WorldWideScience

Sample records for surface diffusion length

  1. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    NARCIS (Netherlands)

    Mohammadi, V.; Nihtianov, S.

    2016-01-01

    The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and

  2. Manipulating surface diffusion and elastic interactions to obtain quantum dot multilayer arrangements over different length scales

    Energy Technology Data Exchange (ETDEWEB)

    Placidi, E., E-mail: ernesto.placidi@ism.cnr.it; Arciprete, F. [Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Latini, V.; Latini, S.; Patella, F. [Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Magri, R. [Dipartimento di Scienze Fisiche, Informatiche e Matematiche (FIM), Università di Modena e Reggio Emilia, and Centro S3 CNR-Istituto Nanoscienze, Via Campi 213/A, 4100 Modena (Italy); Scuderi, M.; Nicotra, G. [CNR-IMM, Strada VIII, 5, 95121 Catania (Italy)

    2014-09-15

    An innovative multilayer growth of InAs quantum dots on GaAs(100) is demonstrated to lead to self-aggregation of correlated quantum dot chains over mesoscopic distances. The fundamental idea is that at critical growth conditions is possible to drive the dot nucleation only at precise locations corresponding to the local minima of the Indium chemical potential. Differently from the known dot multilayers, where nucleation of new dots on top of the buried ones is driven by the surface strain originating from the dots below, here the spatial correlations and nucleation of additional dots are mostly dictated by a self-engineering of the surface occurring during the growth, close to the critical conditions for dot formation under the fixed oblique direction of the incoming As flux, that drives the In surface diffusion.

  3. Exciton diffusion length and concentration of holes in MEH-PPV polymer using the surface voltage and surface photovoltage methods

    Czech Academy of Sciences Publication Activity Database

    Toušek, J.; Toušková, J.; Remeš, Zdeněk; Čermák, Jan; Kousal, J.; Kindl, Dobroslav; Kuřitka, I.

    2012-01-01

    Roč. 552, NOV (2012), s. 49-52 ISSN 0009-2614 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional research plan: CEZ:AV0Z10100521 Keywords : surface photovoltage * Kelvin probe force microscopy * conjugated polymers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.145, year: 2012

  4. On the homology length spectrum of surfaces

    OpenAIRE

    Massart, Daniel; Parlier, Hugo

    2014-01-01

    On a surface with a Finsler metric, we investigate the asymptotic growth of the number of closed geodesics of length less than L which minimize length among all geodesic multicurves in the same homology class. An important class of surfaces which are of interest to us are hyperbolic surfaces.

  5. Interpretation of scanning electron microscope measurements of minority carrier diffusion lengths in semiconductors

    Science.gov (United States)

    Flat, A.; Milnes, A. G.

    1978-01-01

    In scanning electron microscope (SEM) injection measurements of minority carrier diffusion lengths some uncertainties of interpretation exist when the response current is nonlinear with distance. This is significant in epitaxial layers where the layer thickness is not large in relation to the diffusion length, and where there are large surface recombination velocities on the incident and contact surfaces. An image method of analysis is presented for such specimens. A method of using the results to correct the observed response in a simple convenient way is presented. The technique is illustrated with reference to measurements in epitaxial layers of GaAs. Average beam penetration depth may also be estimated from the curve shape.

  6. Assessment of passive muscle elongation using Diffusion Tensor MRI : Correlation between fiber length and diffusion coefficients

    NARCIS (Netherlands)

    Mazzoli, Valentina; Oudeman, Jos; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M.; Nederveen, Aart J.; Froeling, Martijn; Strijkers, Gustav J.

    2016-01-01

    In this study we investigated the changes in fiber length and diffusion parameters as a consequence of passive lengthening and stretching of the calf muscles. We hypothesized that changes in radial diffusivity (RD) are caused by changes in the muscle fiber cross sectional area (CSA) as a consequence

  7. Assessment of passive muscle elongation using Diffusion Tensor MRI: Correlation between fiber length and diffusion coefficients

    NARCIS (Netherlands)

    Mazzoli, Valentina; Oudeman, Jos; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M.; Nederveen, Aart J.; Froeling, Martijn; Strijkers, Gustav J.

    2016-01-01

    In this study we investigated the changes in fiber length and diffusion parameters as a consequence of passive lengthening and stretching of the calf muscles. We hypothesized that changes in radial diffusivity (RD) are caused by changes in the muscle fiber cross sectional area (CSA) as a consequence

  8. Topographical length scales of hierarchical superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dhillon, P.K. [Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001 (India); Brown, P.S.; Bain, C.D.; Badyal, J.P.S. [Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, England (United Kingdom); Sarkar, S., E-mail: sarkar@iitrpr.ac.in [Department of Physics, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001 (India)

    2014-10-30

    Highlights: • Hydrophobic CF{sub 4} plasma fluorinated polybutadiene surfaces has been characterised using AFM. • Micro, Nano, and Micro + Nano topographies generated by altering plasma power and duration. • Dynamic scaling theory and FFT analysis used to characterize these surfaces quantitatively. • Roughnesses are different for different length scales of the surfaces considered. • Highest local roughness obtained from scaling analysis for shorter length scales of about 500 nm explains the superhydrophobicity for the Micro + Nano surface. - Abstract: The morphology of hydrophobic CF{sub 4} plasma fluorinated polybutadiene surfaces has been characterised using atomic force microscopy (AFM). Judicious choice of the plasma power and exposure duration leads to formation of three different surface morphologies (Micro, Nano, and Micro + Nano). Scaling theory analysis shows that for all three surface topographies, there is an initial increase in roughness with length scale followed by a levelling-off to a saturation level. At length scales around 500 nm, it is found that the roughness is very similar for all three types of surfaces, and the saturation roughness value for the Micro + Nano morphology is found to be intermediate between those for the Micro and Nano surfaces. Fast Fourier Transform (FFT) analysis has shown that the Micro + Nano topography comprises a hierarchical superposition of Micro and Nano morphologies. Furthermore, the Micro + Nano surfaces display the highest local roughness (roughness exponent α = 0.42 for length scales shorter than ∼500 nm), which helps to explain their superhydrophobic behaviour (large water contact angle (>170°) and low hysteresis (<1°))

  9. First working group meeting on the minority carrier diffusion length/lifetime measurement: Results of the round robin lifetime/diffusion length tests

    Energy Technology Data Exchange (ETDEWEB)

    Cudzinovic, M; Sopori, B [comp.

    1995-11-01

    As was noted in the cover letter that accompanied the samples, the eleven bare silicon samples were from various manufacturers. Table I lists the codes for the samples and the manufacturer of each sample. It also notes if the sample was single or poly-crystalline. The samples had been polished on one side before being sent out for measurements, but no further processing was done. The participants of the study were asked to measure either the lifetime or diffusion length of each of the samples using their standard procedure. Table II shows the experimental conditions used by the groups who measured diffusion length. All the diffusion length measurements were performed using the Surface Photovoltage method (SPV). Table M shows the experimental conditions for the lifetime measurements. All the lifetime measurements were made using the Photoconductance Decay method (PCD) under low level injection. These tables show the diameter of the spot size used during the measurement (the effective sampling area), the locations where measurements were taken, and the number of measurements taken at each location. Table N shows the results of the measurements. The table is divided into diffusion length and lifetime measurements for each sample. The values listed are the average values reported by each group. One of the immediate artifacts seen in the data is the large variation in the lifetime measurements. The values from MIT and Mobil are generally close. However, the measurements from NCSU are typically an order of magnitude lower.

  10. Measurement of the diffusion length of thermal neutrons inside graphite

    International Nuclear Information System (INIS)

    Ertaud, A.; Beauge, R.; Fauquez, H.; De Laboulay, H.; Mercier, C.; Vautrey, L.

    1948-11-01

    The diffusion length of thermal neutrons inside a given industrial graphite is determined by measuring the neutron density inside a parallelepipedal piling up of graphite bricks (2.10 x 2.10 x 2.442 m). A 3.8 curies (Ra α → Be) source is placed inside the parallelepipedal block of graphite and thin manganese detectors are used. Corrections are added to the unweighted measurements to take into account the effects of the damping of supra-thermal neutrons in the measurement area. These corrections are experimentally deduced from the differential measurements made with a cadmium screen interposed between the source and the first plane of measurement. An error analysis completes the report. The diffusion length obtained is: L = 45.7 cm ± 0.3. The average density of the graphite used is 1.76 and the average apparent density of the piling up is 1.71. (J.S.)

  11. Determination of thermal neutrons diffusion length in graphite

    International Nuclear Information System (INIS)

    Garcia Fite, J.

    1959-01-01

    The diffusion length of thermal neutrons in graphite using the less possible quantity of material has been determined. The proceeding used was the measurement in a graphite pile which has a punctual source of rapid neutrons inside surrounded by a reflector medium (paraffin or water). The measurement was done in the following conditions: a) introducing an aluminium plate between both materials. b) Introducing a cadmium plate between both materials. (Author) 91 refs

  12. Theory and experiments on surface diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Silvestri, W.L.

    1998-11-01

    The following topics were dealt with: adatom formation and self-diffusion on the Ni(100) surface, helium atom scattering measurements, surface-diffusion parameter measurements, embedded atom method calculations.

  13. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  14. Measurement of neutron diffusion length in heavy concrete

    International Nuclear Information System (INIS)

    Krejci, D.

    2007-04-01

    Using an aluminium sampler filled with heavy concrete the neutron diffusion length was determined, measuring thermal and fast neutrons over the whole beam hole with various threshold detectors using gold samples. These calculations should describe the neutron distribution in the whole concrete shield of the reactor and contribute to the investigation of the activation of the concrete shield using reactor parameters like operating time, power and neutron flux. Instrumentation, activation and positioning of the samples in the beam hole of the TRIGA Mark II reactor are described. (nevyjel)

  15. Diffusion Length Mapping for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Lucio Cinà

    2016-08-01

    Full Text Available The diffusion length (L of photogenerated carriers in the nanoporous electrode is a key parameter that summarizes the collection efficiency behavior in dye-sensitized solar cells (DSCs. At present, there are few techniques able to spatially resolve L over the active area of the device. Most of them require contact patterning and, hence, are intrinsically destructive. Here, we present the first electron diffusion length mapping system for DSCs based on steady state incident photon to collected electron (IPCE conversion efficiency ( η I P C E analysis. The measurement is conducted by acquiring complete transmittance ( T DSC and η I P C E spectra from the photo electrode (PE and counter electrode (CE for each spatial point in a raster scan manner. L ( x , y is obtained by a least square fitting of the IPCE ratio spectrum ( I P C E R = η I P C E -CE η I P C E -PE . An advanced feature is the ability to acquire η I P C E spectra using low-intensity probe illumination under weakly-absorbed background light (625 nm with the device biased close to open circuit voltage. These homogeneous conditions permit the linearization of the free electron continuity equation and, hence, to obtain the collection efficiency expressions ( η COL-PE and η COL-CE . The influence of the parameter’s uncertainty has been quantified by a sensitivity study of L. The result has been validated by quantitatively comparing the average value of L map with the value estimated from electrochemical impedance spectroscopy (EIS.

  16. Diffusion length measurement using the scanning electron microscope. [for silicon solar cell

    Science.gov (United States)

    Weizer, V. G.

    1975-01-01

    The present work describes a measuring technique employing the scanning electron microscope in which values of the true bulk diffusion length are obtained. It is shown that surface recombination effects can be eliminated through application of highly doped surface field layers. The effects of high injection level and low-high junction current generation are investigated. Results obtained with this technique are compared to those obtained by a penetrating radiation (X-ray) method, and a close agreement is found. The SEM technique is limited to cells that contain a back surface field layer.

  17. Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition

    Science.gov (United States)

    Kato, Shinya; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Watanabe, Yuya; Yamada, Akira; Ohta, Yoshimi; Niwa, Yusuke; Hirota, Masaki

    2013-08-01

    To achieve a high-efficiency silicon nanowire (SiNW) solar cell, surface passivation technique is very important because a SiNW array has a large surface area. We successfully prepared by atomic layer deposition (ALD) high-quality aluminum oxide (Al2O3) film for passivation on the whole surface of the SiNW arrays. The minority carrier lifetime of the Al2O3-depositedSiNW arrays with bulk silicon substrate was improved to 27 μs at the optimum annealing condition. To remove the effect of bulk silicon, the effective diffusion length of minority carriers in the SiNW array was estimated by simple equations and a device simulator. As a result, it was revealed that the effective diffusion length in the SiNW arrays increased from 3.25 to 13.5 μm by depositing Al2O3 and post-annealing at 400°C. This improvement of the diffusion length is very important for application to solar cells, and Al2O3 deposited by ALD is a promising passivation material for a structure with high aspect ratio such as SiNW arrays.

  18. Diffusion length in nanoporous TiO2 films under above-band-gap illumination

    International Nuclear Information System (INIS)

    Park, J. D.; Son, B. H.; Park, J. K.; Kim, Sang Yong; Park, Ji-Yong; Lee, Soonil; Ahn, Y. H.

    2014-01-01

    We determined the carrier diffusion lengths in TiO 2 nanoporous layers of dye-sensitized solar cells by using scanning photocurrent microscopy using an ultraviolet laser. Here, we excited the carrier directly in the nanoporous layers where the diffusion lengths were found to 140 μm as compared to that of visible illumination measured at 90 μm. The diffusion length decreased with increasing laser modulation frequency, in which we determined the electron lifetimes and the diffusion coefficients for both visible and UV illuminations. The diffusion lengths have been studied in terms of the sintering temperatures for both cells with and without binding molecules. We found a strong correlation between the diffusion length and the overall light-to-current conversion efficiency, proving that improving the diffusion length and hence the interparticle connections, is key to improving cell efficiency

  19. Surface diffusion studies by optical diffraction techniques

    International Nuclear Information System (INIS)

    Xiao, X.D.

    1992-11-01

    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect

  20. Prediction model for the diffusion length in silicon-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheknane, A [Laboratoire d' Etude et Developpement des Materiaux Semiconducteurs et Dielectrques, Universite Amar Telidji de Laghouat, BP 37G, Laghouat 03000 (Algeria); Benouaz, T, E-mail: cheknanali@yahoo.co [Laboratoire de Modelisation, Universite Abou BakarBelkaid de Tlemcen Algerie (Algeria)

    2009-07-15

    A novel approach to compute diffusion lengths in solar cells is presented. Thus, a simulation is done; it aims to give computational support to the general development of a neural networks (NNs), which is a very powerful predictive modelling technique used to predict the diffusion length in mono-crystalline silicon solar cells. Furthermore, the computation of the diffusion length and the comparison with measurement data, using the infrared injection method, are presented and discussed.

  1. Diffuse reflection of ultracold neutrons from low-roughness surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Atchison, F.; Daum, M.; Henneck, R.; Horisberger, M.; Kirch, K.; Lauss, B.; Mtchedlishvili, A.; Meier, M.; Petzoldt, G.; Schelldorfer, R.; Zsigmond, G. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Heule, S.; Knecht, A. [Paul Scherrer Institut, PSI, Villigen (Switzerland); University Zuerich, Zuerich (Switzerland); Kasprzak, M. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Stefan Meyer Institut, Vienna (Austria); Kuzniak, M. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Jagiellonian University, Smoluchowski Institute of Physics, Cracow (Poland); Plonka-Spehr, C. [Institut Laue Langevin, ILL, Grenoble (France); Straumann, U. [University Zuerich, Zuerich (Switzerland)

    2010-04-15

    We report a measurement of the reflection of ultracold neutrons from flat, large-area plates of different Fermi potential materials with low surface roughness. The results were used to test two diffuse reflection models, the well-known Lambert model and the micro-roughness model which is based on wave scattering. The Lambert model fails to reproduce the diffuse reflection data. The surface roughness b and correlation length w, obtained by fitting the micro-roughness model to the data are in the range 1{<=}b{<=}3 nm and 10{<=}w{<=}120 nm, in qualitative agreement with independent measurements using atomic force microscopy. (orig.)

  2. Diffuse reflection of ultracold neutrons from low-roughness surfaces

    International Nuclear Information System (INIS)

    Atchison, F.; Daum, M.; Henneck, R.; Horisberger, M.; Kirch, K.; Lauss, B.; Mtchedlishvili, A.; Meier, M.; Petzoldt, G.; Schelldorfer, R.; Zsigmond, G.; Heule, S.; Knecht, A.; Kasprzak, M.; Kuzniak, M.; Plonka-Spehr, C.; Straumann, U.

    2010-01-01

    We report a measurement of the reflection of ultracold neutrons from flat, large-area plates of different Fermi potential materials with low surface roughness. The results were used to test two diffuse reflection models, the well-known Lambert model and the micro-roughness model which is based on wave scattering. The Lambert model fails to reproduce the diffuse reflection data. The surface roughness b and correlation length w, obtained by fitting the micro-roughness model to the data are in the range 1≤b≤3 nm and 10≤w≤120 nm, in qualitative agreement with independent measurements using atomic force microscopy. (orig.)

  3. Nanoscale topography influences polymer surface diffusion.

    Science.gov (United States)

    Wang, Dapeng; He, Chunlin; Stoykovich, Mark P; Schwartz, Daniel K

    2015-02-24

    Using high-throughput single-molecule tracking, we studied the diffusion of poly(ethylene glycol) chains at the interface between water and a hydrophobic surface patterned with an array of hexagonally arranged nanopillars. Polymer molecules displayed anomalous diffusion; in particular, they exhibited intermittent motion (i.e., immobilization and "hopping") suggestive of continuous-time random walk (CTRW) behavior associated with desorption-mediated surface diffusion. The statistics of the molecular trajectories changed systematically on surfaces with pillars of increasing height, exhibiting motion that was increasingly subdiffusive and with longer waiting times between diffusive steps. The trajectories were well-described by kinetic Monte Carlo simulations of CTRW motion in the presence of randomly distributed permeable obstacles, where the permeability (the main undetermined parameter) was conceptually related to the obstacle height. These findings provide new insights into the mechanisms of interfacial transport in the presence of obstacles and on nanotopographically patterned surfaces.

  4. Acid Diffusion Length in Line-and-Space Resist Patterns Fabricated by Extreme Ultraviolet Lithography

    Science.gov (United States)

    Kozawa, Takahiro; Santillan, Julius Joseph; Itani, Toshiro

    2013-07-01

    Acids generated upon exposure to radiation induce the polarity change of the polymer through catalytic chain reactions in chemically amplified resists. With the reduction of feature size, the acid diffusion length increasingly becomes an important issue. In this study, we investigated the acid diffusion length in line-and-space patterns fabricated using a small field exposure tool for extreme ultraviolet (EUV) lithography and the EIDEC standard resist to clarify the acid diffusion length in a state-of-the-art resist. The acid diffusion length depended on the nominal line width and exposure dose. Upon exposure to EUV radiation with an exposure dose of 16 mJ cm-2, the acid diffusion length (three-dimensional) in a line-and-space pattern with 21 nm nominal line width was 9.5 nm.

  5. Heat diffusion in fractal geometry cooling surface

    Directory of Open Access Journals (Sweden)

    Ramšak Matjaz

    2012-01-01

    Full Text Available In the paper the numerical simulation of heat diffusion in the fractal geometry of Koch snowflake is presented using multidomain mixed Boundary Element Method. The idea and motivation of work is to improve the cooling of small electronic devices using fractal geometry of surface similar to cooling ribs. The heat diffusion is assumed as the only principle of heat transfer. The results are compared to the heat flux of a flat surface. The limiting case of infinite small fractal element is computed using Richardson extrapolation.

  6. Magnetic field dependence of the magnon spin diffusion length in the magnetic insulator yttrium iron garnet

    NARCIS (Netherlands)

    Cornelissen, L. J.; van Wees, B. J.

    2016-01-01

    We investigated the effect of an external magnetic field on the diffusive spin transport by magnons in the magnetic insulator Y3Fe5O12, using a nonlocal magnon transport measurement geometry. We observed a decrease in magnon spin diffusion length lambda(m) for increasing field strengths, where

  7. Diffusion as a function of guest molecule length and functionalization in flexible metal–organic frameworks

    KAUST Repository

    Zheng, B.

    2016-05-11

    Understanding guest diffusion in nanoporous host-guest systems is crucial in the efficient design of metal-organic frameworks (MOFs) for chemical separation and drug delivery applications. In this work, we investigated the effect of molecule length on the diffusion rate in the zeolitic imidazolate framework 8 (ZIF-8), trying to find a simple and straightforward variable to characterize the complicated guest diffusion. We found that, counter-intuitively, long guest molecules can diffuse as quickly as short molecules; the diffusion coefficient of ethyl acetate for example is of the same order of magnitude as ethane and ethanol, as excludes the existence of a simple relationship between molecule length and diffusion rate. This phenomenon is explained by a study of the contributions of intra- and inter-cage movement to overall transport. Steric confinement limits the degrees of freedom of long guest molecules, shortening their residence time and increasing the efficiency of radial diffusion. In contrast, shorter molecules meander within MOF cages, reducing transport. Furthermore, the energy barrier of inter-cage transport also does not exhibit a simple dependence on a guest molecule length, attributing to the effect of the type of functional group on diffusion. Guests over varying lengths were investigated by using theoretical methods, revealing that the guest diffusion in ZIF-8 depends on the number of contiguous carbon atoms in a molecule, rather than its overall length. Thus, we proposed simple criteria to predict arbitrary guest molecule diffusivity in ZIF-8 without time-consuming experimentation. © 2016 The Royal Society of Chemistry.

  8. Surface diffusion of long chainlike molecules: The role of memory effects and stiffness on effective diffusion barriers

    DEFF Research Database (Denmark)

    Hjelt, T.; Vattulainen, Ilpo Tapio

    2000-01-01

    studies with chains of different lengths lead to a conclusion that, for a single diffusing chain, the memory contribution in E-A(T) decreases along with an increasing chain length and is almost negligible in the case of very long chains. Finally, we close this work by discussing our results in light......We study the coverage dependence of surface diffusion for chainlike molecules by the fluctuating-bond model with a Monte Carlo dynamics. The model includes short-ranged excluded volume interactions between different chains as well as an intrachain bond angle potential to describe the chain...... stiffness. Our primary aim is to consider the role played by chain stiffness and the resulting memory effects in tracer diffusion, and in particular their role in the effective tracer diffusion barrier E-A(T) extracted from the well-known Arrhenius form. We show that the memory effects in tracer diffusion...

  9. Molecular Modeling of Diffusion on a Crystalline PETN Surface

    Energy Technology Data Exchange (ETDEWEB)

    Lin, P; Khare, R; Gee, R H; Weeks, B L

    2007-07-13

    Surface diffusion on a PETN crystal was investigated by treating the surface diffusion as an activated process in the formalism of transition state theory. In particular, surface diffusion on the (110) and (101) facets, as well as diffusion between these facets, were considered. We successfully obtained the potential energy barriers required for PETN surface diffusion. Our results show that the (110) surface is more thermally active than the (101) surface and PETN molecules mainly diffuses from the (110) to (101) facet. These results are in good agreement with experimental observations and previous simulations.

  10. Investigation of ion diffusion towards plasmonic surfaces

    International Nuclear Information System (INIS)

    Gmucova, K.; Nadazdy, V.; Vojtko, A.; Majkova, E.; Kotlar, M.

    2013-01-01

    Plasmonic sensors have recently attracted much attention. The past few decades have seen a massive and continued interest in studying electrochemical processes at artificially structured electrodes. Such electrochemical sensors provide sensitive, selective, and easy to use approaches to the detection of many chemical species, e.g. environmental pollutants, biomolecules, drugs etc. The issue raised in this paper is to study the kinetic of the diffusion towards plasmonic surfaces in dark and under illumination with white LED diode. The possibility to use anomalous charge transfer towards plasmonic surfaces in electrochemical sensorics will be discussed, too. (authors)

  11. Diffusion as a Ruler: Modeling Kinesin Diffusion as a Length Sensor for Intraflagellar Transport.

    Science.gov (United States)

    Hendel, Nathan L; Thomson, Matthew; Marshall, Wallace F

    2018-02-06

    An important question in cell biology is whether cells are able to measure size, either whole cell size or organelle size. Perhaps cells have an internal chemical representation of size that can be used to precisely regulate growth, or perhaps size is just an accident that emerges due to constraint of nutrients. The eukaryotic flagellum is an ideal model for studying size sensing and control because its linear geometry makes it essentially one-dimensional, greatly simplifying mathematical modeling. The assembly of flagella is regulated by intraflagellar transport (IFT), in which kinesin motors carry cargo adaptors for flagellar proteins along the flagellum and then deposit them at the tip, lengthening the flagellum. The rate at which IFT motors are recruited to begin transport into the flagellum is anticorrelated with the flagellar length, implying some kind of communication between the base and the tip and possibly indicating that cells contain some mechanism for measuring flagellar length. Although it is possible to imagine many complex scenarios in which additional signaling molecules sense length and carry feedback signals to the cell body to control IFT, might the already-known components of the IFT system be sufficient to allow length dependence of IFT? Here we investigate a model in which the anterograde kinesin motors unbind after cargo delivery, diffuse back to the base, and are subsequently reused to power entry of new IFT trains into the flagellum. By mathematically modeling and simulating such a system, we are able to show that the diffusion time of the motors can in principle be sufficient to serve as a proxy for length measurement. We found that the diffusion model can not only achieve a stable steady-state length without the addition of any other signaling molecules or pathways, but also is able to produce the anticorrelation between length and IFT recruitment rate that has been observed in quantitative imaging studies. Copyright © 2017 Biophysical

  12. Determination of the spin diffusion length in germanium by spin optical orientation and electrical spin injection

    Science.gov (United States)

    Rinaldi, C.; Bertoli, S.; Asa, M.; Baldrati, L.; Manzoni, C.; Marangoni, M.; Cerullo, G.; Bianchi, M.; Sordan, R.; Bertacco, R.; Cantoni, M.

    2016-10-01

    The measurement of the spin diffusion length and/or lifetime in semiconductors is a key issue for the realisation of spintronic devices, exploiting the spin degree of freedom of carriers for storing and manipulating information. In this paper, we address such parameters in germanium (0 0 1) at room temperature (RT) by three different measurement methods. Exploiting optical spin orientation in the semiconductor and spin filtering across an insulating MgO barrier, the dependence of the resistivity on the spin of photo-excited carriers in Fe/MgO/Ge spin photodiodes (spin-PDs) was electrically detected. A spin diffusion length of 0.9  ±  0.2 µm was obtained by fitting the photon energy dependence of the spin signal by a mathematical model. Electrical techniques, comprising non-local four-terminal and Hanle measurements performed on CoFeB/MgO/Ge lateral devices, led to spin diffusion lengths of 1.3  ±  0.2 µm and 1.3  ±  0.08 µm, respectively. Despite minor differences due to experimental details, the order of magnitude of the spin diffusion length is the same for the three techniques. Although standard electrical methods are the most employed in semiconductor spintronics for spin diffusion length measurements, here we demonstrate optical spin orientation as a viable alternative for the determination of the spin diffusion length in semiconductors allowing for optical spin orientation.

  13. Spin diffusion length of Permalloy using spin absorption in lateral spin valves

    Science.gov (United States)

    Sagasta, Edurne; Omori, Yasutomo; Isasa, Miren; Otani, YoshiChika; Hueso, Luis E.; Casanova, Fèlix

    2017-08-01

    We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with the conductivity of Py is observed, evidencing that the Elliott-Yafet mechanism is the dominant spin relaxation mechanism in Permalloy. Completing the dataset with additional data found in the literature, we obtain λPy = (0.91 ± 0.04) (fΩm2)/ρPy.

  14. Measurement of the diffusion length of thermal neutrons in the beryllium oxide

    International Nuclear Information System (INIS)

    Koechlin, J.C.; Martelly, J.; Duggal, V.P.

    1955-01-01

    The diffusion length of thermal neutrons in the beryllium oxide has been obtained while studying the spatial distribution of the neutrons in a massive parallelepiped of this matter placed before the thermal column of the reactor core of Saclay. The mean density of the beryllium oxide (BeO) is 2,95 gr/cm 3 , the mean density of the massif is 2,92 gr/cm 3 . The value of the diffusion length, deducted of the done measures, is: L = 32,7 ± 0,5 cm (likely gap). Some remarks are formulated about the influence of the spectral distribution of the neutrons flux used. (authors) [fr

  15. Surface modifications by field induced diffusion.

    Directory of Open Access Journals (Sweden)

    Martin Olsen

    Full Text Available By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.

  16. Molecular dynamics simulations of the penetration lengths: application within the fluctuation theory for diffusion coefficients

    DEFF Research Database (Denmark)

    Galliero, Guillaume; Medvedev, Oleg; Shapiro, Alexander

    2005-01-01

    A 322 (2004) 151). In the current study, a fast molecular dynamics scheme has been developed to determine the values of the penetration lengths in Lennard-Jones binary systems. Results deduced from computations provide a new insight into the concept of penetration lengths. It is shown for four different...... binary liquid mixtures of non-polar components that computed penetration lengths, for various temperatures and compositions, are consistent with those deduced from experiments in the framework of the formalism of the fluctuation theory. Moreover, the mutual diffusion coefficients obtained from a coupled...

  17. Ultralong Radiative States in Hybrid Perovskite Crystals: Compositions for Submillimeter Diffusion Lengths

    KAUST Repository

    Alarousu, Erkki

    2017-08-29

    Organic-inorganic hybrid perovskite materials have recently evolved into the leading candidate solution-processed semiconductor for solar cells due to their combination of desirable optical and charge transport properties. Chief among these properties is the long carrier diffusion length, which is essential to optimizing the device architecture and performance. Herein, we used time-resolved photoluminescence (at low excitation fluence, 10.59 μJ·cm upon two-photon excitation), which is the most accurate and direct approach to measure the radiative charge carrier lifetime and diffusion lengths. Lifetimes of about 72 and 4.3 μs for FAPbBr and FAPbI perovskite single crystals have been recorded, presenting the longest radiative carrier lifetimes reported to date for perovskite materials. Subsequently, carrier diffusion lengths of 107.2 and 19.7 μm are obtained. In addition, we demonstrate the key role of the organic cation units in modulating the carrier lifetime and its diffusion lengths, in which the defect formation energies for FA cations are much higher than those with the MA ones.

  18. Lifetime and diffusion length measurements on silicon material and solar cells. [Intentionally doped with impurities

    Energy Technology Data Exchange (ETDEWEB)

    Othmer, S.; Chen, S.C.

    1977-01-01

    Experimental methods were evaluated for the determination of lifetime and diffusion length in silicon intentionally doped with potentially lifetime-degrading impurities found in metallurgical grade silicon, impurities which may be residual in low-cost silicon intended for use in terrestrial flat-plat arrays. Results obtained by these methods were compared for mutual consistency. Lifetime measurements were made using a steady-state photoconductivity method, which was compared with a photoconductivity decay technique. Diffusion length determinations were made using short-circuit current measurements under penetrating illumination. This method was compared with a direct measurement of diffusion length using a scanning electron microscope. Mutual consistency among all experimental methods was verified, but steady-state photoconductivity was found preferable to photoconductivity decay at short lifetimes and in the presence of traps. The effects of a number of impurities on lifetime in bulk material, and on diffusion length in cells fabricated from this material, were determined. Results were compared with those obtained by others on the same material and devices using different techniques. General agreement was found in terms of the hierarchy of impurities which degrade the lifetime.

  19. Direct measurement of the triplet exciton diffusion length in organic semiconductors

    NARCIS (Netherlands)

    Mikhnenko, O.V.; Ruiter, R.; Blom, P.W.M.; Loi, M.A.

    2012-01-01

    We present a new method to measure the triplet exciton diffusion length in organic semiconductors. N,N′-di-[(1-naphthyl)-N,N′-diphenyl]-1,1′-biphenyl)-4,4′-diamine (NPD) has been used as a model system. Triplet excitons are injected into a thin film of NPD by a phosphorescent thin film, which is

  20. Diffusion and surface alloying of gradient nanostructured metals

    Directory of Open Access Journals (Sweden)

    Zhenbo Wang

    2017-03-01

    Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.

  1. Single atom self-diffusion on nickel surfaces

    International Nuclear Information System (INIS)

    Tung, R.T.; Graham, W.R.

    1980-01-01

    Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)

  2. Measurement of surface crack length using image processing technology

    International Nuclear Information System (INIS)

    Nahm, Seung Hoon; Kim, Si Cheon; Kim, Yong Il; Ryu, Dae Hyun

    2001-01-01

    The development of a new experimental method is required to easily observe the growth behavior of fatigue cracks. To satisfy the requirement, an image processing technique was introduced to fatigue testing. The length of surface fatigue crack could be successfully measured by the image processing system. At first, the image data of cracks were stored into the computer while the cyclic loading was interrupted. After testing, crack length was determined using image processing software which was developed by ourselves. Block matching method was applied to the detection of surface fatigue cracks. By comparing the data measured by image processing system with the data measured by manual measurement with a microscope, the effectiveness of the image processing system was established. If the proposed method is used to monitor and observe the crack growth behavior automatically, the time and efforts for fatigue test could be dramatically reduced

  3. Self-diffusion on copper surfaces

    DEFF Research Database (Denmark)

    Hansen, L.; Stoltze, Per; Jacobsen, Karsten Wedel

    1991-01-01

    The diffusion paths and activation energies of a Cu adatom on Cu(100), Cu(111), and Cu(110) are studied using the effective-medium theory to calculate the energetics. For the (100) and (110) faces, diffusion via an exchange mechanism is found to be important. The transition state for these paths ...

  4. Assessing Telomere Length Using Surface Enhanced Raman Scattering

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Cui, Yiping

    2014-11-01

    Telomere length can provide valuable insight into telomeres and telomerase related diseases, including cancer. Here, we present a brand-new optical telomere length measurement protocol using surface enhanced Raman scattering (SERS). In this protocol, two single strand DNA are used as SERS probes. They are labeled with two different Raman molecules and can specifically hybridize with telomeres and centromere, respectively. First, genome DNA is extracted from cells. Then the telomere and centromere SERS probes are added into the genome DNA. After hybridization with genome DNA, excess SERS probes are removed by magnetic capturing nanoparticles. Finally, the genome DNA with SERS probes attached is dropped onto a SERS substrate and subjected to SERS measurement. Longer telomeres result in more attached telomere probes, thus a stronger SERS signal. Consequently, SERS signal can be used as an indicator of telomere length. Centromere is used as the inner control. By calibrating the SERS intensity of telomere probe with that of the centromere probe, SERS based telomere measurement is realized. This protocol does not require polymerase chain reaction (PCR) or electrophoresis procedures, which greatly simplifies the detection process. We anticipate that this easy-operation and cost-effective protocol is a fine alternative for the assessment of telomere length.

  5. Friction and diffusion dynamics of adsorbates at surfaces

    NARCIS (Netherlands)

    Fusco, C.

    2005-01-01

    A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it

  6. Radiation induced diffusion as a method to protect surface

    International Nuclear Information System (INIS)

    Baumvol, I.J.R.

    1980-01-01

    Radiation induced diffusion forms a coating adeherent and without interface on the surface of metalic substrates. This coating improves the behaviour of metal to corrosion and abrasion. The effect of radiation induced diffusion of tin and calcium on pure iron surface is described and analyzed in this work. (author) [pt

  7. Terahertz Conductivity within Colloidal CsPbBr3 Perovskite Nanocrystals: Remarkably High Carrier Mobilities and Large Diffusion Lengths.

    Science.gov (United States)

    Yettapu, Gurivi Reddy; Talukdar, Debnath; Sarkar, Sohini; Swarnkar, Abhishek; Nag, Angshuman; Ghosh, Prasenjit; Mandal, Pankaj

    2016-08-10

    Colloidal CsPbBr3 perovskite nanocrystals (NCs) have emerged as an excellent light emitting material in last one year. Using time domain and time-resolved THz spectroscopy and density functional theory based calculations, we establish 3-fold free carrier recombination mechanism, namely, nonradiative Auger, bimolecular electron-hole recombination, and inefficient trap-assisted recombination in 11 nm sized colloidal CsPbBr3 NCs. Our results confirm a negligible influence of surface defects in trapping charge carriers, which in turn results into desirable intrinsic transport properties, from the perspective of device applications, such as remarkably high carrier mobility (∼4500 cm(2) V(-1) s(-1)), large diffusion length (>9.2 μm), and high luminescence quantum yield (80%). Despite being solution processed and possessing a large surface to volume ratio, this combination of high carrier mobility and diffusion length, along with nearly ideal photoluminescence quantum yield, is unique compared to any other colloidal quantum dot system.

  8. Turbulent jet diffusion flame length evolution with cross flows in a sub-pressure atmosphere

    International Nuclear Information System (INIS)

    Wang, Qiang; Hu, Longhua; Zhang, Xiaozheng; Zhang, Xiaolei; Lu, Shouxiang; Ding, Hang

    2015-01-01

    Highlights: • Quantifying turbulent jet diffusion flame length with cross flows. • Unique data revealed for a sub-atmospheric pressure. • Non-dimensional global correlation proposed for flame trajectory-line length. - Abstract: This paper investigates the evolution characteristics of turbulent jet diffusion flame (flame trajectory-line length, flame height in vertical jet direction) with increasing cross flows in a sub-pressure (64 kPa) atmosphere. The combined effect of cross flow and a special sub-pressure atmosphere condition is revealed, where no data is available in the literatures. Experiments are carried out with a wind tunnel built specially in Lhasa city (altitude: 3650 m; pressure: 64 kPa) and in Hefei city (altitude: 50 m; pressure: 100 kPa), using nozzles with diameter of 3 mm, 4 mm and 5 mm and propane as fuel. It is found that, as cross flow air speed increases from zero, the flame trajectory-line length firstly decreases and then becomes almost stable (for relative small nozzle, 3 mm in this study) or increases (for relative large nozzle, 4 mm and 5 mm in this study) beyond a transitional critical cross flow air speed in normal pressure, however decreases monotonically until being blown-out in the sub-pressure atmosphere. The flame height in jet direction decreases monotonically with cross air flow speed and then reaches a steady value in both pressures. For the transitional state of flame trajectory-line length with increasing cross air flow speed, the corresponding critical cross flow air speed is found to be proportional to the fuel jet velocity, meanwhile independent of nozzle diameter. Correlation models are proposed for the flame height in jet direction and the flame trajectory-line length for both ambient pressures, which are shown to be in good agreement with the experimental results.

  9. Passive Frequency Selective Surface Array as a Diffuser for Destroying Millimeter Wave Coherence

    Directory of Open Access Journals (Sweden)

    Saiful Islam

    2008-01-01

    Full Text Available This paper presents the design, construction, and testing of grounded frequency selective surface (FSS array as a diffuser for destroying millimeter wave coherence which is used to eliminate speckle in active millimeter wave imaging. To create stochastically independent illumination patterns, we proposed a diffuser based on random-phase distributions obtained by changing the incident frequency. The random-phase diffuser was obtained by mixing up the phase relations between the cells of a deterministic function (e.g., beam splitter. The slot length of FSS is the main design parameter used to optimize the phase shifting properties of the array. The critical parameters of the diffuser array design, such as phase relation with slot lengths, losses, and bandwidth, are discussed. We designed the FSS arrays with finite integral technique (FIT, fabricated by etching technique, and characterized the S-parameters with a free-space MVNA, and measured the radiation patterns with a BWO in motorized setup.

  10. Phosphor-doping enhanced efficiency in bilayer organic solar cells due to longer exciton diffusion length

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kang [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Hou, Lintao, E-mail: thlt@jnu.edu.cn [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Wang, Ping, E-mail: wangping996633@163.com [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Xia, Yuxin [Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632 (China); Chen, Dongcheng; Xiao, Biao [Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640 (China)

    2014-07-01

    We fabricated bilayer organic solar cells (OSCs) in the structure glass/ITO/PEDOT:PSS/PtOEP:MEH-PPV/C{sub 70}/Al, where MEH-PPV was doped with platinum octaethylporphyrin (PtOEP). Enhanced exciton diffusion length (L{sub D}) is realized via converting generated singlet excitons to triplet excitons. Investigation based on transfer matrix simulations reveals that it is the extended exciton L{sub D} of the doping donor layer that leads to the short-circuit current density (J{sub sc}) and power conversion efficiency (PCE) improvement, when compared with those of the OSCs with a non-doping donor layer. As a result of the increased L{sub D}, J{sub sc} and PCE increase by 30% and 42% respectively for a device with 5 wt% PtOEP-doped 25 nm-thick donor layer. Meanwhile, by doping with phosphorescent bis(1-phenyl-isoquinoline)(acetylacetonato)iridium(III), the reduction in open-circuit voltage and the comparable J{sub sc} are shown due to its higher HOMO level and higher LUMO level, leading to the decrease of PCE. It demonstrates that doping a polymer with a suitable phosphorescent molecule is an important approach to be considered to increase the exciton L{sub D}. - Highlights: • Optical model based on transfer matrix method was used to study phosphor-doped organic planar hetero-junction solar cells. • The enhanced exciton diffusion length was experimentally investigated by absorption, PL, time-resolved transient PL, J–V and EQE curves. • Only suitable phosphor dyes can increase exciton diffusion length.

  11. Probing triplet-triplet annihilation zone and determining triplet exciton diffusion length by using delayed electroluminescence

    Science.gov (United States)

    Luo, Yichun; Aziz, Hany

    2010-05-01

    The literature shows that triplet-triplet annihilation (TTA) can provide a substantial contribution to the electroluminescence (EL) of fluorescent organic light-emitting devices (OLEDs). In this study, we utilized delayed EL measurements to probe the TTA emission zone of archetypical 8-hydroxyquinoline aluminum (Alq3) based OLEDs. The results demonstrate that the TTA emission zone of these devices is much larger than the prompt emission zone of singlet states that are formed in the electron-hole recombination. The larger TTA emission zone is attributed to the longer diffusion length of the Alq3 triplet states (60 nm) than that of Alq3 singlet states (20 nm).

  12. Optical absorption coefficient and minority carrier diffusion length measurements in low-cost silicon solar cell material

    Energy Technology Data Exchange (ETDEWEB)

    Swimm, R.T.; Dumas, K.A.

    1982-11-01

    The optical absorption coefficient of silicon solar cell material grown by three low-cost growth methods was measured in the wavelength interval 0.8< or =lambda< or =1.0 ..mu..m, the wavelength region of interest in surface photovoltage measurements of the minority carrier diffusion length. The square root of the absorption coefficient was found to vary linearly with photon energy over the wavelengths studied, and the measured data agree with a linear empirical fit to within 0.5% RMS. The absorption coefficients obtained are slightly lower than those reported by Runyan, with the greatest disagreement at long wavelengths. Minority carrier diffusion lengths computed using the present absorption coefficients are approximately 16% greater than those calculated using Runyan's data. Excellent sample-to-sample agreement within and between lots indicates that for two of the growth methods studied, material quality as judged by optical properties has not been sacrificed by the use of low-cost growth methods. Samples grown by the third growth method studied showed measurably poorer optical quality.

  13. Diffusion effects on volume-selective NMR at small length scales

    International Nuclear Information System (INIS)

    Gaedke, Achim

    2009-01-01

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 μm could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  14. Transition from diffusive to localized regimes in surface corrugated waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Martin, A.; Saenz, J. J. [Universidad Autonoma de Madrid, Madrid (Spain); Nieto-Vesperinas, M. [Instituto de Ciencias de Materiales de Madrid, Madrid (Spain)

    2001-03-01

    Exact calculations of transmission and reflection coefficients in surface randomly corrugated waveguides are presented. The elastic scattering of diffuse light classical waves from a rough surface induces a diffusive transport along the waveguide axis. As the length of the corrugated part of the waveguide increases, a transition from the diffusive to the localized regime is observed. This involves an analogy with electron conduction in nano wires, and hence, a concept analogous to that of resistance can be introduced. An oscillatory behavior of different transport properties (elastic mean free path, localization length, enhanced backscattering), versus the wavelength is predicted. An analysis of the transmission coefficients (transmitted speckle) shows that as the length of the corrugated part of the waveguide increases there is a strong preference to forward coupling through the lowest mode. This marks a clear anisotropy in the forward propagation which is absent in the case of volume disorder. The statistics of reflection coefficients is analyzed, first using random matrix theory (Rm) to analytically deduce the probability densities in the localization regime, afterwards exact numerical calculations of the coupling to backward modes in surface corrugated waveguides will be put forward for comparison. We show that the reflected speckle distribution are independent of the transport regime, at variance with the regime transition found in the transmission case. Despite the strong anisotropy, the analysis of the probability distributions of both transmitted and reflected waves confirms the distributions predicted by Random Matrix Theory for volume disorder. [Spanish] Presentamos calculos exactos de los coeficientes de transmision y reflexion en guias de onda con desorden de superficie. La dispersion elastica de luz difusa o de otras ondas clasicas por una superficie rugosa induce un transporte difusivo a lo largo del eje de la guia. A medida que la longitud de la zona

  15. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  16. Reactive solid surface morphology variation via ionic diffusion.

    Science.gov (United States)

    Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih

    2012-08-14

    In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.

  17. Reacto-Diffusive Length of N2O5 in Aqueous Sulfate- and Chloride-Containing Aerosol Particles.

    Science.gov (United States)

    Gaston, Cassandra J; Thornton, Joel A

    2016-02-25

    Heterogeneous reactions of dinitrogen pentoxide (N2O5) on aerosol particles impact air quality and climate, yet aspects of the relevant physical chemistry remain unresolved. One important consideration is the competing effects of diffusion and the rate of chemical reaction within the particle, which determines the length that N2O5 travels within a particle before reacting, referred to as the reacto-diffusive length (l). Large values of l imply a dependence of the reactive uptake efficiency of N2O5, i.e., γ(N2O5), on particle size. We present measurements of the size dependence of γ(N2O5) on aqueous sodium chloride, ammonium sulfate, and ammonium bisulfate particles. γ(N2O5) on ammonium sulfate and ammonium bisulfate particles ranged from 0.016 ± 0.005 to 0.036 ± 0.001 as the surface-area-weighted particle radius increased from 39 to 127 nm, resulting in an estimated l of 32 ± 6 nm. In contrast, γ(N2O5) on sodium chloride particles was independent of particle size, suggesting a near-surface reaction dominated the uptake of N2O5. Differences in the reactivity of the N2O5 intermediate, NO2(+), with water and chloride can explain the observed dependencies. These results allow for parameterizations in atmospheric models to determine a more robust population mean value of γ(N2O5) that accounts for the distribution of particle sizes.

  18. Linear response theory of activated surface diffusion with interacting adsorbates

    Energy Technology Data Exchange (ETDEWEB)

    Marti' nez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A.S.; Vega, J.L. [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rojas-Lorenzo, G. [Instituto Superior de Tecnologi' as y Ciencias Aplicadas, Ave. Salvador Allende, esq. Luaces, 10400 La Habana (Cuba); Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain); Miret-Artes, S., E-mail: s.miret@imaff.cfmac.csic.es [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain)

    2010-05-12

    Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.

  19. Determination of bulk diffusion lengths for angle-lapped semiconductor material via the scanning electron microscope: A theoretical analysis

    Science.gov (United States)

    Vonroos, O.

    1978-01-01

    A standard procedure for the determination of the minority carrier diffusion length by means of a scanning electron microscope (SEM) consists in scanning across an angle-lapped surface of a P-N junction and measuring the resultant short circuit current I sub sc as a function of beam position. A detailed analysis of the I sub sc originating from this configuration is presented. It is found that, for a point source excitation, the I sub sc depends very simply on x, the variable distance between the surface and the junction edge. The expression for the I sub sc of a planar junction device is well known. If d, the constant distance between the plane of the surface of the semiconductor and the junction edge in the expression for the I of a planar junction is merely replaced by x, the variable distance of the corresponding angle-lapped junction, an expression results which is correct to within a small fraction of a percent as long as the angle between the surfaces, 2 theta sub 1, is smaller than 10 deg.

  20. Correlation between minority carrier diffusion length and microstructure in a-Si:H thin films

    International Nuclear Information System (INIS)

    Conte, G.; Fameli, G.; Nobile, G.; Rubino, A.; Terzini, E.; Villani, F.

    1993-01-01

    The aim of this work is to investigate the opto-electronic properties of amorphous hydrogenated silicon (a-Si:H). The deposition temperature was used as a driving force to modify the morphology and bonded hydrogen distribution. The influence of the hydrogen microstructure on the carrier m-t products was examined. The m-t products, for both carriers, were evaluated from the diffusion length measurement, by using the Steady State Photocarrier Grating (SSPG) technique, and from the photoconductivity in the steady state condition (SSPC). The m-t products were correlated with the defect density and Fermi level position. The effects of the defect density on the Fermi level position were examined within the framework of a defect pool model in order to justify the consistency of the results

  1. Diffusion processes in bombardment-induced surface topography

    International Nuclear Information System (INIS)

    Robinson, R.S.

    1984-01-01

    The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)

  2. Nonthermal Effects of Photon Illumination on Surface Diffusion

    International Nuclear Information System (INIS)

    Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E.G.

    1998-01-01

    Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally for the first time. Activation energies and preexponential factors for diffusion of germanium and indium on silicon change substantially in response to illumination by photons having energies greater than the substrate band gap. Results depend on doping type. Ionization of surface vacancies by photogenerated charge carriers seems to play a key role. The results have significant implications for aspects of microelectronics fabrication governed by surface mobility. copyright 1998 The American Physical Society

  3. Diffusion of particles, adsorbed on a reconstructive surface

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander; Jastrabík, Lubomír

    532-535, - (2003), s. 588-593 ISSN 0039-6028 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : models of surface kinetics * non-equilibrium thermodynamics and statistical mechanics * surface diffusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.063, year: 2003

  4. Cu diffusion across a clean Si(111) surface

    CERN Document Server

    Dolbak, A E; Olshanetskij, B Z

    2001-01-01

    Cu diffusion across a clean Si(111) surface has been studied by the Auger electron spectroscopy and the low energy electron diffraction. It has been established that enhanced copper density areas with noticeable boundaries manifest themselves and a Si(111) - 5 x 5 - Cu surface phase is formed as a result of diffusion. It has been shown that the copper transport along Si(111) surface goes on according to a solid state spreading process, which is known as the unwinding carpet mechanism. The temperature dependence for the Cu diffusion coefficients D sub C sub u on the Si(111) surface is obtained and this dependence takes the form: D sub C sub u = 10 sup 4 exp(-1.9/kT) cm sup 2 /s

  5. Modifying glass surfaces via internal diffusion

    DEFF Research Database (Denmark)

    Smedskjaer, M.M.; Yue, Y.Z.; Deubener, J.

    2010-01-01

    The surface chemistry and structure of iron-bearing silicate glasses have been modified by means of heat-treatment around the glass transition temperature under different gaseous media at ambient pressure. When the glasses are heat-treated in atmospheric air, oxidation of Fe2+ to Fe3+ occurs, which......- ions in the network and their strong attraction to the modifying ions, whereas the latter is due to the requirement of the charge neutrality. The role of N3- in driving OD is verified by the composition profile of the surface layer of the glass treated in pure N-2 gas. The OD exerts pronounced impacts...

  6. Diffusion of N adatoms on the Fe(100) surface

    DEFF Research Database (Denmark)

    Pedersen, M. Ø.; Österlund, L.; Mortensen, Jens Jørgen

    2000-01-01

    The diffusion of individual N adatoms on Fe(100) has been studied using scanning tunneling microscopy and ab initio density functional theory (DFT) calculations. The measured diffusion barrier for isolated N adatoms is E-d = (0.92 +/- 0.04) eV, with a prefactor of nu(0) = 4.3 x 10(12) s(-1), which...... is in quantitative agreement with the DFT calculations. Thr; diffusion is strongly coupled to lattice distortions. and. as a consequence, the presence of other N adatoms introduces an anisotropy in the diffusion. Based on experimentally determined values of the diffusion barriers and adsorbate......-adsorbate: interactions, the potential energy surface experienced by a N adatom is determined....

  7. Slowdown of surface diffusion during early stages of bacterial colonization

    Science.gov (United States)

    Vourc'h, T.; Peerhossaini, H.; Léopoldès, J.; Méjean, A.; Chauvat, F.; Cassier-Chauvat, C.

    2018-03-01

    We study the surface diffusion of the model cyanobacterium Synechocystis sp. PCC6803 during the incipient stages of cell contact with a glass surface in the dilute regime. We observe a twitching motility with alternating immobile tumble and mobile run periods, resulting in a normal diffusion described by a continuous-time random walk with a coefficient of diffusion D . Surprisingly, D is found to decrease with time down to a plateau. This is observed only when the cyanobacterial cells are able to produce released extracellular polysaccharides, as shown by a comparative study between the wild-type strain and various polysaccharides-depleted mutants. The analysis of the trajectories taken by the bacterial cells shows that the temporal characteristics of their intermittent motion depend on the instantaneous fraction of visited sites during diffusion. This describes quantitatively the time dependence of D , related to the progressive surface coverage by the polysaccharides. The observed slowdown of the surface diffusion may constitute a basic precursor mechanism for microcolony formation and provides clues for controlling biofilm formation.

  8. MAGNETIC QUENCHING OF TURBULENT DIFFUSIVITY: RECONCILING MIXING-LENGTH THEORY ESTIMATES WITH KINEMATIC DYNAMO MODELS OF THE SOLAR CYCLE

    International Nuclear Information System (INIS)

    Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu

    2011-01-01

    The turbulent magnetic diffusivity in the solar convection zone is one of the most poorly constrained ingredients of mean-field dynamo models. This lack of constraint has previously led to controversy regarding the most appropriate set of parameters, as different assumptions on the value of turbulent diffusivity lead to radically different solar cycle predictions. Typically, the dynamo community uses double-step diffusivity profiles characterized by low values of diffusivity in the bulk of the convection zone. However, these low diffusivity values are not consistent with theoretical estimates based on mixing-length theory, which suggest much higher values for turbulent diffusivity. To make matters worse, kinematic dynamo simulations cannot yield sustainable magnetic cycles using these theoretical estimates. In this work, we show that magnetic cycles become viable if we combine the theoretically estimated diffusivity profile with magnetic quenching of the diffusivity. Furthermore, we find that the main features of this solution can be reproduced by a dynamo simulation using a prescribed (kinematic) diffusivity profile that is based on the spatiotemporal geometric average of the dynamically quenched diffusivity. This bridges the gap between dynamically quenched and kinematic dynamo models, supporting their usage as viable tools for understanding the solar magnetic cycle.

  9. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  10. Matrix diffusion in crystalline rocks: coupling of anion exclusion, surface diffusion and surface complexation

    Energy Technology Data Exchange (ETDEWEB)

    Olin, M.; Valkiainen, M.; Aalto, H. [VTT Chemical Technology, Espoo (Finland)

    1997-12-01

    This report includes both experimental and modelling parts. Also, a novel approach to the diffusion experiments is introduced, where ions of the same electric charge diffuse in opposite directions through the same rock sample. Six rock-types from Olkiluoto radioactive waste disposal investigation site were used in the experiments: granite, weathered granite, mica gneiss, weathered mica gneiss, tonalite and altered mica gneiss/migmatite. The experiments consisted of the determination of the effective diffusion coefficient and the rock capacity factor for tritium, chloride (Cl-36) and sodium (Na-22). The modelling consisted of a chemical model for small pores (< 100 nm), a model for counter ion diffusion and models for the laboratory experiments. 21 refs.

  11. Convergence of surface diffusion parameters with model crystal size

    Science.gov (United States)

    Cohen, Jennifer M.; Voter, Arthur F.

    1994-07-01

    A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.

  12. Semiconductor surface diffusion: Nonthermal effects of photon illumination

    International Nuclear Information System (INIS)

    Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E. G.

    2000-01-01

    Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally. Activation energies and pre-exponential factors for diffusion of germanium, indium, and antimony on silicon change by up to 0.3 eV and two orders of magnitude, respectively, in response to illumination by photons having energies greater than the substrate band gap. The parameters decrease for n-type material and increase for p-type material. Aided by results from photoreflectance spectroscopy, we suggest that motion of the surface quasi-Fermi-level for minority carriers accounts for much of the effect by changing the charge states of surface vacancies. An additional adatom-vacancy complexation mechanism appears to operate on p-type substrates. The results have significant implications for aspects of microelectronics fabrication by rapid thermal processing that are governed by surface mobility. (c) 2000 The American Physical Society

  13. DIFFUSION MECHANISM OF CU ADATOMS ON A CU(001) SURFACE

    NARCIS (Netherlands)

    BARKEMA, GT; BREEMAN, M; PASQUARELLO, A; CAR, R

    1994-01-01

    Ab initio calculations on surface diffusion of Cu adatoms on Cu(001) are presented. The hopping mechanism with a calculated energy barrier of 0.69 eV is found to be favorable over the exchange mechanism with 0.97 eV. We find from the geometry relaxations that adatoms are significantly attracted to

  14. Interferometric method for measuring high velocities of diffuse surfaces

    International Nuclear Information System (INIS)

    Maron, Y.

    1978-01-01

    An interferometric method for measuring the displacement of diffuse surfaces moving with velocities of a few microsecond is presented. The method utilizes the interference between two light beams reflected from a constant area of the moving surface at two different angles. It enables the detection of high rate velocity variations. Light source of a fairly low temporal coherence and power around 100mW is needed. (author)

  15. Dimer-flipping-assisted diffusion on a Si(001) surface

    International Nuclear Information System (INIS)

    Zi, J.; Min, B. J.; Lu, Y.; Wang, C. Z.; Ho, K. M.

    2000-01-01

    The binding sites and diffusion pathways of Si adatoms on a c(4x2) reconstructed Si(001) surface are investigated by a tight-binding method with an environment-dependent silicon potential in conjunction with ab initio calculations using the Car--Parrinello method. A new diffusion pathway along the trough edge driven by dimer flipping is found with a barrier of 0.74 eV, comparable to that of 0.68 eV along the top of the dimer rows

  16. A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices

    International Nuclear Information System (INIS)

    Ionescu, M.

    1977-01-01

    An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)

  17. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    International Nuclear Information System (INIS)

    Narayan, Monishka Rita; Singh, Jai

    2012-01-01

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be ≤ 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Roles of binding energy and diffusion length of singlet and triplet excitons in organic heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Monishka Rita [Centre for Renewable Energy and Low Emission Technology, Charles Darwin University, Darwin, NT 0909 (Australia); Singh, Jai [School of Engineering and IT, Charles Darwin University, Darwin, NT 0909 (Australia)

    2012-12-15

    The influence of binding energy and diffusion length on the dissociation of excitons in organic solids is studied. The binding energy and excitonic Bohr radius of singlet and triplet excitons are calculated and compared using the dissociation energy of 0.3 eV, which is provided by the lowest unoccupied molecular orbital offset in heterojunction organic solar cells. A relation between the diffusion coefficient and diffusion length of singlet and triplet excitons is derived using the Foerster and Dexter transfer processes and are plotted as a function of the donor-acceptor separation. The diffusion length reduces nearly to a zero if the distance between donor and acceptor is increased to more than 1.5 nm. It is found that the donor-acceptor separation needs to be {<=} 1.5 nm for easy dissociation on singlet excitons leading to better conversion efficiency in heterojunction organic solar cells. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime

    NARCIS (Netherlands)

    Petoukhova, A. L.; Steenbergen, W.; van Leeuwen, T. G.; de Mul, F. F. M.

    2002-01-01

    A low coherence Mach-Zehnder interferometer is developed for path length resolved dynamic light scattering in highly turbid media. The path length distribution of multiply scattered photons in Intralipid is changed by the addition of absorbing dyes. Path length distributions obtained for various

  20. Effects of absorption on coherence domain path length resolved dynamic light scattering in the diffuse regime

    NARCIS (Netherlands)

    Petoukhova, Anna; Steenbergen, Wiendelt; van Leeuwen, Ton; de Mul, F.F.M.

    2002-01-01

    A low coherence Mach–Zehnder interferometer is developed for path length resolved dynamic light scattering in highly turbid media. The path length distribution of multiply scatteredphotons in Intralipid is changed by the addition of absorbing dyes. Path length distributions obtained for various

  1. Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip

    International Nuclear Information System (INIS)

    Hendy, S C; Lund, N J

    2009-01-01

    We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.

  2. Diffusion of particles on the patchwise bivariate surfaces

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander; Jastrabík, Lubomír

    2015-01-01

    Roč. 458, Feb (2015), s. 27-34 ISSN 0921-4526 R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941; GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : kinetic Monte Carlo simulations * lattice-gas model * patchwise lattice * surface diffusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.352, year: 2015

  3. Surface tension in microsystems engineering below the capillary length

    CERN Document Server

    Lambert, Pierre

    2014-01-01

    This book describes how surface tension effects can be used by engineers to provide mechanical functions in miniaturized products (<1 mm). Even if precursors of this field such as Jurin or Laplace already date back to the 18th century, describing surface tension effects from a mechanical perspective is very recent. The originality of this book is to consider the effects of capillary bridges on solids, including forces and torques exerted both statically and dynamically by the liquid along the 6 degrees-of-freedom. It provides a comprehensive approach to various applications, such as capillary adhesion (axial force), centering force in packaging and micro-assembly (lateral force) and recent developments such as a capillary motor (torque). It devises how surface tension can be used to provide mechanical functions such as actuation (bubble-actuated compliant table), sealing and tightness, energy harvesting, nanodispending.

  4. Influence of the atomic structure of crystal surfaces on the surface diffusion in medium temperature range

    International Nuclear Information System (INIS)

    Cousty, J.P.

    1981-12-01

    In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr

  5. Cleaning of diffusion bonding surface by argon ion bombardment treatment

    Science.gov (United States)

    Wang, Airu; Ohashi, Osamu; Yamaguchi, Norio; Aoki, Masanori; Higashi, Yasuo; Hitomi, Nobuteru

    2003-05-01

    The specimens of oxygen-free high conductivity copper, SUS304L stainless steel and pure iron were treated by argon ion bombardment and then were bonded by diffusion bonding method. The effects of argon ion bombardment treatment on faying surface morphology, tensile strength of bonding joints and inclusions at the fracture surface were investigated. The results showed that argon ion bombardment treatment was effective to remove the oxide film and contamination at the faying surface and improve the quality of joints. The tensile strength of the bonded joints was improved, and minimum bonding temperature to make the metallic bonding at the interface was lowered by argon ion bombardment treatment. At the joints with argon ion bombardment treatment, ductile fractured surface was seen and the amount of inclusions was obviously decreased.

  6. Determination of thermal neutrons diffusion length in graphite; Determinacion de la Longitud de Difusion de los Neutrones Termicos en Grafito

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Fite, J.

    1959-07-01

    The diffusion length of thermal neutrons in graphite using the less possible quantity of material has been determined. The proceeding used was the measurement in a graphite pile which has a punctual source of rapid neutrons inside surrounded by a reflector medium (paraffin or water). The measurement was done in the following conditions: a) introducing an aluminium plate between both materials. b) Introducing a cadmium plate between both materials. (Author) 91 refs.

  7. High-resolution TOF-SIMS study of varying chain length self-assembled monolayer surfaces.

    Science.gov (United States)

    Wolf, Kurt V; Cole, David A; Bernasek, Steven L

    2002-10-01

    A high-resolution time-of-flight secondary ionization mass spectrometer (TOF-SIMS) has been used to investigate chain length effects in hydrocarbon seff-assembled monolayer (SAM) surfaces on gold substrates. A wide range of n-alkanethiols was used to make homogeneous SAM surfaces, which included both odd and even hydrocarbon chain length thiols. Variations in coverage, extent of oxidation, and high-mass cluster formation as a function of hydrocarbon chain length of the alkanethiol SAM surfaces were investigated. Long-short chain length effects were observed for the relative coverage of the SAM surfaces, which directly influences the extent of oxidation for the thin films. The formation of gold-sulfur and gold-adsorbate cluster ions was also observed, since the mass range of the TOF-SIMS made it possible to monitor all of the cluster ions that were formed following the high-energy ion/surface interactions.

  8. Bulk and surface controlled diffusion of fission gas atoms

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders D. [Los Alamos National Laboratory

    2012-08-09

    in UO{sub 2{+-}x}, which compare favorably to available experiments. This is an extension of previous work [13]. In particular, it applies improved chemistry models for the UO{sub 2{+-}x} nonstoichiometry and its impact on the fission gas activation energies. The derivation of these models follows the approach that used in our recent study of uranium vacancy diffusion in UO{sub 2} [14]. Also, based on the calculated DFT data we analyze vacancy enhanced diffusion mechanisms in the intermediate temperature regime. In addition to vacancy enhanced diffusion we investigate species transport on the (111) UO{sub 2} surface. This is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation, for which surface diffusion could be the rate-limiting transport step. Diffusion of such bubbles constitutes an alternative mechanism for mass transport in these materials.

  9. Derivation of effective fission gas diffusivities in UO2 from lower length scale simulations and implementation of fission gas diffusion models in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States); Liu, Xiang-Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perriot, Romain Thibault [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tonks, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Stanek, Christopher Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-07

    This report summarizes the development of new fission gas diffusion models from lower length scale simulations and assessment of these models in terms of annealing experiments and fission gas release simulations using the BISON fuel performance code. Based on the mechanisms established from density functional theory (DFT) and empirical potential calculations, continuum models for diffusion of xenon (Xe) in UO2 were derived for both intrinsic conditions and under irradiation. The importance of the large XeU3O cluster (a Xe atom in a uranium + oxygen vacancy trap site with two bound uranium vacancies) is emphasized, which is a consequence of its high mobility and stability. These models were implemented in the MARMOT phase field code, which is used to calculate effective Xe diffusivities for various irradiation conditions. The effective diffusivities were used in BISON to calculate fission gas release for a number of test cases. The results are assessed against experimental data and future directions for research are outlined based on the conclusions.

  10. Amide Proton Transfer Imaging of Diffuse Gliomas: Effect of Saturation Pulse Length in Parallel Transmission-Based Technique.

    Science.gov (United States)

    Togao, Osamu; Hiwatashi, Akio; Keupp, Jochen; Yamashita, Koji; Kikuchi, Kazufumi; Yoshiura, Takashi; Yoneyama, Masami; Kruiskamp, Marijn J; Sagiyama, Koji; Takahashi, Masaya; Honda, Hiroshi

    2016-01-01

    In this study, we evaluated the dependence of saturation pulse length on APT imaging of diffuse gliomas using a parallel transmission-based technique. Twenty-two patients with diffuse gliomas (9 low-grade gliomas, LGGs, and 13 high-grade gliomas, HGGs) were included in the study. APT imaging was conducted at 3T with a 2-channel parallel transmission scheme using three different saturation pulse lengths (0.5 s, 1.0 s, 2.0 s). The 2D fast spin-echo sequence was used for imaging. Z-spectrum was obtained at 25 frequency offsets from -6 to +6 ppm (step 0.5 ppm). A point-by-point B0 correction was performed with a B0 map. Magnetization transfer ratio (MTRasym) and ΔMTRasym (contrast between tumor and normal white matter) at 3.5 ppm were compared among different saturation lengths. A significant increase in MTRasym (3.5 ppm) of HGG was found when the length of saturation pulse became longer (3.09 ± 0.54% at 0.5 s, 3.83 ± 0.67% at 1 s, 4.12 ± 0.97% at 2 s), but MTRasym (3.5 ppm) was not different among the saturation lengths in LGG. ΔMTRasym (3.5 ppm) increased with the length of saturation pulse in both LGG (0.48 ± 0.56% at 0.5 s, 1.28 ± 0.56% at 1 s, 1.88 ± 0.56% at 2 s and HGG (1.72 ± 0.54% at 0.5 s, 2.90 ± 0.49% at 1 s, 3.83 ± 0.88% at 2 s). In both LGG and HGG, APT-weighted contrast was enhanced with the use of longer saturation pulses.

  11. Application of Displacement Height and Surface Roughness Length to Determination Boundary Layer Development Length over Stepped Spillway

    Directory of Open Access Journals (Sweden)

    Xiangju Cheng

    2014-12-01

    Full Text Available One of the most uncertain parameters in stepped spillway design is the length (from the crest of boundary layer development. The normal velocity profiles responding to the steps as bed roughness are investigated in the developing non-aerated flow region. A detailed analysis of the logarithmic vertical velocity profiles on stepped spillways is conducted through experimental data to verify the computational code and numerical experiments to expand the data available. To determine development length, the hydraulic roughness and displacement thickness, along with the shear velocity, are needed. This includes determining displacement height d and surface roughness length z0 and the relationship of d and z0 to the step geometry. The results show that the hydraulic roughness height ks is the primary factor on which d and z0 depend. In different step height, step width, discharge and intake Froude number, the relations d/ks = 0.22–0.27, z0/ks = 0.06–0.1 and d/z0 = 2.2–4 result in a good estimate. Using the computational code and numerical experiments, air inception will occur over stepped spillway flow as long as the Bauer-defined boundary layer thickness is between 0.72 and 0.79.

  12. Effects of Surface Dipole Lengths on Evaporation of Tiny Water Aggregation

    International Nuclear Information System (INIS)

    Wang Shen; Wan Rongzheng; Fang Haiping; Tu Yusong

    2013-01-01

    Using molecular dynamics simulation, we compared evaporation behavior of a tiny amount of water molecules adsorbed on solid surfaces with different dipole lengths, including surface dipole lengths of 1 fold, 2 folds, 4 folds, 6 folds and 8 folds of 0.14 nm and different charges from 0.1e to 0.9e. Surfaces with short dipole lengths (1-fold system) can always maintain hydrophobic character and the evaporation speeds are not influenced, whether the surface charges are enhanced or weakened; but when surface dipole lengths get to 8 folds, surfaces become more hydrophilic as the surface charge increases, and the evaporation speeds increase gradually and monotonically. By tuning dipole lengths from 1-fold to 8-fold systems, we confirmed non-monotonic variation of the evaporation flux (first increases, then decreases) in 4 fold system with charges (0.1e–0.7e), reported in our previous paper [S. Wang, et al., J. Phys. Chem. B 116 (2012) 13863], and also show the process from the enhancement of this unexpected non-monotonic variation to its vanishment with surface dipole lengths increasing. Herein, we demonstrated two key factors to influence the evaporation flux of a tiny amount of water molecules adsorbed on solid surfaces: the exposed surficial area of water aggregation from where the water molecules can evaporate directly and the attraction potential from the substrate hindering the evaporation. In addition, more interestingly, we showed extra steric effect of surface dipoles on further increase of evaporation flux for 2-folds, 4-folds, 6-folds and 8-folds systems with charges around larger than 0.7e. (The steric effect is first reported by parts of our authors [C. Wang, et al., Sci. Rep. 2 (2012) 358]). This study presents a complete physical picture of the influence of surface dipole lengths on the evaporation behavior of the adsorbed tiny amount of water. (condensed matter: structural, mechanical, and thermal properties)

  13. A model for diffuse and global irradiation on horizontal surface

    International Nuclear Information System (INIS)

    Jain, P.C.

    1984-01-01

    The intensity of the direct radiation and the diffuse radiation at any time on a horizontal surface are each expressed as fractions of the intensity of the extraterrestrial radiation. Using these and assuming a random distribution of the bright sunshine hours and not too wide variations in the values of the transmission coefficients, a number of relations for estimating the global and the diffuse irradiation are derived. Two of the relations derived are already known empirically. The formulation lends more confidence in the use of the already empirically known relations providing them a theoretical basis, and affords more flexibility to the estimation techniques by supplying new equations. The study identifies three independent basic parameters and the constants appearing in the various equations as simple functions of these three basic parameters. Experimental data for the diffuse irradiation, the global irradiation and the bright sunshine duration for Macerata (Italy), Salisbury and Bulawayo (Zimbabwe) is found to show good correlation for the linear equations, and the nature and the interrelationships of the constants are found to be as predicted by the theory

  14. Excitation-Dependent Carrier lifetime and Diffusion Length in Bulk CdTe Determined by Time-Resolved Optical Pump-Probe Techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Kuciauskas, Darius [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Scajev, Patrik [Vilnius University; Miasojedovas, Saulius [Vilnius University; Mekys, Algirdas [Vilnius University; Lynn, Kelvin G. [Washington State University; Swain, Santosh K. [Washington State University; Jarasiunas, Kestutis [Vilnius University

    2018-01-11

    We applied time-resolved pump-probe spectroscopy based on free carrier absorption and light diffraction on a transient grating for direct measurements of the carrier lifetime and diffusion coefficient D in high-resistivity single crystal CdTe (codoped with In and Er). The bulk carrier lifetime t decreased from 670 +/-50 ns to 60 +/- 10 ns with increase of excess carrier density N from 10^16 to 5 x 10^18 cm-3 due to the excitation-dependent radiative recombination rate. In this N range, the carrier diffusion length dropped from 14 um to 6 um due to lifetime decrease. Modeling of in-depth (axial) and in-plane (lateral) carrier diffusion provided the value of surface recombination velocity S = 6 x 10^5 cm/s for the untreated surface. At even higher excitations, in the 10^19-3 x 10^20 cm-3 density range, D increase from 5 to 20 cm^2/s due to carrier degeneracy was observed.

  15. The effect of the cation alkyl chain length on density and diffusion in dialkylpyrrolidinium bis(mandelato)borate ionic liquids.

    Science.gov (United States)

    Filippov, Andrei; Taher, Mamoun; Shah, Faiz Ullah; Glavatskih, Sergei; Antzutkin, Oleg N

    2014-12-28

    The physicochemical properties of ionic liquids are strongly affected by the selective combination of the cations and anions comprising the ionic liquid. In particular, the length of the alkyl chains of ions has a clear influence on the ionic liquid's performance. In this paper, we study the self-diffusion of ions in a series of halogen-free boron-based ionic liquids (hf-BILs) containing bis(mandelato)borate anions and dialkylpyrrolidinium cations with long alkyl chains CnH2n+1 with n from 4 to 14 within a temperature range of 293-373 K. It was found that the hf-BILs with n = 4-7 have very similar diffusion coefficients, while hf-BILs with n = 10-14 exhibit two liquid sub-phases in almost the entire temperature range studied (293-353 K). Both liquid sub-phases differ in their diffusion coefficients, while values of the slower diffusion coefficients are close to those of hf-BILs with shorter alkyl chains. To explain the particular dependence of diffusion on the alkyl chain length, we examined the densities of the hf-BILs studied here. It was shown that the dependence of the density on the number of CH2 groups in long alkyl chains of cations can be accurately described using a "mosaic type" model, where regions of long alkyl chains of cations (named 'aliphatic' regions) and the residual chemical moieties in both cations and anions (named 'ionic' regions) give additive contributions. Changes in density due to an increase in temperature and the number of CH2 groups in the long alkyl chains of cations are determined predominantly by changes in the free volume of the 'ionic' regions, while 'aliphatic' regions are already highly compressed by van der Waals forces, which results in only infinitesimal changes in their free volumes with temperature.

  16. A novel diffusion-tensor MRI approach for skeletal muscle fascicle length measurements

    NARCIS (Netherlands)

    Oudeman, Jos; Mazzoli, Valentina; Marra, Marco A.; Nicolay, Klaas; Maas, Mario; Verdonschot, Nico; Sprengers, Andre M.; Nederveen, Aart J.; Strijkers, Gustav J.; Froeling, Martijn

    2016-01-01

    Musculoskeletal (dys-)function relies for a large part on muscle architecture which can be obtained using Diffusion-Tensor MRI (DT-MRI) and fiber tractography. However, reconstructed tracts often continue along the tendon or aponeurosis when using conventional methods, thus overestimating fascicle

  17. The studies of scale surface produced on outer diffusion layers

    Directory of Open Access Journals (Sweden)

    J. Augustyn-Pieniążek

    2011-04-01

    Full Text Available In this study at attempt was made to examine the scale formed on ferritic-austenitic duplex type steel subjected to previous thermochemical treatment. The treatment consisted in diffusion aluminising in a metallising mixture composed of Fe-Al powder. As an activator, ammonium chloride (NH4Cl added in an amount of 2 wt.% was used. Then, both the base material and samples with the diffusiondeposited surface layers were oxidised at 1000°C in the air. Thus formed scales were identified by light microscopy, SEM and X-ray phase analysis. The aim of the oxidation tests carried out under isothermal conditions was to compare the scale morphology when obtained on untreated substrate material and on the surface layers rich in aluminium.

  18. Effect of surface diffusion on morphology and scaling properties during glancing angle deposition

    Science.gov (United States)

    Mukherjee, Srijit

    The objective of this research work is to study the effect of surface diffusion on the morphology of porous thin films grown by Glancing Angle Deposition (GLAD) wherein atomic shadowing is the dominant physical phenomenon responsible for growth of isolated nano-rod structures. The morphology has been analyzed in terms of change in the width of the nanorods w at a given height h as well as changes in scaling relations as a function of diffusion length scale. Atomic shadowing during kinetically limited physical vapor deposition causes a chaotic instability in the layer morphology that leads to nanorod growth. GLAD experiments indicate that the rod morphology, in turn, exhibits a chaotic instability with increasing surface diffusion. The measured rod width versus growth temperature converges onto a single curve for metallic systems when normalized by the melting point Tm. A model based on mean field nucleation theory reveals a transition from a two- to three-dimensional growth regime at (0.20 +/- 0.03) x Tm and an activation energy for diffusion on curved surfaces of (2.46 +/- 0.02) x kTm. The consistency in the GLAD data suggests that the effective mass transport on a curved surface is described by a single normalized activation energy that is applicable to all elemental metals. Metallic nanorods grown by GLAD at Ts = 300--1123 K exhibit self-affine scaling, where the average rod width w increases with height h according to w ∝ h p. The growth exponent p for the investigated metals (Ta, Nb, Cr and Al) varies with temperature and material but collapses onto a single curve when plotted against the homologous temperature theta = Ts/Tm. It decreases from p = 0.5 at theta = 0 to 0.39 at theta = 0.22, consistent with reported theoretical predictions, but exhibits a transition to an anomalous value of p = 0.7 at theta = 0.26, followed by a decrease to 0.33 at theta = 0.41. The change in the scaling relations has been related to changes in the surface roughness of the

  19. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks.

    Science.gov (United States)

    Hwang, Seungtaik; Gopalan, Arun; Hovestadt, Maximilian; Piepenbreier, Frank; Chmelik, Christian; Hartmann, Martin; Snurr, Randall Q; Kärger, Jörg

    2018-03-15

    Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n- alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n- butane was observed, followed by an increase for n- pentane, and another decrease for n- hexane. This observation was confirmed by uptake measurements with n- butane/ n -pentane mixtures, which yield faster uptake of n- pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n- pentane concentrations exceeding the (eventually attained) equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n- alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.

  20. Anomaly in the Chain Length Dependence of n-Alkane Diffusion in ZIF-4 Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Seungtaik Hwang

    2018-03-01

    Full Text Available Molecular diffusion is commonly found to slow down with increasing molecular size. Deviations from this pattern occur in some host materials with pore sizes approaching the diameters of the guest molecules. A variety of theoretical models have been suggested to explain deviations from this pattern, but robust experimental data are scarcely available. Here, we present such data, obtained by monitoring the chain length dependence of the uptake of n-alkanes in the zeolitic imidazolate framework ZIF-4. A monotonic decrease in diffusivity from ethane to n-butane was observed, followed by an increase for n-pentane, and another decrease for n-hexane. This observation was confirmed by uptake measurements with n-butane/n-pentane mixtures, which yield faster uptake of n-pentane. Further evidence is provided by the observation of overshooting effects, i.e., by transient n-pentane concentrations exceeding the (eventually attained equilibrium value. Accompanying grand canonical Monte Carlo simulations reveal, for the larger n-alkanes, significant differences between the adsorbed and gas phase molecular configurations, indicating strong confinement effects within ZIF-4, which, with increasing chain length, may be expected to give rise to configurational shifts facilitating molecular propagation at particular chain lengths.

  1. Generating a Simulated Fluid Flow Over an Aircraft Surface Using Anisotropic Diffusion

    Science.gov (United States)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.

  2. Diffusion of radioactively tagged penetrants through rubbery polymers. II. Dependence on molecular length of penetrant

    International Nuclear Information System (INIS)

    Rhee, C.K.; Ferry, J.D.; Fetters, L.J.

    1977-01-01

    The diffusion of radioactively tagged n-hexadecane, n-dotriacontane, and a polybutadiene oligomer with molecular weight 1600 has been studied in 12 rubbery polymers. Diffusion coefficients were obtained from the theory for the thin smear method: for n-hexadecane and for n-dotriacontane (with one exception), in the form appropriate for a completely miscible polymer-penetrant pair, and for the oligomer in the form appropriate for slow entry of the pentrant across the penetrant-polymer interface. For the four flexible linear penetrants, n-dodecane, n-hexadecane, n-dotriacontane, and oligomer, the ratios of diffusion coefficients (or translational friction coefficients) are nearly the same in every polymer. It is concluded that these penetrants travel with similar segmentwise motions, although that is not the case with bulkier, more rigid penetrants. For the three normal paraffins, the friction coefficient is approximately proportional to molecular weight, but that for the oligomer is smaller than would be predicted on this basis

  3. Direct measurement of Cu surface self-diffusion on a checked surface

    International Nuclear Information System (INIS)

    Cousty, Jacques; Peix, Roger; Perraillon, Bernard.

    1976-01-01

    A radiotracer technique ( 64 Cu) was developed to measure surface diffusion on copper surfaces of total impurity concentration not exceeding some 10 -3 monolayers. The apparatus used consists of a slow electron diffraction device, an Auger analysis spectrometer (CMA), an ion gun and an evaporation device assembled in an ultra-vacuum chamber holding a residual pressure below 10 -10 Torr. A sample handler enables the surface studied to be positioned in front of each of these instruments. During the diffusion treatment the chemical composition of the surface is checked intermittently, and afterwards the spread of the deposit is measured outside the ultravacuum chamber. Slices several microns thick are removed and dissolved separately in dishes containing HNO 3 . The activity is then measured with a flow counter [fr

  4. Nucleation of reaction-diffusion waves on curved surfaces

    International Nuclear Information System (INIS)

    Kneer, Frederike; Schöll, Eckehard; Dahlem, Markus A

    2014-01-01

    We study reaction-diffusion waves on curved two-dimensional surfaces, and determine the influence of curvature upon the nucleation and propagation of spatially localized waves in an excitable medium modelled by the generic FitzHugh–Nagumo model. We show that the stability of propagating wave segments depends crucially on the curvature of the surface. As they propagate, they may shrink to the uniform steady state, or expand, depending on whether they are smaller or larger, respectively, than a critical nucleus. This critical nucleus for wave propagation is modified by the curvature acting like an effective space-dependent local spatial coupling, similar to diffuson, thus extending the regime of propagating excitation waves beyond the excitation threshold of flat surfaces. In particular, a negative gradient of Gaussian curvature Γ, as on the outside of a torus surface (positive Γ), when the wave segment symmetrically extends into the inside (negative Γ), allows for stable propagation of localized wave segments remaining unchanged in size and shape, or oscillating periodically in size. (paper)

  5. Diffusion effects on volume-selective NMR at small length scales; Diffusionseffekte in volumenselektiver NMR auf kleinen Laengenskalen

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim

    2009-01-21

    In this thesis, the interplay between diffusion and relaxation effects in spatially selective NMR experiments at short length scales is explored. This is especially relevant in the context of both conventional and mechanically detected MRI at (sub)micron resolution in biological specimens. Recent results on selectively excited very thin slices showed an in-slice-magnetization recovery orders of magnitude faster than the longitudinal relaxation time T1. However, those experiments were run on fully relaxed samples while MRI and especially mechanically detected NMR experiments are typically run in a periodic fashion with repetition times far below T1. The main purpose of this work therefore was to extend the study of the interplay between diffusion and longitudinal relaxation to periodic excitations. In some way, this is inverse phenomenon to the DESIRE (Diffusive Enhancement of SIgnal and REsolution) approach, proposed 1992 by Lauterbur. Experiments on periodically excited thin slices were carried out at a dedicated static field gradient cryomagnet with magnetic field gradients up to 180 T/m. In order to obtain plane slices, an appropriate isosurface of the gradient magnet had to be identified. It was found at a field of 3.8 T with a gradient of 73 T/m. In this field, slices down to a thickness of 3.2 {mu}m could be excited. The detection of the NMR signal was done using FIDs instead of echoes as the excitation bandwidth of those thin slices is sufficiently small to observe FIDs which are usually considered to be elusive to detection in such strong static field gradients. A simulation toolbox based on the full Bloch-Torrey-equation was developed to describe the excitation and the formation of NMR signals under those unusual conditions as well as the interplay of diffusion and magnetization recovery. Both the experiments and the simulations indicate that diffusion effects lead to a strongly enhanced magnetization modulation signal also under periodic excitation

  6. Conjecture on superrotation in planetary atmospheres - A diffusion model with mixing length theory

    Science.gov (United States)

    Mayr, H. G.; Harris, I.; Hartle, R. E.; Schatten, K. H.; Chan, K. L.

    1985-01-01

    The component of rigid shell superrotation on Venus is discussed in the context of comparative planetary atmospheres. A simplified, heuristic analysis, utilizing mixed length theory to describe the small scale nonlinear advections of energy and angular momentum, thereby providing a closure of the dynamic system, is presented, on the basis of which a crude estimate of zonal velocity is made. The rigid shell (global average) component on Venus was calculated to be 105 m/sec.

  7. Flame Treatment of Low-Density Polyethylene: Surface Chemistry Across the Length Scale

    NARCIS (Netherlands)

    Song, Jing; Gunst, Ullrich; Arlinghaus, Heinrich F.; Vancso, Gyula J.

    2007-01-01

    The relationship between surface chemistry and morphology of flame treated low-density polyethylene (LDPE) was studied by various characterization techniques across different length scales. The chemical composition of the surface was determined on the micrometer scale by X-ray photoelectron

  8. Averaging of diffusing contaminant concentrations in atmosphere surface layer

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Ramzina, T.V.

    1985-01-01

    Calculations permitting to average concentration fields of diffusing radioactive contaminant coming from the NPP exhaust stack in the atmospheric surface layer are given. Formulae of contaminant concentration field calculation are presented; it depends on the average wind direction value (THETA) for time(T) and stability of this direction (σsub(tgTHETA) or σsub(THETA)). Probability of wind direction deviation from the average value for time T is satisfactory described by the Gauss law. With instability increase in the atmosphere σ increases, when wind velocity increasing the values of σ decreases for all types of temperature gradients. Nonuniformity of σ value dependence on averaging time T is underlined, that requires accurate choice of σsub(tgTHETA) and σsub(THETA) parameters in calculations

  9. Proton irradiation effects on minority carrier diffusion length and defect introduction in homoepitaxial and heteroepitaxial n-GaN

    Science.gov (United States)

    Collins, K. C.; Armstrong, A. M.; Allerman, A. A.; Vizkelethy, G.; Van Deusen, S. B.; Léonard, F.; Talin, A. A.

    2017-12-01

    Inherent advantages of wide bandgap materials make GaN-based devices attractive for power electronics and applications in radiation environments. Recent advances in the availability of wafer-scale, bulk GaN substrates have enabled the production of high quality, low defect density GaN devices, but fundamental studies of carrier transport and radiation hardness in such devices are lacking. Here, we report measurements of the hole diffusion length in low threading dislocation density (TDD), homoepitaxial n-GaN, and high TDD heteroepitaxial n-GaN Schottky diodes before and after irradiation with 2.5 MeV protons at fluences of 4-6 × 1013 protons/cm2. We also characterize the specimens before and after irradiation using electron beam-induced-current (EBIC) imaging, cathodoluminescence, deep level optical spectroscopy (DLOS), steady-state photocapacitance, and lighted capacitance-voltage (LCV) techniques. We observe a substantial reduction in the hole diffusion length following irradiation (50%-55%) and the introduction of electrically active defects which could be attributed to gallium vacancies and associated complexes (VGa-related), carbon impurities (C-related), and gallium interstitials (Gai). EBIC imaging suggests long-range migration and clustering of radiation-induced point defects over distances of ˜500 nm, which suggests mobile Gai. Following irradiation, DLOS and LCV reveal the introduction of a prominent optical energy level at 1.9 eV below the conduction band edge, consistent with the introduction of Gai.

  10. Generating a Simulated Fluid Flow over a Surface Using Anisotropic Diffusion

    Science.gov (United States)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2016-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using the gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and the gradient vector.

  11. Study on triplet exciton diffusion length of mCP in phosphorescent organic light-emitting devices using electroluminescent spectra

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu Junsheng, E-mail: jsyu@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Wen Wen; Jiang Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2011-07-15

    Electroluminescent (EL) spectra was employed to probe the triplet exciton diffusion length (L{sub T}) of a commonly used host material of N,N'-dicarbazolyl-3,5-benzene (mCP) in phosphorescent organic light-emitting devices (OLEDs). By varying the film thickness of bis [2-(4-tertbutylphenyl) benzothiazolato-N,C{sup 2}], iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)] phosphor doped layer within 30 nm thick mCP layer, a series of devices were fabricated to investigate the EL characteristics. The results showed that with the increasing doped layer thickness (d), both (t-bt){sub 2}Ir(acac) emission peaks at 562 nm and mCP emission centered at 403 nm were observed. Moreover, the relationship between mCP EL intensity and d was detected. The L{sub T} was induced by an abrupt decrease in variation of mCP EL intensity when d is increased from 10 to 15 nm, and the reason to cause this phenomenon was investigated. The L{sub T} of mCP approximately to 15 nm was perfectly consistent to the result of 16{+-}1 nm, which was calculated by the traditional steady-state diffusion model. - Highlights: {yields} EL spectra were employed to probe triplet exciton diffusion length (L{sub T}). {yields} The relationship between mCP EL intensity and doped layer thickness was studied. {yields} The L{sub T} ({approx}15 nm) was induced by an abrupt decrease in variation of mCP EL intensity.

  12. Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer

    Science.gov (United States)

    Matilainen, Mika; Tuononen, Ari

    2015-02-01

    We determined the tyre contact length on dry and wet roads by measuring the accelerations of the inner liner with a three-axial accelerometer. The influence of the tyre pressure, driving velocity, and tread depth on the contact length was studied in both types of road surface conditions. On dry asphalt the contact length was almost constant, regardless of the driving velocity. On wet asphalt the presence of water could be detected even at low driving velocities (e.g. 20 km/h for a worn tyre) as the contact length began to decrease from that found in the dry asphalt situation. In addition to improving the performance of active safety systems and driver warning systems, the contact length information could be beneficial for classifying and studying the aquaplaning behaviour of tyres.

  13. Simulating the Effect of Modulated Tool-Path Chip Breaking On Surface Texture and Chip Length

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.S.; McFarland, J.T.; Tursky, D. A.; Assaid, T. S.; Barkman, W. E.; Babelay, Jr., E. F.

    2010-04-30

    One method for creating broken chips in turning processes involves oscillating the cutting tool in the feed direction utilizing the CNC machine axes. The University of North Carolina at Charlotte and the Y-12 National Security Complex have developed and are refining a method to reliably control surface finish and chip length based on a particular machine's dynamic performance. Using computer simulations it is possible to combine the motion of the machine axes with the geometry of the cutting tool to predict the surface characteristics and map the surface texture for a wide range of oscillation parameters. These data allow the selection of oscillation parameters to simultaneously ensure broken chips and acceptable surface characteristics. This paper describes the machine dynamic testing and characterization activities as well as the computational method used for evaluating and predicting chip length and surface texture.

  14. Inward Cationic Diffusion and Formation of Silica-Rich Surface Nanolayer of Glass

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng

    2009-01-01

    This paper reports a chemical approach for obtaining a silica-rich nanolayer on the surface of a vanadium-bearing silicate glass. The approach involves depletion of earth alkaline ions (Mg2+ and Ca2+) from the glass surface by means of inward diffusion of those ions, i.e., diffusion from the surf......This paper reports a chemical approach for obtaining a silica-rich nanolayer on the surface of a vanadium-bearing silicate glass. The approach involves depletion of earth alkaline ions (Mg2+ and Ca2+) from the glass surface by means of inward diffusion of those ions, i.e., diffusion from...

  15. A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces.

    Science.gov (United States)

    Shankar, Varun; Wright, Grady B; Kirby, Robert M; Fogelson, Aaron L

    2016-06-01

    In this paper, we present a method based on Radial Basis Function (RBF)-generated Finite Differences (FD) for numerically solving diffusion and reaction-diffusion equations (PDEs) on closed surfaces embedded in ℝ d . Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scattered nodes representing the surface and normal vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby avoiding coordinate distortions and singularities. We also present an optimization procedure that allows for the stabilization of the discrete differential operators generated by our RBF-FD method by selecting shape parameters for each stencil that correspond to a global target condition number. We show the convergence of our method on two surfaces for different stencil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric surfaces and more general surfaces represented by point clouds.

  16. Turbulent flows over superhydrophobic surfaces with shear-dependent slip length

    Science.gov (United States)

    Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre

    2015-11-01

    Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).

  17. The Wafer and Diffusion Lot Dependence of Surface Effects Resulting from Ionizing Radiation,

    Science.gov (United States)

    An investigation of the wafer and diffusion lot dependence of surface effects resulting from ionizing radiation was conducted by irradiating samples...of transistors. The transistors were selected by the wafer and diffusion lot from which they were produced. Both NPN and PNP transistors were...the diffusion lot . With the PNP’s which were not effected to the same extent as the NPN’s the dependence on the wafer or diffusion lot was not

  18. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers.

    Science.gov (United States)

    Tan, Bernice Mei Jin; Chan, Lai Wah; Heng, Paul Wan Sia

    2018-03-06

    Surface roughness is well recognized as a critical physical property of particulate systems, particularly in relation to adhesion, friction, and flow. An example is the surface property of carrier particles in carrier-based dry powder inhaler (DPI) formulations. The numerical characterization of roughness remains rather unsatisfactory due to the lack of spatial (or length scale) information about surface features when a common amplitude parameter such as average roughness ( R a ) is used. An analysis of the roughness of lactose carrier particles at three different length scales, designed for specificity to the study of interactive mixtures in DPI, was explored in this study. Three R a parameters were used to represent the microscale, intermediate scale, and macroscale roughness of six types of surface-modified carriers. Coating of micronized lactose fines on coarse carrier particles increased their microroughness from 389 to 639 nm while the macroroughness was not affected. Roller compaction at higher roll forces led to very effective surface roughening, particularly at longer length scales. Changes in R a parameters corroborated the visual observations of particles under the scanning electron microscope. Roughness at the intermediate scale showed the best correlation with the fine particle fraction (FPF) of DPI formulations. From the range of 250 to 650 nm, every 100 nm increase in the intermediate roughness led to ∼8% increase in the FPF. However, the effect of surface roughness was greatly diminished when fine lactose (median size, 9 μm) of comparable amounts to the micronized drug were added to the formulation. The combination of roughness parameters at various length scales provided much discriminatory surface information, which then revealed the "quality" of roughness necessary for improving DPI performance.

  19. Solute transport through fractured rock: Radial diffusion into the rock matrix with several geological layers for an arbitrary length decay chain

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2016-05-01

    The paper presents a model development to derive a semi-analytical solution to describe reactive solute transport through a single channel in a fracture with cylindrical geometry. The model accounts for advection through the channel, radial diffusion into the adjacent heterogeneous rock matrix comprising different geological layers, adsorption on both the channel surface, and the geological layers of the rock matrix and radioactive decay chain. Not only an arbitrary-length decay chain, but also as many number of the rock matrix layers with different properties as observed in the field can be handled. The solution, which is analytical in the Laplace domain, is transformed back to the time domain numerically e.g. by use of de Hoog algorithm. The solution is verified against experimental data and analytical solutions of limiting cases of solute transport through porous media. More importantly, the relative importance and contribution of different processes on solute transport retardation in fractured rocks are investigated by simulating several cases of varying complexity. The simulation results are compared with those obtained from rectangular model with linear matrix diffusion. It is found that the impact of channel geometry on breakthrough curves increases markedly as the transport distance along the flow channel and away into the rock matrix increase. The effect of geometry is more pronounced for transport of a decay chain when the rock matrix consists of a porous altered layer.

  20. Adatom surface diffusion of catalytic metals on the anatase TiO2(101) surface.

    Science.gov (United States)

    Alghannam, Afnan; Muhich, Christopher L; Musgrave, Charles B

    2017-02-08

    Titanium oxide is often decorated with metal nano-particles and either serves as a catalyst support or enables photocatalytic activity. The activity of these systems degrades over time due to catalytic particle agglomeration and growth by Ostwald ripening where adatoms dissociate from metal particles, diffuse across the surface and add to other metal particles. In this work, we use density functional theory calculations to study the diffusion mechanisms of select group VIII and 1B late-transition metal adatoms commonly used in catalysis and photocatalysis (Au, Ag, Cu, Pt, Rh, Ni, Co and Fe) on the anatase TiO 2 (101) surface. All metal adatoms preferentially occupy the bridge site between two 2-fold-coordinated oxygen anions (O 2c ). Surface migration was investigated by calculating the minimum energy pathway from one bridge site to another along three pathways: two in the [010] direction along a row of surface O 2c anions and one in the [101[combining macron

  1. Surface Properties of Silane-Treated Diatomaceous Earth Coatings: Effect of Alkyl Chain Length.

    Science.gov (United States)

    Perera, Helanka J; Mortazavian, Hamid; Blum, Frank D

    2017-03-21

    Modification of diatomaceous earth (DE) was performed using alkyltrimethoxysilanes of different chain lengths (C3, C8, C12, C16, and C18), and their resultant properties were determined. The thermal properties of these alkyltrimethoxysilane-treated DE powders were probed using thermogravimetric analysis and temperature-modulated differential scanning calorimetry, and the surface/porosity was studied using nitrogen adsorption and electron microscopy. Crystallinity of the hydrocarbon tails occurred when the chain lengths were C12 or larger, and the adsorbed hydrocarbon amounts were 1.6 mg/m 2 or more. The wettability of functionalized DE-containing surfaces was studied using water contact angle measurements. At larger adsorbed amounts of 2.2 mg/m 2 or more, the treated DE formed superhydrophobic coatings (with water contact angles ≥150°) with a polyurethane binder. These coatings required a minimum of 30% particle loadings, which allowed the DE particles to dominate the surface. At loadings larger than approximately 50%, there was a decrease in the contact angles corresponding to a reduction in roughness on the surface. Samples with adsorbed amounts less than 2.2 mg/m 2 or chain lengths shorter than C12 were only hydrophobic. These results were in agreement with scanning electron microscopy and Brunauer-Emmett-Teller specific surface area and pore volume measurements.

  2. Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure

    Science.gov (United States)

    Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.

    2017-07-01

    Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.

  3. Full Length Amelogenin Binds to Cell Surface LAMP-1 on Tooth Root/Periodontium Associated Cells

    Science.gov (United States)

    Zhang, Hai; Tompkins, Kevin; Garrigues, Jacques; Snead, Malcolm L.; Gibson, Carolyn W.; Somerman, Martha J.

    2010-01-01

    Objectives Lysosome-associated membrane protein-1 (LAMP-1) has been suggested to be a cell surface receptor for a specific amelogenin isoform, leucine-rich amelogenin peptide or LRAP. However, it is unclear if LAMP-1 is an amelogenin receptor for dental mesenchymal cells. The goal of this study was to determine if LAMP-1 serves as a cell surface binding site for full length amelogenin on tooth root/periodontium associated mesenchymal cells. Design Murine dental follicle cells and cementoblasts (OCCM-30) were cultured for 2 days followed by addition of full length recombinant mouse amelogenin, rp(H)M180. Dose-response (0 to 100 μg/ml) and time course (0 to 120 minutes) assays were performed to determine the optimal conditions for live cell surface binding using immuno-fluorescent microscopy. A competitive binding assay was performed to determine binding specificity by adding Emdogain (1 mg/ml) to the media. An antibody against LAMP-1 was used to detect the location of LAMP-1 on the cell surface and the pattern was compared to cell surface bound amelogenin. Both amelogenin and cell surface LAMP-1 were immuno-co-localized to compare the amount and distribution pattern. Results Maximum surface binding was achieved with 50 μg/ml of rp(H)M180 for 120 minutes. This binding was specific as demonstrated by competitive inhibition (79% lower) with the addition of Emdogain. The binding pattern for rp(H)M180 was similar to the distribution of surface LAMP-1 on dental follicle cells and cementoblasts. The high co-localization coefficient (0.92) for rp(H)M180 and LAMP-1 supports rp(H)M180 binding to cell surface LAMP-1. Conclusions The data from this study suggest that LAMP-1 can serve as a cell surface binding site for amelogenin on dental follicle cells and cementoblasts. PMID:20382373

  4. The application of slip length models to larger textures in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Fairhall, Chris; Garcia-Mayoral, Ricardo

    2017-11-01

    We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces. We assess the validity of simulations where the surface is modelled as homogeneous slip lengths, comparing them to simulations where the surface texture is resolved. Our results show that once the coherent flow induced by the texture is removed from the velocity fields, the remaining flow sees the surface as homogeneous. We then investigate how the overlying turbulence is modified by the presence of surface texture. For small textures, we show that turbulence is shifted closer to the wall due to the presence of slip, but otherwise remains essentially unmodified. For larger textures, the texture interacts with the turbulent lengthscales, thereby modifying the overlying turbulence. We also show that the saturation of the effect of the spanwise slip length (Fukagata et al. 2006, Busse & Sandham 2012, Seo & Mani 2016), which is drag increasing, is caused by the impermeability imposed at the surface. This work was supported by the Engineering and Physical Sciences Research Council.

  5. Roughness Length of Water Vapor over Land Surfaces and Its Influence on Latent Heat Flux

    Directory of Open Access Journals (Sweden)

    Sang-Jong Park

    2010-01-01

    Full Text Available Latent heat flux at the surface is largely dependent on the roughness length for water vapor (z0q. The determination of z0q is still uncertain because of its multifaceted characteristics of surface properties, atmospheric conditions and insufficient observations. In this study, observed values from the Fluxes Over Snow Surface II field experiment (FLOSS-II from November 2002 to March 2003 were utilized to estimate z0q over various land surfaces: bare soil, snow, and senescent grass. The present results indicate that the estimated z0q over bare soil is much smaller than the roughness length of momentum (z0m; thus, the ratio z0m/z0q is larger than those of previous studies by a factor of 20 - 150 for the available flow regime of the roughness Reynolds number, Re* > 0.1. On the snow surface, the ratio is comparable to a previous estimation for the rough flow (Re* > 1, but smaller by a factor of 10 - 50 as the flow became smooth (Re* < 1. Using the estimated ratio, an optimal regression equation of z0m/z0q is determined as a function of Re* for each surface type. The present parameterization of the ratio is found to greatly reduce biases of latent heat flux estimation compared with that estimated by the conventional method, suggesting the usefulness of current parameterization for numerical modeling.

  6. The Complete Solution of Fick's Second Law of Diffusion with Time-dependent Diffusion Coefficient and Surface Concentration

    DEFF Research Database (Denmark)

    Mejlbro, Leif

    1996-01-01

    Fick's Second Law of Diffusion with time-dependent diffusioncoefficient and surface concentration is solved. Mimicking the classicalsolution, special time-dependent surface concentration functions areconsidered. These models are used in giving estimates of the lifetimeof the structure, when the c...... the concrete cover is given, as well as estimatesof the thickness of the concrete cover, when the expected lifetime is given.*Note: Book tilte: Durability of Concrete in Saline Environment...

  7. Extracting surface diffusion coefficients from batch adsorption measurement data: application of the classic Langmuir kinetics model.

    Science.gov (United States)

    Chu, Khim Hoong

    2017-11-09

    Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6  cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.

  8. The impacts of thermal roughness length on land surface climate in IPSL-CM

    Science.gov (United States)

    Wand, Fuxing; Cheruy, Frédérique; Vuichard, Nicolas; Sima, Adriana; Hourdin, Frederic

    2016-04-01

    The aerodynamic and thermal roughness lengths (z0m and z0h) are the two crucial parameters for bulk transfer equations to calculate turbulent flux. The exchange of momentum is usually different with scalars as heat (or water vapor, carbon dioxide, traces gas). In general, the transport of scalars (by molecular diffusion) is considered less efficient than momentum (by pressure fluctuations), owing to the absence of bluff-body forces for scalar exchange. However, the z0h and z0m are equal in the current IPSL-CM model. The objective of the study is to investigate the impacts of z0h parameterizations on the land surface climate. Several sensitivity experiments that accounting for different z0h and z0m are carried out with IPSL-CM: (1) z0h = z0m/10; (2) z0h = z0m/100; (3) a more physically based z0h parameterizations. A nudging approach is used in order to avoid the time-consuming long-term simulations required to account for the natural variability of the climate. The results show that the seasonal mean surface temperature (Ts) increases 0.5-1 K (for z0h = z0m/10) and 1-2 K (for z0h = z0m/100) over JJA due to the decrease of z0h. The most significant variation is over the Sahara. During the daytime, the increase of Ts (around 1-2 K) is higher than the air temperature (Tair, ~0.2 K) for z0h = z0m/10. During the night time, the increase of Ts and Tair are very close (around 0.3-0.6 K) for z0h = z0m/10. The asymmetric variation of Tair during night and day causes a decrease (~0.3 K for z0h = z0m/10; ~0.6 K for z0h = z0m/100) of diurnal temperature range (DTR). The seasonal mean sensible heat flux decreases by ~4-6 W/m2 (for z0h = z0m/10) with the decrease of z0h as well. The change of latent heat flux is the most significant over the tropics with the seasonal mean decrease of 4-8 W/m2 for z0h = z0m/10 over both JJA and DJF. Besides the change of mean climate, the human thermal comfort is also affected by z0h. A smaller z0h corresponds to a higher wet-bulb temperature

  9. Diffuse coplanar surface barrier discharge -- basic properties and its application in surface treatment of nonwovens

    Science.gov (United States)

    Kovacik, Dusan; Rahel, Jozef; Kubincova, Jana; Zahoranova, Anna; Cernak, Mirko

    2009-10-01

    In recent years, low temperature atmospheric pressure plasma surface treatments have become a hot topic because of the potential of fast and efficient in-line processing fabrication without expensive vacuum equipment. A major problem of atmospheric pressure treatment in air is insufficient treatment uniformity because, particularly at the higher plasma power densities, the air plasma has the tendency of filamentation and transition into an arc discharge. Diffuse coplanar surface barrier discharge (DCSBD) plasma source has been developed to overcome these problems. This type of discharge enables to generate macroscopically homogeneous thin (˜ 0.3 mm) plasma layer with power density of some 100 W/cm^3 practically in any gas without admixture of He. It was found that the ambient air plasma of DCSBD is capable to make lightweight polypropylene nonwoven fabrics permanently hydrophilic, without any pinholing and with low power consumption of some 1 kWh/kg.

  10. Impact of morphology on diffusive dynamics on curved surfaces.

    Science.gov (United States)

    Kusters, Remy; Storm, Cornelis

    2014-03-01

    Diffusive processes on nonplanar substrates are deeply relevant for cellular function and transport and increasingly used to probe and characterize the behavior of proteins in membranes. We present analytical and numerical analyses of in-plane diffusion of discrete particles on curved geometries reflecting various generic motifs in biology and explore, in particular, the effect that the shape of the substrate has on the characteristic time scales of diffusive processes. To this end, we consider both collective measures (the relaxation of concentration profiles towards equilibrium) and single-particle measures (escape rates and first passage times of individual diffusing molecules): the first relevant for the correct interpretation of FRAP experiments in curved environments; the second, for single-particle tracking probes. Each of these measures is sensitively affected by the morphology of the substrate, and we find that the exit rate out of a domain is not uniquely set by the size of its boundary, illustrating the general principle we reveal: By varying the shape of a substrate, Nature can control the diffusive time scales in a microenvironment without changing the bare substrate properties.

  11. Impact of morphology on diffusive dynamics on curved surfaces

    Science.gov (United States)

    Kusters, Remy; Storm, Cornelis

    2014-03-01

    Diffusive processes on nonplanar substrates are deeply relevant for cellular function and transport and increasingly used to probe and characterize the behavior of proteins in membranes. We present analytical and numerical analyses of in-plane diffusion of discrete particles on curved geometries reflecting various generic motifs in biology and explore, in particular, the effect that the shape of the substrate has on the characteristic time scales of diffusive processes. To this end, we consider both collective measures (the relaxation of concentration profiles towards equilibrium) and single-particle measures (escape rates and first passage times of individual diffusing molecules): the first relevant for the correct interpretation of FRAP experiments in curved environments; the second, for single-particle tracking probes. Each of these measures is sensitively affected by the morphology of the substrate, and we find that the exit rate out of a domain is not uniquely set by the size of its boundary, illustrating the general principle we reveal: By varying the shape of a substrate, Nature can control the diffusive time scales in a microenvironment without changing the bare substrate properties.

  12. Effect of roughness lengths on surface energy and the planetary boundary layer height over high-altitude Ngoring Lake

    Science.gov (United States)

    Li, Zhaoguo; Lyu, Shihua; Wen, Lijuan; Zhao, Lin; Meng, Xianhong; Ao, Yinhuan

    2017-08-01

    The special climate environment creates a distinctive air-lake interaction characteristic in the Tibetan Plateau (TP) lakes, where the variations of surface roughness lengths also differ somewhat from those of other regions. However, how different categories of roughness lengths affect the lake surface energy exchange and the planetary boundary layer height (PBLH) remains unclear in the TP lakes. In this study, we used a tuned Weather Research and Forecasting (WRF) model version 3.6.1 to investigate the responses of the freeze-up date, turbulent fluxes, meteorological variables, and PBLH to surface roughness length variations in Ngoring Lake. Of all meteorological variables, the lake surface temperature responded to roughness length variations most sensitively; increasing roughness lengths can put the lake freeze-up date forward. The effect of momentum roughness length on wind speed was significantly affected by the fetch length. The increase in the roughness length for heat can induce the increment of the nightly PBLH in most months, especially for the central lake area in autumn. The primary factors that contribute to sensible heat flux (H) and latent heat flux (LE) were the roughness lengths for heat and momentum during the ice-free period, respectively. Increasing roughness length for heat can increase the nightly PBLH, and decreasing roughness length for moisture can also promote growth of the PBLH, but there was no obvious correlation between the momentum roughness length and the PBLH.

  13. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering

    Directory of Open Access Journals (Sweden)

    Xi Shao

    2016-03-01

    Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.

  14. Laser-induced desorption determinations of surface diffusion on Rh(111)

    International Nuclear Information System (INIS)

    Seebauer, E.G.; Schmidt, L.D.

    1987-01-01

    Surface diffusion of hydrogen, deuterium and CO on Rh(111) has been investigated by laser-induced thermal desorption (LITD) and compared with previous results for these species on Pt(111) and on other metals. For deuterium in the coverage range 0.02 0 - 8 x 10 -2 cm 2 /s, with a diffusion activation energy 3.7 0 rises from 10 -3 to 10 -2 cm 2 /s between θ = 0.01 and 0.40. Values of E/sub diff/ on different surfaces appear to correlate with differences in heats of adsorption in different binding states which form saddle point configurations in surface diffusion. In addition, oxidation reactions on Rh and on several other transition metal surfaces may be limited to CO or H surface diffusion. 30 refs., 3 figs., 1 tab

  15. Modeling the erythemal surface diffuse irradiance fraction for Badajoz, Spain

    Science.gov (United States)

    Sanchez, Guadalupe; Serrano, Antonio; Cancillo, María Luisa

    2017-10-01

    Despite its important role on the human health and numerous biological processes, the diffuse component of the erythemal ultraviolet irradiance (UVER) is scarcely measured at standard radiometric stations and therefore needs to be estimated. This study proposes and compares 10 empirical models to estimate the UVER diffuse fraction. These models are inspired from mathematical expressions originally used to estimate total diffuse fraction, but, in this study, they are applied to the UVER case and tested against experimental measurements. In addition to adapting to the UVER range the various independent variables involved in these models, the total ozone column has been added in order to account for its strong impact on the attenuation of ultraviolet radiation. The proposed models are fitted to experimental measurements and validated against an independent subset. The best-performing model (RAU3) is based on a model proposed by Ruiz-Arias et al. (2010) and shows values of r2 equal to 0.91 and relative root-mean-square error (rRMSE) equal to 6.1 %. The performance achieved by this entirely empirical model is better than those obtained by previous semi-empirical approaches and therefore needs no additional information from other physically based models. This study expands on previous research to the ultraviolet range and provides reliable empirical models to accurately estimate the UVER diffuse fraction.

  16. Boron Diffusion in Surface-Treated Framing Lumber

    Science.gov (United States)

    Patricia K. Lebow; Stan T. Lebow; Steven A. Halverson

    2013-01-01

    The extent of boron penetration in framing lumber treated by spray applications during construction is not well quantified. This study evaluated the effect of formulation and concentration on diffusion of boron in lumber specimens that were equilibrated in conditions that produced wood moisture contents of 18 to 21 percent. One set of specimens was pressure treated...

  17. Effects of surface hydrophobicity on the conformational changes of polypeptides of different length.

    Science.gov (United States)

    Mu, Yan

    2011-09-01

    We studied the effects of surface hydrophobicity on the conformational changes of different length polypeptides by calculating the free energy difference between peptide structures using the bias-potential Monte Carlo technique and the probability ratio method. It was found that the hydrophobic surface plays an important role in the stability of secondary structures of the polypeptides with hydrophobic side chains. For short GAAAAG peptides, the hydrophobic surface destabilizes the α helix but stabilizes the β hairpin in the entire temperature region considered in our study. Interestingly, when the surface hydrophobic strength ε(hpsf)≥ε(hp), the most stable structure in the low temperature region changes from α helix to β hairpin, and the corresponding phase transition temperature increases slightly. For longer GAAAAAAAAAAG peptides, the effects of the relatively weak hydrophobic surface (ε(hpsf) ε(hp)) may further disturb the formation of both α-helical and β structures. Moreover, the phase transition temperature between α-helical structures and random coils significantly decreases due to the helicity loss when ε(hpsf)>ε(hp). Our findings provide a basic and quantitative picture for understanding the effects of a hydrophobic surface on the conformational changes of the polypeptides with hydrophobic side chains. From an application viewpoint, the present study is helpful in developing alternative strategies of producing high-quality biological fibrillar materials and functional nanoscale devices by the self-assembly of the polypeptides on hydrophobic surfaces.

  18. Potential Energy Surface of NO on Pt(997: Adsorbed States and Surface Diffusion

    Directory of Open Access Journals (Sweden)

    N. Tsukahara

    2012-01-01

    Full Text Available The potential energy surface (PES of NO on Pt(997 has been elucidated: the adsorption states and diffusion processes of NO on Pt(997 at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS and scanning tunneling microscopy (STM. When NO molecules adsorb on a surface at a low temperature (11 K, each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997: a bridge site of the upper step, an fcc- (or hcp- hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.

  19. Boron Diffused Thermoluminescent Surface Layer in LiF TLDs for Skin Dose Assessments

    DEFF Research Database (Denmark)

    Christensen, Poul; Majborn, Benny

    1980-01-01

    A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry.......A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry....

  20. Surface modification and laser pulse length effects on internal energy transfer in DIOS.

    Science.gov (United States)

    Luo, Guanghong; Chen, Yong; Siuzdak, Gary; Vertes, Akos

    2005-12-29

    Benzyl-substituted benzylpyridinium (BP) chloride salts were used as a source of thermometer ions to probe the internal energy (IE) transfer in desorption/ionization on porous silicon (DIOS). To modify their wetting properties and the interaction energies with the thermometer ions, the DIOS surfaces were silylated to produce trimethylsilyl- (TMS), amine- (NH2), perfluoroalkyl- (PFA), and perfluorophenyl-derivatized (PFP) surfaces. Two laser sources--a nitrogen laser with pulse length of 4 ns and a mode locked 3 x omega Nd:YAG laser with a pulse length of 22 ps--were utilized to induce desorption/ionization and fragmentation at various laser fluence levels. The corresponding survival yields were determined as indicators of the IE transfer and the IE distributions were extracted. In most cases, with increasing the laser fluence in a broad range (approximately 20 mJ/cm2), no change in IE transfer was observed. For ns excitation, this was in remarkable contrast with MALDI, where increasing the laser fluence resulted in sharply (within approximately 5 mJ/cm2) declining survival yields. Derivatization of the porous silicon surface did not affect the survival yields significantly but had a discernible effect on the threshold fluence for ion production. The IE distributions determined for DIOS and MALDI from alpha-cyano-4-hydroxycinnamic acid reveal that the mean IE value is always lower for the latter. Using the ps laser, the IE distribution is always narrower for DIOS, whereas for ns laser excitation the width depends on surface modification. Most of the differences between MALDI and DIOS described here are compatible with the different dimensionality of the plume expansion and the differences in the activation energy of desorption due to surface modifications.

  1. Reflection of diffuse light from dielectric one-dimensional rough surfaces.

    Science.gov (United States)

    González-Alcalde, Alma K; Méndez, Eugenio R; Terán, Emiliano; Cuppo, Fabio L S; Olivares, J A; García-Valenzuela, Augusto

    2016-03-01

    We study the reflection of diffuse light from 1D randomly rough dielectric interfaces. Results for the reflectance under diffuse illumination are obtained by rigorous numerical simulations and then contrasted with those obtained for flat surfaces. We also explore the possibility of using perturbation theories and conclude that they are limited for this type of study. Numerical techniques based on Kirchhoff approximation and reduced Rayleigh equations yield better results. We find that, depending on the refractive index contrast and nature of the irregularities, the roughness can increase or decrease the diffuse reflectance of the surface.

  2. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.

    Science.gov (United States)

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2010-12-21

    This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at

  3. Exciton diffusion length in some thermocleavable polythiophene by the surface photovoltage method

    Czech Academy of Sciences Publication Activity Database

    Toušek, J.; Toušková, J.; Remeš, Zdeněk; Kousal, J.; Gevorgyan, S.A.; Krebs, F.C.

    2012-01-01

    Roč. 161, 23-24 (2012), s. 2727-2731 ISSN 0379-6779 Institutional research plan: CEZ:AV0Z10100521 Keywords : thermocleavable polythiophenes * photovoltage * excitons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.109, year: 2012

  4. Exciton diffusion length in some thermocleavable polythiophenes by the surface photovoltage method

    DEFF Research Database (Denmark)

    Tousek, J.; Touskova, J.; Remes, Z.

    2012-01-01

    property is that P3MHOCT can serve as a precursor which, after thermal annealing, converts into more rigid and insoluble P3CT and further thermal treatment produces native unsubstituted PT. Ellipsometric measurement yielded data on the thickness of the spin coated layers; absorption coefficients were...

  5. A desk study of surface diffusion and mass transport in clay

    International Nuclear Information System (INIS)

    Cook, A.J.

    1988-09-01

    The concept of a geological barrier to radionuclide migration from theoretical radioactive waste repositories has drawn attention to the physico-chemical properties of clays, which are traditionally regarded as retarding media. This report addresses the different mechanisms of transport of radionuclides through clay and in particular focuses on the surface diffusion movement of sorbed cations. The relative contributory importance of the different transport mechanisms is governed by the pore size distributions and interconnections within the clay fabric. Surface diffusion data in the literature have been from experiments using compacted montmorillonite and biotite gneiss. A possible programme of laboratory work is outlined, based on diffusion experiments, which describes the way of measuring the effect of surface diffusion more accurately in clays, mudstones and shales. (author)

  6. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.

    Science.gov (United States)

    Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter

    2015-05-21

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

  7. Polymer chain length effects on fibroblast attachment on nylon-3-modified surfaces.

    Science.gov (United States)

    Liu, Runhui; Masters, Kristyn S; Gellman, Samuel H

    2012-04-09

    Nylon-3 polymers have a polyamide backbone reminiscent of that found in proteins (β- vs α-amino acid residues, respectively), which makes these materials interesting for biological applications. Because of the versatility of the ring-opening polymerization process and the variety of β-lactam starting materials available, the structure of nylon-3 copolymers is highly amenable to alteration. A previous study showed that relatively subtle changes in the structure or ratio of hydrophobic and cationic subunits that comprise these polymers can result in significant changes in the ability of nylon-3-bearing surfaces to support cell adhesion and spreading. In the present study, we have exploited the highly tailorable nature of these polymers to synthesize new versions possessing a wide range of chain lengths, with the intent of optimizing these materials for use as cell-supportive substrates. We find that longer nylon-3 chains lead to better fibroblast attachment on modified surfaces and that at the optimal chain lengths less hydrophobic subunits are superior. The best polymers we identified are comparable to an RGD-containing peptide in supporting fibroblast attachment. The results described here will help to focus future efforts aimed at refining nylon-3 copolymer substrates for specific tissue engineering applications.

  8. Modeling of liquid–gas meniscus for textured surfaces: effects of curvature and local slip length

    International Nuclear Information System (INIS)

    Gaddam, Anvesh; Garg, Mayank; Agrawal, Amit; Joshi, Suhas S

    2015-01-01

    Surface texturing at the micro/nanolevel allows air to be trapped in sufficiently small cavities, thereby reducing the flow resistance over the surface in the laminar regime. The nature of the liquid–gas meniscus plays an important role in defining the boundary condition and it depends on the flow conditions and geometrical properties of textures. In the present work, we employ the unsteady volume of fluid model to investigate the behavior of the liquid–gas meniscus for ridges arranged normal to the flow direction to substantiate the frictional resistance of flow in a microchannel. It is found that the assumption of ‘zero shear stress’ at the liquid–gas interface grossly overpredicts the effective slip length with meniscus curvature and local partial slip length playing the dominant role. Numerical simulations performed in the laminar regime (20  <  Re  <  120) over single layered ridges normal to the flow direction revealed the effect of texture geometry on the reduction in pressure drop. In single layered structures, lotus-like geometries exhibited a greater reduction in drag (more than 30%) when compared to all other texture geometries. It is recognized that the flow experiences expansion and contraction cycles as it flows over the transverse ridges increasing the frictional resistance. Our findings will help to modify the boundary condition at the liquid–gas meniscus for accurate modeling in the laminar regime and to optimize the texture geometry to improve drag reduction. (paper)

  9. Impact of Urban Surface Roughness Length Parameterization Scheme on Urban Atmospheric Environment Simulation

    Directory of Open Access Journals (Sweden)

    Meichun Cao

    2014-01-01

    Full Text Available In this paper, the impact of urban surface roughness length z0 parameterization scheme on the atmospheric environment simulation over Beijing has been investigated through two sets of numerical experiments using the Weather Research and Forecasting model coupled with the Urban Canopy Model. For the control experiment (CTL, the urban surface z0 parameterization scheme used in UCM is the model default one. For another experiment (EXP, a newly developed urban surface z0 parameterization scheme is adopted, which takes into account the comprehensive effects of urban morphology. The comparison of the two sets of simulation results shows that all the roughness parameters computed from the EXP run are larger than those in the CTL run. The increased roughness parameters in the EXP run result in strengthened drag and blocking effects exerted by buildings, which lead to enhanced friction velocity, weakened wind speed in daytime, and boosted turbulent kinetic energy after sunset. Thermal variables (sensible heat flux and temperature are much less sensitive to z0 variations. In contrast with the CTL run, the EXP run reasonably simulates the observed nocturnal low-level jet. Besides, the EXP run-simulated land surface-atmosphere momentum and heat exchanges are also in better agreement with the observation.

  10. Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer

    Science.gov (United States)

    Zeira, Assaf

    The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.

  11. Effects of quenched impurities on surface diffusion, spreading, and ordering of O/W(110)

    DEFF Research Database (Denmark)

    Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.

    2002-01-01

    We study how quenched impurities affect the surface diffusion and ordering of strongly interacting adsorbate atoms on surfaces. To this end, we carry out Monte Carlo simulations for a lattice-gas model of O/W(110), including small concentrations of immobile impurities which block their adsorption...

  12. Nitrogen diffusion in near-surface range of ion doped molybdenum

    CERN Document Server

    Zamalin, E Y

    2001-01-01

    The dynamics of change in nitrogen near-the-surface concentration in the Mo ion-alloyed monocrystalline foil is studied through the Auger-electron spectroscopy and the secondary ion mass spectrometry. The implantation dose constituted 5 x 10 sup 1 sup 7 ion/cm sup 2 and the implantation energy equaled 50 and 100 keV. The samples diffusion annealing was performed at the temperature of 800-900 deg C. The evaluation of the nitrogen diffusion coefficient indicates the values by 3-5 orders lesser than the diffusion coefficient in the nitrogen solid-state solution in the molybdenum. At the same time the molybdenum self-diffusion coefficient value is by 3-5 orders lesser as compared to the obtained value. The supposition is made, the the surplus nitrogen relative to the solubility limit is deposited on the radiation defects and in the process of the diffusion annealing it nitrates together with them

  13. Hybridization Efficiency of Molecular Beacons Bound to Gold Nanowires: Effect of Surface Coverage and Target Length

    Science.gov (United States)

    2010-01-01

    Surface-bound nucleic acid probes designed to adopt specific secondary structures are becoming increasingly important in a range of biosensing applications but remain less well characterized than traditional single-stranded probes, which are typically designed to avoid secondary structure. We report the hybridization efficiency for surface-immobilized hairpin DNA probes. Our probes are molecular beacons, carrying a 3′ dye moiety and a 5′ thiol for attachment to gold nanowires, which serve as both scaffolds for probe attachment and quenchers. Hybridization efficiency was dependent on probe surface coverage, reaching a maximum of ∼90% at intermediate coverages of (1−2) × 1012 probes/cm2 and dropping to ≤20% at higher or lower coverages. Fluorescence intensity did not track with the number of target molecules bound, and was highest for high probe coverage despite the lower bound targets per square centimeter. Backfilling with short thiolated oligoethylene glycol spacers increased hybridization efficiency at low hairpin probe coverages (∼(3−4) × 1011 probes/cm2), but not at higher probe coverages (1 × 1012/cm2). We also evaluated the effect of target length by adding up to 50 nonhybridizing nucleotides to the 3′ or 5′ end of the complementary target sequence. Additional nucleotides on the 3′ end of the complementary target sequence (i.e., the end near the nanowire surface) had a much greater impact on hybridization efficiency as compared to nucleotides added to the 5′ end. This work provides guidance in designing sensors in which surface-bound probes designed to adopt secondary structures are used to detect target sequences from solution. PMID:21038880

  14. Theoretical studies of mutual diffusivities and surface properties in ...

    Indian Academy of Sciences (India)

    properties, thus underlining the importance of thermodynamic studies for liquid binary alloys. In this study, the transport and surface properties of Cd–Ga liquid alloys are determined from energetics and derivatives from experimental thermodynamic data. Cd–Ga alloys have been studied by many authors [14–16]. The alloy ...

  15. Surface modification of polyethylene by diffuse barrier discharge plasma

    Czech Academy of Sciences Publication Activity Database

    Novák, I.; Števiar, M.; Popelka, A.; Chodák, I.; Mosnáček, J.; Špírková, Milena; Janigová, I.; Kleinová, A.; Sedliačik, J.; Šlouf, Miroslav

    2013-01-01

    Roč. 53, č. 3 (2013), s. 516-523 ISSN 0032-3888 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : low-density polyethylene * plasma discharge * surface modification Subject RIV: JI - Composite Materials Impact factor: 1.441, year: 2013

  16. The Role of Lattice Vibrations in Adatom Diffusion at Metal Stepped Surfaces

    International Nuclear Information System (INIS)

    Durakanoglu, S.

    2004-01-01

    Diffusion of a single atom on metal surfaces remains a subject of continuing interest in the surface science community because of the important role it plays in several technologically important phenomena such as thin-film and eptaxial growth, catalysis and chemical reactions. Except for a few studies, most of theoretical works, ranging from molecular dynamic simulations to first principle electronic structure calculations, are devoted to determination of the characteristics of the diffusion processes and the energy barriers, neglecting the contribution of lattice vibrations in adatom diffusion. However, in a series of theoretical works on self-diffusion on the flat surfaces of Cu(100), Ag(100) and Ni(100), Ulrike et al.[1-3], showed that the vibrational contributions are important and should be included in any complete description of the temperature dependence of the diffusion coefficient. In this work, it is our aim to examine the role of lattice vibrations in adatom diffusion at stepped surfaces of Cu(100) and Ni(100) within the framework of transition state theory. Ehrlich-Shwoebel energy barriers for an adatom diffusing over a step-edge are calculated through the inclusion of vibrational internal energy. Local vibrational density of states, main ingredient to the vibrational thermodynamic functions, are calculated in the harmonic approximation, using real space Green's function method with the force constants derived from interaction potentials based on the embedded atom method. We emphasize the sensitivity of the local vibrational density of states to the local atomic environment. We, furthermore, discuss the contribution of thermodynamic functions calculated from local vibrational density of states to the prefactors in diffusion coefficient

  17. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurments of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  18. Evaluation of a multimode fiber optic low coherence interferometer for path length resolved Doppler measurements of diffuse light

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; van Leeuwen, Ton G.; Steenbergen, Wiendelt

    2007-01-01

    The performance of a graded index multimode fiber optic low coherence Mach-Zehnder interferometer with phase modulation is analyzed. Investigated aspects were its ability to measure path length distributions and to perform path length resolved Doppler measurements of multiple scattered photons in a

  19. Influence of spacer length on heparin coupling efficiency and fibrinogen adsorption of modified titanium surfaces

    Directory of Open Access Journals (Sweden)

    Gbureck Uwe

    2007-07-01

    Full Text Available Abstract Background Chemical bonding of the drug onto surfaces by means of spacer molecules is accompanied with a reduction of the biological activity of the drug due to a constricted mobility since normally only short spacer molecule like aminopropyltrimethoxysilane (APMS are used for drug coupling. This work aimed to study covalent attachment of heparin to titanium(oxide surfaces by varying the length of the silane coupling agent, which should affect the biological potency of the drug due to a higher mobility with longer spacer chains. Methods Covalent attachment of heparin to titanium metal and TiO2 powder was carried out using the coupling agents 3-(Trimethoxysilyl-propylamine (APMS, N- [3-(Trimethoxysilylpropyl]ethylenediamine (Diamino-APMS and N1- [3-(Trimethoxy-silyl-propyl]diethylenetriamine (Triamino-APMS. The amount of bound coupling agent and heparin was quantified photometrically by the ninhydrin reaction and the tolidine-blue test. The biological potency of heparin was determined photometrically by the chromogenic substrate Chromozym TH and fibrinogen adsorption to the modified surfaces was researched using the QCM-D (Quartz Crystal Microbalance with Dissipation Monitoring technique. Results Zeta-potential measurements confirmed the successful coupling reaction; the potential of the unmodified anatase surface (approx. -26 mV shifted into the positive range (> + 40 mV after silanisation. Binding of heparin results in a strongly negatively charged surface with zeta-potentials of approx. -39 mV. The retaining biological activity of heparin was highest for the spacer molecule Triamino-APMS. QCM-D measurements showed a lower viscosity for adsorbed fibrinogen films on heparinised surfaces by means of Triamino-APMS. Conclusion The remaining activity of heparin was found to be highest for the covalent attachment with Triamino-APMS as coupling agent due to the long chain of this spacer molecule and therefore the highest mobility of the drug

  20. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.

    Science.gov (United States)

    Ku, Bon Ki; Kulkarni, Pramod

    2012-05-01

    We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.

  1. Relevant time- and length scale of touch-down for drops impacting on a heated surface

    Science.gov (United States)

    van Limbeek, Michiel A. J.; Shirota, Minori; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2015-11-01

    The vapor generated from a liquid drop impacting a hot solid surface can prevent it to make contact, depending on the solid temperature. The minimum temperature when no contact is made between the drop and the solid is called the dynamic Leidenfrost temperature. The latent heat needed to generated the vapor is drawn from the solid, and in general the Leidenfrost temperature depends on the solid thermal properties. Here we show experiments conducted on a sapphire plate, to minimize the cooling of the solid and ensuring nearly isothermal conditions. By using high speed total internal reflection imaging, we observe the drop base during impact up to about 100nm above the substrate surface. By this technique we are able to study the processes responsible for the transition between fully wetting and fully levitating drop impact conditions as the solid temperature increases. We reveal the relevant length- and time-scales for the dimple formation under the drop and explain their relevance for the late-time dynamics. As the transition regime is traversed from low to high temperature, the liquid-solid contact gradually decreases which reduces the friction with the solid, enhancing the spreading of the drop considerably.

  2. Entry and diffusion of electrolytic hydrogen in some surface treated steels

    International Nuclear Information System (INIS)

    Waheed, A.F.M.

    1986-01-01

    Hydrogen diffusion and permeation through metals specially ferrous material is a subject that has a large volume of researches. the most important reason is the technological importance associated with the degradation of ferrous materials resulting from hydrogen absorption. The embrittling effect of hydrogen in steels and the catastrophic nature of failures caused by hydrogen embrittlement has led also to the importance of understanding hydrogen entry and surface processes. the effect of surface treatment of some types of steels on hydrogen entry and diffusion at room temperature (25 degree C) was studied. the two types of steels used in this study are plain carbon steel and low alloy steel

  3. Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2013-01-01

    Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.

  4. Simulation of near-surface proton-stimulated diffusion of boron in silicon

    International Nuclear Information System (INIS)

    Aleksandrov, O. V.; Kozlovski, V. V.

    2008-01-01

    A quantitative model for near-surface redistribution of doping impurity in silicon in the course of proton-stimulated diffusion is developed for the first time. According to the model, the near-surface peak of the impurity concentration is caused by migration of neutral impurity-self-interstitial pairs to the surface with subsequent decomposition of these pairs and accumulation of the impurity at the silicon surface within a thin layer (referred to as δ-doped layer). The depletion and enhancement regions that are found deeper than the near-surface concentration peak are caused by expulsion of ionized impurity by an electric field from the near-surface region of the field penetration. The field appears due to the charge formed in the natural-oxide film at the silicon surface as a result of irradiation with protons. The diffusion-kinetic equations for the impurity, self-interstitials, vacancies, and impurity-self-interstitial pairs were solved numerically simultaneously with the Poisson equation. It is shown that the results of calculations are in quantitative agreement with experimental data on the proton-stimulated diffusion of boron impurity in the near-surface region of silicon

  5. Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate

    Directory of Open Access Journals (Sweden)

    E. L. Davin

    2012-05-01

    Full Text Available The influence of land processes and in particular of diffuse/direct radiation partitioning on surface fluxes and associated regional-scale climate feedbacks is investigated using ERA-40 driven simulations over Europe performed with the COSMO-CLM2 Regional Climate Model (RCM. Two alternative Land Surface Models (LSMs, a 2nd generation LSM (TERRA_ML and a more advanced 3rd generation LSM (Community Land Model version 3.5, and two versions of the atmospheric component are tested, as well as a revised coupling procedure allowing for variations in diffuse/direct light partitioning at the surface, and their accounting by the land surface component.

    Overall, the RCM performance for various variables (e.g., surface fluxes, temperature and precipitation is improved when using the more advanced 3rd generation LSM. These improvements are of the same order of magnitude as those arising from a new version of the atmospheric component, demonstrating the benefit of using a realistic representation of land surface processes for regional climate simulations. Taking into account the variability in diffuse/direct light partitioning at the surface further improves the model performance in terms of summer temperature variability at the monthly and daily time scales. Comparisons with observations show that the RCM realistically captures temporal variations in diffuse/direct light partitioning as well as the evapotranspiration sensitivity to these variations. Our results suggest that a modest but consistent fraction (up to 3 % of the overall variability in summer temperature can be explained by variations in the diffuse to direct ratio.

  6. Modification of the glass surface induced by redox reactions and internal diffusion processes

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng

    In this paper we report a novel way to modify the glass surface in favor of some physical performances. The main step is to perform iso-thermal treatments on the selected silicate glasses containing transition metal at temperatures near the glass transition temperature for various durations under...... different gases. As a result, we have observed a striking phenomenon, i.e., the outward diffusion of divalent cations occurs not only under an oxidizing atmosphere of heat-treatment, but also under nitrogen, even under reducing atmospheres like H2/N2 (10/90). The extent of the cationic diffusion depends...... on temperature and duration of heat-treatments. The mechanism of the diffusion depends on the type of the gases used for the heat-treatments. In this paper we propose several possible models describing mechanisms of the cationic diffusion, and hence, of the formation of the nano-layer. We also report the effect...

  7. Past surface temperatures at the NorthGRIP drill site from the difference in firn diffusion of water isotopes

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard; Johnsen, S. J.; Popp, T. J.

    2011-01-01

    O. A model treatment of the diffusion process of the firn and the ice is presented along with a method of retrieving the diffusion signal from the ice core record of water isotopes using spectral methods. The model shows how the diffusion process is highly dependent on the inter-annual variations......A new ice core paleothermometer is introduced based on the temperature dependent diffusion of the stable water isotopes in the firn. A new parameter called differential diffusion length is defined as the difference between the diffusion length of the two stable water isotopologues 2H1H16O and 1H218...... warmer than observed in other ice core based temperature reconstructions. The mechanisms behind this behaviour are not fully understood. The method shows the need of an expansion of high resolution stable water isotope datasets from ice cores. However, the new ice core paleothermometer presented here...

  8. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix B

    Science.gov (United States)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and O) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and O2 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  9. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix J

    Science.gov (United States)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and 0) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and 02 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  10. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    Science.gov (United States)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  11. Laser-induced generation of surface periodic structures in media with nonlinear diffusion

    Science.gov (United States)

    Zhuravlev, V. M.; Zolotovskii, I. O.; Korobko, D. A.; Morozov, V. M.; Svetukhin, V. V.; Yavtushenko, I. O.; Yavtushenko, M. S.

    2017-12-01

    A model of fast formation of high-contrast periodic structure appearing on a semiconductor surface under action of laser radiation is proposed. The process of growing a surface structure due to the interaction surface plasmon- polaritons excited on nonequilibrium electrons with incident laser radiation are considered in the framework of a medium with nonlinear diffusion of nonequilibrium carriers (defects). A resonance effect of superfast pico- and subpicosecond amplification of the plasmon-polariton structure generated on the surface, the realization of which can result in a high-contrast defect lattice.

  12. Applying horizontal diffusion on pressure surface to mesoscale models on terrain-following coordinates

    Science.gov (United States)

    Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...

  13. Low-temperature hydrogenation of diamond nanoparticles using diffuse coplanar surface barrier discharge at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Čech, J.; Kozak, Halyna; Artemenko, Anna; Ižák, Tibor; Čermák, Jan; Rezek, Bohuslav; Černák, M.

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2602-2607 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : atmospheric plasma * diamond nanoparticles * diffuse coplanar surface barrier discharge * FTIR * XPS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.522, year: 2015

  14. Influence of cloud optical thickness on surface diffuse light and carbon uptake in forests and croplands

    Science.gov (United States)

    Cheng, S. J.; Steiner, A. L.; Nadelhoffer, K. J.

    2014-12-01

    Accurately modeling atmospheric CO2 removal by terrestrial ecosystems requires an understanding of how atmospheric conditions change the rate of photosynthesis across major vegetation types. Diffuse light, which is created from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. To determine how cloud conditions affect carbon uptake through its influence on diffuse light, we quantify the relationship between cloud optical thickness, which indicates surface light attenuation by clouds, and surface diffuse light. We then examine the relationship between cloud optical thickness and gross primary productivity (GPP) to determine whether cloud properties could modulate GPP in temperate ecosystems. Surface diffuse light and GPP data are obtained from publically available Ameriflux data (Mead Crop sites, University of Michigan Biological Station, Morgan Monroe, and Howland Forest) and cloud optical thickness data over the Ameriflux sites are retrieved from NASA's Moderate Resolution Imaging Spetroradiometer. We compare the response of GPP to cloud optical thickness between croplands and forests, as well as within ecosystem types to determine ecosystem-specific responses and the role of plant community composition on ecosystem-level GPP under varying cloud conditions. By linking atmospheric cloud properties to surface light conditions and ecosystem carbon fluxes, we refine understanding of land-atmosphere carbon cycling and how changes in atmospheric cloud conditions may influence the future of the land carbon sink.

  15. INTRODUCTION: Surface Dynamics, Phonons, Adsorbate Vibrations and Diffusion

    Science.gov (United States)

    Bruch, L. W.

    2004-07-01

    understanding of the underlying factors determining the optical quality of GaInNAs, such as composition, growth and annealing conditions. We are still far from establishing an understanding of the band structure and its dependence on composition. Fundamental electronic interactions such as electron-electron and electron-phonon scattering, dependence of effective mass on composition, strain and orientation, quantum confinement effects, effects of localized nitrogen states on high field transport and on galvanometric properties, and mechanisms for light emission in these materials, are yet to be fully understood. Nature and formation mechanisms of grown-in and processing-induced defects that are important for material quality and device performance are still unknown. Such knowledge is required in order to design strategies to efficiently control and eliminate harmful defects. For many potential applications (such as solar cells, HBTs) it is essential to get more information on the transport properties of dilute nitride materials. The mobility of minority carriers is known to be low in GaInNAs and related material. The experimental values are far from reaching the theoretical ones, due to defects and impurities introduced in the material during the growth. The role of the material inhomogeneities on the lateral carrier transport also needs further investigation. From the device's point of view most attention to date has been focused on the GaInNAs/GaAs system, mainly because of its potential for optoelectronic devices covering the 1.3-1.55 µm data and telecommunications wavelength bands. As is now widely appreciated, these GaAs-compatible structures allow monolithic integration of AlGaAs-based distributed Bragg reflector mirrors (DBRs) for vertical cavity surface-emitting lasers with low temperature sensitivity and compatibility with AlOx-based confinement techniques. In terms of conventional edge-emitting lasers (EELs), the next step is to extend the wavelength range for cw room

  16. PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance

    Science.gov (United States)

    Li, Bo; Zhang, Yanan; Zhang, Luyuan; Yin, Longwei

    2017-08-01

    Inorganic CsPbBr3 perovskite is arousing great interest following after organic-inorganic hybrid halide perovskites, and is found as a good candidate for photovoltaic devices for its prominent photoelectric property and stability. Herein, we for the first time report on PbCl2-tuned inorganic Cl-doped CsPbBr3(Cl) perovskite solar cells with adjustable crystal structure and Cl doping for enhanced carrier lifetime, extraction rate and photovoltaic performance. The effect of PbCl2 on the morphologies, structures, optical, and photovoltaic performance of CsPbBr3 perovskite solar cells is investigated systemically. Compared with orthorhombic CsPbBr3, cubic CsPbBr3 demonstrates a significant improvement for electron lifetime (from 6.7 ns to 12.3 ns) and diffusion length (from 69 nm to 197 nm), as well as the enhanced electron extraction rate from CsPbBr3 to TiO2. More importantly, Cl doping benefits the further enhancement of carrier lifetime (14.3 ns) and diffusion length (208 nm). The Cl doped cubic CsPbBr3(Cl) perovskite solar cell exhibits a Jsc of 8.47 mA cm-2 and a PCE of 6.21%, superior to that of pure orthorhombic CsPbBr3 (6.22 mA cm-2 and 3.78%). The improvement of photovoltaic performance can be attributed to enhanced carrier lifetime, diffusion length and extraction rates, as well as suppressed nonradiative recombination.

  17. The significance of vertical moisture diffusion on drifting snow sublimation near snow surface

    Science.gov (United States)

    Huang, Ning; Shi, Guanglei

    2017-12-01

    Sublimation of blowing snow is an important parameter not only for the study of polar ice sheets and glaciers, but also for maintaining the ecology of arid and semi-arid lands. However, sublimation of near-surface blowing snow has often been ignored in previous studies. To study sublimation of near-surface blowing snow, we established a sublimation of blowing snow model containing both a vertical moisture diffusion equation and a heat balance equation. The results showed that although sublimation of near-surface blowing snow was strongly reduced by a negative feedback effect, due to vertical moisture diffusion, the relative humidity near the surface does not reach 100 %. Therefore, the sublimation of near-surface blowing snow does not stop. In addition, the sublimation rate near the surface is 3-4 orders of magnitude higher than that at 10 m above the surface and the mass of snow sublimation near the surface accounts for more than half of the total snow sublimation when the friction wind velocity is less than about 0.55 m s-1. Therefore, the sublimation of near-surface blowing snow should not be neglected.

  18. Surface self-diffusion of adatom on Pt cluster with truncated octahedron structure

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianyu, E-mail: wuliyangjianyu@yahoo.com.c [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Hu Wangyu, E-mail: wangyuhu2001@yahoo.com.c [Department of Applied Physics, Hunan University, Changsha 410082 (China); Chen Shuguang [Department of Applied Physics, Hunan University, Changsha 410082 (China)

    2010-05-03

    Surface diffusion of single Pt adatom on Pt cluster with truncated octahedron structure is investigated through a combination of molecular dynamics and nudged elastic band method. Using an embedded atom method to describe the atomic interactions, the minimum energy paths are determined and the energy barriers for adatom diffusion across and along step are evaluated. The diffusion of adatom crossing step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets has a surprisingly low barrier of 0.03 eV, which is 0.12 eV lower than the barrier for adatom diffusion from {l_brace}111{r_brace} to neighboring {l_brace}111{r_brace} facet. Owing to the small barrier of adatom diffusion across the step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets, the diffusion of adatom along the step edge cannot occur. The molecular dynamics simulations at low temperatures also support these results. Our results show that mass transport will prefer step with {l_brace}100{r_brace} microfacet and the Pt clusters can have only {l_brace}111{r_brace} facets in epitaxial growth.

  19. Comparison of the electron work function, hole concentration and exciton diffusion length for P3HT and PT prepared by thermal or acid cleavage

    DEFF Research Database (Denmark)

    Tousek, J.; Touskova, J.; Ludvík, J.

    2016-01-01

    The electron work function, hole concentration and diffusion length were compared for poly(3-hexylthiophene) polymer (P3HT) that is commonly used for construction of solar cells, and two types of native polythiophene (PT) samples which are prospective candidates for this purpose. The polythiophene...... samples were prepared from 2 different precursors by thermal or chemical treatment at room temperature. Cyclic voltammetry and work function measurements were used for estimating the concentration of holes. The measured data were evaluated assuming the validity of band theory based on the tight...

  20. Memory Effects and Coverage Dependence of Surface Diffusion in a Model Adsorption System

    DEFF Research Database (Denmark)

    Vattulainen, Ilpo Tapio; Ying, S. C.; Ala-Nissila, T.

    1999-01-01

    We study the coverage dependence of surface diffusion coefficients for a strongly interacting adsorption system O/W(110) via Monte Carlo simulations of a lattice-gas model. In particular, we consider the nature and emergence of memory effects as contained in the corresponding correlation factors...... diffusion is found to decay following a power law after an initial transient period. This behavior persists until the hydrodynamic regime is reached, after which the memory effect decays exponentially. The time required to reach the hydrodynamical regime and the related exponential decay is strongly...

  1. A study of surface diffusion with the scanning tunneling microscope from fluctuations of the tunneling current

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Lozano [Iowa State Univ., Ames, IA (United States)

    1996-01-12

    The transport of atoms or molecules over surfaces has been an important area of study for several decades now, with its progress generally limited by the available experimental techniques to characterize the phenomena. A number of methods have been developed over the years to measure surface diffusion yet only very few systems have been characterized to this day mainly due to the physical limitations inherent in these available methods. Even the STM with its astonishing atomically-resolved images of the surface has been limited in terms of its capability to determine mass transport properties. This is because the STM is inherently a ``slow`` instrument, i.e., a finite time is needed for signal averaging in order to produce the image. A need exists for additional surface diffusion measurement techniques, ideally ones which are able to study varied systems and measure a wide range of diffusion rates. The STM (especially because of its highly local nature) presents itself as a promising tool to conduct dynamical studies if its poor time resolution during ``normal operation`` can somehow be overcome. The purpose of this dissertation is to introduce a new technique of using the STM to measure adatom mobility on surfaces -- one with a capacity to achieve excellent time resolution.

  2. Planarization of the diamond film surface by using the hydrogen plasma etching with carbon diffusion process

    International Nuclear Information System (INIS)

    Kim, Sung Hoon

    2001-01-01

    Planarization of the free-standing diamond film surface as smooth as possible could be obtained by using the hydrogen plasma etching with the diffusion of the carbon species into the metal alloy (Fe, Cr, Ni). For this process, we placed the free-standing diamond film between the metal alloy and the Mo substrate like a metal-diamond-molybdenum (MDM) sandwich. We set the sandwich-type MDM in a microwave-plasma-enhanced chemical vapor deposition (MPECVD) system. The sandwich-type MDM was heated over ca. 1000 .deg. C by using the hydrogen plasma. We call this process as the hydrogen plasma etching with carbon diffusion process. After etching the free-standing diamond film surface, we investigated surface roughness, morphologies, and the incorporated impurities on the etched diamond film surface. Finally, we suggest that the hydrogen plasma etching with carbon diffusion process is an adequate etching technique for the fabrication of the diamond film surface applicable to electronic devices

  3. Diffusion of C and Cr During Creation of Surface Layer on Cast Steel Casting

    Directory of Open Access Journals (Sweden)

    Szajnar J.

    2014-10-01

    Full Text Available In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.

  4. Growth kinetics and morphology of a ballistic deposition model that incorporates surface diffusion for two species

    International Nuclear Information System (INIS)

    El-Nashar, H.F.; Cerdeira, H.A.

    1998-08-01

    We introduce a ballistic deposition model for two kinds of particles (active and inactive) in (2+1) dimensions upon introducing the surface diffusion for the inactive particles. A morphological structural transition is found as the probability of being the inactive particle increases. This transition is well defined by the change in the behavior of the surface width when it is plotted versus time and probability. The exponents α and β calculated for different values of probability show the same behavior. The presence of both types of particles issues three different processes that control the growing surface: overhanging, nonlocal growth and diffusion. It finally leads to a morphological structural transition where the universality changes away from that of Kardar-Parisi-Zhang, in (2+1) dimensions, but not into Edwards-Wilkinson's. (author)

  5. Impurity diffusion, point defect engineering, and surface/interface passivation in germanium

    KAUST Repository

    Chroneos, Alexander I.

    2012-01-26

    In recent years germanium has been emerging as a mainstream material that could have important applications in the microelectronics industry. The principle aim of this study is to review investigations of the diffusion of technologically important p- and n-type dopants as well as surface and interface passivation issues in germanium. The diffusion of impurities in germanium is interrelated to the formation of clusters whenever possible, and possibilities for point defect engineering are discussed in view of recent results. The importance of electrically active defects on the Ge surface and interfaces is addressed considering strategies to suppress them and to passivate the surfaces/interfaces, bearing in mind their importance for advanced devices. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Correlation and dating of Quaternary alluvial-fan surfaces using scarp diffusion

    Science.gov (United States)

    Hsu, Leslie; Pelletier, Jon D.

    2004-06-01

    Great interest has recently been focused on dating and interpreting alluvial-fan surfaces. As a complement to the radiometric methods often used for surface-exposure dating, this paper illustrates a rapid method for correlating and dating fan surfaces using the cross-sectional shape of gullies incised into fan surfaces. The method applies a linear hillslope-diffusion model to invert for the diffusivity age, κt (m 2), using an elevation profile or gradient (slope) profile. Gullies near the distal end of fan surfaces are assumed to form quickly following fan entrenchment. Scarps adjacent to these gullies provide a measure of age. The method is illustrated on fan surfaces with ages of approximately 10 ka to 1.2 Ma in the arid southwestern United States. Two areas of focus are Death Valley, California, and the Ajo Mountains piedmont, Arizona. Gully-profile morphology is measured in two ways: by photometrically derived gradient (slope) profiles and by ground-surveyed elevation profiles. The κt values determined using ground-surveyed profiles are more consistent than those determined using photo-derived κt values. However, the mean κt values of both methods are comparable. The photometric method provides an efficient way to quantitatively and objectively correlate and relatively-date alluvial-fan surfaces. The κt values for each surface are determined to approximately 30-50% accuracy.

  7. Oxidative Corrosion of the UO 2 (001) Surface by Nonclassical Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Stubbs, Joanne E.; Biwer, Craig A.; Chaka, Anne M. [Pacific Northwest; Ilton, Eugene S. [Pacific Northwest; Du, Yingge [Pacific Northwest; Bargar, John R. [Stanford Synchrotron; Eng, Peter J.

    2017-11-07

    Uranium oxide is central to every stage of the nuclear fuel cycle, from mining through fuel fabrication and use, to waste disposal and environmental cleanup. Its chemical and mechanical stability are intricately linked to the concentration of interstitial O atoms within the structure and the oxidation state of U. We have previously shown that during corrosion of the UO2 (111) surface under either 1 atm O2 gas or oxygenated water at room temperature, oxygen interstitials diffuse into the substrate to form a superlattice with three-layer periodicity. In the current study, we present results from surface x-ray scattering that reveal the structure of the oxygen diffusion profile beneath the (001) surface. The first few layers below the surface oscillate strongly in their surface-normal lattice parameters, suggesting preferential interstitial occupation of every other layer below the surface, which is geometrically consistent with the interstitial network that forms below the oxidized (111) surface. Deeper layers are heavily contracted and indicate that the oxidation front penetrates ~52 Å below the (001) surface after 21 days of dry O2 gas exposure at ambient pressure and temperature. X-ray photoelectron spectroscopy indicates U is present as U(IV), U(V), and U(VI).

  8. A new approach to the problem of bulk-mediated surface diffusion.

    Science.gov (United States)

    Berezhkovskii, Alexander M; Dagdug, Leonardo; Bezrukov, Sergey M

    2015-08-28

    This paper is devoted to bulk-mediated surface diffusion of a particle which can diffuse both on a flat surface and in the bulk layer above the surface. It is assumed that the particle is on the surface initially (at t = 0) and at time t, while in between it may escape from the surface and come back any number of times. We propose a new approach to the problem, which reduces its solution to that of a two-state problem of the particle transitions between the surface and the bulk layer, focusing on the cumulative residence times spent by the particle in the two states. These times are random variables, the sum of which is equal to the total observation time t. The advantage of the proposed approach is that it allows for a simple exact analytical solution for the double Laplace transform of the conditional probability density of the cumulative residence time spent on the surface by the particle observed for time t. This solution is used to find the Laplace transform of the particle mean square displacement and to analyze the peculiarities of its time behavior over the entire range of time. We also establish a relation between the double Laplace transform of the conditional probability density and the Fourier-Laplace transform of the particle propagator over the surface. The proposed approach treats the cases of both finite and infinite bulk layer thicknesses (where bulk-mediated surface diffusion is normal and anomalous at asymptotically long times, respectively) on equal footing.

  9. Effects of thermal annealing on deep-level defects and minority-carrier electron diffusion length in Be-doped InGaAsN

    International Nuclear Information System (INIS)

    Xie, S.Y.; Yoon, S.F.; Wang, S.Z.

    2005-01-01

    We report the effects of ex situ thermal annealing on the deep-level defects and the minority-carrier electron diffusion length in Be-doped, p-type In 0.03 Ga 0.97 As 0.99 N 0.01 grown by solid source molecular-beam epitaxy. Deep-level transient spectroscopy measurements reveal two majority-carrier hole traps, HT1 (0.18 eV) and HT4 (0.59 eV), and two minority-carrier electron traps, ET1 (0.09 eV) and ET3 (0.41 eV), in the as-grown sample. For the sample with postgrowth thermal annealing, the overall deep-level defect-concentration is decreased. Two hole traps, HT2 (0.39 eV) and HT3 (0.41 eV), and one electron trap, ET2 (0.19 eV), are observed. We found that the minority-carrier electron diffusion length increases by ∼30% and the leakage current of the InGaAsN/GaAs p-n junction decreases by 2-3 orders after thermal annealing. An increase of the net acceptor concentration after annealing is also observed and can be explained by a recently proposed three-center-complex model

  10. Control of in vivo disposition and immunogenicity of polymeric micelles by adjusting poly(sarcosine) chain lengths on surface

    Science.gov (United States)

    Kurihara, Kensuke; Ueda, Motoki; Hara, Isao; Ozeki, Eiichi; Togashi, Kaori; Kimura, Shunsaku

    2017-07-01

    Four kinds of A3B-type amphiphilic polydepsipeptides, (poly(sarcosine))3- b-poly( l-lactic acid) (the degree of polymerization of poly(sarcosine) are 10, 33, 55, and 85; S10 3 , S33 3 , S55 3 , and S85 3 ) were synthesized to prepare core-shell type polymeric micelles. Their in vivo dispositions and stimulations to trigger immune system to produce IgM upon multiple administrations to mice were examined. With increasing poly(sarcosine) chain lengths, the hydrophilic shell became thicker and the surface density at the most outer surface decreased on the basis of dynamic and static light scattering measurements. These two physical elements of polymeric micelles elicited opposite effects on the immune response in light of the chain length therefore to show an optimized poly(sarcosine) chain length existing between 33mer and 55mer to suppress the accelerated blood clearance phenomenon associated with polymeric micelles.

  11. Speckle noise reduction for computer generated holograms of objects with diffuse surfaces

    Science.gov (United States)

    Symeonidou, Athanasia; Blinder, David; Ahar, Ayyoub; Schretter, Colas; Munteanu, Adrian; Schelkens, Peter

    2016-04-01

    Digital holography is mainly used today for metrology and microscopic imaging and is emerging as an important potential technology for future holographic television. To generate the holographic content, computer-generated holography (CGH) techniques convert geometric descriptions of a 3D scene content. To model different surface types, an accurate model of light propagation has to be considered, including for example, specular and diffuse reflection. In previous work, we proposed a fast CGH method for point cloud data using multiple wavefront recording planes, look-up tables (LUTs) and occlusion processing. This work extends our method to account for diffuse reflections, enabling rendering of deep 3D scenes in high resolution with wide viewing angle support. This is achieved by modifying the spectral response of the light propagation kernels contained by the look-up tables. However, holograms encoding diffuse reflective surfaces depict significant amounts of speckle noise, a problem inherent to holography. Hence, techniques to improve the reduce speckle noise are evaluated in this paper. Moreover, we propose as well a technique to suppress the aperture diffraction during numerical, viewdependent rendering by apodizing the hologram. Results are compared visually and in terms of their respective computational efficiency. The experiments show that by modelling diffuse reflection in the LUTs, a more realistic yet computationally efficient framework for generating high-resolution CGH is achieved.

  12. Mapping the Diffusion Potential of a Reconstructed Au(111) Surface at Nanometer Scale with 2D Molecular Gas

    International Nuclear Information System (INIS)

    Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian

    2012-01-01

    The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)

  13. Surface Wave Propagation in a Microstretch Thermoelastic Diffusion Material under an Inviscid Liquid Layer

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available The present investigation deals with the propagation of Rayleigh type surface waves in an isotropic microstretch thermoelastic diffusion solid half space under a layer of inviscid liquid. The secular equation for surface waves in compact form is derived after developing the mathematical model. The dispersion curves giving the phase velocity and attenuation coefficients with wave number are plotted graphically to depict the effect of an imperfect boundary alongwith the relaxation times in a microstretch thermoelastic diffusion solid half space under a homogeneous inviscid liquid layer for thermally insulated, impermeable boundaries and isothermal, isoconcentrated boundaries, respectively. In addition, normal velocity component is also plotted in the liquid layer. Several cases of interest under different conditions are also deduced and discussed.

  14. Surface sealing using self-assembled monolayers and its effect on metal diffusion in porous low-k dielectrics studied using monoenergetic positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Uedono, Akira, E-mail: uedono.akira.gb@u.tsukuba.ac.jp [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Armini, Silvia; Zhang, Yu [IMEC, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); Kakizaki, Takeaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Krause-Rehberg, Reinhard [Department of Physics, Martin Luther University Halle, 06099 Halle (Germany); Anwand, Wolfgang; Wagner, Andreas [Institute for Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)

    2016-04-15

    Graphical abstract: - Highlights: • Pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the low-k film. • For the sample without the SAM sealing process, metal atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. Almost all pore interiors were covered by those metals. • For the sample damaged by a plasma etch treatment before the SAM sealing process, self-assembled molecules diffused into the OSG film, and they were preferentially trapped by larger pores. - Abstract: Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C{sub 4}F{sub 8} plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C{sub 4}F{sub 8} plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.

  15. An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface

    Directory of Open Access Journals (Sweden)

    Yan-Zi Yu

    2015-01-01

    Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.

  16. Free surface modelling with two-fluid model and reduced numerical diffusion of the interface

    International Nuclear Information System (INIS)

    Strubelj, Luka; Tiselj, Izrok

    2008-01-01

    Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening

  17. Surface effects on tritium diffusion in materials in a radiation environment

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1975-01-01

    Tritium transport and distribution in a material are controlled by chemical potential and thermal gradients and cross-coupling to impurities and defects. Surfaces influence tritium diffusion by acting as sources and sinks for defects and impurities, and surface films restricting tritium transfer between the solid and surrounding fluids. Radiation directly affects boundary processes such as dissociation or adsorption, may erode a surface film or the surface itself, and introduces defects and impurities into the solid by radiation damage, transmutation, or ion implantation, thereby modifying tritium transport within the solid and its transfer across external interfaces. There have been no definitive investigations of these effects, but their practical significance has been demonstrated in tritium release or absorption studies with stainless steel, Zircaloy, niobium, and other materials. (auth)

  18. Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length.

    Science.gov (United States)

    Rufin, M A; Gruetzner, J A; Hurley, M J; Hawkins, M L; Raymond, E S; Raymond, J E; Grunlan, M A

    2015-04-14

    Silicones with superior protein resistance were produced by bulk-modification with poly(ethylene oxide) (PEO)-silane amphiphiles that demonstrated a higher capacity to restructure to the surface-water interface versus conventional non-amphiphilic PEO-silanes. The PEO-silane amphiphiles were prepared with a single siloxane tether length but variable PEO segment lengths: α-(EtO) 3 Si(CH 2 ) 2 -oligodimethylsiloxane 13 - block -poly(ethylene oxide) n -OCH 3 ( n = 3, 8, and 16). Conventional PEO-silane analogues ( n = 3, 8 and 16) as well as a siloxane tether-silane (i.e. no PEO segment) were prepared as controls. When surface-grafted onto silicon wafer, PEO-silane amphiphiles produced surfaces that were more hydrophobic and thus more adherent towards fibrinogen versus the corresponding PEO-silane. However, when blended into a silicone, PEO-silane amphiphiles exhibited rapid restructuring to the surface-water interface and excellent protein resistance whereas the PEO-silanes did not. Silicones modified with PEO-silane amphiphiles of PEO segment lengths n = 8 and 16 achieved the highest protein resistance.

  19. Quantitative estimation of Holocene surface salinity variation in the Black Sea using dinoflagellate cyst process length

    DEFF Research Database (Denmark)

    Mertens, Kenneth Neil; Bradley, Lee R.; Takano, Yoshihito

    2012-01-01

    this calibration to make a regional reconstruction of paleosalinity in the Black Sea, calculated by averaging out process length variation observed at four core sites from the Black Sea with high sedimentation rates and dated by multiple mollusk shell ages. Results show a very gradual change of salinity from ∼14...

  20. Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air

    Science.gov (United States)

    Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO

    2018-01-01

    Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.

  1. Self-diffusion dynamic behavior of atomic clusters on Re(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu, E-mail: wangyuhu2001cn@yahoo.com.cn [Department of Applied Physics, Hunan University, Changsha 410082 (China); Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-08-15

    Using molecular dynamics simulations and a modified analytic embedded atom potential, the self-diffusion dynamics of rhenium atomic clusters up to seven atoms on Re(0 0 0 1) surface have been studied in the temperature ranges from 600 K to 1900 K. The simulation time varies from 20 ns to 200 ns according to the cluster sizes and the temperature. The heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center, and diffusion prefactors D{sub 0} and activation energies E{sub a} are derived from the Arrhenius relation. It is found that the Arrhenius relation of the adatom can be divided into two parts at different temperature range. The activation energy of clusters increases with the increasing of the atom number in clusters. The prefactor of the heptamer is 2-3 orders of magnitude higher than a usual prefactor because of a large number of nonequivalent diffusion processes. The trimer and heptamer are the nuclei at different temperature range according to the nucleation theory.

  2. The surface diffusion coefficient for an arbitrarily curved fluidfluid interface.(II). Coefficient for plane-parallel diffusion

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2001-01-01

    In this paper we developed an expression for the coefficient for plane-parallel diffusion for an arbitrarily curved fluid–fluid interface. The expression is valid for ordinary diffusion in binary mixtures, with isotropic bulk phases and an interfacial region that is isotropic in the plane parallel

  3. Effect of 1.5 MeV electron irradiation on β-Ga2O3 carrier lifetime and diffusion length

    Science.gov (United States)

    Lee, Jonathan; Flitsiyan, Elena; Chernyak, Leonid; Yang, Jiancheng; Ren, Fan; Pearton, Stephen J.; Meyler, Boris; Salzman, Y. Joseph

    2018-02-01

    The influence of 1.5 MeV electron irradiation on minority transport properties of Si doped β-Ga2O3 vertical Schottky rectifiers was observed for fluences up to 1.43 × 1016 cm-2. The Electron Beam-Induced Current technique was used to determine the minority hole diffusion length as a function of temperature for each irradiation dose. This revealed activation energies related to shallow donors at 40.9 meV and radiation-induced defects with energies at 18.1 and 13.6 meV. Time-resolved cathodoluminescence measurements showed an ultrafast 210 ps decay lifetime and reduction in carrier lifetime with increased irradiation.

  4. Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface

    Science.gov (United States)

    Ling, Hangjian; Katz, Joseph; Fu, Matthew; Hultmark, Marcus

    2017-12-01

    This experimental study investigates the effects of ambient pressure and Reynolds number on the volume of a plastron in a superhydrophobic surface (SHS) due to compression and gas diffusion. The hierarchical SHS consists of nanotextured, ˜100 μm wide spanwise grooves. Microscopic observations measure the time evolution of interface height and contact angle. The water tunnel tests are performed both without flow as well as in transitional and turbulent boundary layers at several Reynolds numbers. Particle image velocimetry is used for estimating the wall shear stress and calculating the momentum thickness for the SHSs under Cassie-Baxter (CB) and Wenzel states as well as a smooth wall at the same conditions. Holographic microscopy is used for determining the wall shear stress directly for one of the CB cases. The mass diffusion rate is calculated from changes to the plastron volume when the liquid is under- or supersaturated. For stationary water, the mass diffusion is slow. With increasing pressure, the interface is initially pinned and then migrates into the groove with high advancing contact angle. Upon subsequent decrease in pressure, the interface migrates upward at a shallow angle and, after being pinned to the tip corner, becomes convex. With flow and exposure to undersaturated liquid, the diffusion-induced wetting also involves pinned and downward migration states, followed by shrinkage of the plastron until it decreases below the resolution limit. The corresponding changes to the velocity profile indicate a transition from slight drag reduction to significant drag increase. In supersaturated water starting at a Wenzel state, a bubble grows from one of the bottom corners until it reaches the other side of the groove. Subsequently, dewetting involves upward migration of the interface, pinning to the tip corners, and formation of a convex interface. The diffusion rate increases with the level of under- or supersaturation and with the Reynolds number. A power

  5. Molecular dimensions and surface diffusion assisted mechanically robust slippery perfluoropolyether impregnated mesoporous alumina interfaces

    Science.gov (United States)

    Rowthu, Sriharitha; Balic, Edin E.; Hoffmann, Patrik

    2017-12-01

    Accomplishing mechanically robust omniphobic surfaces is a long-existing challenge, and can potentially find applications in bioengineering, tribology and paint industries. Slippery liquid impregnated mesoporous α-Al2O3 interfaces are achieved with water, alkanes, water based and oil based high viscosity acrylic paints. Incredibly high abrasion-resistance (wear coefficients ≤10‑8 mm3 N‑1 m‑1) and ultra-low friction coefficients (≥0.025) are attained, attributing to the hard alumina matrix and continuous replenishment of perfluoropolyether aided by capillarity and surface diffusion processes. A variety of impregnating liquids employed suggest that large molecules, faster surface diffusion and lowest evaporation rate generate the rare combination of high wear-resistance and omniphobicity. It is noteworthy that these novel liquid impregnated Al2O3 composites exhibit outstanding load bearing capacity up to 350 MPa; three orders of magnitude higher than achievable by the state of the art omniphobic surfaces. Further, our developed thermodynamic calculations suggest that the relative thermodynamic stability of liquid impregnated composites is linearly proportional to the spreading coefficient (S) of the impregnating liquid with the matrix material and is an important tool for the selection of an appropriate matrix material for a given liquid.

  6. Hardness optimization of boride diffusion layer on Astm F-75 alloy using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Arguelles O, J. L.; Corona R, M. A. [Universidad Autonoma de San Luis Potosi, Doctorado Institucional en Ingenieria y Ciencia de Materiales, San Luis Potosi 78000, SLP (Mexico); Marquez H, A.; Saldana R, A. L.; Saldana R, A. [Universidad de Guanajuato, Ingenieria Mecanica Agricola DICIVA, Irapuato, Guanajuato 36500 (Mexico); Moreno P, J., E-mail: amarquez@ugto.mx [Universidad de Guanajuato, Departamento de Minas, Metalurgia y Geologia, Ex-Hacienda San Matias s/n, Guanajuato, Guanajuato 36020 (Mexico)

    2017-11-01

    In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co{sub 2}B, Cr B and Mo{sub 2}B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)

  7. Advection and diffusion in random media implications for sea surface temperature anomalies

    CERN Document Server

    Piterbarg, Leonid I

    1997-01-01

    The book presents the foundations of the theory of turbulent transport within the context of stochastic partial differential equations. It serves to establish a firm connection between rigorous and non-rigorous results concerning turbulent diffusion. Mathematically all of the issues addressed in this book are concentrated around a single linear equation: stochastic advection-diffusion (transport) equation. There is no attempt made to derive universal statistics for turbulent flow. Instead emphasis is placed on a statistical description of a passive scalar (tracer) under given velocity statistics. An application concerning transport of sea surface temperature anomalies reconciles the developed theory and a highly practical issue of modern physical oceanography by using the newly designed inversion techniques which take advantage of powerful maximum likelihood and autoregressive estimators. Audience: Graduate students and researchers in mathematics, fluid dynamics, and physical oceanography.

  8. Hardness optimization of boride diffusion layer on Astm F-75 alloy using response surface methodology

    International Nuclear Information System (INIS)

    Arguelles O, J. L.; Corona R, M. A.; Marquez H, A.; Saldana R, A. L.; Saldana R, A.; Moreno P, J.

    2017-01-01

    In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co 2 B, Cr B and Mo 2 B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)

  9. Vertical eddy diffusion as a key mechanism for removing perfluorooctanoic acid (PFOA) from the global surface oceans

    NARCIS (Netherlands)

    Lohmann, R.; Jurado Cojo, E.; Dijkstra, H.A.; Dachs, J.

    2013-01-01

    Here we estimate the importance of vertical eddy diffusion in removing perfluorooctanoic acid (PFOA) from the surface Ocean and assess its importance as a global sink. Measured water column profiles of PFOA were reproduced by assuming that vertical eddy diffusion in a 3-layer ocean model is the sole

  10. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  11. Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sorenson Donna J

    2009-12-01

    Full Text Available Abstract Background Patients with traumatic brain injury (TBI often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. Methods Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI. Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p Results The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. Conclusions MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.

  12. Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale

    Science.gov (United States)

    Zhou, S.

    2017-12-01

    Using Monte Carlo results as a reference, a classical density functional theory ( CDFT) is shown to reliably predict the forces between two heterogeneously charged surfaces immersed in an electrolyte solution, whereas the Poisson-Boltzmann ( PB) theory is demonstrated to deteriorate obviously for the same system even if the system parameters considered fall within the validity range of the PB theory in the homogeneously charged surfaces. By applying the tested CDFT, we study the effective electrostatic potential of mean force ( EPMF) between two face-face planar and hard surfaces of zero net charge on which positive and negative charges are separated and considered to present as discontinuous spots on the inside edges of the two surfaces. Main conclusions are summarized as follows: (i) strength of the EPMF in the surface charge separation case is very sensitively and positively correlated with the surface charge separation level and valency of the salt ion. Particularly, the charge separation level and the salt ion valency have a synergistic effect, which makes high limit of the EPMF strength in the surface charge separation case significantly go beyond that of the ideal homogeneously charged surface counterpart at average surface charge density similar to the average surface positive or negative charge density in the charge separation case. (ii) The surface charge distribution patterns mainly influence sign of the EPMF: symmetrical and asymmetrical patterns induce repulsive and attractive (at small distances) EPMF, respectively; but with low valency salt ions and low charge separation level the opposite may be the case. With simultaneous presence of both higher valency cation and anion, the EPMF can be repulsive at intermediate distances for asymmetrical patterns. (iii) Salt ion size has a significant impact, which makes the EPMF tend to become more and more repulsive with the ion diameter regardless of the surface charge distribution patterns and the valency of

  13. Influence of surface hydroxylation on the Ru atom diffusion on the ZrO2(101) surface: A DFT study

    Science.gov (United States)

    Tosoni, Sergio; Pacchioni, Gianfranco

    2017-10-01

    The adsorption and diffusion of ruthenium adatoms on the (101) surface of tetragonal zirconia was studied by means of periodic Density Functional Theory (PBE+U) calculations. The surface termination has a decisive role in determining the diffusion capability of the adsorbed Ru atoms. On the defect-free and fully dehydroxylated surface, Ru adatoms have several stable adsorption sites with adsorption energies as large as 2.5-2.9 eV However, the kinetic diffusion barriers between adjacent adsorption sites are around 0.5-0.6 eV, indicating a rather fast diffusion process. Surface oxygen vacancies, if present, strongly bind ruthenium adatoms and act as nucleation sites. On hydroxylated surfaces, the adsorption energy of Ru atoms is comparable to the dehydroxylated case, but the kinetic barriers for diffusion are remarkably higher, thus indicating that adsorbed species are less mobile in presence of surface OH groups. The effect is more pronounced for high concentrations of OH groups, since this results in hydrogen bonded hydroxyl units that further limit the diffusion process. These results indicate a possible way to increase the life-time of Rusbnd ZrO2 heterogeneous catalysts by tuning the level of surface hydroxylation, in order to slow down sintering of metal particles via Ostwald ripening process.

  14. Second generation diffusion model of interacting gravity waves on the surface of deep fluid

    Directory of Open Access Journals (Sweden)

    A. Pushkarev

    2004-01-01

    Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.

  15. A desk study of surface diffusion and mass transport in clay

    International Nuclear Information System (INIS)

    Cook, A.J.

    1989-01-01

    Research into the properties of clays as barrier materials for nuclear waste disposal has led to the realization that they have important transport properties which are relatively insignificant in most other geological materials. Sorption has always been regarded as a purely retarding mechanism, but laboratory experiments over the past decade have indicated that surface diffusion of sorbed cations is a potentially significant transport mechanism in both compacted montmorillonite, and biotite gneiss. The present desk study about these issues was part of the CEC coordinated project Mirage-Second phase, research area Natural analogues

  16. Nano-pits on GaAs (1 0 0) surface: Preferential sputtering and diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Tanuj, E-mail: tanujkumar@cuh.ac.in [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh 123029 (India); Panchal, Vandana [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Kumar, Ashish; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2016-07-15

    Self organized nano-structure array on the surfaces of semiconductors have potential applications in photonics, magnetic devices, photovoltaics, and surface-wetting tailoring etc. Therefore, the control over their dimensions is gaining scientific interest in last couple of decades. In this work, fabrication of pits of nano-dimensions is carried out on the GaAs (1 0 0) surface using 50 keV Ar{sup +} at normal incidence. Variation in fluence from 3 × 10{sup 17} ions/cm{sup 2} to 5 × 10{sup 18} ions/cm{sup 2} does not make a remarkable variation in the dimension of pits such as size and depth, which is confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). However the simultaneous dots formation is observed along with the pits at higher fluences. Average size of pits is found to be of 22 nm with depth of 1–5 nm for the used fluences. The importance of preferential sputtering of ‘As’ as compared to ‘Ga’ is estimated using energy dispersive X-ray analysis (EDX). The observed alteration in near surface composition shows the Ga enrichment of surface, which is not being much affected by variation in fluence. The growth evolution of pits and dots for the used experimental conditions is explained on the basis of ion beam induced preferential sputtering and surface diffusion.

  17. Independent and collective roles of surface structures at different length scales on pool boiling heat transfer

    Science.gov (United States)

    Li, Calvin H.; Rioux, Russell P.

    2016-01-01

    Spherical Cu nanocavity surfaces are synthesized to examine the individual role of contact angles in connecting lateral Rayleigh-Taylor wavelength to vertical Kevin-Helmholtz wavelength on hydrodynamic instability for the onset of pool boiling Critical Heat Flux (CHF). Solid and porous Cu pillar surfaces are sintered to investigate the individual role of pillar structure pitch at millimeter scale, named as module wavelength, on hydrodynamic instability at CHF. Last, spherical Cu nanocavities are coated on the porous Cu pillars to create a multiscale Cu structure, which is studied to examine the collective role and relative significance of contact angles and module wavelength on hydrodynamic instability at CHF, and the results indicate that module wavelength plays the dominant role on hydrodynamic instability at CHF when the height of surface structures is equal or above ¼ Kelvin-Helmholtz wavelength. Pool boiling Heat Transfer Coefficient (HTC) enhancements on spherical Cu nanocavity surfaces, solid and porous Cu pillar surfaces, and the integrated multiscale structure have been investigated, too. The experimental results reveal that the nanostructures and porous pillar structures can be combined together to achieve even higher enhancement of HTC than that of individual structures. PMID:27841322

  18. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Science.gov (United States)

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  19. Objective and Subjective Evaluation of Reflecting and Diffusing Surfaces in Auditoria

    Science.gov (United States)

    Cox, Trevor John

    Available from UMI in association with The British Library. Requires signed TDF. The performance of reflectors and diffusers used in auditoria have been evaluated both objectively and subjectively. Two accurate systems have been developed to measure the scattering from surfaces via the cross correlation function. These have been used to measure the scattering from plane panels, curved panels and quadratic residue diffusers (QRDs). The scattering measurements have been used to test theoretical prediction methods based on the Helmholtz-Kirchhoff integral equation. Accurate prediction methods were found for all surfaces tested. The limitations of the more approximate methods have been defined. The assumptions behind Schroeder's design of the QRD have been tested and the local reacting admittance assumption found to be valid over a wide frequency range. It was found that the QRD only produces uniform scattering at low frequencies. For an on-axis source the scattering from a curved panel was as good as from a QRD. For an oblique source the QRD produced much more uniform scattering than the curved panel. The subjective measurements evaluated the smallest perceivable change in the early sound field, the part most influenced by reflectors and diffusers. A natural sounding simulation of a concert hall field within an anechoic chamber was used. Standard objective parameters were reasonable values when compared to values found in real halls and subjective preference measurements. A difference limen was measured for early lateral energy fraction (.048 +/-.005); inter aural cross correlation (.075 +/-.008); clarity index (.67 +/-.13 dB); and centre time (8.6 +/- 1.6 ms). It was found that: (i) when changes are made to diffusers and reflectors, changes in spatial impression will usually be larger than those in clarity; and (ii) acousticians can gain most by paying attention to lateral sound in auditoria. It was also found that: (i) diffuse reflections in the early sound field

  20. Surface-length index: a novel index for rapid detection of right ventricles with abnormal ejection fraction using cardiac MRI.

    Science.gov (United States)

    Bonnemains, Laurent; Mandry, Damien; Menini, Anne; Stos, Bertrand; Felblinger, Jacques; Marie, Pierre-Yves; Vuissoz, Pierre-Andre

    2013-09-01

    To validate a new index, the surface-length index (SLI) based on area change in a short-axis view and length reduction in the horizontal long-axis view, which is used to quickly (right ventricles with an abnormal ejection fraction (EF) during a cardiac MRI examination. SLI can be used to avoid a complete delineation of the endocardial contours of normal right ventricles. Sixty patients (group A) were retrospectively included to calibrate the SLI formula by optimisation of the area under the ROC curves and SLI thresholds were chosen to obtain 100 % sensitivity. Another 340 patients (group B) were prospectively recruited to test SLI's capacity to detect right ventricles (RVs) with an abnormal EF (right ventricle ejection fraction (RVEF) with cine-MRI is time consuming. • Therefore, RVEF is not always assessed during cardiac MRI. • Surface-length index (SLI) allows rapid detection of abnormal RVEF during cardiac MRI. • SLI saves one third of the operator time. • Every cardiac MRI could include RVEF assessment by means of SLI.

  1. Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test

    Science.gov (United States)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.

    2018-02-01

    Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K to 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ∼2200 K is inferred (1σ uncertainty of ∼200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.

  2. Interaction between two solid surfaces across PDMS : influence of chain length and end group

    NARCIS (Netherlands)

    Sun, G.X.; Stark, R.; Kappl, M.; Leermakers, F.A.M.; Butt, H.J.

    2005-01-01

    Forces between solid surfaces across polymer melts are poorly understood despite their importance for adhesion and composite materials. Using an atomic force microscope (AFM) this force was measured for poly(dimethyl siloxane) (PDMS) on silicon oxide. The influence of molecular weight (4.0-40 kDa)

  3. Modeling diffuse sources of surface water contamination with plant protection products

    Science.gov (United States)

    Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David

    2015-04-01

    Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff

  4. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    Science.gov (United States)

    Zhao, Yanyun; Li, Chunjing; Huang, Bo; Liu, Shaojun; Huang, Qunying

    2014-12-01

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  5. Interaction of mineral surfaces with simple organic molecules by diffuse reflectance IR spectroscopy (DRIFT)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Joan E.; Kelley, Michael J.

    2008-06-01

    Diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was used to characterize multi-layers of lysine, glutamic acid and salicylic acid on -alumina and kaolinite surfaces. The results agreed well with those previously obtained by ATR-IR in aqueous media where available, indicating that DRIFT may be regarded as effectively an in-situ spectroscopy for these materials. In the case of salicylic acid adsorption onto γ-alumina, DRIFTS was used to identify monolayer coverage and to detect molecules down to coverage of 3% of a monolayer. The spectroscopic results as to coverage were confirmed by analysis of the solutions used for treatment. The spectra obtained allowed identification of changes in the bonding environment with increasing surface coverage. DRIFTS, offers several advantages in terms of materials, experimental technique and data treatment, motivating further investigations.

  6. Dynamics and Stability of Self-similar Pinch-off via Surface Diffusion

    Science.gov (United States)

    Bernoff, Andrew J.; Bertozzi, Andrea L.; Witelski, Thomas P.

    1998-11-01

    The motion of an interface via BBW.html>surface diffusion is a well-known model in the study of thin solid filaments with application to such fields as integrated circuit technology. The interface moves with a normal velocity proportional to minus the surface Laplacian of its mean curvature. This flow conserves the volume enclosed inside the surface while minimizing its surface area. A cylindrical surface is unstable to long-wave perturbations, analogous to the Rayleigh instability in fluid dynamics. The initial instability leads to a conical pinch-off of the cylinder to form isolated spheres. We examine the structure of the pinch-off, showing it has self-similar structure, using asymptotic, numerical and analytical methods. In addition to a previously known solution(Wong et al. Scripta Mater.) 39(1):55, 1998, we find a countable set of similarity solutions, each with a different cone angle. We develop a stability theory in similarity variables that selects the original similarity solution as the only linearly stable one and consequently the only observable one. We confirm this theory via numerical simulations, using self-similar adaptive mesh refinement, of the pinch-off.

  7. Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder.

    Science.gov (United States)

    Landin-Romero, Ramón; Canales-Rodríguez, Erick J; Kumfor, Fiona; Moreno-Alcázar, Ana; Madre, Mercè; Maristany, Teresa; Pomarol-Clotet, Edith; Amann, Benedikt L

    2017-01-01

    The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.

  8. Effects of microwave electric fields on the translational diffusion of dipolar molecules in surface potential: A simulation study

    Science.gov (United States)

    Kapranov, Sergey V.; Kouzaev, Guennadi A.

    2018-01-01

    Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.

  9. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    International Nuclear Information System (INIS)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-01-01

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were ∼ 4 x 10 -7 cm 2 /s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10 -5 to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form

  10. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  11. Mutual conversion of bulk and surface acoustic waves in gratings of finite length on half-infinite substrates. I. FE analysis of surface wave generation.

    Science.gov (United States)

    Darinskii, A N; Weihnacht, M; Schmidt, H

    2013-07-01

    A numerical study is carried out of the surface acoustic wave generation by a bulk acoustic wave in a half-infinite anisotropic half-space without piezoeffect. The efficient conversion of bulk waves into surface waves occurs due to a grating area created on the surface of the substrate. Our simulations are fully based on the finite element method. Given the incident bulk wave, we directly determine the amplitude of the surface wave and investigate its dependence on various parameters specifying the situation under consideration, such as the frequency and the polarization of the bulk wave, the length of the grating, the geometrical size of grooves or strips forming the grating. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  13. Brownian diffusion of a particle at an air/liquid interface: the elastic (not viscous) response of the surface.

    Science.gov (United States)

    Toro-Mendoza, Jhoan; Rodriguez-Lopez, Gieberth; Paredes-Altuve, Oscar

    2017-03-29

    Here, the effect of the elastic response of the surface on the translational diffusion coefficient of a partly submerged-in-water spherical Brownian particle is considered. The elastic nature of the surface, mediated by the surface tension, generates an additional dissipative mechanism. Therefore, the collisions at the surface contribute to the diffusion as the source of the driving force and the dissipation results from the combined action of both elastic reaction of the surface and viscous dissipation. However, it can be estimated that the surface elastic mechanism is several orders of magnitude greater than the viscous one. This simple yet physically plausible approach leads us to assume that the diffusion on the surface is proportional to a power of the number of collisions and, consequently, the dissipative mechanisms are proportional to an inverse power of it. The lowering in dimensionality from 3 (bulk) to 2 (surface) also contributes to the decrease of diffusion. This model allows the reproduction of the reported experimental values of the surface/bulk dissipative force ratio. Additionally, we also compared the traditional viscous approach with other theoretical hydrodynamic treatments of the problem, which drastically failed to explain the experiments.

  14. Surface-driven registration method for the structure-informed segmentation of diffusion MR images.

    Science.gov (United States)

    Esteban, Oscar; Zosso, Dominique; Daducci, Alessandro; Bach-Cuadra, Meritxell; Ledesma-Carbayo, María J; Thiran, Jean-Philippe; Santos, Andres

    2016-10-01

    Current methods for processing diffusion MRI (dMRI) to map the connectivity of the human brain require precise delineations of anatomical structures. This requirement has been approached by either segmenting the data in native dMRI space or mapping the structural information from T1-weighted (T1w) images. The characteristic features of diffusion data in terms of signal-to-noise ratio, resolution, as well as the geometrical distortions caused by the inhomogeneity of magnetic susceptibility across tissues hinder both solutions. Unifying the two approaches, we propose regseg, a surface-to-volume nonlinear registration method that segments homogeneous regions within multivariate images by mapping a set of nested reference-surfaces. Accurate surfaces are extracted from a T1w image of the subject, using as target image the bivariate volume comprehending the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) maps derived from the dMRI dataset. We first verify the accuracy of regseg on a general context using digital phantoms distorted with synthetic and random deformations. Then we establish an evaluation framework using undistorted dMRI data from the Human Connectome Project (HCP) and realistic deformations derived from the inhomogeneity fieldmap corresponding to each subject. We analyze the performance of regseg computing the misregistration error of the surfaces estimated after being mapped with regseg onto 16 datasets from the HCP. The distribution of errors shows a 95% CI of 0.56-0.66mm, that is below the dMRI resolution (1.25mm, isotropic). Finally, we cross-compare the proposed tool against a nonlinear b0-to-T2w registration method, thereby obtaining a significantly lower misregistration error with regseg. The accurate mapping of structural information in dMRI space is fundamental to increase the reliability of network building in connectivity analyses, and to improve the performance of the emerging structure-informed techniques for dMRI data

  15. Relation between acid back-diffusion and luminal surface hydrophobicity in canine gastric mucosa: Effects of salicylate and prostaglandin

    International Nuclear Information System (INIS)

    Goddard, P.J.

    1989-01-01

    The stomach is thought to be protected from luminal acid by a gastric mucosal barrier that restricts the diffusion of acid into tissue. This study tested the hypothesis that the hydrophobic luminal surface of canine gastric mucosa incubated in Ussing chambers, impedes the back-diffusion of luminal acid into the tissue. Isolated sheets of mucosa were treated with cimetidine to inhibit spontaneous acid secretion, and incubated under conditions that prevented significant secretion of luminal bicarbonate. By measuring acid loss from the luminal compartment using the pH-stat technique, acid back-diffusion was continuously monitored; potential difference (PD) was measured as an index of tissue viability. Tissue luminal surface hydrophobicity was estimated by contact angle analysis at the end of each experiment. Addition of 16,16-dimethyl prostaglandin E 2 to the nutrient compartment enhanced luminal surface hydrophobicity, but did not reduce acid back-diffusion in tissues that maintained a constant PD. 10 mM salicylate at pH 4.00 in the luminal compartment reduced surface hydrophobicity, but this decrease did not occur if 1 ug/ml prostaglandin was present in the nutrient solution. Despite possessing relatively hydrophilic and relatively hydrophobic surface properties, respectively, acid back-diffusion in the absence of salicylate was not significantly different between these two groups. Neither group maintained a PD after incubation with salicylate. Lastly, radiolabeled salicylate was used to calculate the free (non-salicylate associated) acid loss in tissues incubated with salicylate and/or prostaglandin. No significant correlation was found between free acid back-diffusion and luminal surface hydrophobicity. These data do not support the hypothesis that acid back-diffusion in impeded by the hydrophobic surface presented by isolated canine gastric mucosa

  16. Local environment dependance of the water diffusion energy barrier onto the (101) anatase surface

    Science.gov (United States)

    Agosta, Lorenzo; Gala, Fabrizio; Zollo, Giuseppe

    2016-06-01

    The adsorption properties of TiO2 surfaces with biological environments have shown to be very important for bio-compatibility properties. Interactions of biological molecules with inorganic materials in aqueous systems, are mediated by water molecules. Hence the understanding of the possible conformations that water molecules can assume on the inorganic surfaces it is very important. Many studies concerning the structural conformations of adsorbed water molecules on rutile and anatase, the most likely exposed surface phases, show that the first layer of adsorbed water molecules play a crucial role in mediating the structural and physical properties of the upper interacting environment layers. In this contest we performed a detailed analysis of the possible conformations of the first layer of water molecules adsorbed on the (101) TiO2 surface; total energy calculations and NEB techniques, in contest of the DFT theory, has been used to study the stability and the diffusion properties as a further insight of our previous studies about this topic.

  17. Diffusion length and junction spectroscopy analysis of low-temperature annealing of electron irradiation-induced deep levels in 4H-SiC

    International Nuclear Information System (INIS)

    Castaldini, A.; Cavallini, A.; Rigutti, L.; Pizzini, S.; Le Donne, A.; Binetti, S.

    2006-01-01

    The effects of low-temperature annealing in 8.2 MeV electron-irradiated 4H-SiC Schottky diodes were investigated. Deep-level transient spectroscopy and minority-carrier diffusion length (L d ) measurements were carried out on not-irradiated samples and on irradiated samples before and after thermal treatments up to T=450 deg. C. We found that several deep levels in the upper half band gap (S1 with enthalpy E T =0.27 eV, S2 with E T =0.35 eV, S4 with E T =0.71 eV, and S5 with E T =0.96 eV) anneal out or modify at temperature values lower or equal to T=450 deg. C, whereby their progressive annealing out is accompanied by a net increase of L d , up to 50% of the value in the as-irradiated sample. We drew some conclusions regarding the microscopic nature of the defects related to the deep levels, according to their annealing behavior

  18. The small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma and full-length FOXP1 exert similar oncogenic and transcriptional activity in human B cells.

    Science.gov (United States)

    van Keimpema, Martine; Grüneberg, Leonie J; Schilder-Tol, Esther J M; Oud, Monique E C M; Beuling, Esther A; Hensbergen, Paul J; de Jong, Johann; Pals, Steven T; Spaargaren, Marcel

    2017-03-01

    The forkhead transcription factor FOXP1 is generally regarded as an oncogene in activated B cell-like diffuse large B-cell lymphoma. Previous studies have suggested that a small isoform of FOXP1 rather than full-length FOXP1, may possess this oncogenic activity. Corroborating those studies, we herein show that activated B cell-like diffuse large B-cell lymphoma cell lines and primary activated B cell-like diffuse large B-cell lymphoma cells predominantly express a small FOXP1 isoform, and that the 5'-end of the Foxp1 gene is a common insertion site in murine lymphomas in leukemia virus- and transposon-mediated insertional mutagenesis screens. By combined mass spectrometry, (quantative) reverse transcription polymerase chain reaction/sequencing, and small interfering ribonucleic acid-mediated gene silencing, we determined that the small FOXP1 isoform predominantly expressed in activated B cell-like diffuse large B-cell lymphoma lacks the N-terminal 100 amino acids of full-length FOXP1. Aberrant overexpression of this FOXP1 isoform (ΔN100) in primary human B cells revealed its oncogenic capacity; it repressed apoptosis and plasma cell differentiation. However, no difference in potency was found between this small FOXP1 isoform and full-length FOXP1. Furthermore, overexpression of full-length FOXP1 or this small FOXP1 isoform in primary B cells and diffuse large B-cell lymphoma cell lines resulted in similar gene regulation. Taken together, our data indicate that this small FOXP1 isoform and full-length FOXP1 have comparable oncogenic and transcriptional activity in human B cells, suggesting that aberrant expression or overexpression of FOXP1, irrespective of the specific isoform, contributes to lymphomagenesis. These novel insights further enhance the value of FOXP1 for the diagnostics, prognostics, and treatment of diffuse large B-cell lymphoma patients. Copyright© Ferrata Storti Foundation.

  19. Interplay between steps and nonequilibrium effects in surface diffusion for a lattice-gas model of O/W (110

    Czech Academy of Sciences Publication Activity Database

    Mašín, Martin; Vattulainen, I.; Ala-Nissila, T.; Chvoj, Zdeněk

    2007-01-01

    Roč. 126, č. 11 (2007), 114705/1-114705/8 ISSN 0021-9606 R&D Projects: GA AV ČR IAA1010207 Institutional research plan: CEZ:AV0Z10100521 Keywords : surface diffusion * vicinal surfaces * non-equilibrium effects * Monte-Carlo simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.044, year: 2007

  20. DMSA scan nomograms for renal length and area: Related to patient age and to body weight, height or surface area

    International Nuclear Information System (INIS)

    Hassan, I.M.; Que, L.; Rutland, M.D.

    2002-01-01

    Aim: To create nomograms for renal size as measured from DMSA renal studies, and to test the nomograms for their ability to separate normal from abnormal kidneys. Method: Renal length was measured from posterior oblique views and renal area from posterior views. Results from 253 patients with bilateral normal kidneys were used to create nomograms for renal size relative to patient age, body height, weight or body surface area (BSA). The nomograms enclosed 95% of the normal kidneys, thus indicating the range for 95% confidence limits, and hence the specificity. Each nomogram was then tested against 46 hypertrophied kidneys and 46 damaged kidneys. Results: The results from nomograms of renal length and renal area, compared to age, body height, body weight and BSA are presented. For each nomogram, the range is presented as a fraction of the mean value, and the number of abnormal kidneys (hypertrophied or damaged) outside the normal range is presented as a percentage (indicating the sensitivity). Conclusion: Renal Area was no better than renal length for detecting abnormal kidneys. Patient age was the least useful method of normalisation. BSA normalisation produced the best results most frequently (narrower ranges and highest detection of abnormal kidneys)

  1. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    Energy Technology Data Exchange (ETDEWEB)

    Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo2C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo2C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft2 at a feed pressure of only 20 psig. The highest H2/N2 selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo2C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo2C catalyst layers. We have fabricated a Mo2C/V composite membrane that in pure gas testing delivered a H2 flux of 238 SCFH/ft2 at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft2.psi. However, during testing of a Mo2C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft2.psi was obtained which was stable during the entire test, meeting the permeance associated with

  2. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    surface is diminished as the size of the particle is reduced. However, in comparison to the free ligands, per chiral molecule all tested gold nanoparticles induce helical distortions in a 10- to 50-fold larger number of liquid crystal host molecules surrounding each particle, indicating a significantly enhanced chiral correlation length. We propose that both the helicity and the chirality transfer efficiency of axially chiral binaphthyl derivatives can be controlled at metal nanoparticle surfaces by adjusting the particle size and curvature as well as the number and density of the chiral ligands to ultimately measure and tune the chiral correlation length.

  3. Abundance, stock origin, and length of marked and unmarked juvenile Chinook salmon in the surface waters of greater Puget Sound

    Science.gov (United States)

    Rice, C.A.; Greene, C.M.; Moran, P.; Teel, D.J.; Kuligowski, D.R.; Reisenbichler, R.R.; Beamer, E.M.; Karr, J.R.; Fresh, K.L.

    2011-01-01

    This study focuses on the use by juvenile Chinook salmon Oncorhynchus tshawytscha of the rarely studied neritic environment (surface waters overlaying the sublittoral zone) in greater Puget Sound. Juvenile Chinook salmon inhabit the sound from their late estuarine residence and early marine transition to their first year at sea. We measured the density, origin, and size of marked (known hatchery) and unmarked (majority naturally spawned) juveniles by means of monthly surface trawls at six river mouth estuaries in Puget Sound and the areas in between. Juvenile Chinook salmon were present in all months sampled (April-November). Unmarked fish in the northern portion of the study area showed broader seasonal distributions of density than did either marked fish in all areas or unmarked fish in the central and southern portions of the sound. Despite these temporal differences, the densities of marked fish appeared to drive most of the total density estimates across space and time. Genetic analysis and coded wire tag data provided us with documented individuals from at least 16 source populations and indicated that movement patterns and apparent residence time were, in part, a function of natal location and time passed since the release of these fish from hatcheries. Unmarked fish tended to be smaller than marked fish and had broader length frequency distributions. The lengths of unmarked fish were negatively related to the density of both marked and unmarked Chinook salmon, but those of marked fish were not. These results indicate more extensive use of estuarine environments by wild than by hatchery juvenile Chinook salmon as well as differential use (e.g., rearing and migration) of various geographic regions of greater Puget Sound by juvenile Chinook salmon in general. In addition, the results for hatchery-generated timing, density, and length differences have implications for the biological interactions between hatchery and wild fish throughout Puget Sound. ?? American

  4. Diffusion Filters for Variational Data Assimilation of Sea Surface Temperature in an Intermediate Climate Model

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhang

    2015-01-01

    Full Text Available Sequential, adaptive, and gradient diffusion filters are implemented into spatial multiscale three-dimensional variational data assimilation (3DVAR as alternative schemes to model background error covariance matrix for the commonly used correction scale method, recursive filter method, and sequential 3DVAR. The gradient diffusion filter (GDF is verified by a two-dimensional sea surface temperature (SST assimilation experiment. Compared to the existing DF, the new GDF scheme shows a superior performance in the assimilation experiment due to its success in extracting the spatial multiscale information. The GDF can retrieve successfully the longwave information over the whole analysis domain and the shortwave information over data-dense regions. After that, a perfect twin data assimilation experiment framework is designed to study the effect of the GDF on the state estimation based on an intermediate coupled model. In this framework, the assimilation model is subject to “biased” initial fields from the “truth” model. While the GDF reduces the model bias in general, it can enhance the accuracy of the state estimation in the region that the observations are removed, especially in the South Ocean. In addition, the higher forecast skill can be obtained through the better initial state fields produced by the GDF.

  5. Reduction-induced inward diffusion and crystal growth on the surfaces of iron-bearing silicate glasses

    DEFF Research Database (Denmark)

    Liu, S.J.; Tao, H.Z.; Zhang, Y.F.

    2015-01-01

    We investigate the sodium inward diffusion (i.e., sodium diffusion from surface toward interior) in iron containing alkaline earth silicate glasses under reducing conditions around Tg and the induced surface crystallization. The surface crystallization is caused by formation of a silicate-gel layer...... first and then the growth of silica crystals on the glass surface. The type of alkaline earth cations has a strong impact on both the glass transition and the surface crystallization. In the Mg-containing glass, a quartz layer forms on the glass surface. This could be attributed to the fact that Mg2......+ ions have stronger bonds to oxygen and lower coordination number (4~5) than Ca2+, Sr2+ and Ba2+ ions. In contrast, a cristobalite layer forms in Ca-, Sr- and Ba-containing glasses....

  6. Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.

    Science.gov (United States)

    Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis

    2017-09-01

    Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.

  7. A radiometric model of an earth radiation budget radiometer optical system with diffuse-specular surfaces

    Science.gov (United States)

    Luther, M. R.

    1981-01-01

    The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.

  8. Diffusion of surface-active amphiphiles in silicone-based fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, S. M.; Hvilsted, Søren

    2017-01-01

    Amphiphiles (i.e. amphiphilic molecules such as surfactants, block copolymers and similar compounds) are used in small amounts to modify the surface properties of polymeric materials. In silicone fouling-release coatings, PEG-based amphiphiles are added to provide biofouling-resistance. The success...... of the amphiphiles shows a weak dependency on their molecular weight, although this dependency is much less pronounced than for other rubbery polymeric materials. The biofouling-resistance properties in fouling-release coatings were also studied for these amphiphiles. It was found that the diffusion coefficient does...... not have any influence on the biofouling-resistance results for the studied compounds. Instead, the chemistry of the hydrophobic block of the amphiphiles is much more significant, with PEG-PDMS block copolymers showing the best properties among the studied compounds....

  9. On the frequency distributions per unit area of the projected and etchable lengths of surface-intersecting fission tracks: influences of track revelation, observation and measurement

    CERN Document Server

    Jonckheere, R

    1999-01-01

    In addition to the statistical bounds discussed, thermal history analysis based on the projected and etchable length distributions of surface intersecting fission tracks is limited by systematic factors related to track revelation, observation and measurement. The effects of track revelation, in particular, distort these distributions in the length intervals of interest. An observation threshold poses a problem if it is described by a critical angle theta sub c , but not if it is described by other criteria proposed in the literature. Measurement imprecisions, predictably, blur the thermal history information contained in these distributions. Measurements of semi-confined tracks, added as a result of surface etching, are a more promising alternative to confined track length measurements for accessing the thermal history record in the fission track length distribution. On the other hand, measurements of the projected lengths of surface intersecting tracks offer the theoretical possibility of determining the tr...

  10. A new boundary scheme for simulation of gas flow in kerogen pores with considering surface diffusion effect

    Science.gov (United States)

    Wang, Lingquan; Zeng, Zhong; Zhang, Liangqi; Qiao, Long; Zhang, Yi; Lu, Yiyu

    2018-04-01

    Navier-Stokes (NS) equations with no-slip boundary conditions fail to realistically describe micro-flows with considering nanoscale phenomena. Particularly, in kerogen pores, slip-flow and surface diffusion are important. In this study, we propose a new slip boundary scheme for the lattice Boltzmann (LB) method through the non-equilibrium extrapolation scheme to simulate the slip-flow considering surface diffusion effect. Meanwhile, the second-order slip velocity can be taken into account. The predicted characteristics in a two-dimensional micro-flow, including slip-velocity, velocity distribution along the flow direction with/without surface diffusion are present. The results in this study are compared with available analytical and reference results, and good agreements are achieved.

  11. Systematic control of edge length, tip sharpness, thickness, and localized surface plasmon resonance of triangular Au nanoprisms

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Yuta; Hayakawa, Tomokatsu, E-mail: hayatomo@nitech.ac.jp [Nagoya Institute of Technology, Department of Frontier Materials, Field of Advanced Energy Conversion (Japan)

    2016-10-15

    Triangular gold (Au) nanoprisms of various sizes were synthesized in a controlled way using a modified three-step seed-mediated method with different volumes of starting seed solution and subsequent first step’s growth solution. The structures and optical properties of the triangular Au nanoprisms were investigated using transmission electron microscopy (TEM), atomic force microscopy, and UV–Vis–NIR spectrophotometry. The Au nanoprisms synthesized also varied in optical response frequency of localized surface plasmon resonance (LSPR) owing to electric dipole polarizations of the Au nanoprisms. This variation depended nonlinearly on the volume of the seed solution. From optical extinction spectra and careful TEM observations, the dipole LSPR peak frequency was found to be linearly proportional to the edge length of the Au nanoprisms. Consequently, it was experimentally shown that the LSPR optical response frequency of their colloidal solutions could be controlled in the near-infrared region (700–1200 nm), corresponding to an edge length of 40–180 nm of the Au nanoprisms. It was also demonstrated that the tip sharpness of triangular Au nanoprisms was improved by using fine Au seeds instead of coarse Au seeds, and the resulting Au nanoprisms were smaller and thinner. A formation mechanism of triangular Au nanoprisms shall also be discussed with a prospect of synthesizing very tiny Au nanoprisms.Graphical Abstract.

  12. Atomistic simulation of the vacancy diffusion in (0 0 1) surface of MoTa alloy

    Science.gov (United States)

    Wang, Fang; Zhang, Jian-Min; Xu, Ke-Wei; Ji, Vincent

    2009-08-01

    The formation and diffusion of a single Mo or Ta vacancy in the (0 0 1) surface of the B 2-type MoTa alloy have been investigated by using modified analytical embedded-atom method (MAEAM). The results show that the effect of the surface on the vacancy is only down to the sixth layer. It is easier for the vacancy to form in the first layer. Comparing the migration energy of the vacancy migrating in the intra-layer, to the upper layer and to the nether layer via 2NN jump, we find that the vacancy in the first or second layer is preferred to migrate in intra-layer, and that in the third or fourth layer is favorable to migrate to the upper layer. Although 1NN jump will result in an anti-site so that a disorder in the order alloy, it may also occur due to the much lower migration energy especially for the vacancy in the second and third layer to migrate to the first and second layer, respectively.

  13. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films

    International Nuclear Information System (INIS)

    Mirigian, Stephen; Schweizer, Kenneth S.

    2015-01-01

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry

  14. Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mirigian, Stephen, E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com [Departments of Materials Science and Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)

    2015-12-28

    We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.

  15. Diffusion of Cd and Te adatoms on CdTe(111 surfaces: A computational study using density functional theory

    Directory of Open Access Journals (Sweden)

    Ebadollah Naderi

    2015-01-01

    Full Text Available CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111 A-type (Cd terminated and B-type (Te terminated surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as Aa site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from Aa (occupied to Aa (empty site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type. Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.

  16. Ensemble based Assimilation of SMOS Surface Soil Moisture into the Surfex 11-layer Diffusion Scheme

    Science.gov (United States)

    Blyverket, Jostein; Hamer, Paul; Svendby, Tove; Lahoz, William

    2017-04-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite samples soil moisture at a spatial scale of ˜40 km and in the top ˜5 cm of the soil, depending on land cover and soil type. Remote sensing products have a limited spatial and temporal cover, with a re-visit time of 3 days close to the Equator for SMOS. These factors make it difficult to monitor the hydrological cycle over e.g., Northern Areas where there is a strong topography, fractal coastline and long periods of snow cover, all of which affect the SMOS soil moisture retrieval. Until now simple 3-layer force and restore models have been used to close the spatial (vertical/horizontal) and temporal gaps of soil moisture from remote sensing platforms. In this study we have implemented the Ensemble Transform Kalman Filter (ETKF) into the Surfex land surface model, and used the ISBA diffusion scheme with 11-vertical layers. In contrast to the rapid changing surface layer, the slower changing root zone soil moisture is important for long term evapotranspiration and water supply. By combining a land surface model with satellite observations using data assimilation we can provide a better estimate of the root zone soil moisture at regional scales. The Surfex model runs are done for a European domain, from 1 July 2012 to 1 August 2013. For validation of our model setup, we compare with in situ stations from the International Soil Moisture Network (ISMN) and the Norwegian Water and Energy Authorities (NVE); we also compare against the ESA CCI soil moisture product v02.2, which does not include SMOS soil moisture data. SMOS observations and open loop model runs are shown to exhibit large biases, these are removed before assimilation by a linear rescaling technique. Information from the satellite is transferred into deeper layers of the model using data assimilation, improving the root zone product when validated against in situ stations. The improved correlation between the assimilated product and the in situ values

  17. Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran

    International Nuclear Information System (INIS)

    Khorasanizadeh, H.; Mohammadi, K.; Mostafaeipour, A.

    2014-01-01

    Highlights: • Optimum tilt angles of solar surfaces in the Iranian city of Tabass are determined. • Due to lack of measured diffuse data, a new two variables diffuse model is established. • The monthly optimum tilt varies between 0° and 64° and the best annual tilt is 32°. • The semi-yearly tilt strategy of 10° for warm and 55° for cold periods are suggested. • Radiation components obtained for horizontal, tilted and vertical surfaces are compared. - Abstract: In this study the optimum tilt angle for south-facing solar surfaces in Tabass, Iran, for the fixed monthly, seasonal, semi-yearly and yearly adjustments were calculated. Due to lack of measured diffuse solar radiation data, to predict the horizontal diffuse radiation nine diffuse models from three different categories were established. Based on some statistical indicators the three degree model, in which both clearness index and relative sunshine duration are variables, was recognized the best. The monthly optimum tilt varies from 0° in June and July up to 64° in December and the yearly optimum tilt is around 32°, which is very close to latitude of Tabass (33.36°). For different adjustments, particularly for a vertically mounted surface, the received monthly mean daily solar radiation components and the annual solar energy gains were calculated and compared. Total yearly extra solar gain for the monthly, seasonal, semi-yearly and yearly optimally adjusted surfaces compared to that of horizontal surface are 23.15%, 21.55%, 21.23% and 13.76%, respectively. The semi-yearly tilt adjustment of 10° for warm period (April–September) and 55° for cold period (October–March) is highly recommended, since it provides almost the same level of annual solar energy gain as those of monthly and seasonal adjustments

  18. Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Nir; Browning, Nigel D.

    2011-06-16

    Gold clusters on rutile TiO2 are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO2(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.

  19. The collective diffusion coefficient as a shape detector of the surface energy landscape

    Science.gov (United States)

    Mińkowski, Marcin; Załuska–Kotur, Magdalena A.

    2018-01-01

    The general expression for the diffusion coefficient for a dense, interacting particle system moving through a one-dimensional non-homogeneous energy potential is derived. Based on this expression, it is shown that the diffusion coefficient as a function of density depends to a great extent on the shape of the energy landscape. The presence of other particles affects the diffusion coefficient in another way as they pass through the same energy barriers, but set in a different order. The obtained result comes from a variational approach to diffusion and the interactions are taken into account using the transfer-matrix method. Interactions impact on the dynamics of the system, both by changing the equilibrium probabilities of the occupied states and by changing the barriers for the particle jumps. Several examples of diffusion in different energy potentials are presented and the dependence of the diffusion coefficient on potential and interactions is discussed.

  20. Specular and diffuse object extraction from a LiDAR derived Digital Surface Model (DSM)

    International Nuclear Information System (INIS)

    Saraf, N M; Hamid, J R A; Kamaruddin, M H

    2014-01-01

    This paper intents to investigate the indifferent behaviour quantitatively of target objects of interest due to specular and diffuse reflectivity based on generated LiDAR DSM of the study site in Ampang, Kuala Lumpur. The LiDAR data to be used was initially checked for its reliability and accuracy. The point cloud LiDAR data was converted to raster to allow grid analysis of the next process of generating the DSM and DTM. Filtering and masking were made removing the features of interest (i.e. building and tree) and other unwanted above surface features. A normalised DSM and object segmentation approach were conducted on the trees and buildings separately. Error assessment and findings attained were highlighted and documented. The result of LiDAR verification certified that the data is reliable and useable. The RMSE obtained is within the tolerance value of horizontal and vertical accuracy (x, y, z) i.e. 0.159 m, 0.211 m 0.091 m respectively. Building extraction inclusive of roof top based on slope and contour analysis undertaken indicate the capability of the approach while single tree extraction through aspect analysis appears to preserve the accuracy of the extraction accordingly. The paper has evaluated the suitable methods of extracting non-ground features and the effective segmentation of the LiDAR data

  1. Low-coverage surface diffusion in complex periodic energy landscapes. II. Analytical solution for systems with asymmetric hops

    Science.gov (United States)

    Gosálvez, Miguel A.; Otrokov, Mikhail M.; Ferrando, Nestor; Ryabishchenkova, Anastasia G.; Ayuela, Andres; Echenique, Pedro M.; Chulkov, Evgueni V.

    2016-05-01

    This is part II in a series of two papers that introduce a general expression for the tracer diffusivity in complex, periodic energy landscapes with M distinct hop rates in one-, two-, and three-dimensional diluted systems (low coverage, single-tracer limit). While Part I [Gosálvez et al., Phys. Rev. B 93, 075429 (2016), 10.1103/PhysRevB.93.075429] focuses on the analysis of diffusion in systems where the end sites of the hops are located symmetrically with respect to the hop origins (symmetric hops), as encountered in many ideal surfaces and bulk materials, this report (Part II) presents a more general approach to determining the tracer diffusivity in systems where the end sites can be located asymmetrically with respect to the hop origins (asymmetric hops), as observed in reconstructed and/or chemically modified surfaces and/or bulk materials. The obtained diffusivity formulas for numerous systems are validated against kinetic Monte Carlo simulations and previously reported analytical expressions based on the continuous-time random walk (CTRW) method. The proposed method corrects some of the CTRW formulas and provides new expressions for difficult cases that have not been solved earlier. This demonstrates the ability of the proposed formalism to describe tracer diffusion.

  2. Thermal Diffusion Dynamic Behavior of Two-Dimensional Ag-SMALL Clusters on Ag(1 1 1) Surface

    Science.gov (United States)

    Zakirur-Rehman; Hayat, Sardar Sikandar

    2015-07-01

    In this paper, the thermal diffusion behavior of small two-dimensional Ag-islands on Ag(1 1 1) surface has been explored using molecular dynamics (MD) simulations. The approach is based on semi-empirical potentials. The key microscopic processes responsible for the diffusion of Ag1-5 adislands on Ag(1 1 1) surface are identified. The hopping and zigzag concerted motion along with rotation are observed for Ag one-atom to three-atom islands while single-atom and multi-atom processes are revealed for Ag four-atom and five-atom islands, during the diffusion on Ag(1 1 1) surface. The same increasing/decreasing trend in the diffusion coefficient and effective energy barrier is observed in both the self learning kinetic Monte Carlo (SLKMC) and MD calculations, for the temperature range of 300-700 K. An increase in the value of effective energy barrier is noticed with corresponding increase in the number of atoms in Ag-adislands. A reasonable linear fit is observed for the diffusion coefficient for studied temperatures (300, 500 and 700 K). For the observed diffusion mechanisms, our findings are in good agreement with ab initio density-functional theory (DFT) calculations for Al/Al(1 1 1) while the energy barrier values are in same range as the experimental values for Cu/Ag(1 1 1) and the theoretical values using ab initio DFT supplemented with embedded-atom method for Ag/Ag(1 1 1).

  3. Vorticity models of ocean surface diffusion in coastal jets and eddies

    Science.gov (United States)

    Cano, D.; Matulka, A.; Sekula, E.

    2010-05-01

    We present and discuss the use of multi-fractal techniques used to investigete vorticity and jet dynamical state of these features detected in the sea surface as well as to identify possible local parametrizations of turbulent diffusion in complex non-homogeneous flows. We use a combined vorticity/energy equation to parametrize mixing at the Rossby Deformation Radius, which may be used even in non Kolmogorov types of flows. The vorticity cascade is seen to be different to the energy cascade and may have important cnsecuences in pollutant dispersion prediction, both in emergency accidental releases and on a day to day operational basis. We also identify different SAR signatures of river plumes near the coast, which are usefull to provide calibrations for the different local configurations that allow to predict the behaviour of different tracers and tensioactives in the coastal sea surface area by means of as a geometrical characterization of the vorticity and velocity maps which induce local mixing and dilution jet processes. The satellite-borne SAR seems to be a good system for the identification of dynamic. lt is also a convenient tool to investigate the eddy structures of a certain area where the effect of bathymetry and local currents are important in describing the ocean surface behavior. Maximum eddy size agrees remarkably well with the limit imposed by the local Rossby deformation radius using the usual thermocline induced stratification, Redondo and Platonov (2000). The Rossby deformation radius, defined as Rd = (N/f)h, where N is the Brunt-Vaisalla frequency, f is the local Coriolis parameter (f=2Osin(lat), where O is the rotation of the earth as function of the latitude), The role of buoyancy may be also detected by seasonal changes in h, the thermocline depth, with these considerations Rd is ranged between 6 and 30 Km. Bezerra M.O., Diez M., Medeiros C. Rodriguez A., Bahia E., Sanchez Arcilla A and Redondo J.M. (1998) "Study on the influence of waves on

  4. 'Length'at Length

    Indian Academy of Sciences (India)

    Admin

    He was interested to know how `large' is the set of numbers x for which the series is convergent. Here large refers to its length. But his set is not in the class ♢. Here is another problem discussed by Borel. Consider .... have an infinite collection of pairs of new shoes and want to choose one shoe from each pair. We have an ...

  5. Surface-micromachined magnetic undulator with period length between 10μm and 1 mm for advanced light sources

    Science.gov (United States)

    Harrison, Jere; Joshi, Abhijeet; Lake, Jonathan; Candler, Rob; Musumeci, Pietro

    2012-07-01

    A technological gap exists between the μm-scale wiggling periods achieved using electromagnetic waves of high intensity laser pulses and the mm scale of permanent-magnet and superconducting undulators. In the sub-mm range, surface-micromachined soft-magnetic micro-electro-mechanical system inductors with integrated solenoidal coils have already experimentally demonstrated 100 to 500 mT field amplitude across air gaps as large as 15μm. Simulations indicate that magnetic fields as large as 1.5 T across 50μm inductor gaps are feasible. A simple rearranging of the yoke and pole geometry allows for fabrication of 10+ cm long undulator structures with period lengths between 12.5μm and 1 mm. Such undulators find application both in high average power spontaneous emission sources and, if used in combination with ultrahigh-brightness electron beams, could lead to the realization of low energy compact free-electron lasers. Challenges include electron energy broadening due to wakefields and Joule heating in the electromagnet.

  6. Relationship between Length and Surface-Enhanced Raman Spectroscopy Signal Strength in Metal Nanoparticle Chains: Ideal Models versus Nanofabrication

    Directory of Open Access Journals (Sweden)

    Kristen D. Alexander

    2012-01-01

    Full Text Available We have employed capillary force deposition on ion beam patterned substrates to fabricate chains of 60 nm gold nanospheres ranging in length from 1 to 9 nanoparticles. Measurements of the surface-averaged SERS enhancement factor strength for these chains were then compared to the numerical predictions. The SERS enhancement conformed to theoretical predictions in the case of only a few chains, with the vast majority of chains tested not matching such behavior. Although all of the nanoparticle chains appear identical under electron microscope observation, the extreme sensitivity of the SERS enhancement to nanoscale morphology renders current nanofabrication methods insufficient for consistent production of coupled nanoparticle chains. Notwithstanding this fact, the aggregate data also confirmed that nanoparticle dimers offer a large improvement over the monomer enhancement while conclusively showing that, within the limitations imposed by current state-of-the-art nanofabrication techniques, chains comprising more than two nanoparticles provide only a marginal signal boost over the already considerable dimer enhancement.

  7. Selectivity and Self Diffusion of CO2 and h2 in a Mixture on a Graphite Surface

    Science.gov (United States)

    Trinh, Thuat; Kjelstrup, Signe; Vlugt, Thijs; Bedeaux, Dick; Hägg, May-Britt

    2013-12-01

    We performed classical molecular dynamics (MD) simulations to understand the mechanism of adsorption from a gas mixture of CO2 and H2 (mole fraction of CO2 = 0.30) and diffusion along a graphite surface, with the aim to help enrich industrial off-gases in CO2, separating out H2. The temperature of the system in the simulation covered typical industrial conditions for off-gas treatment (250 ̶ 550K). The interaction energy of single molecules CO2 or H2 on graphite surface was calculated with classical force fields and with Density Functional Theory (DFT). The results were in good agreement. The binding energy of CO2 on graphite surface is three times larger than that of H2. At lower temperatures, the selectivity of CO2 over H2 is five times larger than at higher temperatures. The position of the dividing surface was used to explain how the adsorption varies with pore size. In the temperature range studied, the self-diffusion coefficient of CO2 is always smaller than of H2. The temperature variation of the selectivities and the self diffusion coefficient imply that the carbon molecular sieve membrane can be used for gas enrichment of CO2.

  8. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    Science.gov (United States)

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Energetics and self-diffusion behavior of Zr atomic clusters on a Zr(0 0 0 1) surface

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)

    2009-09-15

    Using a molecular dynamics method and a modified analytic embedded atom potential, the energetic and the self-diffusion dynamics of Zr atomic clusters up to eight atoms on {alpha}-Zr(0 0 0 1) surface have been studied. The simulation temperature ranges from 300 to 1100 K and the simulation time varies from 20 to 40 ns. It's found that the heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center and the present diffusion coefficients for clusters exhibit an Arrhenius behavior. The Arrhenius relation of the single adatom can be divided into two parts in different temperature range because of their different diffusion mechanisms. The migration energies of clusters increase with increasing the number of atoms in cluster. The differences of the prefactors also come from the diverse diffusion mechanisms. On the facet of 60 nm, the heptamer can be the nuclei in the crystal growth below 370 K.

  10. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    Directory of Open Access Journals (Sweden)

    Zhiyang Li

    2015-09-01

    Full Text Available In this paper, vertically aligned Pt nanowire arrays (PtNWA with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2 detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2 among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  11. Microscale anechoic architecture: acoustic diffusers for ultra low power microparticle separation via traveling surface acoustic waves.

    Science.gov (United States)

    Behrens, Jan; Langelier, Sean; Rezk, Amgad R; Lindner, Gerhard; Yeo, Leslie Y; Friend, James R

    2015-01-07

    We present a versatile and very low-power traveling SAW microfluidic sorting device able to displace and separate particles of different diameter in aqueous suspension; the travelling wave propagates through the fluid bulk and diffuses via a Schröder diffuser, adapted from its typical use in concert hall acoustics to be the smallest such diffuser to be suitable for microfluidics. The effective operating power range is two to three orders of magnitude less than current SAW devices, uniquely eliminating the need for amplifiers, and by using traveling waves to impart forces directly upon suspended microparticles, they can be separated by size.

  12. Surface diffusion of a Brownian particle subjected to an external harmonic noise

    Science.gov (United States)

    Bai, Zhan-Wu; Ding, Li-Ping

    2017-05-01

    Langevin simulation is performed to investigate the diffusion coefficient of a Brownian particle subjected to an external harmonic noise in a two-dimensional coupled periodic potential. Resonant diffusion phenomenon is observed as a result of the coupling between the central frequency of the spectral density of the harmonic noise and the frequency of the potential well bottom. The diffusion coefficient presents approximately linear functions of the strengths of the internal and external noises for low values of the strengths, these functions can be understood by the local linearization approximation of the potential force. The damping coefficient dependence of the diffusion coefficient in lower damping is well fitted by a negative power function, as an internal Gaussian white noise case does, but with a power whose absolute value is larger than 1.

  13. Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer

    NARCIS (Netherlands)

    Markov, Denis E.; Amsterdam, Emiel; Blom, Paul W.M.; Sieval, Alexander B.; Hummelen, Jan C.

    2005-01-01

    Exciton diffusion and photoluminescence quenching in conjugated polymer/fullerene heterostructures are studied by time-resolved photoluminescence. It is observed that heterostructures consisting of a spin-coated poly(p-phenylene vinylene) (PPV)-based derivative and evaporated C-60 are ill-defined

  14. On the importance of cavity-length and heat dissipation in GaN-based vertical-cavity surface-emitting lasers

    Science.gov (United States)

    Liu, W. J.; Hu, X. L.; Ying, L. Y.; Chen, S. Q.; Zhang, J. Y.; Akiyama, H.; Cai, Z. P.; Zhang, B. P.

    2015-04-01

    Cavity-length dependence of the property of optically pumped GaN-based vertical-cavity surface-emitting lasers (VCSELs) with two dielectric distributed Bragg reflectors was investigated. The cavity lengths were well controlled by employing etching with inductively coupled plasma and chemical mechanical polishing. It was found that the lasing characteristics including threshold, slope efficiency and spontaneous emission coupling factor were substantially improved with reducing the cavity length. In comparison with the device pumped by a 400 nm pulsed laser, the lasing spectrum was featured by a red shift and simultaneous broadening with increasing the pumping energy of a 355 nm pulsed laser. Moreover, the lasing threshold was much higher when pumped by a 355 nm pulsed laser. These were explained by taking into account of the significant heating effect under 355 nm pumping. Our results demonstrate that a short cavity length and good heat-dissipation are essential to GaN-based VCSELs.

  15. Diffusion and adsorption of dimers on reconstructed Pt(1 1 0) surfaces: First principle and EAM studies

    Science.gov (United States)

    Matrane, I.; Mazroui, M.; Sbiaai, K.

    2018-03-01

    We present a density functional theory (DFT) and embedded atom method (EAM) studies of Pt2 , Au2 and AuPt dimers adsorption and diffusion on the clean Pt (1 1 0) (1 × 1) surface and (1 × 2) (1 × 3) and (1 × 4) missing row reconstructed geometries. As a first step, adsorption energies are calculated for all considered dimers, and their stability is checked by computing the binding energies. Furthermore, the energy barriers for the elementary diffusion mechanisms (concerted jump, dissociation-reassociation and leapfrog) are calculated for dimers diffusion on all considered geometries. The potential energy profile for the leapfrog mechanism is provided for dimers diffusion on the (1 × 2) (1 × 3) and (1 × 4) missing row reconstructed geometries. Our results show that each of the three dimers exhibits a qualitatively different behaviours. In addition, the obtained results provide interesting atomistic information about dimers stability and mobility, which is required for understanding the macroscopic kinetics of crystal growth.

  16. Modeling of flame lift-off length in diesel low-temperature combustion with multi-dimensional CFD based on the flame surface density and extinction concept

    Science.gov (United States)

    Azimov, Ulugbek; Kim, Ki-Seong; Bae, Choongsik

    2010-07-01

    Low-Temperature Combustion (LTC) is becoming a promising technology for simultaneously reducing soot and NOx emissions from diesel engines. LTC regimes are evaluated by the flame lift-off length - the distance from the injector orifice to the location of hydroxyl luminescence closest to the injector in the flame jet. Various works have been dedicated to successful simulations of lifted flames of a diesel jet by use of various combustion modeling approaches. In this work, flame surface density and flamelet concepts were used to model the diesel lift-off length under LTC conditions. Numerical studies have been performed with the ECFM3Z model, n-Heptane and diesel fuels to determine the flame lift-off length and its correlation with soot formation under quiescent conditions. The numerical results showed good agreement with experimental data, which were obtained from an optically accessible constant volume chamber and presented at the Engine Combustion Network (ECN) of Sandia National Laboratories. It was shown that at a certain distance downstream from the injector orifice, stoichiometric scalar dissipation rate matched the extinction scalar dissipation rate. This computed extinction scalar dissipation rate correlated well with the flame lift-off length. For the range of conditions investigated, adequate quantitative agreement was obtained with the experimental measurements of lift-off length under various ambient gas O2 concentrations, ambient gas temperatures, ambient gas densities and fuel injection pressures. The results showed that the computed lift-off length values for most of the conditions lay in a reasonable range within the quasi-steady lift-off length values obtained from experiments. However, at ambient temperatures lower than 1000 K, the lift-off length values were under-predicted by the numerical analysis. This may be due to the use of the droplet evaporation model as it is believed that evaporation has a strong effect on the lift-off length.

  17. Evaluation of the performance of three diffuse hourly irradiation models on tilted surfaces according to the utilizability concept

    International Nuclear Information System (INIS)

    Posadillo, R.; Lopez Luque, R.

    2009-01-01

    The performance of three diffuse hourly irradiation models on tilted surfaces was evaluated by making a database of hourly global and diffuse solar irradiation on a horizontal surface, as well as global solar irradiation on a tilted surface, recorded in a solar radiation station located at Cordoba University (Spain). The method for a comparison of the performance of these models was developed from a study of the 'utilizable energy' statistics, a value representing, for a specific period of time, the mean monthly radiation that exceeded a critical level of radiation. This model comparison method seemed to us to be highly suitable since it provides a way of comparing the capacity of these models to estimate, however, much energy is incident on a tilted surface above a critical radiation level. Estimated and measured values were compared using the normalized RMBE and RRMSE statistics. According to the results of the method let us verify that, of the three models evaluated, one isotropic and two anisotropic, the Reindl et al. anisotropic model was the one giving the best results.

  18. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  19. Study of Surface Wettability Change of Unconsolidated Sand Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Thermogravimetric Analysis.

    Science.gov (United States)

    Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V

    2018-04-01

    The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.

  20. Diffusion of gold in silicon during rapid thermal annealing: Effectiveness of the surface as a sink for self-interstitials

    Science.gov (United States)

    Lerch, W.; Stolwijk, N. A.

    1998-02-01

    Rapid thermal annealing was used for short-time diffusion experiments of gold in dislocation-free floating-zone silicon of {100} orientation at 1050 °C and 1119 °C. Concentration-depth profiles measured by the spreading-resistance technique are well described within the framework of the kick-out mechanism involving generation of silicon self-interstitials. More specifically, the gold-incorporation rate appears to be controlled by the outdiffusion of excess self-interstitials towards the surfaces. As a special feature, the measurements reveal a continuous increase of the gold boundary concentration which approaches the pertaining solubility limit only after prolonged annealing. This can be interpreted in terms of a limited effectiveness of gold-alloyed {100} silicon surfaces as sinks for self-interstitials. The validity of this interpretation is supported by computer modeling of the experimental data yielding finite values for the self-interstitial surface-annihilation velocity.

  1. Nonexponential decay of velocity correlations in surface diffusion: The role of interactions and ordering

    DEFF Research Database (Denmark)

    Vattulainen, Ilpo Tapio; Hjelt, T.; Ala-Nissila, T.

    2000-01-01

    We study the diffusive dynamics of adparticles in two model systems with strong interactions by considering the decay of the single-particle velocity correlation function phi (t). In accordance with previous studies, we find phi (t) to decay nonexponentially and follow a power-law phi (t)similar ......We study the diffusive dynamics of adparticles in two model systems with strong interactions by considering the decay of the single-particle velocity correlation function phi (t). In accordance with previous studies, we find phi (t) to decay nonexponentially and follow a power-law phi (t...... be rationalized in terms of interaction effects. Namely, x is typically larger than two in cases where repulsive adparticle-adparticle interactions dominate, while attractive interactions lead to x...

  2. Diffusion coefficients-surface and interfacial tensions - Particular study of some lauryl compounds

    International Nuclear Information System (INIS)

    Morel, Jean-Emile

    1969-01-01

    Two important results of the double lipophilic and hydrophilic character of some heavy organic compounds with a polar group at the end of the chain, were studied: - In a first part, molecular diffusion coefficients were measured in order to prove the micellar aggregation of tri-laurylammonium nitrate in some organic solutions; - In a second part, the tensioactivity of some lauryl compounds (lauric acid, lauric alcohol, mono-laurylamine, etc.), was studied. (author) [fr

  3. Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface

    Science.gov (United States)

    2016-12-22

    of Philosophy Kenneth W. Burgi, BS, MS Major, USAF 22 December 2016 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT...refocusing light through thin films of a turbid medium. When coherent light is trans- mitted through a stationary diffuser (i.e. a turbid medium), a fine...resultant light scatter [14, 15, 21, 23]. Transmission matrices were measured with microscopic objectives and thin films of turbid media, resulting in

  4. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2008-01-01

    Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces...

  5. Determination of Optimal Parameters for Diffusion Bonding of Semi-Solid Casting Aluminium Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kaewploy Somsak

    2015-01-01

    Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa

  6. Process length variation in cysts of a dinoflagellate, Lingulodinium machaerophorum, in surface sediments: investigating its potential as salinity proxy

    DEFF Research Database (Denmark)

    Mertens, Kenneth; Ribeiro, Sofia; Ilham, Bouimetarhan

    2009-01-01

    surface sediment samples revealed that the average process length is related to summer salinity and temperature at a water depth of 30 m by the equation (salinity/temperature) = (0.078low asteriskaverage process length + 0.534) with R2 = 0.69. This relationship can be used to reconstruct palaeosalinities......, albeit with caution. The particular ecological window can be associated with known distributions of the corresponding motile stage Lingulodinium polyedrum (Stein) Dodge, 1989. Confocal laser microscopy showed that the average process length is positively related to the average distance between process...... bases (R2 = 0.78), and negatively related to the number of processes (R2 = 0.65). These results document the existence of two end members in cyst formation: one with many short, densely distributed processes and one with a few, long, widely spaced processes, which can be respectively related to low...

  7. HNO₃-assisted polyol synthesis of ultralarge single-crystalline Ag microplates and their far propagation length of surface plasmon polariton.

    Science.gov (United States)

    Chang, Cheng-Wei; Lin, Fan-Cheng; Chiu, Chun-Ya; Su, Chung-Yi; Huang, Jer-Shing; Perng, Tsong-Pyng; Yen, Ta-Jen

    2014-07-23

    We developed a HNO3-assisted polyol reduction method to synthesize ultralarge single-crystalline Ag microplates routinely. The edge length of the synthesized Ag microplates reaches 50 μm, and their top facets are (111). The mechanism for dramatically enlarging single-crystalline Ag structure stems from a series of competitive anisotropic growths, primarily governed by carefully tuning the adsorption of Ag(0) by ethylene glycol and the desorption of Ag(0) by a cyanide ion on Ag(100). Finally, we measured the propagation length of surface plasmon polaritons along the air/Ag interface under 534 nm laser excitation. Our single-crystalline Ag microplate exhibited a propagation length (11.22 μm) considerably greater than that of the conventional E-gun deposited Ag thin film (5.27 μm).

  8. Time-resolved measurements of laser-induced diffusion of CO molecules on stepped Pt(111)-surfaces; Zeitaufgeloeste Untersuchung der laser-induzierten Diffusion von CO-Molekuelen auf gestuften Pt(111)-Oberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Lawrenz, M.

    2007-10-30

    In the present work the dynamics of CO-molecules on a stepped Pt(111)-surface induced by fs-laser pulses at low temperatures was studied by using laser spectroscopy. In the first part of the work, the laser-induced diffusion for the CO/Pt(111)-system could be demonstrated and modelled successfully for step diffusion. At first, the diffusion of CO-molecules from the step sites to the terrace sites on the surface was traced. The experimentally discovered energy transfer time of 500 fs for this process confirms the assumption of an electronically induced process. In the following it was explained how the experimental results were modelled. A friction coefficient which depends on the electron temperature yields a consistent model, whereas for the understanding of the fluence dependence and time-resolved measurements parallel the same set of parameters was used. Furthermore, the analysis was extended to the CO-terrace diffusion. Small coverages of CO were adsorbed to the terraces and the diffusion was detected as the temporal evolution of the occupation of the step sites acting as traps for the diffusing molecules. The additional performed two-pulse correlation measurements also indicate an electronically induced process. At the substrate temperature of 40 K the cross-correlation - where an energy transfer time of 1.8 ps was extracted - suggests also an electronically induced energy transfer mechanism. Diffusion experiments were performed for different substrate temperatures. (orig.)

  9. Effect of temperature and chain length on the viscosity and surface tension of binary systems of N,N-dimethylformamide with 1-octanol, 1-nonanol and 1-decanol

    International Nuclear Information System (INIS)

    Mohammad, Abubaker A.; Alkhaldi, Khaled H.A.E.; AlTuwaim, Mohammad S.; Al-Jimaz, Adel S.

    2014-01-01

    Highlights: • Effect of temperature and chain length on η and σ of DMF + 1-alkanol binary systems. • Viscosity and surface tension were obtained. • Δη, Δσ and G ∗E were calculated using the experimental data. • H σ and S σ were determined using the surface tension data. • Semi-empirical relations were used to estimate the viscosity of liquid mixtures. - Abstract: Viscosity and surface tension of binary systems of N,N-dimethylformamide DMF with higher 1-alkanols (C 8 –C 10 ) were measured at atmospheric pressure and four different temperatures over the entire range of mole fraction. The experimental measurements were used to calculate the deviations in viscosity and surface tension. Furthermore, the excess Gibbs free energy of activation, surface enthalpy and surface entropy of the (DMF + 1-alkanols) binary mixtures were determined. In addition, the deviation and excess properties were fitted to the method of Redlich–Kister (R–K) polynomial. Viscosity data of the binary systems were correlated with three different expressions (Grunberg and Nissan, the three-body, and four-body McAllister). The effects of the chain length of the higher 1-alkanols and temperature were investigated

  10. Surface-based reconstruction and diffusion MRI in the assessment of gray and white matter damage in multiple sclerosis

    Science.gov (United States)

    Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe

    2014-03-01

    Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.

  11. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    Science.gov (United States)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  12. 3D-surface reconstruction method for diffuse optical tomography phantoms and tissues using structured and polarized light

    Science.gov (United States)

    Baum, K.; Hartmann, R.; Bischoff, T.; Himmelreich, F.; Heverhagen, J. T.

    2011-07-01

    In recent years optical methods became increasingly popular for pre-clinical research and small animal imaging. One main field in biomedical optics research is the diffuse optical tomography (DOT). Many new systems were invented for small animal imaging and breast cancer detection. In combination with the progress in the development of optical markers, optical detectors and near infrared light sources, these new systems have become a formidable source of information. Most of the systems detect the transmitted light which passes through an object and one observes the intensity variations on the detector side. The biggest challenge for all diffuse optical tomography systems is the enormous scattering of light in tissues and tissue-like phantoms resulting in loss of image information. Many systems work with contact gels and optical fibers that have direct contact with the object to neglect the light path between surface and detector. Highly developed mathematic models and reconstruction algorithms based on FEM and Monte Carlo simulations describe the light transport inside tissues and determine differences in absorption and scattering coefficients inside. The proposed method allows a more exact description of the orientation of surface elements from semi-transparent objects towards the detector. Using Polarization Difference Imaging (PDI) in combination with structured light 3D-scanning, it is possible to separate information from the surface from that of the subsurface. Thus, the actual surface shape can be determined. Furthermore, overlaying byproducts caused by inter-reflections and multiple scattering can be filtered from the basic image information with this method. To enhance the image quality, the intensity dispersion between surface and camera is calculated and the creation of 3D-FEM-meshes simplified.

  13. Development of Surfaces Optically Suitable for Flat Solar Panels. [using a reflectometer which separately evaluates spectral and diffuse reflectivities of surfaces

    Science.gov (United States)

    1979-01-01

    A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.

  14. Fem Simulation of Triple Diffusive Natural Convection Along Inclined Plate in Porous Medium: Prescribed Surface Heat, Solute and Nanoparticles Flux

    Directory of Open Access Journals (Sweden)

    Goyal M.

    2017-12-01

    Full Text Available In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.

  15. Fem Simulation of Triple Diffusive Natural Convection Along Inclined Plate in Porous Medium: Prescribed Surface Heat, Solute and Nanoparticles Flux

    Science.gov (United States)

    Goyal, M.; Goyal, R.; Bhargava, R.

    2017-12-01

    In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.

  16. Density profile evolution and nonequilibrium effects in partial and full spreading measurements of surface diffusion

    DEFF Research Database (Denmark)

    Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.

    2001-01-01

    in D-C(theta) depend on the initial density gradient and the initial state from which the spreading starts. To this end, we carry out extensive Monte Carlo simulations for a lattice-gas model of the O/W(110) system. Studies of submonolayer spreading from an initially ordered p(2x1) phase at theta = 1....../2 reveal that the spreading and diffusion rates in directions parallel and perpendicular to rows of oxygen atoms are significantly different within the ordered phase. Aside from this effect, we find that the degree of ordering in the initial phase has a relatively small impact on the overall behavior of D...

  17. Carbon surface diffusion and SiC nanocluster self-ordering

    International Nuclear Information System (INIS)

    Pezoldt, J.; Trushin, Yu.V.; Kharlamov, V.S.; Schmidt, A.A.; Cimalla, V.; Ambacher, O.

    2006-01-01

    The process of the spatial ordering of SiC nanoclusters on the step edges on Si surfaces was studied by means of multi-scale computer simulation. The evolution of cluster arrays on an ideal flat surface and surfaces with terraces of various widths was performed by kinetic Monte Carlo (KMC) simulations based on quantitative studies of potential energy surfaces (PES) by molecular dynamics (MD). PES analysis revealed that certain types of steps act as strong trapping centres for both Si and C adatoms stimulating clusters nucleation. Spatial ordering of the SiC nanoclusters at the terrace edges can be achieved if the parameters of the growth process (substrate temperature, carbon flux) and substrate (steps direction and terrace widths) are adjusted to the surface morphology. Temperature ranges for growth regimes with and without formation of cluster chains were determined. Cluster size distributions and the dependence of optimal terrace width for self ordering on the deposition parameters were obtained

  18. Cellular automaton simulation of the diffusive motion of bacteria and their adhesion to nanostructures on a solid surface.

    Science.gov (United States)

    Yamamoto, Takehiro; Emura, Chie; Oya, Masashi

    2016-12-01

    The growth of a biofilm begins with the adhesion of bacteria to a solid surface. Consequently, biofilm growth can be managed by the control of bacterial adhesion. Recent experimental studies have suggested that bacterial adhesion can be controlled by modifying a solid surface using nanostructures. Computational prediction and analysis of bacterial adhesion behavior are expected to be useful for the design of effective arrangements of nanostructures for controlling bacterial adhesion. The present study developed a cellular automaton (CA) model for bacterial adhesion simulation that could describe both the diffusive motion of bacteria and dependence of their adhesion patterns on the distance between nanostructures observed in experimental studies. The diffusive motion was analyzed by the moment scaling spectrum theory, and the present model was confirmed to describe subdiffusion behavior due to obstacles. Adhesion patterns observed in experimental studies can be successfully simulated by introducing CA rules to describe a mechanism by which bacteria tend to move to increase the area of contact with nanostructures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Hard Surface Layers by Pack Boriding and Gaseous Thermo-Reactive Deposition and Diffusion Treatments

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Bottoli, Federico; Dahl, Kristian Vinter

    2017-01-01

    subjected to TRD (chromizing and titanizing) and boriding treatments. For the steels with low carbon content, chromizing results in surface alloying with chromium, i.e., formation of a (soft) “stainless” surface zone. Steels containing higher levels of carbon form chromium carbide (viz. Cr23C6, Cr7C3......) layers with hardnesses up to 1800 HV. Titanizing of ARNE tool steel results in a surface layer consisting of TiC with a hardness of approximately 4000 HV. Duplex treatments, where boriding is combined with subsequent (TRD) titanizing, result in formation of hard TiB2 on top of a thick layer of Fe...

  20. Development of solar cells with back surface field made by aluminum paste and belt furnace diffusion; Desenvolvimento de celulas solares com campo retrodifusor formado por pasta de aluminio e difusao em forno de esteira

    Energy Technology Data Exchange (ETDEWEB)

    Marcolino, Juliane Bernardes

    2011-01-15

    Photovoltaics is based on the direct conversion of solar energy into electricity and is a promising alternative to diversify the world's energy matrix. This work aims to develop and analyse the deposition of Al paste by screen printing and firing/diffusion in a belt furnace to produce a BSF region in monocrystalline Si wafers. The diffusion of Al into the substrate was implemented by two different processes. In the first process the diffusion/firing of the Al paste and the firing of the Ag paste was carried out in independent steps. In this case, solar cells with an average efficiency ({eta}{sub average}) of 11.5 % and a maximum of 12.0 % were produced, but with the formation Al clusters in the back surface of the devices. In the second process firing/diffusion of such pastes was done on the same step. In this case, the best results were obtained for a firing/diffusion temperature of 860 deg C and belt furnace speed (V{sub E}) of 150 cm/min and also for 890 deg C and 180 cm/min. For the former parameters, {eta}{sub average} was 12.4 % and the maximum was 12.8 %. For the later, {eta}{sub average} was 12.5 % and the maximum was 12.6 %. Considering a temperature of 900 deg C and V{sub E} of 190 cm/min, {eta}{sub average} was 12.4 %. It was observed that minority carriers diffusion lengths were smaller than the thickness of silicon wafers. Open circuit voltages were 30 mV lower than that from similar cells fabricated at NT-Solar by using high purity Al deposited by e-beam evaporation indicating that the developed process produced low quality BSF. (author)

  1. Bond Lengths and Bond Strengths in Weak and Strong Chemisorption: N2, CO, and CO/H on Nickel Surfaces

    OpenAIRE

    Sayago, David I.; Hoeft, Jon T.; Polcik, Martin; Kittel, Martin; Toomes, Rachel L.; Robinson, J.; Woodruff, David Phillip; Pascal, Mathieu; Lamont, Christine L.A.; Nisbet, Gareth

    2003-01-01

    New chemical-state-specific scanned-energy mode photoelectron diffraction experiments and density functional theory calculations, applied to CO, CO/H, and N2 adsorption on Ni(100), show that chemisorption bond length changes associated with large changes in bond strength are small, but those associated with changes in bond order are much larger, and are similar to those found in molecular systems. Specifically, halving the bond strength of atop CO to Ni increases the Ni-C distance by 0.06 Å...

  2. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  3. The Fornax Deep Survey with VST. III. Low surface brightness dwarfs and ultra diffuse galaxies in the center of the Fornax cluster

    NARCIS (Netherlands)

    Venhola, Aku; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Lisker, Thorsten; Iodice, Enrichetta; Capaccioli, Massimo; Verdoes Kleijn, Gijs; Valentijn, Edwin; Mieske, Steffen; Hilker, Michael; Wittmann, Carolin; Van de Venn, Glenn; Grado, Aniello; Spavone, Marilena; Cantiello, Michele; Napolitano, Nicola; Paolillo, Maurizio; Falcón-Barroso, Jesus

    2017-01-01

    Context. Studies of low surface brightness (LSB) galaxies in nearby clusters have revealed a sub-population of extremely diffuse galaxies with central surface brightness of μ0,g' > 24 mag arcsec-2, total luminosity Mg' fainter than -16 mag and effective radius between 1.5 kpc 23 mag arcsec-2. We

  4. Plasma treatment of detonation and HPHT nanodiamonds in diffuse coplanar surface barrier discharge in H.sub.2./sub./N.sub.2./sub. flow

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čech, J.; Kozak, Halyna; Artemenko, Anna; Černák, M.; Kromka, Alexander

    2016-01-01

    Roč. 213, č. 10 (2016), s. 2680-2686 ISSN 1862-6300 R&D Projects: GA ČR(CZ) GA14-04790S Institutional support: RVO:68378271 Keywords : amination * diamond * diffuse coplanar surface barrier discharge * nanomaterials * surface functionalization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2016

  5. Three-dimensional reconstruction of brain surface anatomy: technique comparison between flash and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Sun Jianzhong; Wang Zhikang; Gong Xiangyang

    2006-01-01

    Objective: To compare two methods 3D flash and diffusion-weighted images (DWI) in reconstructing the brain surface anatomy, and to evaluate their displaying ability, advantages, limitations and clinical application. Methods: Thrity normal cases were prospectively examined with 3D flash sequence and echo-planar DWI. Three-dimensional images were acquired with volume-rendering on workstation. Brain surface structures were evaluated and scored by a group of doctors. Results: Main structures of brain surface were clearly displayed on three-dimensional images based on 3D flash sequence. Average scores were all above 2.50. For images based on DWI, precentral gyrus, postcentral gyrus, superior parietal lobule, superior frontal gyrus, precentral sulcus, central sulcus, postcentral sulcus, intraparietal sulcus and superior frontal sulcus were best shown with average scores between 2.60-2.75, However, supramarginal gyrus, angular gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, lateral sulcus, inferior frontal sulcus could not be well shown, with average scores between 1.67-2.48. Middle temporal gyrus, inferior temporal gyrus, superior temporal sulcus and inferior temporal sulcus can only get scores from 0.88 to 1.27. Scores of images based on 3D flash were much higher than that based on DWI with distinct differentiations, P values were all below 0.01. Conclusion: Three-dimensional images based on 3D flash can really display brain surface structures. It is very useful for anatomic researches. Three-dimensional reconstruction of brain surface based on DWI is a worthy technique to display brain surface anatomy, especially for frontal and parietal structures. (authors)

  6. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  7. New sensitive micro-measurements of dynamic surface tension and diffusion coefficients

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Ortiz, Elisa Parra; Needham, David

    2017-01-01

    Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain “dead time” at initial measurement. These ...

  8. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Science.gov (United States)

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  9. Adsorption configuration effects on the surface diffusion of large organic molecules

    DEFF Research Database (Denmark)

    Sato, F.; Legoas, S.B.; Hummelink, F.

    2010-01-01

    results show that it has its physical basis on the interplay of the molecular hydrogens and the Cu(110) atomic spacing, which is a direct consequence of the matching between molecule and surface dimensions. This information could be used to find new molecules capable of displaying lock-and-key behavior...

  10. Accommodation and diffusion of Cu deposited on flat and stepped Cu(111) surfaces

    DEFF Research Database (Denmark)

    Stoltze, Per; Nørskov, Jens Kehlet

    1993-01-01

    We present the results of a molecular-dynamics simulation of the deposition of Cu on Cu(111) using a realistic many-body interaction potential. It is shown that the transfer of the adsorption energy to the surface phonons is extremely efficient. If the adsorption takes place on a small or irregular...

  11. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light.

    Science.gov (United States)

    Lichtenberg, Mads; Brodersen, Kasper E; Kühl, Michael

    2017-01-01

    We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O 2 , temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, E k , i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the

  12. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design.

    Science.gov (United States)

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-04-05

    Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.

  13. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design

    Science.gov (United States)

    Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi

    2016-01-01

    Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides. PMID:27046216

  14. Influence of thermal annealing and radiation enhanced diffusion processes on surface plasmon resonance of gold implanted dielectric matrices

    Science.gov (United States)

    Devi, Ksh. Devarani; Ojha, Sunil; Singh, Fouran

    2018-03-01

    Gold nanoparticles (AuNPs) embedded in fused silica and sapphire dielectric matrices were synthesized by Au ion implantation. Systematic investigations were carried out to study the influence of implantation dose, post annealing temperature, swift heavy ion (SHI) irradiation and radiation enhanced diffusion (RED). Rutherford Backscattering Spectrometry (RBS) measurements were carried out to quantify concentration and depth profile of Au present in the host matrices. X-ray diffraction (XRD) was employed to characterize AuNPs formation. As-implanted and post-annealed films were irradiated using 100 MeV Ag ions to investigate the effect of electronic energy deposition on size and shape of NPs, which is estimated indirectly by the peak shape analysis of surface plasmon resonance (SPR). The effect of volume fraction of Au and their redistribution is also reported. A strong absorption in near infra red region is also noticed and understood by the formation of percolated NPs in dielectric matrices. It is quite clear from these results that the effect of RED assisted Oswald ripening is much more pronounced than the conventional Oswald ripening for the growth of NPs in the case of silica host matrices. However for sapphire matrices, it seems that growth of NPs already completed during implantation and it may be attributed to the high diffusivity of Au in sapphire matrices during implantation process.

  15. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    Directory of Open Access Journals (Sweden)

    C. K. Gatebe

    2010-03-01

    Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  16. Increased critical current and improved magnetic field response of BSCCO material by surface diffusion of silver

    International Nuclear Information System (INIS)

    Negm, Y.Z.; Zimmerman, G.O.; Powers, R.E.; Eckhardt, K.A.

    1994-01-01

    The authors have developed a procedure of increasing the critical current of BSCCO ceramic superconducting material, the value of the critical current is increased by 30%. Moreover the degradation of the critical current with the applied magnetic field had been decreased. The procedure consists of applying a thin layer of silver to the surface of the conductor. The details of the procedure and the improved performance are discussed. This procedure has great significance for any future application of HTSC materials where high current carrying capacity is necessary. It will therefore be important in the application of HTSC materials to SSC high current leads

  17. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  18. Evaluating colloidal phosphorus delivery to surface waters from diffuse agricultural sources.

    Science.gov (United States)

    Heathwaite, Louise; Haygarth, Phil; Matthews, Rachel; Preedy, Neil; Butler, Patricia

    2005-01-01

    Colloid-facilitated phosphorus (P) delivery from agricultural soils in different hydrological pathways was investigated using a series of laboratory and field experiments. A soil colloidal P test was developed that yields information on the propensity of different soils to release P attached to soil colloids. The relationship between turbidity of soil extracts and total phosphorus (TP) was significant (r2 = 0.996, p 0.45-microm particle-size fractions (p = 0.05), and may be evidence of surface applications of organic and inorganic fertilizers being transferred through the soil either as intact organic colloids or attached to mineral particles. Our results highlight the potential for drainage water to mobilize colloids and associated P during rainfall events.

  19. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  20. Reinvestigation on mixing length in an open channel turbulent flow

    Science.gov (United States)

    Kundu, Snehasis; Kumbhakar, Manotosh; Ghoshal, Koeli

    2018-02-01

    The present study proposes a model on vertical distribution of streamwise velocity in an open channel turbulent flow through a newly proposed mixing length, which is derived for both clear water and sediment-laden turbulent flows. The analysis is based on a theoretical consideration which explores the effect of density stratification on the streamwise velocity profile. The derivation of mixing length makes use of the diffusion equation where both the sediment diffusivity and momentum diffusivity are taken as a function of height from the channel bed. The damping factor present in the mixing length of sediment-fluid mixture contains velocity and concentration gradients. This factor is capable of describing the dip-phenomenon of velocity distribution. From the existing experimental data of velocity, the mixing length data are calculated. The pattern shows that mixing length increases from bed to the dip-position, having a larger value at dip-position and then decreases up to the water surface with a zero value thereat. The present model agrees well with these data sets and this behavior cannot be described by any other existing model. Finally, the proposed mixing length model is applied to find the velocity distribution in wide and narrow open channels. The derived velocity distribution is compared with laboratory channel data of velocity, and the comparison shows good agreement.

  1. Computational study of adsorption, diffusion, and dissociation of precursor species on the GaN (0 0 0 1) surface during GaN MOCVD

    Science.gov (United States)

    Won, Yong Sun; Lee, Jinuk; Kim, Changsung Sean; Park, Sung-Soo

    2009-02-01

    The adsorption, diffusion, and dissociation of precursor species, MMGa (monomethylgallium) and NH 3, on the GaN (0 0 0 1) surface have been investigated using the DFT (density functional theory) calculation combined with a GaN (0 0 0 1) surface cluster model. The energetics of NH 3(ad) dissociation on the surface proposed of NH 3(ad) via NH 2(ad) to NH(ad) was facile with small activation barriers. A combined analysis with surface diffusion of adatoms demonstrated Ga(ad) and NH(ad) become primary reactant species for 2D film growth, and N(ad) develops into a nucleation center. Our studies suggest the control of NH 3(ad) dissociation are essential to improve epitaxial film quality as well as Ga-rich condition. In addition, the adsorbability of H(ad)s resulted from NH 3(ad) dissociation were found to influence on the surface chemistry during film growth.

  2. Evaporation of sessile droplets of dilute aqueous solutions containing sodium n-alkylates from polymer surfaces: influences of alkyl length and concentration of solute.

    Science.gov (United States)

    Kim, Jung-Hoon; Ahn, Sung Il; Kim, Jae Hyun; Kim, Jong Soo; Cho, Kilwon; Jung, Jin Chul; Chang, Taihyun; Ree, Moonhor; Zin, Wang-Cheol

    2008-10-21

    The evaporation of sessile droplets placed on polymer surfaces was studied by microscopic observation of the changes in shape of aqueous solution droplets in which the alkyl lengths and the initial concentrations of sodium n-alkylates were varied. Although the initial contact angles of the droplets were not significantly different, the evaporation process varied significantly with the alkyl length of the sodium n-alkylate employed. For the sodium dodecanoate (C 12), showing the highest surface activity, the concentration was found to have a significant effect on the evaporation process of the droplets. In the evaporation of water droplets, variations in the three distinct stages were caused by the different concentration of solutes distributed near or at the air/water interface. It is revealed that the concentration of droplet solute near the air/water interface requires not only solvent evaporation but also some affinity of the solute for the interface. The initial C 12 concentration-dependence of the evaporation of C 12 solution droplets is discussed with particular emphasis on the sudden spreading or sudden contraction of the contact area near the end of evaporation. It is suggested that the cluster formation by C 12 molecules at the air/liquid interface during the evaporation causes Marangoni instability in an evaporating droplet, and the clusters are expected to move dynamically, depending on the droplet concentration of C 12, from the droplet center to the contact line and vice versa, showing Marangoni flow along the air/water interface.

  3. A versatile optical profilometer based on conoscopic holography sensors for acquisition of specular and diffusive surfaces in artworks

    Science.gov (United States)

    Gaburro, Nicola; Marchioro, Giacomo; Daffara, Claudia

    2017-07-01

    Surface metrology of artworks requires the design of suitable devices for in-situ non-destructive measurement together with reliable procedures for an effective analysis of such non-engineered variegate objects. To advance the state-of-the-art it has been implemented a versatile optical micro-profilometry taking advantage of the adapt- ability of conoscopic holography sensors, able to operate with irregular shapes and composite materials (diffusive, specular, and polychrome) of artworks. The scanning technique is used to obtain wide field and high spatially resolved areal profilometry. The prototype has a modular scheme based on a set of conoscopic sensors, extending the typical design based on a scanning stage and a single probe with a limited bandwidth, thus allowing the collection of heights data from surface with different scales and materials with variegate optical response. The system was optimized by characterizing the quality of the measurement with the probes triggered in continuous scanning modality. The results obtained on examples of cultural heritage objects (2D paintings, 3D height-relief) and materials (pictorial, metallic) demonstrate the versatility of the implemented device.

  4. Communication: Surface-to-bulk diffusion of isolated versus interacting C atoms in Ni(111) and Cu(111) substrates: A first principle investigation.

    Science.gov (United States)

    Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng

    2015-02-14

    Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.

  5. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    Science.gov (United States)

    Lai, King C.; Liu, Da-Jiang; Evans, James W.

    2017-12-01

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal (100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN˜ N-β with β =3 /2 . However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N mediated diffusion with small β moderate sizes 9 ≤N ≤O (102) ; the same also applies for N =Np+3 , Np+ 4 , ... (iii) facile diffusion but with large β >2 for N =Np+1 and Np+2 also for moderate sizes 9 ≤N ≤O (102) ; (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲β moderate size regime where we show that diffusivity cycles quasiperiodically from the slowest branch for Np+3 (not Np) to the fastest branch for Np+1 . Behavior is quantified by kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground-state and low-lying excited state cluster configurations, and also of kink populations.

  6. Effects of the Distance from a Diffusive Surface on the Objective and Perceptual Evaluation of the Sound Field in a Small Simulated Variable-Acoustics Hall

    Directory of Open Access Journals (Sweden)

    Louena Shtrepi

    2017-02-01

    Full Text Available Simulations of the acoustic effects that diffusive surfaces have on the objective acoustic parameters and on sound perception have not yet been fully understood. To this end, acoustic simulations have been performed in Odeon in the model of a variable-acoustic concert hall. This paper is presented as a follow-up study to a previous paper that dealt with in-field measurements only. As in measurements, a diffusive and a reflective condition of one of the lateral walls have been considered in the room models. Two modeling alternatives of the diffusive condition, that is, (a a flat surface with high scattering coefficient applied; and (b a triangular relief modeled including edge diffraction, have been investigated. Objective acoustic parameters, such as early decay time (EDT, reverberation time (T30, clarity (C80, definition (D50, and interaural cross correlation (IACC, have been compared between the two conditions. Moreover, an auditory experiment has been performed to determine the maximum distance from a diffusive surface at which the simulated acoustic scattering effects are still audible. Although the simulated objective results showed a good match with measured values, the subjective results showed that the differences between the diffuse and reflective conditions become significant when model (b is used.

  7. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin; Xu, Bingqian, E-mail: bxu@engr.uga.edu [Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605 (United States); Lou, Zhichao [Single Molecule Study Laboratory, College of Engineering and Nanoscale Science, and Engineering Center, University of Georgia, Athens, Georgia 30605 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhang, Haiqian [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2016-03-21

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  8. Effect of the electrostatic surface potential on the oligomerization of full-length human recombinant prion protein at single-molecule level

    Science.gov (United States)

    Wang, Bin; Lou, Zhichao; Zhang, Haiqian; Xu, Bingqian

    2016-03-01

    The electrostatic surface potential (ESP) of prion oligomers has critical influences on the aggregating processes of the prion molecules. The atomic force microscopy (AFM) and structural simulation were combined to investigate the molecular basis of the full-length human recombinant prion oligomerization on mica surfaces. The high resolution non-intrusive AFM images showed that the prion oligomers formed different patterns on mica surfaces at different buffer pH values. The basic binding units for the large oligomers were determined to be prion momoners (Ms), dimers (Ds), and trimers (Ts). The forming of the D and T units happened through the binding of hydrophobic β-sheets of the M units. In contrast, the α-helices of these M, D, and T units were the binding areas for the formation of large oligomers. At pH 4.5, the binding units M, D, and T showed clear polarized ESP distributions on the surface domains, while at pH 7.0, they showed more evenly distributed ESPs. Based on the conformations of oligomers observed from AFM images, the D and T units were more abundantly on mica surface at pH 4.5 because the ESP re-distribution of M units helped to stabilize these larger oligomers. The amino acid side chains involved in the binding interfaces were stabilized by hydrogen bonds and electrostatic interactions. The detailed analysis of the charged side chains at pH 4.5 indicated that the polarized ESPs induced the aggregations among M, D, and T to form larger oligomers. Therefore, the hydrogen bonds and electrostatic interactions worked together to form the stabilized prion oligomers.

  9. Fundamental length

    International Nuclear Information System (INIS)

    Pradhan, T.

    1975-01-01

    The concept of fundamental length was first put forward by Heisenberg from purely dimensional reasons. From a study of the observed masses of the elementary particles known at that time, it is sumrised that this length should be of the order of magnitude 1 approximately 10 -13 cm. It was Heisenberg's belief that introduction of such a fundamental length would eliminate the divergence difficulties from relativistic quantum field theory by cutting off the high energy regions of the 'proper fields'. Since the divergence difficulties arise primarily due to infinite number of degrees of freedom, one simple remedy would be the introduction of a principle that limits these degrees of freedom by removing the effectiveness of the waves with a frequency exceeding a certain limit without destroying the relativistic invariance of the theory. The principle can be stated as follows: It is in principle impossible to invent an experiment of any kind that will permit a distintion between the positions of two particles at rest, the distance between which is below a certain limit. A more elegant way of introducing fundamental length into quantum theory is through commutation relations between two position operators. In quantum field theory such as quantum electrodynamics, it can be introduced through the commutation relation between two interpolating photon fields (vector potentials). (K.B.)

  10. Mutual conversion of bulk and surface acoustic waves in gratings of finite length on half-infinite substrates. II. FE analysis of bulk wave generation.

    Science.gov (United States)

    Darinskii, A N; Weihnacht, M; Schmidt, H

    2013-07-01

    The paper studies numerically the bulk acoustic wave generation by the surface acoustic wave propagating across a grating created on the surface of an elastically anisotropic half-infinite substrate. The computations are fully based on the finite element method. Applying the discrete Fourier transformation to the displacement field found inside the substrate and using an orthogonality relation valid for plane modes we determine separately the spatial spectrum of the quasi longitudinal and the quasi transverse bulk waves, that is, the dependence of the amplitudes of these waves on the tangential component of the wave vector. The dependence is investigated of the central spectral peak height and shape on the frequency of the incident surface wave as well as on the thickness, the width, and the number of strips forming the grating. In particular, it is found that under certain conditions the central peak can be approximated fairly precisely by the central peak of a sinc-function describing the spectrum of the bounded acoustic beam of rectangular shape and of width equal to the length of the grating. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Measuring Charge Carrier Diffusion in Coupled Colloidal Quantum Dot Solids

    KAUST Repository

    Zhitomirsky, David

    2013-06-25

    Colloidal quantum dots (CQDs) are attractive materials for inexpensive, room-temperature-, and solution-processed optoelectronic devices. A high carrier diffusion length is desirable for many CQD device applications. In this work we develop two new experimental methods to investigate charge carrier diffusion in coupled CQD solids under charge-neutral, i.e., undepleted, conditions. The methods take advantage of the quantum-size-effect tunability of our materials, utilizing a smaller-bandgap population of quantum dots as a reporter system. We develop analytical models of diffusion in 1D and 3D structures that allow direct extraction of diffusion length from convenient parametric plots and purely optical measurements. We measure several CQD solids fabricated using a number of distinct methods and having significantly different doping and surface ligand treatments. We find that CQD materials recently reported to achieve a certified power conversion efficiency of 7% with hybrid organic-inorganic passivation have a diffusion length of 80 ± 10 nm. The model further allows us to extract the lifetime, trap density, mobility, and diffusion coefficient independently in each material system. This work will facilitate further progress in extending the diffusion length, ultimately leading to high-quality CQD solid semiconducting materials and improved CQD optoelectronic devices, including CQD solar cells. © 2013 American Chemical Society.

  12. Coverage dependent desorption dynamics of deuterium on Si(100) surfaces: interpretation with a diffusion-promoted desorption model.

    Science.gov (United States)

    Matsuno, T; Niida, T; Tsurumaki, H; Namiki, A

    2005-01-08

    We studied coverage dependence of time-of-flight (TOF) spectra of D2 molecules thermally desorbed from the D/Si(100) surface. The mean translational energies Et of desorbed D2 molecules were found to increase from 0.20+/-0.05 eV to 0.40+/-0.04 eV as the desorption coverage window was decreased from 1.0 ML> or =thetaD> or =0.9 ML to 0.2 ML> or =thetaD> or =0 ML, being consistent with the kinetics switch predicted in the interdimer mechanism. The measured TOF spectra were deconvoluted into 2H, 3H, and 4H components by a curve fitting method along the principle of detailed balance. As a result, it turned out that the desorption kinetics changes from the 4H to the 3H situation at high coverage above thetaD=0.9 ML, while the 2H desorption is dominant for a quite wide coverage region up to thetaD=0.8 ML. A dynamic desorption mechanism by which the desorption is promoted by D-atom diffusion to dangling bonds was proposed. 2005 American Institute of Physics.

  13. Sorption and diffusion of cobalt, strontium, cesium and americium in natural fissure surfaces and drill core cups studied by autoradiography, 1

    International Nuclear Information System (INIS)

    Pinnioja, S.; Kaemaeraeinen, E.L.; Jaakkola, T.; Siitari, M.; Muuronen, S.; Lindberg, A.

    1985-06-01

    A method based on autoradiography was developed to determine the diffusion of radionuclides into the rock matrix. To investigate the diffusion the samples, which has been in contact with radioactive tracer solution up to 6 months, were splitted by sawing. From the autoradiograms of the cross sections the penetration depths of radionuclides were determined and the apparent diffusion coefficient Dsup(a) calculated. The filled and unfilled natural fissure surfaces chosen to this study were bars of drilling cores and drill core cups of tonalite, mica gneiss and rapakivi granite. After contact time of 3 months the highest penetration depths of cesium were observed for natural fissure surface sample of rapakivi granite up to 2.5 mm and of mica gneiss up to 3.7 mm. For strontium the penetration depths of 6 mm and 11 mm for unfilled and filled natural fissure samples of rapakivi granite were found. Dsup(a)-values for cesium varied between 1.5 x 10 -15 and 3.2 x 10 -14 , for strontium between 3.5 x 10 -14 and 2.1 x 10 -13 m 2 /s. D-value obtained for cobalt (drill core cup sample, tonalite) was 5.4 x 10 -17 m 2 /s. 241 Am was only sorbed on the surface of the sample and thus no apparent diffusion coefficient could be calculated. Filling materials, chlorite and secondary minerals in tonalite and rapakivi granite increased diffusion into the mother rock. Radionuclides were sorbed both into the filling material and through fillers into the rock matrix. Cs and Sr penetrated though calcite filling material in mica gneiss into the mother rock. Calcite didn't influence on diffusion of radionuclides. Penetration depths of Cs and Sr were about the same for filled and unfilled samples

  14. Adsorption and diffusion of fluorine on Cr-doped Ni(111) surface: Fluorine-induced initial corrosion of non-passivated Ni-based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cui-Lan, E-mail: rencuilan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Han [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Gong, Wen-Bin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Shanghai 215123 (China); Wang, Cheng-Bin; Zhang, Wei [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Cheng, Cheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhi-Yuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-15

    Adsorption and diffusion behaviors of fluorine on Cr-doped Ni(111) surface are investigated by using first-principles simulation. It shows that the Cr in the Cr-doped Ni(111) surface serve a trap site for fluorine with adsorption energy 3.52 eV, which is 1.04 eV higher than that on Ni(111) surface. Moreover, the Cr atom is pulled out the surface for 0.41 Å after the fluorine adsorption, much higher than that on Ni(111) surface. Further diffusion behaviors analysis confirms the conclusion because the fluorine diffusion from neighbored sites onto the Cr top site is an energy barrierless process. Detailed electronic structure analysis shows that a deeper hybrid state of F 2 p-Cr 3 d indicates a strong F−Cr interaction. The Ni−Cr bond is elongated and weakened due to the new formed F−Cr bonding. Our results help to understanding the basic fluorine-induced initial corrosion mechanism for Ni-based alloy in molten salt environment.

  15. THE INFLUENCE OF IONIC-STRENGTH AND PH ON DIFFUSION OF MICROORGANISMS WITH DIFFERENT STRUCTURAL SURFACE-FEATURES

    NARCIS (Netherlands)

    VANDERMEI, HC; MEINDERS, JM; BUSSCHER, HJ

    1994-01-01

    Exact knowledge of microbial diffusion coefficients is a prerequisite for the application of mass transport theories to microbial deposition data. Microbial diffusion coefficients can be calculated on the basis of cell radii using the Einstein equation. This approach, however, does not take into

  16. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.

    Science.gov (United States)

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu

    2015-05-14

    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.

  17. Modeling Nonreactive Molecule-Surface Systems on Experimentally Relevant Time and Length Scales: Dynamics and Conductance of Polyfluorene on Au(111).

    Science.gov (United States)

    Li, Zhi; Tkatchenko, Alexandre; Franco, Ignacio

    2018-03-01

    We propose a computationally efficient strategy to accurately model nonreactive molecule-surface interactions that adapts density functional theory calculations with the Tkatchenko-Scheffler scheme for van der Waals interactions into a simple classical force field. The resulting force field requires just two adjustable parameters per atom type that are needed to capture short-range and polarization interactions. The developed strategy allows for classical molecular dynamics simulation of molecules on surfaces with the accuracy of high-level electronic structure methods but for system sizes (10 3 to 10 7 atoms) and timescales (picoseconds to microseconds) that go well beyond what can be achieved with first-principles methods. Parameters for H, sp 2 C, and O on Au(111) are developed and employed to atomistically model experiments that measure the conductance of a single polyfluorene on Au(111) as a continuous function of its length. The simulations qualitatively capture both the gross and fine features of the observed conductance decay during initial junction elongation and lead to a revised atomistic understanding of the experiment.

  18. Interannual variations in length of day and atmospheric angular momentum, and their seasonal associations with El Niño/Southern Oscillation-like sea surface temperature patterns

    Science.gov (United States)

    Li, Yuefeng; Xiao, Ziniu; Shi, Wenjing; Zhong, Qi; Wang, Qiguang; Li, Huanlian

    2017-12-01

    This study examines the seasonal connections between the interannual variations in LOD (length of day)/AAMglobe (the relative atmospheric angular momentum for the whole globe) and the ENSO-like SST (El Niño/Southern Oscillation-like sea surface temperature) pattern and corresponding zonal and vertical circulations. Consistent with previous studies, the ENSO-like SST impact the following season LOD/AAMglobe, with the strongest correlations in DJF (December, January, and February), when it is likely to be the peak El Niño/La Niña period. Lag correlations between the interannual variations in LOD/AAMglobe and surface temperature, and the interannual variations in LOD and both zonal circulation and vertical airflow around the equator, consistently indicate that the LOD/AAMglobe reflect the potential impacts of variations in the Earth's rotation rate on the following season's sea surface temperatures (SST) over the tropical central and eastern Pacific (where the ENSO-like SST pattern is located). Moreover, the centers of strongest variation in the AAMcolumn (the relative atmospheric angular momentum for an air column and the unit mass over a square meter) are located over the mid-latitudinal North Pacific in DJF and MAM (March, April, and May), and over the mid-latitudinal South Pacific in JJA (June, July, and August) and SON (September, October, and November). This suggests that the AAMcolumn over the mid-latitudinal Pacific around 30°N (30°S) dominate the modulation of Earth's rotation rate, and then impact the variations in LOD during DJF and MAM (JJA and SON).

  19. Diffusion of two-dimensional epitaxial clusters on metal (100) surfaces: Facile versus nucleation-mediated behavior and their merging for larger sizes

    International Nuclear Information System (INIS)

    Lai, King C.; Liu, Da-Jiang; Evans, James W.

    2017-01-01

    For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal(100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN ~ N -β with β = 3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N = N p = L 2 or L(L+1), for L = 3, 4,… having unique ground state shapes, for moderate sizes 9 ≤ N ≤ O(10 2 ); the same also applies for N = N p +3, N p + 4,… (iii) facile diffusion but with large β > 2 for N = Np + 1 and N p + 2 also for moderate sizes 9 ≤ N ≤ O(10 2 ); (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲ β < 3/2, reflecting the quasi-facetted structure of clusters, for larger N = O(10 2 ) to N = O(10 3 ); and (v) classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where show that diffusivity cycles quasi-periodically from the slowest branch for N p + 3 (not Np) to the fastest branch for Np + 1. Behavior is quantified by Kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back-correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground state and low-lying excited state cluster configurations, and also of kink populations.

  20. Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics

    Directory of Open Access Journals (Sweden)

    Suárez Isaac

    2017-02-01

    Full Text Available In this work, the unique optical properties of surface plasmon polaritons (SPPs, i.e. subwavelength confinement or strong electric field concentration, are exploited to demonstrate the propagation of light signal at 600 nm along distances in the range from 17 to 150 μm for Au nanostripes 500 nm down to 100 nm wide (30 nm of height, respectively, both theoretically and experimentally. A low power laser is coupled into an optical fiber tip that is used to locally excite the photoluminescence of colloidal quantum dots (QDs dispersed in their surroundings. Emitted light from these QDs is generating the SPPs that propagate along the metal waveguides. Then, the above-referred propagation lengths were directly extracted from this novel experimental technique by studying the intensity of light decoupled at the output edge of the waveguide. Furthermore, an enhancement of the propagation length up to 0.4 mm is measured for the 500-nm-wide metal nanostripe, for which this effect is maximum. For this purpose, a simultaneous excitation of the same QDs dispersed in poly(methyl methacrylate waveguides integrated with the metal nanostructures is performed by end-fire coupling an excitation laser energy as low as 1 KW/cm2. The proposed mechanism to explain such enhancement is a non-linear interference effect between dielectric and plasmonic (supermodes propagating in the metal-dielectric structure, which can be apparently seen as an effective amplification or compensation effect of the gain material (QDs over the SPPs, as previously reported in literature. The proposed system and the method to create propagating SPPs in metal waveguides can be of interest for the application field of sensors and optical communications at visible wavelengths, among other applications, using plasmonic interconnects to reduce the dimensions of photonic chips.

  1. Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3-δ

    NARCIS (Netherlands)

    Berenov, A.; Atkinson, A.; Kilner, J.; Ananyev, M.; Eremin, V.; Porotnikova, N.; Farlenkov, A.; Kurumchin, E.; Bouwmeester, Henricus J.M.; Bucher, E.; Sitte, W.

    2014-01-01

    The oxygen tracer diffusion coefficient, Db⁎, and the oxygen tracer surface exchange coefficient, k, were measured in Ba0.5Sr0.5Co0.8Fe0.2O3 − δ (BSCF5582) over the temperature range of 310–800 °C and the oxygen partial pressure range of 1.3 × 10−3–0.21 bar. Several measurement techniques were used:

  2. Dynamics of cyanophenyl alkylbenzoate molecules in the bulk and in a surface layer adsorbed onto aerosil. Variation of the lengths of the alkyl chain

    Energy Technology Data Exchange (ETDEWEB)

    Frunza, Stefan [National Institute of Materials Physics, R-077125 Magurele (Romania); Schoenhals, Andreas [BAM Federal Institute of Materials Research and Testing, D-12205 Berlin (Germany); Frunza, Ligia, E-mail: lfrunza@infim.ro [National Institute of Materials Physics, R-077125 Magurele (Romania); Beica, Traian; Zgura, Irina; Ganea, Paul [National Institute of Materials Physics, R-077125 Magurele (Romania); Stoenescu, Daniel [Telecom-Bretagne, Departement d' Optique, Technopole Brest-Iroise 29238 Cedex (France)

    2010-06-16

    Graphical abstract: The temperature dependence of the molecular mobility in composites shows an Arrhenius-type regime at low temperature and a glassy-type one at higher temperature separated by a crossover phenomenon. - Abstract: The molecular mobility of 4-butyl- and 4-pentyl-4'-cyanophenyl benzoate (CP4B, CP5B) and their composites prepared from aerosil A380 was investigated by broadband dielectric spectroscopy in a large temperature range. Thermogravimetric and infrared investigations were additionally performed. High silica density (larger than 7 g aerosil/1 g of liquid crystal) was selected to observe a thin layer adsorbed on the surface of the silica particles. The data were compared with those of the member of the series with six carbon atoms in the alkyl tail. Bulk CP4B and CP5B show the dielectric behaviour expected for liquid crystals. For the composites one relaxation process is observed at frequencies much lower than those for the corresponding bulk, which was assigned to the dynamics of the molecules in a surface layer. The temperature dependence of the relaxation rates (and of the dielectric strength) shows a crossover behaviour with two distinguished regimes. At higher temperatures the data obey the Vogel-Fulcher-Tammann law, whereas an Arrhenius law is observed at lower temperature, in a close similarity to the behaviour of a constrained dynamic glass transition. The estimated Vogel and crossover temperature is independent on the tail length, while the activation energy for the low temperature branch increases weakly with increasing the alkyl tail.

  3. Surface-micromachined magnetic undulator with period length between 10  μm and 1 mm for advanced light sources

    Directory of Open Access Journals (Sweden)

    Jere Harrison

    2012-07-01

    Full Text Available A technological gap exists between the μm-scale wiggling periods achieved using electromagnetic waves of high intensity laser pulses and the mm scale of permanent-magnet and superconducting undulators. In the sub-mm range, surface-micromachined soft-magnetic micro-electro-mechanical system inductors with integrated solenoidal coils have already experimentally demonstrated 100 to 500 mT field amplitude across air gaps as large as 15  μm. Simulations indicate that magnetic fields as large as 1.5 T across 50  μm inductor gaps are feasible. A simple rearranging of the yoke and pole geometry allows for fabrication of 10+ cm long undulator structures with period lengths between 12.5  μm and 1 mm. Such undulators find application both in high average power spontaneous emission sources and, if used in combination with ultrahigh-brightness electron beams, could lead to the realization of low energy compact free-electron lasers. Challenges include electron energy broadening due to wakefields and Joule heating in the electromagnet.

  4. Molecular diffusion of stable water isotopes in polar firn as a proxy for past temperatures

    Science.gov (United States)

    Holme, Christian; Gkinis, Vasileios; Vinther, Bo M.

    2018-03-01

    Polar precipitation archived in ice caps contains information on past temperature conditions. Such information can be retrieved by measuring the water isotopic signals of δ18O and δD in ice cores. These signals have been attenuated during densification due to molecular diffusion in the firn column, where the magnitude of the diffusion is isotopologue specific and temperature dependent. By utilizing the differential diffusion signal, dual isotope measurements of δ18O and δD enable multiple temperature reconstruction techniques. This study assesses how well six different methods can be used to reconstruct past surface temperatures from the diffusion-based temperature proxies. Two of the methods are based on the single diffusion lengths of δ18O and δD , three of the methods employ the differential diffusion signal, while the last uses the ratio between the single diffusion lengths. All techniques are tested on synthetic data in order to evaluate their accuracy and precision. We perform a benchmark test to thirteen high resolution Holocene data sets from Greenland and Antarctica, which represent a broad range of mean annual surface temperatures and accumulation rates. Based on the benchmark test, we comment on the accuracy and precision of the methods. Both the benchmark test and the synthetic data test demonstrate that the most precise reconstructions are obtained when using the single isotope diffusion lengths, with precisions of approximately 1.0 °C . In the benchmark test, the single isotope diffusion lengths are also found to reconstruct consistent temperatures with a root-mean-square-deviation of 0.7 °C . The techniques employing the differential diffusion signals are more uncertain, where the most precise method has a precision of 1.9 °C . The diffusion length ratio method is the least precise with a precision of 13.7 °C . The absolute temperature estimates from this method are also shown to be highly sensitive to the choice of fractionation factor

  5. Coexistence and competition of surface diffusion and geometric shielding in the growth of 1D bismuth nanostructures and their ohmic contact

    International Nuclear Information System (INIS)

    Tian, Ye; Jiang, Lianjun; Zhang, Xuejun; Deng, Yangbao; Deng, Shuguang

    2014-01-01

    We study the physical-vapor-deposition of 1D bismuth nanostructures. Bi nanowire elongating along [012] and/or [110] direction as well as anisotropic Bi nano-columns are physical-vapor-deposited successfully. The coexistence and competition of surface diffusion and geometric shielding are critical to their formation as well as growth mode transition among them. Since physical-vapor-deposition is a vacuum process, we make use of it to fabricate the ohmic contact to prevent the damage to the bismuth nanostructures brought by the etching to their thick surface oxide layer. (paper)

  6. Spatial-temporal evolution of self-organized loop-patterns on a water surface and a diffuse discharge in the gap

    Science.gov (United States)

    Li, Xuechen; Geng, Jinling; Jia, Pengying; Zhang, Panpan; Zhang, Qi; Li, Yaru

    2017-11-01

    Excited by an alternating current voltage, a patterned discharge and a diffuse discharge are generated in a needle to liquid configuration. Using an intensified charge-coupled device (ICCD), temporal evolution of the discharge between the two electrodes is investigated for the diffuse mode and the patterned mode, respectively. For the diffuse mode, the positive discharge is in a glow regime, and the negative discharge is in a Townsend discharge regime. For the patterned mode, the discharge always belongs to the Townsend discharge regime. Moreover, in the patterned mode, various patterns including the single loop, single loop with the surrounding corona, triple loops, and concentric loops with a central spot are observed on the water surface with the increasing positive peak-value of the applied voltage (Upp). Temporally resolved images of the loop-patterns are captured on the water surface. From the electrical measurements and the ICCD imaging, it is found that the loop pattern emerges after the discharge bridges the two electrodes. Then, it begins to evolve and finally degenerates with the decrease in the discharge current. The pattern does not disappear until the discharge quenches. Formation of the loop-patterns is attributed to the role of negative ions.

  7. Wicke-Kallenbach and Graham’s Diffusion Cells; Limits of Application for Low Surface Area Porous Solids

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Schneider, Petr; Šolcová, Olga

    2008-01-01

    Roč. 63, č. 18 (2008), s. 4490-4493 ISSN 0009-2509 R&D Projects: GA AV ČR IAA4072404 Institutional research plan: CEZ:AV0Z40720504 Keywords : diffusion * permeation * porous media Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.884, year: 2008

  8. Impact of the structural anisotropy of La2NiO4+δ on on high temperature surface modifications and diffusion of oxygen

    International Nuclear Information System (INIS)

    Gauquelin, Nicolas

    2010-01-01

    La 2 NiO 4+δ was first studied due to its structural similarities with the High Temperature superconductor La 2 NiO 4+δ and more recently due to its promise as a cathode material in Solid Oxide Fuel Cells as well as an oxygen exchange membrane. It crystallizes in the K 2 NiF 4 layered structure and accommodates highly mobile oxygen at its ground state and is therefore overstoichiometric. During this thesis, pure single crystals of La 2 NiO 4+δ were successfully grown using the floating-zone method, subsequently characterized using neutron and Laue Backscattering diffraction and oriented pieces of single crystal with [100] and [001] orientation were prepared. The surface morphology behavior after long term exposure to high temperature in different atmospheres was observed using microscopy techniques because stability at high temperature is required for application purposes and it was discovered a structural change to nickel-rich phases at T>1173 K. The sensibility of the oxygen non-stoichiometry to cooling was studied and subsequently a new 18 O- 18 O exchange apparatus allowing quenching of the samples using liquid nitrogen was developed. Oxygen selfdiffusion was studied using SIMS in the range 673-873K in both [100] and [001] crystallographic directions. The effect of the disorientation of the sample surface on the determination of the slowest diffusion coefficient was discovered and revealed the very strong anisotropy (>5 orders of magnitude difference) between the different diffusion paths. Finally using HTXRD and oxygen release experiments, it was shown that oxygen diffusion from interstitial oxygen starts to be relevant at 550-600 K and a change of behavior is observed around 700 K, corresponding to a possible change in the diffusion mechanism from interstitial to interstitialcy.

  9. Impact of the structural anisotropy of La{sub 2}NiO{sub 4+δ} on on high temperature surface modifications and diffusion of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Gauquelin, Nicolas

    2010-11-29

    La{sub 2}NiO{sub 4+δ} was first studied due to its structural similarities with the High Temperature superconductor La{sub 2}NiO{sub 4+δ} and more recently due to its promise as a cathode material in Solid Oxide Fuel Cells as well as an oxygen exchange membrane. It crystallizes in the K{sub 2}NiF{sub 4} layered structure and accommodates highly mobile oxygen at its ground state and is therefore overstoichiometric. During this thesis, pure single crystals of La{sub 2}NiO{sub 4+δ} were successfully grown using the floating-zone method, subsequently characterized using neutron and Laue Backscattering diffraction and oriented pieces of single crystal with [100] and [001] orientation were prepared. The surface morphology behavior after long term exposure to high temperature in different atmospheres was observed using microscopy techniques because stability at high temperature is required for application purposes and it was discovered a structural change to nickel-rich phases at T>1173 K. The sensibility of the oxygen non-stoichiometry to cooling was studied and subsequently a new {sup 18}O-{sup 18}O exchange apparatus allowing quenching of the samples using liquid nitrogen was developed. Oxygen selfdiffusion was studied using SIMS in the range 673-873K in both [100] and [001] crystallographic directions. The effect of the disorientation of the sample surface on the determination of the slowest diffusion coefficient was discovered and revealed the very strong anisotropy (>5 orders of magnitude difference) between the different diffusion paths. Finally using HTXRD and oxygen release experiments, it was shown that oxygen diffusion from interstitial oxygen starts to be relevant at 550-600 K and a change of behavior is observed around 700 K, corresponding to a possible change in the diffusion mechanism from interstitial to interstitialcy.

  10. The Importance Of Surface Topography For The Biological Properties Of Nitrided Diffusion Layers Produced On Ti6Al4V Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Wierzchoń T.

    2015-09-01

    Full Text Available Diffusion nitrided layers produced on titanium and its alloys are widely studied in terms of their application for cardiac and bone implants. The influence of the structure, the phase composition, topography and surface morphology on their biological properties is being investigated. The article presents the results of a study of the topography (nanotopography of the surface of TiN+Ti2N+αTi(N nitrided layers produced in low-temperature plasma on Ti6Al4V titanium alloy and their influence on the adhesion of blood platelets and their aggregates. The TEM microstructure of the produced layers have been examined and it was demonstrated that the interaction between platelets and the surface of the titanium implants subjected to glow-discharge nitriding can be shaped via modification of the roughness parameters of the external layer of the TiN titanium nitride nanocrystalline zone.

  11. Interaction of bovine serum albumin and human blood plasma with PEO-tethered surfaces: Influence of PEO chain length, grafting density, and temperature : Influence of PEO chain length, grafting density, and temperature

    NARCIS (Netherlands)

    Norde, Willem; Gage, D.

    2004-01-01

    Solid surfaces are modified by grafting poly(ethylene oxide), PEO, to influence their interaction with indwelling particles, in particular molecules of bovine serum albumin and human plasma proteins. As a rule, the grafted PEO layers suppress protein adsorption. The suppression is most effective

  12. 'LTE-diffusion approximation' for arc calculations

    International Nuclear Information System (INIS)

    Lowke, J J; Tanaka, M

    2006-01-01

    This paper proposes the use of the 'LTE-diffusion approximation' for predicting the properties of electric arcs. Under this approximation, local thermodynamic equilibrium (LTE) is assumed, with a particular mesh size near the electrodes chosen to be equal to the 'diffusion length', based on D e /W, where D e is the electron diffusion coefficient and W is the electron drift velocity. This approximation overcomes the problem that the equilibrium electrical conductivity in the arc near the electrodes is almost zero, which makes accurate calculations using LTE impossible in the limit of small mesh size, as then voltages would tend towards infinity. Use of the LTE-diffusion approximation for a 200 A arc with a thermionic cathode gives predictions of total arc voltage, electrode temperatures, arc temperatures and radial profiles of heat flux density and current density at the anode that are in approximate agreement with more accurate calculations which include an account of the diffusion of electric charges to the electrodes, and also with experimental results. Calculations, which include diffusion of charges, agree with experimental results of current and heat flux density as a function of radius if the Milne boundary condition is used at the anode surface rather than imposing zero charge density at the anode

  13. Insights into Surface Interactions between Metal Organic Frameworks and Gases during Transient Adsorption and Diffusion by In-Situ Small Angle X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2016-09-01

    Full Text Available The fabrication of molecular gas sieving materials with specific affinities for a single gas species and able to store large quantities of materials at a low or atmospheric pressure is desperately required to reduce the adverse effects of coal and oil usage in carbon capture. Fundamental understanding of the dynamic adsorption of gas, the diffusion mechanisms across thin film membranes, and the impact of interfaces play a vital role in developing these materials. In this work, single gas permeation tests across micro-porous membrane materials, based on metal organic framework crystals grown on the surface of carbon nanotubes (ZiF-8@CNT, were performed for the first time in-situ at the Australian Synchrotron on the small angle X-ray scattering beamline in order to reveal molecular sieving mechanisms and gas adsorption within the material. The results show that specific chemi-sorption of CO2 across the ZiF-8 crystal lattices affected the morphology and unit cell parameters, while the sieving of other noble or noble like gases across the ZiF-8@CNT membranes was found to largely follow Knudsen diffusion. This work demonstrates for the first time a novel and effective technique to assess molecular diffusion at the nano-scale across sub-nano-porous materials by probing molecular flexibility across crystal lattice and single cell units.

  14. Optimal number and location of heaters in 2-D radiant enclosures composed of specular and diffuse surfaces using micro-genetic algorithm

    International Nuclear Information System (INIS)

    Safavinejad, A.; Mansouri, S.H.; Sakurai, A.; Maruyama, S.

    2009-01-01

    In this study, a combinatorial optimization methodology has been presented for determining the optimal number and location of equally powered heaters over some parts of the boundary, called the heater surface, to satisfy the desired heat flux and temperature profiles over the design surface while keeping the total heaters power constant but floating the number of heaters. In a typical enclosure, candidate locations were numerous for placing the heaters. The optimal number and location could be found by checking among all the possible combinations of heater power ranges and locations on the heater surface. The possibility of checking only a small portion of the total search space was increasingly desirable for finding an overall optimal solution. Micro-genetic algorithm was a candidate method which displayed a significant potential in achieving that task. Micro-genetic algorithm was used to minimize an objective function which was expressed by the sum of square errors between estimated and desired heat fluxes on the design surface. Radiation element method by ray emission model (REM 2 ) was used to calculate the radiative heat flux on the design surface. It enabled us to handle the effects of specular surfaces and blockage radiation due to enclosure geometry. The capabilities of this methodology were demonstrated by finding the optimal number and position of heaters in two irregular enclosures. The effects of refractory surface characteristics (i.e., diffuse and/or specular) on the optimal solution have been studied in detail. The results show that the refractory surface characteristics have profound effects on the optimal number and location of heaters

  15. Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Directory of Open Access Journals (Sweden)

    Yoshihisa Suzuki

    2016-07-01

    Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.

  16. The impact of changes in parameterizations of surface drag and vertical diffusion on the large-scale circulation in the Community Atmosphere Model (CAM5)

    Science.gov (United States)

    Lindvall, Jenny; Svensson, Gunilla; Caballero, Rodrigo

    2017-06-01

    Simulations with the Community Atmosphere Model version 5 (CAM5) are used to analyze the sensitivity of the large-scale circulation to changes in parameterizations of orographic surface drag and vertical diffusion. Many GCMs and NWP models use enhanced turbulent mixing in stable conditions to improve simulations, while CAM5 cuts off all turbulence at high stabilities and instead employs a strong orographic surface stress parameterization, known as turbulent mountain stress (TMS). TMS completely dominates the surface stress over land and reduces the near-surface wind speeds compared to simulations without TMS. It is found that TMS is generally beneficial for the large-scale circulation as it improves zonal wind speeds, Arctic sea level pressure and zonal anomalies of the 500-hPa stream function, compared to ERA-Interim. It also alleviates atmospheric blocking frequency biases in the Northern Hemisphere. Using a scheme that instead allows for a modest increase of turbulent diffusion at higher stabilities only in the planetary boundary layer (PBL) appears to in some aspects have a similar, although much smaller, beneficial effect as TMS. Enhanced mixing throughout the atmospheric column, however, degrades the CAM5 simulation. Evaluating the simulations in comparison with detailed measurements at two locations reveals that TMS is detrimental for the PBL at the flat grassland ARM Southern Great Plains site, giving too strong wind turning and too deep PBLs. At the Sodankylä forest site, the effect of TMS is smaller due to the larger local vegetation roughness. At both sites, all simulations substantially overestimate the boundary layer ageostrophic flow.

  17. Studies of ionic diffusion in crystalline rock

    Energy Technology Data Exchange (ETDEWEB)

    Ohlsson, Yvonne

    2001-01-01

    Matrix diffusion is of great importance in delaying radionuclides escaping from a deep geologic repository, on their way to the biosphere. There are, however, poorly understood mechanisms related to transport in pores with charged pore surfaces. Ions are affected by this charge and may be repelled or attracted by it. The rate of transport may be reduced, or even enhanced, as a result of this. Transport of ions is studied by traditional diffusion experiments, but mainly by a faster electrical conductivity method. With this method the pore connectivity, the formation factor variability and its relation to the porosity, as well as the surface conductivity are investigated. The method is compared. with traditional diffusion experiments, and an in-situ application is suggested and qualitatively tested. Furthermore, surface diffusion is studied by evaluating literature data and recently developed diffusion models. The pore connectivity reached to a depth of at least 15 cm in the rocks studied. The formation factor did not generally decrease with increasing sample length. It was also found that not only cations in the free pore water add to the electrical conductivity, but also at least part of those sorbed to the pore surfaces of the minerals. This surface conductivity influences the determination of the formation factor in low ionic strength pore waters, and was also found to be a function of the formation factor. It was furthermore dependent on the type of ion at the surface, giving for example a higher conductivity for Na{sup +} than for Cs{sup +}. It is not fully understood which part of the sorbed ions that are mobile. A simple model was developed assigning the mobile ions to the diffuse layer, and this model explained experimental data for diffusion of Cs{sup +} in clay well. This is contradicted by surface conductivity measurements that have shown that most mobile ions are found behind the Stern layer. The in-situ formation factor determination method seems

  18. Surface-based vertexwise analysis of morphometry and microstructural integrity for white matter tracts in diffusion tensor imaging: With application to the corpus callosum in Alzheimer's disease.

    Science.gov (United States)

    Tang, Xiaoying; Qin, Yuanyuan; Zhu, Wenzhen; Miller, Michael I

    2017-04-01

    In this article, we present a unified statistical pipeline for analyzing the white matter (WM) tracts morphometry and microstructural integrity, both globally and locally within the same WM tract, from diffusion tensor imaging. Morphometry is quantified globally by the volumetric measurement and locally by the vertexwise surface areas. Meanwhile, microstructural integrity is quantified globally by the mean fractional anisotropy (FA) and trace values within the specific WM tract and locally by the FA and trace values defined at each vertex of its bounding surface. The proposed pipeline consists of four steps: (1) fully automated segmentation of WM tracts in a multi-contrast multi-atlas framework; (2) generation of the smooth surface representations for the WM tracts of interest; (3) common template surface generation on which the localized morphometric and microstructural statistics are defined and a variety of statistical analyses can be conducted; (4) multiple comparison correction to determine the significance of the statistical analysis results. Detailed herein, this pipeline has been applied to the corpus callosum in Alzheimer's disease (AD) with significantly decreased FA values and increased trace values, both globally and locally, being detected in patients with AD when compared to normal aging populations. A subdivision of the corpus callosum in both hemispheres revealed that the AD pathology primarily affects the body and splenium of the corpus callosum. Validation analyses and two multiple comparison correction strategies are provided. Hum Brain Mapp 38:1875-1893, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2018-01-01

    We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.

  20. The diffusion mechanism and convective transport in the formation of surface anomalies of RADON-222 generated at depth

    International Nuclear Information System (INIS)

    Pereira, E.B.; Hamza, V.M.

    1982-01-01

    A preliminar study on the importance of a thermally-activated convective transport of radon is made in order to explain radon anomalies at surface generated at great depth. It is theoretically shown that convective currents should be of the order of 10 μm/s or larger to explain such anomalies. The influence of surface temperature changes on the convective transport is also discussed. Seasonal changes in temperature typical of climates such as that of southern Brazil can develop thermal inversion layers at depths up to 20 metres. The optimum period of the year for the employment of surface emanometric techniques is during the second and the third months after the winter peak when the thermal inversion barriers are less intense. (Author) [pt

  1. Tailored Formation of N-Doped Nanoarchitectures by Diffusion-Controlled on-Surface (Cyclo)-Dehydrogenation of Heteroaromatics

    Czech Academy of Sciences Publication Activity Database

    Pinardi, A. L.; Otero-Irurueta, G.; Palacio, I.; Martinez, J. I.; Sánchez-Sánchez, C.; Tello, M.; Rogero, C.; Cossaro, A.; Preobrajenski, A.; Gomez-Lor, B.; Jančařík, Andrej; Stará, Irena G.; Starý, Ivo; Lopez, M. F.; Méndez, J.; Martin-Gago, J. A.

    2013-01-01

    Roč. 7, č. 4 (2013), s. 3676-3684 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GAP207/10/2207 Institutional support: RVO:61388963 Keywords : surface-assisted dehydrogenation * dibenzo[5]helicene * N-doped nanographene * heteroaromatic polymer Subject RIV: CC - Organic Chemistry Impact factor: 12.033, year: 2013

  2. Effect of TiO2 additive on the sintering of nuclear fuel (U,Pu)O2. Contribution of surface diffusion to plutonium distribution

    International Nuclear Information System (INIS)

    Bremier, Stephane

    1997-01-01

    This thesis has as objective the study of the effect of TiO 2 additive on the development of MOX fuel microstructure during sintering in reducing atmosphere. To understand better the mechanisms governing the evolution of microstructure, the behavior of UO 2 in the presence of TiO 2 has been established and the influence of the PuO 2 distribution in the initial state of the material was taken into account. The chapter II is devoted to the bibliographic study of the transport mechanisms responsible of the sintering in the ceramics UO 2 and UO 2 -PuO 2 . The results concerning the influence of TiO 2 upon density, grain size and homogenization are discussed. The following chapter describes the characteristics of initial powder, the procedures and installations of heat treatment, as well as the techniques of characterization used. Then the sintering features of UO 2 alone or in the presence of TiO 2 are presented. It appears that in the last case the surface diffusion becomes sufficient fast so that the distribution of the additive occurs naturally during a slow temperature increase. The fifth chapter treats the effect of UO 2 -PuO 2 preparation upon the initial microstructure of the materials and the role played by the PuO 2 grains in sintering. The potentiality of surface diffusion as a means of PuO 2 spreading in the UO 2 is evaluated and correlated with the reduced capacity of sintering the UO 2 ceramics containing PuO 2 . The last chapter deals with the influence of TiO 2 on the development of microstructure in UO 2 -PuO 2 ceramics. While at temperatures below 1500 deg.C the TiO 2 additive affects the surface diffusion and so the plutonium distribution, at values T≥ 1600 deg.C the additive gives rise to a dissolution-reprecipitation process taking place in a intergranular liquid phase appeared between UO 2 , PuO 2 and titanium oxide. Thus the objective is the optimizing the temperature conditions, the oxygen potential as sintering gas and the additive

  3. A new top boundary condition for modeling surface diffusive exchange of a generic volatile tracer: theoretical analysis and application to soil evaporation

    Directory of Open Access Journals (Sweden)

    J. Y. Tang

    2013-02-01

    Full Text Available We describe a new top boundary condition (TBC for representing the air–soil diffusive exchange of a generic volatile tracer. This new TBC (1 accounts for the multi-phase flow of a generic tracer; (2 accounts for effects of soil temperature, pH, solubility, sorption, and desorption processes; (3 enables a smooth transition between wet and dry soil conditions; (4 is compatible with the conductance formulation for modeling air–water volatile tracer exchange; and (5 is applicable to site, regional, and global land models.

    Based on the new TBC, we developed new formulations for bare-soil resistance and corresponding soil evaporation efficiency. The new soil resistance is predicted as the reciprocal of the harmonic sum of two resistances: (1 gaseous and aqueous molecular diffusion and (2 liquid mass flow resulting from the hydraulic pressure gradient between the soil surface and center of the topsoil control volume. We compared the predicted soil evaporation efficiency with those from several field and laboratory soil evaporation measurements and found good agreement with the typically observed two-stage soil evaporation curves. Comparison with the soil evaporation efficiency equation of Lee and Pielke (1992; hereafter LP92 indicates that their equation can overestimate soil evaporation when the atmospheric resistance is low and underestimate soil evaporation when the soil is dry. Using a synthetic inversion experiment, we demonstrated that using inverted soil resistance data from field measurements to derive empirical soil resistance formulations resulted in large uncertainty because (1 the inverted soil resistance data are always severely impacted by measurement error and (2 the derived empirical equation is very sensitive to the number of data points and the assumed functional form of the resistance.

    We expect the application of our new TBC in land models will provide a consistent representation for the diffusive tracer

  4. Radiation heat transfer of arbitrary axisymmetric bodies with specular and diffuse surfaces; Kyomen ranhanshamen wo motsu nin`i keijo jikutaishobuttai no hosha dennetsu

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, S.; Aihara, T. [Tohoku University, Sendai (Japan). Institute of Fluid Sceince

    1993-10-25

    A radiation light tracking method was used to derive shape factors of arbitrary axisymmetric bodies consisted of specular and diffuse surfaces or an annular face element as a composite surface of the former surfaces. This paper illustrates the summary of an analytical method to calculate radiation heat transfer amount of these bodies using the shape factors, and describes the following matters: The difference between the shape factor obtained by applying this method to the inner face of a cylindrical body and conventional analytical solution can be reduced by increasing the number of splits in outgoing light. The numerical solution from this method on radiation heat transfer amount in the particular body agrees well with the conventional analytical solution. Radiation heat transfer amount when the specular reflectivity was increased either increases or decreases depending on the face shape, not necessarily changing monotonously. The paper further describes briefly a composite heat transfer analysis applied to a silicon crystal growing equipment using the Czochralski method, the analysis combining a radiation heat transfer analysis that splits the equipment interior into 88 annular elements with a general purpose heat transfer analysis. 13 refs., 11 figs., 1 tab.

  5. Depth Distribution Studies of Carbon in Steel Surfaces by Means of Charged Particle Activation Analysis with an Account of Heat and Diffusion Effects in the Sample

    International Nuclear Information System (INIS)

    Brune, D.; Lorenzen, J.; Witalis, E.

    1972-05-01

    Depth distribution studies of carbon in steel and iron were carried out in the concentration range 0.05-1 %, using proton activation analysis. Surface content studies were performed in the concentration range 0.01-1 % using deuteron activation analysis. The following reactions were utilized: 12 C(p,γ) 13 N and 12 C(d,n) 13 N Evaluations of depth distribution were based on resonances in the excitation function. The carbon content was determined with the aid of the positron emitter, 13 N, using either single-peak or coincidence measurements. The heat dissipation in the irradiated region of the samples was calculated, and the temperature rise was measured using thermocouples. The temperature distribution within the hot zone subjected to irradiation by charged particles, together with the temperature distribution around this zone, was studied in order to estimate any effect this might have on the carbon diffusion. A device for automatic sample exchange which is remotely controlled is described

  6. Electrochemical impedance spectroscopy study of a surface confined redox reaction: The reduction of azobenzene on mercury in the absence of diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Francisco, E-mail: dapena@us.es [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain); Rueda, Manuela; Hidalgo, Jose; Martinez, Elisa; Navarro, Inmaculada [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain)

    2011-09-30

    The kinetics of azobenzene reduction on mercury electrodes in the absence of diffussional mass transport is studied by electrochemical impedance spectroscopy (EIS) in acetic acid/acetate buffered solutions at different pH values. Cyclic voltammetry experiments confirm the absence of diffusion effects and provide the values of the surface equilibrium potential. The analysis of the impedance frequency spectrums at every potential within the faradaic region conforms well the model and provides the global rate constant of the process, k{sub f}. The potential dependence of k{sub f} suggests the existence of an EE mechanism, with two electron transfers controlling the overall rate. The kinetic parameters of every step are obtained and their pH dependences clarify the role played by the protonation steps.

  7. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  8. Spontaneous mechanical and electrical activities of human calf musculature at rest assessed by repetitive single-shot diffusion-weighted MRI and simultaneous surface electromyography.

    Science.gov (United States)

    Schwartz, Martin; Steidle, Günter; Martirosian, Petros; Ramos-Murguialday, Ander; Preißl, Hubert; Stemmer, Alto; Yang, Bin; Schick, Fritz

    2018-05-01

    Assessment of temporal and spatial relations between spontaneous mechanical activities in musculature (SMAM) at rest as revealed by diffusion-weighted imaging (DWI) and electrical muscular activities in surface EMG (sEMG). Potential influences of static and radiofrequency magnetic fields on muscular activity on sEMG measurements at rest were examined systematically. Series of diffusion-weighted stimulated echo planar imaging were recorded with concurrent sEMG measurements. Electrical activities in sEMG were analyzed by non-parametric Friedman and two-sample Kolmogorov-Smirnov test. Direct correlation of both modalities was investigated by temporal mapping of electrical activity in sEMG to DWI repetition interval. Electrical activities in sEMG and number of visible SMAMs in DWI showed a strong correlation (ρ = 0.9718). High accordance between sEMG activities and visible SMAMs in DWI in a near-surface region around sEMG electrodes was achieved. Characteristics of sEMG activities were almost similar under varying magnetic field conditions. Visible SMAMs in DWI have shown a close and direct relation to concurrent signals recorded by sEMG. MR-related magnetic fields had no significant effects on findings in sEMG. Hence, appearance of SMAMs in DWI should not be considered as imaging artifact or as effects originating from the special conditions of MR examinations. Spatial and temporal distributions of SMAMs indicate characteristics of spontaneous (microscopic) mechanical muscular action at rest. Therefore, DWI techniques should be considered as non-invasive tools for studying physiology and pathophysiology of spontaneous activities in resting muscle. Magn Reson Med 79:2784-2794, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Low-Profile Diffuser

    Science.gov (United States)

    Martin, Michael A.; Nettles, Mindy

    2015-01-01

    The propellant tanks used in liquid rockets require pressurization gases in order to maintain tank pressure while the tanks are being drained during engine operation. The pressurization gas, which is typically much warmer than the relatively cold propellants in the tank, must be introduced into the empty ullage space at the top of the tank. The purpose of the diffuser is to control the flow of the gas into the tank in order to prevent direct impingement of the gas on the liquid surface and/or the tank walls. If the diffuser did not perform those tasks, the warm gas can create excess heat transfer causing an increase in the amount of pressurization mass required. Typical diffusers are long vertical cylinders that create a large exit area in order to minimize gas velocities. However, long vertical cylinders limit the amount of liquid that can be loaded into the tank in order not to have the liquid surface near the diffuser. A design goal for a pressurization diffuser is to create uniform flow in order to prevent jets that can impact the liquid surface and/or tank walls. The purpose of the task was to create a diffuser design that had a lower vertical profile (in order to be able to raise the liquid surface) while still maintaining uniform flow.

  10. Dynamics of phenanthrenequinone on carbon nano-onion surfaces probed by quasielastic neutron scattering.

    Science.gov (United States)

    Chathoth, Suresh M; Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M; Overbury, Steven H

    2012-06-21

    We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so-called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ∼4.7 Å. On the low-coverage surface, both diffusion processes are spatially localized; on the same length scale of ∼4.7 Å for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.

  11. Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering

    International Nuclear Information System (INIS)

    Mamontov, Eugene; Brown, Gilbert M.; Overbury, Steven H.; Mavila Chathoth, Suresh

    2012-01-01

    We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ∼ 4.7. On the low-coverage surface, both diffusion processes are spatially localized; on the same length scale of ∼ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.

  12. Method of providing protection against degradation of properties of its surface layer, for metal diaphragon of diffusion probe in equipment for measuring hydrogen concentration in liquid metals, especially liquid sodium

    International Nuclear Information System (INIS)

    Pitak, O.; Fresl, M.

    1985-01-01

    The protection of the metal membrane of the diffusion probe is designed such that it uses a metal casing filled with an alcohol capable of reacting with the liquid metal under formation of an alcoholate. The casing is fitted to the probe after termination of measurements. During the measurement, hydrogen diffuses from liquid sodium through the metal membrane. After termination of measurement, structural changes take place in the surface layer of the membrane owing to corrosion and oxidation which are enhanced by sodium which remains in the subsurface layers of the diffusion membrane following exposure to sodium. The proposed technology allows to continuously wash liquid metal from the membrane while preventing access of air and moisture to the membrane; air and moisture reduce the rate of hydrogen diffusion through the membrane. (Pu)

  13. Oxygen transport in waterlogged soils, Part II. Diffusion coefficients

    International Nuclear Information System (INIS)

    Obando Moncayo, F.H.

    2004-01-01

    Several equations are available for Oxygen Transport in Waterlogged Soils and have been used for soils and plants. All of them are some form of first Fick's law as given by dQ = - DA(dc/dx)/dt. This equation illustrates some important aspects of aeration in waterlogged soils; first, D is a property of the medium and the gas, and is affected by temperature T. Likewise, the amount of diffusing substance dQ in dt is a direct function of the cross sectional area A and inversely proportional to the distance x. In fact, increasing the water content of air-dry soil, drastically decreases A and creates a further resistance for the flow of oxygen through water films around root plants, soil micro organisms and soil aggregates. The solid phase is also limiting the cross-section of surface of the free gaseous diffusion and the length and tortuosity of diffusion path in soil. In most of cases, soil gas porosity and tortuosity of soil voids are expressed in the equations of diffusion as a broad 'diffusion coefficient' (apparent coefficient diffusion). The process of soil respiration is complicated, involves many parameters, and is difficult to realistically quantify. With regard to the oxygen supply, it is convenient to distinguish macro and micro models, and hence, the flux of oxygen is assumed to have two steps. The first step is related to oxygen diffusion from the atmosphere and the air-filled porosity. The second step is related to the oxygen diffusion through water-films in and around plant roots, soil micro organisms and aggregates. Because of these models we obtain coefficients of macro or micro diffusion, rates of macro or micro diffusion, etc. In the macro diffusion process oxygen is transferred in the soil profile, mainly from the soil surface to a certain depth of the root zone, while micro diffusion deals with the flux over very short distances. Both processes, macro and micro diffusion are highly influenced by soil water content. Of course, if water is added to

  14. The dynamic behavior of bacterial macrofibers growing with one end prevented from rotating: variation in shaft rotation along the fiber's length, and supercoil movement on a solid surface toward the constrained end

    Directory of Open Access Journals (Sweden)

    Chen Liling

    2003-08-01

    Full Text Available Abstract Background Bacterial macrofibers twist as they grow, writhe, supercoil and wind up into plectonemic structures (helical forms the individual filaments of which cannot be taken apart without unwinding that eventually carry loops at both of their ends. Terminal loops rotate about the axis of a fiber's shaft in contrary directions at increasing rate as the shaft elongates. Theory suggests that rotation rates should vary linearly along the length of a fiber ranging from maxima at the loop ends to zero at an intermediate point. Blocking rotation at one end of a fiber should lead to a single gradient: zero at the blocked end to maximum at the free end. We tested this conclusion by measuring directly the rotation at various distances along fiber length from the blocked end. The movement of supercoils over a solid surface was also measured in tethered macrofibers. Results Macrofibers that hung down from a floating wire inserted through a terminal loop grew vertically and produced small plectonemic structures by supercoiling along their length. Using these as markers for shaft rotation we observed a uniform gradient of initial rotation rates with slopes of 25.6°/min. mm. and 36.2°/min. mm. in two different fibers. Measurements of the distal tip rotation in a third fiber as a function of length showed increases proportional to increases in length with constant of proportionality 79.2 rad/mm. Another fiber tethered to the floor grew horizontally with a length-doubling time of 74 min, made contact periodically with the floor and supercoiled repeatedly. The supercoils moved over the floor toward the tether at approximately 0.06 mm/min, 4 times faster than the fiber growth rate. Over a period of 800 minutes the fiber grew to 23 mm in length and was entirely retracted back to the tether by a process involving 29 supercoils. Conclusions The rate at which growing bacterial macrofibers rotated about the axis of the fiber shaft measured at various

  15. Surface-Based fMRI-Driven Diffusion Tractography in the Presence of Significant Brain Pathology: A Study Linking Structure and Function in Cerebral Palsy

    Science.gov (United States)

    Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.

    2016-01-01

    Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011

  16. Surface-Based fMRI-Driven Diffusion Tractography in the Presence of Significant Brain Pathology: A Study Linking Structure and Function in Cerebral Palsy.

    Science.gov (United States)

    Reid, Lee B; Cunnington, Ross; Boyd, Roslyn N; Rose, Stephen E

    2016-01-01

    Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43-0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences.

  17. Oxygen Diffusion in Titanite

    Science.gov (United States)

    Zhang, X. Y.; Cherniak, D. J.; Watson, E. B.

    2004-05-01

    Oxygen diffusion in natural and synthetic single-crystal titanite was characterized under both dry and water-present conditions. For the dry experiments, pre-polished titanite samples were packed in 18O-enriched quartz powder inside Ag-Pd capsules, along with an FMQ buffer assemblage maintained physically separate by Ag-Pd strips. The sealed Ag-Pd capsules were themselves sealed inside evacuated silica glass tubes and run at 700-1050° C and atmospheric pressure for durations ranging from 1 hour to several weeks. The hydrothermal experiments were conducted by encapsulating polished titanite crystals with 18O enriched water and running them at 700-900° C and 10-160MPa in standard cold-seal pressure vessels for durations of 1 day to several weeks. Diffusive uptake profiles of 18O were measured in all cases by nuclear reaction analysis (NRA) using the 18O (p,α ) 15N reaction. For the experiments on natural crystals, under both dry and hydrothermal conditions, two mechanisms could be recognized responsible for oxygen diffusion. The diffusion profiles showed two segments: a steep one close to the initial surface attributed to self-diffusion in the titanite lattice; and a "tail" reaching deeper into the sample attributable to diffusion in a "fast path" such as sub-grain boundaries or dislocations. For the dry experiments, the following Arrhenius relation was obtained: D{dry lattice} = 2.6×10-8exp (-275 kJmol-1/RT) m2/s Under wet conditions at PH2O = 100MPa, Oxygen diffusion conforms to the following Arrehenius relation: D{wet lattice} = 9.7× 10-13exp (-174 kJmol-1/RT) m2/s Oxygen diffusivity shows only a slight dependence on water pressure at the following conditions we explored: temperatures 800° C, PH2O = 10-160MPa, and 880° C, PH2O =10-100MPa. For diffusive anisotropy, we explored it only at hydrothermal conditions, and no diffusive anisotropy was observed. Like many other silicates, titanite shows lower activation energy for oxygen diffusion in the presence of

  18. The effect of radiation-thermal treatment on the physicochemical properties of the Ni-Mo/Al2O3 hydrotreatment catalyst. II. UV-Vis diffuse reflectance spectra of surface compounds after irradiation

    International Nuclear Information System (INIS)

    Solovetskii, Yu.I.; Miroshinichenko, I.I.; Lunin, V.V.

    1993-01-01

    Radiation-thermal damage of the surface and the active metal phases of hydrodesulfurization Ni-Mo/Al 2 O 3 catalysts by a fast electron beam of up to 2.0 MeV energy was studied. UV-Vis diffuse reflectance spectra of the industrial and model coked systems after radiation-thermal treatment were measured. 14 refs., 2 figs

  19. Diffraction and diffusion in room acoustics

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit

    1996-01-01

    Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....

  20. Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies.

    Science.gov (United States)

    Koscher, Brent A; Bronstein, Noah D; Olshansky, Jacob H; Bekenstein, Yehonadav; Alivisatos, A Paul

    2016-09-21

    Ion-exchange transformations allow access to nanocrystalline materials with compositions that are inaccessible via direct synthetic routes. However, additional mechanistic insight into the processes that govern these reactions is needed. We present evidence for the presence of two distinct mechanisms of exchange during anion exchange in CsPbX3 nanocrystals (NCs), ranging in size from 6.5 to 11.5 nm, for transformations from CsPbBr3 to CsPbCl3 or CsPbI3. These NCs exhibit bright luminescence throughout the exchange, allowing their optical properties to be observed in real time, in situ. The iodine exchange presents surface-reaction-limited exchanges allowing all anionic sites within the NC to appear chemically identical, whereas the chlorine exchange presents diffusion-limited exchanges proceeding through a more complicated exchange mechanism. Our results represent the first steps toward developing a microkinetic description of the anion exchange, with implications not only for understanding the lead halide perovskites but also for nanoscale ion exchange in general.

  1. The origin of unequal bond lengths in the C̃ (1)B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure.

    Science.gov (United States)

    Park, G Barratt; Jiang, Jun; Field, Robert W

    2016-04-14

    The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3(') progression. We have recently made the first observation of low-lying levels with odd quanta of v3('), which allows us-in the current work-to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 (1)A1 state and indirect coupling with the repulsive 3 (1)A1 state. The degree of staggering in the ν3(') levels increases with quanta of bending excitation, which is consistent with the approach along the C̃ state potential energy surface to a conical intersection with the 2 (1)A1 surface at a bond angle of ∼145°.

  2. Bag model with diffuse surface

    International Nuclear Information System (INIS)

    Phatak, S.C.

    1986-01-01

    The constraint of a sharp bag boundary in the bag model is relaxed in the present work. This has been achieved by replacing the square-well potential of the bag model by a smooth scalar potential and introducing a term similar to the bag pressure term. The constraint of the conservation of the energy-momentum tensor is used to obtain an expression for the added bag pressure term. The model is then used to determine the static properties of the nucleon. The calculation shows that the rms charge radius and the nucleon magnetic moment are larger than the corresponding bag model values. Also, the axial vector coupling constant and the πNN coupling constant are in better agreement with the experimental values

  3. A compact ESPI system for displacement measurements of specular reflecting or optical rough surfaces

    DEFF Research Database (Denmark)

    Hansen, R.S.

    2004-01-01

    A stable and compact speckle interferometer for doing out-of-plane displacement measurements on reflective as well as diffusely scattering object surfaces is demonstrated. The set-up is based on a nearly path length compensated interferometer of the Fizeau type and uses diffuse illumination...... of the object combined with a speckled reference wave. This combination eliminates the need for special optical components, and the interferometer can be built of commonly available components. The diffuse illumination wave is obtained by scattering coherent light from a diffusely scattering surface....... The speckled reference wave is established by reflecting a part of the diffuse illumination wave from a glass plate placed in front of the object. Besides relaxing the alignment tolerances of the set-up, the diffuse illumination eliminates the need for any preparation of the surface under test, which turns...

  4. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    Science.gov (United States)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  5. Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film

    Science.gov (United States)

    Kurachi, Ikuo; Yoshioka, Kentaro

    2015-09-01

    An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.

  6. Radon diffusion studies in some building materials using solid state nuclear track detectors

    CERN Document Server

    Singh, S; Singh, B; Singh, J

    1999-01-01

    LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.

  7. Diffuse-charge dynamics in electrochemical systems

    Science.gov (United States)

    Bazant, Martin Z.; Thornton, Katsuyo; Ajdari, Armand

    2004-08-01

    The response of a model microelectrochemical system to a time-dependent applied voltage is analyzed. The article begins with a fresh historical review including electrochemistry, colloidal science, and microfluidics. The model problem consists of a symmetric binary electrolyte between parallel-plate blocking electrodes, which suddenly apply a voltage. Compact Stern layers on the electrodes are also taken into account. The Nernst-Planck-Poisson equations are first linearized and solved by Laplace transforms for small voltages, and numerical solutions are obtained for large voltages. The “weakly nonlinear” limit of thin double layers is then analyzed by matched asymptotic expansions in the small parameter ɛ=λD/L , where λD is the screening length and L the electrode separation. At leading order, the system initially behaves like an RC circuit with a response time of λDL/D (not λD2/D ), where D is the ionic diffusivity, but nonlinearity violates this common picture and introduces multiple time scales. The charging process slows down, and neutral-salt adsorption by the diffuse part of the double layer couples to bulk diffusion at the time scale, L2/D . In the “strongly nonlinear” regime (controlled by a dimensionless parameter resembling the Dukhin number), this effect produces bulk concentration gradients, and, at very large voltages, transient space charge. The article concludes with an overview of more general situations involving surface conduction, multicomponent electrolytes, and Faradaic processes.

  8. Diffusion transport of nanoparticles at nanochannel boundaries

    International Nuclear Information System (INIS)

    Mahadevan, T. S.; Milosevic, M.; Kojic, M.; Hussain, F.; Kojic, N.; Serda, R.; Ferrari, M.; Ziemys, A.

    2013-01-01

    The manipulation of matter at the nanoscale has unleashed a great potential for engineering biomedical drug carriers, but the transport of nanoparticles (NPs) under nanoscale confinement is still poorly understood. Using colloidal physics to describe NP interactions, we have computationally studied the passive transport of NPs using experimentally relevant conditions from bulk into a nanochannel of 60–90 nm height. NP size, channel height, and the Debye length are comparable so that changes in nanoscale dimensions may induce substantial changes in NP transport kinetics. We show that subtle changes in nanochannel dimensions may alter the energy barrier by about six orders of magnitude resulting in different NP penetration depths and diffusion mechanisms: ballistic, first-order and quasi zero-order transport regimes. The analysis of NP diffusion by continuum methods reveals that apparent diffusivity is reduced by decreasing channel size. The continuum finite element (FE) numerical method reproduced the colloidal model results only when surface interactions were accounted for. These results give a new insight into NP passive transport at the boundaries of nanoconfined domains, and have implications on the design of nanoscale fluidics and NP systems for biomedical and engineering applications.

  9. Research of Innovation Diffusion on Industrial Networks

    Directory of Open Access Journals (Sweden)

    Yongtai Chen

    2014-01-01

    Full Text Available The real value of innovation consists in its diffusion on industrial network. The factors which affect the diffusion of innovation on industrial network are the topology of industrial network and rules of diffusion. Industrial network is a complex network which has scale-free and small-world characters; its structure has some affection on threshold, length of path, enterprise’s status, and information share of innovation diffusion. Based on the cost and attitude to risk of technical innovation, we present the “avalanche” diffusing model of technical innovation on industrial network.

  10. Telomere length analysis.

    Science.gov (United States)

    Canela, Andrés; Klatt, Peter; Blasco, María A

    2007-01-01

    Most somatic cells of long-lived species undergo telomere shortening throughout life. Critically short telomeres trigger loss of cell viability in tissues, which has been related to alteration of tissue function and loss of regenerative capabilities in aging and aging-related diseases. Hence, telomere length is an important biomarker for aging and can be used in the prognosis of aging diseases. These facts highlight the importance of developing methods for telomere length determination that can be employed to evaluate telomere length during the human aging process. Telomere length quantification methods have improved greatly in accuracy and sensitivity since the development of the conventional telomeric Southern blot. Here, we describe the different methodologies recently developed for telomere length quantification, as well as their potential applications for human aging studies.

  11. Surface desorption and bulk diffusion models of tritium release from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.E., E-mail: ravila@cchen.c [Departamento de Materiales Nucleares, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile); Pena, L.A.; Jimenez, J.C. [Departamento de Produccion y Servicios, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile)

    2010-10-30

    The release of tritium from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles, in batch experiments, is studied by means of temperature programmed desorption. Data reduction focuses on the analysis of the non-oxidized and oxidized tritium components in terms of release limited by diffusion from the bulk of ceramic grains, or by first or second order surface desorption. By analytical and numerical methods the in-furnace tritium release is deconvoluted from the ionization chamber transfer functions, for which a semi-empirical form is established. The release from Li{sub 2}TiO{sub 3} follows second order desorption kinetics, requiring a temperature for a residence time of 1 day (T{sub 1dRes}) of 620 K, and 603 K, of the non-oxidized, and the oxidized components, respectively. The release from Li{sub 2}ZrO{sub 3} appears as limited by either diffusion from the bulk of the ceramic grains, or by first order surface desorption, the first possibility being the more probable. The respective values of T{sub 1dRes} for the non-oxidized component are 661 K, according to the first order surface desorption model, and 735 K within the bulk diffusion limited model.

  12. Anomalous diffusion and diffusion anomaly in confined Janus dumbbells.

    Science.gov (United States)

    B Krott, Leandro; Gavazzoni, Cristina; Bordin, José Rafael

    2016-12-28

    Self-assembly and dynamical properties of Janus nanoparticles have been studied by molecular dynamic simulations. The nanoparticles are modeled as dimers and they are confined between two flat parallel plates to simulate a thin film. One monomer from the dumbbells interacts by a standard Lennard-Jones potential and the other by a two-length scales shoulder potential, typically used for anomalous fluids. Here, we study the effects of removing the Brownian effects, typical from colloidal systems immersed in aqueous solution, and consider a molecular system, without the drag force and the random collisions from the Brownian motion. Self-assembly and diffusion anomaly are preserved in relation to the Brownian system. Additionally, a superdiffusive regime associated to a collective reorientation in a highly structured phase is observed. Diffusion anomaly and anomalous diffusion are explained in the two length scale framework.

  13. Anomalous diffusion and diffusion anomaly in confined Janus dumbbells

    Science.gov (United States)

    Krott, Leandro B.; Gavazzoni, Cristina; Bordin, José Rafael

    2016-12-01

    Self-assembly and dynamical properties of Janus nanoparticles have been studied by molecular dynamic simulations. The nanoparticles are modeled as dimers and they are confined between two flat parallel plates to simulate a thin film. One monomer from the dumbbells interacts by a standard Lennard-Jones potential and the other by a two-length scales shoulder potential, typically used for anomalous fluids. Here, we study the effects of removing the Brownian effects, typical from colloidal systems immersed in aqueous solution, and consider a molecular system, without the drag force and the random collisions from the Brownian motion. Self-assembly and diffusion anomaly are preserved in relation to the Brownian system. Additionally, a superdiffusive regime associated to a collective reorientation in a highly structured phase is observed. Diffusion anomaly and anomalous diffusion are explained in the two length scale framework.

  14. Ammonia diffusion through Nalophan™ bags.

    Science.gov (United States)

    Sironi, Selena; Eusebio, Lidia; Dentoni, Licinia; Capelli, Laura; Del Rosso, Renato

    2014-01-01

    The aim of the work is to verify the diffusion rate of ammonia through the Nalophan™ film that constitutes the sampling bag, considering storage times ranging from 1 to 26 h. The ammonia decay over time was evaluated using gas-chromatography for the quantification of ammonia concentration inside the bag. The research assesses the roles of both of ammonia and water concentration gradients at the polymeric film interface on the diffusion process. The results show that both the ammonia concentration gradient and, in a less pronounced way, the water concentration gradient are the main 'engines' of ammonia diffusion. Double bags seem to represent a simple solution for preventing ammonia losses during storage. Another interesting result concerns the role of the bag surface on the ammonia diffusion rate: the higher the surface/volume (S/V) ratio, the higher the ammonia diffusion rate through the polymeric film.

  15. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  16. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  17. Acetylene diffusion in Na-Y zeolite

    Indian Academy of Sciences (India)

    The diffusion constant, residence time between jumps and root mean square jump length are determined. Keywords. Porous materials; diffusion; neutron scattering. ... of diameter ~11.8 Å. The pores are interconnected through windows of diameter. ~7.8 Å. Recent molecular dynamics (MD) simulation studies [6] show a ...

  18. Transient Enhanced Diffusion

    Science.gov (United States)

    Gossmann, Hans-Joachim L.

    1996-03-01

    Ion implantation is the standard method for dopant introduction during integrated circuit manufacturing, determining crucial device characteristics. Implantation creates point-defects, such as Si self-interstitials and vacancies, far in excess of equilibrium concentrations. Since the diffusion of common dopants involves Si point defects, the interaction of damage and dopants during subsequent annealing steps leads to the phenomenon known as "transient enhanced diffusion" (TED): The dopant diffusivities are enhanced, possibly by many orders of magnitude. The enhancement is transient since the intrinsic defects eventually diffuse into the bulk or annihilate at the surface. The desired specific dopant profile of the device is thus the result of a complex reaction, involving the creation of damage and its spatial distribution, diffusion, and interaction of the point defects among themselves and with interfaces and other defects. As device dimensions shrink and experiments become more and more expensive, the capability to predict these kinds of non-equilibrium phenomena accurately becomes crucial to Si technology development. In our experiments to extract physical mechanisms and parameters of TED we use the method of sharp B- and Sb doping spikes to track interstitial and vacancy concentrations as a function of depth during processing. Thus we gain sensitivity to small diffusion distances (low temperatures) and separate the damaged region from the region of the interaction with dopants. In addition, our method yields directly the actual point defect diffusivity. Although an ion implant initially produces Frenkel pairs, Monte-carlo simulations show that the vacancies annihilate quickly. The excess interstitials, roughly one for each implanted ion coalesce into 311defects. The subsequent evaporation of interstitials from 311ś drives TED. Si interstitial diffusion is influenced by carbon-related traps and we will demonstrate that this finding reconciles quantitatively a

  19. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  20. Telomere length and depression

    DEFF Research Database (Denmark)

    Wium-Andersen, Marie Kim; Ørsted, David Dynnes; Rode, Line

    2017-01-01

    BACKGROUND: Depression has been cross-sectionally associated with short telomeres as a measure of biological age. However, the direction and nature of the association is currently unclear. AIMS: We examined whether short telomere length is associated with depression cross-sectionally as well...... as prospectively and genetically. METHOD: Telomere length and three polymorphisms, TERT, TERC and OBFC1, were measured in 67 306 individuals aged 20-100 years from the Danish general population and associated with register-based attendance at hospital for depression and purchase of antidepressant medication....... RESULTS: Attendance at hospital for depression was associated with short telomere length cross-sectionally, but not prospectively. Further, purchase of antidepressant medication was not associated with short telomere length cross-sectionally or prospectively. Mean follow-up was 7.6 years (range 0...

  1. Myofilament length dependent activation

    Energy Technology Data Exchange (ETDEWEB)

    de Tombe, Pieter P.; Mateja, Ryan D.; Tachampa, Kittipong; Mou, Younss Ait; Farman, Gerrie P.; Irving, Thomas C. (IIT); (Loyola)

    2010-05-25

    The Frank-Starling law of the heart describes the interrelationship between end-diastolic volume and cardiac ejection volume, a regulatory system that operates on a beat-to-beat basis. The main cellular mechanism that underlies this phenomenon is an increase in the responsiveness of cardiac myofilaments to activating Ca{sup 2+} ions at a longer sarcomere length, commonly referred to as myofilament length-dependent activation. This review focuses on what molecular mechanisms may underlie myofilament length dependency. Specifically, the roles of inter-filament spacing, thick and thin filament based regulation, as well as sarcomeric regulatory proteins are discussed. Although the 'Frank-Starling law of the heart' constitutes a fundamental cardiac property that has been appreciated for well over a century, it is still not known in muscle how the contractile apparatus transduces the information concerning sarcomere length to modulate ventricular pressure development.

  2. Upper Extremity Length Equalization

    OpenAIRE

    DeCoster, Thomas A.; Ritterbusch, John; Crawford, Mark

    1992-01-01

    Significant upper extremity length inequality is uncommon but can cause major functional problems. The ability to position and use the hand may be impaired by shortness of any of the long bones of the upper extremity. In many respects upper and lower extremity length problems are similar. They most commonly occur after injury to a growing bone and the treatment modalities utilized in the lower extremity may be applied to the upper extremity. These treatment options include epiphysiodesis, sho...

  3. Urban diffusion problems

    International Nuclear Information System (INIS)

    Hanna, S.R.

    1976-01-01

    It is hoped that urban diffusion models of air pollutants can eventually confidently be used to make major decisions, such as in planning the layout of a new industrial park, determining the effects of a new highway on air quality, or estimating the results of a new automobile emissions exhaust system. The urban diffusion model itself should be able to account for point, line, and area sources, and the local aerodynamic effects of street canyons and building wakes. Removal or transformations due to dry or wet deposition and chemical reactions are often important. It would be best if the model included meteorological parameters such as wind speed and temperature as dependent variables, since these parameters vary significantly when air passes from rural surfaces over urban surfaces

  4. Influence of Non-Perfect Step Input Concentration at the Feed Side of the Membrane Surface on the Diffusion Coefficient Evaluation

    Czech Academy of Sciences Publication Activity Database

    Čermáková, Jiřina; Fialová, Kateřina; Petričkovič, Roman; Kudrna, V.; Uchytil, Petr

    2006-01-01

    Roč. 15, č. 3 (2006), s. 246-251 ISSN 1022-1344 R&D Projects: GA AV ČR(CZ) 1QS401250509; GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : diffusion coefficient * flux * dispersion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.073, year: 2006

  5. Chemical diffusion and oxygen surface transfer of La1-xSrxCoO3-d studied with electrical conductivity relaxation

    NARCIS (Netherlands)

    van der Haar, L.M.; den Otter, M.W.; Morskate, M.; Bouwmeester, Henricus J.M.; Verweij, H.

    2002-01-01

    The chemical diffusion coefficient and oxygen-transfer coefficients of selected compositions in the series $La_1-xSr_xCoO_3-delta$ were studied using the conductivity relaxation technique. Measurements were performed in the temperature range 600-850°C and oxygen partial pressure $10-4$ to 1 bar.

  6. Simulation of multivariate diffusion bridges

    DEFF Research Database (Denmark)

    Bladt, Mogens; Finch, Samuel; Sørensen, Michael

    We propose simple methods for multivariate diffusion bridge simulation, which plays a fundamental role in simulation-based likelihood and Bayesian inference for stochastic differential equations. By a novel application of classical coupling methods, the new approach generalizes a previously...... proposed simulation method for one-dimensional bridges to the mulit-variate setting. First a method of simulating approzimate, but often very accurate, diffusion bridges is proposed. These approximate bridges are used as proposal for easily implementable MCMC algorithms that produce exact diffusion bridges....... The new method is much more generally applicable than previous methods. Another advantage is that the new method works well for diffusion bridges in long intervals because the computational complexity of the method is linear in the length of the interval. In a simulation study the new method performs well...

  7. Rumble surfaces

    CSIR Research Space (South Africa)

    National Institute for Transport and Road

    1977-01-01

    Full Text Available Rumble surfaces are intermittent short lengths of coarse-textured road surfacings on which vehicle tyres produce a rumbling sound. used in conjunction with appropriate roadsigns and markings, they can reduce accidents on rural roads by alerting...

  8. Serum albumin levels in burn people are associated to the total body surface burned and the length of hospital stay but not to the initiation of the oral/enteral nutrition

    Science.gov (United States)

    Pérez-Guisado, Joaquín; de Haro-Padilla, Jesús M; Rioja, Luis F; DeRosier, Leo C; de la Torre, Jorge I

    2013-01-01

    Objective: Serum albumin levels have been used to evaluate the severity of the burns and the nutrition protein status in burn people, specifically in the response of the burn patient to the nutrition. Although it hasn’t been proven if all these associations are fully funded. The aim of this retrospective study was to determine the relationship of serum albumin levels at 3-7 days after the burn injury, with the total body surface area burned (TBSA), the length of hospital stay (LHS) and the initiation of the oral/enteral nutrition (IOEN). Subject and methods: It was carried out with the health records of patients that accomplished the inclusion criteria and were admitted to the burn units at the University Hospital of Reina Sofia (Córdoba, Spain) and UAB Hospital at Birmingham (Alabama, USA) over a 10 years period, between January 2000 and December 2009. We studied the statistical association of serum albumin levels with the TBSA, LHS and IOEN by ANOVA one way test. The confidence interval chosen for statistical differences was 95%. Duncan’s test was used to determine the number of statistically significantly groups. Results: Were expressed as mean±standard deviation. We found serum albumin levels association with TBSA and LHS, with greater to lesser serum albumin levels found associated to lesser to greater TBSA and LHS. We didn’t find statistical association with IOEN. Conclusion: We conclude that serum albumin levels aren’t a nutritional marker in burn people although they could be used as a simple clinical tool to identify the severity of the burn wounds represented by the total body surface area burned and the lenght of hospital stay. PMID:23875122

  9. Diffusion data in granite. Recommended values

    International Nuclear Information System (INIS)

    Ohlsson, Yvonne; Neretniks, I.

    1997-10-01

    Diffusion data for radionuclide transport in the porous matrix of rock are proposed for Swedish rock and ground waters, for performance assessment. Suggested data are based on an experimental diffusion study, where tritiated water was used as noninteracting diffusing species in stationary diffusion experiments in Aespoe fine grained granite and diorite. These data, for tritiated water, were used as reference in our study. For other species the effective diffusivities could be predicted from knowledge of the relative behaviour of these species to that of tritiated water. The behaviour is influenced by the difference in free water diffusivity and sometimes the existence of anion exclusion of surface diffusion. Apparent diffusivities are also calculated using sorption data, in addition to the effective diffusivities. Data are proposed for high saline and low saline ground water conditions

  10. Study of the factors affecting radon diffusion through building materials

    International Nuclear Information System (INIS)

    Chauhan, R.P.

    2011-01-01

    Radon appears mainly by diffusion processes from the point of origin following - decay of 226 Ra in underground soil and building materials used, in the construction of floors, walls, and ceilings. The diffusion of radon in dwellings is a process determined by the radon concentration gradient across the building material structure and can be a significant contributor to indoor radon inflow. Radon can originate from the deeply buried deposit beneath homes and can migrate to the surface of earth. Radon diffusion and transport through different media is a complex process and is affected by several factors. It is well known that for building construction materials the porosity, permeability and the diffusion coefficient are the parameters, which can quantify the materials capability to hinder the flow of radon soil gas. An increase in porosity will provide more air space within the material for radon to travel, thus reducing its resistance to radon transport. The permeability of material describes its ability to act as a barrier to gas movement when a pressure gradient exists across it and is closely related to the porosity of material. The radon diffusion coefficient of a material quantifies the ability of radon gas to move through it when a concentration gradient is the driving force. This parameter depends upon the porosity and permeability of the medium. As diffusion process is the major contributor to indoor levels, therefore, the factors affecting the diffusion process need to be kept in consideration. Keeping this in mind the experimental arrangements have been made for control study of radon diffusion through some building materials to observe the effects of different factors viz.; compaction, grain size, temperature, humidity and the mixing of these materials etc. For the present study alpha sensitive LR-115 type II solid-state nuclear track detectors (SSNTDs) have been used for the recording of alpha tracks caused by radon gas after its diffusion through the

  11. Matrix Diffusion for Performance Assessment - Experimental Evidence, Modelling Assumptions and Open Issues

    International Nuclear Information System (INIS)

    Jakob, A.

    2004-07-01

    In this report a comprehensive overview on the matrix diffusion of solutes in fractured crystalline rocks is presented. Some examples from observations in crystalline bedrock are used to illustrate that matrix diffusion indeed acts on various length scales. Fickian diffusion is discussed in detail followed by some considerations on rock porosity. Due to the fact that the dual-porosity medium model is a very common and versatile method for describing solute transport in fractured porous media, the transport equations and the fundamental assumptions, approximations and simplifications are discussed in detail. There is a variety of geometrical aspects, processes and events which could influence matrix diffusion. The most important of these, such as, e.g., the effect of the flow-wetted fracture surface, channelling and the limited extent of the porous rock for matrix diffusion etc., are addressed. In a further section open issues and unresolved problems related to matrix diffusion are mentioned. Since matrix diffusion is one of the key retarding processes in geosphere transport of dissolved radionuclide species, matrix diffusion was consequently taken into account in past performance assessments of radioactive waste repositories in crystalline host rocks. Some issues regarding matrix diffusion are site-specific while others are independent of the specific situation of a planned repository for radioactive wastes. Eight different performance assessments from Finland, Sweden and Switzerland were considered with the aim of finding out how matrix diffusion was addressed, and whether a consistent picture emerges regarding the varying methodology of the different radioactive waste organisations. In the final section of the report some conclusions are drawn and an outlook is given. An extensive bibliography provides the reader with the key papers and reports related to matrix diffusion. (author)

  12. Multipassage diffuser

    International Nuclear Information System (INIS)

    Lalis, A.; Rouviere, R.; Simon, G.

    1976-01-01

    A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture

  13. Surface exchange kinetics and chemical diffusivities of BaZr{sub 0.2}Ce{sub 0.65}Y{sub 0.15}O{sub 3−δ} by electrical conductivity relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dae-Kwang; Jeon, Sang-Yun; Singh, Bhupendra [Ionics Lab, School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwang-Ju 500-757 (Korea, Republic of); Park, Jun-Young [Department of Advanced Materials Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Song, Sun-Ju, E-mail: song@chonnam.ac.kr [Ionics Lab, School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwang-Ju 500-757 (Korea, Republic of)

    2014-10-15

    Highlights: • Electrical conductivity relaxation in BaCe{sub 0.65}Zr{sub 0.2}Y{sub 0.15}O{sub 3−δ} was monitored. • Monotonic relaxation behavior was observed during oxidation/reduction. • Nonmonotonic twofold relaxation behavior was observed during hydration/dehydration. • Surface exchange coefficients and diffusivities of O and H were calculated. - Abstract: Perovskite-type oxide BaCe{sub 0.65}Zr{sub 0.2}Y{sub 0.15}O{sub 3−δ} (BCZY2015) was synthesized by a solid state reaction method. BCZY2015 samples were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The time dependent variation in electrical conductivity of BCZY2015 was monitored during the oxidation/reduction in oxygen partial pressure (pO{sub 2}) range of −2.28 ⩽ log (pO{sub 2}/atm) ⩽ −0.68 at a fixed water vapor pressure (pH{sub 2}O), and during the hydration/dehydration in −3.15 ⩽ log (pH{sub 2}O/atm) ⩽ −2.35 range in air. The electrical conductivity showed a monotonic relaxation behavior by the ambipolar diffusion of V{sub o}{sup ··} and OH{sub o}{sup ·} during the oxidation/reduction and the relaxation process was governed by the diffusivity of oxygen (D-tilde{sub vO}). On the other hand, during the hydration/dehydration process, a non-monotonic twofold relaxation behavior was observed due to the decoupled diffusion of H and O components with the mediation of holes, and the conductivity relaxation process was governed by the diffusivities of both H (D-tilde{sub iH}) and O (D-tlde{sub vH}). The values of surface exchange coefficients and diffusivities of oxygen and hydrogen were calculated from Fick’s second law by the nonlinear least squares fitting of the conductivity data, as proposed by Yoo et al. (2008)

  14. Relativistic Length Agony Continued

    Science.gov (United States)

    Redzic, D. V.

    2014-06-01

    We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redzic 2008b), we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the 'pole in a barn' paradox.

  15. Telomere Length and Mortality

    DEFF Research Database (Denmark)

    Kimura, Masayuki; Hjelmborg, Jacob V B; Gardner, Jeffrey P

    2008-01-01

    Leukocyte telomere length, representing the mean length of all telomeres in leukocytes, is ostensibly a bioindicator of human aging. The authors hypothesized that shorter telomeres might forecast imminent mortality in elderly people better than leukocyte telomere length. They performed mortality...... telomeres predicted the death of the first co-twin better than the mTRFL did (mTRFL: 0.56, 95% confidence interval (CI): 0.49, 0.63; mTRFL(50): 0.59, 95% CI: 0.52, 0.66; mTRFL(25): 0.59, 95% CI: 0.52, 0.66; MTRFL: 0.60, 95% CI: 0.53, 0.67). The telomere-mortality association was stronger in years 3-4 than...

  16. Addimer diffusions on Si(100)

    International Nuclear Information System (INIS)

    Lee, Gun Do; Wang, C. Z.; Lu, Z. Y.; Ho, K. M.

    1999-01-01

    The diffusion pathways along the trough and between the trough and the dimer row on the Si(100) surface are investigated by tight-binding molecular dynamics calculations using the environment dependent tight-binding silicon potential and by ab initio calculations using the Car-Parrinello method. The studies discover new diffusion pathways consisting of rotation of addimer. The calculated energy barrier are in excellent agreement with experiment. The rotational diffusion pathway between the trough and the dimer row is much more energetically favorable than other diffusion pathways by parallel and perpendicular addimer. The new pathway along the trough is nearly same as the energy barrier of the diffusion pathway by dissociation of the addimer

  17. Atmospheric turbulence and diffusion research

    International Nuclear Information System (INIS)

    Hosker, R.P. Jr.

    1993-01-01

    The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange

  18. Full Length Research Article

    African Journals Online (AJOL)

    Administrator

    Out of the 320 male sheep examined, 87(27.2%) were infected, while 9(19.1%) of the 47 females examined were infected (Table 2). Infection varied from one abattoir to another. Age related distribution of P. cervi is shown in Table 3. Out of 356 adult sheep (>2yrs) examined, 35. Full Length Research Article. 12 ...

  19. Rapid diffusion of molybdenum trace contamination in silicon

    International Nuclear Information System (INIS)

    Tobin, S.P.; Greenwald, A.C.; Wolfson, R.G.; Meier, D.L.; Drevinsky, P.J.

    1985-01-01

    Molybdenum contamination has been detected in silicon epitaxial layers and substrate wafers after processing in any one of several epitaxial silicon reactors. Greatly reduced minority carrier diffusion lengths and lifetimes are consistent with Mo concentrations measured by DLTS in the 10 12 and 10 13 cm -3 ranges. Depth profiling of diffusion length and the Mo deep level show much greater penetration than expected from previous reports of Mo as a slow diffuser. The data indicate a lower limit of 10 -8 cm 2 /sec for the diffusion coefficient of Mo in silicon at 1200 0 C, consistent with high diffusivities measured for other transition metals

  20. Boron diffusion in silicon devices

    Science.gov (United States)

    Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian

    2010-09-07

    Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.

  1. Erbium diffusion from erbium metal or erbium oxide layers deposited on the surface of various LiNbO3 cuts

    Czech Academy of Sciences Publication Activity Database

    Nekvindová, P.; Cajzl, J.; Švecová, B.; Macková, Anna; Malinský, Petr; Oswald, Jiří; Vacík, Jiří; Spirkova, J.

    2013-01-01

    Roč. 36, č. 2 (2013), s. 402-407 ISSN 0925- 3467 R&D Projects: GA ČR(CZ) GAP106/10/1477; GA ČR GA106/09/0125; GA MŠk(XE) LM2011019; GA TA ČR TA01010237 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : lithium niobate * erbium * erbium oxide * diffusion doping * luminescent materials Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.075, year: 2013

  2. Gap length distributions by PEPR

    International Nuclear Information System (INIS)

    Warszawer, T.N.

    1980-01-01

    Conditions guaranteeing exponential gap length distributions are formulated and discussed. Exponential gap length distributions of bubble chamber tracks first obtained on a CRT device are presented. Distributions of resulting average gap lengths and their velocity dependence are discussed. (orig.)

  3. Length of excitable knots

    Science.gov (United States)

    Maucher, Fabian; Sutcliffe, Paul

    2017-07-01

    In this paper, we present extensive numerical simulations of an excitable medium to study the long-term dynamics of knotted vortex strings for all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a field theory approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing the length of the knot and discuss the implications beyond torus knots. We also show that there is not a unique attractor within a given knot topology.

  4. Pion nucleus scattering lengths

    International Nuclear Information System (INIS)

    Huang, W.T.; Levinson, C.A.; Banerjee, M.K.

    1971-09-01

    Soft pion theory and the Fubini-Furlan mass dispersion relations have been used to analyze the pion nucleon scattering lengths and obtain a value for the sigma commutator term. With this value and using the same principles, scattering lengths have been predicted for nuclei with mass number ranging from 6 to 23. Agreement with experiment is very good. For those who believe in the Gell-Mann-Levy sigma model, the evaluation of the commutator yields the value 0.26(m/sub σ//m/sub π/) 2 for the sigma nucleon coupling constant. The large dispersive corrections for the isosymmetric case implies that the basic idea behind many of the soft pion calculations, namely, slow variation of matrix elements from the soft pion limit to the physical pion mass, is not correct. 11 refs., 1 fig., 3 tabs

  5. Diffusion coefficient in photon diffusion theory

    NARCIS (Netherlands)

    Graaff, R; Ten Bosch, JJ

    2000-01-01

    The choice of the diffusion coefficient to be used in photon diffusion theory has been a subject of discussion in recent publications on tissue optics. We compared several diffusion coefficients with the apparent diffusion coefficient from the more fundamental transport theory, D-app. Application to

  6. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  7. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.

    2014-01-01

    As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...... on thermal comfort in the occupant zone. Another characteristic of this system is its lower pressure drop compared with conventional ventilation systems, which reduces the noise problem and, at the same time, the energy consumption of the fan can be reduced. This review is based on a number of experimental...... and numerical studies on diffuse ceiling ventilation. Performance in terms of thermal comfort, air quality, pressure drop as well as radiant cooling potential are examined. Finally, a discussion on the proper design of the suspended ceiling and plenum to achieve a uniform air distribution and surface...

  8. Diffused Religion and Prayer

    Directory of Open Access Journals (Sweden)

    Roberto Cipriani

    2011-06-01

    Full Text Available It is quite likely that the origins of prayer are to be found in ancient mourning and bereavement rites. Primeval ritual prayer was codified and handed down socially to become a deep-rooted feature of people’s cultural behavior, so much so, that it may surface again several years later, in the face of death, danger, need, even in the case of relapse from faith and religious practice. Modes of prayer depend on religious experience, on relations between personal prayer and political action, between prayer and forgiveness, and between prayer and approaches to religions. Various forms of prayer exist, from the covert-hidden to the overt-manifest kind. How can they be investigated? How can one, for instance, explore mental prayer? These issues regard the canon of diffused religion and, therefore, of diffused prayer.

  9. Length-weight and length-length relationships of freshwater wild ...

    African Journals Online (AJOL)

    Length-weight and length-length relationships of freshwater wild catfish Mystus bleekeri from Nala Daik, Sialkot, Pakistan. ... Linear regression analysis was used, first to compute the degree of relationship between length and weight and then among total (TL), standard (SL) and fork lengths (FL). LWR exhibited a highly ...

  10. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  11. Diffusion-limited mixing by incompressible flows

    Science.gov (United States)

    Miles, Christopher J.; Doering, Charles R.

    2018-05-01

    Incompressible flows can be effective mixers by appropriately advecting a passive tracer to produce small filamentation length scales. In addition, diffusion is generally perceived as beneficial to mixing due to its ability to homogenize a passive tracer. However we provide numerical evidence that, in cases where advection and diffusion are both actively present, diffusion may produce negative effects by limiting the mixing effectiveness of incompressible optimal flows. This limitation appears to be due to the presence of a limiting length scale given by a generalised Batchelor length (Batchelor 1959 J. Fluid Mech. 5 113–33). This length scale limitation may in turn affect long-term mixing rates. More specifically, we consider local-in-time flow optimisation under energy and enstrophy flow constraints with the objective of maximising the mixing rate. We observe that, for enstrophy-bounded optimal flows, the strength of diffusion may not impact the long-term mixing rate. For energy-constrained optimal flows, however, an increase in the strength of diffusion can decrease the mixing rate. We provide analytical lower bounds on mixing rates and length scales achievable under related constraints (point-wise bounded speed and rate-of-strain) by extending the work of Lin et al (2011 J. Fluid Mech. 675 465–76) and Poon (1996 Commun. PDE 21 521–39).

  12. Growth morphologies of crystal surfaces

    Science.gov (United States)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1991-03-01

    We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation and growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly with the mean free path in the vapor. However, the three-dimensional (3D) the systems show increased shape stability compared to corresponding 2D cases. Extrapolation of the model results to mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude agreement of the predicted critical size with experimental findings. The stability region for macroscopically smooth (faceted) surfaces in the parameter space of temperature and supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The atomic surface roughness increases with increase in growth temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be advantageously used at low temperatures and supersaturations, is insufficient to describe the growth dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing temperature or supersaturation. When the mean free path in the nutrient is comparable to the lattice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a growth spiral in its center region. At elevated

  13. Single Crystal Diffuse Neutron Scattering

    Directory of Open Access Journals (Sweden)

    Richard Welberry

    2018-01-01

    Full Text Available Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. In this paper, we compare three different instruments that have been used by us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.

  14. Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials

    Science.gov (United States)

    Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

    2014-05-06

    A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

  15. Permeability estimation from NMR diffusion measurements in reservoir rocks.

    Science.gov (United States)

    Balzarini, M; Brancolini, A; Gossenberg, P

    1998-01-01

    It is well known that in restricted geometries, such as in porous media, the apparent diffusion coefficient (D) of the fluid depends on the observation time. From the time dependence of D, interesting information can be derived to characterise geometrical features of the porous media that are relevant in oil industry applications. In particular, the permeability can be related to the surface-to-volume ratio (S/V), estimated from the short time behaviour of D(t), and to the connectivity of the pore space, which is probed by the long time behaviour of D(t). The stimulated spin-echo pulse sequence, with pulsed magnetic field gradients, has been used to measure the diffusion coefficients on various homogeneous and heterogeneous sandstone samples. It is shown that the petrophysical parameters obtained by our measurements are in good agreement with those yielded by conventional laboratory techniques (gas permeability and electrical conductivity). Although the diffusing time is limited by T1, eventually preventing an observation of the real asymptotic behaviour, and the surface-to-volume ratio measured by nuclear magnetic resonance is different from the value obtained by BET because of the different length scales probed, the measurement remains reliable and low-time consuming.

  16. Lifetime and Path Length of the Virtual Particle

    International Nuclear Information System (INIS)

    Lyuboshitz, V.L.; Lyuboshitz, V.V.

    2005-01-01

    The concepts of the lifetime and path length of a virtual particle are introduced. It is shown that, near the mass surface of the real particle, these quantities constitute a 4-vector. At very high energies, the virtual particle can propagate over considerable (even macroscopic) distances. The formulas for the lifetime and path length of an ultrarelativistic virtual electron in the process of bremsstrahlung in the Coulomb field of a nucleus are obtained. The lifetime and path length of the virtual photon at its conversion into an electron-positron pair are discussed. The connection between the path length of the virtual particle and the coherence length (formation length) is analyzed

  17. Short cervical length dilemma.

    Science.gov (United States)

    Suhag, Anju; Berghella, Vincenzo

    2015-06-01

    Preterm birth (PTB) is a leading cause of neonatal morbidity and mortality. With research efforts, the rate of PTB decreased to 11.4% in 2013. Transvaginal ultrasound (TVU) cervical length (CL) screening predicts PTB. In asymptomatic singletons without prior spontaneous PTB (sPTB), TVU CL screening should be done. If the cervix is 20 mm or less, vaginal progesterone is indicated. In asymptomatic singletons with prior sPTB, serial CL screening is indicated. In multiple gestations, routine cervical screening is not indicated. In symptomatic women with preterm labor, TVU CL screening and fetal fibronectin testing is recommended. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. discouraged by queue length

    Directory of Open Access Journals (Sweden)

    P. R. Parthasarathy

    2001-01-01

    Full Text Available The transient solution is obtained analytically using continued fractions for a state-dependent birth-death queue in which potential customers are discouraged by the queue length. This queueing system is then compared with the well-known infinite server queueing system which has the same steady state solution as the model under consideration, whereas their transient solutions are different. A natural measure of speed of convergence of the mean number in the system to its stationarity is also computed.

  19. Primary length standard adjustment

    Science.gov (United States)

    Ševčík, Robert; Guttenová, Jana

    2007-04-01

    This paper deals with problems and techniques connected with primary length standard adjusting, which includes disassembling of the device and by use of the secondary laser with collimated beam and diffraction laws successively reassembling of the laser. In the reassembling process the device was enhanced with substituting the thermal grease cooling of cold finger by copper socket cooler. This improved external cooling system enables more effective cooling of molecular iodine in the cell, which allows better pressure stability of iodine vapor and easier readjustment of the system.

  20. Measurements of cesium and strontium diffusion in biotite gneiss

    International Nuclear Information System (INIS)

    Skagius, K.; Neretnieks, I.

    1988-01-01

    A significant retardation of radionuclides transported by flowing water from an underground repository can be expected if the nuclides are able to diffuse into the water filled micropores in the rock. This diffusion into the pores will also increase the surface available to interactions between the nuclides in the ground water and the rock material, such as sorption. To calculate the retardation, it is necessary to know the sorption properties and the diffusivities in the rock matrix for the radionuclides. Diffusion experiments with cesium and strontium in biotite gneiss samples have been performed. Both the transport of strontium and cesium through rock samples and the concentration profiles of cesium and strontium inside rock samples have been determined. The result shows that diffusion of cesium and strontium occurs in the rock material. A diffusion model has been used to evaluate the diffusivity. Both pore diffusion and surface diffusion had to be included in the model to give good agreement with the experimental data. If surface diffusion is not included in the model, the effective pore diffusivity that gives the best fit to the experimental data is found to be higher than expected from earlier measurement of iodide diffusion in the same type of rock material. This indicates that the diffusion of cesium and strontium (sorbing components) in rock material is caused by both pore diffusion and surface diffusion acting in parallel

  1. Kurtosis as a diffuseness measure

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2016-01-01

    This study presents a kurtosis analysis of room impulse responses as a potential room diffuseness measure. In the early part of an impulse response, sound pressure samples do not constitute a Gaussian distribution due to the direct sound and strong reflections. Such deterministic reflections...... are extreme events, which prevent the pressure samples from being normally distributed, leading to a high kurtosis. As the reflections are sparser and stronger, the sound field becomes less diffuse and the kurtosis systematically increases, indicating that it can be used as a diffuseness measure. The kurtosis...... converges to zero, as the reflection overlap becomes heavier, which is an important condition for a perfect diffuse field. Two rooms are analyzed. A small rectangular room shows that a non-uniform surface absorption distribution tends to increase the kurtosis significantly. A full scale reverberation...

  2. Optimization of the irradiations global, direct and diffuse in function of slop angle of the surface; Otimizacao das irradiacoes global, direta e difusa em funcao do angulo de inclinacao da superficie

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Adilson P.; Escobedo, Joao F. [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)], E-mail: pachecopgid@yahoo.com.br

    2010-07-01

    This study evaluated the monthly and annual total radiation global, direct and diffuse on horizontal surfaces and tilted surfaces to 12.85 deg (|L|-10 deg), 22.85 deg (|L|) and 32.85 deg (|L|+10 deg), with the north face, in Botucatu, SP. The measures occurred in the following dates: 04/1998 to 07/2001 at 22.85 deg; 08/2001 to 02/2003 at 12.85 deg, and 03/2003 to 12/2007 in 32.85. In all periods occurred concurrent measures in the horizontal plane (reference). The total annual global radiation equal to 6500.87; 7044.21; 7193.24 and 6854.99 MJ m{sup -2}, for horizontal surfaces, 12.85 deg, 22.85 deg e 32.85 deg. The change of the angles of inclination throughout the year enabled gains of 324.92 MJ m{sup -2} (4.74%) in global radiation in relation to 22,85 deg, distributed as follows: I) horizontal: December, January and February; II) of 12.85: March and October; III) of 22.85: April, May, September and November, IV) of 32.85: June-August. In 22.85 were recorded the annual radiation directly (4367.40 MJ m{sup -2}), exceeding 12.85 deg, 32.85 deg and horizontal, 72.40, 284.67 and 718.03 MJ m{sup -2}, however, were achieved gains 16.82% compared to 22.85 deg. For diffuse radiation, annual earnings totaled 226.57 MJ m{sup -2} (compared with 22.85 deg), with differences of less than 103.00 MJ m{sup -2} between 12.85 deg, 22.85 deg and 32.85 deg. (author)

  3. Cu-Cu diffusion bonding enhancement at low temperature by surface passivation using self-assembled monolayer of alkane-thiol

    Science.gov (United States)

    Tan, C. S.; Lim, D. F.; Singh, S. G.; Goulet, S. K.; Bergkvist, M.

    2009-11-01

    Self-assembled monolayer (SAM) of 1-hexanethiol is applied on copper (Cu) surface to retard surface oxidation during exposure in the ambient. This SAM layer can be desorbed effectively with an annealing step in inert N2 ambient to provide a clean Cu surface. Using this passivation method with SAM, wafers covered with thin Cu layer are passivated, stored, desorbed, and bonded at 250 °C. The bonded Cu layer presents clear evidence of substantial interdiffusion and grain growth despite prolonged exposure in the ambient. This method of passivation is proven to be effective and can be further optimized to enable high quality Cu-Cu direct bonding at low temperature for application in three-dimensional integration.

  4. Diffusion archeology for diffusion progression history reconstruction.

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.

  5. Modeling diffusion of adsorbed polymer with explicit solvent.

    Science.gov (United States)

    Desai, Tapan G; Keblinski, Pawel; Kumar, Sanat K; Granick, Steve

    2007-05-25

    Computer simulations of a polymer chain of length N strongly adsorbed at the solid-liquid interface in the presence of explicit solvent are used to delineate the factors affecting the N dependence of the polymer lateral diffusion coefficient, D(||). We find that surface roughness has a large influence, and D(||) scales as D(||) approximately N(-x), with x approximately 3/4 and x approximately 1 for ideal smooth and corrugated surfaces, respectively. The first result is consistent with the hydrodynamics of a "particle" of radius of gyration R(G) approximately N(nu) (nu=0.75) translating parallel to a planar interface, while the second implies that the friction of the adsorbed chains dominates. These results are discussed in the context of recent measurements.

  6. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes

    Science.gov (United States)

    Li, Qingqing; Li, Yungui; Zhu, Lizhong; Xing, Baoshan; Chen, Baoliang

    2017-04-01

    The uptake of organic chemicals by plants is considered of great significance as it impacts their environmental transport and fate and threatens crop growth and food safety. Herein, the dependence of the uptake, penetration, and distribution of sixteen polycyclic aromatic hydrocarbons (PAHs) on the morphology and micro-structures of cuticular waxes on leaf surfaces was investigated. Plant surface morphologies and wax micro-structures were examined by scanning emission microscopy, and hydrophobicities of plant surfaces were monitored through contact angle measurements. PAHs in the cuticles and inner tissues were distinguished by sequential extraction, and the cuticle was verified to be the dominant reservoir for the accumulation of lipophilic pollutants. The interspecies differences in PAH concentrations cannot be explained by normalizing them to the plant lipid content. PAHs in the inner tissues became concentrated with the increase of tissue lipid content, while a generally negative correlation between the PAH concentration in cuticles and the epicuticular wax content was found. PAHs on the adaxial and abaxial sides of a leaf were differentiated for the first time, and the divergence between these two sides can be ascribed to the variations in surface morphologies. The role of leaf lipids was redefined and differentiated.

  7. Quantifying brain microstructure with diffusion MRI

    DEFF Research Database (Denmark)

    Novikov, Dmitry S.; Jespersen, Sune N.; Kiselev, Valerij G.

    2016-01-01

    We review, systematize and discuss models of diffusion in neuronal tissue, by putting them into an overarching physical context of coarse-graining over an increasing diffusion length scale. From this perspective, we view research on quantifying brain microstructure as occurring along the three ma...... on the future research directions which can open exciting possibilities for developing markers of pathology and development based on methods of studying mesoscopic transport in disordered systems....

  8. Kidney Length in Normal Korean Children

    International Nuclear Information System (INIS)

    Kim, In One; Cheon, Jung Eun; Lee, Young Seok; Lee, Sun Wha; Kim, Ok Hwa; Kim, Ji Hye; Kim, Hong Dae; Sim, Jung Suk

    2010-01-01

    Renal length offers important information to detect or follow-up various renal diseases. The purpose of this study was to determine the kidney length of normal Korean children in relation to age, height, weight, body surface area (BSA), and body mass index (BMI). Children between 1 month and 15 years of age without urological abnormality were recruited. Children below 3rd percentile and over 97th percentile for height or weight were excluded. Both renal lengths were measured in the prone position three times and then averaged by experienced radiologists. The mean length and standard deviation for each age group was obtained, and regression equation was calculated between renal length and age, weight, height, BSA, and BMI, respectively. Renal length was measured in 550 children. Renal length grows rapidly until 24 month, while the growth rate is reduced thereafter. The regression equation for age is: renal length (mm) = 45.953 + 1.064 x age (month, ≤ 24 months) (R2 = 0.720) or 62.173 + 0.203 x age (months, > 24 months) (R2 = 0.711). The regression equation for height is: renal length (mm) = 24.494 + 0.457 x height (cm) (R2 = 0.894). The regression equation for weight is: renal length (mm) = 38.342 + 2.117 x weight (kg, ≤18 kg) (R2 = 0.852) or 64.498 + 0.646 x weight (kg, > 18 kg) (R2 = 0.651). The regression equation for BSA is: renal length (mm) = 31.622 + 61.363 x BSA (m2, ≤ 0.7) (R2 = 0.857) or 52.717 + 29.959 x BSA (m2, > 0.7) (R2 = 0.715). The regression equation for BMI is: renal length (mm) = 44.474 + 1.163 x BMI (R2 = 0.079). This study provides data on the normal renal length and its association with age, weight, height, BSA and BMI. The results of this study will guide the detection and follow-up of renal diseases in Korean children

  9. Radon progeny distribution in cylindrical diffusion chambers

    International Nuclear Information System (INIS)

    Pressyanov, Dobromir S.

    2008-01-01

    An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.

  10. Characterizing unsaturated diffusion in porous tuff gravel

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qinhong; Kneafsey, Timothy J.; Roberts, Jeffery J.; Tomutsa, Liviu; Wang, Joseph, S.Y.

    2003-11-12

    Evaluation of solute diffusion in unsaturated porous gravel is very important for investigations of contaminant transport and remediation, risk assessment, and waste disposal (for example, the potential high-level nuclear waste repository at Yucca Mountain, Nevada). For a porous aggregate medium such as granular tuff, the total water content is comprised of surface water and interior water. The surface water component (water film around grains and pendular water between the grain contacts) could serve as a predominant diffusion pathway. To investigate the extent to which surface water films and contact points affect solute diffusion in unsaturated gravel, we examined the configuration of water using x-ray computed tomography in partially saturated gravel, and made quantitative measurements of diffusion at multiple water contents using two different techniques. In the first, diffusion coefficients of potassium chloride in 2-4 mm granular tuff at multiple water contents were calculated from electrical conductivity measurements using the Nernst-Einstein equation. In the second, we used laser ablation with inductively coupled plasma-mass spectrometry to perform micro-scale mapping, allowing the measurement of diffusion coefficients for a mixture of chemical tracers for tuff cubes and tetrahedrons having two contact geometries (cube-cube and cube-tetrahedron). The x-ray computed tomography images show limited contact between grains, and this could hinder the pathways for diffusive transport. Experimental results show the critical role of surface water in controlling transport pathways and hence the magnitude of diffusion. Even with a bulk volumetric water content of 1.5%, the measured solute diffusion coefficient is as low as 1.5 x 10{sup -14} m{sup 2}/s for tuff gravel. Currently used diffusion models relating diffusion coefficients to total volumetric water content inadequately describe unsaturated diffusion behavior in porous gravel at very low water contents.

  11. A Finite Difference Scheme for Double-Diffusive Unsteady Free Convection from a Curved Surface to a Saturated Porous Medium with a Non-Newtonian Fluid

    KAUST Repository

    El-Amin, Mohamed

    2011-05-14

    In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.

  12. Thermal-diffusion and MHD for Soret and Dufour's effects on Hiemenz flow and mass transfer of fluid flow through porous medium onto a stretching surface

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahman, Gamal M., E-mail: gamalm60@yahoo.co [Department of Mathematics, Faculty of Science, Benha University, 13518 Benha (Egypt)

    2010-06-01

    In this paper, the thermal-diffusion and magnetic field effects on a stagnation point flowing over a flat stretching surface have been obtained and studied numerically with the variation of the viscosity under the Soret and Dufour's effects. The governing continuity, momentum, energy and concentration equations are converted into a system of non-linear ordinary differential equations by means of similarity transformation. The resulting system of coupled non-linear ordinary differential equations is solved numerically. Numerical results were presented for velocity, temperature and concentration profiles for different parameters of the problem as radiation parameter, magnetic field parameter, porous medium parameter, endothermic chemical reaction, heat source parameter, stretching parameter, the Soret and Dufour number and other. Also the effects of the pertinent parameters on the skin friction, the rate of heat and mass transfer are obtained and discussed numerically and illustrated graphically.

  13. Effect of system variables involved in packed column SFC of nevirapine as model analyte using response surface methodology: application to retention thermodynamics, solute transfer kinetic study and binary diffusion coefficient determination.

    Science.gov (United States)

    Kaul, Neerej; Agrawal, Himani; Paradkar, A R; Mahadik, K R

    2005-08-31

    A multifactor optimization technique is successfully applied to study the effect of simultaneously varying the system variables on feasibility of nevirapine analysis by packed column supercritical fluid chromatography (PC-SFC). The optimal conditions were determined with the aid of the response surface methodology using 3(3) factorial designs. The method is based on methanol-modified carbon dioxide as the mobile phase at flow rate of 3.0 ml/min with elution through a JASCO Finepak SIL-5, [C18 (5-micron, 25 cm x 4.6 mm, i.d.)] column using photodiode array detection. The method has been successfully used to analyze commercial solid dosage form to assess the chromatographic performance of SFC system. The present work briefs the thermodynamic applications of PC-SFC with an emphasis on the results of nevirapine. The foremost of such applications is the determination of solute diffusion coefficient in supercritical mobile phase by Taylor-Aris peak broadening technique.

  14. Excess Entropy and Diffusivity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.

  15. A Monte Carlo study of radon detection in cylindrical diffusion chambers

    Energy Technology Data Exchange (ETDEWEB)

    Rickards, Jorge, E-mail: rickards@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico); Golzarri, Jose-Ignacio, E-mail: golzarri@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico); Espinosa, Guillermo, E-mail: espinosa@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, Delegacion Coyoacan, 04520 Mexico, D.F. (Mexico)

    2010-05-15

    The functioning of radon diffusion chambers was studied using the Monte Carlo code RAMMX developed here. The alpha particles from radon are assumed randomly produced in the volume of the cylinder, and those from the progeny are assumed to originate randomly at the cylindrical surface. The energy spectrum, the distribution of incident angles, and the distribution of path lengths of the alpha particles on the detector were obtained. These quantities vary depending on input parameters such as initial alpha particle energy, radius and depth of the diffusion chamber, detector size and atmospheric pressure. The calculated energy spectrum for both {sup 222}Rn and {sup 220}Rn was compared with experiment, permitting the identification of each peak and its origin, and a better understanding of radon monitoring. Three aspects not considered in previous calculations are progeny alphas coming from surfaces of the monitor, taking into account the atmospheric pressure, and including the isotope {sup 220}Rn.

  16. Multicomponent diffusivities from the free volume theory

    NARCIS (Netherlands)

    Wesselingh, J.A; Bollen, A.M

    In this paper the free volume theory of diffusion is extended to multicomponent mixtures. The free volume is taken to be accessible for any component according to its surface. fraction. The resulting equations predict multicomponent (Maxwell-Stefan) diffusivities in simple liquid mixtures from pure

  17. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    This document deals with correlation length of electrostatic turbulence. First, the model of drift waves turbulence is presented. Then, the radial correlation length is determined analytically with toroidal coupling and non linear coupling. (TEC). 5 refs

  18. Ion diffusion in compacted bentonite

    International Nuclear Information System (INIS)

    Lehikoinen, J.

    1999-03-01

    In the study, a two-dimensional molecular-level diffusion model, based on a modified form of the Gouy-Chapman (GC) theory of the electrical double layers, for hydrated ionic species in compacted bentonite was developed. The modifications to the GC theory, which forms the very kernel of the diffusion model, stem from various non-conventional features: ionic hydration, dielectric saturation, finite ion-sizes and specific adsorption. The principal objectives of the study were met. With the aid of the consistent diffusion model, it is a relatively simple matter to explain the experimentally observed macroscopic exclusion for anions as well as the postulated, but greatly controversial, surface diffusion for cations. From purely theoretical grounds, it was possible to show that the apparent diffusivities of cations, anions and neutral molecules (i) do not exhibit order-or-magnitude differences, and (ii) are practically independent of the solution ionic strength used and, consequently, of the distribution coefficient, K d , unless they experience specific binding onto the substrate surface. It was also of interest to investigate the equilibrium anionic concentration distribution in the pore geometry of the GMM model as a function of the solution ionic strength, and to briefly speculate its consequences to diffusion. An explicit account of the filter-plate effect was taken by developing a computerised macroscopic diffusion model, which is based upon the very robust and efficient Laplace Transform Finite-Difference technique. Finally, the inherent limitations as well as the potential fields of applications of the models were addressed. (orig.)

  19. Length and area

    CERN Document Server

    Rada, Tibor

    1948-01-01

    Radó's colloquium is a systematic treatment of Lebesgue theory, with an emphasis on the work of Morrey and of Radó and his students, especially in two dimensions. At the time, there were important current problems surrounding Lebesgue's theory for parameterized and unparameterized surfaces, which the book addresses. The exposition begins with reviews of Lebesgue integration and relevant topics in topology, including Fréchet equivalence, the approximation of monotone maps by homeomorphisms, Peano spaces, and a discussion of the topological index of maps into the plane. After a development of fu

  20. Correlation lengths of electrostatic turbulence

    International Nuclear Information System (INIS)

    Guiziou, L.; Garbet, X.

    1995-01-01

    In this paper, the radial correlation length of an electrostatic drift wave turbulence is analytically determined in various regimes. The analysis relies on the calculation of a range of mode non linear interaction, which is an instantaneous correlation length. The link with the usual correlation length has not been investigated yet. (TEC). 5 refs

  1. Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: A cross disciplinary approach to assessing diffuse pollution to surface waters

    International Nuclear Information System (INIS)

    Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Koehler, Stephan; Jones, Kevin C.; Tysklind, Mats; Wiberg, Karin

    2010-01-01

    The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day -1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons. - The fate of hydrophobic organic contaminants in a boreal forest catchment is connected to the flux of dissolved organic carbon and seasonal deposition.

  2. Identification of a time-varying point source in a system of two coupled linear diffusion-advection- reaction equations: application to surface water pollution

    International Nuclear Information System (INIS)

    Hamdi, Adel

    2009-01-01

    This paper deals with the identification of a point source (localization of its position and recovering the history of its time-varying intensity function) that constitutes the right-hand side of the first equation in a system of two coupled 1D linear transport equations. Assuming that the source intensity function vanishes before reaching the final control time, we prove the identifiability of the sought point source from recording the state relative to the second coupled transport equation at two observation points framing the source region. Note that at least one of the two observation points should be strategic. We establish an identification method that uses these records to identify the source position as the root of a continuous and strictly monotonic function. Whereas the source intensity function is recovered using a recursive formula without any need of an iterative process. Some numerical experiments on a variant of the surface water pollution BOD–OD coupled model are presented

  3. High performance hydraulic design techniques of mixed-flow pump impeller and diffuser

    International Nuclear Information System (INIS)

    Kim, Sung; Lee, Kyoung Yong; Kim, Joon Hyung; Kim, Jin Hyuk; Jung, Uk Hee; Choi, Young Seok

    2015-01-01

    In this paper, we describe a numerical study about the performance improvement of a mixed-flow pump by optimizing the design of the impeller and diffuser using a commercial computational fluid dynamics (CFD) code and design-of-experiments (DOE). The design variables of impeller and diffuser in the vane plane development were defined with a fixed meridional plane. The design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffuser. The vane plane development was controlled using the blade-angle in a fixed meridional plane. The blade shape of the impeller and diffuser were designed using a traditional method in which the inlet and exit angles are connected smoothly. First, the impeller optimum design was performed with impeller design variables. The diffuser optimum design was performed with diffuser design variables while the optimally designed impeller shape was fixed. The importance of the impeller and diffuser design variables was analyzed using 2 k factorial designs, and the design optimization of the impeller and diffuser design variables was determined using the response surface method (RSM). The objective functions were defined as the total head (Ht) and the total efficiency (ηt) at the design flow rate. The optimally designed model was verified using numerical analysis, and the numerical analysis results for both the optimum model and the reference model were compared to determine the reasons for the improved pump performance. A pump performance test was carried out for the optimum model, and its reliability was proved by a comparative analysis of the results of the numerical analysis and an experiment using the optimum model.

  4. Simulation and Optimization of Diffuser/Nozzle Micropump

    Directory of Open Access Journals (Sweden)

    Chandika S.

    2011-12-01

    Full Text Available Design and analysis of diffuser/nozzle micropump using ANSYS-FLUENT is attempted for fuel delivery in automobile. To enhance the performance of the micropump a historic dimensional design such as the diffuser length, the diffuser angle, and the throat/neck width of diffuser/nozzle elements are obtained from the simulation results. The fluid velocity of the diffuer/nozzle and the pressure loss rates are calculated. The simulation result shows that there is an optimal dimension of the diffuser/nozzle to obtain a large flow rate and to minimize the velocity and the pressure losses.

  5. Diffusion in solids

    International Nuclear Information System (INIS)

    Tiwari, G.P.; Kale, G.B.; Patil, R.V.

    1999-01-01

    The article presents a brief survey of process of diffusion in solids. It is emphasised that the essence of diffusion is the mass transfer through the atomic jumps. To begin with formal equations for diffusion coefficient are presented. This is followed by discussions on mechanisms of diffusion. Except for solutes which form interstitial solid solution, diffusion in majority of cases is mediated through exchange of sites between an atom and its neighbouring vacancy. Various vacancy parameters such as activation volume, correlation factor, mass effect etc are discussed and their role in establishing the mode of diffusion is delineated. The contribution of dislocations and grain boundaries in diffusion process is brought out. The experimental determination of different types of diffusion coefficients are described. Finally, the pervasive nature of diffusion process in number of commercial processes is outlined to show the importance of diffusion studies in materials science and technology. (author)

  6. Physical bases for diffusion welding processes optimization

    International Nuclear Information System (INIS)

    Bulygina, S.M.; Berber, N.N.; Mukhambetov, D.G.

    1999-01-01

    One of wide-spread method of different materials joint is diffusion welding. It has being brought off at the expense of mutual diffusion of atoms of contacting surfaces under long-duration curing at its heating and compression. Welding regime in dependence from properties of welding details is defining of three parameters: temperature, pressure, time. Problem of diffusion welding optimization concludes in determination less values of these parameters, complying with requirements for quality of welded joint. In the work experiments on diffusion welding for calculated temperature and for given surface's roughness were carried out. Tests conduct on samples of iron and iron-nickel alloy with size 1·1·1 cm 3 . Optimal regime of diffusion welding of examined samples in vacuum is defined. It includes compression of welding samples, heating, isothermal holding at temperature 650 deg C during 0.5 h and affords the required homogeneity of joint

  7. Nuclear diffuseness as a degree of freedom

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1998-01-01

    The response of the nuclear energy to changes in neutron and proton surface diffusenesses is investigated using the Thomas-Fermi model. Algebraic expressions are provided for the energy cost of changing the two diffusenesses away from their equilibrium values. This will make it possible to generalize the macroscopic-microscopic calculations of nuclear masses and deformation energies by the inclusion of the neutron and proton diffusenesses as degrees of freedom (to be varied along with the shape degrees of freedom). One result, which is suggested by the relatively low cost in macroscopic energy of increasing the diffuseness of a heavy nucleus by 10% (about 4 MeV), is that superheavy nuclei near Z=126, N=184 may have a fair chance of becoming stabilized by shell effects. An appendix introduces an improved measure of surface diffuseness, with certain advantages over the conventional Suessmann width b. copyright 1998 The American Physical Society

  8. Nuclear diffuseness as a degree of freedom

    Science.gov (United States)

    Myers, W. D.; ŚwiaŢecki, W. J.

    1998-12-01

    The response of the nuclear energy to changes in neutron and proton surface diffusenesses is investigated using the Thomas-Fermi model. Algebraic expressions are provided for the energy cost of changing the two diffusenesses away from their equilibrium values. This will make it possible to generalize the macroscopic-microscopic calculations of nuclear masses and deformation energies by the inclusion of the neutron and proton diffusenesses as degrees of freedom (to be varied along with the shape degrees of freedom). One result, which is suggested by the relatively low cost in macroscopic energy of increasing the diffuseness of a heavy nucleus by 10% (about 4 MeV), is that superheavy nuclei near Z=126, N=184 may have a fair chance of becoming stabilized by shell effects. An appendix introduces an improved measure of surface diffuseness, with certain advantages over the conventional Süssmann width b.

  9. Classical diffusion: theory and simulation codes

    International Nuclear Information System (INIS)

    Grad, H.; Hu, P.N.

    1977-01-01

    The nonstandard mathematical and numerical problems which arise in classical diffusion theory upon reinsertion of the time derivative of the magnetic field (curl E not equal to 0) are discussed. The extension of classical diffusion theory to curl E not equal to 0 requires solution of a global boundary value problem before the surface averaged flux can be obtained. It also introduces coupling between plamsa diffusion and magnetic flux diffusion (the shin effect). The most effective method for treating Grad--Hogan classical diffusion was to introduce independent and dependent variables so as to eliminate the convection velocity (it can be computed afterwards). This procedure reduced the nonstandard, two dimensional problem to one with computation time only slightly more than for a one-dimensional diffusion problem. 23 references, 1 figure

  10. Diffusion archeology for diffusion progression history reconstruction

    OpenAIRE

    Sefer, Emre; Kingsford, Carl

    2015-01-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring — perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial d...

  11. Apparatus for diffusion separation

    International Nuclear Information System (INIS)

    Nierenberg, W.A.

    1976-01-01

    A diffuser separator apparatus is described which comprises a plurality of flow channels in a single stage. Each of said channels has an inlet port and an outlet port and a constant cross sectional area between said ports. At least a portion of the defining surface of each of said channels is a diffusion separation membrane, and each of said channels is a different cross sectional area. Means are provided for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series. Also provided are a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area

  12. Nonlocal diffusion and applications

    CERN Document Server

    Bucur, Claudia

    2016-01-01

    Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.

  13. Surface-Assisted Dynamic Search Processes.

    Science.gov (United States)

    Shin, Jaeoh; Kolomeisky, Anatoly B

    2018-03-01

    Many chemical and biological systems exhibit intermittent search phenomena when participating particles alternate between dynamic regimes with different dimensionalities. Here we investigate theoretically a dynamic search process of finding a small target on a two-dimensional surface starting from a bulk solution, which is an example of such an intermittent search process. Both continuum and discrete-state stochastic descriptions are developed. It is found that depending on the scanning length λ, which describes the area visited by the reacting molecule during one search cycle, the system can exhibit three different search regimes: (i) For small λ values, the reactant finds the target mostly via three-dimensional bulk diffusion; (ii) for large λ values, the reactant molecule associates to the target mostly via surface diffusion; and (iii) for intermediate λ values, the reactant reaches the target via a combination of three-dimensional and two-dimensional search cycles. Our analysis also shows that the mean search times have different scalings as a function of the size of the surface segment depending on the nature of the dynamic search regime. Search dynamics are also sensitive to the position of the target for large scanning lengths. In addition, it is argued that the continuum description underestimates mean search times and does not always correctly describe the most optimal conditions for the surface-assisted dynamic processes. The importance of our findings for real natural systems is discussed.

  14. On copper diffusion in silicon measured by glow discharge mass spectrometry.

    Science.gov (United States)

    Modanese, Chiara; Gaspar, Guilherme; Arnberg, Lars; Di Sabatino, Marisa

    2014-11-01

    Copper contamination occurs frequently in silicon for photovoltaic applications due to its very fast diffusion coupled with a low solid solubility, especially at room temperature. The combination of these properties exerts a challenge on the direct analysis of Cu bulk concentration in Si by sputtering techniques like glow discharge mass spectrometry (GDMS). This work aims at addressing the challenges in quantitative analysis of fast diffusing elements in Si matrix by GDMS. N-type, monocrystalline (Czochralski) silicon samples were intentionally contaminated with Cu after solidification and consequently annealed at 900 °C to ensure a homogeneous distribution of Cu in the bulk. The samples were quenched after annealing to control the extent of the diffusion to the surface prior to the GDMS analyses, which were carried out at different time intervals from within few minutes after cooling onward. The Cu profiles were measured by high-resolution GDMS operating in a continuous direct current mode, where the integration step length was set to ∼0.5 μm over a total sputtered depth of 8-30 μm. The temperature of the samples during the GDMS analyses was also measured in order to evaluate the diffusion. The Cu contamination of n-type Si samples was observed to be highly material dependent. The practical impact of Cu out-diffusion on the calculation of the relative sensitivity factor (RSF) of Cu in Si is discussed.

  15. Label-free monitoring of diffusion in microfluidics

    DEFF Research Database (Denmark)

    Sørensen, Kristian Tølbøl; Kristensen, Anders

    2017-01-01

    Label-free, real-time detection of concentration gradients is demonstrated in a microfluidic H-filter, using an integrated photonic crystal slab sensor to monitor sample refractive index with spatial resolution. The recorded diffusion profiles reveal root-mean-square diffusion lengths for non...

  16. Spin drift and spin diffusion currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au

    2008-09-15

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  17. Spin drift and spin diffusion currents in semiconductors

    Directory of Open Access Journals (Sweden)

    M Idrish Miah

    2008-01-01

    Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  18. Spin drift and spin diffusion currents in semiconductors

    International Nuclear Information System (INIS)

    Idrish Miah, M

    2008-01-01

    On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.

  19. Spin-diffusions and diffusive molecular dynamics

    Science.gov (United States)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  20. Microfabricated diffusion source

    Science.gov (United States)

    Oborny, Michael C [Albuquerque, NM; Frye-Mason, Gregory C [Cedar Crest, NM; Manginell, Ronald P [Albuquerque, NM

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  1. A multi-resolution analysis of lidar-DTMs to identify geomorphic processes from characteristic topographic length scales

    Science.gov (United States)

    Sangireddy, H.; Passalacqua, P.; Stark, C. P.

    2013-12-01

    processes. Also, we explore the variability in hillslope length scales as a function of hillslope diffusivity coefficients and critical shear stress in natural landscapes and show that we can infer signatures of dominant geomorphic processes by analyzing characteristic topographic length scales present in topography. References: Beven, K. and Kirkby, M. J.: A physically based variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43-69, 1979 Howard, A. D. (1994). A detachment-limited model of drainage basin evolution.Water resources research, 30(7), 2261-2285. Passalacqua, P., Do Trung, T., Foufoula Georgiou, E., Sapiro, G., & Dietrich, W. E. (2010). A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophysical. Research: Earth Surface (2003-2012), 115(F1). Sangireddy, H., Passalacqua, P., Stark, C.P.(2012). Multi-resolution estimation of lidar-DTM surface flow metrics to identify characteristic topographic length scales, EP13C-0859: AGU Fall meeting 2012. Stark, C. P., & Stark, G. J. (2001). A channelization model of landscape evolution. American Journal of Science, 301(4-5), 486-512. Tucker, G. E., Catani, F., Rinaldo, A., & Bras, R. L. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3), 187-202.

  2. Radon detection in conical diffusion chambers: Monte Carlo calculations and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Rickards, J.; Golzarri, J. I.; Espinosa, G., E-mail: espinosa@fisica.unam.mx [Instituto de Física, Universidad Nacional Autónoma de México Circuito de la Investigación Científica, Ciudad Universitaria México, D.F. 04520, México (Mexico); Vázquez-López, C. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN Ave. IPN 2508, Col. San Pedro Zacatenco, México 07360, DF, México (Mexico)

    2015-07-23

    The operation of radon detection diffusion chambers of truncated conical shape was studied using Monte Carlo calculations. The efficiency was studied for alpha particles generated randomly in the volume of the chamber, and progeny generated randomly on the interior surface, which reach track detectors placed in different positions within the chamber. Incidence angular distributions, incidence energy spectra and path length distributions are calculated. Cases studied include different positions of the detector within the chamber, varying atmospheric pressure, and introducing a cutoff incidence angle and energy.

  3. Moisture diffusivity in structure of random fractal fiber bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Fanglong, E-mail: zhufanglong_168@163.com [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); The Chinese People' s Armed Police Forces Academy, Langfan City (China); Zhou, Yu; Feng, Qianqian [College of Textile, Zhongyuan University of Technology, Zhengzhou City (China); Xia, Dehong [School of Mechanical Engineering, University of Science and Technology, Beijing (China)

    2013-11-08

    A theoretical expression related to effective moisture diffusivity to random fiber bed is derived by using fractal theory and considering both parallel and perpendicular channels to diffusion flow direction. In this Letter, macroporous structure of hydrophobic nonwoven material is investigated, and Knudsen diffusion and surface diffusion are neglected. The effective moisture diffusivity predicted by the present fractal model are compared with water vapor transfer rate (WVTR) experiment data and calculated values obtained from other theoretical models. This verifies the validity of the present fractal diffusivity of fibrous structural beds.

  4. Evaluation of phenomena affecting diffusion of cations in compacted bentonite

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.

    1995-04-01

    In a number of diffusion studies, contradictions between the apparent diffusivities of cations and their distribution coefficients in bentonite have been found. Two principal reasons have been offered as explanations for this discrepancy; diffusion of the sorbed cations, often called surface diffusion, and the decrease of sorption in compacted clay compared to a sorption value obtained from a batch experiment. In the study the information available from the literature on sorption-diffusion mechanisms of cations in bentonite has been compiled and re-interpreted in order to improve the understanding of the diffusion process. (103 refs., 23 figs., 8 tabs.)

  5. Moisture diffusivity in structure of random fractal fiber bed

    International Nuclear Information System (INIS)

    Zhu, Fanglong; Zhou, Yu; Feng, Qianqian; Xia, Dehong

    2013-01-01

    A theoretical expression related to effective moisture diffusivity to random fiber bed is derived by using fractal theory and considering both parallel and perpendicular channels to diffusion flow direction. In this Letter, macroporous structure of hydrophobic nonwoven material is investigated, and Knudsen diffusion and surface diffusion are neglected. The effective moisture diffusivity predicted by the present fractal model are compared with water vapor transfer rate (WVTR) experiment data and calculated values obtained from other theoretical models. This verifies the validity of the present fractal diffusivity of fibrous structural beds.

  6. Success and Failure Rates of 1,344 6- to 9-mm-Length Rough-Surface Implants Placed at the Time of Transalveolar Sinus Elevations, Restored with Single Crowns, and Followed for 60 to 229 Months in Function.

    Science.gov (United States)

    Fugazzotto, Paul A

    To assess the success and stability of 6-, 7-, 8-, and 9-mm-long, 6.5-mm-wide-neck tissue-level implants placed at the time of transalveolar sinus augmentation therapy, utilizing a trephine and osteotome approach, which were restored with single crowns. In total, 1,344 implants were placed by the author, varying in length from 6 to 9 mm, with parallel-wall 4.8-mm-diameter implant bodies and 6.5-mm-diameter implant necks. The implants were restored with single abutments and crowns by a variety of practitioners. They were followed for 60 to 229 months in function, with a mean time of 121.1 months in function. Implant success was evaluated by the author utilizing a combination of the Albrektsson et al criteria, and buccal and palatal/lingual bone sounding under anesthesia. The overall cumulative success rate was 98.8%. One hundred ninety 6-mm-long implants demonstrated a cumulative success rate of 97.5% at a mean time of 109.2 months in function. Eleven 7-mm-long implants demonstrated a cumulative success rate of 100% at a mean time of 218.5 months in function. One thousand ninety-four 8-mm-long implants demonstrated a cumulative success rate of 98.9% at a mean time of 112.3 months in function. Forty-nine 9-mm-long implants demonstrated a cumulative success rate of 100% at a mean time of 212.1 months in function. Implants of 6 to 9 mm in length, placed at the time of trephine and osteotome transalveolar sinus elevation procedures and restored with abutments and single crowns, demonstrate a high level of long-term clinical success, assuming specific comprehensive treatment criteria are met.

  7. SNAP - a three dimensional neutron diffusion code

    International Nuclear Information System (INIS)

    McCallien, C.W.J.

    1993-02-01

    This report describes a one- two- three-dimensional multi-group diffusion code, SNAP, which is primarily intended for neutron diffusion calculations but can also carry out gamma calculations if the diffusion approximation is accurate enough. It is suitable for fast and thermal reactor core calculations and for shield calculations. SNAP can solve the multi-group neutron diffusion equations using finite difference methods. The one-dimensional slab, cylindrical and spherical geometries and the two-dimensional case are all treated as simple special cases of three-dimensional geometries. Numerous reflective and periodic symmetry options are available and may be used to reduce the number of mesh points necessary to represent the system. Extrapolation lengths can be specified at internal and external boundaries. (Author)

  8. Simple simulation of diffusion bridges with application to likelihood inference for diffusions

    DEFF Research Database (Denmark)

    Bladt, Mogens; Sørensen, Michael

    With a view to likelihood inference for discretely observed diffusion type models, we propose a simple method of simulating approximations to diffusion bridges. The method is applicable to all one-dimensional diffusion processes and has the advantage that simple simulation methods like the Euler...... scheme can be applied to bridge simulation. Another advantage over other bridge simulation methods is that the proposed method works well when the diffusion bridge is defined in a long interval because the computational complexity of the method is linear in the length of the interval. In a simulation...... study we investigate the accuracy and efficiency of the new method and compare it to exact simulation methods. In the study the method provides a very good approximation to the distribution of a diffusion bridge for bridges that are likely to occur in applications to likelihood inference. To illustrate...

  9. 7 Length-weight relationship

    African Journals Online (AJOL)

    Administrator

    Length-weight measurements were taken from well-preserved fish specimens from which stomachs were extracted for the analysis of the food contents, using frequency of occurrence, numerical and gravimetric methods, as well as index of relative importance. The length-frequency analysis showed a size distribution with a ...

  10. Comparison of fiber length analyzers

    Science.gov (United States)

    Don Guay; Nancy Ross Sutherland; Walter Rantanen; Nicole Malandri; Aimee Stephens; Kathleen Mattingly; Matt Schneider

    2005-01-01

    In recent years, several fiber new fiber length analyzers have been developed and brought to market. The new instruments provide faster measurements and the capability of both laboratory and on-line analysis. Do the various fiber analyzers provide the same length, coarseness, width, and fines measurements for a given fiber sample? This paper provides a comparison of...

  11. Surface mobilities on solid materials

    International Nuclear Information System (INIS)

    Binh, V.T.

    1983-01-01

    This book constitutes the proceedings of the NATO Advanced Study Institute on Surface Mobilities on Solid Materials held in France in 1981. The goal of the two-week meeting was to review up-to-date knowledge on surface diffusion, both theoretical and experimental, and to highlight those areas in which much more knowledge needs to be accumulated. Topics include theoretical aspects of surface diffusion (e.g., microscopic theories of D at zero coverage; statistical mechanical models and surface diffusion); surface diffusion at the atomic level (e.g., FIM studies of surface migration of single adatoms and diatomic clusters; field emission studies of surface diffusion of adsorbates); foreign adsorbate mass transport; self-diffusion mass transport (e.g., different driving forces for the matter transport along surfaces; measurements of the morphological evolution of tips); the role of surface diffusion in some fundamental and applied sciences (e.g. adatomadatom pair interactions and adlayer superstructure formation; surface mobility in chemical reactions and catalysis); and recent works on surface diffusion (e.g., preliminary results on surface self-diffusion measurements on nickel and chromium tips)

  12. Side chain variations radically alter the diffusion of poly(2-alkyl-2-oxazoline) functionalised nanoparticles through a mucosal barrier.

    Science.gov (United States)

    Mansfield, Edward D H; de la Rosa, Victor R; Kowalczyk, Radoslaw M; Grillo, Isabelle; Hoogenboom, Richard; Sillence, Katy; Hole, Patrick; Williams, Adrian C; Khutoryanskiy, Vitaliy V

    2016-08-16

    Functionalised nanomaterials are gaining popularity for use as drug delivery vehicles and, in particular, mucus penetrating nanoparticles may improve drug bioavailability via the oral route. To date, few polymers have been investigated for their muco-penetration, and the effects of systematic structural changes to polymer architectures on the penetration and diffusion of functionalised nanomaterials through mucosal tissue have not been reported. We investigated the influence of poly(2-oxazoline) alkyl side chain length on nanoparticle diffusion; poly(2-methyl-2-oxazoline), poly(2-ethyl-2-oxazoline), and poly(2-n-propyl-2-oxazoline) were grafted onto the surface of thiolated silica nanoparticles and characterised by FT-IR, Raman and NMR spectroscopy, thermogravimetric analysis, and small angle neutron scattering. Diffusion coefficients were determined in water and in a mucin dispersion (using Nanoparticle Tracking Analysis), and penetration through a mucosal barrier was assessed using an ex vivo fluorescence technique. The addition of a single methylene group in the side chain significantly altered the penetration and diffusion of the materials in both mucin dispersions and mucosal tissue. Nanoparticles functionalised with poly(2-methyl-2-oxazoline) were significantly more diffusive than particles with poly(2-ethyl-2-oxazoline) while particles with poly(2-n-propyl-2-oxazoline) showed no significant increase compared to the unfunctionalised particles. These data show that variations in the polymer structure can radically alter their diffusive properties with clear implications for the future design of mucus penetrating systems.

  13. Thermal diffusivity effect in opto-thermal skin measurements

    International Nuclear Information System (INIS)

    Xiao, P; Imhof, R E; Cui, Y; Ciortea, L I; Berg, E P

    2010-01-01

    We present our latest study on the thermal diffusivity effect in opto-thermal skin measurements. We discuss how thermal diffusivity affects the shape of opto-thermal signal, and how to measure thermal diffusivity in opto-thermal measurements of arbitrary sample surfaces. We also present a mathematical model for a thermally gradient material, and its corresponding opto-thermal signal. Finally, we show some of our latest experimental results of this thermal diffusivity effect study.

  14. Lung diffusion testing

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003854.htm Lung diffusion testing To use the sharing features on this page, please enable JavaScript. Lung diffusion testing measures how well the lungs exchange gases. This ...

  15. Nonlinear ambipolar diffusion waves

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, J.T.; Rowlands, G.

    1985-07-01

    The evolution of a plasma perturbation in a neutral gas is considered using the ambipolar diffusion approximation. A nonlinear diffusion equation is derived and, in the one-dimensional case, exact solutions of shock type are obtained.

  16. Prevalence and chemotherapy-induced reactivation of occult hepatitis B virus among hepatitis B surface antigen negative patients with diffuse large B-cell lymphoma: Significance of hepatitis B core antibodies screening

    International Nuclear Information System (INIS)

    Elbedewy, T.A.; Elashtokhy, H.A.; Rabee, E.S.; Kheder, G.E.

    2015-01-01

    Background: Occult hepatitis B infection (OBI) is characterized by negative hepatitis B surface antigen (HBsAg) and detectable hepatitis B virus (HBV)-DNA in the liver and/or serum, with or without hepatitis B core antibody (anti-HBc). Anti-HBc is the most sensitive marker of previous HBV. HBV reactivation in patients under immunosuppressive treatment is life-threatening, occurring in both overt and occult HBV especially in hematological malignancies. Aim of the work: To evaluate the prevalence and chemotherapy-induced reactivation of OBI among hepatitis B surface antigen negative patients with diffuse large B-cell lymphoma (DLBCL) patients and to determine the significance of anti-HBc screening among this group of patients before receiving chemotherapy. Patients and methods: This cross-sectional study included 72 DLBCL patients negative for HBsAg, HBsAb and hepatitis C virus antibodies (anti-HCV). Patients were subjected to investigations including anti-HBc. All patients underwent alanine transaminase (ALT) monitoring before each cycle of chemotherapy and monthly for 12 months after the end of chemotherapy. Patients with suspected OBI were tested for HBV-DNA using real-time polymerase chain reaction (PCR). Results: Anti-HBc was detected in 10 of 72 HBsAg negative sera (13.89%) (95% confidence interval 6.9-22.2%). Five of the 10 anti-HBc positive patients in this study had OBI reactivation. Conclusion: The study concluded that anti-HBc screening is mandatory before chemotherapy. HBsAg-negative/anti-HBc-positive patients should be closely observed for signs of HBV reactivation through the regular monitoring of ALT. Prophylaxis lamivudine is recommended for anti-HBc positive patients before chemotherapy.

  17. Vacancy-mediated diffusion of Co atoms embedded in Cu(001)

    NARCIS (Netherlands)

    van Gastel, Raoul; van Moere, R.; Zandvliet, Henricus J.W.; Poelsema, Bene

    2011-01-01

    The diffusion of Co atoms in the Cu(001) surface has been studied using Scanning Tunneling Microscopy (STM). Like other impurities in the Cu(001) surface, the diffusion of Co is mediated by single surface vacancies. STM images reveal that diffusion of the embedded atoms takes place through

  18. The probabilistic distribution of metal whisker lengths

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D., E-mail: Dipesh.Niraula@rockets.utoledo.edu; Karpov, V. G., E-mail: victor.karpov@utoledo.edu [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States)

    2015-11-28

    Significant reliability concerns in multiple industries are related to metal whiskers, which are random high aspect ratio filaments growing on metal surfaces and causing shorts in electronic packages. We derive a closed form expression for the probabilistic distribution of metal whisker lengths. Our consideration is based on the electrostatic theory of metal whiskers, according to which whisker growth is interrupted when its tip enters a random local “dead region” of a weak electric field. Here, we use the approximation neglecting the possibility of thermally activated escapes from the “dead regions,” which is later justified. We predict a one-parameter distribution with a peak at a length that depends on the metal surface charge density and surface tension. In the intermediate range, it fits well the log-normal distribution used in the experimental studies, although it decays more rapidly in the range of very long whiskers. In addition, our theory quantitatively explains how the typical whisker concentration is much lower than that of surface grains. Finally, it predicts the stop-and-go phenomenon for some of the whiskers growth.

  19. A tracer diffusion model derived from microstructure

    International Nuclear Information System (INIS)

    Lehikoinen, Jarmo; Muurinen, Arto; Olin, Markus

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Numerous attempts have been made to explain the tracer diffusion of various solutes in compacted clays. These attempts have commonly suffered from an inability to describe the diffusion of uncharged and charged solutes with a single unified model. Here, an internally consistent approach to describing the diffusion of solutes in a heterogeneous porous medium, such as compacted bentonite, in terms of its microstructure is presented. The microstructure is taken to be represented by a succession of unit cells, which consist of two consecutive regions (Do, 1996). In the first region, the diffusion is viewed to occur in two parallel paths: one through microcrystalline units (micropores) and the other through meso-pores between the microcrystalline units. Solutes exiting these two paths are then joined together to continue diffusing through the second, disordered, region, connecting the two adjacent microcrystalline units. Adsorption (incl. co-ion exclusion) is thought to occur in the micropores, whereas meso-pores and the disordered region accommodate free species alone. Co-ions are also assumed to experience transfer resistance into and out of the micropores, which is characterized in the model by a transmission coefficient. Although the model is not new per se, its application to compacted clays has never been attempted before. It is shown that in the limit of strong adsorption, the effective diffusivity is limited from above only by the microstructural parameters of the model porous medium. As intuitive and logical as this result may appear, it has not been proven before. In the limit of vanishing disordered region, the effective diffusivity is no longer explicitly constrained by any of the model parameters. The tortuosity of the diffusion path, i.e. the quotient of the actual diffusion path length in the porous-medium coordinates and the characteristic length of the laboratory frame

  20. Emulation of a Kalman Filter algorithm on a diffusive flood wave propagation model

    Science.gov (United States)

    Pannekoucke, O.; Ricci, S. M.; Ninove, F.; Thual, O.

    2011-12-01

    River stream flow forecasting is a critical issue for the security of people and infrastructures, the function of power plants, and water resources management. The benefit of data assimilation for free-surface flow simulation and flood forecasting has already been demonstrated as it is applied to optimize model parameters and to improve simulated water level and discharge state [1]. The correction of the hydraulic state with a Kalman Filter algorithm implies the propagation of the background error covariance matrix B by the dynamics of the model. This step requires the formulation and the integration in time of the tangent linear approximation of the model, which is generally fastidious and costly. The aim of this study is to describe the evolution of the background error covariance function with the Kalman Filter algorithm applied to a 1D diffuse flood wave propagation model. For this simplified model, the formulation of the tangent linear model as well as the propagation of B is affordable as opposed as for an operational hydraulics model solving the shallow water equations. Starting from Gaussian background covariance functions, it was first shown that the diffusive flood wave propagation model increases the correlation length and that the propagated covariance function can be approximated by a Gaussian. Working with a steady observation network, it was then demonstrated that the analysis and propagation steps of the Kalman Filter modify the covariance function at the observation point. The resulting covariance function at the observation point is inhomogeneous, with a shorter correlation length downstream of the observation point than upstream. The diagnosed correlation lengths [2] were used to build a parametrized covariance matrix using a diffusion operator with an inhomogenous diffusion coefficient [3]. This approach led to the formulation of a parametrized background error covariance matrix where the evolution of the covariance function with the Kalman