. The constant α (μ/R 2 ) denotes the effective coefficient at the initial time, and the constants κ and β control the attenuation characteristic of the effective diffusion coefficient.
Modeling experimental stable isotope results from CO2 adsorption and diffusion experiments
Larson, T. E.
2012-12-01
steadily increased and became constant after two pore volumes of CO2 flushed through the column. Carbon and oxygen isotope values of the front of the peak (first pore volume) are 2‰ and 5‰ lower than the injected CO2 values, respectively. These results are fit very well using a mass transfer model that only includes binary diffusion between CO2 and helium that account for isotope substitution in the reduced mass coefficient. In contrast to these diffusion-dominated systems, CO2 break through curves from the illite packed column show strong adsorption effects that include a +180‰ increase in the carbon isotope ratio at the front of the peak followed by a 20‰ decrease. Up to 20 pore volumes of CO2 were flushed through the column before the carbon and oxygen isotope values stabilized to their starting values. These adsorption effects cannot be modeled using mass isotope effects alone, and instead must include additional parameters such as volume effects. These results demonstrate the importance of understanding the isotopic effects of CO2 in different substrates, and potentially offers a tracer tool that can be used to quantify surface area, transport distance, and surface reactivity of CO2. Additional applications may include more affectively determining transfer rates of CO2 across low permeability zones.
Atomistic models of Cu diffusion in CuInSe2 under variations in composition
Sommer, David E.; Dunham, Scott T.
2018-03-01
We construct an analytic model for the composition dependence of the vacancy-mediated Cu diffusion coefficient in undoped CuInSe2 using parameters from density functional theory. The applicability of this model is supported numerically with kinetic lattice Monte Carlo and Onsager transport tensors. We discuss how this model relates to experimental measurements of Cu diffusion, arguing that our results can account for significant contributions to the bulk diffusion of Cu tracers in non-stoichiometric CuInSe2.
Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion
Directory of Open Access Journals (Sweden)
Xinze Lian
2013-01-01
Full Text Available We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.
Gosálvez, Miguel A.; Otrokov, Mikhail M.; Ferrando, Nestor; Ryabishchenkova, Anastasia G.; Ayuela, Andres; Echenique, Pedro M.; Chulkov, Evgueni V.
2016-05-01
This is part II in a series of two papers that introduce a general expression for the tracer diffusivity in complex, periodic energy landscapes with M distinct hop rates in one-, two-, and three-dimensional diluted systems (low coverage, single-tracer limit). While Part I [Gosálvez et al., Phys. Rev. B 93, 075429 (2016), 10.1103/PhysRevB.93.075429] focuses on the analysis of diffusion in systems where the end sites of the hops are located symmetrically with respect to the hop origins (symmetric hops), as encountered in many ideal surfaces and bulk materials, this report (Part II) presents a more general approach to determining the tracer diffusivity in systems where the end sites can be located asymmetrically with respect to the hop origins (asymmetric hops), as observed in reconstructed and/or chemically modified surfaces and/or bulk materials. The obtained diffusivity formulas for numerous systems are validated against kinetic Monte Carlo simulations and previously reported analytical expressions based on the continuous-time random walk (CTRW) method. The proposed method corrects some of the CTRW formulas and provides new expressions for difficult cases that have not been solved earlier. This demonstrates the ability of the proposed formalism to describe tracer diffusion.
3D radiation belt diffusion model results using new empirical models of whistler chorus and hiss
Cunningham, G.; Chen, Y.; Henderson, M. G.; Reeves, G. D.; Tu, W.
2012-12-01
3D diffusion codes model the energization, radial transport, and pitch angle scattering due to wave-particle interactions. Diffusion codes are powerful but are limited by the lack of knowledge of the spatial & temporal distribution of waves that drive the interactions for a specific event. We present results from the 3D DREAM model using diffusion coefficients driven by new, activity-dependent, statistical models of chorus and hiss waves. Most 3D codes parameterize the diffusion coefficients or wave amplitudes as functions of magnetic activity indices like Kp, AE, or Dst. These functional representations produce the average value of the wave intensities for a given level of magnetic activity; however, the variability of the wave population at a given activity level is lost with such a representation. Our 3D code makes use of the full sample distributions contained in a set of empirical wave databases (one database for each wave type, including plasmaspheric hiss, lower and upper hand chorus) that were recently produced by our team using CRRES and THEMIS observations. The wave databases store the full probability distribution of observed wave intensity binned by AE, MLT, MLAT and L*. In this presentation, we show results that make use of the wave intensity sample probability distributions for lower-band and upper-band chorus by sampling the distributions stochastically during a representative CRRES-era storm. The sampling of the wave intensity probability distributions produces a collection of possible evolutions of the phase space density, which quantifies the uncertainty in the model predictions caused by the uncertainty of the chorus wave amplitudes for a specific event. A significant issue is the determination of an appropriate model for the spatio-temporal correlations of the wave intensities, since the diffusion coefficients are computed as spatio-temporal averages of the waves over MLT, MLAT and L*. The spatiotemporal correlations cannot be inferred from the
The water-induced linear reduction gas diffusivity model extended to three pore regions
DEFF Research Database (Denmark)
Chamindu, Deepagoda; De Jonge, Lis Wollesen; Kawamoto, Ken
2015-01-01
An existing gas diffusivity model developed originally for sieved, repacked soils was extended to characterize gas diffusion in differently structured soils and functional pore networks. A gas diffusivity-derived pore connectivity index was used as a measure of soil structure development. Charact......An existing gas diffusivity model developed originally for sieved, repacked soils was extended to characterize gas diffusion in differently structured soils and functional pore networks. A gas diffusivity-derived pore connectivity index was used as a measure of soil structure development....... Characterization of soil functional pore structure is an essential prerequisite to understand key gas transport processes in variably saturated soils in relation to soil ecosystems, climate, and environmental services. In this study, the water-induced linear reduction (WLR) soil gas diffusivity model originally...... gas diffusivity from moist to dry conditions across differently structured porous media, including narrow soil size fractions, perforated plastic blocks, fractured limestone, peaty soils, aggregated volcanic ash soils, and particulate substrates for Earth- or space-based applications. The new Cip...
Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates
Directory of Open Access Journals (Sweden)
Marcus C. Christiansen
2013-10-01
Full Text Available In the actuarial literature, it has become common practice to model future capital returns and mortality rates stochastically in order to capture market risk and forecasting risk. Although interest rates often should and mortality rates always have to be non-negative, many authors use stochastic diffusion models with an affine drift term and additive noise. As a result, the diffusion process is Gaussian and, thus, analytically tractable, but negative values occur with positive probability. The argument is that the class of Gaussian diffusions would be a good approximation of the real future development. We challenge that reasoning and study the asymptotics of diffusion processes with affine drift and a general noise term with corresponding diffusion processes with an affine drift term and an affine noise term or additive noise. Our study helps to quantify the error that is made by approximating diffusive interest and mortality rate models with Gaussian diffusions and affine diffusions. In particular, we discuss forward interest and forward mortality rates and the error that approximations cause on the valuation of life insurance claims.
Modeling and Analysis of Epidemic Diffusion within Small-World Network
Directory of Open Access Journals (Sweden)
Ming Liu
2012-01-01
Full Text Available To depict the rule of epidemic diffusion, two different models, the Susceptible-Exposure-Infected-Recovered-Susceptible (SEIRS model and the Susceptible-Exposure-Infected-Quarantine-Recovered-Susceptible (SEIQRS model, are proposed and analyzed within small-world network in this paper. Firstly, the epidemic diffusion models are constructed with mean-filed theory, and condition for the occurrence of disease diffusion is explored. Then, the existence and global stability of the disease-free equilibrium and the endemic equilibrium for these two complex epidemic systems are proved by differential equations knowledge and Routh-Hurwiz theory. At last, a numerical example which includes key parameters analysis and critical topic discussion is presented to test how well the proposed two models may be applied in practice. These works may provide some guidelines for decision makers when coping with epidemic diffusion controlling problems.
Thermal Diffusion Dynamic Behavior of Two-Dimensional Ag-SMALL Clusters on Ag(1 1 1) Surface
Zakirur-Rehman; Hayat, Sardar Sikandar
2015-07-01
In this paper, the thermal diffusion behavior of small two-dimensional Ag-islands on Ag(1 1 1) surface has been explored using molecular dynamics (MD) simulations. The approach is based on semi-empirical potentials. The key microscopic processes responsible for the diffusion of Ag1-5 adislands on Ag(1 1 1) surface are identified. The hopping and zigzag concerted motion along with rotation are observed for Ag one-atom to three-atom islands while single-atom and multi-atom processes are revealed for Ag four-atom and five-atom islands, during the diffusion on Ag(1 1 1) surface. The same increasing/decreasing trend in the diffusion coefficient and effective energy barrier is observed in both the self learning kinetic Monte Carlo (SLKMC) and MD calculations, for the temperature range of 300-700 K. An increase in the value of effective energy barrier is noticed with corresponding increase in the number of atoms in Ag-adislands. A reasonable linear fit is observed for the diffusion coefficient for studied temperatures (300, 500 and 700 K). For the observed diffusion mechanisms, our findings are in good agreement with ab initio density-functional theory (DFT) calculations for Al/Al(1 1 1) while the energy barrier values are in same range as the experimental values for Cu/Ag(1 1 1) and the theoretical values using ab initio DFT supplemented with embedded-atom method for Ag/Ag(1 1 1).
Numerical study of a cylinder model of the diffusion MRI signal for neuronal dendrite trees
Van Nguyen, Dang; Grebenkov, Denis; Le Bihan, Denis; Li, Jing-Rebecca
2015-03-01
We study numerically how the neuronal dendrite tree structure can affect the diffusion magnetic resonance imaging (dMRI) signal in brain tissue. For a large set of randomly generated dendrite trees, synthetic dMRI signals are computed and fitted to a cylinder model to estimate the effective longitudinal diffusivity DL in the direction of neurites. When the dendrite branches are short compared to the diffusion length, DL depends significantly on the ratio between the average branch length and the diffusion length. In turn, DL has very weak dependence on the distribution of branch lengths and orientations of a dendrite tree, and the number of branches per node. We conclude that the cylinder model which ignores the connectivity of the dendrite tree, can still be adapted to describe the apparent diffusion coefficient in brain tissue.
A Nonlinear Diffusion Equation-Based Model for Ultrasound Speckle Noise Removal
Zhou, Zhenyu; Guo, Zhichang; Zhang, Dazhi; Wu, Boying
2018-04-01
Ultrasound images are contaminated by speckle noise, which brings difficulties in further image analysis and clinical diagnosis. In this paper, we address this problem in the view of nonlinear diffusion equation theories. We develop a nonlinear diffusion equation-based model by taking into account not only the gradient information of the image, but also the information of the gray levels of the image. By utilizing the region indicator as the variable exponent, we can adaptively control the diffusion type which alternates between the Perona-Malik diffusion and the Charbonnier diffusion according to the image gray levels. Furthermore, we analyze the proposed model with respect to the theoretical and numerical properties. Experiments show that the proposed method achieves much better speckle suppression and edge preservation when compared with the traditional despeckling methods, especially in the low gray level and low-contrast regions.
Modelling Ti in-diffusion in LiNbO sub 3
Silva-Filho, H F D; Dias-Nunes, F
1997-01-01
This work presents theoretical results on the modelling of Ti in-diffusion in LiNbO sub 3 assuming the Ti activation energy to be spatially dependent along the diffusion depth direction as consequence of the Li concentration depletion due to its out-diffusion. The model also considers that Ti diffusion occurs as an ion exchange process in which Ti sup 4 sup + ions substitute Nb sup 5 sup + ions located in Li sites. The resulting diffusion equation is numerically solved according to initial and boundary conditions chosen to describe as close as possible the experimental scenario. The results show that this approach leads to highly asymmetrical Ti concentration profiles within the LiNbO sub 3 crystal, as already determined experimentally. (author)
Thermomechanics of damageable materials under diffusion: modelling and analysis
Czech Academy of Sciences Publication Activity Database
Roubíček, Tomáš; Tomassetti, G.
2015-01-01
Roč. 66, č. 6 (2015), s. 3535-3572 ISSN 0044-2275 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : visco-elastic porous solids * incomplete damage * diffusion driven by chemical-potential gradient Subject RIV: BA - General Mathematics Impact factor: 1.560, year: 2015 http://link.springer.com/article/10.1007/s00033-015-0566-2
Covariance Localization with the Diffusion-Based Correlation Models
2013-02-01
wavelet approach to account for inhomogeneities in the covariance structure; Wu et al. (2002) and Purser et al. (2003) employed re- cursive filters to...fusion operator approach; and Pannekoucke (2009) ex- plored a hybrid scheme, featuring wavelet technique in combination with the diffusion method...by the renormalization formula B = VCV, where V = diag(v), and v € RN is the vector of rms error var - iances (square roots of the diagonal of B
Semi-Nonparametric Estimation and Misspecification Testing of Diffusion Models
DEFF Research Database (Denmark)
Kristensen, Dennis
of the estimators and tests under the null are derived, and the power properties are analyzed by considering contiguous alternatives. Test directly comparing the drift and diffusion estimators under the relevant null and alternative are also analyzed. Markov Bootstrap versions of the test statistics are proposed...... to improve on the finite-sample approximations. The finite sample properties of the estimators are examined in a simulation study....
Development of an analytical diffusion model for modeling hydrogen isotope exchange
Barton, J. L.; Wang, Y. Q.; Doerner, R. P.; Tynan, G. R.
2015-08-01
We create a model for H retention depth profiles in W and subsequently model how this profile changes after isotope exchange. This is accomplished by calculating how trapping defects in W accumulate D (or H) inventory as W is being exposed to plasma. Each trapping site is characterized by a trapping rate and a release rate, where the only free parameters are the distribution of these trapping sites in the material. The filled trap concentrations for each trap type are modeled as a diffusion process because post-mortem deuterium depth profiles indicate that traps are filled well beyond the ion implantation zone (2-5 nm). Using this retention model, an isotope exchange rate is formulated. The retention model and isotope exchange rate are compared to low temperature isotope exchange experiments in tungsten with good agreement. The limitations of the current model highlight important physics and motivate future work.
An Improved MUSIC Model for Gibbsite Surfaces
Energy Technology Data Exchange (ETDEWEB)
Mitchell, Scott C.; Bickmore, Barry R.; Tadanier, Christopher J.; Rosso, Kevin M.
2004-06-01
Here we use gibbsite as a model system with which to test a recently published, bond-valence method for predicting intrinsic pKa values for surface functional groups on oxides. At issue is whether the method is adequate when valence parameters for the functional groups are derived from ab initio structure optimization of surfaces terminated by vacuum. If not, ab initio molecular dynamics (AIMD) simulations of solvated surfaces (which are much more computationally expensive) will have to be used. To do this, we had to evaluate extant gibbsite potentiometric titration data that where some estimate of edge and basal surface area was available. Applying BET and recently developed atomic force microscopy methods, we found that most of these data sets were flawed, in that their surface area estimates were probably wrong. Similarly, there may have been problems with many of the titration procedures. However, one data set was adequate on both counts, and we applied our method of surface pKa int prediction to fitting a MUSIC model to this data with considerable success—several features of the titration data were predicted well. However, the model fit was certainly not perfect, and we experienced some difficulties optimizing highly charged, vacuum-terminated surfaces. Therefore, we conclude that we probably need to do AIMD simulations of solvated surfaces to adequately predict intrinsic pKa values for surface functional groups.
Nasehnejad, Maryam; Nabiyouni, G.; Gholipour Shahraki, Mehran
2018-03-01
In this study a 3D multi-particle diffusion limited aggregation method is employed to simulate growth of rough surfaces with fractal behavior in electrodeposition process. A deposition model is used in which the radial motion of the particles with probability P, competes with random motions with probability 1 - P. Thin films growth is simulated for different values of probability P (related to the electric field) and thickness of the layer(related to the number of deposited particles). The influence of these parameters on morphology, kinetic of roughening and the fractal dimension of the simulated surfaces has been investigated. The results show that the surface roughness increases with increasing the deposition time and scaling exponents exhibit a complex behavior which is called as anomalous scaling. It seems that in electrodeposition process, radial motion of the particles toward the growing seeds may be an important mechanism leading to anomalous scaling. The results also indicate that the larger values of probability P, results in smoother topography with more densely packed structure. We have suggested a dynamic scaling ansatz for interface width has a function of deposition time, scan length and probability. Two different methods are employed to evaluate the fractal dimension of the simulated surfaces which are "cube counting" and "roughness" methods. The results of both methods show that by increasing the probability P or decreasing the deposition time, the fractal dimension of the simulated surfaces is increased. All gained values for fractal dimensions are close to 2.5 in the diffusion limited aggregation model.
Time-Dependent Diffusion MRI in Cancer: Tissue Modeling and Applications
Directory of Open Access Journals (Sweden)
Olivier Reynaud
2017-11-01
Full Text Available In diffusion weighted imaging (DWI, the apparent diffusion coefficient (ADC has been recognized as a useful and sensitive surrogate for cell density, paving the way for non-invasive tumor staging, and characterization of treatment efficacy in cancer. However, microstructural parameters, such as cell size, density and/or compartmental diffusivities affect diffusion in various fashions, making of conventional DWI a sensitive but non-specific probe into changes happening at cellular level. Alternatively, tissue complexity can be probed and quantified using the time dependence of diffusion metrics, sometimes also referred to as temporal diffusion spectroscopy when only using oscillating diffusion gradients. Time-dependent diffusion (TDD is emerging as a strong candidate for specific and non-invasive tumor characterization. Despite the lack of a general analytical solution for all diffusion times/frequencies, TDD can be probed in various regimes where systems simplify in order to extract relevant information about tissue microstructure. The fundamentals of TDD are first reviewed (a in the short time regime, disentangling structural and diffusive tissue properties, and (b near the tortuosity limit, assuming weakly heterogeneous media near infinitely long diffusion times. Focusing on cell bodies (as opposed to neuronal tracts, a simple but realistic model for intracellular diffusion can offer precious insight on diffusion inside biological systems, at all times. Based on this approach, the main three geometrical models implemented so far (IMPULSED, POMACE, VERDICT are reviewed. Their suitability to quantify cell size, intra- and extracellular spaces (ICS and ECS and diffusivities are assessed. The proper modeling of tissue membrane permeability—hardly a newcomer in the field, but lacking applications—and its impact on microstructural estimates are also considered. After discussing general issues with tissue modeling and microstructural parameter
Specifying theories of developmental dyslexia: a diffusion model analysis of word recognition
Zeguers, M.H.T.; Snellings, P.; Tijms, J.; Weeda, W.D.; Tamboer, P.; Bexkens, A.; Huizenga, H.M.
2011-01-01
The nature of word recognition difficulties in developmental dyslexia is still a topic of controversy. We investigated the contribution of phonological processing deficits and uncertainty to the word recognition difficulties of dyslexic children by mathematical diffusion modeling of visual and
Woo, Jiyoung; Chen, Hsinchun
2016-01-01
As social media has become more prevalent, its influence on business, politics, and society has become significant. Due to easy access and interaction between large numbers of users, information diffuses in an epidemic style on the web. Understanding the mechanisms of information diffusion through these new publication methods is important for political and marketing purposes. Among social media, web forums, where people in online communities disseminate and receive information, provide a good environment for examining information diffusion. In this paper, we model topic diffusion in web forums using the epidemiology model, the susceptible-infected-recovered (SIR) model, frequently used in previous research to analyze both disease outbreaks and knowledge diffusion. The model was evaluated on a large longitudinal dataset from the web forum of a major retail company and from a general political discussion forum. The fitting results showed that the SIR model is a plausible model to describe the diffusion process of a topic. This research shows that epidemic models can expand their application areas to topic discussion on the web, particularly social media such as web forums.
Langevin dynamics modeling of the water diffusion tensor in partially aligned collagen networks
Powell, Sean K.; Momot, Konstantin I.
2012-09-01
In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0∘ to 90∘. The corresponding diffusion ellipsoids are prolate for θθMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.
Diffusion of PAH in potato and carrot slices and application for a potato model.
Trapp, Stefan; Cammarano, Anita; Capri, Ettore; Reichenberg, Fredrik; Mayer, Philipp
2007-05-01
A method for quantifying the effect of medium composition on the diffusive mass transfer of hydrophobic organic chemicals through thin layers was applied to plant tissue. The method employs two silicone disks, one serving as source and one as sink for a series of PAHs diffusing through thin layers of water, potato tissue, and carrot tissue. Naphthalene, phenanthrene, anthracene, and fluoranthene served as model substances. Their transfer from source to sink disk was measured by HPLC to determine a velocity rate constant proportional to the diffusive conductivity. The diffusive flux through the plant tissue was modeled using Fick's first law of diffusion. Both the experimental results and the model suggest that mass transfer through plant tissue occurs predominantly through pore water and that, therefore, the mass transfer ratio between plant tissue and water is independent of the hydrophobicity of the chemical. The findings of this study provide a convenient method to estimate the diffusion of nonvolatile organic chemicals through various plant materials. The application to a radial diffusion model suggests that "growth dilution" rendersthe concentration of highly hydrophobic chemicals in potatoes below their equilibrium partitioning level. This is in agreement with field results for the bioconcentration of PAHs in potatoes.
Energy Technology Data Exchange (ETDEWEB)
Mengelkamp, H.T.; Warrach, K.; Raschke, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik
1997-12-31
A soil-vegetation-atmosphere-transfer scheme is presented here which solves the coupled system of the Surface Energy and Water Balance (SEWAB) equations considering partly vegetated surfaces. It is based on the one-layer concept for vegetation. In the soil the diffusion equations for heat and moisture are solved on a multi-layer grid. SEWAB has been developed to serve as a land-surface scheme for atmospheric circulation models. Being forced with atmospheric data from either simulations or measurements it calculates surface and subsurface runoff that can serve as input to hydrologic models. The model has been validated with field data from the FIFE experiment and has participated in the PILPS project for intercomparison of land-surface parameterization schemes. From these experiments we feel that SEWAB reasonably well partitions the radiation and precipitation into sensible and latent heat fluxes as well as into runoff and soil moisture Storage. (orig.) [Deutsch] Ein Landoberflaechenschema wird vorgestellt, das den Transport von Waerme und Wasser zwischen dem Erdboden, der Vegetation und der Atmosphaere unter Beruecksichtigung von teilweise bewachsenem Boden beschreibt. Im Erdboden werden die Diffusionsgleichungen fuer Waerme und Feuchte auf einem Gitter mit mehreren Schichten geloest. Das Schema SEWAB (Surface Energy and Water Balance) beschreibt die Landoberflaechenprozesse in atmosphaerischen Modellen und berechnet den Oberflaechenabfluss und den Basisabfluss, die als Eingabedaten fuer hydrologische Modelle genutzt werden koennen. Das Modell wurde mit Daten des FIFE-Experiments kalibriert und hat an Vergleichsexperimenten fuer Landoberflaechen-Schemata im Rahmen des PILPS-Projektes teilgenommen. Dabei hat sich gezeigt, dass die Aufteilung der einfallenden Strahlung und des Niederschlages in den sensiblen und latenten Waermefluss und auch in Abfluss und Speicherung der Bodenfeuchte in SEWAB den beobachteten Daten recht gut entspricht. (orig.)
Directory of Open Access Journals (Sweden)
Claude Rodrigue Bambe Moutsinga
2018-01-01
Full Text Available Most existing multivariate models in finance are based on diffusion models. These models typically lead to the need of solving systems of Riccati differential equations. In this paper, we introduce an efficient method for solving systems of stiff Riccati differential equations. In this technique, a combination of Laplace transform and homotopy perturbation methods is considered as an algorithm to the exact solution of the nonlinear Riccati equations. The resulting technique is applied to solving stiff diffusion model problems that include interest rates models as well as two and three-factor stochastic volatility models. We show that the present approach is relatively easy, efficient and highly accurate.
An extended five-stream model for diffusion of ion-implanted dopants in monocrystalline silicon
International Nuclear Information System (INIS)
Khina, B.B.
2007-01-01
Low-energy high-dose ion implantation of different dopants (P, Sb, As, B and others) into monocrystalline silicon with subsequent thermal annealing is used for the formation of ultra-shallow p-n junctions in modern VLSI circuit technology. During annealing, dopant activation and diffusion in silicon takes place. The experimentally observed phenomenon of transient enhanced diffusion (TED), which is typically ascribed to the interaction of diffusing species with non-equilibrium point defects accumulated in silicon due to ion damage, and formation of small clusters and extended defects, hinders further down scaling of p-n junctions in VLSI circuits. TED is currently a subject of extensive experimental and theoretical investigation in many binary and multicomponent systems. However, the state-of-the-art mathematical models of dopant diffusion, which are based on the so-called 'five-stream' approach, and modern TCAD software packages such as SUPREM-4 (by Silvaco Data Systems, Ltd.) that implement these models encounter severe difficulties in describing TED. Solving the intricate problem of TED suppression and development of novel regimes of ion implantation and rapid thermal annealing is impossible without elaboration of new mathematical models and computer simulation of this complex phenomenon. In this work, an extended five-stream model for diffusion in silicon is developed which takes into account all possible charge states of point defects (vacancies and silicon self-interstitials) and diffusing pairs 'dopant atom-vacancy' and 'dopant atom-silicon self-interstitial'. The model includes the drift terms for differently charged point defects and pairs in the internal electric field and the kinetics of interaction between unlike 'species' (generation and annihilation of pairs and annihilation of point defects). Expressions for diffusion coefficients and numerous sink/source terms that appear in the non-linear, non-steady-state reaction-diffusion equations are derived
Diffuse interface model of surfactant adsorption onto flat and droplet interfaces
Sman, van der R.G.M.; Graaf, van der S.
2006-01-01
For applications where droplet breakup and surfactant adsorption are strongly coupled, a diffuse interface model is developed. The model is based on a free energy functional, partly adapted from the sharp interface model of [Diamant and Andelman 34(8):575-580, (1996)]. The model is implemented as a
Directory of Open Access Journals (Sweden)
Herman N C Berghuijs
Full Text Available The rate of photosynthesis depends on the CO2 partial pressure near Rubisco, Cc, which is commonly calculated by models using the overall mesophyll resistance. Such models do not explain the difference between the CO2 level in the intercellular air space and Cc mechanistically. This problem can be overcome by reaction-diffusion models for CO2 transport, production and fixation in leaves. However, most reaction-diffusion models are complex and unattractive for procedures that require a large number of runs, like parameter optimisation. This study provides a simpler reaction-diffusion model. It is parameterized by both leaf physiological and leaf anatomical data. The anatomical data consisted of the thickness of the cell wall, cytosol and stroma, and the area ratios of mesophyll exposed to the intercellular air space to leaf surfaces and exposed chloroplast to exposed mesophyll surfaces. The model was used directly to estimate photosynthetic parameters from a subset of the measured light and CO2 response curves; the remaining data were used for validation. The model predicted light and CO2 response curves reasonably well for 15 days old tomato (cv. Admiro leaves, if (photorespiratory CO2 release was assumed to take place in the inner cytosol or in the gaps between the chloroplasts. The model was also used to calculate the fraction of CO2 produced by (photorespiration that is re-assimilated in the stroma, and this fraction ranged from 56 to 76%. In future research, the model should be further validated to better understand how the re-assimilation of (photorespired CO2 is affected by environmental conditions and physiological parameters.
Modelling of the initial stage of the surface discharge development
International Nuclear Information System (INIS)
Gibalov, V.; Pietsch, G.
1998-01-01
Computer modelling of the initial stage of the surface discharge was performed by solving numerically the coupled continuity, the Poisson and Townsend ionization equations and taking into account the ionization, attachment and detachment processes. The potential distribution at the dielectric surface and at the boundaries which surround the integration region have been calculated with the charge-image method in a 3D approach. In order to eliminate numerical diffusion effects, the solution of the continuity equation was corrected using a flux correction transport routine. At the positive voltage the development of the discharge channel is determined mainly by the shape of the electrode tip. At the negative voltage the following phases of the discharge may be distinguished: the initial phase, the cathode directed streamer phase resulting in the cathode layer formation, and the propagating phase. The physical processes governing each discharge phase are described in detail. (J.U.)
Macromolecular diffusion in crowded media beyond the hard-sphere model.
Blanco, Pablo M; Garcés, Josep Lluís; Madurga, Sergio; Mas, Francesc
2018-04-25
The effect of macromolecular crowding on diffusion beyond the hard-core sphere model is studied. A new coarse-grained model is presented, the Chain Entanglement Softened Potential (CESP) model, which takes into account the macromolecular flexibility and chain entanglement. The CESP model uses a shoulder-shaped interaction potential that is implemented in the Brownian Dynamics (BD) computations. The interaction potential contains only one parameter associated with the chain entanglement energetic cost (Ur). The hydrodynamic interactions are included in the BD computations via Tokuyama mean-field equations. The model is used to analyze the diffusion of a streptavidin protein among different sized dextran obstacles. For this system, Ur is obtained by fitting the streptavidin experimental long-time diffusion coefficient Dlongversus the macromolecular concentration for D50 (indicating their molecular weight in kg mol-1) dextran obstacles. The obtained Dlong values show better quantitative agreement with experiments than those obtained with hard-core spheres. Moreover, once parametrized, the CESP model is also able to quantitatively predict Dlong and the anomalous exponent (α) for streptavidin diffusion among D10, D400 and D700 dextran obstacles. Dlong, the short-time diffusion coefficient (Dshort) and α are obtained from the BD simulations by using a new empirical expression, able to describe the full temporal evolution of the diffusion coefficient.
Modification of TOUGH2 to Include the Dusty Gas Model for Gas Diffusion; TOPICAL
International Nuclear Information System (INIS)
WEBB, STEPHEN W.
2001-01-01
The GEO-SEQ Project is investigating methods for geological sequestration of CO(sub 2). This project, which is directed by LBNL and includes a number of other industrial, university, and national laboratory partners, is evaluating computer simulation methods including TOUGH2 for this problem. The TOUGH2 code, which is a widely used code for flow and transport in porous and fractured media, includes simplified methods for gas diffusion based on a direct application of Fick's law. As shown by Webb (1998) and others, the Dusty Gas Model (DGM) is better than Fick's Law for modeling gas-phase diffusion in porous media. In order to improve gas-phase diffusion modeling for the GEO-SEQ Project, the EOS7R module in the TOUGH2 code has been modified to include the Dusty Gas Model as documented in this report. In addition, the liquid diffusion model has been changed from a mass-based formulation to a mole-based model. Modifications for separate and coupled diffusion in the gas and liquid phases have also been completed. The results from the DGM are compared to the Fick's law behavior for TCE and PCE diffusion across a capillary fringe. The differences are small due to the relatively high permeability (k= 10(sup -11) m(sup 2)) of the problem and the small mole fraction of the gases. Additional comparisons for lower permeabilities and higher mole fractions may be useful
Selectivity and Self Diffusion of CO2 and h2 in a Mixture on a Graphite Surface
Trinh, Thuat; Kjelstrup, Signe; Vlugt, Thijs; Bedeaux, Dick; Hägg, May-Britt
2013-12-01
We performed classical molecular dynamics (MD) simulations to understand the mechanism of adsorption from a gas mixture of CO2 and H2 (mole fraction of CO2 = 0.30) and diffusion along a graphite surface, with the aim to help enrich industrial off-gases in CO2, separating out H2. The temperature of the system in the simulation covered typical industrial conditions for off-gas treatment (250 ̶ 550K). The interaction energy of single molecules CO2 or H2 on graphite surface was calculated with classical force fields and with Density Functional Theory (DFT). The results were in good agreement. The binding energy of CO2 on graphite surface is three times larger than that of H2. At lower temperatures, the selectivity of CO2 over H2 is five times larger than at higher temperatures. The position of the dividing surface was used to explain how the adsorption varies with pore size. In the temperature range studied, the self-diffusion coefficient of CO2 is always smaller than of H2. The temperature variation of the selectivities and the self diffusion coefficient imply that the carbon molecular sieve membrane can be used for gas enrichment of CO2.
Foundations of elastoplasticity subloading surface model
Hashiguchi, Koichi
2017-01-01
This book is the standard text book of elastoplasticity in which the elastoplasticity theory is comprehensively described from the conventional theory for the monotonic loading to the unconventional theory for the cyclic loading behavior. Explanations of vector-tensor analysis and continuum mechanics are provided first as a foundation for elastoplasticity theory, covering various strain and stress measures and their rates with their objectivities. Elastoplasticity has been highly developed by the creation and formulation of the subloading surface model which is the unified fundamental law for irreversible mechanical phenomena in solids. The assumption that the interior of the yield surface is an elastic domain is excluded in order to describe the plastic strain rate due to the rate of stress inside the yield surface in this model aiming at the prediction of cyclic loading behavior, although the yield surface enclosing the elastic domain is assumed in all the elastoplastic models other than the subloading surf...
Coupling diffusion and maximum entropy models to estimate thermal inertia
Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...
Zaidel, Jacob; Russo, David
1994-12-01
Kinetically-controlled volatilization and dissolution of nonaqueous-phase liquids (NAPL's) in the unsaturated (vadose) zone are a more general model as compared to the usually used local equilibrium model of mass transfer. This paper presents a one-dimensional vertical model of kinetically-controlled diffusive transport of organic vapors pertinent to pollution caused by a relatively long, ground surface-originating, mainly horizontally-spread leak of NAPL, the volatile compound of which undergoes sorption and degradation in the soil. Analytical solutions of this model are applicable to homogeneous soils with ground surface fully open to the atmosphere. Application of the solutions to several examples demonstrates the role of kinetically-controlled volatilization and dissolution at both early and advanced stages of the transport process. Asymptotic analysis of the outlined solutions is employed in order to examine the depletion of the contaminant source.
Bellassai, Debora; Spinazzola, Antonio; Silvestri, Stefano
2015-01-01
In absence of results of environmental monitoring to proceed with the assessment of occupational exposure, it was developed a model that retraces the one of Pasquill and Gifford, currently used for the estimation of concentrations of pollutants at certain distances from the source in outdoor environment. Purpose of the study is the quantitative estimate of the diffusion of airborne asbestos fibers in function of the distance from the source in an factory where railway carriages were produced during the period when asbestos was sprayed as insulator of the body. The treatment was carried out in a large shed without separation from other operations. The application of the model, given the characteristics of the emitting source, has allowed us to estimate the diffusion of particles inside the shed with an expected decrease in concentration inversely proportional to the distance from the source. By appropriate calculations the concentration by weight has been converted into number offibers by volume, the unit of measure currently used for the definition of asbestos pollution.
Measurement and modeling of CO2 diffusion coefficient in Saline Aquifer at reservoir conditions
Azin, Reza; Mahmoudy, Mohamad; Raad, Seyed; Osfouri, Shahriar
2013-12-01
Storage of CO2 in deep saline aquifers is a promising techniques to mitigate global warming and reduce greenhouse gases (GHG). Correct measurement of diffusivity is essential for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of GHG in saline aquifers. In this study, diffusivity of CO2 into a saline aquifer taken from oil field was measured and modeled. Equilibrium concentration of CO2 at gas-liquid interface was determined using Henry's law. Experimental measurements were reported at temperature and pressure ranges of 32-50°C and 5900-6900 kPa, respectively. Results show that diffusivity of CO2 varies between 3.52-5.98×10-9 m2/s for 5900 kPa and 5.33-6.16×10-9 m2/s for 6900 kPa initial pressure. Also, it was found that both pressure and temperature have a positive impact on the measures of diffusion coefficient. Liquid swelling due to gas dissolution and variations in gas compressibility factor as a result of pressure decay was found negligible. Measured diffusivities were used model the physical model and develop concentration profile of dissolved gas in the liquid phase. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions, which can be applied in full-field studies of carbon capture and sequestration projects.
Energetics and self-diffusion behavior of Zr atomic clusters on a Zr(0 0 0 1) surface
Energy Technology Data Exchange (ETDEWEB)
Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)
2009-09-15
Using a molecular dynamics method and a modified analytic embedded atom potential, the energetic and the self-diffusion dynamics of Zr atomic clusters up to eight atoms on {alpha}-Zr(0 0 0 1) surface have been studied. The simulation temperature ranges from 300 to 1100 K and the simulation time varies from 20 to 40 ns. It's found that the heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center and the present diffusion coefficients for clusters exhibit an Arrhenius behavior. The Arrhenius relation of the single adatom can be divided into two parts in different temperature range because of their different diffusion mechanisms. The migration energies of clusters increase with increasing the number of atoms in cluster. The differences of the prefactors also come from the diverse diffusion mechanisms. On the facet of 60 nm, the heptamer can be the nuclei in the crystal growth below 370 K.
Behrens, Jan; Langelier, Sean; Rezk, Amgad R; Lindner, Gerhard; Yeo, Leslie Y; Friend, James R
2015-01-07
We present a versatile and very low-power traveling SAW microfluidic sorting device able to displace and separate particles of different diameter in aqueous suspension; the travelling wave propagates through the fluid bulk and diffuses via a Schröder diffuser, adapted from its typical use in concert hall acoustics to be the smallest such diffuser to be suitable for microfluidics. The effective operating power range is two to three orders of magnitude less than current SAW devices, uniquely eliminating the need for amplifiers, and by using traveling waves to impart forces directly upon suspended microparticles, they can be separated by size.
Modelling large-particle diffusion in porous media as anisotropic continuous-time random walk
Amitai, Shahar; Blumenfeld, Raphael
We test the fidelity of modelling diffusion of finite-size particles in porous media by continuous-time random walk (CTRW), where the step-size and waiting-time distributions of the former, Pl and Pt, are used as input to the latter. As the particle size is increased, the diffusion undergoes a transition from normal to anomalous. We find that, based only on Pl and Pt, CTRW does not predict correctly this transition. We show that the discrepancy is due to the change in effective connectivity (topology) of the porous media with increasing particle size. We propose a method to capture this within the CTRW model by adding anisotropy. This adjustment yields good agreement with the simulated diffusion process, making it possible to use CTRW, with all its advantages, to model diffusion of any finite size particle in confined geometries.
Moustafa, Ahmed A; Kéri, Szabolcs; Somlai, Zsuzsanna; Balsdon, Tarryn; Frydecka, Dorota; Misiak, Blazej; White, Corey
2015-09-15
In this study, we tested reward- and punishment learning performance using a probabilistic classification learning task in patients with schizophrenia (n=37) and healthy controls (n=48). We also fit subjects' data using a Drift Diffusion Model (DDM) of simple decisions to investigate which components of the decision process differ between patients and controls. Modeling results show between-group differences in multiple components of the decision process. Specifically, patients had slower motor/encoding time, higher response caution (favoring accuracy over speed), and a deficit in classification learning for punishment, but not reward, trials. The results suggest that patients with schizophrenia adopt a compensatory strategy of favoring accuracy over speed to improve performance, yet still show signs of a deficit in learning based on negative feedback. Our data highlights the importance of applying fitting models (particularly drift diffusion models) to behavioral data. The implications of these findings are discussed relative to theories of schizophrenia and cognitive processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Preliminary Hybrid Modeling of the Panama Canal: Operations and Salinity Diffusion
Directory of Open Access Journals (Sweden)
Luis Rabelo
2012-01-01
Full Text Available This paper deals with the initial modeling of water salinity and its diffusion into the lakes during lock operation on the Panama Canal. A hybrid operational model was implemented using the AnyLogic software simulation environment. This was accomplished by generating an operational discrete-event simulation model and a continuous simulation model based on differential equations, which modeled the salinity diffusion in the lakes. This paper presents that unique application and includes the effective integration of lock operations and its impact on the environment.
Surface Adsorption in Nonpolarizable Atomic Models.
Whitmer, Jonathan K; Joshi, Abhijeet A; Carlton, Rebecca J; Abbott, Nicholas L; de Pablo, Juan J
2014-12-09
Many ionic solutions exhibit species-dependent properties, including surface tension and the salting-out of proteins. These effects may be loosely quantified in terms of the Hofmeister series, first identified in the context of protein solubility. Here, our interest is to develop atomistic models capable of capturing Hofmeister effects rigorously. Importantly, we aim to capture this dependence in computationally cheap "hard" ionic models, which do not exhibit dynamic polarization. To do this, we have performed an investigation detailing the effects of the water model on these properties. Though incredibly important, the role of water models in simulation of ionic solutions and biological systems is essentially unexplored. We quantify this via the ion-dependent surface attraction of the halide series (Cl, Br, I) and, in so doing, determine the relative importance of various hypothesized contributions to ionic surface free energies. Importantly, we demonstrate surface adsorption can result in hard ionic models combined with a thermodynamically accurate representation of the water molecule (TIP4Q). The effect observed in simulations of iodide is commensurate with previous calculations of the surface potential of mean force in rigid molecular dynamics and polarizable density-functional models. Our calculations are direct simulation evidence of the subtle but sensitive role of water thermodynamics in atomistic simulations.
Modeling and Inversion of Scattered Surface waves
Riyanti, C.D.
2005-01-01
In this thesis, we present a modeling method based on a domain-type integral representation for waves propagating along the surface of the Earth which have been scattered in the vicinity of the source or the receivers. Using this model as starting point, we formulate an inversion scheme to estimate
Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels
Wang, Yu
2015-03-01
A soot model was developed based on the recently proposed PAH growth mechanism for C1-C4 gaseous fuels (KAUST PAH Mechanism 2, KM2) that included molecular growth up to coronene (A7) to simulate soot formation in counterflow diffusion flames of ethylene and its binary mixtures with methane, ethane and propane based on the method of moments. The soot model has 36 soot nucleation reactions from 8 PAH molecules including pyrene and larger PAHs. Soot surface growth reactions were based on a modified hydrogen-abstraction-acetylene-addition (HACA) mechanism in which CH3, C3H3 and C2H radicals were included in the hydrogen abstraction reactions in addition to H atoms. PAH condensation on soot particles was also considered. The experimentally measured profiles of soot volume fraction, number density, and particle size were well captured by the model for the baseline case of ethylene along with the cases involving mixtures of fuels. The simulation results, which were in qualitative agreement with the experimental data in the effects of binary fuel mixing on the sooting structures of the measured flames, showed in particular that 5% addition of propane (ethane) led to an increase in the soot volume fraction of the ethylene flame by 32% (6%), despite the fact that propane and ethane are less sooting fuels than is ethylene, which is in reasonable agreement with experiments of 37% (14%). The model revealed that with 5% addition of methane, there was an increase of 6% in the soot volume fraction. The average soot particle sizes were only minimally influenced while the soot number densities were increased by the fuel mixing. Further analysis of the numerical data indicated that the chemical cross-linking effect between ethylene and the dopant fuels resulted in an increase in PAH formation, which led to higher soot nucleation rates and therefore higher soot number densities. On the other hand, the rates of soot surface growth per unit surface area through the HACA mechanism were
Surface diffusion of a Brownian particle subjected to an external harmonic noise
Bai, Zhan-Wu; Ding, Li-Ping
2017-05-01
Langevin simulation is performed to investigate the diffusion coefficient of a Brownian particle subjected to an external harmonic noise in a two-dimensional coupled periodic potential. Resonant diffusion phenomenon is observed as a result of the coupling between the central frequency of the spectral density of the harmonic noise and the frequency of the potential well bottom. The diffusion coefficient presents approximately linear functions of the strengths of the internal and external noises for low values of the strengths, these functions can be understood by the local linearization approximation of the potential force. The damping coefficient dependence of the diffusion coefficient in lower damping is well fitted by a negative power function, as an internal Gaussian white noise case does, but with a power whose absolute value is larger than 1.
Ulfah, S.; Awalludin, S. A.; Wahidin
2018-01-01
Advection-diffusion model is one of the mathematical models, which can be used to understand the distribution of air pollutant in the atmosphere. It uses the 2D advection-diffusion model with time-dependent to simulate air pollution distribution in order to find out whether the pollutants are more concentrated at ground level or near the source of emission under particular atmospheric conditions such as stable, unstable, and neutral conditions. Wind profile, eddy diffusivity, and temperature are considered in the model as parameters. The model is solved by using explicit finite difference method, which is then visualized by a computer program developed using Lazarus programming software. The results show that the atmospheric conditions alone influencing the level of concentration of pollutants is not conclusive as the parameters in the model have their own effect on each atmospheric condition.
Diffusional screening in treelike spaces: An exactly solvable diffusion-reaction model
Mayo, Michael; Gheorghiu, Stefan; Pfeifer, Peter
2012-01-01
A renormalization approach is used to derive an analytic formula for the total current crossing the reactive surface of a Cayley tree of cylindrical tubes under a Helmholtz-type approximation to the full diffusion-reaction problem. We provide analytic conditions for the emergence of a plateau in the current—a region of maximum insensitivity of the current to variations in either the reaction rate (membrane permeability) or the diffusivity. The occurrence of such a plateau is associated with a partial screening regime wherein most of the active surface is screened to incoming diffusing particles. Large trees trade efficiency for fault tolerance, a valuable feature which may provide robustness to mammalian respiratory systems and tolerance to catalytic poisoning in chemical reactors.
Diffusion of a collaborative care model in primary care: a longitudinal qualitative study.
Vedel, Isabelle; Ghadi, Veronique; De Stampa, Matthieu; Routelous, Christelle; Bergman, Howard; Ankri, Joel; Lapointe, Liette
2013-01-04
Although collaborative team models (CTM) improve care processes and health outcomes, their diffusion poses challenges related to difficulties in securing their adoption by primary care clinicians (PCPs). The objectives of this study are to understand: (1) how the perceived characteristics of a CTM influenced clinicians' decision to adopt -or not- the model; and (2) the model's diffusion process. We conducted a longitudinal case study based on the Diffusion of Innovations Theory. First, diffusion curves were developed for all 175 PCPs and 59 nurses practicing in one borough of Paris. Second, semi-structured interviews were conducted with a representative sample of 40 PCPs and 15 nurses to better understand the implementation dynamics. Diffusion curves showed that 3.5 years after the start of the implementation, 100% of nurses and over 80% of PCPs had adopted the CTM. The dynamics of the CTM's diffusion were different between the PCPs and the nurses. The slopes of the two curves are also distinctly different. Among the nurses, the critical mass of adopters was attained faster, since they adopted the CTM earlier and more quickly than the PCPs. Results of the semi-structured interviews showed that these differences in diffusion dynamics were mostly founded in differences between the PCPs' and the nurses' perceptions of the CTM's compatibility with norms, values and practices and its relative advantage (impact on patient management and work practices). Opinion leaders played a key role in the diffusion of the CTM among PCPs. CTM diffusion is a social phenomenon that requires a major commitment by clinicians and a willingness to take risks; the role of opinion leaders is key. Paying attention to the notion of a critical mass of adopters is essential to developing implementation strategies that will accelerate the adoption process by clinicians.
Diffusion of a collaborative care model in primary care: a longitudinal qualitative study
Directory of Open Access Journals (Sweden)
Vedel Isabelle
2013-01-01
Full Text Available Background Although collaborative team models (CTM improve care processes and health outcomes, their diffusion poses challenges related to difficulties in securing their adoption by primary care clinicians (PCPs. The objectives of this study are to understand: (1 how the perceived characteristics of a CTM influenced clinicians' decision to adopt -or not- the model; and (2 the model's diffusion process. Methods We conducted a longitudinal case study based on the Diffusion of Innovations Theory. First, diffusion curves were developed for all 175 PCPs and 59 nurses practicing in one borough of Paris. Second, semi-structured interviews were conducted with a representative sample of 40 PCPs and 15 nurses to better understand the implementation dynamics. Results Diffusion curves showed that 3.5 years after the start of the implementation, 100% of nurses and over 80% of PCPs had adopted the CTM. The dynamics of the CTM's diffusion were different between the PCPs and the nurses. The slopes of the two curves are also distinctly different. Among the nurses, the critical mass of adopters was attained faster, since they adopted the CTM earlier and more quickly than the PCPs. Results of the semi-structured interviews showed that these differences in diffusion dynamics were mostly founded in differences between the PCPs' and the nurses' perceptions of the CTM's compatibility with norms, values and practices and its relative advantage (impact on patient management and work practices. Opinion leaders played a key role in the diffusion of the CTM among PCPs. Conclusion CTM diffusion is a social phenomenon that requires a major commitment by clinicians and a willingness to take risks; the role of opinion leaders is key. Paying attention to the notion of a critical mass of adopters is essential to developing implementation strategies that will accelerate the adoption process by clinicians.
Energy Technology Data Exchange (ETDEWEB)
Wang, Jing [Iowa State Univ., Ames, IA (United States)
2013-01-11
We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. A strict single-file (no passing) constraint occurs in the diffusion within such narrow pores. Both transient and steady-state behavior is precisely characterized by kinetic Monte Carlo simulations of a spatially discrete lattice–gas model for this reaction–diffusion process considering various distributions of catalytic sites. Exact hierarchical master equations can also be developed for this model. Their analysis, after application of mean-field type truncation approximations, produces discrete reaction–diffusion type equations (mf-RDE). For slowly varying concentrations, we further develop coarse-grained continuum hydrodynamic reaction–diffusion equations (h-RDE) incorporating a precise treatment of single-file diffusion (SFD) in this multispecies system. Noting the shortcomings of mf-RDE and h-RDE, we then develop a generalized hydrodynamic (GH) formulation of appropriate gh-RDE which incorporates an unconventional description of chemical diffusion in mixed-component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length pores. The gh-RDE elucidate the non-exponential decay of the steady-state reactant concentration into the pore and the non-mean-field scaling of the reactant penetration depth. Then an extended model of a catalytic conversion reaction within a functionalized nanoporous material is developed to assess the effect of varying the reaction product – pore interior interaction from attractive to repulsive. The analysis is performed utilizing the generalized hydrodynamic formulation of the reaction-diffusion equations which can reliably capture the complex interplay between reaction and restricted transport for both irreversible and reversible reactions.
A novel rumor diffusion model considering the effect of truth in online social media
Sun, Ling; Liu, Yun; Zeng, Qing-An; Xiong, Fei
2015-12-01
In this paper, we propose a model to investigate how truth affects rumor diffusion in online social media. Our model reveals a relation between rumor and truth — namely, when a rumor is diffusing, the truth about the rumor also diffuses with it. Two patterns of the agents used to identify rumor, self-identification and passive learning are taken into account. Combining theoretical proof and simulation analysis, we find that the threshold value of rumor diffusion is negatively correlated to the connectivity between nodes in the network and the probability β of agents knowing truth. Increasing β can reduce the maximum density of the rumor spreaders and slow down the generation speed of new rumor spreaders. On the other hand, we conclude that the best rumor diffusion strategy must balance the probability of forwarding rumor and the probability of agents losing interest in the rumor. High spread rate λ of rumor would lead to a surge in truth dissemination which will greatly limit the diffusion of rumor. Furthermore, in the case of unknown λ, increasing β can effectively reduce the maximum proportion of agents who do not know the truth, but cannot narrow the rumor diffusion range in a certain interval of β.