Diffusion constant of slowly rotating black three-brane
Amoozad, Z.; Sadeghi, J.
2018-01-01
In this paper, we take the slowly rotating black three-brane background and perturb it by introducing a vector gauge field. We find the components of the gauge field through Maxwell equations and Bianchi identities. Using currents and some ansatz we find Fick's first law at long wavelength regime. An interesting result for this non-trivial supergravity background is that the diffusion constant on the stretched horizon which emerges from Fick's first law is a complex constant. The pure imaginary part of the diffusion constant appears because the black three-brane has angular momentum. By taking the static limit of the corresponding black brane the well known diffusion constant will be recovered. On the other hand, from the point of view of the Fick's second law, we have the dispersion relation ω = - iDq2 and we found a damping of hydrodynamical flow in the holographically dual theory. Existence of imaginary term in the diffusion constant introduces an oscillating propagation of the gauge field in the dual field theory.
Timelike Constant Mean Curvature Surfaces with Singularities
DEFF Research Database (Denmark)
Brander, David; Svensson, Martin
2014-01-01
We use integrable systems techniques to study the singularities of timelike non-minimal constant mean curvature (CMC) surfaces in the Lorentz–Minkowski 3-space. The singularities arise at the boundary of the Birkhoff big cell of the loop group involved. We examine the behavior of the surfaces...
DEFF Research Database (Denmark)
Møller, Jan Kloppenborg; Madsen, Henrik
This report describes methods to eliminate state dependent diffusion terms in Stochastic Differential Equations (SDEs). Transformations that leave the diffusion term of SDEs constant is important for simulation, and estimation. It is important for simulation because the Euler approximation...... convergence rate is faster, and for estimation because the Extended Kalman Filter equations are easier to implement than higher order filters needed in the case of state dependent diffusion terms. The general class of transformations which leaves the diffusion term independent of the state is called...
Theory and experiments on surface diffusion
Energy Technology Data Exchange (ETDEWEB)
Silvestri, W.L.
1998-11-01
The following topics were dealt with: adatom formation and self-diffusion on the Ni(100) surface, helium atom scattering measurements, surface-diffusion parameter measurements, embedded atom method calculations.
On the use of SERPENT Monte Carlo code to generate few group diffusion constants
Energy Technology Data Exchange (ETDEWEB)
Piovezan, Pamela, E-mail: pamela.piovezan@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Carluccio, Thiago; Domingos, Douglas Borges; Rossi, Pedro Russo; Mura, Luiz Felipe, E-mail: fermium@cietec.org.b, E-mail: thiagoc@ipen.b [Fermium Tecnologia Nuclear, Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
The accuracy of diffusion reactor codes strongly depends on the quality of the groups constants processing. For many years, the generation of such constants was based on 1-D infinity cell transport calculations. Some developments using collision probability or the method of characteristics allow, nowadays, 2-D assembly group constants calculations. However, these 1-D and 2-D codes how some limitations as , for example, on complex geometries and in the neighborhood of heavy absorbers. On the other hand, since Monte Carlos (MC) codes provide accurate neutro flux distributions, the possibility of using these solutions to provide group constants to full-core reactor diffusion simulators has been recently investigated, especially for the cases in which the geometry and reactor types are beyond the capability of the conventional deterministic lattice codes. The two greatest difficulties on the use of MC codes to group constant generation are the computational costs and the methodological incompatibility between analog MC particle transport simulation and deterministic transport methods based in several approximations. The SERPENT code is a 3-D continuous energy MC transport code with built-in burnup capability that was specially optimized to generate these group constants. In this work, we present the preliminary results of using the SERPENT MC code to generate 3-D two-group diffusion constants for a PWR like assembly. These constants were used in the CITATION diffusion code to investigate the effects of the MC group constants determination on the neutron multiplication factor diffusion estimate. (author)
Slab-diffusion approximation from time-constant-like calculations
Energy Technology Data Exchange (ETDEWEB)
Johnson, R. W.
1976-12-01
Two equations were derived which describe the quantity and any fluid diffused from a slab as a function of time. One equation is applicable to the initial stage of the process; the other to the final stage. Accuracy is 0.2 percent at the one point where both approximations apply and where accuracy of either approximation is the poorest. Characterizing other rate processes might be facilitated by the use of the concept of NOLOR (normal of the logarithm of the rate) and its time dependence. (auth)
Slab-diffusion approximation from time-constant-like calculations
International Nuclear Information System (INIS)
Johnson, R.W.
1976-12-01
Two equations were derived which describe the quantity and any fluid diffused from a slab as a function of time. One equation is applicable to the initial stage of the process; the other to the final stage. Accuracy is 0.2 percent at the one point where both approximations apply and where accuracy of either approximation is the poorest. Characterizing other rate processes might be facilitated by the use of the concept of NOLOR (normal of the logarithm of the rate) and its time dependence
Surface modifications by field induced diffusion.
Directory of Open Access Journals (Sweden)
Martin Olsen
Full Text Available By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.
On the distribution of estimators of diffusion constants for Brownian motion
International Nuclear Information System (INIS)
Boyer, Denis; Dean, David S
2011-01-01
We discuss the distribution of various estimators for extracting the diffusion constant of single Brownian trajectories obtained by fitting the squared displacement of the trajectory. The analysis of the problem can be framed in terms of quadratic functionals of Brownian motion that correspond to the Euclidean path integral for simple Harmonic oscillators with time dependent frequencies. Explicit analytical results are given for the distribution of the diffusion constant estimator in a number of cases and our results are confirmed by numerical simulations.
Interferometric method for measuring high velocities of diffuse surfaces
International Nuclear Information System (INIS)
Maron, Y.
1978-01-01
An interferometric method for measuring the displacement of diffuse surfaces moving with velocities of a few microsecond is presented. The method utilizes the interference between two light beams reflected from a constant area of the moving surface at two different angles. It enables the detection of high rate velocity variations. Light source of a fairly low temporal coherence and power around 100mW is needed. (author)
Surface diffusion studies by optical diffraction techniques
International Nuclear Information System (INIS)
Xiao, X.D.
1992-11-01
The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect
Nanoscale topography influences polymer surface diffusion.
Wang, Dapeng; He, Chunlin; Stoykovich, Mark P; Schwartz, Daniel K
2015-02-24
Using high-throughput single-molecule tracking, we studied the diffusion of poly(ethylene glycol) chains at the interface between water and a hydrophobic surface patterned with an array of hexagonally arranged nanopillars. Polymer molecules displayed anomalous diffusion; in particular, they exhibited intermittent motion (i.e., immobilization and "hopping") suggestive of continuous-time random walk (CTRW) behavior associated with desorption-mediated surface diffusion. The statistics of the molecular trajectories changed systematically on surfaces with pillars of increasing height, exhibiting motion that was increasingly subdiffusive and with longer waiting times between diffusive steps. The trajectories were well-described by kinetic Monte Carlo simulations of CTRW motion in the presence of randomly distributed permeable obstacles, where the permeability (the main undetermined parameter) was conceptually related to the obstacle height. These findings provide new insights into the mechanisms of interfacial transport in the presence of obstacles and on nanotopographically patterned surfaces.
Bag model with diffuse surface
International Nuclear Information System (INIS)
Phatak, S.C.
1986-01-01
The constraint of a sharp bag boundary in the bag model is relaxed in the present work. This has been achieved by replacing the square-well potential of the bag model by a smooth scalar potential and introducing a term similar to the bag pressure term. The constraint of the conservation of the energy-momentum tensor is used to obtain an expression for the added bag pressure term. The model is then used to determine the static properties of the nucleon. The calculation shows that the rms charge radius and the nucleon magnetic moment are larger than the corresponding bag model values. Also, the axial vector coupling constant and the πNN coupling constant are in better agreement with the experimental values
Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors
DEFF Research Database (Denmark)
Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.
2012-01-01
This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....
Darboux transformations for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix
International Nuclear Information System (INIS)
Schulze-Halberg, Axel
2012-01-01
We construct a Darboux transformation for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix. Our transformation is based on the two-dimensional supersymmetry formalism for the Schrödinger equation. The transformed Fokker-Planck equation and its solutions are obtained in explicit form.
International Nuclear Information System (INIS)
Roy, M.D.; Nag, B.R.
1981-01-01
A method has been developed for determining the auto-correlation functions of the fluctuations in the transverse and the parallel components of hot carrier-velocity in a semiconductor by Monte Carlo simulation. The functions for electrons in InSb are determined by this method for applied electric fields of 50 V/cm, 75 V/cm, and 100 V/cm. With increasing value of the time interval the transverse auto-correlation function fall nearly exponentially to zero, but the parallel function falls sharply to a negative peak, then rises to positive values and finally becomes zero. The interval beyond which the auto-correlation function is zero and the correlation time are also evaluated. The correlation time is found to be approximately 1.6 times the relaxation time calculated from the chord mobility. The effect of the flight sampling time on the value of variance of the displacement, is investigated in terms of the low frequency diffusion constants, determined from the variation of the correlation functions. It is found that the diffusion constants become independent of the sampling time if it is of the order of one hundred times the relaxation time. The frequency-dependent diffusion constants are calculated from the correlation functions. The transverse diffusion constant falls monotonically with frequency for all the field strengths studied. The parallel diffusion constant has similar variation for the lower fields (50 V/cm and 75 V/cm) but it has a peak at about 44 GHz for the field of 100 V/cm. (orig.)
Heat diffusion in fractal geometry cooling surface
Directory of Open Access Journals (Sweden)
Ramšak Matjaz
2012-01-01
Full Text Available In the paper the numerical simulation of heat diffusion in the fractal geometry of Koch snowflake is presented using multidomain mixed Boundary Element Method. The idea and motivation of work is to improve the cooling of small electronic devices using fractal geometry of surface similar to cooling ribs. The heat diffusion is assumed as the only principle of heat transfer. The results are compared to the heat flux of a flat surface. The limiting case of infinite small fractal element is computed using Richardson extrapolation.
Derivation of Inter-Atomic Force Constants of Cu2O from Diffuse Neutron Scattering Measurement
Directory of Open Access Journals (Sweden)
T. Makhsun
2013-04-01
Full Text Available Neutron scattering intensity from Cu2O compound has been measured at 10 K and 295 K with High Resolution Powder Diffractometer at JRR-3 JAEA. The oscillatory diffuse scattering related to correlations among thermal displacements of atoms was observed at 295 K. The correlation parameters were determined from the observed diffuse scattering intensity at 10 and 295 K. The force constants between the neighboring atoms in Cu2O were estimated from the correlation parameters and compared to those of Ag2O
Hamiltonian formulation of surfaces with constant Gaussian curvature
Energy Technology Data Exchange (ETDEWEB)
Trejo, Miguel; Amar, Martine Ben; Mueller, Martin Michael [Laboratoire de Physique Statistique de l' Ecole Normale Superieure (UMR 8550), associe aux Universites Paris 6 et Paris 7 et au CNRS, 24, rue Lhomond, 75005 Paris (France)
2009-10-23
Dirac's method for constrained Hamiltonian systems is used to describe surfaces of constant Gaussian curvature. A geometrical free energy, for which these surfaces are equilibrium states, is introduced and interpreted as an action. An equilibrium surface can then be generated by the evolution of a closed space curve. Since the underlying action depends on second derivatives, the velocity of the curve and its conjugate momentum must be included in the set of phase-space variables. Furthermore, the action is linear in the acceleration of the curve and possesses a local symmetry-reparametrization invariance-which implies primary constraints in the canonical formalism. These constraints are incorporated into the Hamiltonian through Lagrange multiplier functions that are identified as the components of the acceleration of the curve. The formulation leads to four first-order partial differential equations, one for each canonical variable. With the appropriate choice of parametrization, only one of these equations has to be solved to obtain the surface which is swept out by the evolving space curve. To illustrate the formalism, several evolutions of pseudospherical surfaces are discussed.
Molecular Modeling of Diffusion on a Crystalline PETN Surface
Energy Technology Data Exchange (ETDEWEB)
Lin, P; Khare, R; Gee, R H; Weeks, B L
2007-07-13
Surface diffusion on a PETN crystal was investigated by treating the surface diffusion as an activated process in the formalism of transition state theory. In particular, surface diffusion on the (110) and (101) facets, as well as diffusion between these facets, were considered. We successfully obtained the potential energy barriers required for PETN surface diffusion. Our results show that the (110) surface is more thermally active than the (101) surface and PETN molecules mainly diffuses from the (110) to (101) facet. These results are in good agreement with experimental observations and previous simulations.
A critical comparison of constant and pulsed flow systems exploiting gas diffusion.
Silva, Claudineia Rodrigues; Henriquez, Camelia; Frizzarin, Rejane Mara; Zagatto, Elias Ayres Guidetti; Cerda, Victor
2016-02-01
Considering the beneficial aspects arising from the implementation of pulsed flows in flow analysis, and the relevance of in-line gas diffusion as an analyte separation/concentration step, influence of flow pattern in flow systems with in-line gas diffusion was critically investigated. To this end, constant or pulsed flows delivered by syringe or solenoid pumps were exploited. For each flow pattern, two variants involving different interaction times of the donor with the acceptor streams were studied. In the first one, both the acceptor and donor streams were continuously flowing, whereas in the second one, the acceptor was stopped during the gas diffusion step. Four different volatile species (ammonia, ethanol, carbon dioxide and hydrogen sulfide) were selected as models. For the flow patterns and variants studied, the efficiencies of mass transport in the gas diffusion process were compared, and sensitivity, repeatability, sampling frequency and recorded peak shape were evaluated. Analysis of the results revealed that sensitivity is strongly dependent on the implemented variant, and that flow pattern is an important feature in flow systems with in-line gas diffusion. Copyright © 2015 Elsevier B.V. All rights reserved.
Investigation of ion diffusion towards plasmonic surfaces
International Nuclear Information System (INIS)
Gmucova, K.; Nadazdy, V.; Vojtko, A.; Majkova, E.; Kotlar, M.
2013-01-01
Plasmonic sensors have recently attracted much attention. The past few decades have seen a massive and continued interest in studying electrochemical processes at artificially structured electrodes. Such electrochemical sensors provide sensitive, selective, and easy to use approaches to the detection of many chemical species, e.g. environmental pollutants, biomolecules, drugs etc. The issue raised in this paper is to study the kinetic of the diffusion towards plasmonic surfaces in dark and under illumination with white LED diode. The possibility to use anomalous charge transfer towards plasmonic surfaces in electrochemical sensorics will be discussed, too. (authors)
Ma, Shu-Cui; Wang, Zhi-Gang; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia
2015-02-01
The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation-deprotonation behavior was determined by continuous acid-base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m2/g and large numbers of surface hydroxyl functional groups (i.e. tbnd Si-OH, tbnd Fe-OH, and tbnd Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K1, log K2) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation-deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent.
A model for diffuse and global irradiation on horizontal surface
International Nuclear Information System (INIS)
Jain, P.C.
1984-01-01
The intensity of the direct radiation and the diffuse radiation at any time on a horizontal surface are each expressed as fractions of the intensity of the extraterrestrial radiation. Using these and assuming a random distribution of the bright sunshine hours and not too wide variations in the values of the transmission coefficients, a number of relations for estimating the global and the diffuse irradiation are derived. Two of the relations derived are already known empirically. The formulation lends more confidence in the use of the already empirically known relations providing them a theoretical basis, and affords more flexibility to the estimation techniques by supplying new equations. The study identifies three independent basic parameters and the constants appearing in the various equations as simple functions of these three basic parameters. Experimental data for the diffuse irradiation, the global irradiation and the bright sunshine duration for Macerata (Italy), Salisbury and Bulawayo (Zimbabwe) is found to show good correlation for the linear equations, and the nature and the interrelationships of the constants are found to be as predicted by the theory
Optimal fits of diffusion constants from single-time data points of Brownian trajectories.
Boyer, Denis; Dean, David S; Mejía-Monasterio, Carlos; Oshanin, Gleb
2012-12-01
Experimental methods based on single particle tracking (SPT) are being increasingly employed in the physical and biological sciences, where nanoscale objects are visualized with high temporal and spatial resolution. SPT can probe interactions between a particle and its environment but the price to be paid is the absence of ensemble averaging and a consequent lack of statistics. Here we address the benchmark question of how to accurately extract the diffusion constant of one single Brownian trajectory. We analyze a class of estimators based on weighted functionals of the square displacement. For a certain choice of the weight function these functionals provide the true ensemble averaged diffusion coefficient, with a precision that increases with the trajectory resolution.
The concept of mass angular scattering power and its relation to the diffusion constant
International Nuclear Information System (INIS)
Sandison, George A.; Papiez, Lech S.
1998-01-01
An understanding of the scattering of high energy charged particle beams by tissue is required in radiotherapy since the particle trajectories determine the pattern of radiation dose deposition in patients. Numerical calculations of radiation dose often utilize energy dependent values of the angular scattering power. However, the physics literature is replete with confused interpretations of the concept of angular scattering power and its relation to the single scattering cross section for the medium or the diffusion constant in the diffusional limit. The purpose of this article is to clarify these notions
Wang, Hongyun
2006-01-01
In this manuscript, we consider the case where a Brownian particle is subject to a static periodic potential and is driven by a constant force. We derive analytic formulas for the average velocity and the effective diffusion.
Energy Technology Data Exchange (ETDEWEB)
Ma, Shu-Cui [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022 (China); Wang, Zhi-Gang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Zhang, Ji-Lin, E-mail: zjl@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Sun, De-Hui [Changchun Institute Technology, Changchun 130012 (China); Liu, Gui-Xia, E-mail: liuguixia22@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun 130022 (China)
2015-02-01
Highlights: • To examine surface hydroxyl functional groups of the calcined diatomite by TGA-DSC, FTIR, and XPS. • To calculate the optimized log K{sub 1}, log K{sub 2} and log C values and the surface species distribution of each surface reactive site using ProtoFit and PHREEQC, respectively. - Abstract: The surface properties of the diatomite were investigated using nitrogen adsorption/deadsorption isotherms, TG-DSC, FTIR, and XPS, and surface protonation–deprotonation behavior was determined by continuous acid–base potentiometric titration technique. The diatomite sample with porous honeycomb structure has a BET specific surface area of 10.21 m{sup 2}/g and large numbers of surface hydroxyl functional groups (i.e. ≡Si-OH, ≡Fe-OH, and ≡Al-OH). These surface hydroxyls can be protonated or deprotonated depending on the pH of the suspension. The experimental potentiometric data in two different ionic strength solutions (0.1 and 0.05 mol/L NaCl) were fitted using ProtoFit GUI V2.1 program by applying diffuse double layer model (DLM) with three amphoteric sites and minimizing the sum of squares between a dataset derivative function and a model derivative function. The optimized surface parameters (i.e. surface dissociation constants (log K{sub 1}, log K{sub 2}) and surface site concentrations (log C)) of the sample were obtained. Based on the optimized surface parameters, the surface species distribution was calculated using Program-free PHREEQC 3.1.2. Thus, this work reveals considerable new information about surface protonation–deprotonation processes and surface adsorptive behaviors of the diatomite, which helps us to effectively use the cheap and cheerful diatomite clay adsorbent.
Diffusion and surface alloying of gradient nanostructured metals
Directory of Open Access Journals (Sweden)
Zhenbo Wang
2017-03-01
Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.
Single atom self-diffusion on nickel surfaces
International Nuclear Information System (INIS)
Tung, R.T.; Graham, W.R.
1980-01-01
Results of a field ion microscope study of single atom self-diffusion on Ni(311), (331), (110), (111) and (100) planes are presented, including detailed information on the self-diffusion parameters on (311), (331), and (110) surfaces, and activation energies for diffusion on the (111), and (100) surfaces. Evidence is presented for the existence of two types of adsorption site and surface site geometry for single nickel atoms on the (111) surface. The presence of adsorbed hydrogen on the (110), (311), and (331) surfaces is shown to lower the onset temperature for self-diffusion on these planes. (orig.)
Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?
Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu
2013-01-17
Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.
Self-diffusion on copper surfaces
DEFF Research Database (Denmark)
Hansen, L.; Stoltze, Per; Jacobsen, Karsten Wedel
1991-01-01
The diffusion paths and activation energies of a Cu adatom on Cu(100), Cu(111), and Cu(110) are studied using the effective-medium theory to calculate the energetics. For the (100) and (110) faces, diffusion via an exchange mechanism is found to be important. The transition state for these paths ...
Friction and diffusion dynamics of adsorbates at surfaces
Fusco, C.
2005-01-01
A theoretical study of the motion of adsorbates (e. g. atoms, molecules or clusters) on solid surfaces is presented, with a focus on surface diffusion and atomic-scale friction. These two phenomena are inextricably linked, because when an atomic or molecular adsorbate diffuses, or is pulled, it
Radiation induced diffusion as a method to protect surface
International Nuclear Information System (INIS)
Baumvol, I.J.R.
1980-01-01
Radiation induced diffusion forms a coating adeherent and without interface on the surface of metalic substrates. This coating improves the behaviour of metal to corrosion and abrasion. The effect of radiation induced diffusion of tin and calcium on pure iron surface is described and analyzed in this work. (author) [pt
Surfaces of Constant Mean Curvature in Euclidean 3-space Orthogonal to a Plane along its Boundary
Directory of Open Access Journals (Sweden)
HINOJOSA PEDRO A.
2002-01-01
Full Text Available We consider compact surfaces with constant nonzero mean curvature whose boundary is a convex planar Jordan curve. We prove that if such a surface is orthogonal to the plane of the boundary, then it is a hemisphere.
Constant curvature surfaces of the supersymmetric ℂP{sup N−1} sigma model
Energy Technology Data Exchange (ETDEWEB)
Delisle, L., E-mail: delisle@dms.umontreal.ca [Département de Mathématiques et de Statistique, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7 (Canada); Hussin, V., E-mail: hussin@dms.umontreal.ca [Département de Mathématiques et de Statistique, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7 (Canada); Centre de Recherches Mathématiques, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7 (Canada); Yurduşen, İ., E-mail: yurdusen@hacettepe.edu.tr [Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Zakrzewski, W. J., E-mail: w.j.zakrzewski@durham.ac.uk [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE,United Kingdom (United Kingdom)
2015-02-15
Constant curvature surfaces are constructed from the finite action solutions of the supersymmetric ℂP{sup N−1} sigma model. It is shown that there is a unique holomorphic solution which leads to constant curvature surfaces: the generalized Veronese curve. We give a general criterion to construct non-holomorphic solutions of the model. We extend our analysis to general supersymmetric Grassmannian models.
Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface
Directory of Open Access Journals (Sweden)
Muhammad Qasim
2013-01-01
Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.
CSIR Research Space (South Africa)
Pretorius, PJ
1998-01-01
Full Text Available of the experimental system suggests that titration points below pH 4 should not be used for the determination of protonation constants because of potential HFO dissolution. Surface protonation constant, PZC and binding site estimates agree excellently with currently...
Constant Gaussian curvature surfaces in the 3-sphere via loop groups
DEFF Research Database (Denmark)
Brander, David; Inoguchi, Jun-Ichi; Kobayashi, Shimpei
2014-01-01
In this paper we study constant positive Gauss curvature K surfaces in the 3-sphere S3 with 0KK... by the second fundamental form if and only if K is constant. We give a uniform loop group formulation for all such surfaces with K≠0, and use the generalized d’Alembert method to construct examples. This representation gives a natural correspondence between such surfaces with KK
Reactive solid surface morphology variation via ionic diffusion.
Sun, Zhenchao; Zhou, Qiang; Fan, Liang-Shih
2012-08-14
In gas-solid reactions, one of the most important factors that determine the overall reaction rate is the solid morphology, which can be characterized by a combination of smooth, convex and concave structures. Generally, the solid surface structure varies in the course of reactions, which is classically noted as being attributed to one or more of the following three mechanisms: mechanical interaction, molar volume change, and sintering. Here we show that if a gas-solid reaction involves the outward ionic diffusion of a solid-phase reactant then this outward ionic diffusion could eventually smooth the surface with an initial concave and/or convex structure. Specifically, the concave surface is filled via a larger outward diffusing surface pointing to the concave valley, whereas the height of the convex surface decreases via a lower outward diffusion flux in the vertical direction. A quantitative 2-D continuum diffusion model is established to analyze these two morphological variation processes, which shows consistent results with the experiments. This surface morphology variation by solid-phase ionic diffusion serves to provide a fourth mechanism that supplements the traditionally acknowledged solid morphology variation or, in general, porosity variation mechanisms in gas-solid reactions.
International Nuclear Information System (INIS)
Turkdogan, E.T.
2002-01-01
The present study of self-diffusion data for pure solid elements has revealed that the diffusivities of body centered cubic (b.c.c.), face centered cubic (f.c.c.) and hexagonal close packed (h.c.p.) metals at their melting point temperatures (T m ) do relate in a systematic manner to the atomic number of the elements and their Period numbers. Also, the activation enthalpy of self-diffusion varies in a regular manner with the atomic number and Period number of the elements. It is surmised from these regularities that the activation enthalpy (Q) of self-diffusion may be considered as a direct measure of the interatomic force constant ε/k = (φ/R)T m where φ = Q/T m is the enthalpy coefficient. For solid metals ε/k = (15 to 19) T m , K; for non-metals the T m coefficient is (20 to 35), for rare-earth metals (10 to 13) and for liquid metals (3.32 ± 0.24). A comparison is made of these ε/k values with those derived from the standard enthalpies of dissociation of inorganic compounds to the constituent elements. A critical assessment is made of the experimental self-diffusion data for pure elements which conform to the observed regularities in the self-diffusion parameters in relation to the atomic number and Period number of the elements. (author)
Linear response theory of activated surface diffusion with interacting adsorbates
Energy Technology Data Exchange (ETDEWEB)
Marti' nez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A.S.; Vega, J.L. [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rojas-Lorenzo, G. [Instituto Superior de Tecnologi' as y Ciencias Aplicadas, Ave. Salvador Allende, esq. Luaces, 10400 La Habana (Cuba); Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain); Miret-Artes, S., E-mail: s.miret@imaff.cfmac.csic.es [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain)
2010-05-12
Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.
Deformations of constant mean curvature surfaces preserving symmetries and the Hopf differential
DEFF Research Database (Denmark)
Brander, David; Dorfmeister, Josef
2015-01-01
We define certain deformations between minimal and non-minimal constant mean curvature (CMC) surfaces in Euclidean space E3 which preserve the Hopf differential. We prove that, given a CMC H surface f, either minimal or not, and a fixed basepoint z0 on this surface, there is a naturally defined...
Diffusion processes in bombardment-induced surface topography
International Nuclear Information System (INIS)
Robinson, R.S.
1984-01-01
The bombardment of surfaces with moderate energy ions can lead to the development of various micron-sized surface structures. These structures include ridges, ledges, flat planes, pits and cones. The causal phenomena in the production of these features are sputtering, ion reflection, redeposition of sputtered material, and surface diffusion of both impurity and target-atom species. The authors concentrate on the formation of ion bombardment-induced surface topography wherein surface diffusion is a dominant process. The most thoroughly understood aspect of this topography development is the generation of cone-like structures during sputtering. The formation of cones during sputtering has been attributed to three effects. These are: (1) the presence of asperities, defects, or micro-inclusions in the surface layers, (2) the presence of impurities on the surfaces, and (3) particular crystal orientations. (Auth.)
Nonthermal Effects of Photon Illumination on Surface Diffusion
International Nuclear Information System (INIS)
Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E.G.
1998-01-01
Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally for the first time. Activation energies and preexponential factors for diffusion of germanium and indium on silicon change substantially in response to illumination by photons having energies greater than the substrate band gap. Results depend on doping type. Ionization of surface vacancies by photogenerated charge carriers seems to play a key role. The results have significant implications for aspects of microelectronics fabrication governed by surface mobility. copyright 1998 The American Physical Society
Diffusion of particles, adsorbed on a reconstructive surface
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
532-535, - (2003), s. 588-593 ISSN 0039-6028 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : models of surface kinetics * non-equilibrium thermodynamics and statistical mechanics * surface diffusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.063, year: 2003
Cu diffusion across a clean Si(111) surface
Dolbak, A E; Olshanetskij, B Z
2001-01-01
Cu diffusion across a clean Si(111) surface has been studied by the Auger electron spectroscopy and the low energy electron diffraction. It has been established that enhanced copper density areas with noticeable boundaries manifest themselves and a Si(111) - 5 x 5 - Cu surface phase is formed as a result of diffusion. It has been shown that the copper transport along Si(111) surface goes on according to a solid state spreading process, which is known as the unwinding carpet mechanism. The temperature dependence for the Cu diffusion coefficients D sub C sub u on the Si(111) surface is obtained and this dependence takes the form: D sub C sub u = 10 sup 4 exp(-1.9/kT) cm sup 2 /s
Modifying glass surfaces via internal diffusion
DEFF Research Database (Denmark)
Smedskjaer, M.M.; Yue, Y.Z.; Deubener, J.
2010-01-01
The surface chemistry and structure of iron-bearing silicate glasses have been modified by means of heat-treatment around the glass transition temperature under different gaseous media at ambient pressure. When the glasses are heat-treated in atmospheric air, oxidation of Fe2+ to Fe3+ occurs, which......- ions in the network and their strong attraction to the modifying ions, whereas the latter is due to the requirement of the charge neutrality. The role of N3- in driving OD is verified by the composition profile of the surface layer of the glass treated in pure N-2 gas. The OD exerts pronounced impacts...
Recursion Formulae for Obtaining Surfaces with Constant Mean Curvature in R2,1
International Nuclear Information System (INIS)
Tian Yongbo; Nan Zhijie; Tian Chou
2007-01-01
Though the Baecklund transformation on time-like surfaces with constant mean curvature surfaces in R 2,1 has been obtained, it is not easy to obtain corresponding surfaces because the procedure of solving the related integrable system cannot be avoided when the Baecklund transformation is used. For sake of this, in this article, some special work is done to reform the Baecklund transformation to a recursion formula, by which we can construct time-like surfaces with constant mean curvature form known ones just by quadrature procedure.
Diffusion of N adatoms on the Fe(100) surface
DEFF Research Database (Denmark)
Pedersen, M. Ø.; Österlund, L.; Mortensen, Jens Jørgen
2000-01-01
The diffusion of individual N adatoms on Fe(100) has been studied using scanning tunneling microscopy and ab initio density functional theory (DFT) calculations. The measured diffusion barrier for isolated N adatoms is E-d = (0.92 +/- 0.04) eV, with a prefactor of nu(0) = 4.3 x 10(12) s(-1), which...... is in quantitative agreement with the DFT calculations. Thr; diffusion is strongly coupled to lattice distortions. and. as a consequence, the presence of other N adatoms introduces an anisotropy in the diffusion. Based on experimentally determined values of the diffusion barriers and adsorbate......-adsorbate: interactions, the potential energy surface experienced by a N adatom is determined....
International Nuclear Information System (INIS)
Catoni, Francesco; Cannata, Roberto; Zampetti, Paolo
2005-08-01
The Riemann and Lorentz constant curvature surfaces are investigated from an Euclidean point of view. The four surfaces (constant positive and constant negative curvatures with definite and non-definite fine elements) are represented as surfaces in a Riemannian or in a particular semi-Riemannian flat space and it is shown that the complex and the hyperbolic numbers allow to obtain the same equations for the corresponding Riemann and Lorentz surfaces, respectively. Moreover it is shown that the geodesics on the Lorentz surfaces states, from a physical point of view, a link between curvature and fields. This result is obtained just as a consequence of the space-time geometrical symmetry, without invoking the famous Einstein general relativity postulate [it
The Role of Lattice Vibrations in Adatom Diffusion at Metal Stepped Surfaces
International Nuclear Information System (INIS)
Durakanoglu, S.
2004-01-01
Diffusion of a single atom on metal surfaces remains a subject of continuing interest in the surface science community because of the important role it plays in several technologically important phenomena such as thin-film and eptaxial growth, catalysis and chemical reactions. Except for a few studies, most of theoretical works, ranging from molecular dynamic simulations to first principle electronic structure calculations, are devoted to determination of the characteristics of the diffusion processes and the energy barriers, neglecting the contribution of lattice vibrations in adatom diffusion. However, in a series of theoretical works on self-diffusion on the flat surfaces of Cu(100), Ag(100) and Ni(100), Ulrike et al.[1-3], showed that the vibrational contributions are important and should be included in any complete description of the temperature dependence of the diffusion coefficient. In this work, it is our aim to examine the role of lattice vibrations in adatom diffusion at stepped surfaces of Cu(100) and Ni(100) within the framework of transition state theory. Ehrlich-Shwoebel energy barriers for an adatom diffusing over a step-edge are calculated through the inclusion of vibrational internal energy. Local vibrational density of states, main ingredient to the vibrational thermodynamic functions, are calculated in the harmonic approximation, using real space Green's function method with the force constants derived from interaction potentials based on the embedded atom method. We emphasize the sensitivity of the local vibrational density of states to the local atomic environment. We, furthermore, discuss the contribution of thermodynamic functions calculated from local vibrational density of states to the prefactors in diffusion coefficient
Slowdown of surface diffusion during early stages of bacterial colonization
Vourc'h, T.; Peerhossaini, H.; Léopoldès, J.; Méjean, A.; Chauvat, F.; Cassier-Chauvat, C.
2018-03-01
We study the surface diffusion of the model cyanobacterium Synechocystis sp. PCC6803 during the incipient stages of cell contact with a glass surface in the dilute regime. We observe a twitching motility with alternating immobile tumble and mobile run periods, resulting in a normal diffusion described by a continuous-time random walk with a coefficient of diffusion D . Surprisingly, D is found to decrease with time down to a plateau. This is observed only when the cyanobacterial cells are able to produce released extracellular polysaccharides, as shown by a comparative study between the wild-type strain and various polysaccharides-depleted mutants. The analysis of the trajectories taken by the bacterial cells shows that the temporal characteristics of their intermittent motion depend on the instantaneous fraction of visited sites during diffusion. This describes quantitatively the time dependence of D , related to the progressive surface coverage by the polysaccharides. The observed slowdown of the surface diffusion may constitute a basic precursor mechanism for microcolony formation and provides clues for controlling biofilm formation.
DEFF Research Database (Denmark)
Andersen, Mathias Bækbo; Frey, J.; Bruus, Henrik
2010-01-01
]. The current models used to describe surface phenomena in nanofluidics can differ by orders of magnitude from experimentally measured values [2]. To mitigate the discrepancies, we hypothesize that the Stern-layer capacitance Cs and the surface equilibrium constants pKa, vary with the composition of the solid...
Diffuse reflection of ultracold neutrons from low-roughness surfaces
Energy Technology Data Exchange (ETDEWEB)
Atchison, F.; Daum, M.; Henneck, R.; Horisberger, M.; Kirch, K.; Lauss, B.; Mtchedlishvili, A.; Meier, M.; Petzoldt, G.; Schelldorfer, R.; Zsigmond, G. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Heule, S.; Knecht, A. [Paul Scherrer Institut, PSI, Villigen (Switzerland); University Zuerich, Zuerich (Switzerland); Kasprzak, M. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Stefan Meyer Institut, Vienna (Austria); Kuzniak, M. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Jagiellonian University, Smoluchowski Institute of Physics, Cracow (Poland); Plonka-Spehr, C. [Institut Laue Langevin, ILL, Grenoble (France); Straumann, U. [University Zuerich, Zuerich (Switzerland)
2010-04-15
We report a measurement of the reflection of ultracold neutrons from flat, large-area plates of different Fermi potential materials with low surface roughness. The results were used to test two diffuse reflection models, the well-known Lambert model and the micro-roughness model which is based on wave scattering. The Lambert model fails to reproduce the diffuse reflection data. The surface roughness b and correlation length w, obtained by fitting the micro-roughness model to the data are in the range 1{<=}b{<=}3 nm and 10{<=}w{<=}120 nm, in qualitative agreement with independent measurements using atomic force microscopy. (orig.)
Diffuse reflection of ultracold neutrons from low-roughness surfaces
International Nuclear Information System (INIS)
Atchison, F.; Daum, M.; Henneck, R.; Horisberger, M.; Kirch, K.; Lauss, B.; Mtchedlishvili, A.; Meier, M.; Petzoldt, G.; Schelldorfer, R.; Zsigmond, G.; Heule, S.; Knecht, A.; Kasprzak, M.; Kuzniak, M.; Plonka-Spehr, C.; Straumann, U.
2010-01-01
We report a measurement of the reflection of ultracold neutrons from flat, large-area plates of different Fermi potential materials with low surface roughness. The results were used to test two diffuse reflection models, the well-known Lambert model and the micro-roughness model which is based on wave scattering. The Lambert model fails to reproduce the diffuse reflection data. The surface roughness b and correlation length w, obtained by fitting the micro-roughness model to the data are in the range 1≤b≤3 nm and 10≤w≤120 nm, in qualitative agreement with independent measurements using atomic force microscopy. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Olin, M.; Valkiainen, M.; Aalto, H. [VTT Chemical Technology, Espoo (Finland)
1997-12-01
This report includes both experimental and modelling parts. Also, a novel approach to the diffusion experiments is introduced, where ions of the same electric charge diffuse in opposite directions through the same rock sample. Six rock-types from Olkiluoto radioactive waste disposal investigation site were used in the experiments: granite, weathered granite, mica gneiss, weathered mica gneiss, tonalite and altered mica gneiss/migmatite. The experiments consisted of the determination of the effective diffusion coefficient and the rock capacity factor for tritium, chloride (Cl-36) and sodium (Na-22). The modelling consisted of a chemical model for small pores (< 100 nm), a model for counter ion diffusion and models for the laboratory experiments. 21 refs.
Convergence of surface diffusion parameters with model crystal size
Cohen, Jennifer M.; Voter, Arthur F.
1994-07-01
A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.
Di Francesco, Marco
2011-04-01
The dependence of tumor on essential nutrients is known to be crucial for its evolution and has become one of the targets for medical therapies. Based on this fact a reaction-diffusion system with chemotaxis term and nutrient-based growth of tumors is presented. The formulation of the model considers also an influence of tumor and pharmacological factors on nutrient concentration. In the paper, convergence of solutions to constant, stationary states in the one-dimensional case for small perturbation of the equilibria is investigated. The nonlinear stability results are obtained by means of the classical symmetrization method and energy Sobolev estimates. © 2010 Elsevier Ltd.
International Nuclear Information System (INIS)
Matsuoka, Shingo; Nakamura, Hirone; Tamura, Takaaki; Fujii, Toshihiro.
1984-01-01
A flowing afterglow apparatus was constructed and the operation of the afterglow system including data analysis was tested by measuring the rate constants for the reactions N + + NO, N 2 + + NO, He + + N 2 , and SF 6 + e; the results were 5.8 x 10 -10 , 3.9 x 10 -10 , 1.20 x 10 -9 , and 2.1 x 10 -7 cm 3 s -1 respectively. In the measurements an extraction voltage for ion sampling was not applied to the nose cone in order not to introduce an electric field into the reaction region. A ''non-ambipolar'' model developed by us was used for the data analysis of the ion/molecule reactions. For the data analysis of the electron attachment, a typical curve fit mehtod to the product ion signal was used. However, no theoretical curves fit the experimental points. This disagreement is attributed to a change of the ion-sampling efficiency through the nose-cone aperture arising from a change of the electron-dominated plasma to a negative-ion-dominated plasma with an increasing flow rate of SF 6 . Nevertheless, the attachment rate could be determined by fitting the theoretical and experimantal curves in the limited region of the SF 6 flow rate where the negative-ion-dominated plasma is established at the sampling aperture. All the rate constants obtained here agree reasonably well with literature values. Next, errors in the positive ion/molecule reaction rate constants, which would occur if the diffusion coefficients of the ions and neutrals each have a + 10 % error were calculated for the flow model to be -0.4 and +1.2 % respectively, demonstrating that these parameters are not important in the analysis of data. This insensitivity explains why the nose-cone voltage applied in a typical flowing afterglow operation has not caused a significant error in the published rate constants although it disturbs the ion diffusive behavior. (author)
Semiconductor surface diffusion: Nonthermal effects of photon illumination
International Nuclear Information System (INIS)
Ditchfield, R.; Llera-Rodriguez, D.; Seebauer, E. G.
2000-01-01
Nonthermal influences of photon illumination on surface diffusion at high temperatures have been measured experimentally. Activation energies and pre-exponential factors for diffusion of germanium, indium, and antimony on silicon change by up to 0.3 eV and two orders of magnitude, respectively, in response to illumination by photons having energies greater than the substrate band gap. The parameters decrease for n-type material and increase for p-type material. Aided by results from photoreflectance spectroscopy, we suggest that motion of the surface quasi-Fermi-level for minority carriers accounts for much of the effect by changing the charge states of surface vacancies. An additional adatom-vacancy complexation mechanism appears to operate on p-type substrates. The results have significant implications for aspects of microelectronics fabrication by rapid thermal processing that are governed by surface mobility. (c) 2000 The American Physical Society
DIFFUSION MECHANISM OF CU ADATOMS ON A CU(001) SURFACE
BARKEMA, GT; BREEMAN, M; PASQUARELLO, A; CAR, R
1994-01-01
Ab initio calculations on surface diffusion of Cu adatoms on Cu(001) are presented. The hopping mechanism with a calculated energy barrier of 0.69 eV is found to be favorable over the exchange mechanism with 0.97 eV. We find from the geometry relaxations that adatoms are significantly attracted to
The motion of a vortex on a closed surface of constant negative curvature.
Ragazzo, C Grotta
2017-10-01
The purpose of this work is to present an algorithm to determine the motion of a single hydrodynamic vortex on a closed surface of constant curvature and of genus greater than one. The algorithm is based on a relation between the Laplace-Beltrami Green function and the heat kernel. The algorithm is used to compute the motion of a vortex on the Bolza surface. This is the first determination of the orbits of a vortex on a closed surface of genus greater than one. The numerical results show that all the 46 vortex equilibria can be explicitly computed using the symmetries of the Bolza surface. Some of these equilibria allow for the construction of the first two examples of infinite vortex crystals on the hyperbolic disc. The following theorem is proved: 'a Weierstrass point of a hyperellitic surface of constant curvature is always a vortex equilibrium'.
Dimer-flipping-assisted diffusion on a Si(001) surface
International Nuclear Information System (INIS)
Zi, J.; Min, B. J.; Lu, Y.; Wang, C. Z.; Ho, K. M.
2000-01-01
The binding sites and diffusion pathways of Si adatoms on a c(4x2) reconstructed Si(001) surface are investigated by a tight-binding method with an environment-dependent silicon potential in conjunction with ab initio calculations using the Car--Parrinello method. A new diffusion pathway along the trough edge driven by dimer flipping is found with a barrier of 0.74 eV, comparable to that of 0.68 eV along the top of the dimer rows
Constant mean curvature one surfaces in hyperbolic 3-space using the Bianchi-Calò method
LIMA LEVI L. DE; ROITMAN PEDRO
2002-01-01
In this note we present a method for constructing constant mean curvature on surfaces in hyperbolic 3-space in terms of holomorphic data first introduced in Bianchi's Lezioni di Geometria Differenziale of 1927, therefore predating by many years the modern approaches due to Bryant, Small and others. Besides its obvious historical interest, this note aims to complement Bianchi's analysis by deriving explicit formulae for CMC-1 surfaces and comparing the various approaches encountered in the lit...
Godinho, J. R. A.; Piazolo, S.; Evans, L.
2014-12-01
An important problem in geochemistry is the understanding of how changes occurring on a surface during dissolution affect the variability of measured dissolution rates. In this study a new approach to study the effect of surface dynamics on dissolution rates is tested by coupling experimental data with a numerical model that simulates the retreat of surface profiles during dissolution. We present specific results from the simulation of dissolution of fluorite surfaces. The equations that determine the retreat of a surface are based on experimentally obtained equations that relate the retreat rate of a surface to a single variable, the crystallographic orientation of the surface. Our results show that depending on the starting orientation, different types of topography are developed, similar to those observed experimentally. During the initial dissolution phase, changes of topography are rapid and associated with fast dissolution rates. The progressively slower dissolution rates are coupled with the development of surface segments with orientations that dissolve at a slower rate. Consequently, the overall retreat rate of a profile decreases during the simulation, and tends to a near-constant value. The results show a close relationship between dissolution rates, surface orientation and surface dynamics, which suggests that the dissolution rate of a specific mineral phase is not constant but varies with dissolution time and surface structure. This variability needs to be considered in the evaluation of experimentally derived dissolution rates, future dissolution experiments, and predictive kinetic models of dissolution.
A surface diffuse scattering model for the mobility of electrons in surface charge coupled devices
International Nuclear Information System (INIS)
Ionescu, M.
1977-01-01
An analytical model for the mobility of electrons in surface charge coupled devices is studied on the basis of the results previously obtained, considering a surface diffuse scattering; the importance of the results obtained for a better understanding of the influence of the fringing field in surface charge coupled devices is discussed. (author)
Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M
2011-12-01
Spray droplet adhesion is dependent not only on formulation and droplet parameters but also on the surface properties (physical and chemical) of the leaf. Quantifying these leaf surface properties would aid understanding and modelling of adhesion, helping to optimise spray formulations. Fractal dimensions (FDs) were used to quantify the relative leaf surface roughness of ten plant species. Static droplet contact angles were measured on each leaf surface, and wetting tension was calculated. Chemical profiles of the leaf surfaces were developed by evaluating contact angle behaviour relative to solution dielectric constants. The FDs of Cryo-SEM micrographs taken at 300× magnification gave the best correlation with adhesion. The wetting tension intercept had a strong relationship with mean adhesion, and successfully accounted for the wettability of the outlier species. The microroughness of the leaf surface, as revealed by Cryo-SEM, can be quantified by fractal dimension analysis. However, the wetting tension intercept is a more useful universal measure of the surface properties of the leaf (including roughness) as they pertain to adhesion. The slope of the wetting tension versus dielectric constant plot allowed preliminary quantification of the chemical contribution of leaf surface dielectric behaviour to adhesion. Copyright © 2011 Society of Chemical Industry.
The Björling problem for non-minimal constant mean curvature surfaces
DEFF Research Database (Denmark)
Brander, David; Dorfmeister, Josef
2010-01-01
The classical Bjorling problem is to find the minimal surface containing a given real analytic curve with tangent planes prescribed along the curve. We consider the generalization of this problem to non-minimal constant mean curvature (CMC) surfaces, and show that it can be solved via the loop...... group formulation for such surfaces. The main result gives a way to compute the holomorphic potential for the solution directly from the Bjorling data, using only elementary differentiation, integration and holomorphic extensions of real analytic functions. Combined with an Iwasawa decomposition...
Diffusion of particles on the patchwise bivariate surfaces
Czech Academy of Sciences Publication Activity Database
Tarasenko, Alexander; Jastrabík, Lubomír
2015-01-01
Roč. 458, Feb (2015), s. 27-34 ISSN 0921-4526 R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941; GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : kinetic Monte Carlo simulations * lattice-gas model * patchwise lattice * surface diffusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.352, year: 2015
Pinheiro, F A; Martínez, A S
2001-01-01
We review some of our recent results concerning the single and multiple electromagnetic scattering by magnetic spherical particles. For a single electromagnetic scattering we show that the magnetic contribution alters, when compared to nonmagnetic scattering, the behavior of the cross sections and mean cosine of the scattering angle (cos omega). For ferromagnetic particles, resonances may occur even in the small-particle limit when the particle radius is much smaller than the wavelength. The resonances increase the cross sections while (cos omega) is diminished , and even may become negative. Several quantities such the Ioffe-Regel parameter for localization are calculated for the multiple scattering regime. We show that magnetic scattering favors the observation of localization of electromagnetic waves in three dimensions. Further, this is also verified for dynamical experiments, where we show that the diffusion constant can be very small. Since the magnetic permeability of the scatterers can vary significan...
International Nuclear Information System (INIS)
Cousty, J.P.
1981-12-01
In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr
Cleaning of diffusion bonding surface by argon ion bombardment treatment
Wang, Airu; Ohashi, Osamu; Yamaguchi, Norio; Aoki, Masanori; Higashi, Yasuo; Hitomi, Nobuteru
2003-05-01
The specimens of oxygen-free high conductivity copper, SUS304L stainless steel and pure iron were treated by argon ion bombardment and then were bonded by diffusion bonding method. The effects of argon ion bombardment treatment on faying surface morphology, tensile strength of bonding joints and inclusions at the fracture surface were investigated. The results showed that argon ion bombardment treatment was effective to remove the oxide film and contamination at the faying surface and improve the quality of joints. The tensile strength of the bonded joints was improved, and minimum bonding temperature to make the metallic bonding at the interface was lowered by argon ion bombardment treatment. At the joints with argon ion bombardment treatment, ductile fractured surface was seen and the amount of inclusions was obviously decreased.
Measuring the Electrode Kinetics of Surface Confined Electrode Reactions at a Constant Scan Rate
Guziejewski, Dariusz; Mirceski, Valentin; Jadresko, Dijana
2014-01-01
Abstract: The kinetics of surface confined electrode reactions of alizarin, vitamin B12, and vitamin K2 is measured with square-wave voltammetry over a wide pH interval, by applying the recent methodology for kinetic analysis at a constant scan rate [V. Mirceski, D. Guziejewski, K. Lisichkov, Electrochim. Acta 2013, 114, 667–673]. The reliability and the simplicity of the recent methodology is confirmed. The methodology requires analysis of the peak potential separation o...
Directory of Open Access Journals (Sweden)
X. Liu
2018-01-01
Full Text Available In the oil and gas transportation system over long distance, application of high-strength pipeline steels can efficiently reduce construction and operation cost by increasing operational pressure and reducing the pipe wall thickness. Failure assessment is an important issue in the design, construction, and maintenance of the pipelines. The small circumferential surface cracks with constant depth in the welded pipelines are of practical interest. This work provides an engineering estimation procedure based upon the GE/EPRI method to determine the J-integral for the thin-walled pipelines with small constant-depth circumferential surface cracks subject to tension and bending loads. The values of elastic influence functions for stress intensity factor and plastic influence functions for fully plastic J-integral estimation are derived in tabulated forms through a series of three-dimensional finite element calculations for different crack geometries and material properties. To check confidence of the J-estimation solution in practical application, J-integral values obtained from detailed finite element (FE analyses are compared with those estimated from the new influence functions. Excellent agreement of FE results with the proposed J-estimation solutions for both tension and bending loads indicates that the new solutions can be applied for accurate structural integrity assessment of high-strength pipelines with constant-depth circumferential surface cracks.
DEFF Research Database (Denmark)
Andersen, Mathias Bækbo; Frey, J.; Bruus, Henrik
2010-01-01
Fundamental understanding of the unique physics at the solid-liquid interface in nanofluidic channels is essential for the advancement of basic scientific knowledge and the development of novel applications for pharmaceuticals, environmental health and safety, energy harvesting and biometrics [1......]. The current models used to describe surface phenomena in nanofluidics can differ by orders of magnitude from experimentally measured values [2]. To mitigate the discrepancies, we hypothesize that the Stern-layer capacitance Cs and the surface equilibrium constants pKa, vary with the composition of the solid...
DEFF Research Database (Denmark)
Andersen, Mathias Bækbo; Frey, Jared; Pennathur, Sumita
2011-01-01
, and pK+ are constant and independent of surface composition. Our theoretical model consists of three parts: (i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buffered bulk electrolyte, and (iii) a self-consistent Gouy–Chapman–Stern triple-layer model...... of the electrochemical double layer coupling these two equilibrium models. To validate our model, we used both pH-sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measurements. Using our model we predict the dependence of ζ potential, surface charge density, and capillary...
Dissociation and recombination rate constants for CN on Cu and Ni group transition metal surfaces
Sellers, Harrell
2000-07-01
We report dissociation and recombination reaction rate constants for CN on the fcc(111) surfaces of Ni, Pd, Pt, Cu, Ag and Au from molecular dynamics simulations employing our normalized bond index-reactive potential functions (NBI-RPF). The Arrhenius pre-exponentials for recombination of CN on these surfaces are about three orders of magnitude greater than the dissociation pre-exponentials. On the series of metals considered herein, the reaction energetics favor dissociation on the more active metals and favor recombination on the least active metals. However, the differences in the pre-exponentials of nearly a factor of 10 3 express the tendency of the reaction entropy to favor the recombination on the surfaces investigated. We also discuss the implications of these results in terms of the thermodynamics of the surface reactions.
Closed surfaces of constant visual acuity in symmetric dioptric power space.
Rubin, A; Harris, W F
2001-10-01
This paper demonstrates a multivariate approach to understanding the complicated relations of visual acuity to refractive state or ametropia. Other approaches, as previously used, included graphical representations of lines or profiles of iso-oxyopia (Peters, 1961). But one limitation of Peters' method is that cylinder axis was ignored. However, here the relationship between visual acuity and refractive power will be represented by estimated closed surfaces of constant visual acuity in symmetric dioptric power space. At or near the common center (of several closed surfaces, for example) is the refractive compensation. Coming outwards from such a center, the visual acuity drops in all directions in the space. The primary purpose of this paper was to present estimated closed surfaces of constant visual acuity for several eyes. Various procedures were performed on several subjects including measurement of iris aperture diameter, subjective refraction, and autorefraction. Thereafter, an automated phoropter and either Jackson cross-cylinders or spheres were used to influence dioptric blur or defocus in the subjects. The visual stimulus was a computer-generated nondirectional or meridionally independent letter O. Ovoidal surfaces fit the measurements obtained (with Jackson cross-cylinders and spheres) better than ellipsoidal surfaces. The cross-section, in symmetric dioptric power space, at powers with the same nearest equivalent sphere as the refractive compensation is elliptical in many cases and reflects a dependence of visual acuity on cylinder axis. The surfaces differ when powers are changed so that one is moving away from (decompensation surfaces) or toward (accompensation surfaces) the refractive compensation. The multivariate and graphical methods used in this paper probably have implications for the direction of future research in a number of areas involving measures of vision function such as autorefraction, retinoscopy, subjective refraction, and visual
Bulk and surface controlled diffusion of fission gas atoms
Energy Technology Data Exchange (ETDEWEB)
Andersson, Anders D. [Los Alamos National Laboratory
2012-08-09
in UO{sub 2{+-}x}, which compare favorably to available experiments. This is an extension of previous work [13]. In particular, it applies improved chemistry models for the UO{sub 2{+-}x} nonstoichiometry and its impact on the fission gas activation energies. The derivation of these models follows the approach that used in our recent study of uranium vacancy diffusion in UO{sub 2} [14]. Also, based on the calculated DFT data we analyze vacancy enhanced diffusion mechanisms in the intermediate temperature regime. In addition to vacancy enhanced diffusion we investigate species transport on the (111) UO{sub 2} surface. This is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation, for which surface diffusion could be the rate-limiting transport step. Diffusion of such bubbles constitutes an alternative mechanism for mass transport in these materials.
Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi
2018-01-01
We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.
International Nuclear Information System (INIS)
Pinheiro, F.A.; Sampaio, L.C.; Martinez, A.S.
2001-01-01
We review some of our recent results concerning the single and multiple electromagnetic scattering by magnetic spherical particles. For a single electromagnetic scattering we show that the magnetic contribution alters, when compared to nonmagnetic scattering, the behavior of the cross sections and mean cosine of the scattering angle (cos ω). For ferromagnetic particles, resonances may occur even in the small-particle limit when the particle radius is much smaller than the wavelength. The resonances increase the cross sections while (cos ω) is diminished , and even may become negative. Several quantities such the Ioffe-Regel parameter for localization are calculated for the multiple scattering regime. We show that magnetic scattering favors the observation of localization of electromagnetic waves in three dimensions. Further, this is also verified for dynamical experiments, where we show that the diffusion constant can be very small. Since the magnetic permeability of the scatterers can vary significantly around the Curie-Weiss critical temperature, experiments should be done on the microwave region and the scatterers should be soft ferrites. Some aspects of such experiment are presented. (author)
International Nuclear Information System (INIS)
Torquato, S.; Kim, I.C.; Cule, D.
1999-01-01
We generalize the Brownian motion simulation method of Kim and Torquato [J. Appl. Phys. 68, 3892 (1990)] to compute the effective conductivity, dielectric constant and diffusion coefficient of digitized composite media. This is accomplished by first generalizing the first-passage-time equations to treat first-passage regions of arbitrary shape. We then develop the appropriate first-passage-time equations for digitized media: first-passage squares in two dimensions and first-passage cubes in three dimensions. A severe test case to prove the accuracy of the method is the two-phase periodic checkerboard in which conduction, for sufficiently large phase contrasts, is dominated by corners that join two conducting-phase pixels. Conventional numerical techniques (such as finite differences or elements) do not accurately capture the local fields here for reasonable grid resolution and hence lead to inaccurate estimates of the effective conductivity. By contrast, we show that our algorithm yields accurate estimates of the effective conductivity of the periodic checkerboard for widely different phase conductivities. Finally, we illustrate our method by computing the effective conductivity of the random checkerboard for a wide range of volume fractions and several phase contrast ratios. These results always lie within rigorous four-point bounds on the effective conductivity. copyright 1999 American Institute of Physics
The studies of scale surface produced on outer diffusion layers
Directory of Open Access Journals (Sweden)
J. Augustyn-Pieniążek
2011-04-01
Full Text Available In this study at attempt was made to examine the scale formed on ferritic-austenitic duplex type steel subjected to previous thermochemical treatment. The treatment consisted in diffusion aluminising in a metallising mixture composed of Fe-Al powder. As an activator, ammonium chloride (NH4Cl added in an amount of 2 wt.% was used. Then, both the base material and samples with the diffusiondeposited surface layers were oxidised at 1000°C in the air. Thus formed scales were identified by light microscopy, SEM and X-ray phase analysis. The aim of the oxidation tests carried out under isothermal conditions was to compare the scale morphology when obtained on untreated substrate material and on the surface layers rich in aluminium.
International Nuclear Information System (INIS)
Goddard, P.J.
1989-01-01
The stomach is thought to be protected from luminal acid by a gastric mucosal barrier that restricts the diffusion of acid into tissue. This study tested the hypothesis that the hydrophobic luminal surface of canine gastric mucosa incubated in Ussing chambers, impedes the back-diffusion of luminal acid into the tissue. Isolated sheets of mucosa were treated with cimetidine to inhibit spontaneous acid secretion, and incubated under conditions that prevented significant secretion of luminal bicarbonate. By measuring acid loss from the luminal compartment using the pH-stat technique, acid back-diffusion was continuously monitored; potential difference (PD) was measured as an index of tissue viability. Tissue luminal surface hydrophobicity was estimated by contact angle analysis at the end of each experiment. Addition of 16,16-dimethyl prostaglandin E 2 to the nutrient compartment enhanced luminal surface hydrophobicity, but did not reduce acid back-diffusion in tissues that maintained a constant PD. 10 mM salicylate at pH 4.00 in the luminal compartment reduced surface hydrophobicity, but this decrease did not occur if 1 ug/ml prostaglandin was present in the nutrient solution. Despite possessing relatively hydrophilic and relatively hydrophobic surface properties, respectively, acid back-diffusion in the absence of salicylate was not significantly different between these two groups. Neither group maintained a PD after incubation with salicylate. Lastly, radiolabeled salicylate was used to calculate the free (non-salicylate associated) acid loss in tissues incubated with salicylate and/or prostaglandin. No significant correlation was found between free acid back-diffusion and luminal surface hydrophobicity. These data do not support the hypothesis that acid back-diffusion in impeded by the hydrophobic surface presented by isolated canine gastric mucosa
Singularities of spacelike constant mean curvature surfaces in Lorentz-Minkowski space
DEFF Research Database (Denmark)
Brander, David
2011-01-01
We study singularities of spacelike, constant (non-zero) mean curvature (CMC) surfaces in the Lorentz-Minkowski 3-space L-3. We show how to solve the singular Bjorling problem for such surfaces, which is stated as follows: given a real analytic null-curve f(0)(x), and a real analytic null vector...... field v(x) parallel to the tangent field of f(0), find a conformally parameterized (generalized) CMC H surface in L-3 which contains this curve as a singular set and such that the partial derivatives f(x) and f(y) are given by df(0)/dx and v along the curve. Within the class of generalized surfaces...... considered, the solution is unique and we give a formula for the generalized Weierstrass data for this surface. This gives a framework for studying the singularities of non-maximal CMC surfaces in L-3. We use this to find the Bjorling data - and holomorphic potentials - which characterize cuspidal edge...
Generating a Simulated Fluid Flow Over an Aircraft Surface Using Anisotropic Diffusion
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.
Direct measurement of Cu surface self-diffusion on a checked surface
International Nuclear Information System (INIS)
Cousty, Jacques; Peix, Roger; Perraillon, Bernard.
1976-01-01
A radiotracer technique ( 64 Cu) was developed to measure surface diffusion on copper surfaces of total impurity concentration not exceeding some 10 -3 monolayers. The apparatus used consists of a slow electron diffraction device, an Auger analysis spectrometer (CMA), an ion gun and an evaporation device assembled in an ultra-vacuum chamber holding a residual pressure below 10 -10 Torr. A sample handler enables the surface studied to be positioned in front of each of these instruments. During the diffusion treatment the chemical composition of the surface is checked intermittently, and afterwards the spread of the deposit is measured outside the ultravacuum chamber. Slices several microns thick are removed and dissolved separately in dishes containing HNO 3 . The activity is then measured with a flow counter [fr
Free surface modelling with two-fluid model and reduced numerical diffusion of the interface
International Nuclear Information System (INIS)
Strubelj, Luka; Tiselj, Izrok
2008-01-01
Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening
Directory of Open Access Journals (Sweden)
Feng Feng
Full Text Available Surface plasmon resonance (SPR has previously been employed to measure the active concentration of analyte in addition to the kinetic rate constants in molecular binding reactions. Those approaches, however, have a few restrictions. In this work, a Bayesian approach is developed to determine both active concentration and affinity constants using SPR technology. With the appropriate prior probabilities on the parameters and a derived likelihood function, a Markov Chain Monte Carlo (MCMC algorithm is applied to compute the posterior probability densities of both the active concentration and kinetic rate constants based on the collected SPR data. Compared with previous approaches, ours exploits information from the duration of the process in its entirety, including both association and dissociation phases, under partial mass transport conditions; do not depend on calibration data; multiple injections of analyte at varying flow rates are not necessary. Finally the method is validated by analyzing both simulated and experimental datasets. A software package implementing our approach is developed with a user-friendly interface and made freely available.
Nucleation of reaction-diffusion waves on curved surfaces
International Nuclear Information System (INIS)
Kneer, Frederike; Schöll, Eckehard; Dahlem, Markus A
2014-01-01
We study reaction-diffusion waves on curved two-dimensional surfaces, and determine the influence of curvature upon the nucleation and propagation of spatially localized waves in an excitable medium modelled by the generic FitzHugh–Nagumo model. We show that the stability of propagating wave segments depends crucially on the curvature of the surface. As they propagate, they may shrink to the uniform steady state, or expand, depending on whether they are smaller or larger, respectively, than a critical nucleus. This critical nucleus for wave propagation is modified by the curvature acting like an effective space-dependent local spatial coupling, similar to diffuson, thus extending the regime of propagating excitation waves beyond the excitation threshold of flat surfaces. In particular, a negative gradient of Gaussian curvature Γ, as on the outside of a torus surface (positive Γ), when the wave segment symmetrically extends into the inside (negative Γ), allows for stable propagation of localized wave segments remaining unchanged in size and shape, or oscillating periodically in size. (paper)
Averaging of diffusing contaminant concentrations in atmosphere surface layer
International Nuclear Information System (INIS)
Ivanov, E.A.; Ramzina, T.V.
1985-01-01
Calculations permitting to average concentration fields of diffusing radioactive contaminant coming from the NPP exhaust stack in the atmospheric surface layer are given. Formulae of contaminant concentration field calculation are presented; it depends on the average wind direction value (THETA) for time(T) and stability of this direction (σsub(tgTHETA) or σsub(THETA)). Probability of wind direction deviation from the average value for time T is satisfactory described by the Gauss law. With instability increase in the atmosphere σ increases, when wind velocity increasing the values of σ decreases for all types of temperature gradients. Nonuniformity of σ value dependence on averaging time T is underlined, that requires accurate choice of σsub(tgTHETA) and σsub(THETA) parameters in calculations
Andersen, Mathias Bækbo; Frey, Jared; Pennathur, Sumita; Bruus, Henrik
2011-01-01
We present a combined theoretical and experimental analysis of the solid-liquid interface of fused-silica nanofabricated channels with and without a hydrophilic 3-cyanopropyldimethylchlorosilane (cyanosilane) coating. We develop a model that relaxes the assumption that the surface parameters C(1), C(2), and pK(+) are constant and independent of surface composition. Our theoretical model consists of three parts: (i) a chemical equilibrium model of the bare or coated wall, (ii) a chemical equilibrium model of the buffered bulk electrolyte, and (iii) a self-consistent Gouy-Chapman-Stern triple-layer model of the electrochemical double layer coupling these two equilibrium models. To validate our model, we used both pH-sensitive dye-based capillary filling experiments as well as electro-osmotic current-monitoring measurements. Using our model we predict the dependence of ζ potential, surface charge density, and capillary filling length ratio on ionic strength for different surface compositions, which can be difficult to achieve otherwise. Copyright © 2010 Elsevier Inc. All rights reserved.
Generating a Simulated Fluid Flow over a Surface Using Anisotropic Diffusion
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2016-01-01
A fluid-flow simulation over a computer-generated surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using the gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and the gradient vector.
Lee, Sangdae; Kim, Yong-Il; Kim, Ki-Bok
2013-11-01
Biosensors are used in a variety of fields for early diagnosis of diseases, measurement of toxic contaminants, quick detection of pathogens, and separation of specific proteins or DNA. In this study, we fabricated and evaluated the capability of a high sensitivity Love wave surface acoustic wave (SAW) biosensor. The experimental setup was composed of the fabricated 155-MHz Love wave SAW biosensor, a signal measurement system, a liquid flow system, and a temperature-control system. Subsequently, we measured the lower limit of detection (LOD) of the 155-MHz Love wave SAW biosensor, and calculated the association and dissociation constants between protein G and anti-mouse IgG using kinetic analysis. We compared these results with those obtained using a commercial surface plasmon resonance (SPR) biosensor. We found that the LOD of the SAW biosensor for anti-mouse IgG and mouse IgG was 0.5 and 1 microg/ml, respectively, and the resultant equilibrium association and dissociation constants were similar to the corresponding values obtaining using the commercial SPR biosensor. Thus, we conclude that the fabricated 155-MHz Love wave SAW biosensor exhibited the high sensitivity of the commercial SPR biosensor and was able to analyze the binding properties of the ligand and receptor by kinetic analysis similarly to the commercial SPR biosensor.
DEFF Research Database (Denmark)
Brander, David; Rossman, Wayne; Schmitt, Nicholas
2010-01-01
We give an infinite dimensional generalized Weierstrass representation for spacelike constant mean curvature (CMC) surfaces in Minkowski 3-space $\\R^{2,1}$. The formulation is analogous to that given by Dorfmeister, Pedit and Wu for CMC surfaces in Euclidean space, replacing the group $SU_2...... symmetry, as well as studying another class of surfaces for which the metric is rotationally invariant....
Buoyancy effects laminar slot jet impinging on a surface with constant heat flux
International Nuclear Information System (INIS)
Shokouhmand, H.; Esfahanian, V.; Masoodi, R.
2004-01-01
The two-dimensional laminar air jet issuing from a nozzle of half which terminates at height above a flat plate normal to the jet is numerically on the flow and thermal structure of the region near impingement. The impinging surface is maintained at a constant heat flux condition. The full Navier-Stocks and energy equations are solved by a finite difference method to evaluate the velocity profiles and temperature distribution. The governing parameters and their ranges are: Reynolds number Re, 10-50, Grashof number Gr, 0-50, Richardson number Ri=Gr/ Re 2 , Non dimensional nozzle height H,2-3. Results of the free streamline, local friction factor and heat transfer coefficient are graphically presented. It is found that enhancement of the heat transfer rate is substantial for high Richardson number conditions. Although the laminar jet impingement for isothermal condition has been already studied, however the constant heat flux has not been studied enough. the present paper will analyze a low velocity air jet, Which can be used for cooling of a simulated electronics package
A modified Poisson-Boltzmann surface excess calculation with a field dependent dielectric constant
International Nuclear Information System (INIS)
Gordillo, G.J.; Molina, F.V.; Posadas, D.
1990-01-01
The Unequal Radius Modified Gouy-Chapman (URMGC) was applied to mixtures of electrolytes. It was considered that the two anions, (1) and (2), have different radius, r 1 and r 2 , being r 2 smaller than r 1 . The dielectric constant was taken as a function of the electric field, using the theoretical Booth equation, or as a linear dependence varying between 6 and 78 when r 2 1 . The results show that the surface excess of anion 2 is much greater than the one predicted by Gouy-Chapman theory when the proportion of 2 increases in the mixture, while both the other anion and the cation show negative deviation. This effect is more evident in mixtures than in the case of single electrolytes, and has a maximum for a composition that depends on the chosen parameters for the model. (Author) [es
Inward Cationic Diffusion and Formation of Silica-Rich Surface Nanolayer of Glass
DEFF Research Database (Denmark)
Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng
2009-01-01
This paper reports a chemical approach for obtaining a silica-rich nanolayer on the surface of a vanadium-bearing silicate glass. The approach involves depletion of earth alkaline ions (Mg2+ and Ca2+) from the glass surface by means of inward diffusion of those ions, i.e., diffusion from the surf......This paper reports a chemical approach for obtaining a silica-rich nanolayer on the surface of a vanadium-bearing silicate glass. The approach involves depletion of earth alkaline ions (Mg2+ and Ca2+) from the glass surface by means of inward diffusion of those ions, i.e., diffusion from...
Transition from diffusive to localized regimes in surface corrugated waveguides
Energy Technology Data Exchange (ETDEWEB)
Garcia-Martin, A.; Saenz, J. J. [Universidad Autonoma de Madrid, Madrid (Spain); Nieto-Vesperinas, M. [Instituto de Ciencias de Materiales de Madrid, Madrid (Spain)
2001-03-01
Exact calculations of transmission and reflection coefficients in surface randomly corrugated waveguides are presented. The elastic scattering of diffuse light classical waves from a rough surface induces a diffusive transport along the waveguide axis. As the length of the corrugated part of the waveguide increases, a transition from the diffusive to the localized regime is observed. This involves an analogy with electron conduction in nano wires, and hence, a concept analogous to that of resistance can be introduced. An oscillatory behavior of different transport properties (elastic mean free path, localization length, enhanced backscattering), versus the wavelength is predicted. An analysis of the transmission coefficients (transmitted speckle) shows that as the length of the corrugated part of the waveguide increases there is a strong preference to forward coupling through the lowest mode. This marks a clear anisotropy in the forward propagation which is absent in the case of volume disorder. The statistics of reflection coefficients is analyzed, first using random matrix theory (Rm) to analytically deduce the probability densities in the localization regime, afterwards exact numerical calculations of the coupling to backward modes in surface corrugated waveguides will be put forward for comparison. We show that the reflected speckle distribution are independent of the transport regime, at variance with the regime transition found in the transmission case. Despite the strong anisotropy, the analysis of the probability distributions of both transmitted and reflected waves confirms the distributions predicted by Random Matrix Theory for volume disorder. [Spanish] Presentamos calculos exactos de los coeficientes de transmision y reflexion en guias de onda con desorden de superficie. La dispersion elastica de luz difusa o de otras ondas clasicas por una superficie rugosa induce un transporte difusivo a lo largo del eje de la guia. A medida que la longitud de la zona
DEFF Research Database (Denmark)
Hjelt, T.; Vattulainen, Ilpo Tapio
2000-01-01
studies with chains of different lengths lead to a conclusion that, for a single diffusing chain, the memory contribution in E-A(T) decreases along with an increasing chain length and is almost negligible in the case of very long chains. Finally, we close this work by discussing our results in light......We study the coverage dependence of surface diffusion for chainlike molecules by the fluctuating-bond model with a Monte Carlo dynamics. The model includes short-ranged excluded volume interactions between different chains as well as an intrachain bond angle potential to describe the chain...... stiffness. Our primary aim is to consider the role played by chain stiffness and the resulting memory effects in tracer diffusion, and in particular their role in the effective tracer diffusion barrier E-A(T) extracted from the well-known Arrhenius form. We show that the memory effects in tracer diffusion...
Shankar, Varun; Wright, Grady B; Kirby, Robert M; Fogelson, Aaron L
2016-06-01
In this paper, we present a method based on Radial Basis Function (RBF)-generated Finite Differences (FD) for numerically solving diffusion and reaction-diffusion equations (PDEs) on closed surfaces embedded in ℝ d . Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scattered nodes representing the surface and normal vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby avoiding coordinate distortions and singularities. We also present an optimization procedure that allows for the stabilization of the discrete differential operators generated by our RBF-FD method by selecting shape parameters for each stencil that correspond to a global target condition number. We show the convergence of our method on two surfaces for different stencil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric surfaces and more general surfaces represented by point clouds.
The Wafer and Diffusion Lot Dependence of Surface Effects Resulting from Ionizing Radiation,
An investigation of the wafer and diffusion lot dependence of surface effects resulting from ionizing radiation was conducted by irradiating samples...of transistors. The transistors were selected by the wafer and diffusion lot from which they were produced. Both NPN and PNP transistors were...the diffusion lot . With the PNP’s which were not effected to the same extent as the NPN’s the dependence on the wafer or diffusion lot was not
Adatom surface diffusion of catalytic metals on the anatase TiO2(101) surface.
Alghannam, Afnan; Muhich, Christopher L; Musgrave, Charles B
2017-02-08
Titanium oxide is often decorated with metal nano-particles and either serves as a catalyst support or enables photocatalytic activity. The activity of these systems degrades over time due to catalytic particle agglomeration and growth by Ostwald ripening where adatoms dissociate from metal particles, diffuse across the surface and add to other metal particles. In this work, we use density functional theory calculations to study the diffusion mechanisms of select group VIII and 1B late-transition metal adatoms commonly used in catalysis and photocatalysis (Au, Ag, Cu, Pt, Rh, Ni, Co and Fe) on the anatase TiO 2 (101) surface. All metal adatoms preferentially occupy the bridge site between two 2-fold-coordinated oxygen anions (O 2c ). Surface migration was investigated by calculating the minimum energy pathway from one bridge site to another along three pathways: two in the [010] direction along a row of surface O 2c anions and one in the [101[combining macron
Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure
Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.
2017-07-01
Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.
Shivanand; Ludwig, Alon; Webb, Kevin J
2012-10-15
The effective parallel and perpendicular dielectric constants for a multilayer metal–insulator stack are obtained from numerical simulations and compared with analytical homogenization results as a function of wavelength and number of periods. The influence of inevitable film surface roughness on the homogenized dielectric constants, determined from numerical scattered field calculations, is evaluated as a function of roughness. The impact of this roughness on resolution in a subwavelength imaging application gives smoothness guidelines for material deposition.
DEFF Research Database (Denmark)
Mejlbro, Leif
1996-01-01
Fick's Second Law of Diffusion with time-dependent diffusioncoefficient and surface concentration is solved. Mimicking the classicalsolution, special time-dependent surface concentration functions areconsidered. These models are used in giving estimates of the lifetimeof the structure, when the c...... the concrete cover is given, as well as estimatesof the thickness of the concrete cover, when the expected lifetime is given.*Note: Book tilte: Durability of Concrete in Saline Environment...
Chu, Khim Hoong
2017-11-09
Surface diffusion coefficients may be estimated by fitting solutions of a diffusion model to batch kinetic data. For non-linear systems, a numerical solution of the diffusion model's governing equations is generally required. We report here the application of the classic Langmuir kinetics model to extract surface diffusion coefficients from batch kinetic data. The use of the Langmuir kinetics model in lieu of the conventional surface diffusion model allows derivation of an analytical expression. The parameter estimation procedure requires determining the Langmuir rate coefficient from which the pertinent surface diffusion coefficient is calculated. Surface diffusion coefficients within the 10 -9 to 10 -6 cm 2 /s range obtained by fitting the Langmuir kinetics model to experimental kinetic data taken from the literature are found to be consistent with the corresponding values obtained from the traditional surface diffusion model. The virtue of this simplified parameter estimation method is that it reduces the computational complexity as the analytical expression involves only an algebraic equation in closed form which is easily evaluated by spreadsheet computation.
Kovacik, Dusan; Rahel, Jozef; Kubincova, Jana; Zahoranova, Anna; Cernak, Mirko
2009-10-01
In recent years, low temperature atmospheric pressure plasma surface treatments have become a hot topic because of the potential of fast and efficient in-line processing fabrication without expensive vacuum equipment. A major problem of atmospheric pressure treatment in air is insufficient treatment uniformity because, particularly at the higher plasma power densities, the air plasma has the tendency of filamentation and transition into an arc discharge. Diffuse coplanar surface barrier discharge (DCSBD) plasma source has been developed to overcome these problems. This type of discharge enables to generate macroscopically homogeneous thin (˜ 0.3 mm) plasma layer with power density of some 100 W/cm^3 practically in any gas without admixture of He. It was found that the ambient air plasma of DCSBD is capable to make lightweight polypropylene nonwoven fabrics permanently hydrophilic, without any pinholing and with low power consumption of some 1 kWh/kg.
International Nuclear Information System (INIS)
Mueller, E.Z.
1991-01-01
An equivalent diffusion theory PWR reflector model is presented, which has as its basis Smith's generalisation of Koebke's Equivalent Theory. This method is an adaptation, in one-dimensional slab geometry, of the Generalised Equivalence Theory (GET). Since the method involves the renormalisation of the GET discontinuity factors at nodal interfaces, it is called the Normalised Generalised Equivalence Theory (NGET) method. The advantages of the NGET method for modelling the ex-core nodes of a PWR are summarized. 23 refs
Impact of morphology on diffusive dynamics on curved surfaces.
Kusters, Remy; Storm, Cornelis
2014-03-01
Diffusive processes on nonplanar substrates are deeply relevant for cellular function and transport and increasingly used to probe and characterize the behavior of proteins in membranes. We present analytical and numerical analyses of in-plane diffusion of discrete particles on curved geometries reflecting various generic motifs in biology and explore, in particular, the effect that the shape of the substrate has on the characteristic time scales of diffusive processes. To this end, we consider both collective measures (the relaxation of concentration profiles towards equilibrium) and single-particle measures (escape rates and first passage times of individual diffusing molecules): the first relevant for the correct interpretation of FRAP experiments in curved environments; the second, for single-particle tracking probes. Each of these measures is sensitively affected by the morphology of the substrate, and we find that the exit rate out of a domain is not uniquely set by the size of its boundary, illustrating the general principle we reveal: By varying the shape of a substrate, Nature can control the diffusive time scales in a microenvironment without changing the bare substrate properties.
Impact of morphology on diffusive dynamics on curved surfaces
Kusters, Remy; Storm, Cornelis
2014-03-01
Diffusive processes on nonplanar substrates are deeply relevant for cellular function and transport and increasingly used to probe and characterize the behavior of proteins in membranes. We present analytical and numerical analyses of in-plane diffusion of discrete particles on curved geometries reflecting various generic motifs in biology and explore, in particular, the effect that the shape of the substrate has on the characteristic time scales of diffusive processes. To this end, we consider both collective measures (the relaxation of concentration profiles towards equilibrium) and single-particle measures (escape rates and first passage times of individual diffusing molecules): the first relevant for the correct interpretation of FRAP experiments in curved environments; the second, for single-particle tracking probes. Each of these measures is sensitively affected by the morphology of the substrate, and we find that the exit rate out of a domain is not uniquely set by the size of its boundary, illustrating the general principle we reveal: By varying the shape of a substrate, Nature can control the diffusive time scales in a microenvironment without changing the bare substrate properties.
Laser-induced desorption determinations of surface diffusion on Rh(111)
International Nuclear Information System (INIS)
Seebauer, E.G.; Schmidt, L.D.
1987-01-01
Surface diffusion of hydrogen, deuterium and CO on Rh(111) has been investigated by laser-induced thermal desorption (LITD) and compared with previous results for these species on Pt(111) and on other metals. For deuterium in the coverage range 0.02 0 - 8 x 10 -2 cm 2 /s, with a diffusion activation energy 3.7 0 rises from 10 -3 to 10 -2 cm 2 /s between θ = 0.01 and 0.40. Values of E/sub diff/ on different surfaces appear to correlate with differences in heats of adsorption in different binding states which form saddle point configurations in surface diffusion. In addition, oxidation reactions on Rh and on several other transition metal surfaces may be limited to CO or H surface diffusion. 30 refs., 3 figs., 1 tab
Modeling the erythemal surface diffuse irradiance fraction for Badajoz, Spain
Sanchez, Guadalupe; Serrano, Antonio; Cancillo, María Luisa
2017-10-01
Despite its important role on the human health and numerous biological processes, the diffuse component of the erythemal ultraviolet irradiance (UVER) is scarcely measured at standard radiometric stations and therefore needs to be estimated. This study proposes and compares 10 empirical models to estimate the UVER diffuse fraction. These models are inspired from mathematical expressions originally used to estimate total diffuse fraction, but, in this study, they are applied to the UVER case and tested against experimental measurements. In addition to adapting to the UVER range the various independent variables involved in these models, the total ozone column has been added in order to account for its strong impact on the attenuation of ultraviolet radiation. The proposed models are fitted to experimental measurements and validated against an independent subset. The best-performing model (RAU3) is based on a model proposed by Ruiz-Arias et al. (2010) and shows values of r2 equal to 0.91 and relative root-mean-square error (rRMSE) equal to 6.1 %. The performance achieved by this entirely empirical model is better than those obtained by previous semi-empirical approaches and therefore needs no additional information from other physically based models. This study expands on previous research to the ultraviolet range and provides reliable empirical models to accurately estimate the UVER diffuse fraction.
Boron Diffusion in Surface-Treated Framing Lumber
Patricia K. Lebow; Stan T. Lebow; Steven A. Halverson
2013-01-01
The extent of boron penetration in framing lumber treated by spray applications during construction is not well quantified. This study evaluated the effect of formulation and concentration on diffusion of boron in lumber specimens that were equilibrated in conditions that produced wood moisture contents of 18 to 21 percent. One set of specimens was pressure treated...
INTRODUCTION: Surface Dynamics, Phonons, Adsorbate Vibrations and Diffusion
Bruch, L. W.
2004-07-01
Dilute nitrides have emerged from conventional III-V semiconductors such as GaAs or InP by the insertion of nitrogen into the group V sub-lattice, which has a profound influence on the electronic properties of these materials and allows widely extended band structure engineering. This is expected to lead to novel devices, e.g. for optical data transmission, solar cells, biophotonics or gas sensing, some of which are already making their way into the market. Unlike in all other cases, where a reduction in bandgap energy is achieved by inserting an element that increases the lattice constant, N accomplishes this and at the same time reduces the lattice constant. Thus smaller bandgaps can be achieved and the unusual role of N in the lattice also allows a tailoring of band alignments. Both of these effects have opened up a new dimension of bandgap engineering and the rapid progress in the field led to the demonstration of high quality 1300 nm lasers on GaAs and eventually to the realization of the first VCSELs that can be mass produced at low cost and emit at 1300 nm. This in turn will allow extending inexpensive data transmission through optical fibers from the present range of about 300 m to a distance of 10 to 20 km and at the same time increasing the data rate by about a factor of four. Thus it will enable metro-area data links, which are presently considered to be the bottleneck for large-scale optical communications. Furthermore, the fact that GaNP and related alloys can be grown lattice-matched on Si substrates has offered intriguing new possibilities of OEIC and integration of efficient III-V optoelectronic devices with the mainstream microelectronics based on Si. Despite their promising applications and the first encouraging experimental results, very little is known about the physical properties of such alloys. For instance the difficulty of incorporating nitrogen into GaInAs while maintaining good optical quality has provoked much work to establish an
Potential Energy Surface of NO on Pt(997: Adsorbed States and Surface Diffusion
Directory of Open Access Journals (Sweden)
N. Tsukahara
2012-01-01
Full Text Available The potential energy surface (PES of NO on Pt(997 has been elucidated: the adsorption states and diffusion processes of NO on Pt(997 at low coverage were investigated by using infrared reflection absorption spectroscopy (IRAS and scanning tunneling microscopy (STM. When NO molecules adsorb on a surface at a low temperature (11 K, each molecule transiently migrates on the surface from the first impact point to a possible adsorption site. We found that there are four stable adsorption sites for NO on Pt(997: a bridge site of the upper step, an fcc- (or hcp- hollow site of the terrace, an on-top site of the terrace, and an fcc-hollow site of the lower step. At higher temperatures above 45 K, NO molecules start to migrate thermally to more stable adsorption sites on a terrace, and they are finally trapped at the bridge sites of the step, which are the most stable among the four sites.
Boron Diffused Thermoluminescent Surface Layer in LiF TLDs for Skin Dose Assessments
DEFF Research Database (Denmark)
Christensen, Poul; Majborn, Benny
1980-01-01
A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry.......A new high-temperature glow peak produced in a thin surface layer of LiF TLDs by diffusion of boron into the LiF material has been studied for skin dose assessments in personnel dosimetry....
Reflection of diffuse light from dielectric one-dimensional rough surfaces.
González-Alcalde, Alma K; Méndez, Eugenio R; Terán, Emiliano; Cuppo, Fabio L S; Olivares, J A; García-Valenzuela, Augusto
2016-03-01
We study the reflection of diffuse light from 1D randomly rough dielectric interfaces. Results for the reflectance under diffuse illumination are obtained by rigorous numerical simulations and then contrasted with those obtained for flat surfaces. We also explore the possibility of using perturbation theories and conclude that they are limited for this type of study. Numerical techniques based on Kirchhoff approximation and reduced Rayleigh equations yield better results. We find that, depending on the refractive index contrast and nature of the irregularities, the roughness can increase or decrease the diffuse reflectance of the surface.
Dillon, Christopher R; Rieke, Viola; Ghanouni, Pejman; Payne, Allison
2017-06-26
This study investigates the feasibility of non-invasively determining thermal diffusivity (α) and the Pennes perfusion parameter (w) from pre-clinical and clinical magnetic resonance-guided focussed ultrasound (MRgFUS) temperature data. Pre-clinical MRgFUS experiments were performed in rabbit muscle (N = 3, 28 sonications) using three-dimensional MR thermometry. Eight sonications were made in a clinical QA phantom with two-dimensional thermometry. Retrospective property determination was performed on clinical uterine fibroid (N = 8, 9 sonications) and desmoid tumour (N = 4, 7 sonications) data. The property determination method fits an analytical solution to MRgFUS temperatures in the coronal MR plane, including all temperatures acquired during heating and one cooling image. When possible, additional cooling data were acquired for property determination. Rabbit α and w from Heating Data (α = 0.164 mm 2 s -1 , w = 7.9 kg m -3 s -1 ) and Heating and Cooling Data (α = 0.146 mm 2 s -1 , w = 3.3 kg m -3 s -1 ) were within the range of gold-standard invasive measurements, with >50% reduction in variability by including cooling data. QA phantom property determination with cooling data yielded properties within 3% of expected values (α = 0.144 mm 2 s -1 , w = 0.0 kg m -3 s -1 ), a difference that was not statistically significant (p = 0.053). Uterine fibroid (Heating Data: α = 0.212 mm 2 s -1 , w = 11.0 kg m -3 s -1 ) and desmoid tumour (Heating & Cooling Data: α = 0.245 mm 2 s -1 , w = 4.7 kg m -3 s -1 ) properties are feasible but lack independent verification. Thermal diffusivity and the Pennes perfusion parameter can be obtained from in vivo data and with clinical MRgFUS protocols. Property values are consistently improved by including cooling data. The utility of this property determination method will increase as clinical protocols implement improved temperature
Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W
2010-12-21
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at
A desk study of surface diffusion and mass transport in clay
International Nuclear Information System (INIS)
Cook, A.J.
1988-09-01
The concept of a geological barrier to radionuclide migration from theoretical radioactive waste repositories has drawn attention to the physico-chemical properties of clays, which are traditionally regarded as retarding media. This report addresses the different mechanisms of transport of radionuclides through clay and in particular focuses on the surface diffusion movement of sorbed cations. The relative contributory importance of the different transport mechanisms is governed by the pore size distributions and interconnections within the clay fabric. Surface diffusion data in the literature have been from experiments using compacted montmorillonite and biotite gneiss. A possible programme of laboratory work is outlined, based on diffusion experiments, which describes the way of measuring the effect of surface diffusion more accurately in clays, mudstones and shales. (author)
Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres.
Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter
2015-05-21
Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.
National Research Council Canada - National Science Library
Zhu, Dongming
2004-01-01
.... In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz...
Acetylene on Cu(111): imaging a molecular surface arrangement with a constantly rearranging tip.
Zhu, Yeming; Wyrick, Jonathan; Cohen, Kamelia D; Magnone, Katie Marie; Holzke, Connor; Salib, Daniel; Ma, Quan; Sun, Dezheng; Bartels, Ludwig
2012-09-05
Acetylene on Cu(111) is investigated by scanning tunnelling microscopy (STM); a surface pattern previously derived from diffraction measurements can be validated, if the variation of the STM image transfer function through absorption of an acetylene molecule onto the tip apex is taken into account. Density functional theory simulations point to a balance between short-range repulsive interactions of acetylene/Cu(111) associated with surface stress and longer range attractive interactions as the origin of the ordering.
Effects of quenched impurities on surface diffusion, spreading, and ordering of O/W(110)
DEFF Research Database (Denmark)
Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.
2002-01-01
We study how quenched impurities affect the surface diffusion and ordering of strongly interacting adsorbate atoms on surfaces. To this end, we carry out Monte Carlo simulations for a lattice-gas model of O/W(110), including small concentrations of immobile impurities which block their adsorption...
Nitrogen diffusion in near-surface range of ion doped molybdenum
Zamalin, E Y
2001-01-01
The dynamics of change in nitrogen near-the-surface concentration in the Mo ion-alloyed monocrystalline foil is studied through the Auger-electron spectroscopy and the secondary ion mass spectrometry. The implantation dose constituted 5 x 10 sup 1 sup 7 ion/cm sup 2 and the implantation energy equaled 50 and 100 keV. The samples diffusion annealing was performed at the temperature of 800-900 deg C. The evaluation of the nitrogen diffusion coefficient indicates the values by 3-5 orders lesser than the diffusion coefficient in the nitrogen solid-state solution in the molybdenum. At the same time the molybdenum self-diffusion coefficient value is by 3-5 orders lesser as compared to the obtained value. The supposition is made, the the surplus nitrogen relative to the solubility limit is deposited on the radiation defects and in the process of the diffusion annealing it nitrates together with them
Theoretical studies of mutual diffusivities and surface properties in ...
Indian Academy of Sciences (India)
properties, thus underlining the importance of thermodynamic studies for liquid binary alloys. In this study, the transport and surface properties of Cd–Ga liquid alloys are determined from energetics and derivatives from experimental thermodynamic data. Cd–Ga alloys have been studied by many authors [14–16]. The alloy ...
Surface modification of polyethylene by diffuse barrier discharge plasma
Czech Academy of Sciences Publication Activity Database
Novák, I.; Števiar, M.; Popelka, A.; Chodák, I.; Mosnáček, J.; Špírková, Milena; Janigová, I.; Kleinová, A.; Sedliačik, J.; Šlouf, Miroslav
2013-01-01
Roč. 53, č. 3 (2013), s. 516-523 ISSN 0032-3888 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : low-density polyethylene * plasma discharge * surface modification Subject RIV: JI - Composite Materials Impact factor: 1.441, year: 2013
Protofit: A program for determining surface protonation constants from titration data
Turner, Benjamin F.; Fein, Jeremy B.
2006-11-01
Determining the surface protonation behavior of natural adsorbents is essential to understand how they interact with their environments. ProtoFit is a tool for analysis of acid-base titration data and optimization of surface protonation models. The program offers a number of useful features including: (1) enables visualization of adsorbent buffering behavior; (2) uses an optimization approach independent of starting titration conditions or initial surface charge; (3) does not require an initial surface charge to be defined or to be treated as an optimizable parameter; (4) includes an error analysis intrinsically as part of the computational methods; and (5) generates simulated titration curves for comparison with observation. ProtoFit will typically be run through ProtoFit-GUI, a graphical user interface providing user-friendly control of model optimization, simulation, and data visualization. ProtoFit calculates an adsorbent proton buffering value as a function of pH from raw titration data (including pH and volume of acid or base added). The data is reduced to a form where the protons required to change the pH of the solution are subtracted out, leaving protons exchanged between solution and surface per unit mass of adsorbent as a function of pH. The buffering intensity function Qads* is calculated as the instantaneous slope of this reduced titration curve. Parameters for a surface complexation model are obtained by minimizing the sum of squares between the modeled (i.e. simulated) buffering intensity curve and the experimental data. The variance in the slope estimate, intrinsically produced as part of the Qads* calculation, can be used to weight the sum of squares calculation between the measured buffering intensity and a simulated curve. Effects of analytical error on data visualization and model optimization are discussed. Examples are provided of using ProtoFit for data visualization, model optimization, and model evaluation.
Ku, Bon Ki; Kulkarni, Pramod
2012-05-01
We compare different approaches to measure surface area of aerosol agglomerates. The objective was to compare field methods, such as mobility and diffusion charging based approaches, with laboratory approach, such as Brunauer, Emmett, Teller (BET) method used for bulk powder samples. To allow intercomparison of various surface area measurements, we defined 'geometric surface area' of agglomerates (assuming agglomerates are made up of ideal spheres), and compared various surface area measurements to the geometric surface area. Four different approaches for measuring surface area of agglomerate particles in the size range of 60-350 nm were compared using (i) diffusion charging-based sensors from three different manufacturers, (ii) mobility diameter of an agglomerate, (iii) mobility diameter of an agglomerate assuming a linear chain morphology with uniform primary particle size, and (iv) surface area estimation based on tandem mobility-mass measurement and microscopy. Our results indicate that the tandem mobility-mass measurement, which can be applied directly to airborne particles unlike the BET method, agrees well with the BET method. It was also shown that the three diffusion charging-based surface area measurements of silver agglomerates were similar within a factor of 2 and were lower than those obtained from the tandem mobility-mass and microscopy method by a factor of 3-10 in the size range studied. Surface area estimated using the mobility diameter depended on the structure or morphology of the agglomerate with significant underestimation at high fractal dimensions approaching 3.
Entry and diffusion of electrolytic hydrogen in some surface treated steels
International Nuclear Information System (INIS)
Waheed, A.F.M.
1986-01-01
Hydrogen diffusion and permeation through metals specially ferrous material is a subject that has a large volume of researches. the most important reason is the technological importance associated with the degradation of ferrous materials resulting from hydrogen absorption. The embrittling effect of hydrogen in steels and the catastrophic nature of failures caused by hydrogen embrittlement has led also to the importance of understanding hydrogen entry and surface processes. the effect of surface treatment of some types of steels on hydrogen entry and diffusion at room temperature (25 degree C) was studied. the two types of steels used in this study are plain carbon steel and low alloy steel
Fernández-Golfín Seco, J. I.; Díez Barra, M. Rafael
1997-01-01
Four different strategies of surface coating (based on 80 g m2 melamin impregnated papers) were used on 19 mm thick commercial MDF panels to assess its reological behaviour under cyclic humidity conditions (20ºC 30 % rh-20ºC 90 % rh). Three different levels of stress (20 %, 30 % and 40 %), based on the ultimate load in bending, were used. Tests were conducted by means of the three points load system. For the same stress level, the relative creep of MDF panels was higher than that in par...
Simulation of near-surface proton-stimulated diffusion of boron in silicon
International Nuclear Information System (INIS)
Aleksandrov, O. V.; Kozlovski, V. V.
2008-01-01
A quantitative model for near-surface redistribution of doping impurity in silicon in the course of proton-stimulated diffusion is developed for the first time. According to the model, the near-surface peak of the impurity concentration is caused by migration of neutral impurity-self-interstitial pairs to the surface with subsequent decomposition of these pairs and accumulation of the impurity at the silicon surface within a thin layer (referred to as δ-doped layer). The depletion and enhancement regions that are found deeper than the near-surface concentration peak are caused by expulsion of ionized impurity by an electric field from the near-surface region of the field penetration. The field appears due to the charge formed in the natural-oxide film at the silicon surface as a result of irradiation with protons. The diffusion-kinetic equations for the impurity, self-interstitials, vacancies, and impurity-self-interstitial pairs were solved numerically simultaneously with the Poisson equation. It is shown that the results of calculations are in quantitative agreement with experimental data on the proton-stimulated diffusion of boron impurity in the near-surface region of silicon
Directory of Open Access Journals (Sweden)
E. L. Davin
2012-05-01
Full Text Available The influence of land processes and in particular of diffuse/direct radiation partitioning on surface fluxes and associated regional-scale climate feedbacks is investigated using ERA-40 driven simulations over Europe performed with the COSMO-CLM^{2} Regional Climate Model (RCM. Two alternative Land Surface Models (LSMs, a 2nd generation LSM (TERRA_ML and a more advanced 3rd generation LSM (Community Land Model version 3.5, and two versions of the atmospheric component are tested, as well as a revised coupling procedure allowing for variations in diffuse/direct light partitioning at the surface, and their accounting by the land surface component.
Overall, the RCM performance for various variables (e.g., surface fluxes, temperature and precipitation is improved when using the more advanced 3rd generation LSM. These improvements are of the same order of magnitude as those arising from a new version of the atmospheric component, demonstrating the benefit of using a realistic representation of land surface processes for regional climate simulations. Taking into account the variability in diffuse/direct light partitioning at the surface further improves the model performance in terms of summer temperature variability at the monthly and daily time scales. Comparisons with observations show that the RCM realistically captures temporal variations in diffuse/direct light partitioning as well as the evapotranspiration sensitivity to these variations. Our results suggest that a modest but consistent fraction (up to 3 % of the overall variability in summer temperature can be explained by variations in the diffuse to direct ratio.
Passive Frequency Selective Surface Array as a Diffuser for Destroying Millimeter Wave Coherence
Directory of Open Access Journals (Sweden)
Saiful Islam
2008-01-01
Full Text Available This paper presents the design, construction, and testing of grounded frequency selective surface (FSS array as a diffuser for destroying millimeter wave coherence which is used to eliminate speckle in active millimeter wave imaging. To create stochastically independent illumination patterns, we proposed a diffuser based on random-phase distributions obtained by changing the incident frequency. The random-phase diffuser was obtained by mixing up the phase relations between the cells of a deterministic function (e.g., beam splitter. The slot length of FSS is the main design parameter used to optimize the phase shifting properties of the array. The critical parameters of the diffuser array design, such as phase relation with slot lengths, losses, and bandwidth, are discussed. We designed the FSS arrays with finite integral technique (FIT, fabricated by etching technique, and characterized the S-parameters with a free-space MVNA, and measured the radiation patterns with a BWO in motorized setup.
Modification of the glass surface induced by redox reactions and internal diffusion processes
DEFF Research Database (Denmark)
Smedskjær, Morten Mattrup; Deubener, Joachim; Yue, Yuanzheng
In this paper we report a novel way to modify the glass surface in favor of some physical performances. The main step is to perform iso-thermal treatments on the selected silicate glasses containing transition metal at temperatures near the glass transition temperature for various durations under...... different gases. As a result, we have observed a striking phenomenon, i.e., the outward diffusion of divalent cations occurs not only under an oxidizing atmosphere of heat-treatment, but also under nitrogen, even under reducing atmospheres like H2/N2 (10/90). The extent of the cationic diffusion depends...... on temperature and duration of heat-treatments. The mechanism of the diffusion depends on the type of the gases used for the heat-treatments. In this paper we propose several possible models describing mechanisms of the cationic diffusion, and hence, of the formation of the nano-layer. We also report the effect...
Zhao, Yuanyuan; Jiang, Guoliang; Hu, Jiandong; Hu, Fengjiang; Wei, Jianguang; Shi, Liang
2010-10-01
In the immunology, there are two important types of biomolecular interaction: antigens-antibodies and receptors-ligands. Monitoring the response rate and affinity of biomolecular interaction can help analyze the protein function, drug discover, genomics and proteomics research. Moreover the association rate constant and dissociation rate constant of receptors-ligands are the important parameters for the study of signal transmission between cells. Recent advances in bioanalyzer instruments have greatly simplified the measurement of the kinetics of molecular interactions. Non-destructive and real-time monitoring the response to evaluate the parameters between antigens and antibodies can be performed by using optical surface plasmon resonance (SPR) biosensor technology. This technology provides a quantitative analysis that is carried out rapidly with label-free high-throughput detection using the binding curves of antigens-antibodies. Consequently, the kinetic parameters of interaction between antigens and antibodies can be obtained. This article presents a low cost integrated SPR-based bioanalyzer (HPSPR-6000) designed by ourselves. This bioanalyzer is mainly composed of a biosensor TSPR1K23, a touch-screen monitor, a microprocessor PIC24F128, a microflow cell with three channels, a clamp and a photoelectric conversion device. To obtain the kinetic parameters, sensorgrams may be modeled using one of several binding models provided with BIAevaluation software 3.0, SensiQ or Autolab. This allows calculation of the association rate constant (ka) and the dissociation rate constant (kd). The ratio of ka to kd can be used to estimate the equilibrium constant. Another kind is the analysis software OriginPro, which can process the obtained data by nonlinear fitting and then get some correlative parameters, but it can't be embedded into the bioanalyzer, so the bioanalyzer don't support the use of OriginPro. This paper proposes a novel method to evaluate the kinetic parameters
Directory of Open Access Journals (Sweden)
Fernández-Golfín, J. I.
1997-06-01
Full Text Available Four different strategies of surface coating (based on 80 g m^{2} melamin impregnated papers were used on 19 mm thick commercial MDF panels to assess its reological behaviour under cyclic humidity conditions (20ºC 30 % rh-20ºC 90 % rh.
Three different levels of stress (20 %, 30 % and 40 %, based on the ultimate load in bending, were used. Tests were conducted by means of the three points load system.
For the same stress level, the relative creep of MDF panels was higher than that in particle boards with similar characteristics.
This behaviour was just the opposite than the one exhibited by the panels when the comparison is made based on the same level of load (kg Melamin coating seems to strongly influence the creep behaviour of the raw material, especially when surface and edge coating were combined.
Cuatro tipos de acabados superficiales distintos, aplicados sobre tableros MDF comerciales de 19 mm de espesor, son empleados en el estudio del comportamiento reológico de los tableros MDF ante condiciones alternantes de humedad relativa (20ºC/30 % hr-20ºC/90 % hr.
Para el análisis del comportamiento reológico de los tableros se consideran tres niveles de tensión distintos (20 %, 30 %y 40 %, calculados en función de la carga última de rotura a flexión. Los ensayos son efectuados aplicando la carga en punto medio.
La fluencia relativa de los tableros MDF resulta ser superior a la exhibida por los tableros de partículas de similares características, observándose que los revestimientos melamínicos aplicados superficialmente influyen eficazmente en la mejora de su comportamiento reológico.
Cuando la comparación entre tableros MDF y de partículas se efectúa considerando idénticos niveles de carga aplicada en vez de tensión, el resultado de la comparación resulta ser, justamente, el contrario.
Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix B
El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and O) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and O2 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.
Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix J
El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2003-01-01
The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and 0) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and 02 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.
Zhan, Hanyu; Voelz, David G.
2016-12-01
The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.
Laser-induced generation of surface periodic structures in media with nonlinear diffusion
Zhuravlev, V. M.; Zolotovskii, I. O.; Korobko, D. A.; Morozov, V. M.; Svetukhin, V. V.; Yavtushenko, I. O.; Yavtushenko, M. S.
2017-12-01
A model of fast formation of high-contrast periodic structure appearing on a semiconductor surface under action of laser radiation is proposed. The process of growing a surface structure due to the interaction surface plasmon- polaritons excited on nonequilibrium electrons with incident laser radiation are considered in the framework of a medium with nonlinear diffusion of nonequilibrium carriers (defects). A resonance effect of superfast pico- and subpicosecond amplification of the plasmon-polariton structure generated on the surface, the realization of which can result in a high-contrast defect lattice.
Hann-Ming Henry Juang; Ching-Teng Lee; Yongxin Zhang; Yucheng Song; Ming-Chin Wu; Yi-Leng Chen; Kevin Kodama; Shyh-Chin Chen
2005-01-01
The National Centers for Environmental Prediction regional spectral model and mesoscale spectral model (NCEP RSM/MSM) use a spectral computation on perturbation. The perturbation is defined as a deviation between RSM/MSM forecast value and their outer model or analysis value on model sigma-coordinate surfaces. The horizontal diffusion used in the models applies...
Czech Academy of Sciences Publication Activity Database
Kromka, Alexander; Čech, J.; Kozak, Halyna; Artemenko, Anna; Ižák, Tibor; Čermák, Jan; Rezek, Bohuslav; Černák, M.
2015-01-01
Roč. 252, č. 11 (2015), s. 2602-2607 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : atmospheric plasma * diamond nanoparticles * diffuse coplanar surface barrier discharge * FTIR * XPS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.522, year: 2015
Cheng, S. J.; Steiner, A. L.; Nadelhoffer, K. J.
2014-12-01
Accurately modeling atmospheric CO2 removal by terrestrial ecosystems requires an understanding of how atmospheric conditions change the rate of photosynthesis across major vegetation types. Diffuse light, which is created from interactions between incident solar radiation and atmospheric aerosols and clouds, has been postulated to increase carbon uptake in terrestrial ecosystems. To determine how cloud conditions affect carbon uptake through its influence on diffuse light, we quantify the relationship between cloud optical thickness, which indicates surface light attenuation by clouds, and surface diffuse light. We then examine the relationship between cloud optical thickness and gross primary productivity (GPP) to determine whether cloud properties could modulate GPP in temperate ecosystems. Surface diffuse light and GPP data are obtained from publically available Ameriflux data (Mead Crop sites, University of Michigan Biological Station, Morgan Monroe, and Howland Forest) and cloud optical thickness data over the Ameriflux sites are retrieved from NASA's Moderate Resolution Imaging Spetroradiometer. We compare the response of GPP to cloud optical thickness between croplands and forests, as well as within ecosystem types to determine ecosystem-specific responses and the role of plant community composition on ecosystem-level GPP under varying cloud conditions. By linking atmospheric cloud properties to surface light conditions and ecosystem carbon fluxes, we refine understanding of land-atmosphere carbon cycling and how changes in atmospheric cloud conditions may influence the future of the land carbon sink.
The significance of vertical moisture diffusion on drifting snow sublimation near snow surface
Huang, Ning; Shi, Guanglei
2017-12-01
Sublimation of blowing snow is an important parameter not only for the study of polar ice sheets and glaciers, but also for maintaining the ecology of arid and semi-arid lands. However, sublimation of near-surface blowing snow has often been ignored in previous studies. To study sublimation of near-surface blowing snow, we established a sublimation of blowing snow model containing both a vertical moisture diffusion equation and a heat balance equation. The results showed that although sublimation of near-surface blowing snow was strongly reduced by a negative feedback effect, due to vertical moisture diffusion, the relative humidity near the surface does not reach 100 %. Therefore, the sublimation of near-surface blowing snow does not stop. In addition, the sublimation rate near the surface is 3-4 orders of magnitude higher than that at 10 m above the surface and the mass of snow sublimation near the surface accounts for more than half of the total snow sublimation when the friction wind velocity is less than about 0.55 m s-1. Therefore, the sublimation of near-surface blowing snow should not be neglected.
Surface self-diffusion of adatom on Pt cluster with truncated octahedron structure
Energy Technology Data Exchange (ETDEWEB)
Yang Jianyu, E-mail: wuliyangjianyu@yahoo.com.c [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Hu Wangyu, E-mail: wangyuhu2001@yahoo.com.c [Department of Applied Physics, Hunan University, Changsha 410082 (China); Chen Shuguang [Department of Applied Physics, Hunan University, Changsha 410082 (China)
2010-05-03
Surface diffusion of single Pt adatom on Pt cluster with truncated octahedron structure is investigated through a combination of molecular dynamics and nudged elastic band method. Using an embedded atom method to describe the atomic interactions, the minimum energy paths are determined and the energy barriers for adatom diffusion across and along step are evaluated. The diffusion of adatom crossing step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets has a surprisingly low barrier of 0.03 eV, which is 0.12 eV lower than the barrier for adatom diffusion from {l_brace}111{r_brace} to neighboring {l_brace}111{r_brace} facet. Owing to the small barrier of adatom diffusion across the step edge between {l_brace}111{r_brace} and {l_brace}100{r_brace} facets, the diffusion of adatom along the step edge cannot occur. The molecular dynamics simulations at low temperatures also support these results. Our results show that mass transport will prefer step with {l_brace}100{r_brace} microfacet and the Pt clusters can have only {l_brace}111{r_brace} facets in epitaxial growth.
Energy Technology Data Exchange (ETDEWEB)
NONE
1968-07-01
The increase in the specific power of nuclear reactors of the gas-graphite type has necessitated the use of high performance exchange surfaces for canning the fuel (natural uranium). For this, experiments were carried out on cans fitted with herring-bone fins, at constant wall temperature; a flow of water at 100 deg. C passes inside the can which is cooled externally by a flow of CO{sub 2} at 15 bars pressure. This experimental set-up makes it possible to compare the aero-thermal performances of the different cans with an accuracy of 5 per cent. This report presents the results obtained in the form of a friction coefficient f{sub 0} and mean Margoulis number m{sub 0} as a function of the Reynolds number Re{sub 0}, this latter varying from 3 x 10{sup 5} to 9 x 10{sup 5}. (authors) [French] L'augmentation de la puissance specifique des reacteurs nucleaires de la filiere graphite-gaz a necessite l'utilisation de surfaces d'echange a hautes performances pour gainer le combustible (uranium naturel). Dans cette optique, des gaines munies d'ailettes disposees en chevron ont ete experimentees a temperature de paroi constante: un courant d'eau a 100 deg. C circule a l'interieur de la gaine qui est refroidie exterieurement par un ecoulement de CO{sub 2} sous une pression de 15 bars. Cette methode experimentale permet de situer les performances aerothermiques des gaines les unes par rapport aux autres a 5 pour cent pres. Ce rapport presente les resultats obtenus sous la forme d'un coefficient de frottement f{sub 0} et d'un nombre de Margoulis moyen m{sub 0} en fonction du nombre de Reynolds Re{sub 0}, ce dernier pouvant varier de 3. 10{sup 5} a 9. 10{sup 5}. (auteurs)
Memory Effects and Coverage Dependence of Surface Diffusion in a Model Adsorption System
DEFF Research Database (Denmark)
Vattulainen, Ilpo Tapio; Ying, S. C.; Ala-Nissila, T.
1999-01-01
We study the coverage dependence of surface diffusion coefficients for a strongly interacting adsorption system O/W(110) via Monte Carlo simulations of a lattice-gas model. In particular, we consider the nature and emergence of memory effects as contained in the corresponding correlation factors...... diffusion is found to decay following a power law after an initial transient period. This behavior persists until the hydrodynamic regime is reached, after which the memory effect decays exponentially. The time required to reach the hydrodynamical regime and the related exponential decay is strongly...
Energy Technology Data Exchange (ETDEWEB)
Manuel, Lozano [Iowa State Univ., Ames, IA (United States)
1996-01-12
The transport of atoms or molecules over surfaces has been an important area of study for several decades now, with its progress generally limited by the available experimental techniques to characterize the phenomena. A number of methods have been developed over the years to measure surface diffusion yet only very few systems have been characterized to this day mainly due to the physical limitations inherent in these available methods. Even the STM with its astonishing atomically-resolved images of the surface has been limited in terms of its capability to determine mass transport properties. This is because the STM is inherently a ``slow`` instrument, i.e., a finite time is needed for signal averaging in order to produce the image. A need exists for additional surface diffusion measurement techniques, ideally ones which are able to study varied systems and measure a wide range of diffusion rates. The STM (especially because of its highly local nature) presents itself as a promising tool to conduct dynamical studies if its poor time resolution during ``normal operation`` can somehow be overcome. The purpose of this dissertation is to introduce a new technique of using the STM to measure adatom mobility on surfaces -- one with a capacity to achieve excellent time resolution.
International Nuclear Information System (INIS)
Kim, Sung Hoon
2001-01-01
Planarization of the free-standing diamond film surface as smooth as possible could be obtained by using the hydrogen plasma etching with the diffusion of the carbon species into the metal alloy (Fe, Cr, Ni). For this process, we placed the free-standing diamond film between the metal alloy and the Mo substrate like a metal-diamond-molybdenum (MDM) sandwich. We set the sandwich-type MDM in a microwave-plasma-enhanced chemical vapor deposition (MPECVD) system. The sandwich-type MDM was heated over ca. 1000 .deg. C by using the hydrogen plasma. We call this process as the hydrogen plasma etching with carbon diffusion process. After etching the free-standing diamond film surface, we investigated surface roughness, morphologies, and the incorporated impurities on the etched diamond film surface. Finally, we suggest that the hydrogen plasma etching with carbon diffusion process is an adequate etching technique for the fabrication of the diamond film surface applicable to electronic devices
Diffusion of C and Cr During Creation of Surface Layer on Cast Steel Casting
Directory of Open Access Journals (Sweden)
Szajnar J.
2014-10-01
Full Text Available In paper a method of improvement in utility properties of unalloyed cast steel casting in result of diffusion of C and Cr in process of creation of surface layer is presented. The aim of paper was determination of diffusion range of basic elements of alloyed surface layer. Moreover a quantitative analysis of carbides phase strengthens alloyed surface layer of casting was carried out. The results of studies shown that important factors of surface layer creation are maximal temperature Tmax on granular insert – cast steel boundary dependent of pouring temperature, granularity Zw of Fe-Cr-C alloy insert and thickness of casting wall gśo. On the basis of obtained results was affirmed that with increase of thickness of casting wall increases range of diffusion in solid state in Fe-Cr-C grains and in liquid state. Moreover the range of Tmax = 13001500oC favours creation of the proper alloyed surface layers on cast steel.
International Nuclear Information System (INIS)
El-Nashar, H.F.; Cerdeira, H.A.
1998-08-01
We introduce a ballistic deposition model for two kinds of particles (active and inactive) in (2+1) dimensions upon introducing the surface diffusion for the inactive particles. A morphological structural transition is found as the probability of being the inactive particle increases. This transition is well defined by the change in the behavior of the surface width when it is plotted versus time and probability. The exponents α and β calculated for different values of probability show the same behavior. The presence of both types of particles issues three different processes that control the growing surface: overhanging, nonlocal growth and diffusion. It finally leads to a morphological structural transition where the universality changes away from that of Kardar-Parisi-Zhang, in (2+1) dimensions, but not into Edwards-Wilkinson's. (author)
Impurity diffusion, point defect engineering, and surface/interface passivation in germanium
Chroneos, Alexander I.
2012-01-26
In recent years germanium has been emerging as a mainstream material that could have important applications in the microelectronics industry. The principle aim of this study is to review investigations of the diffusion of technologically important p- and n-type dopants as well as surface and interface passivation issues in germanium. The diffusion of impurities in germanium is interrelated to the formation of clusters whenever possible, and possibilities for point defect engineering are discussed in view of recent results. The importance of electrically active defects on the Ge surface and interfaces is addressed considering strategies to suppress them and to passivate the surfaces/interfaces, bearing in mind their importance for advanced devices. © 2012 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Correlation and dating of Quaternary alluvial-fan surfaces using scarp diffusion
Hsu, Leslie; Pelletier, Jon D.
2004-06-01
Great interest has recently been focused on dating and interpreting alluvial-fan surfaces. As a complement to the radiometric methods often used for surface-exposure dating, this paper illustrates a rapid method for correlating and dating fan surfaces using the cross-sectional shape of gullies incised into fan surfaces. The method applies a linear hillslope-diffusion model to invert for the diffusivity age, κt (m 2), using an elevation profile or gradient (slope) profile. Gullies near the distal end of fan surfaces are assumed to form quickly following fan entrenchment. Scarps adjacent to these gullies provide a measure of age. The method is illustrated on fan surfaces with ages of approximately 10 ka to 1.2 Ma in the arid southwestern United States. Two areas of focus are Death Valley, California, and the Ajo Mountains piedmont, Arizona. Gully-profile morphology is measured in two ways: by photometrically derived gradient (slope) profiles and by ground-surveyed elevation profiles. The κt values determined using ground-surveyed profiles are more consistent than those determined using photo-derived κt values. However, the mean κt values of both methods are comparable. The photometric method provides an efficient way to quantitatively and objectively correlate and relatively-date alluvial-fan surfaces. The κt values for each surface are determined to approximately 30-50% accuracy.
Oxidative Corrosion of the UO _{2} (001) Surface by Nonclassical Diffusion
Energy Technology Data Exchange (ETDEWEB)
Stubbs, Joanne E.; Biwer, Craig A.; Chaka, Anne M. [Pacific Northwest; Ilton, Eugene S. [Pacific Northwest; Du, Yingge [Pacific Northwest; Bargar, John R. [Stanford Synchrotron; Eng, Peter J.
2017-11-07
Uranium oxide is central to every stage of the nuclear fuel cycle, from mining through fuel fabrication and use, to waste disposal and environmental cleanup. Its chemical and mechanical stability are intricately linked to the concentration of interstitial O atoms within the structure and the oxidation state of U. We have previously shown that during corrosion of the UO2 (111) surface under either 1 atm O2 gas or oxygenated water at room temperature, oxygen interstitials diffuse into the substrate to form a superlattice with three-layer periodicity. In the current study, we present results from surface x-ray scattering that reveal the structure of the oxygen diffusion profile beneath the (001) surface. The first few layers below the surface oscillate strongly in their surface-normal lattice parameters, suggesting preferential interstitial occupation of every other layer below the surface, which is geometrically consistent with the interstitial network that forms below the oxidized (111) surface. Deeper layers are heavily contracted and indicate that the oxidation front penetrates ~52 Å below the (001) surface after 21 days of dry O2 gas exposure at ambient pressure and temperature. X-ray photoelectron spectroscopy indicates U is present as U(IV), U(V), and U(VI).
A new approach to the problem of bulk-mediated surface diffusion.
Berezhkovskii, Alexander M; Dagdug, Leonardo; Bezrukov, Sergey M
2015-08-28
This paper is devoted to bulk-mediated surface diffusion of a particle which can diffuse both on a flat surface and in the bulk layer above the surface. It is assumed that the particle is on the surface initially (at t = 0) and at time t, while in between it may escape from the surface and come back any number of times. We propose a new approach to the problem, which reduces its solution to that of a two-state problem of the particle transitions between the surface and the bulk layer, focusing on the cumulative residence times spent by the particle in the two states. These times are random variables, the sum of which is equal to the total observation time t. The advantage of the proposed approach is that it allows for a simple exact analytical solution for the double Laplace transform of the conditional probability density of the cumulative residence time spent on the surface by the particle observed for time t. This solution is used to find the Laplace transform of the particle mean square displacement and to analyze the peculiarities of its time behavior over the entire range of time. We also establish a relation between the double Laplace transform of the conditional probability density and the Fourier-Laplace transform of the particle propagator over the surface. The proposed approach treats the cases of both finite and infinite bulk layer thicknesses (where bulk-mediated surface diffusion is normal and anomalous at asymptotically long times, respectively) on equal footing.
Nasrallah, Hussein; Mazeran, Pierre-Emmanuel; Noël, Olivier
2011-11-01
In this paper, we introduce a novel scanning probe microscopy mode, called the circular mode, which offers expanded capabilities for surface investigations especially for measuring physical properties that require high scanning velocities and/or continuous displacement with no rest periods. To achieve these specific conditions, we have implemented a circular horizontal displacement of the probe relative to the sample plane. Thus the relative probe displacement follows a circular path rather than the conventional back and forth linear one. The circular mode offers advantages such as high and constant scanning velocities, the possibility to be combined with other classical operating modes, and a simpler calibration method of the actuators generating the relative displacement. As application examples of this mode, we report its ability to (1) investigate the influence of scanning velocity on adhesion forces, (2) measure easily and instantly the friction coefficient, and (3) generate wear tracks very rapidly for tribological investigations. © 2011 American Institute of Physics
Kailasanathan, Ranjith Kumar Abhinavam
2014-05-20
Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.
Speckle noise reduction for computer generated holograms of objects with diffuse surfaces
Symeonidou, Athanasia; Blinder, David; Ahar, Ayyoub; Schretter, Colas; Munteanu, Adrian; Schelkens, Peter
2016-04-01
Digital holography is mainly used today for metrology and microscopic imaging and is emerging as an important potential technology for future holographic television. To generate the holographic content, computer-generated holography (CGH) techniques convert geometric descriptions of a 3D scene content. To model different surface types, an accurate model of light propagation has to be considered, including for example, specular and diffuse reflection. In previous work, we proposed a fast CGH method for point cloud data using multiple wavefront recording planes, look-up tables (LUTs) and occlusion processing. This work extends our method to account for diffuse reflections, enabling rendering of deep 3D scenes in high resolution with wide viewing angle support. This is achieved by modifying the spectral response of the light propagation kernels contained by the look-up tables. However, holograms encoding diffuse reflective surfaces depict significant amounts of speckle noise, a problem inherent to holography. Hence, techniques to improve the reduce speckle noise are evaluated in this paper. Moreover, we propose as well a technique to suppress the aperture diffraction during numerical, viewdependent rendering by apodizing the hologram. Results are compared visually and in terms of their respective computational efficiency. The experiments show that by modelling diffuse reflection in the LUTs, a more realistic yet computationally efficient framework for generating high-resolution CGH is achieved.
International Nuclear Information System (INIS)
Yan Shi-Chao; Xie Nan; Gong Hui-Qi; Guo Yang; Shan Xin-Yan; Lu Xing-Hua; Sun Qian
2012-01-01
The adsorption and diffusion behaviors of benzene molecules on an Au(111) surface are investigated by low-temperature scanning tunneling microscopy. A herringbone surface reconstruction of the Au(111) surface is imaged with atomic resolution, and significantly different behaviors are observed for benzene molecules adsorbed on step edges and terraces. The electric field induced modification in the molecular diffusion potential is revealed with a 2D molecular gas model, and a new method is developed to map the diffusion potential over the reconstructed Au(111) surface at the nanometer scale. (condensed matter: structure, mechanical and thermal properties)
Directory of Open Access Journals (Sweden)
Rajneesh Kumar
2014-01-01
Full Text Available The present investigation deals with the propagation of Rayleigh type surface waves in an isotropic microstretch thermoelastic diffusion solid half space under a layer of inviscid liquid. The secular equation for surface waves in compact form is derived after developing the mathematical model. The dispersion curves giving the phase velocity and attenuation coefficients with wave number are plotted graphically to depict the effect of an imperfect boundary alongwith the relaxation times in a microstretch thermoelastic diffusion solid half space under a homogeneous inviscid liquid layer for thermally insulated, impermeable boundaries and isothermal, isoconcentrated boundaries, respectively. In addition, normal velocity component is also plotted in the liquid layer. Several cases of interest under different conditions are also deduced and discussed.
Qing, Chun; Wu, Xiaoqing; Li, Xuebin; Zhu, Wenyue; Qiao, Chunhong; Rao, Ruizhong; Mei, Haipin
2016-06-13
The methods to obtain atmospheric refractive index structure constant (Cn2) by instrument measurement are limited spatially and temporally and they are more difficult and expensive over the ocean. It is useful to forecast Cn2 effectively from Weather Research and Forecasting Model (WRF) outputs. This paper introduces a method that WRF Model is used to forecast the routine meteorological parameters firstly, and then Cn2 is calculated based on these parameters by the Bulk model from the Monin-Obukhov similarity theory (MOST) over the ocean near-surface. The corresponding Cn2 values measured by the micro-thermometer which is placed on the ship are compared with the ones forecasted by WRF model to determine how this method performs. The result shows that the forecasted Cn2 is consistent with the measured Cn2 in trend and the order of magnitude as a whole, as well as the correlation coefficient is up to 77.57%. This method can forecast some essential aspects of Cn2 and almost always captures the correct magnitude of Cn2, which experiences fluctuations of two orders of magnitude. Thus, it seems to be a feasible and meaningful method that using WRF model to forecast near-surface Cn2 value over the ocean.
An Analytical Model for Adsorption and Diffusion of Atoms/Ions on Graphene Surface
Directory of Open Access Journals (Sweden)
Yan-Zi Yu
2015-01-01
Full Text Available Theoretical investigations are made on adsorption and diffusion of atoms/ions on graphene surface based on an analytical continuous model. An atom/ion interacts with every carbon atom of graphene through a pairwise potential which can be approximated by the Lennard-Jones (L-J potential. Using the Fourier expansion of the interaction potential, the total interaction energy between the adsorption atom/ion and a monolayer graphene is derived. The energy-distance relationships in the normal and lateral directions for varied atoms/ions, including gold atom (Au, platinum atom (Pt, manganese ion (Mn2+, sodium ion (Na1+, and lithium-ion (Li1+, on monolayer graphene surface are analyzed. The equilibrium position and binding energy of the atoms/ions at three particular adsorption sites (hollow, bridge, and top are calculated, and the adsorption stability is discussed. The results show that H-site is the most stable adsorption site, which is in agreement with the results of other literatures. What is more, the periodic interaction energy and interaction forces of lithium-ion diffusing along specific paths on graphene surface are also obtained and analyzed. The minimum energy barrier for diffusion is calculated. The possible applications of present study include drug delivery system (DDS, atomic scale friction, rechargeable lithium-ion graphene battery, and energy storage in carbon materials.
Surface effects on tritium diffusion in materials in a radiation environment
International Nuclear Information System (INIS)
Caskey, G.R. Jr.
1975-01-01
Tritium transport and distribution in a material are controlled by chemical potential and thermal gradients and cross-coupling to impurities and defects. Surfaces influence tritium diffusion by acting as sources and sinks for defects and impurities, and surface films restricting tritium transfer between the solid and surrounding fluids. Radiation directly affects boundary processes such as dissociation or adsorption, may erode a surface film or the surface itself, and introduces defects and impurities into the solid by radiation damage, transmutation, or ion implantation, thereby modifying tritium transport within the solid and its transfer across external interfaces. There have been no definitive investigations of these effects, but their practical significance has been demonstrated in tritium release or absorption studies with stainless steel, Zircaloy, niobium, and other materials. (auth)
Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air
Cheng, ZHANG; Jintao, QIU; Fei, KONG; Xingmin, HOU; Zhi, FANG; Yu, YIN; Tao, SHAO
2018-01-01
Nanosecond-pulse diffuse discharges could provide high-density plasma and high-energy electrons at atmospheric pressure. In this paper, the surface treatment of Cu by nanosecond-pulse diffuse discharges is conducted in atmospheric air. Factors influencing the water contact angle (WCA), chemical composition and microhardness, such as the gap spacing and treatment time, are investigated. The results show that after the plasma surface treatment, the WCA considerably decreases from 87° to 42.3°, and the surface energy increases from 20.46 mJ m-2 to 66.28 mJ m-2. Results of energy dispersive x-ray analysis show that the concentration of carbon decreases, but the concentrations of oxygen and nitrogen increase significantly. Moreover, the microhardness increases by approximately 30% after the plasma treatment. The aforementioned changes on the Cu surface indicate the plasma surface treatment enhances the hydrophilicity and microhardness, and it cleans the carbon and achieves oxidization on the Cu surface. Furthermore, by increasing the gap spacing and treatment time, better treatment effects can be obtained. The microhardness in the case of a 2.5 cm gap is higher than that in the case of a 3 cm gap. More oxygen and nitrogen species appear on the Cu surface for the 2.5 cm gap treatment than for the 3 cm gap treatment. The WCA significantly decreases with the treatment time when it is no longer than 90 s, and then it reaches saturation. In addition, more oxygen-containing and nitrogen-containing groups appear after extended plasma treatment time. They contribute to the improvement of the hydrophilicity and oxidation on the Cu surface.
Self-diffusion dynamic behavior of atomic clusters on Re(0 0 0 1) surface
Energy Technology Data Exchange (ETDEWEB)
Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu, E-mail: wangyuhu2001cn@yahoo.com.cn [Department of Applied Physics, Hunan University, Changsha 410082 (China); Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)
2009-08-15
Using molecular dynamics simulations and a modified analytic embedded atom potential, the self-diffusion dynamics of rhenium atomic clusters up to seven atoms on Re(0 0 0 1) surface have been studied in the temperature ranges from 600 K to 1900 K. The simulation time varies from 20 ns to 200 ns according to the cluster sizes and the temperature. The heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center, and diffusion prefactors D{sub 0} and activation energies E{sub a} are derived from the Arrhenius relation. It is found that the Arrhenius relation of the adatom can be divided into two parts at different temperature range. The activation energy of clusters increases with the increasing of the atom number in clusters. The prefactor of the heptamer is 2-3 orders of magnitude higher than a usual prefactor because of a large number of nonequivalent diffusion processes. The trimer and heptamer are the nuclei at different temperature range according to the nucleation theory.
Sagis, L.M.C.
2001-01-01
In this paper we developed an expression for the coefficient for plane-parallel diffusion for an arbitrarily curved fluid–fluid interface. The expression is valid for ordinary diffusion in binary mixtures, with isotropic bulk phases and an interfacial region that is isotropic in the plane parallel
Hasegawa, Kazuhiro; Ono, Kenjiro; Yamada, Masahito; Naiki, Hironobu
2002-11-19
To establish the kinetic model of the extension and dissociation of beta-amyloid fibrils (f(A)beta) in vitro, we analyzed these reactions using a surface plasmon resonance (SPR) biosensor. Sonicated f(A)beta were immobilized on the surface of the SPR sensor chip as seeds. The SPR signal increased linearly as a function of time after amyloid beta-peptides (Abeta) were injected into the f(A)beta-immobilized chips. The extension of f(A)beta was confirmed by atomic force microscopy. When flow cells were washed with running buffer, the SPR signal decreased with time after the extension reaction. The curve fitting resolved the dissociation reaction into the fast exponential and slow linear decay phases. Kinetic analysis of the effect of Abeta/f(A)beta concentrations on the reaction rate indicated that both the extension reaction and the slow linear phase of the dissociation were consistent with a first-order kinetic model; i.e., the extension/dissociation reactions proceed via consecutive association/dissociation of Abeta onto/from the end of existing fibrils. On the basis of this model, the critical monomer concentration ([M](e)) and the equilibrium association constant (K) were calculated, for the first time, to be 20 nM and 5 x 10(7) M(-1), respectively. Alternatively, [M](e) was directly measured as 200 nM, which may represent the equilibrium between the extension reaction and the fast phase of the dissociation. The SPR biosensor is a useful quantitative tool for the kinetic and thermodynamic study of the molecular mechanisms of f9A)beta formation in vitro.
Qing, Chun; Wu, Xiaoqing; Li, Xuebin; Tian, Qiguo; Liu, Dong; Rao, Ruizhong; Zhu, Wenyue
2018-01-01
In this paper, we introduce an approach wherein the Weather Research and Forecasting (WRF) model is coupled with the bulk aerodynamic method to estimate the surface layer refractive index structure constant (C n 2) above Taishan Station in Antarctica. First, we use the measured meteorological parameters to estimate C n 2 using the bulk aerodynamic method, and second, we use the WRF model output parameters to estimate C n 2 using the bulk aerodynamic method. Finally, the corresponding C n 2 values from the micro-thermometer are compared with the C n 2 values estimated using the WRF model coupled with the bulk aerodynamic method. We analyzed the statistical operators—the bias, root mean square error (RMSE), bias-corrected RMSE (σ), and correlation coefficient (R xy )—in a 20 day data set to assess how this approach performs. In addition, we employ contingency tables to investigate the estimation quality of this approach, which provides complementary key information with respect to the bias, RMSE, σ, and R xy . The quantitative results are encouraging and permit us to confirm the fine performance of this approach. The main conclusions of this study tell us that this approach provides a positive impact on optimizing the observing time in astronomical applications and provides complementary key information for potential astronomical sites.
Rowthu, Sriharitha; Balic, Edin E.; Hoffmann, Patrik
2017-12-01
Accomplishing mechanically robust omniphobic surfaces is a long-existing challenge, and can potentially find applications in bioengineering, tribology and paint industries. Slippery liquid impregnated mesoporous α-Al2O3 interfaces are achieved with water, alkanes, water based and oil based high viscosity acrylic paints. Incredibly high abrasion-resistance (wear coefficients ≤10‑8 mm3 N‑1 m‑1) and ultra-low friction coefficients (≥0.025) are attained, attributing to the hard alumina matrix and continuous replenishment of perfluoropolyether aided by capillarity and surface diffusion processes. A variety of impregnating liquids employed suggest that large molecules, faster surface diffusion and lowest evaporation rate generate the rare combination of high wear-resistance and omniphobicity. It is noteworthy that these novel liquid impregnated Al2O3 composites exhibit outstanding load bearing capacity up to 350 MPa; three orders of magnitude higher than achievable by the state of the art omniphobic surfaces. Further, our developed thermodynamic calculations suggest that the relative thermodynamic stability of liquid impregnated composites is linearly proportional to the spreading coefficient (S) of the impregnating liquid with the matrix material and is an important tool for the selection of an appropriate matrix material for a given liquid.
Energy Technology Data Exchange (ETDEWEB)
Tsimpanogiannis, Ioannis N.; Yortsos, Yanis C.
2001-08-15
This report, focuses on the isothermal gas phase growth from a supersaturated, slightly compressible, binary liquid in a porous medium. This is driven by mass transfer, the extent of which is controlled by the application of either a constant-rate decline of the system pressure or the withdrawal of the liquid at a constant rate. This report deals with the first process. Pressure depletion due to constant-rate liquid withdrawal is analyzed in a companion report .
Effect of surface diffusion on morphology and scaling properties during glancing angle deposition
Mukherjee, Srijit
The objective of this research work is to study the effect of surface diffusion on the morphology of porous thin films grown by Glancing Angle Deposition (GLAD) wherein atomic shadowing is the dominant physical phenomenon responsible for growth of isolated nano-rod structures. The morphology has been analyzed in terms of change in the width of the nanorods w at a given height h as well as changes in scaling relations as a function of diffusion length scale. Atomic shadowing during kinetically limited physical vapor deposition causes a chaotic instability in the layer morphology that leads to nanorod growth. GLAD experiments indicate that the rod morphology, in turn, exhibits a chaotic instability with increasing surface diffusion. The measured rod width versus growth temperature converges onto a single curve for metallic systems when normalized by the melting point Tm. A model based on mean field nucleation theory reveals a transition from a two- to three-dimensional growth regime at (0.20 +/- 0.03) x Tm and an activation energy for diffusion on curved surfaces of (2.46 +/- 0.02) x kTm. The consistency in the GLAD data suggests that the effective mass transport on a curved surface is described by a single normalized activation energy that is applicable to all elemental metals. Metallic nanorods grown by GLAD at Ts = 300--1123 K exhibit self-affine scaling, where the average rod width w increases with height h according to w ∝ h p. The growth exponent p for the investigated metals (Ta, Nb, Cr and Al) varies with temperature and material but collapses onto a single curve when plotted against the homologous temperature theta = Ts/Tm. It decreases from p = 0.5 at theta = 0 to 0.39 at theta = 0.22, consistent with reported theoretical predictions, but exhibits a transition to an anomalous value of p = 0.7 at theta = 0.26, followed by a decrease to 0.33 at theta = 0.41. The change in the scaling relations has been related to changes in the surface roughness of the
Energy Technology Data Exchange (ETDEWEB)
Arguelles O, J. L.; Corona R, M. A. [Universidad Autonoma de San Luis Potosi, Doctorado Institucional en Ingenieria y Ciencia de Materiales, San Luis Potosi 78000, SLP (Mexico); Marquez H, A.; Saldana R, A. L.; Saldana R, A. [Universidad de Guanajuato, Ingenieria Mecanica Agricola DICIVA, Irapuato, Guanajuato 36500 (Mexico); Moreno P, J., E-mail: amarquez@ugto.mx [Universidad de Guanajuato, Departamento de Minas, Metalurgia y Geologia, Ex-Hacienda San Matias s/n, Guanajuato, Guanajuato 36020 (Mexico)
2017-11-01
In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co{sub 2}B, Cr B and Mo{sub 2}B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)
Advection and diffusion in random media implications for sea surface temperature anomalies
Piterbarg, Leonid I
1997-01-01
The book presents the foundations of the theory of turbulent transport within the context of stochastic partial differential equations. It serves to establish a firm connection between rigorous and non-rigorous results concerning turbulent diffusion. Mathematically all of the issues addressed in this book are concentrated around a single linear equation: stochastic advection-diffusion (transport) equation. There is no attempt made to derive universal statistics for turbulent flow. Instead emphasis is placed on a statistical description of a passive scalar (tracer) under given velocity statistics. An application concerning transport of sea surface temperature anomalies reconciles the developed theory and a highly practical issue of modern physical oceanography by using the newly designed inversion techniques which take advantage of powerful maximum likelihood and autoregressive estimators. Audience: Graduate students and researchers in mathematics, fluid dynamics, and physical oceanography.
International Nuclear Information System (INIS)
Arguelles O, J. L.; Corona R, M. A.; Marquez H, A.; Saldana R, A. L.; Saldana R, A.; Moreno P, J.
2017-01-01
In this study, the Response Surface Methodology (Rsm) and Central Composite Design (Ccd) were used to optimize the hardness of boride diffusion layer on Astm F-75 alloy (also called Haynes alloy). A boronizing thermochemical treatment was carried out at different temperatures and for different time periods. Hardness tests were conducted. The boride diffusion layer was verified by the X-ray diffraction (XRD) analysis indicating the formation of Co B, Co 2 B, Cr B and Mo 2 B phases. An optimal hardness of 3139.7 Hv was obtained for the samples subjected to the boriding process for a duration of 6.86 h at 802.4 degrees Celsius. (Author)
Lohmann, R.; Jurado Cojo, E.; Dijkstra, H.A.; Dachs, J.
2013-01-01
Here we estimate the importance of vertical eddy diffusion in removing perfluorooctanoic acid (PFOA) from the surface Ocean and assess its importance as a global sink. Measured water column profiles of PFOA were reproduced by assuming that vertical eddy diffusion in a 3-layer ocean model is the sole
Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.
Directory of Open Access Journals (Sweden)
Sorenson Donna J
2009-12-01
Full Text Available Abstract Background Patients with traumatic brain injury (TBI often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. Methods Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI. Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p Results The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. Conclusions MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.
Energy Technology Data Exchange (ETDEWEB)
Placidi, E., E-mail: ernesto.placidi@ism.cnr.it; Arciprete, F. [Istituto di Struttura della Materia, CNR, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Latini, V.; Latini, S.; Patella, F. [Università di Roma “Tor Vergata”, Dipartimento di Fisica, via della Ricerca Scientifica 1, 00133 Rome (Italy); Magri, R. [Dipartimento di Scienze Fisiche, Informatiche e Matematiche (FIM), Università di Modena e Reggio Emilia, and Centro S3 CNR-Istituto Nanoscienze, Via Campi 213/A, 4100 Modena (Italy); Scuderi, M.; Nicotra, G. [CNR-IMM, Strada VIII, 5, 95121 Catania (Italy)
2014-09-15
An innovative multilayer growth of InAs quantum dots on GaAs(100) is demonstrated to lead to self-aggregation of correlated quantum dot chains over mesoscopic distances. The fundamental idea is that at critical growth conditions is possible to drive the dot nucleation only at precise locations corresponding to the local minima of the Indium chemical potential. Differently from the known dot multilayers, where nucleation of new dots on top of the buried ones is driven by the surface strain originating from the dots below, here the spatial correlations and nucleation of additional dots are mostly dictated by a self-engineering of the surface occurring during the growth, close to the critical conditions for dot formation under the fixed oblique direction of the incoming As flux, that drives the In surface diffusion.
Influence of surface hydroxylation on the Ru atom diffusion on the ZrO2(101) surface: A DFT study
Tosoni, Sergio; Pacchioni, Gianfranco
2017-10-01
The adsorption and diffusion of ruthenium adatoms on the (101) surface of tetragonal zirconia was studied by means of periodic Density Functional Theory (PBE+U) calculations. The surface termination has a decisive role in determining the diffusion capability of the adsorbed Ru atoms. On the defect-free and fully dehydroxylated surface, Ru adatoms have several stable adsorption sites with adsorption energies as large as 2.5-2.9 eV However, the kinetic diffusion barriers between adjacent adsorption sites are around 0.5-0.6 eV, indicating a rather fast diffusion process. Surface oxygen vacancies, if present, strongly bind ruthenium adatoms and act as nucleation sites. On hydroxylated surfaces, the adsorption energy of Ru atoms is comparable to the dehydroxylated case, but the kinetic barriers for diffusion are remarkably higher, thus indicating that adsorbed species are less mobile in presence of surface OH groups. The effect is more pronounced for high concentrations of OH groups, since this results in hydrogen bonded hydroxyl units that further limit the diffusion process. These results indicate a possible way to increase the life-time of Rusbnd ZrO2 heterogeneous catalysts by tuning the level of surface hydroxylation, in order to slow down sintering of metal particles via Ostwald ripening process.
Energy Technology Data Exchange (ETDEWEB)
Kotane, L M; Comins, J D; Every, A G [Materials Physics Research Institute, School of Physics, University of the Witwatersrand, Johannesburg, Wits 2050 (South Africa); Botha, J R, E-mail: Lesias.Kotane@wits.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)
2011-01-01
Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs{sub 0.91}Sb{sub 0.09}. The wave speed measurements have been used to determine the room temperature values of the elastic constants C{sub 11}, C{sub 12} and C{sub 44} of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.
Surface Brillouin scattering measurement of the elastic constants of single crystal InAs0.91Sb0.09
International Nuclear Information System (INIS)
Kotane, L M; Comins, J D; Every, A G; Botha, J R
2011-01-01
Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs 0.91 Sb 0.09 . The wave speed measurements have been used to determine the room temperature values of the elastic constants C 11 , C 12 and C 44 of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.
Second generation diffusion model of interacting gravity waves on the surface of deep fluid
Directory of Open Access Journals (Sweden)
A. Pushkarev
2004-01-01
Full Text Available We propose a second generation phenomenological model for nonlinear interaction of gravity waves on the surface of deep water. This model takes into account the effects of non-locality of the original Hasselmann diffusion equation still preserving important properties of the first generation model: physically consistent scaling, adherence to conservation laws and the existence of Kolmogorov-Zakharov solutions. Numerical comparison of both models with the original Hasselmann equation shows that the second generation models improves the angular distribution in the evolving wave energy spectrum.
A desk study of surface diffusion and mass transport in clay
International Nuclear Information System (INIS)
Cook, A.J.
1989-01-01
Research into the properties of clays as barrier materials for nuclear waste disposal has led to the realization that they have important transport properties which are relatively insignificant in most other geological materials. Sorption has always been regarded as a purely retarding mechanism, but laboratory experiments over the past decade have indicated that surface diffusion of sorbed cations is a potentially significant transport mechanism in both compacted montmorillonite, and biotite gneiss. The present desk study about these issues was part of the CEC coordinated project Mirage-Second phase, research area Natural analogues
Nano-pits on GaAs (1 0 0) surface: Preferential sputtering and diffusion
Energy Technology Data Exchange (ETDEWEB)
Kumar, Tanuj, E-mail: tanujkumar@cuh.ac.in [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh 123029 (India); Panchal, Vandana [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Kumar, Ashish; Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)
2016-07-15
Self organized nano-structure array on the surfaces of semiconductors have potential applications in photonics, magnetic devices, photovoltaics, and surface-wetting tailoring etc. Therefore, the control over their dimensions is gaining scientific interest in last couple of decades. In this work, fabrication of pits of nano-dimensions is carried out on the GaAs (1 0 0) surface using 50 keV Ar{sup +} at normal incidence. Variation in fluence from 3 × 10{sup 17} ions/cm{sup 2} to 5 × 10{sup 18} ions/cm{sup 2} does not make a remarkable variation in the dimension of pits such as size and depth, which is confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). However the simultaneous dots formation is observed along with the pits at higher fluences. Average size of pits is found to be of 22 nm with depth of 1–5 nm for the used fluences. The importance of preferential sputtering of ‘As’ as compared to ‘Ga’ is estimated using energy dispersive X-ray analysis (EDX). The observed alteration in near surface composition shows the Ga enrichment of surface, which is not being much affected by variation in fluence. The growth evolution of pits and dots for the used experimental conditions is explained on the basis of ion beam induced preferential sputtering and surface diffusion.
Objective and Subjective Evaluation of Reflecting and Diffusing Surfaces in Auditoria
Cox, Trevor John
Available from UMI in association with The British Library. Requires signed TDF. The performance of reflectors and diffusers used in auditoria have been evaluated both objectively and subjectively. Two accurate systems have been developed to measure the scattering from surfaces via the cross correlation function. These have been used to measure the scattering from plane panels, curved panels and quadratic residue diffusers (QRDs). The scattering measurements have been used to test theoretical prediction methods based on the Helmholtz-Kirchhoff integral equation. Accurate prediction methods were found for all surfaces tested. The limitations of the more approximate methods have been defined. The assumptions behind Schroeder's design of the QRD have been tested and the local reacting admittance assumption found to be valid over a wide frequency range. It was found that the QRD only produces uniform scattering at low frequencies. For an on-axis source the scattering from a curved panel was as good as from a QRD. For an oblique source the QRD produced much more uniform scattering than the curved panel. The subjective measurements evaluated the smallest perceivable change in the early sound field, the part most influenced by reflectors and diffusers. A natural sounding simulation of a concert hall field within an anechoic chamber was used. Standard objective parameters were reasonable values when compared to values found in real halls and subjective preference measurements. A difference limen was measured for early lateral energy fraction (.048 +/-.005); inter aural cross correlation (.075 +/-.008); clarity index (.67 +/-.13 dB); and centre time (8.6 +/- 1.6 ms). It was found that: (i) when changes are made to diffusers and reflectors, changes in spatial impression will usually be larger than those in clarity; and (ii) acousticians can gain most by paying attention to lateral sound in auditoria. It was also found that: (i) diffuse reflections in the early sound field
Diffusive mass transport in agglomerated glassy fallout from a near-surface nuclear test
Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.
2018-02-01
Aerodynamically-shaped glassy fallout is formed when vapor phase constituents from the nuclear device are incorporated into molten carriers (i.e. fallout precursor materials derived from soil or other near-field environmental debris). The effects of speciation and diffusive transport of condensing constituents are not well defined in models of fallout formation. Previously we reported observations of diffuse micrometer scale layers enriched in Na, Fe, Ca, and 235U, and depleted in Al and Ti, at the interfaces of agglomerated fallout objects. Here, we derive the timescales of uranium mass transport in such fallout as it cools from 2500 K to 1500 K by applying a 1-dimensional planar diffusion model to the observed 235U/30Si variation at the interfaces. By modeling the thermal transport between the fireball and the carrier materials, the time of mass transport is calculated to be <0.6 s, <1 s, <2 s, and <3.5 s for fireball yields of 0.1 kt, 1 kt, 10 kt, and 100 kt respectively. Based on the calculated times of mass transport, a maximum temperature of deposition of uranium onto the carrier material of ∼2200 K is inferred (1σ uncertainty of ∼200 K). We also determine that the occurrence of micrometer scale layers of material enriched in relatively volatile Na-species as well as more refractory Ca-species provides evidence for an oxygen-rich fireball based on the vapor pressure of the two species under oxidizing conditions. These results represent the first application of diffusion-based modeling to derive material transport, thermal environments, and oxidation-speciation in near-surface nuclear detonation environments.
Modeling diffuse sources of surface water contamination with plant protection products
Wendland, Sandra; Bock, Michael; Böhner, Jürgen; Lembrich, David
2015-04-01
Entries of chemical pollutants in surface waters are a serious environmental problem. Among water pollutants plant protection products (ppp) from farming practice are of major concern not only for water suppliers and environmental agencies, but also for farmers and industrial manufacturers. Lost chemicals no longer fulfill their original purpose on the field, but lead to severe damage of the environment and surface waters. Besides point-source inputs of chemical pollutants, the diffuse-source inputs from agricultural procedures play an important and not yet sufficiently studied role concerning water quality. The two most important factors for diffuse inputs are erosion and runoff. The latter usually occurs before erosion begins, and is thus often not visible in hindsight. Only if it has come to erosion, it is obvious to expect runoff in foresight at this area, too. In addition to numerous erosion models, there are also few applications to model runoff processes available. However, these conventional models utilize approximations of catchment parameters based on long-term average values or theoretically calculated concentration peaks which can only provide indications to relative amounts. Our study aims to develop and validate a simplified spatially-explicit dynamic model with high spatiotemporal resolution that enables to measure current and forecast runoff potential not only at catchment scale but field-differentiated. This method allows very precise estimations of runoff risks and supports risk reduction measures to be targeted before fields are treated. By focusing on water pathways occurring on arable land, targeted risk reduction measures like buffer strips at certain points and adapted ppp use can be taken early and pollution of rivers and other surface waters through transported pesticides, fertilizers and their products could be nearly avoided or largely minimized. Using a SAGA-based physical-parametric modeling approach, major factors influencing runoff
Zhao, Yanyun; Li, Chunjing; Huang, Bo; Liu, Shaojun; Huang, Qunying
2014-12-01
Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.
Energy Technology Data Exchange (ETDEWEB)
Thomas, Joan E.; Kelley, Michael J.
2008-06-01
Diffuse reflectance Fourier-transform infrared spectroscopy (DRIFTS) was used to characterize multi-layers of lysine, glutamic acid and salicylic acid on -alumina and kaolinite surfaces. The results agreed well with those previously obtained by ATR-IR in aqueous media where available, indicating that DRIFT may be regarded as effectively an in-situ spectroscopy for these materials. In the case of salicylic acid adsorption onto γ-alumina, DRIFTS was used to identify monolayer coverage and to detect molecules down to coverage of 3% of a monolayer. The spectroscopic results as to coverage were confirmed by analysis of the solutions used for treatment. The spectra obtained allowed identification of changes in the bonding environment with increasing surface coverage. DRIFTS, offers several advantages in terms of materials, experimental technique and data treatment, motivating further investigations.
Dynamics and Stability of Self-similar Pinch-off via Surface Diffusion
Bernoff, Andrew J.; Bertozzi, Andrea L.; Witelski, Thomas P.
1998-11-01
The motion of an interface via BBW.html>surface diffusion is a well-known model in the study of thin solid filaments with application to such fields as integrated circuit technology. The interface moves with a normal velocity proportional to minus the surface Laplacian of its mean curvature. This flow conserves the volume enclosed inside the surface while minimizing its surface area. A cylindrical surface is unstable to long-wave perturbations, analogous to the Rayleigh instability in fluid dynamics. The initial instability leads to a conical pinch-off of the cylinder to form isolated spheres. We examine the structure of the pinch-off, showing it has self-similar structure, using asymptotic, numerical and analytical methods. In addition to a previously known solution(Wong et al. Scripta Mater.) 39(1):55, 1998, we find a countable set of similarity solutions, each with a different cone angle. We develop a stability theory in similarity variables that selects the original similarity solution as the only linearly stable one and consequently the only observable one. We confirm this theory via numerical simulations, using self-similar adaptive mesh refinement, of the pinch-off.
Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder.
Landin-Romero, Ramón; Canales-Rodríguez, Erick J; Kumfor, Fiona; Moreno-Alcázar, Ana; Madre, Mercè; Maristany, Teresa; Pomarol-Clotet, Edith; Amann, Benedikt L
2017-01-01
The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.
Kapranov, Sergey V.; Kouzaev, Guennadi A.
2018-01-01
Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.
Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium
International Nuclear Information System (INIS)
R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein
2004-01-01
FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were ∼ 4 x 10 -7 cm 2 /s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10 -5 to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form
Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium
Energy Technology Data Exchange (ETDEWEB)
R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein
2004-12-14
FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.
Energy Technology Data Exchange (ETDEWEB)
Gouzevitch, Maxime
2008-12-15
In this analysis we have used the production of hard jets in neutral-current DIS for the extraction of the strong coupling constant {alpha}{sub s}. The jets have been selected in the NC DIS events at large momentum transvers 1505. Three jet observables normalized to the total NC DIS cross section have been used: Inclusive jet multiplicity as well as the production rates of 2-jet and 3-jet events. The prediction of the renormalization-group equation for the evolution of the strong coupling constant has been successfully tested for two orders of magnitude between Q=2 QeV to Q=122 GeV. The better precision on {alpha}{sub s}(m{sub Z}) has been obtained with the combination ob the three observables at Q{sup 2}>150 GeV{sup 2}: {alpha}{sub s}(m{sub Z})=0.1180{+-}0.0007(exp.){sub -0.0034}{sup +0.0050}(th.){+-}0.0017(pdf.).
Toro-Mendoza, Jhoan; Rodriguez-Lopez, Gieberth; Paredes-Altuve, Oscar
2017-03-29
Here, the effect of the elastic response of the surface on the translational diffusion coefficient of a partly submerged-in-water spherical Brownian particle is considered. The elastic nature of the surface, mediated by the surface tension, generates an additional dissipative mechanism. Therefore, the collisions at the surface contribute to the diffusion as the source of the driving force and the dissipation results from the combined action of both elastic reaction of the surface and viscous dissipation. However, it can be estimated that the surface elastic mechanism is several orders of magnitude greater than the viscous one. This simple yet physically plausible approach leads us to assume that the diffusion on the surface is proportional to a power of the number of collisions and, consequently, the dissipative mechanisms are proportional to an inverse power of it. The lowering in dimensionality from 3 (bulk) to 2 (surface) also contributes to the decrease of diffusion. This model allows the reproduction of the reported experimental values of the surface/bulk dissipative force ratio. Additionally, we also compared the traditional viscous approach with other theoretical hydrodynamic treatments of the problem, which drastically failed to explain the experiments.
Surface-driven registration method for the structure-informed segmentation of diffusion MR images.
Esteban, Oscar; Zosso, Dominique; Daducci, Alessandro; Bach-Cuadra, Meritxell; Ledesma-Carbayo, María J; Thiran, Jean-Philippe; Santos, Andres
2016-10-01
Current methods for processing diffusion MRI (dMRI) to map the connectivity of the human brain require precise delineations of anatomical structures. This requirement has been approached by either segmenting the data in native dMRI space or mapping the structural information from T1-weighted (T1w) images. The characteristic features of diffusion data in terms of signal-to-noise ratio, resolution, as well as the geometrical distortions caused by the inhomogeneity of magnetic susceptibility across tissues hinder both solutions. Unifying the two approaches, we propose regseg, a surface-to-volume nonlinear registration method that segments homogeneous regions within multivariate images by mapping a set of nested reference-surfaces. Accurate surfaces are extracted from a T1w image of the subject, using as target image the bivariate volume comprehending the fractional anisotropy (FA) and the apparent diffusion coefficient (ADC) maps derived from the dMRI dataset. We first verify the accuracy of regseg on a general context using digital phantoms distorted with synthetic and random deformations. Then we establish an evaluation framework using undistorted dMRI data from the Human Connectome Project (HCP) and realistic deformations derived from the inhomogeneity fieldmap corresponding to each subject. We analyze the performance of regseg computing the misregistration error of the surfaces estimated after being mapped with regseg onto 16 datasets from the HCP. The distribution of errors shows a 95% CI of 0.56-0.66mm, that is below the dMRI resolution (1.25mm, isotropic). Finally, we cross-compare the proposed tool against a nonlinear b0-to-T2w registration method, thereby obtaining a significantly lower misregistration error with regseg. The accurate mapping of structural information in dMRI space is fundamental to increase the reliability of network building in connectivity analyses, and to improve the performance of the emerging structure-informed techniques for dMRI data
Local environment dependance of the water diffusion energy barrier onto the (101) anatase surface
Agosta, Lorenzo; Gala, Fabrizio; Zollo, Giuseppe
2016-06-01
The adsorption properties of TiO2 surfaces with biological environments have shown to be very important for bio-compatibility properties. Interactions of biological molecules with inorganic materials in aqueous systems, are mediated by water molecules. Hence the understanding of the possible conformations that water molecules can assume on the inorganic surfaces it is very important. Many studies concerning the structural conformations of adsorbed water molecules on rutile and anatase, the most likely exposed surface phases, show that the first layer of adsorbed water molecules play a crucial role in mediating the structural and physical properties of the upper interacting environment layers. In this contest we performed a detailed analysis of the possible conformations of the first layer of water molecules adsorbed on the (101) TiO2 surface; total energy calculations and NEB techniques, in contest of the DFT theory, has been used to study the stability and the diffusion properties as a further insight of our previous studies about this topic.
Czech Academy of Sciences Publication Activity Database
Mašín, Martin; Vattulainen, I.; Ala-Nissila, T.; Chvoj, Zdeněk
2007-01-01
Roč. 126, č. 11 (2007), 114705/1-114705/8 ISSN 0021-9606 R&D Projects: GA AV ČR IAA1010207 Institutional research plan: CEZ:AV0Z10100521 Keywords : surface diffusion * vicinal surfaces * non-equilibrium effects * Monte-Carlo simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.044, year: 2007
Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations
Energy Technology Data Exchange (ETDEWEB)
Way, J. Douglas [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical and Biological Engineering; Wolden, Colin A. [Colorado School of Mines, Golden, CO (United States)
2013-09-30
Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo_{2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo_{2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft^{2} at a feed pressure of only 20 psig. The highest H_{2}/N_{2} selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo_{2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo_{2}C catalyst layers. We have fabricated a Mo_{2}C/V composite membrane that in pure gas testing delivered a H_{2} flux of 238 SCFH/ft^{2} at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft^{2}.psi. However, during testing of a Mo_{2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft^{2}.psi was obtained which was stable during the entire test, meeting the permeance associated with
Estimation of the Lagrangian structure function constant ¤C¤0 from surface-layer wind data
DEFF Research Database (Denmark)
Anfossi, D.; Degrazia, G.; Ferrero, E.
2000-01-01
stochastic dispersion models, relating C(0) to the turbulent kinetic energy dissipation rate epsilon, wind velocity variance and Lagrangian decorrelation time. The second one employs a novel equation, connecting C(0) to the constant of the second-order Eulerian structure function. Before estimating C(0...
Directory of Open Access Journals (Sweden)
Xuefeng Zhang
2015-01-01
Full Text Available Sequential, adaptive, and gradient diffusion filters are implemented into spatial multiscale three-dimensional variational data assimilation (3DVAR as alternative schemes to model background error covariance matrix for the commonly used correction scale method, recursive filter method, and sequential 3DVAR. The gradient diffusion filter (GDF is verified by a two-dimensional sea surface temperature (SST assimilation experiment. Compared to the existing DF, the new GDF scheme shows a superior performance in the assimilation experiment due to its success in extracting the spatial multiscale information. The GDF can retrieve successfully the longwave information over the whole analysis domain and the shortwave information over data-dense regions. After that, a perfect twin data assimilation experiment framework is designed to study the effect of the GDF on the state estimation based on an intermediate coupled model. In this framework, the assimilation model is subject to “biased” initial fields from the “truth” model. While the GDF reduces the model bias in general, it can enhance the accuracy of the state estimation in the region that the observations are removed, especially in the South Ocean. In addition, the higher forecast skill can be obtained through the better initial state fields produced by the GDF.
DEFF Research Database (Denmark)
Liu, S.J.; Tao, H.Z.; Zhang, Y.F.
2015-01-01
We investigate the sodium inward diffusion (i.e., sodium diffusion from surface toward interior) in iron containing alkaline earth silicate glasses under reducing conditions around Tg and the induced surface crystallization. The surface crystallization is caused by formation of a silicate-gel layer...... first and then the growth of silica crystals on the glass surface. The type of alkaline earth cations has a strong impact on both the glass transition and the surface crystallization. In the Mg-containing glass, a quartz layer forms on the glass surface. This could be attributed to the fact that Mg2......+ ions have stronger bonds to oxygen and lower coordination number (4~5) than Ca2+, Sr2+ and Ba2+ ions. In contrast, a cristobalite layer forms in Ca-, Sr- and Ba-containing glasses....
Mineral paragenesis on Mars: The roles of reactive surface area and diffusion.
Fairén, Alberto G; Gil-Lozano, Carolina; Uceda, Esther R; Losa-Adams, Elisabeth; Davila, Alfonso F; Gago-Duport, Luis
2017-09-01
Geochemical models of secondary mineral precipitation on Mars generally assume semiopen systems (open to the atmosphere but closed at the water-sediment interface) and equilibrium conditions. However, in natural multicomponent systems, the reactive surface area of primary minerals controls the dissolution rate and affects the precipitation sequences of secondary phases, and simultaneously, the transport of dissolved species may occur through the atmosphere-water and water-sediment interfaces. Here we present a suite of geochemical models designed to analyze the formation of secondary minerals in basaltic sediments on Mars, evaluating the role of (i) reactive surface areas and (ii) the transport of ions through a basalt sediment column. We consider fully open conditions, both to the atmosphere and to the sediment, and a kinetic approach for mineral dissolution and precipitation. Our models consider a geochemical scenario constituted by a basin (i.e., a shallow lake) where supersaturation is generated by evaporation/cooling and the starting point is a solution in equilibrium with basaltic sediments. Our results show that cation removal by diffusion, along with the input of atmospheric volatiles and the influence of the reactive surface area of primary minerals, plays a central role in the evolution of the secondary mineral sequences formed. We conclude that precipitation of evaporites finds more restrictions in basaltic sediments of small grain size than in basaltic sediments of greater grain size.
Luther, M. R.
1981-01-01
The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.
Diffusion of surface-active amphiphiles in silicone-based fouling-release coatings
DEFF Research Database (Denmark)
Noguer, Albert Camós; Olsen, S. M.; Hvilsted, Søren
2017-01-01
Amphiphiles (i.e. amphiphilic molecules such as surfactants, block copolymers and similar compounds) are used in small amounts to modify the surface properties of polymeric materials. In silicone fouling-release coatings, PEG-based amphiphiles are added to provide biofouling-resistance. The success...... of the amphiphiles shows a weak dependency on their molecular weight, although this dependency is much less pronounced than for other rubbery polymeric materials. The biofouling-resistance properties in fouling-release coatings were also studied for these amphiphiles. It was found that the diffusion coefficient does...... not have any influence on the biofouling-resistance results for the studied compounds. Instead, the chemistry of the hydrophobic block of the amphiphiles is much more significant, with PEG-PDMS block copolymers showing the best properties among the studied compounds....
International Nuclear Information System (INIS)
Foos, J.
1999-01-01
This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 1 to 56. (A.L.B.)
International Nuclear Information System (INIS)
Foos, J.
2000-01-01
This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)
International Nuclear Information System (INIS)
Foos, J.
1998-01-01
This paper is made of two tables. The first table describes the different particles (bosons and fermions) while the second one gives the nuclear constants of isotopes from the different elements with Z = 1 to 25. (J.S.)
International Nuclear Information System (INIS)
Foos, J.
1999-01-01
This paper is written in two tables. The first one describes the different particles (bosons and fermions). The second one gives the isotopes nuclear constants of the different elements, for Z = 56 to 68. (A.L.B.)
Wang, Lingquan; Zeng, Zhong; Zhang, Liangqi; Qiao, Long; Zhang, Yi; Lu, Yiyu
2018-04-01
Navier-Stokes (NS) equations with no-slip boundary conditions fail to realistically describe micro-flows with considering nanoscale phenomena. Particularly, in kerogen pores, slip-flow and surface diffusion are important. In this study, we propose a new slip boundary scheme for the lattice Boltzmann (LB) method through the non-equilibrium extrapolation scheme to simulate the slip-flow considering surface diffusion effect. Meanwhile, the second-order slip velocity can be taken into account. The predicted characteristics in a two-dimensional micro-flow, including slip-velocity, velocity distribution along the flow direction with/without surface diffusion are present. The results in this study are compared with available analytical and reference results, and good agreements are achieved.
de Oliveira-Filho, Antonio G S; Ornellas, Fernando R; Bowman, Joel M
2014-12-26
We report reaction cross sections, energy disposal, and rate constants for the OH + HBr → Br + H2O and OH + DBr → Br + HDO reactions from quasiclassical trajectory calculations using an ab initio potential energy surface [ de Oliveira-Filho , A. G. S. ; Ornellas , F. R. ; Bowman , J. M. J. Phys. Chem. Lett. 2014 , 5 , 706 - 712 ]. Comparison with available experiments are made and generally show good agreement.
Atomistic simulation of the vacancy diffusion in (0 0 1) surface of MoTa alloy
Wang, Fang; Zhang, Jian-Min; Xu, Ke-Wei; Ji, Vincent
2009-08-01
The formation and diffusion of a single Mo or Ta vacancy in the (0 0 1) surface of the B 2-type MoTa alloy have been investigated by using modified analytical embedded-atom method (MAEAM). The results show that the effect of the surface on the vacancy is only down to the sixth layer. It is easier for the vacancy to form in the first layer. Comparing the migration energy of the vacancy migrating in the intra-layer, to the upper layer and to the nether layer via 2NN jump, we find that the vacancy in the first or second layer is preferred to migrate in intra-layer, and that in the third or fourth layer is favorable to migrate to the upper layer. Although 1NN jump will result in an anti-site so that a disorder in the order alloy, it may also occur due to the much lower migration energy especially for the vacancy in the second and third layer to migrate to the first and second layer, respectively.
International Nuclear Information System (INIS)
Mirigian, Stephen; Schweizer, Kenneth S.
2015-01-01
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry
Energy Technology Data Exchange (ETDEWEB)
Mirigian, Stephen, E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com [Departments of Materials Science and Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)
2015-12-28
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.
Directory of Open Access Journals (Sweden)
Ebadollah Naderi
2015-01-01
Full Text Available CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111 A-type (Cd terminated and B-type (Te terminated surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as Aa site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from Aa (occupied to Aa (empty site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type. Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.
Chakraborty, Parthasarathi
2010-02-05
Diffusion coefficients of Cd-humate complexes are dependent on pH and [Cd]/[Humic] Acid (HA)] ratio in a Cd-HA system. These two factors mainly control the mass transport and complexation kinetics of Cd that may influence bioavailability and toxicity of Cd species in environmental systems. Determination of diffusion coefficients of Cd-HA systems by Scanned stripping voltammetry and dynamic light scattering techniques can provide a better understanding of the systems and can be very useful for extracting other speciation parameters of the systems. This study revealed that Cd(2+) ion along with small dynamic Cd complexes was predominantly present in a Cd-HA system at pH 5 with high diffusion coefficients. HA molecules were in aggregated form at pH 5. However, HA molecules were in disaggregated form at pH 6 and concentrations of Cd(2+) ion and small Cd-dynamic complexes decreased with a decrease in diffusion coefficients of Cd complexes at this pH due to formation of Cd-humate complexes. No further decrease in the hydrodynamic radii of HA was observed with the increase of pH from 6 to 7. The Cd-humate system partially lost its lability at pH 7. Conditional stability constants were calculated for Cd-humate complexes by combining the diffusion coefficient data obtained by two techniques. The log K values calculated in this study are in good agreement with the data available from the literature. Copyright 2009 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Prieto, Francisco, E-mail: dapena@us.es [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain); Rueda, Manuela; Hidalgo, Jose; Martinez, Elisa; Navarro, Inmaculada [Department of Physical Chemistry, University of Seville, c/Profesor Garcia Gonzalez no 2, 41012 Seville (Spain)
2011-09-30
The kinetics of azobenzene reduction on mercury electrodes in the absence of diffussional mass transport is studied by electrochemical impedance spectroscopy (EIS) in acetic acid/acetate buffered solutions at different pH values. Cyclic voltammetry experiments confirm the absence of diffusion effects and provide the values of the surface equilibrium potential. The analysis of the impedance frequency spectrums at every potential within the faradaic region conforms well the model and provides the global rate constant of the process, k{sub f}. The potential dependence of k{sub f} suggests the existence of an EE mechanism, with two electron transfers controlling the overall rate. The kinetic parameters of every step are obtained and their pH dependences clarify the role played by the protonation steps.
Directory of Open Access Journals (Sweden)
М.М. Свирид
2009-03-01
Full Text Available Maintainability of surfaces of sensitive pairs of friction is analysed in surroundings with high electrical resistance in the conditions of friction. The model of tribological unit, determining conditions and conformities to the law of formation of protective tribological pellicles, is worked out. The parameters of reparation of friction surfaces are determined by a tribomagnetic method. The parameters of renewal of sensitive tribopairs are also defined on uncollapsible technologies by joint influence of triboelectrochemical method and tribomagnetic components.
Ensemble based Assimilation of SMOS Surface Soil Moisture into the Surfex 11-layer Diffusion Scheme
Blyverket, Jostein; Hamer, Paul; Svendby, Tove; Lahoz, William
2017-04-01
The Soil Moisture and Ocean Salinity (SMOS) satellite samples soil moisture at a spatial scale of ˜40 km and in the top ˜5 cm of the soil, depending on land cover and soil type. Remote sensing products have a limited spatial and temporal cover, with a re-visit time of 3 days close to the Equator for SMOS. These factors make it difficult to monitor the hydrological cycle over e.g., Northern Areas where there is a strong topography, fractal coastline and long periods of snow cover, all of which affect the SMOS soil moisture retrieval. Until now simple 3-layer force and restore models have been used to close the spatial (vertical/horizontal) and temporal gaps of soil moisture from remote sensing platforms. In this study we have implemented the Ensemble Transform Kalman Filter (ETKF) into the Surfex land surface model, and used the ISBA diffusion scheme with 11-vertical layers. In contrast to the rapid changing surface layer, the slower changing root zone soil moisture is important for long term evapotranspiration and water supply. By combining a land surface model with satellite observations using data assimilation we can provide a better estimate of the root zone soil moisture at regional scales. The Surfex model runs are done for a European domain, from 1 July 2012 to 1 August 2013. For validation of our model setup, we compare with in situ stations from the International Soil Moisture Network (ISMN) and the Norwegian Water and Energy Authorities (NVE); we also compare against the ESA CCI soil moisture product v02.2, which does not include SMOS soil moisture data. SMOS observations and open loop model runs are shown to exhibit large biases, these are removed before assimilation by a linear rescaling technique. Information from the satellite is transferred into deeper layers of the model using data assimilation, improving the root zone product when validated against in situ stations. The improved correlation between the assimilated product and the in situ values
International Nuclear Information System (INIS)
Khorasanizadeh, H.; Mohammadi, K.; Mostafaeipour, A.
2014-01-01
Highlights: • Optimum tilt angles of solar surfaces in the Iranian city of Tabass are determined. • Due to lack of measured diffuse data, a new two variables diffuse model is established. • The monthly optimum tilt varies between 0° and 64° and the best annual tilt is 32°. • The semi-yearly tilt strategy of 10° for warm and 55° for cold periods are suggested. • Radiation components obtained for horizontal, tilted and vertical surfaces are compared. - Abstract: In this study the optimum tilt angle for south-facing solar surfaces in Tabass, Iran, for the fixed monthly, seasonal, semi-yearly and yearly adjustments were calculated. Due to lack of measured diffuse solar radiation data, to predict the horizontal diffuse radiation nine diffuse models from three different categories were established. Based on some statistical indicators the three degree model, in which both clearness index and relative sunshine duration are variables, was recognized the best. The monthly optimum tilt varies from 0° in June and July up to 64° in December and the yearly optimum tilt is around 32°, which is very close to latitude of Tabass (33.36°). For different adjustments, particularly for a vertically mounted surface, the received monthly mean daily solar radiation components and the annual solar energy gains were calculated and compared. Total yearly extra solar gain for the monthly, seasonal, semi-yearly and yearly optimally adjusted surfaces compared to that of horizontal surface are 23.15%, 21.55%, 21.23% and 13.76%, respectively. The semi-yearly tilt adjustment of 10° for warm period (April–September) and 55° for cold period (October–March) is highly recommended, since it provides almost the same level of annual solar energy gain as those of monthly and seasonal adjustments
Energy Technology Data Exchange (ETDEWEB)
Nazar, R.; Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)
2004-02-01
The laminar mixed convection boundary-layer flow of a viscous and incompressible fluid past a horizontal circular cylinder, which is maintained at a constant heat flux and is placed in a stream flowing vertically upward has been theoretically studied in this paper. The solutions for the flow and heat transfer characteristics are evaluated numerically for different values of the mixed convection parameter {lambda} with the Prandtl number Pr = 1 and 7, respectively. It is found, as for the case of a heated or cooled cylinder, considered by Merkin [5], that assisting flow delays separation of the boundary-layer and can, if the assisting flow is strong enough, suppress it completely. The opposing flow, on the other side, brings the separation point nearer to the lower stagnation point and for sufficiently strong opposing flows there will not be a boundary-layer on the cylinder. (orig.)
International Nuclear Information System (INIS)
Gonzales, M.D.U.; Norfolk, D.J.
1988-02-01
Previous work has shown the ability of a chemical kinetic model, applied using the FACSIMILE computer code, to predict the thermal decomposition of ethane in a silica flow reactor. To optimise the performance of the model, the present report reviews the literature data on the twenty reactions which it incorporates. Critical assessment has shown some discrepancies in the previously used rate constants, especially those leading to ethyne formation. Table 2 of the report gives the kinetic data which, as a result of the present evaluation, are recommended for future work. Use of these data gives significantly improved agreement between the model and the experimental results, particularly for ethyne formation, which had previously been underestimated. (author)
Gold Cluster Diffusion Kinetics on Stoichiometric and Reduced Surfaces of Rutile TiO _{2} (110)
Energy Technology Data Exchange (ETDEWEB)
Goldman, Nir; Browning, Nigel D.
2011-06-16
Gold clusters on rutile TiO_{2} are known to serve as efficient oxidation catalysts for pollutants and environmental contaminants. However, the mechanism by which highly mobile small clusters migrate and aggregate into larger species relevant to gold’s catalytic activity remains unresolved. We report herein on ab initio simulations of the diffusion of atomic gold clusters up to the trimer on rutile TiO_{2}(110) surfaces. We show that, on the stoichiometric surface, both the dimer and the trimer can exhibit relatively low surface mobility due to high energetic barriers for diffusion out of their energetic minima coupled with low barriers for the reverse motion. On the reduced surface, these clusters can diffuse relatively quickly between energetic minima within the oxygen vacancy site due to the large degree of vibrational entropy in their transition states. Our computed diffusion times provide a point of comparison for future experiments and will aid in development of models of gold cluster island sintering.
Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers
Mohammadi, V.; Nihtianov, S.
2016-01-01
The lateral gas phase diffusion length of boron atoms, LB, along silicon and boron surfaces during chemical vapor deposition(CVD) using diborane (B2H6) is reported. The value of LB is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and
Müller, Matthias; Beckhoff, Burkhard; Beyer, Edyta; Darlatt, Erik; Fliegauf, Rolf; Ulm, Gerhard; Kolbe, Michael
2017-10-01
For the quantitative surface characterization of a monocrystalline silicon sphere, PTB has constructed and put into operation an analytical instrument, which combines x-ray fluorescence and x-ray photoelectron spectroscopy techniques. The main objective of this novel instrument is the characterization of the oxide layer and unintentional contaminations, e.g. from hydrocarbons. It is equipped with a ball manipulator allowing measurements at each point on the surface of ball-shaped samples with a diameter of about 93.7 mm. Monocrystalline silicon spheres with this diameter allow a realization of the SI base unit of mass.
International Nuclear Information System (INIS)
Safavinejad, A.; Mansouri, S.H.; Sakurai, A.; Maruyama, S.
2009-01-01
In this study, a combinatorial optimization methodology has been presented for determining the optimal number and location of equally powered heaters over some parts of the boundary, called the heater surface, to satisfy the desired heat flux and temperature profiles over the design surface while keeping the total heaters power constant but floating the number of heaters. In a typical enclosure, candidate locations were numerous for placing the heaters. The optimal number and location could be found by checking among all the possible combinations of heater power ranges and locations on the heater surface. The possibility of checking only a small portion of the total search space was increasingly desirable for finding an overall optimal solution. Micro-genetic algorithm was a candidate method which displayed a significant potential in achieving that task. Micro-genetic algorithm was used to minimize an objective function which was expressed by the sum of square errors between estimated and desired heat fluxes on the design surface. Radiation element method by ray emission model (REM 2 ) was used to calculate the radiative heat flux on the design surface. It enabled us to handle the effects of specular surfaces and blockage radiation due to enclosure geometry. The capabilities of this methodology were demonstrated by finding the optimal number and position of heaters in two irregular enclosures. The effects of refractory surface characteristics (i.e., diffuse and/or specular) on the optimal solution have been studied in detail. The results show that the refractory surface characteristics have profound effects on the optimal number and location of heaters
The collective diffusion coefficient as a shape detector of the surface energy landscape
Mińkowski, Marcin; Załuska–Kotur, Magdalena A.
2018-01-01
The general expression for the diffusion coefficient for a dense, interacting particle system moving through a one-dimensional non-homogeneous energy potential is derived. Based on this expression, it is shown that the diffusion coefficient as a function of density depends to a great extent on the shape of the energy landscape. The presence of other particles affects the diffusion coefficient in another way as they pass through the same energy barriers, but set in a different order. The obtained result comes from a variational approach to diffusion and the interactions are taken into account using the transfer-matrix method. Interactions impact on the dynamics of the system, both by changing the equilibrium probabilities of the occupied states and by changing the barriers for the particle jumps. Several examples of diffusion in different energy potentials are presented and the dependence of the diffusion coefficient on potential and interactions is discussed.
Specular and diffuse object extraction from a LiDAR derived Digital Surface Model (DSM)
International Nuclear Information System (INIS)
Saraf, N M; Hamid, J R A; Kamaruddin, M H
2014-01-01
This paper intents to investigate the indifferent behaviour quantitatively of target objects of interest due to specular and diffuse reflectivity based on generated LiDAR DSM of the study site in Ampang, Kuala Lumpur. The LiDAR data to be used was initially checked for its reliability and accuracy. The point cloud LiDAR data was converted to raster to allow grid analysis of the next process of generating the DSM and DTM. Filtering and masking were made removing the features of interest (i.e. building and tree) and other unwanted above surface features. A normalised DSM and object segmentation approach were conducted on the trees and buildings separately. Error assessment and findings attained were highlighted and documented. The result of LiDAR verification certified that the data is reliable and useable. The RMSE obtained is within the tolerance value of horizontal and vertical accuracy (x, y, z) i.e. 0.159 m, 0.211 m 0.091 m respectively. Building extraction inclusive of roof top based on slope and contour analysis undertaken indicate the capability of the approach while single tree extraction through aspect analysis appears to preserve the accuracy of the extraction accordingly. The paper has evaluated the suitable methods of extracting non-ground features and the effective segmentation of the LiDAR data
Gosálvez, Miguel A.; Otrokov, Mikhail M.; Ferrando, Nestor; Ryabishchenkova, Anastasia G.; Ayuela, Andres; Echenique, Pedro M.; Chulkov, Evgueni V.
2016-05-01
This is part II in a series of two papers that introduce a general expression for the tracer diffusivity in complex, periodic energy landscapes with M distinct hop rates in one-, two-, and three-dimensional diluted systems (low coverage, single-tracer limit). While Part I [Gosálvez et al., Phys. Rev. B 93, 075429 (2016), 10.1103/PhysRevB.93.075429] focuses on the analysis of diffusion in systems where the end sites of the hops are located symmetrically with respect to the hop origins (symmetric hops), as encountered in many ideal surfaces and bulk materials, this report (Part II) presents a more general approach to determining the tracer diffusivity in systems where the end sites can be located asymmetrically with respect to the hop origins (asymmetric hops), as observed in reconstructed and/or chemically modified surfaces and/or bulk materials. The obtained diffusivity formulas for numerous systems are validated against kinetic Monte Carlo simulations and previously reported analytical expressions based on the continuous-time random walk (CTRW) method. The proposed method corrects some of the CTRW formulas and provides new expressions for difficult cases that have not been solved earlier. This demonstrates the ability of the proposed formalism to describe tracer diffusion.
Jiang, Bin; Xie, Changjian; Xie, Daiqian
2011-03-21
A global potential energy surface (PES) for the electronic ground state of the BrH(2) system was constructed based on the multireference configuration interaction (MRCI) method including the Davidson's correction using a large basis set. In addition, the spin-orbit correction were computed using the Breit-Pauli Hamiltonian and the unperturbed MRCI wavefunctions in the Br + H(2) channel and the transition state region. Adding the correction to the ground state potential, the lowest spin-orbit correlated adiabatic potential was obtained. The characters of the new potential are discussed. Accurate initial state specified rate constants for the H + HBr → H(2) + Br abstraction reaction were calculated using a time-dependent wave packet method. The predicted rate constants were found to be in excellent agreement with the available experimental values and much better than those obtained from a previous PES.
Thermal Diffusion Dynamic Behavior of Two-Dimensional Ag-SMALL Clusters on Ag(1 1 1) Surface
Zakirur-Rehman; Hayat, Sardar Sikandar
2015-07-01
In this paper, the thermal diffusion behavior of small two-dimensional Ag-islands on Ag(1 1 1) surface has been explored using molecular dynamics (MD) simulations. The approach is based on semi-empirical potentials. The key microscopic processes responsible for the diffusion of Ag1-5 adislands on Ag(1 1 1) surface are identified. The hopping and zigzag concerted motion along with rotation are observed for Ag one-atom to three-atom islands while single-atom and multi-atom processes are revealed for Ag four-atom and five-atom islands, during the diffusion on Ag(1 1 1) surface. The same increasing/decreasing trend in the diffusion coefficient and effective energy barrier is observed in both the self learning kinetic Monte Carlo (SLKMC) and MD calculations, for the temperature range of 300-700 K. An increase in the value of effective energy barrier is noticed with corresponding increase in the number of atoms in Ag-adislands. A reasonable linear fit is observed for the diffusion coefficient for studied temperatures (300, 500 and 700 K). For the observed diffusion mechanisms, our findings are in good agreement with ab initio density-functional theory (DFT) calculations for Al/Al(1 1 1) while the energy barrier values are in same range as the experimental values for Cu/Ag(1 1 1) and the theoretical values using ab initio DFT supplemented with embedded-atom method for Ag/Ag(1 1 1).
Vorticity models of ocean surface diffusion in coastal jets and eddies
Cano, D.; Matulka, A.; Sekula, E.
2010-05-01
We present and discuss the use of multi-fractal techniques used to investigete vorticity and jet dynamical state of these features detected in the sea surface as well as to identify possible local parametrizations of turbulent diffusion in complex non-homogeneous flows. We use a combined vorticity/energy equation to parametrize mixing at the Rossby Deformation Radius, which may be used even in non Kolmogorov types of flows. The vorticity cascade is seen to be different to the energy cascade and may have important cnsecuences in pollutant dispersion prediction, both in emergency accidental releases and on a day to day operational basis. We also identify different SAR signatures of river plumes near the coast, which are usefull to provide calibrations for the different local configurations that allow to predict the behaviour of different tracers and tensioactives in the coastal sea surface area by means of as a geometrical characterization of the vorticity and velocity maps which induce local mixing and dilution jet processes. The satellite-borne SAR seems to be a good system for the identification of dynamic. lt is also a convenient tool to investigate the eddy structures of a certain area where the effect of bathymetry and local currents are important in describing the ocean surface behavior. Maximum eddy size agrees remarkably well with the limit imposed by the local Rossby deformation radius using the usual thermocline induced stratification, Redondo and Platonov (2000). The Rossby deformation radius, defined as Rd = (N/f)h, where N is the Brunt-Vaisalla frequency, f is the local Coriolis parameter (f=2Osin(lat), where O is the rotation of the earth as function of the latitude), The role of buoyancy may be also detected by seasonal changes in h, the thermocline depth, with these considerations Rd is ranged between 6 and 30 Km. Bezerra M.O., Diez M., Medeiros C. Rodriguez A., Bahia E., Sanchez Arcilla A and Redondo J.M. (1998) "Study on the influence of waves on
Directory of Open Access Journals (Sweden)
Ziaei Poor Hamed
2016-01-01
Full Text Available This article focuses on temperature response of skin tissue due to time-dependent surface heat fluxes. Analytical solution is constructed for DPL bio-heat transfer equation with constant, periodic and pulse train heat flux conditions on skin surface. Separation of variables and Duhamel’s theorem for a skin tissue as a finite domain are employed. The transient temperature responses for constant and time-dependent boundary conditions are obtained and discussed. The results show that there is major discrepancy between the predicted temperature of parabolic (Pennes bio-heat transfer, hyperbolic (thermal wave and DPL bio-heat transfer models when high heat flux accidents on the skin surface with a short duration or propagation speed of thermal wave is finite. The results illustrate that the DPL model reduces to the hyperbolic model when τT approaches zero and the classic Fourier model when both thermal relaxations approach zero. However for τq = τT the DPL model anticipates different temperature distribution with that predicted by the Pennes model. Such discrepancy is due to the blood perfusion term in energy equation. It is in contrast to results from the literature for pure conduction material, where the DPL model approaches the Fourier heat conduction model when τq = τT . The burn injury is also investigated.
Yang, Ruidong; Wang, Feng; Blunk, Richard H; Angelopoulos, Anastasios P
2010-09-01
Two types of silica nanoparticles having differing concentrations of ionizable surface groups are used to investigate the interplay between nanoparticle surface charge and solvent dielectric constant in nanostructure development during layer-by-layer assembly with a cationic polyacrylamide. Zeta (zeta) potential measurements are used to determine the extent of silanol dissociation with pH. For 19-nm-diameter X-Tec 3408 silica nanoparticles from Nano-X GmbH (NanoX), complete dissociation yields a zeta-potential value of about -44mV and occurs between pH 5 and 6 in 50% ethanol-in-water mixture by volume. By contrast, 65-nm-diameter polishing silica from Electron Microscopy Supply (EMS) has a zeta potential that does not equilibrate even up to pH 7 with a value of -59mV under otherwise similar solution conditions. The more negative zeta potential at a given pH is found to substantially reduce nanoparticle adsorption. This behavior is opposite that observed when the dielectric constant of the suspension is decreased, independent of particle size. Nanoparticle surface chemical heterogeneity is discussed as a plausible explanation for such seriously discrepant behavior and the effects on multilayer electrical contact resistance for proton-exchange membrane (PEM) fuel-cell coating applications are presented. Copyright 2010 Elsevier Inc. All rights reserved.
Cosmological constant as integration constant
Treder, H.-J.
1994-08-01
Einstein's field theory of elementary particles (Einstein 1919) yields black holes with a mass M approximately G-1 Lambda-1/2 c2 and a charge Q approximately G-1/2 Lambda-1/2 c2, their curvature radius is Lambda-1/2. Here Lambda is an integration constant of Einstein's 'trace-less' gravitation equations. The choice Lambda = G-1 h-1 c3 for this constant defines Planck ions and implies 'strong-gravity'. The choice Lambda = lambda = 3Hinf exp 2 c-2 (where Hinf means the Hubble parameter of a final de Sitter cosmos) involves 'weak-gravity' and describes an electro-vac spherical universe.
Diffusion in one dimensional random medium and hyperbolic Brownian motion
International Nuclear Information System (INIS)
Comtet, A.; Monthus, C.; Paris-6 Univ., 75
1995-03-01
Classical diffusion in a random medium involves an exponential functional of Brownian motion. This functional also appears in the study of Brownian diffusion on a Riemann surface of constant negative curvature. This relationship is analyzed in detail and various distributions are studied using stochastic calculus and functional integration. (author) 17 refs
Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David
2012-01-10
The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats
Selectivity and Self Diffusion of CO2 and h2 in a Mixture on a Graphite Surface
Trinh, Thuat; Kjelstrup, Signe; Vlugt, Thijs; Bedeaux, Dick; Hägg, May-Britt
2013-12-01
We performed classical molecular dynamics (MD) simulations to understand the mechanism of adsorption from a gas mixture of CO2 and H2 (mole fraction of CO2 = 0.30) and diffusion along a graphite surface, with the aim to help enrich industrial off-gases in CO2, separating out H2. The temperature of the system in the simulation covered typical industrial conditions for off-gas treatment (250 ̶ 550K). The interaction energy of single molecules CO2 or H2 on graphite surface was calculated with classical force fields and with Density Functional Theory (DFT). The results were in good agreement. The binding energy of CO2 on graphite surface is three times larger than that of H2. At lower temperatures, the selectivity of CO2 over H2 is five times larger than at higher temperatures. The position of the dividing surface was used to explain how the adsorption varies with pore size. In the temperature range studied, the self-diffusion coefficient of CO2 is always smaller than of H2. The temperature variation of the selectivities and the self diffusion coefficient imply that the carbon molecular sieve membrane can be used for gas enrichment of CO2.
Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi
2015-11-15
Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.
Energetics and self-diffusion behavior of Zr atomic clusters on a Zr(0 0 0 1) surface
Energy Technology Data Exchange (ETDEWEB)
Liu Fusheng [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail: wangyuhu2001cn@yahoo.com.cn; Deng Huiqiu; Luo Wenhua; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China)
2009-09-15
Using a molecular dynamics method and a modified analytic embedded atom potential, the energetic and the self-diffusion dynamics of Zr atomic clusters up to eight atoms on {alpha}-Zr(0 0 0 1) surface have been studied. The simulation temperature ranges from 300 to 1100 K and the simulation time varies from 20 to 40 ns. It's found that the heptamer and trimer are more stable comparing to other neighboring non-compact clusters. The diffusion coefficients of clusters are derived from the mean square displacement of cluster's mass-center and the present diffusion coefficients for clusters exhibit an Arrhenius behavior. The Arrhenius relation of the single adatom can be divided into two parts in different temperature range because of their different diffusion mechanisms. The migration energies of clusters increase with increasing the number of atoms in cluster. The differences of the prefactors also come from the diverse diffusion mechanisms. On the facet of 60 nm, the heptamer can be the nuclei in the crystal growth below 370 K.
Behrens, Jan; Langelier, Sean; Rezk, Amgad R; Lindner, Gerhard; Yeo, Leslie Y; Friend, James R
2015-01-07
We present a versatile and very low-power traveling SAW microfluidic sorting device able to displace and separate particles of different diameter in aqueous suspension; the travelling wave propagates through the fluid bulk and diffuses via a Schröder diffuser, adapted from its typical use in concert hall acoustics to be the smallest such diffuser to be suitable for microfluidics. The effective operating power range is two to three orders of magnitude less than current SAW devices, uniquely eliminating the need for amplifiers, and by using traveling waves to impart forces directly upon suspended microparticles, they can be separated by size.
Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José
2018-02-08
The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.
Surface diffusion of a Brownian particle subjected to an external harmonic noise
Bai, Zhan-Wu; Ding, Li-Ping
2017-05-01
Langevin simulation is performed to investigate the diffusion coefficient of a Brownian particle subjected to an external harmonic noise in a two-dimensional coupled periodic potential. Resonant diffusion phenomenon is observed as a result of the coupling between the central frequency of the spectral density of the harmonic noise and the frequency of the potential well bottom. The diffusion coefficient presents approximately linear functions of the strengths of the internal and external noises for low values of the strengths, these functions can be understood by the local linearization approximation of the potential force. The damping coefficient dependence of the diffusion coefficient in lower damping is well fitted by a negative power function, as an internal Gaussian white noise case does, but with a power whose absolute value is larger than 1.
Matrane, I.; Mazroui, M.; Sbiaai, K.
2018-03-01
We present a density functional theory (DFT) and embedded atom method (EAM) studies of Pt2 , Au2 and AuPt dimers adsorption and diffusion on the clean Pt (1 1 0) (1 × 1) surface and (1 × 2) (1 × 3) and (1 × 4) missing row reconstructed geometries. As a first step, adsorption energies are calculated for all considered dimers, and their stability is checked by computing the binding energies. Furthermore, the energy barriers for the elementary diffusion mechanisms (concerted jump, dissociation-reassociation and leapfrog) are calculated for dimers diffusion on all considered geometries. The potential energy profile for the leapfrog mechanism is provided for dimers diffusion on the (1 × 2) (1 × 3) and (1 × 4) missing row reconstructed geometries. Our results show that each of the three dimers exhibits a qualitatively different behaviours. In addition, the obtained results provide interesting atomistic information about dimers stability and mobility, which is required for understanding the macroscopic kinetics of crystal growth.
International Nuclear Information System (INIS)
Posadillo, R.; Lopez Luque, R.
2009-01-01
The performance of three diffuse hourly irradiation models on tilted surfaces was evaluated by making a database of hourly global and diffuse solar irradiation on a horizontal surface, as well as global solar irradiation on a tilted surface, recorded in a solar radiation station located at Cordoba University (Spain). The method for a comparison of the performance of these models was developed from a study of the 'utilizable energy' statistics, a value representing, for a specific period of time, the mean monthly radiation that exceeded a critical level of radiation. This model comparison method seemed to us to be highly suitable since it provides a way of comparing the capacity of these models to estimate, however, much energy is incident on a tilted surface above a critical radiation level. Estimated and measured values were compared using the normalized RMBE and RRMSE statistics. According to the results of the method let us verify that, of the three models evaluated, one isotropic and two anisotropic, the Reindl et al. anisotropic model was the one giving the best results.
Qing, Chun; Wu, Xiaoqing; Huang, Honghua; Tian, Qiguo; Zhu, Wenyue; Rao, Ruizhong; Li, Xuebin
2016-09-05
Since systematic direct measurements of refractive index structure constant ( Cn2) for many climates and seasons are not available, an indirect approach is developed in which Cn2 is estimated from the mesoscale atmospheric model outputs. In previous work, we have presented an approach that a state-of-the-art mesoscale atmospheric model called Weather Research and Forecasting (WRF) model coupled with Monin-Obukhov Similarity (MOS) theory which can be used to estimate surface layer Cn2 over the ocean. Here this paper is focused on surface layer Cn2 over snow and sea ice, which is the extending of estimating surface layer Cn2 utilizing WRF model for ground-based optical application requirements. This powerful approach is validated against the corresponding 9-day Cn2 data from a field campaign of the 30th Chinese National Antarctic Research Expedition (CHINARE). We employ several statistical operators to assess how this approach performs. Besides, we present an independent analysis of this approach performance using the contingency tables. Such a method permits us to provide supplementary key information with respect to statistical operators. These methods make our analysis more robust and permit us to confirm the excellent performances of this approach. The reasonably good agreement in trend and magnitude is found between estimated values and measurements overall, and the estimated Cn2 values are even better than the ones obtained by this approach over the ocean surface layer. The encouraging performance of this approach has a concrete practical implementation of ground-based optical applications over snow and sea ice.
Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven
2015-01-01
The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.
Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V
2018-04-01
The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.
Lerch, W.; Stolwijk, N. A.
1998-02-01
Rapid thermal annealing was used for short-time diffusion experiments of gold in dislocation-free floating-zone silicon of {100} orientation at 1050 °C and 1119 °C. Concentration-depth profiles measured by the spreading-resistance technique are well described within the framework of the kick-out mechanism involving generation of silicon self-interstitials. More specifically, the gold-incorporation rate appears to be controlled by the outdiffusion of excess self-interstitials towards the surfaces. As a special feature, the measurements reveal a continuous increase of the gold boundary concentration which approaches the pertaining solubility limit only after prolonged annealing. This can be interpreted in terms of a limited effectiveness of gold-alloyed {100} silicon surfaces as sinks for self-interstitials. The validity of this interpretation is supported by computer modeling of the experimental data yielding finite values for the self-interstitial surface-annihilation velocity.
DEFF Research Database (Denmark)
Vattulainen, Ilpo Tapio; Hjelt, T.; Ala-Nissila, T.
2000-01-01
We study the diffusive dynamics of adparticles in two model systems with strong interactions by considering the decay of the single-particle velocity correlation function phi (t). In accordance with previous studies, we find phi (t) to decay nonexponentially and follow a power-law phi (t)similar ......We study the diffusive dynamics of adparticles in two model systems with strong interactions by considering the decay of the single-particle velocity correlation function phi (t). In accordance with previous studies, we find phi (t) to decay nonexponentially and follow a power-law phi (t...... be rationalized in terms of interaction effects. Namely, x is typically larger than two in cases where repulsive adparticle-adparticle interactions dominate, while attractive interactions lead to x...
Diffusion coefficients-surface and interfacial tensions - Particular study of some lauryl compounds
International Nuclear Information System (INIS)
Morel, Jean-Emile
1969-01-01
Two important results of the double lipophilic and hydrophilic character of some heavy organic compounds with a polar group at the end of the chain, were studied: - In a first part, molecular diffusion coefficients were measured in order to prove the micellar aggregation of tri-laurylammonium nitrate in some organic solutions; - In a second part, the tensioactivity of some lauryl compounds (lauric acid, lauric alcohol, mono-laurylamine, etc.), was studied. (author) [fr
Reflection Matrix Method for Controlling Light After Reflection From a Diffuse Scattering Surface
2016-12-22
of Philosophy Kenneth W. Burgi, BS, MS Major, USAF 22 December 2016 DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT...refocusing light through thin films of a turbid medium. When coherent light is trans- mitted through a stationary diffuser (i.e. a turbid medium), a fine...resultant light scatter [14, 15, 21, 23]. Transmission matrices were measured with microscopic objectives and thin films of turbid media, resulting in
NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS
DEFF Research Database (Denmark)
Johannesson, Björn
2008-01-01
Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces...
Directory of Open Access Journals (Sweden)
Kaewploy Somsak
2015-01-01
Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa
Energy Technology Data Exchange (ETDEWEB)
Lawrenz, M.
2007-10-30
In the present work the dynamics of CO-molecules on a stepped Pt(111)-surface induced by fs-laser pulses at low temperatures was studied by using laser spectroscopy. In the first part of the work, the laser-induced diffusion for the CO/Pt(111)-system could be demonstrated and modelled successfully for step diffusion. At first, the diffusion of CO-molecules from the step sites to the terrace sites on the surface was traced. The experimentally discovered energy transfer time of 500 fs for this process confirms the assumption of an electronically induced process. In the following it was explained how the experimental results were modelled. A friction coefficient which depends on the electron temperature yields a consistent model, whereas for the understanding of the fluence dependence and time-resolved measurements parallel the same set of parameters was used. Furthermore, the analysis was extended to the CO-terrace diffusion. Small coverages of CO were adsorbed to the terraces and the diffusion was detected as the temporal evolution of the occupation of the step sites acting as traps for the diffusing molecules. The additional performed two-pulse correlation measurements also indicate an electronically induced process. At the substrate temperature of 40 K the cross-correlation - where an energy transfer time of 1.8 ps was extracted - suggests also an electronically induced energy transfer mechanism. Diffusion experiments were performed for different substrate temperatures. (orig.)
Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe
2014-03-01
Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.
Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.
2018-01-01
Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.
Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke
2017-08-01
In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be < 4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.
Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke
2017-08-05
In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.
Baum, K.; Hartmann, R.; Bischoff, T.; Himmelreich, F.; Heverhagen, J. T.
2011-07-01
In recent years optical methods became increasingly popular for pre-clinical research and small animal imaging. One main field in biomedical optics research is the diffuse optical tomography (DOT). Many new systems were invented for small animal imaging and breast cancer detection. In combination with the progress in the development of optical markers, optical detectors and near infrared light sources, these new systems have become a formidable source of information. Most of the systems detect the transmitted light which passes through an object and one observes the intensity variations on the detector side. The biggest challenge for all diffuse optical tomography systems is the enormous scattering of light in tissues and tissue-like phantoms resulting in loss of image information. Many systems work with contact gels and optical fibers that have direct contact with the object to neglect the light path between surface and detector. Highly developed mathematic models and reconstruction algorithms based on FEM and Monte Carlo simulations describe the light transport inside tissues and determine differences in absorption and scattering coefficients inside. The proposed method allows a more exact description of the orientation of surface elements from semi-transparent objects towards the detector. Using Polarization Difference Imaging (PDI) in combination with structured light 3D-scanning, it is possible to separate information from the surface from that of the subsurface. Thus, the actual surface shape can be determined. Furthermore, overlaying byproducts caused by inter-reflections and multiple scattering can be filtered from the basic image information with this method. To enhance the image quality, the intensity dispersion between surface and camera is calculated and the creation of 3D-FEM-meshes simplified.
1979-01-01
A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.
Directory of Open Access Journals (Sweden)
Goyal M.
2017-12-01
Full Text Available In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.
Goyal, M.; Goyal, R.; Bhargava, R.
2017-12-01
In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.
Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G
2009-05-07
We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where "universal" denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous
DEFF Research Database (Denmark)
Nikunen, P.; Vattulainen, Ilpo Tapio; Ala-Nissila, T.
2001-01-01
in D-C(theta) depend on the initial density gradient and the initial state from which the spreading starts. To this end, we carry out extensive Monte Carlo simulations for a lattice-gas model of the O/W(110) system. Studies of submonolayer spreading from an initially ordered p(2x1) phase at theta = 1....../2 reveal that the spreading and diffusion rates in directions parallel and perpendicular to rows of oxygen atoms are significantly different within the ordered phase. Aside from this effect, we find that the degree of ordering in the initial phase has a relatively small impact on the overall behavior of D...
Czech Academy of Sciences Publication Activity Database
Toušek, J.; Toušková, J.; Remeš, Zdeněk; Čermák, Jan; Kousal, J.; Kindl, Dobroslav; Kuřitka, I.
2012-01-01
Roč. 552, NOV (2012), s. 49-52 ISSN 0009-2614 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional research plan: CEZ:AV0Z10100521 Keywords : surface photovoltage * Kelvin probe force microscopy * conjugated polymers Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.145, year: 2012
Carbon surface diffusion and SiC nanocluster self-ordering
International Nuclear Information System (INIS)
Pezoldt, J.; Trushin, Yu.V.; Kharlamov, V.S.; Schmidt, A.A.; Cimalla, V.; Ambacher, O.
2006-01-01
The process of the spatial ordering of SiC nanoclusters on the step edges on Si surfaces was studied by means of multi-scale computer simulation. The evolution of cluster arrays on an ideal flat surface and surfaces with terraces of various widths was performed by kinetic Monte Carlo (KMC) simulations based on quantitative studies of potential energy surfaces (PES) by molecular dynamics (MD). PES analysis revealed that certain types of steps act as strong trapping centres for both Si and C adatoms stimulating clusters nucleation. Spatial ordering of the SiC nanoclusters at the terrace edges can be achieved if the parameters of the growth process (substrate temperature, carbon flux) and substrate (steps direction and terrace widths) are adjusted to the surface morphology. Temperature ranges for growth regimes with and without formation of cluster chains were determined. Cluster size distributions and the dependence of optimal terrace width for self ordering on the deposition parameters were obtained
Yamamoto, Takehiro; Emura, Chie; Oya, Masashi
2016-12-01
The growth of a biofilm begins with the adhesion of bacteria to a solid surface. Consequently, biofilm growth can be managed by the control of bacterial adhesion. Recent experimental studies have suggested that bacterial adhesion can be controlled by modifying a solid surface using nanostructures. Computational prediction and analysis of bacterial adhesion behavior are expected to be useful for the design of effective arrangements of nanostructures for controlling bacterial adhesion. The present study developed a cellular automaton (CA) model for bacterial adhesion simulation that could describe both the diffusive motion of bacteria and dependence of their adhesion patterns on the distance between nanostructures observed in experimental studies. The diffusive motion was analyzed by the moment scaling spectrum theory, and the present model was confirmed to describe subdiffusion behavior due to obstacles. Adhesion patterns observed in experimental studies can be successfully simulated by introducing CA rules to describe a mechanism by which bacteria tend to move to increase the area of contact with nanostructures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Xi Shao
2016-03-01
Full Text Available The Visible Infrared Imaging Radiometer Suite (VIIRS onboard Suomi National Polar Orbiting Partnership (SNPP uses a solar diffuser (SD as its radiometric calibrator for the reflective solar band calibration. The SD is made of Spectralon™ (one type of fluoropolymer and was chosen because of its controlled reflectance in the Visible/Near-Infrared/Shortwave-Infrared region and its near-Lambertian reflectance property. On-orbit changes in VIIRS SD reflectance as monitored by the Solar Diffuser Stability Monitor showed faster degradation of SD reflectance for 0.4 to 0.6 µm channels than the longer wavelength channels. Analysis of VIIRS SD reflectance data show that the spectral dependent degradation of SD reflectance in short wavelength can be explained with a SD Surface Roughness (length scale << wavelength based Rayleigh Scattering (SRRS model due to exposure to solar UV radiation and energetic particles. The characteristic length parameter of the SD surface roughness is derived from the long term reflectance data of the VIIRS SD and it changes at approximately the tens of nanometers level over the operational period of VIIRS. This estimated roughness length scale is consistent with the experimental result from radiation exposure of a fluoropolymer sample and validates the applicability of the Rayleigh scattering-based model. The model is also applicable to explaining the spectral dependent degradation of the SDs on other satellites. This novel approach allows us to better understand the physical processes of the SD degradation, and is complementary to previous mathematics based models.
Hard Surface Layers by Pack Boriding and Gaseous Thermo-Reactive Deposition and Diffusion Treatments
DEFF Research Database (Denmark)
Christiansen, Thomas Lundin; Bottoli, Federico; Dahl, Kristian Vinter
2017-01-01
subjected to TRD (chromizing and titanizing) and boriding treatments. For the steels with low carbon content, chromizing results in surface alloying with chromium, i.e., formation of a (soft) “stainless” surface zone. Steels containing higher levels of carbon form chromium carbide (viz. Cr23C6, Cr7C3......) layers with hardnesses up to 1800 HV. Titanizing of ARNE tool steel results in a surface layer consisting of TiC with a hardness of approximately 4000 HV. Duplex treatments, where boriding is combined with subsequent (TRD) titanizing, result in formation of hard TiB2 on top of a thick layer of Fe...
Directory of Open Access Journals (Sweden)
Borgo Claudemir Adriano
2004-01-01
Full Text Available Highly dispersed zirconium phosphate was prepared by reacting celullose acetate/ZrO2 (ZrO2 = 11 wt%, 1.0 mmol g-1 of zirconium atom per gram of the material with phosphoric acid. High power decoupling magic angle spinning (HPDEC-MAS 31P NMR and X-ray photoelectron spectroscopy data indicated that HPO4(2- is the species present on the membrane surface. The specific concentration of acidic centers, determined by ammonia gas adsorption, is 0.60 mmol g-1. The ion exchange capacities for Li+, Na+ and K+ ions were determined from ion exchange isotherms at 298 K and showed the following values (in mmol g-1: Li+= 0.05, Na+= 0.38 and K+= 0.57. Due to the strong cooperative effect, the H+/Na+ and H+/K+ ion exchange is of non ideal nature. These ion exchange equilibria were treated with the use of models of fixed tridentate centers, which consider the surface of the sorbent as polyfunctional sorption centers. Both the observed ion exchange capacities with respect to the alkaline metal ions and the equilibrium constants are discussed by taking into consideration the sequence of the ionic hydration radii for Li+, Na+ and K+. The matrix affinity for the ions decreases with increasing the cations hydration radii from K+ to Li+. The high values of the separation factors S Na+/Li+ and S K+/Li+ (up to several hundreds support the application of this material for the quantitative separation of Na+ and K+ from Li+ from a mixture containing these three ions.
Ling, Hangjian; Katz, Joseph; Fu, Matthew; Hultmark, Marcus
2017-12-01
This experimental study investigates the effects of ambient pressure and Reynolds number on the volume of a plastron in a superhydrophobic surface (SHS) due to compression and gas diffusion. The hierarchical SHS consists of nanotextured, ˜100 μm wide spanwise grooves. Microscopic observations measure the time evolution of interface height and contact angle. The water tunnel tests are performed both without flow as well as in transitional and turbulent boundary layers at several Reynolds numbers. Particle image velocimetry is used for estimating the wall shear stress and calculating the momentum thickness for the SHSs under Cassie-Baxter (CB) and Wenzel states as well as a smooth wall at the same conditions. Holographic microscopy is used for determining the wall shear stress directly for one of the CB cases. The mass diffusion rate is calculated from changes to the plastron volume when the liquid is under- or supersaturated. For stationary water, the mass diffusion is slow. With increasing pressure, the interface is initially pinned and then migrates into the groove with high advancing contact angle. Upon subsequent decrease in pressure, the interface migrates upward at a shallow angle and, after being pinned to the tip corner, becomes convex. With flow and exposure to undersaturated liquid, the diffusion-induced wetting also involves pinned and downward migration states, followed by shrinkage of the plastron until it decreases below the resolution limit. The corresponding changes to the velocity profile indicate a transition from slight drag reduction to significant drag increase. In supersaturated water starting at a Wenzel state, a bubble grows from one of the bottom corners until it reaches the other side of the groove. Subsequently, dewetting involves upward migration of the interface, pinning to the tip corners, and formation of a convex interface. The diffusion rate increases with the level of under- or supersaturation and with the Reynolds number. A power
Venhola, Aku; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Lisker, Thorsten; Iodice, Enrichetta; Capaccioli, Massimo; Verdoes Kleijn, Gijs; Valentijn, Edwin; Mieske, Steffen; Hilker, Michael; Wittmann, Carolin; Van de Venn, Glenn; Grado, Aniello; Spavone, Marilena; Cantiello, Michele; Napolitano, Nicola; Paolillo, Maurizio; Falcón-Barroso, Jesus
2017-01-01
Context. Studies of low surface brightness (LSB) galaxies in nearby clusters have revealed a sub-population of extremely diffuse galaxies with central surface brightness of μ0,g' > 24 mag arcsec-2, total luminosity Mg' fainter than -16 mag and effective radius between 1.5 kpc 23 mag arcsec-2. We
Czech Academy of Sciences Publication Activity Database
Jirásek, Vít; Čech, J.; Kozak, Halyna; Artemenko, Anna; Černák, M.; Kromka, Alexander
2016-01-01
Roč. 213, č. 10 (2016), s. 2680-2686 ISSN 1862-6300 R&D Projects: GA ČR(CZ) GA14-04790S Institutional support: RVO:68378271 Keywords : amination * diamond * diffuse coplanar surface barrier discharge * nanomaterials * surface functionalization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2016
International Nuclear Information System (INIS)
Sun Jianzhong; Wang Zhikang; Gong Xiangyang
2006-01-01
Objective: To compare two methods 3D flash and diffusion-weighted images (DWI) in reconstructing the brain surface anatomy, and to evaluate their displaying ability, advantages, limitations and clinical application. Methods: Thrity normal cases were prospectively examined with 3D flash sequence and echo-planar DWI. Three-dimensional images were acquired with volume-rendering on workstation. Brain surface structures were evaluated and scored by a group of doctors. Results: Main structures of brain surface were clearly displayed on three-dimensional images based on 3D flash sequence. Average scores were all above 2.50. For images based on DWI, precentral gyrus, postcentral gyrus, superior parietal lobule, superior frontal gyrus, precentral sulcus, central sulcus, postcentral sulcus, intraparietal sulcus and superior frontal sulcus were best shown with average scores between 2.60-2.75, However, supramarginal gyrus, angular gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, lateral sulcus, inferior frontal sulcus could not be well shown, with average scores between 1.67-2.48. Middle temporal gyrus, inferior temporal gyrus, superior temporal sulcus and inferior temporal sulcus can only get scores from 0.88 to 1.27. Scores of images based on 3D flash were much higher than that based on DWI with distinct differentiations, P values were all below 0.01. Conclusion: Three-dimensional images based on 3D flash can really display brain surface structures. It is very useful for anatomic researches. Three-dimensional reconstruction of brain surface based on DWI is a worthy technique to display brain surface anatomy, especially for frontal and parietal structures. (authors)
International Nuclear Information System (INIS)
Anderson, R.C.
1976-01-01
A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions
New sensitive micro-measurements of dynamic surface tension and diffusion coefficients
DEFF Research Database (Denmark)
Kinoshita, Koji; Ortiz, Elisa Parra; Needham, David
2017-01-01
Currently available dynamic surface tension (DST) measurement methods, such as Wilhelmy plate, droplet- or bubble-based methods, still have various experimental limitations such as the large size of the interface, convection in the solution, or a certain “dead time” at initial measurement. These ...
Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species
K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone
2011-01-01
In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...
Adsorption configuration effects on the surface diffusion of large organic molecules
DEFF Research Database (Denmark)
Sato, F.; Legoas, S.B.; Hummelink, F.
2010-01-01
results show that it has its physical basis on the interplay of the molecular hydrogens and the Cu(110) atomic spacing, which is a direct consequence of the matching between molecule and surface dimensions. This information could be used to find new molecules capable of displaying lock-and-key behavior...
Accommodation and diffusion of Cu deposited on flat and stepped Cu(111) surfaces
DEFF Research Database (Denmark)
Stoltze, Per; Nørskov, Jens Kehlet
1993-01-01
We present the results of a molecular-dynamics simulation of the deposition of Cu on Cu(111) using a realistic many-body interaction potential. It is shown that the transfer of the adsorption energy to the surface phonons is extremely efficient. If the adsorption takes place on a small or irregular...
Lichtenberg, Mads; Brodersen, Kasper E; Kühl, Michael
2017-01-01
We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O 2 , temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, E k , i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the
Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi
2016-04-05
Lithium-sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides.
Tao, Xinyong; Wang, Jianguo; Liu, Chong; Wang, Haotian; Yao, Hongbin; Zheng, Guangyuan; Seh, Zhi Wei; Cai, Qiuxia; Li, Weiyang; Zhou, Guangmin; Zu, Chenxi; Cui, Yi
2016-01-01
Lithium–sulfur batteries have attracted attention due to their six-fold specific energy compared with conventional lithium-ion batteries. Dissolution of lithium polysulfides, volume expansion of sulfur and uncontrollable deposition of lithium sulfide are three of the main challenges for this technology. State-of-the-art sulfur cathodes based on metal-oxide nanostructures can suppress the shuttle-effect and enable controlled lithium sulfide deposition. However, a clear mechanistic understanding and corresponding selection criteria for the oxides are still lacking. Herein, various nonconductive metal-oxide nanoparticle-decorated carbon flakes are synthesized via a facile biotemplating method. The cathodes based on magnesium oxide, cerium oxide and lanthanum oxide show enhanced cycling performance. Adsorption experiments and theoretical calculations reveal that polysulfide capture by the oxides is via monolayered chemisorption. Moreover, we show that better surface diffusion leads to higher deposition efficiency of sulfide species on electrodes. Hence, oxide selection is proposed to balance optimization between sulfide-adsorption and diffusion on the oxides. PMID:27046216
Devi, Ksh. Devarani; Ojha, Sunil; Singh, Fouran
2018-03-01
Gold nanoparticles (AuNPs) embedded in fused silica and sapphire dielectric matrices were synthesized by Au ion implantation. Systematic investigations were carried out to study the influence of implantation dose, post annealing temperature, swift heavy ion (SHI) irradiation and radiation enhanced diffusion (RED). Rutherford Backscattering Spectrometry (RBS) measurements were carried out to quantify concentration and depth profile of Au present in the host matrices. X-ray diffraction (XRD) was employed to characterize AuNPs formation. As-implanted and post-annealed films were irradiated using 100 MeV Ag ions to investigate the effect of electronic energy deposition on size and shape of NPs, which is estimated indirectly by the peak shape analysis of surface plasmon resonance (SPR). The effect of volume fraction of Au and their redistribution is also reported. A strong absorption in near infra red region is also noticed and understood by the formation of percolated NPs in dielectric matrices. It is quite clear from these results that the effect of RED assisted Oswald ripening is much more pronounced than the conventional Oswald ripening for the growth of NPs in the case of silica host matrices. However for sapphire matrices, it seems that growth of NPs already completed during implantation and it may be attributed to the high diffusivity of Au in sapphire matrices during implantation process.
Rangel, Cipriano; Espinosa-Garcia, Joaquin
2018-02-07
Within the Born-Oppenheimer approximation a full-dimensional analytical potential energy surface, PES-2017, was developed for the gas-phase hydrogen abstraction reaction between the chlorine atom and ethane, which is a nine body system. This surface presents a valence-bond/molecular mechanics functional form dependent on 60 parameters and is fitted to high-level ab initio calculations. This reaction presents little exothermicity, -2.30 kcal mol -1 , with a low height barrier, 2.44 kcal mol -1 , and intermediate complexes in the entrance and exit channels. We found that the energetic description was strongly dependent on the ab initio level used and it presented a very flat topology in the entrance channel, which represents a theoretical challenge in the fitting process. In general, PES-2017 reproduces the ab initio information used as input, which is merely a test of self-consistency. As a first test of the quality of the PES-2017, a theoretical kinetics study was performed in the temperature range 200-1400 K using two approaches, i.e. the variational transition-state theory and quasi-classical trajectory calculations, with spin-orbit effects. The rate constants show reasonable agreement with experiments in the whole temperature range, with the largest differences at the lowest temperatures, and this behaviour agrees with previous theoretical studies, thus indicating the inherent difficulties in the theoretical simulation of the kinetics of the title reaction. Different sources of error were analysed, such as the limitations of the PES and theoretical methods, recrossing effects, and the tunnelling effect, which is negligible in this reaction, and the manner in which the spin-orbit effects were included in this non-relativistic study. We found that the variation of spin-orbit coupling along the reaction path, and the influence of the reactivity of the excited Cl( 2 P 1/2 ) state, have relative importance, but do not explain the whole discrepancy. Finally, the
Directory of Open Access Journals (Sweden)
C. K. Gatebe
2010-03-01
Full Text Available This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR and AERONET data. A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34–2.30 μm and angular range (180° of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM Central Facility, Oklahoma, USA, and (d the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.
International Nuclear Information System (INIS)
Negm, Y.Z.; Zimmerman, G.O.; Powers, R.E.; Eckhardt, K.A.
1994-01-01
The authors have developed a procedure of increasing the critical current of BSCCO ceramic superconducting material, the value of the critical current is increased by 30%. Moreover the degradation of the critical current with the applied magnetic field had been decreased. The procedure consists of applying a thin layer of silver to the surface of the conductor. The details of the procedure and the improved performance are discussed. This procedure has great significance for any future application of HTSC materials where high current carrying capacity is necessary. It will therefore be important in the application of HTSC materials to SSC high current leads
Evaluating colloidal phosphorus delivery to surface waters from diffuse agricultural sources.
Heathwaite, Louise; Haygarth, Phil; Matthews, Rachel; Preedy, Neil; Butler, Patricia
2005-01-01
Colloid-facilitated phosphorus (P) delivery from agricultural soils in different hydrological pathways was investigated using a series of laboratory and field experiments. A soil colloidal P test was developed that yields information on the propensity of different soils to release P attached to soil colloids. The relationship between turbidity of soil extracts and total phosphorus (TP) was significant (r2 = 0.996, p 0.45-microm particle-size fractions (p = 0.05), and may be evidence of surface applications of organic and inorganic fertilizers being transferred through the soil either as intact organic colloids or attached to mineral particles. Our results highlight the potential for drainage water to mobilize colloids and associated P during rainfall events.
Won, Yong Sun; Lee, Jinuk; Kim, Changsung Sean; Park, Sung-Soo
2009-02-01
The adsorption, diffusion, and dissociation of precursor species, MMGa (monomethylgallium) and NH 3, on the GaN (0 0 0 1) surface have been investigated using the DFT (density functional theory) calculation combined with a GaN (0 0 0 1) surface cluster model. The energetics of NH 3(ad) dissociation on the surface proposed of NH 3(ad) via NH 2(ad) to NH(ad) was facile with small activation barriers. A combined analysis with surface diffusion of adatoms demonstrated Ga(ad) and NH(ad) become primary reactant species for 2D film growth, and N(ad) develops into a nucleation center. Our studies suggest the control of NH 3(ad) dissociation are essential to improve epitaxial film quality as well as Ga-rich condition. In addition, the adsorbability of H(ad)s resulted from NH 3(ad) dissociation were found to influence on the surface chemistry during film growth.
Gaburro, Nicola; Marchioro, Giacomo; Daffara, Claudia
2017-07-01
Surface metrology of artworks requires the design of suitable devices for in-situ non-destructive measurement together with reliable procedures for an effective analysis of such non-engineered variegate objects. To advance the state-of-the-art it has been implemented a versatile optical micro-profilometry taking advantage of the adapt- ability of conoscopic holography sensors, able to operate with irregular shapes and composite materials (diffusive, specular, and polychrome) of artworks. The scanning technique is used to obtain wide field and high spatially resolved areal profilometry. The prototype has a modular scheme based on a set of conoscopic sensors, extending the typical design based on a scanning stage and a single probe with a limited bandwidth, thus allowing the collection of heights data from surface with different scales and materials with variegate optical response. The system was optimized by characterizing the quality of the measurement with the probes triggered in continuous scanning modality. The results obtained on examples of cultural heritage objects (2D paintings, 3D height-relief) and materials (pictorial, metallic) demonstrate the versatility of the implemented device.
Harpale, Abhilash; Panesi, Marco; Chew, Huck Beng
2015-02-14
Using first principle calculations, we study the surface-to-bulk diffusion of C atoms in Ni(111) and Cu(111) substrates, and compare the barrier energies associated with the diffusion of an isolated C atom versus multiple interacting C atoms. We find that the preferential Ni-C bonding over C-C bonding induces a repulsive interaction between C atoms located at diagonal octahedral voids in Ni substrates. This C-C interaction accelerates C atom diffusion in Ni with a reduced barrier energy of ∼1 eV, compared to ∼1.4-1.6 eV for the diffusion of isolated C atoms. The diffusion barrier energy of isolated C atoms in Cu is lower than in Ni. However, bulk diffusion of interacting C atoms in Cu is not possible due to the preferential C-C bonding over C-Cu bonding, which results in C-C dimer pair formation near the surface. The dramatically different C-C interaction effects within the different substrates explain the contrasting growth mechanisms of graphene on Ni(111) and Cu(111) during chemical vapor deposition.
Lai, King C.; Liu, Da-Jiang; Evans, James W.
2017-12-01
For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal (100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN˜ N-β with β =3 /2 . However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N mediated diffusion with small β moderate sizes 9 ≤N ≤O (102) ; the same also applies for N =Np+3 , Np+ 4 , ... (iii) facile diffusion but with large β >2 for N =Np+1 and Np+2 also for moderate sizes 9 ≤N ≤O (102) ; (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲β moderate size regime where we show that diffusivity cycles quasiperiodically from the slowest branch for Np+3 (not Np) to the fastest branch for Np+1 . Behavior is quantified by kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground-state and low-lying excited state cluster configurations, and also of kink populations.
Directory of Open Access Journals (Sweden)
Louena Shtrepi
2017-02-01
Full Text Available Simulations of the acoustic effects that diffusive surfaces have on the objective acoustic parameters and on sound perception have not yet been fully understood. To this end, acoustic simulations have been performed in Odeon in the model of a variable-acoustic concert hall. This paper is presented as a follow-up study to a previous paper that dealt with in-field measurements only. As in measurements, a diffusive and a reflective condition of one of the lateral walls have been considered in the room models. Two modeling alternatives of the diffusive condition, that is, (a a flat surface with high scattering coefficient applied; and (b a triangular relief modeled including edge diffraction, have been investigated. Objective acoustic parameters, such as early decay time (EDT, reverberation time (T30, clarity (C80, definition (D50, and interaural cross correlation (IACC, have been compared between the two conditions. Moreover, an auditory experiment has been performed to determine the maximum distance from a diffusive surface at which the simulated acoustic scattering effects are still audible. Although the simulated objective results showed a good match with measured values, the subjective results showed that the differences between the diffuse and reflective conditions become significant when model (b is used.
Determination of thermal diffusivity of cement-stabilized laterite by ...
African Journals Online (AJOL)
Knowledge of thermo-physical properties of local building materials are necessary for thermal comfort design and construction of residential accommodation. Thermal diffusivity of cement-stabilized laterites were measured under conditions of transient thermal field and induced surface stress, assuming constant temperature ...
Oscillatory variation of anomalous diffusion in pendulum systems
Indian Academy of Sciences (India)
The effect of constant bias in the damped version of (2) on homoclinic bifurcation was reported [22]. For small amplitudes of oscillations ..... in porous media, atom on solid surfaces [26], energy and signal in biological systems. [27] and so on. The diffusion dynamics reported in the present work through numerical simulation ...
Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael
2017-08-01
Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.
International Nuclear Information System (INIS)
Lemarechal, A.
1963-01-01
This report brings together the essential principles of thermal diffusion in the liquid and gaseous phases. The macroscopic and molecular aspects of the thermal diffusion constant are reviewed, as well as the various measurement method; the most important developments however concern the operation of the CLUSIUS and DICKEL thermo-gravitational column and its applications. (author) [fr
DEFF Research Database (Denmark)
Simonsen, Sebastian Bjerregaard; Johnsen, S. J.; Popp, T. J.
2011-01-01
O. A model treatment of the diffusion process of the firn and the ice is presented along with a method of retrieving the diffusion signal from the ice core record of water isotopes using spectral methods. The model shows how the diffusion process is highly dependent on the inter-annual variations......A new ice core paleothermometer is introduced based on the temperature dependent diffusion of the stable water isotopes in the firn. A new parameter called differential diffusion length is defined as the difference between the diffusion length of the two stable water isotopologues 2H1H16O and 1H218...... warmer than observed in other ice core based temperature reconstructions. The mechanisms behind this behaviour are not fully understood. The method shows the need of an expansion of high resolution stable water isotope datasets from ice cores. However, the new ice core paleothermometer presented here...
Matsuno, T; Niida, T; Tsurumaki, H; Namiki, A
2005-01-08
We studied coverage dependence of time-of-flight (TOF) spectra of D2 molecules thermally desorbed from the D/Si(100) surface. The mean translational energies Et of desorbed D2 molecules were found to increase from 0.20+/-0.05 eV to 0.40+/-0.04 eV as the desorption coverage window was decreased from 1.0 ML> or =thetaD> or =0.9 ML to 0.2 ML> or =thetaD> or =0 ML, being consistent with the kinetics switch predicted in the interdimer mechanism. The measured TOF spectra were deconvoluted into 2H, 3H, and 4H components by a curve fitting method along the principle of detailed balance. As a result, it turned out that the desorption kinetics changes from the 4H to the 3H situation at high coverage above thetaD=0.9 ML, while the 2H desorption is dominant for a quite wide coverage region up to thetaD=0.8 ML. A dynamic desorption mechanism by which the desorption is promoted by D-atom diffusion to dangling bonds was proposed. 2005 American Institute of Physics.
de Oliveira-Filho, Antonio G S; Ornellas, Fernando R; Bowman, Joel M
2014-02-20
We report a permutationally invariant, ab initio potential energy surface (PES) for the OH + HBr → Br + H2O reaction. The PES is a fit to roughly 26 000 spin-free UCCSD(T)/cc-pVDZ-F12a energies and has no classical barrier to reaction. It is used in quasiclassical trajectory calculations with a focus on the thermal rate constant, k(T), over the temperature range 5 to 500 K. Comparisons with available experimental data over the temperature range 23 to 416 K are made using three approaches to treat the OH rotational and associated electronic partition function. All display an inverse temperature dependence of k(T) below roughly 160 K and a nearly constant temperature dependence above 160 K, in agreement with experiment. The calculated rate constant with no treatment of spin-orbit coupling is overall in the best agreement with experiment, being (probably fortuitously) within 20% of it.
International Nuclear Information System (INIS)
Pinnioja, S.; Kaemaeraeinen, E.L.; Jaakkola, T.; Siitari, M.; Muuronen, S.; Lindberg, A.
1985-06-01
A method based on autoradiography was developed to determine the diffusion of radionuclides into the rock matrix. To investigate the diffusion the samples, which has been in contact with radioactive tracer solution up to 6 months, were splitted by sawing. From the autoradiograms of the cross sections the penetration depths of radionuclides were determined and the apparent diffusion coefficient Dsup(a) calculated. The filled and unfilled natural fissure surfaces chosen to this study were bars of drilling cores and drill core cups of tonalite, mica gneiss and rapakivi granite. After contact time of 3 months the highest penetration depths of cesium were observed for natural fissure surface sample of rapakivi granite up to 2.5 mm and of mica gneiss up to 3.7 mm. For strontium the penetration depths of 6 mm and 11 mm for unfilled and filled natural fissure samples of rapakivi granite were found. Dsup(a)-values for cesium varied between 1.5 x 10 -15 and 3.2 x 10 -14 , for strontium between 3.5 x 10 -14 and 2.1 x 10 -13 m 2 /s. D-value obtained for cobalt (drill core cup sample, tonalite) was 5.4 x 10 -17 m 2 /s. 241 Am was only sorbed on the surface of the sample and thus no apparent diffusion coefficient could be calculated. Filling materials, chlorite and secondary minerals in tonalite and rapakivi granite increased diffusion into the mother rock. Radionuclides were sorbed both into the filling material and through fillers into the rock matrix. Cs and Sr penetrated though calcite filling material in mica gneiss into the mother rock. Calcite didn't influence on diffusion of radionuclides. Penetration depths of Cs and Sr were about the same for filled and unfilled samples
Energy Technology Data Exchange (ETDEWEB)
Ren, Cui-Lan, E-mail: rencuilan@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Han, Han [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Gong, Wen-Bin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Shanghai 215123 (China); Wang, Cheng-Bin; Zhang, Wei [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Cheng, Cheng [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhi-Yuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai 201800 (China)
2016-09-15
Adsorption and diffusion behaviors of fluorine on Cr-doped Ni(111) surface are investigated by using first-principles simulation. It shows that the Cr in the Cr-doped Ni(111) surface serve a trap site for fluorine with adsorption energy 3.52 eV, which is 1.04 eV higher than that on Ni(111) surface. Moreover, the Cr atom is pulled out the surface for 0.41 Å after the fluorine adsorption, much higher than that on Ni(111) surface. Further diffusion behaviors analysis confirms the conclusion because the fluorine diffusion from neighbored sites onto the Cr top site is an energy barrierless process. Detailed electronic structure analysis shows that a deeper hybrid state of F 2 p-Cr 3 d indicates a strong F−Cr interaction. The Ni−Cr bond is elongated and weakened due to the new formed F−Cr bonding. Our results help to understanding the basic fluorine-induced initial corrosion mechanism for Ni-based alloy in molten salt environment.
VANDERMEI, HC; MEINDERS, JM; BUSSCHER, HJ
1994-01-01
Exact knowledge of microbial diffusion coefficients is a prerequisite for the application of mass transport theories to microbial deposition data. Microbial diffusion coefficients can be calculated on the basis of cell radii using the Einstein equation. This approach, however, does not take into
Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu
2015-05-14
Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.
Digital Repository Service at National Institute of Oceanography (India)
Chakraborty, P.
Diffusion coefficients of Cd–humate complexes are dependent on pH and [Cd]/[Humic] Acid (HA)] ratio in a Cd-HA system. These two factors mainly control the mass transport and complexation kinetics of Cd that may influence bioavailability...
Stability constants for silicate adsorbed to ferrihydrite
DEFF Research Database (Denmark)
Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten
1994-01-01
Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...
International Nuclear Information System (INIS)
Lai, King C.; Liu, Da-Jiang; Evans, James W.
2017-01-01
For diffusion of two-dimensional homoepitaxial clusters of N atoms on metal(100) surfaces mediated by edge atom hopping, macroscale continuum theory suggests that the diffusion coefficient scales like DN ~ N -β with β = 3/2. However, we find quite different and diverse behavior in multiple size regimes. These include: (i) facile diffusion for small sizes N < 9; (ii) slow nucleation-mediated diffusion with small β < 1 for “perfect” sizes N = N p = L 2 or L(L+1), for L = 3, 4,… having unique ground state shapes, for moderate sizes 9 ≤ N ≤ O(10 2 ); the same also applies for N = N p +3, N p + 4,… (iii) facile diffusion but with large β > 2 for N = Np + 1 and N p + 2 also for moderate sizes 9 ≤ N ≤ O(10 2 ); (iv) merging of the above distinct branches and subsequent anomalous scaling with 1 ≲ β < 3/2, reflecting the quasi-facetted structure of clusters, for larger N = O(10 2 ) to N = O(10 3 ); and (v) classic scaling with β = 3/2 for very large N = O(103) and above. The specified size ranges apply for typical model parameters. We focus on the moderate size regime where show that diffusivity cycles quasi-periodically from the slowest branch for N p + 3 (not Np) to the fastest branch for Np + 1. Behavior is quantified by Kinetic Monte Carlo simulation of an appropriate stochastic lattice-gas model. However, precise analysis must account for a strong enhancement of diffusivity for short time increments due to back-correlation in the cluster motion. Further understanding of this enhancement, of anomalous size scaling behavior, and of the merging of various branches, is facilitated by combinatorial analysis of the number of the ground state and low-lying excited state cluster configurations, and also of kink populations.
Ion exchange equilibrium constants
Marcus, Y
2013-01-01
Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and
Oxygen tracer diffusion and surface exchange kinetics in Ba0.5Sr0.5Co0.8Fe0.2O3-δ
Berenov, A.; Atkinson, A.; Kilner, J.; Ananyev, M.; Eremin, V.; Porotnikova, N.; Farlenkov, A.; Kurumchin, E.; Bouwmeester, Henricus J.M.; Bucher, E.; Sitte, W.
2014-01-01
The oxygen tracer diffusion coefficient, Db⁎, and the oxygen tracer surface exchange coefficient, k, were measured in Ba0.5Sr0.5Co0.8Fe0.2O3 − δ (BSCF5582) over the temperature range of 310–800 °C and the oxygen partial pressure range of 1.3 × 10−3–0.21 bar. Several measurement techniques were used:
International Nuclear Information System (INIS)
Tian, Ye; Jiang, Lianjun; Zhang, Xuejun; Deng, Yangbao; Deng, Shuguang
2014-01-01
We study the physical-vapor-deposition of 1D bismuth nanostructures. Bi nanowire elongating along [012] and/or [110] direction as well as anisotropic Bi nano-columns are physical-vapor-deposited successfully. The coexistence and competition of surface diffusion and geometric shielding are critical to their formation as well as growth mode transition among them. Since physical-vapor-deposition is a vacuum process, we make use of it to fabricate the ohmic contact to prevent the damage to the bismuth nanostructures brought by the etching to their thick surface oxide layer. (paper)
Apparatus for diffusion separation
International Nuclear Information System (INIS)
Nierenberg, W.A.
1976-01-01
A diffuser separator apparatus is described which comprises a plurality of flow channels in a single stage. Each of said channels has an inlet port and an outlet port and a constant cross sectional area between said ports. At least a portion of the defining surface of each of said channels is a diffusion separation membrane, and each of said channels is a different cross sectional area. Means are provided for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series. Also provided are a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area
Characterizations of the mirror attenuator mosaic: solar diffuser plate.
Lee, R B; Avis, L M; Gibson, M A; Kopia, L P
1992-11-01
The mirror attenuator mosaic (MAM), a solar diffuser plate, was used for the flight calibration of the broadband shortwave (0.2-5-microm) and total (0.2 to >200-microm) Earth Radiation Budget Experiment scanning thermistor bolometer radiometers. The MAM solar-reflecting surface cosisted of a tightly packed array of vacuum-deposited aluminum, concave spherical mirrors, while its solar-absorbing surface consisted of black chrome. The effective reflectance of the MAM was constant to within +/-2% after almost 2 years in orbit, a marked improvement over earlier solar diffusers.
Characterizations of the mirror attenuator mosaic - Solar diffuser plate
Lee, Robert B., III; Avis, Lee M.; Gibson, M. A.; Kopia, Leonard P.
1992-01-01
The mirror attenuator mosaic (MAM), a solar diffuser plate, was used for the flight calibration of the broadband shortwave (0.2-5-microns) and total (0.2 to greater than 200-microns) Earth Radiation Budget Experiment scanning thermistor bolometer radiometers. The MAM solar-reflecting surface consisted of a tightly packed array of vacuum-deposited aluminum, concave spherical mirrors, while its solar-absorbing surface consisted of black chrome. The effective reflectance of the MAM was constant to within +/- 2 percent after almost 2 years in orbit, a marked improvement over earlier solar diffusers.
Diffusion of interstitial atoms in FCC metals after irradiation with 2 MeV electrons
International Nuclear Information System (INIS)
Kornmann, H.
1980-01-01
Selfdiffusion in nickel after electron irradiation has been restudied. The diffusion velocity near the surface and the diffusion constant in the interior of the crystal have been determined as a function of radiation flux and temperature. A special method for the measurement of diffusion has been improved, which is based on radioactive tracer atoms for indication and on ion etching for the removal of thin films. To improve additionally the accuracy of the technique tracer atoms are induced into the crystal by thermal diffusion and then irradiated with 2 MeV electrons. (orig./GSCH) [de
CHEMICAL REACTIONS ON ADSORBING SURFACE: KINETIC LEVEL OF DESCRIPTION
Directory of Open Access Journals (Sweden)
P.P.Kostrobii
2003-01-01
Full Text Available Based on the effective Hubbard model we suggest a statistical description of reaction-diffusion processes for bimolecular chemical reactions of gas particles adsorbed on the metallic surface. The system of transport equations for description of particles diffusion as well as reactions is obtained. We carry out the analysis of the contributions of all physical processes to the formation of diffusion coefficients and chemical reactions constants.
Li, Xuechen; Geng, Jinling; Jia, Pengying; Zhang, Panpan; Zhang, Qi; Li, Yaru
2017-11-01
Excited by an alternating current voltage, a patterned discharge and a diffuse discharge are generated in a needle to liquid configuration. Using an intensified charge-coupled device (ICCD), temporal evolution of the discharge between the two electrodes is investigated for the diffuse mode and the patterned mode, respectively. For the diffuse mode, the positive discharge is in a glow regime, and the negative discharge is in a Townsend discharge regime. For the patterned mode, the discharge always belongs to the Townsend discharge regime. Moreover, in the patterned mode, various patterns including the single loop, single loop with the surrounding corona, triple loops, and concentric loops with a central spot are observed on the water surface with the increasing positive peak-value of the applied voltage (Upp). Temporally resolved images of the loop-patterns are captured on the water surface. From the electrical measurements and the ICCD imaging, it is found that the loop pattern emerges after the discharge bridges the two electrodes. Then, it begins to evolve and finally degenerates with the decrease in the discharge current. The pattern does not disappear until the discharge quenches. Formation of the loop-patterns is attributed to the role of negative ions.
Indian Academy of Sciences (India)
IAS Admin
The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...
Directory of Open Access Journals (Sweden)
Carroll Sean M.
2001-01-01
Full Text Available This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero vacuum energy.
On Aryabhata's Planetary Constants
Kak, Subhash
2001-01-01
This paper examines the theory of a Babylonian origin of Aryabhata's planetary constants. It shows that Aryabhata's basic constant is closer to the Indian counterpart than to the Babylonian one. Sketching connections between Aryabhata's framework and earlier Indic astronomical ideas on yugas and cyclic calendar systems, it is argued that Aryabhata's system is an outgrowth of an earlier Indic tradition.
Czech Academy of Sciences Publication Activity Database
Soukup, Karel; Schneider, Petr; Šolcová, Olga
2008-01-01
Roč. 63, č. 18 (2008), s. 4490-4493 ISSN 0009-2509 R&D Projects: GA AV ČR IAA4072404 Institutional research plan: CEZ:AV0Z40720504 Keywords : diffusion * permeation * porous media Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.884, year: 2008
Directory of Open Access Journals (Sweden)
Pereira João
2011-01-01
Full Text Available Abstract Commercial multi-walled carbon nanotubes (CNT were functionalized by oxidation with HNO3, to introduce oxygen-containing surface groups, and by thermal treatments at different temperatures for their selective removal. The obtained samples were characterized by adsorption of N2 at -196°C, temperature-programmed desorption and determination of pH at the point of zero charge. CNT/poly(vinylidene fluoride composites were prepared using the above CNT samples, with different filler fractions up to 1 wt%. It was found that oxidation reduced composite conductivity for a given concentration, shifted the percolation threshold to higher concentrations, and had no significant effect in the dielectric response.
Energy Technology Data Exchange (ETDEWEB)
Uedono, Akira, E-mail: uedono.akira.gb@u.tsukuba.ac.jp [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Armini, Silvia; Zhang, Yu [IMEC, Kapeldreef 75, B-3001 Heverlee, Leuven (Belgium); Kakizaki, Takeaki [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Krause-Rehberg, Reinhard [Department of Physics, Martin Luther University Halle, 06099 Halle (Germany); Anwand, Wolfgang; Wagner, Andreas [Institute for Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)
2016-04-15
Graphical abstract: - Highlights: • Pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the low-k film. • For the sample without the SAM sealing process, metal atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. Almost all pore interiors were covered by those metals. • For the sample damaged by a plasma etch treatment before the SAM sealing process, self-assembled molecules diffused into the OSG film, and they were preferentially trapped by larger pores. - Abstract: Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C{sub 4}F{sub 8} plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C{sub 4}F{sub 8} plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.
International Nuclear Information System (INIS)
Gauquelin, Nicolas
2010-01-01
La 2 NiO 4+δ was first studied due to its structural similarities with the High Temperature superconductor La 2 NiO 4+δ and more recently due to its promise as a cathode material in Solid Oxide Fuel Cells as well as an oxygen exchange membrane. It crystallizes in the K 2 NiF 4 layered structure and accommodates highly mobile oxygen at its ground state and is therefore overstoichiometric. During this thesis, pure single crystals of La 2 NiO 4+δ were successfully grown using the floating-zone method, subsequently characterized using neutron and Laue Backscattering diffraction and oriented pieces of single crystal with [100] and [001] orientation were prepared. The surface morphology behavior after long term exposure to high temperature in different atmospheres was observed using microscopy techniques because stability at high temperature is required for application purposes and it was discovered a structural change to nickel-rich phases at T>1173 K. The sensibility of the oxygen non-stoichiometry to cooling was studied and subsequently a new 18 O- 18 O exchange apparatus allowing quenching of the samples using liquid nitrogen was developed. Oxygen selfdiffusion was studied using SIMS in the range 673-873K in both [100] and [001] crystallographic directions. The effect of the disorientation of the sample surface on the determination of the slowest diffusion coefficient was discovered and revealed the very strong anisotropy (>5 orders of magnitude difference) between the different diffusion paths. Finally using HTXRD and oxygen release experiments, it was shown that oxygen diffusion from interstitial oxygen starts to be relevant at 550-600 K and a change of behavior is observed around 700 K, corresponding to a possible change in the diffusion mechanism from interstitial to interstitialcy.
Energy Technology Data Exchange (ETDEWEB)
Gauquelin, Nicolas
2010-11-29
La{sub 2}NiO{sub 4+δ} was first studied due to its structural similarities with the High Temperature superconductor La{sub 2}NiO{sub 4+δ} and more recently due to its promise as a cathode material in Solid Oxide Fuel Cells as well as an oxygen exchange membrane. It crystallizes in the K{sub 2}NiF{sub 4} layered structure and accommodates highly mobile oxygen at its ground state and is therefore overstoichiometric. During this thesis, pure single crystals of La{sub 2}NiO{sub 4+δ} were successfully grown using the floating-zone method, subsequently characterized using neutron and Laue Backscattering diffraction and oriented pieces of single crystal with [100] and [001] orientation were prepared. The surface morphology behavior after long term exposure to high temperature in different atmospheres was observed using microscopy techniques because stability at high temperature is required for application purposes and it was discovered a structural change to nickel-rich phases at T>1173 K. The sensibility of the oxygen non-stoichiometry to cooling was studied and subsequently a new {sup 18}O-{sup 18}O exchange apparatus allowing quenching of the samples using liquid nitrogen was developed. Oxygen selfdiffusion was studied using SIMS in the range 673-873K in both [100] and [001] crystallographic directions. The effect of the disorientation of the sample surface on the determination of the slowest diffusion coefficient was discovered and revealed the very strong anisotropy (>5 orders of magnitude difference) between the different diffusion paths. Finally using HTXRD and oxygen release experiments, it was shown that oxygen diffusion from interstitial oxygen starts to be relevant at 550-600 K and a change of behavior is observed around 700 K, corresponding to a possible change in the diffusion mechanism from interstitial to interstitialcy.
Directory of Open Access Journals (Sweden)
Wierzchoń T.
2015-09-01
Full Text Available Diffusion nitrided layers produced on titanium and its alloys are widely studied in terms of their application for cardiac and bone implants. The influence of the structure, the phase composition, topography and surface morphology on their biological properties is being investigated. The article presents the results of a study of the topography (nanotopography of the surface of TiN+Ti2N+αTi(N nitrided layers produced in low-temperature plasma on Ti6Al4V titanium alloy and their influence on the adhesion of blood platelets and their aggregates. The TEM microstructure of the produced layers have been examined and it was demonstrated that the interaction between platelets and the surface of the titanium implants subjected to glow-discharge nitriding can be shaped via modification of the roughness parameters of the external layer of the TiN titanium nitride nanocrystalline zone.
Constant Width Planar Computation Characterizes ACC0
DEFF Research Database (Denmark)
Hansen, K.A.
2004-01-01
We obtain a characterization of ACC 0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...
Constant Width Planar Computation Characterizes ACC0
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt
2006-01-01
We obtain a characterization of ACC0 in terms of a natural class of constant width circuits, namely in terms of constant width polynomial size planar circuits. This is shown via a characterization of the class of acyclic digraphs which can be embedded on a cylinder surface in such a way that all...
The cosmological constant problem
International Nuclear Information System (INIS)
Dolgov, A.D.
1989-05-01
A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs
Deconstructing the Cosmological Constant
Jejjala, V; Minic, D; Jejjala, Vishnu; Leigh, Robert G.; Minic, Djordje
2003-01-01
Deconstruction provides a novel way of dealing with the notoriously difficult ultraviolet problems of four-dimensional gravity. This approach also naturally leads to a new perspective on the holographic principle, tying it to the fundamental requirements of unitarity and diffeomorphism invariance, as well as to a new viewpoint on the cosmological constant problem. The numerical smallness of the cosmological constant is implied by a unique combination of holography and supersymmetry, opening a new window into the fundamental physics of the vacuum.
Directory of Open Access Journals (Sweden)
Ludovic F. Dumée
2016-09-01
Full Text Available The fabrication of molecular gas sieving materials with specific affinities for a single gas species and able to store large quantities of materials at a low or atmospheric pressure is desperately required to reduce the adverse effects of coal and oil usage in carbon capture. Fundamental understanding of the dynamic adsorption of gas, the diffusion mechanisms across thin film membranes, and the impact of interfaces play a vital role in developing these materials. In this work, single gas permeation tests across micro-porous membrane materials, based on metal organic framework crystals grown on the surface of carbon nanotubes (ZiF-8@CNT, were performed for the first time in-situ at the Australian Synchrotron on the small angle X-ray scattering beamline in order to reveal molecular sieving mechanisms and gas adsorption within the material. The results show that specific chemi-sorption of CO2 across the ZiF-8 crystal lattices affected the morphology and unit cell parameters, while the sieving of other noble or noble like gases across the ZiF-8@CNT membranes was found to largely follow Knudsen diffusion. This work demonstrates for the first time a novel and effective technique to assess molecular diffusion at the nano-scale across sub-nano-porous materials by probing molecular flexibility across crystal lattice and single cell units.
Directory of Open Access Journals (Sweden)
Yoshihisa Suzuki
2016-07-01
Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.
Lindvall, Jenny; Svensson, Gunilla; Caballero, Rodrigo
2017-06-01
Simulations with the Community Atmosphere Model version 5 (CAM5) are used to analyze the sensitivity of the large-scale circulation to changes in parameterizations of orographic surface drag and vertical diffusion. Many GCMs and NWP models use enhanced turbulent mixing in stable conditions to improve simulations, while CAM5 cuts off all turbulence at high stabilities and instead employs a strong orographic surface stress parameterization, known as turbulent mountain stress (TMS). TMS completely dominates the surface stress over land and reduces the near-surface wind speeds compared to simulations without TMS. It is found that TMS is generally beneficial for the large-scale circulation as it improves zonal wind speeds, Arctic sea level pressure and zonal anomalies of the 500-hPa stream function, compared to ERA-Interim. It also alleviates atmospheric blocking frequency biases in the Northern Hemisphere. Using a scheme that instead allows for a modest increase of turbulent diffusion at higher stabilities only in the planetary boundary layer (PBL) appears to in some aspects have a similar, although much smaller, beneficial effect as TMS. Enhanced mixing throughout the atmospheric column, however, degrades the CAM5 simulation. Evaluating the simulations in comparison with detailed measurements at two locations reveals that TMS is detrimental for the PBL at the flat grassland ARM Southern Great Plains site, giving too strong wind turning and too deep PBLs. At the Sodankylä forest site, the effect of TMS is smaller due to the larger local vegetation roughness. At both sites, all simulations substantially overestimate the boundary layer ageostrophic flow.
Peselnick, L.; Robie, R.A.
1962-01-01
The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.
International Nuclear Information System (INIS)
Cohen, E.R.; Taylor, B.N.
1995-01-01
Present technological applications require the values used for the fundamental physical and chemical constants to be more and more precise and at the same time coherent. Great importance is then attached to the task of coordinating and comparing the most recent experimental data, extracting from them as a whole, by means of a least square fit, a set of values for the fundamental constants as precise and coherent as possible. The set of values which is at present in usage, derives from a fit performed in 1986, but new experimental results already promise a large reduction in the uncertainties of various constants. A new global fit that will implement such reductions is scheduled for completion in 1995 or 1996
Radiographic constant exposure technique
DEFF Research Database (Denmark)
Domanus, Joseph Czeslaw
1985-01-01
The constant exposure technique has been applied to assess various industrial radiographic systems. Different X-ray films and radiographic papers of two producers were compared. Special attention was given to fast film and paper used with fluorometallic screens. Radiographic image quality was tes...... was tested by the use of ISO wire IQI's and ASTM penetrameters used on Al and Fe test plates. Relative speed and reduction of kilovoltage obtained with the constant exposure technique were calculated. The advantages of fast radiographic systems are pointed out...
Radiographic constant exposure technique
DEFF Research Database (Denmark)
Domanus, Joseph Czeslaw
1985-01-01
The constant exposure technique has been applied to assess various industrial radiographic systems. Different X-ray films and radiographic papers of two producers were compared. Special attention was given to fast film and paper used with fluorometallic screens. Radiographic image quality...... was tested by the use of ISO wire IQI's and ASTM penetrameters used on Al and Fe test plates. Relative speed and reduction of kilovoltage obtained with the constant exposure technique were calculated. The advantages of fast radiographic systems are pointed out...
Fractal model of anomalous diffusion.
Gmachowski, Lech
2015-12-01
An equation of motion is derived from fractal analysis of the Brownian particle trajectory in which the asymptotic fractal dimension of the trajectory has a required value. The formula makes it possible to calculate the time dependence of the mean square displacement for both short and long periods when the molecule diffuses anomalously. The anomalous diffusion which occurs after long periods is characterized by two variables, the transport coefficient and the anomalous diffusion exponent. An explicit formula is derived for the transport coefficient, which is related to the diffusion constant, as dependent on the Brownian step time, and the anomalous diffusion exponent. The model makes it possible to deduce anomalous diffusion properties from experimental data obtained even for short time periods and to estimate the transport coefficient in systems for which the diffusion behavior has been investigated. The results were confirmed for both sub and super-diffusion.
On the integrability of the generalized Fisher-type nonlinear diffusion equations
International Nuclear Information System (INIS)
Wang Dengshan; Zhang Zhifei
2009-01-01
In this paper, the geometric integrability and Lax integrability of the generalized Fisher-type nonlinear diffusion equations with modified diffusion in (1+1) and (2+1) dimensions are studied by the pseudo-spherical surface geometry method and prolongation technique. It is shown that the (1+1)-dimensional Fisher-type nonlinear diffusion equation is geometrically integrable in the sense of describing a pseudo-spherical surface of constant curvature -1 only for m = 2, and the generalized Fisher-type nonlinear diffusion equations in (1+1) and (2+1) dimensions are Lax integrable only for m = 2. This paper extends the results in Bindu et al 2001 (J. Phys. A: Math. Gen. 34 L689) and further provides the integrability information of (1+1)- and (2+1)-dimensional Fisher-type nonlinear diffusion equations for m = 2
Relationship between the anomalous diffusion and the fractal dimension of the environment
Zhokh, Alexey; Trypolskyi, Andrey; Strizhak, Peter
2018-03-01
In this letter, we provide an experimental study highlighting a relation between the anomalous diffusion and the fractal dimension of the environment using the methanol anomalous transport through the porous solid pellets with various pores geometries and different chemical compositions. The anomalous diffusion exponent was derived from the non-integer order of the time-fractional diffusion equation that describes the methanol anomalous transport through the solid media. The surface fractal dimension was estimated from the nitrogen adsorption isotherms using the Frenkel-Halsey-Hill method. Our study shows that decreasing the fractal dimension leads to increasing the anomalous diffusion exponent, whereas the anomalous diffusion constant is independent on the fractal dimension. We show that the obtained results are in a good agreement with the anomalous diffusion model on a fractal mesh.
El-Amin, Mohamed
2011-05-14
In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.
International Nuclear Information System (INIS)
O Murchadha, N.
1991-01-01
The set of riemannian three-metrics with positive Yamabe constant defines the space of independent data for the gravitational field. The boundary of this set is investigated, and it is shown that metrics close to the boundary satisfy the positive-energy theorem. (Author) 18 refs
FORMATION CONSTANTS AND THERMODYNAMIC ...
African Journals Online (AJOL)
, Ni(II), Cu(II) and Zn(II) ions has been ... A good deal of work has been reported on the preparation and structural investigation of. Schiff base ... Formation constants and thermodynamic parameters of Co, Ni, Cu and Zn complexes. Bull. Chem.
Tang, Xiaoying; Qin, Yuanyuan; Zhu, Wenzhen; Miller, Michael I
2017-04-01
In this article, we present a unified statistical pipeline for analyzing the white matter (WM) tracts morphometry and microstructural integrity, both globally and locally within the same WM tract, from diffusion tensor imaging. Morphometry is quantified globally by the volumetric measurement and locally by the vertexwise surface areas. Meanwhile, microstructural integrity is quantified globally by the mean fractional anisotropy (FA) and trace values within the specific WM tract and locally by the FA and trace values defined at each vertex of its bounding surface. The proposed pipeline consists of four steps: (1) fully automated segmentation of WM tracts in a multi-contrast multi-atlas framework; (2) generation of the smooth surface representations for the WM tracts of interest; (3) common template surface generation on which the localized morphometric and microstructural statistics are defined and a variety of statistical analyses can be conducted; (4) multiple comparison correction to determine the significance of the statistical analysis results. Detailed herein, this pipeline has been applied to the corpus callosum in Alzheimer's disease (AD) with significantly decreased FA values and increased trace values, both globally and locally, being detected in patients with AD when compared to normal aging populations. A subdivision of the corpus callosum in both hemispheres revealed that the AD pathology primarily affects the body and splenium of the corpus callosum. Validation analyses and two multiple comparison correction strategies are provided. Hum Brain Mapp 38:1875-1893, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Kuscu, Murat; Akan, Ozgur B
2018-01-01
We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.
International Nuclear Information System (INIS)
Pereira, E.B.; Hamza, V.M.
1982-01-01
A preliminar study on the importance of a thermally-activated convective transport of radon is made in order to explain radon anomalies at surface generated at great depth. It is theoretically shown that convective currents should be of the order of 10 μm/s or larger to explain such anomalies. The influence of surface temperature changes on the convective transport is also discussed. Seasonal changes in temperature typical of climates such as that of southern Brazil can develop thermal inversion layers at depths up to 20 metres. The optimum period of the year for the employment of surface emanometric techniques is during the second and the third months after the winter peak when the thermal inversion barriers are less intense. (Author) [pt
Stability constants for silicate adsorbed to ferrihydrite
DEFF Research Database (Denmark)
Hansen, Hans Christian Bruun; Wetche, T.P.; Raulund-Rasmussen, Karsten
1994-01-01
Intrinsic surface acidity constants (K(a1)intr, K(a2)intr) and surface complexation constant for adsorption of orthosilicate onto synthetic ferrihydrite (K(Si) for the complex = FeOSi(OH)3) have been determined from acid/base titrations in 0.001-0.1 m NaClO4 electrolytes and silicate adsorption...... experiments in 0.01 m NaNO3 electrolyte (pH 3-6). The surface equilibrium constants were calculated according to the two-layer model by Dzombak & Morel (1990). Near equilibrium between protons/hydroxyls in solution and the ferrihydrite surface was obtained within minutes while equilibration with silicate...
Czech Academy of Sciences Publication Activity Database
Pinardi, A. L.; Otero-Irurueta, G.; Palacio, I.; Martinez, J. I.; Sánchez-Sánchez, C.; Tello, M.; Rogero, C.; Cossaro, A.; Preobrajenski, A.; Gomez-Lor, B.; Jančařík, Andrej; Stará, Irena G.; Starý, Ivo; Lopez, M. F.; Méndez, J.; Martin-Gago, J. A.
2013-01-01
Roč. 7, č. 4 (2013), s. 3676-3684 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GAP207/10/2207 Institutional support: RVO:61388963 Keywords : surface-assisted dehydrogenation * dibenzo[5]helicene * N-doped nanographene * heteroaromatic polymer Subject RIV: CC - Organic Chemistry Impact factor: 12.033, year: 2013
International Nuclear Information System (INIS)
Bremier, Stephane
1997-01-01
This thesis has as objective the study of the effect of TiO 2 additive on the development of MOX fuel microstructure during sintering in reducing atmosphere. To understand better the mechanisms governing the evolution of microstructure, the behavior of UO 2 in the presence of TiO 2 has been established and the influence of the PuO 2 distribution in the initial state of the material was taken into account. The chapter II is devoted to the bibliographic study of the transport mechanisms responsible of the sintering in the ceramics UO 2 and UO 2 -PuO 2 . The results concerning the influence of TiO 2 upon density, grain size and homogenization are discussed. The following chapter describes the characteristics of initial powder, the procedures and installations of heat treatment, as well as the techniques of characterization used. Then the sintering features of UO 2 alone or in the presence of TiO 2 are presented. It appears that in the last case the surface diffusion becomes sufficient fast so that the distribution of the additive occurs naturally during a slow temperature increase. The fifth chapter treats the effect of UO 2 -PuO 2 preparation upon the initial microstructure of the materials and the role played by the PuO 2 grains in sintering. The potentiality of surface diffusion as a means of PuO 2 spreading in the UO 2 is evaluated and correlated with the reduced capacity of sintering the UO 2 ceramics containing PuO 2 . The last chapter deals with the influence of TiO 2 on the development of microstructure in UO 2 -PuO 2 ceramics. While at temperatures below 1500 deg.C the TiO 2 additive affects the surface diffusion and so the plutonium distribution, at values T≥ 1600 deg.C the additive gives rise to a dissolution-reprecipitation process taking place in a intergranular liquid phase appeared between UO 2 , PuO 2 and titanium oxide. Thus the objective is the optimizing the temperature conditions, the oxygen potential as sintering gas and the additive
Er{sup 3+} diffusion in LiTaO{sub 3} crystal
Energy Technology Data Exchange (ETDEWEB)
Zhang, De-Long, E-mail: dlzhang@tju.edu.cn [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Zhang, Qun; Wong, Wing-Han [Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072 (China); Key Laboratory of Optoelectronic Information Technology (Ministry of Education), Tianjin University, Tianjin 300072 (China); Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Pun, Edwin Yue-Bun [Department of Electronic Engineering and State Key Laboratory of Millimeter Waves, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)
2015-12-01
Graphical abstract: Diffusion characteristics of Er{sup 3+} in LiTaO{sub 3} crystal were studied in a wide temperature range from 1000 to 1500 °C. The study shows that Er{sup 3+} doping has little effect on the LiTaO{sub 3} index. Li{sub 2}O out-diffusion is slight for a lower temperature while is moderate for a high temperature. The diffusion can be described by Fick's law of diffusion with a constant Er{sup 3+} diffusivity. Some characteristic diffusion parameters including diffusion constant, activation energy, solubility constant and heat of solution were obtained. In comparison with the case of LiNbO{sub 3}, Er{sup 3+} diffusion in LiTaO{sub 3} is at least two orders slower and Er{sup 3+} solubility in LiTaO{sub 3} is measurably lower. - Highlights: • Diffusion characteristics of Er{sup 3+} in LiTaO{sub 3} crystal were studied. • Diffusion constant is (1.05 ± 0.2) × 10{sup 10} μm{sup 2}/h and activation energy is 3.9 ± 0.04 eV. • Solubility constant is (9.12 ± 1.3) × 10{sup 24} cm{sup −3} and heat of solution is 1.33 ± 0.02 eV. • Er{sup 3+} diffusion in LiTaO{sub 3} is at least two orders slower than in LiNbO{sub 3}. • Er{sup 3+} solubility in LiTaO{sub 3} is measurably lower than in LiNbO{sub 3}. - Abstract: Some Er{sup 3+}-doped LiTaO{sub 3} plates were prepared by in-diffusion of Er-metal film locally coated onto congruent Z-cut substrate in air at a wide temperature range from 1000 to 1500 °C. After diffusion, Er{sup 3+}-doping effect on LiTaO{sub 3} refractive index and Li{sub 2}O out-diffusion arising from Er{sup 3+} in-diffusion were studied at first. Refractive indices at the doped and undoped surface parts were measured by prism coupling technique and the surface composition was estimated. The results show that Er{sup 3+} dopant has small contribution to the LiTaO{sub 3} index. Li{sub 2}O out-diffusion is slight (Li{sub 2}O content loss <0.3 mol%) for the temperature below 1300 °C while is moderate (Li{sub 2}O content loss
Directory of Open Access Journals (Sweden)
J. Y. Tang
2013-02-01
Full Text Available We describe a new top boundary condition (TBC for representing the air–soil diffusive exchange of a generic volatile tracer. This new TBC (1 accounts for the multi-phase flow of a generic tracer; (2 accounts for effects of soil temperature, pH, solubility, sorption, and desorption processes; (3 enables a smooth transition between wet and dry soil conditions; (4 is compatible with the conductance formulation for modeling air–water volatile tracer exchange; and (5 is applicable to site, regional, and global land models.
Based on the new TBC, we developed new formulations for bare-soil resistance and corresponding soil evaporation efficiency. The new soil resistance is predicted as the reciprocal of the harmonic sum of two resistances: (1 gaseous and aqueous molecular diffusion and (2 liquid mass flow resulting from the hydraulic pressure gradient between the soil surface and center of the topsoil control volume. We compared the predicted soil evaporation efficiency with those from several field and laboratory soil evaporation measurements and found good agreement with the typically observed two-stage soil evaporation curves. Comparison with the soil evaporation efficiency equation of Lee and Pielke (1992; hereafter LP92 indicates that their equation can overestimate soil evaporation when the atmospheric resistance is low and underestimate soil evaporation when the soil is dry. Using a synthetic inversion experiment, we demonstrated that using inverted soil resistance data from field measurements to derive empirical soil resistance formulations resulted in large uncertainty because (1 the inverted soil resistance data are always severely impacted by measurement error and (2 the derived empirical equation is very sensitive to the number of data points and the assumed functional form of the resistance.
We expect the application of our new TBC in land models will provide a consistent representation for the diffusive tracer
Renormalization of Newton's constant
Falls, Kevin
2015-12-01
The problem of obtaining a gauge independent beta function for Newton's constant is addressed. By a specific parametrization of metric fluctuations a gauge independent functional integral is constructed for the semiclassical theory around an arbitrary Einstein space. The effective action then has the property that only physical polarizations of the graviton contribute, while all other modes cancel with the functional measure. We are then able to compute a gauge independent beta function for Newton's constant in d dimensions to one-loop order. No Landau pole is present provided Ng<18 , where Ng=d (d -3 )/2 is the number of polarizations of the graviton. While adding a large number of matter fields can change this picture, the absence of a pole persists for the particle content of the standard model in four spacetime dimensions.
Production in constant evolution
International Nuclear Information System (INIS)
Lozano, T.
2009-01-01
The Cofrentes Nuclear Power Plant now has 25 years of operation behind it: a quarter century adding value and demonstrating the reasons why it is one of the most important energy producing facilities in the Spanish power market. Particularly noteworthy is the enterprising spirit of the plant, which has strived to continuously improve with the large number of modernization projects that it has undertaken over the past 25 years. The plant has constantly evolved thanks to the amount of investments made to improve safety and reliability and the perseverance to stay technologically up to date. Efficiency, training and teamwork have been key to the success of the plant over these 25 years of constant change and progress. (Author)
Indian Academy of Sciences (India)
IAS Admin
important parameter in the field of atomic struc- ture. The values of the constants of ... tions in their core that produce carbon. As a result, .... atom in 1913. In other words, the size of a hydrogen atom is a factor α−2 ≈ 20000 times the size of an elec- tron. Another way of looking at α is to consider the ratio of the orbital speed of ...
International Nuclear Information System (INIS)
Mellor, F.
1989-01-01
Astronomical observations predict to an extremely accurate degree that the cosmological term in Einstein's equations should be zero. This conflicts with the predictions from particle theories of a non-zero cosmological term. Attempts to resolve this paradox range from arguments based on the anthropic principle to supersymmetric theories to quantum cosmological proposals. These approaches are discussed here and the history of the cosmological constant is reviewed. (author)
Connecting Fundamental Constants
International Nuclear Information System (INIS)
Di Mario, D.
2008-01-01
A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a π√(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment
Jackson, Neal
2015-01-01
I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H 0 values of around 72-74 km s -1 Mpc -1 , with typical errors of 2-3 km s -1 Mpc -1 . This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s -1 Mpc -1 and typical errors of 1-2 km s -1 Mpc -1 . The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
Yongquan, Han
2016-10-01
The ideal gas state equation is not applicable to ordinary gas, it should be applied to the Electromagnetic ``gas'' that is applied to the radiation, the radiation should be the ultimate state of matter changes or initial state, the universe is filled with radiation. That is, the ideal gas equation of state is suitable for the Singular point and the universe. Maybe someone consider that, there is no vessel can accommodate radiation, it is because the Ordinary container is too small to accommodate, if the radius of your container is the distance that Light through an hour, would you still think it can't accommodates radiation? Modern scientific determinate that the radius of the universe now is about 1027 m, assuming that the universe is a sphere whose volume is approximately: V = 4.19 × 1081 cubic meters, the temperature radiation of the universe (cosmic microwave background radiation temperature of the universe, should be the closest the average temperature of the universe) T = 3.15k, radiation pressure P = 5 × 10-6 N / m 2, according to the law of ideal gas state equation, PV / T = constant = 6 × 1075, the value of this constant is the universe, The singular point should also equal to the constant Author: hanyongquan
Rate of riboflavin diffusion from intrastromal channels before corneal crosslinking.
McQuaid, Rebecca; Mrochen, Michael; Vohnsen, Brian
2016-03-01
To determine the diffusion of riboflavin from intrastromal channels through the effective diffusion coefficients compared with traditional axial diffusion with epithelium on or off. Advanced Optical Imaging Laboratory, University College Dublin, and Wellington Eye Clinic, Sandyford, Dublin, Ireland. Experimental study. The rate of diffusion in whole-mounted porcine eyes was monitored for a 30 minutes using an optical setup with a charge-coupled device camera and a bandpass filter (central wavelength 550 nm and 40 nm bandpass) to image the fluorescence under ultraviolet illumination (365 nm wavelength). For comparison, an isotropic corneal stroma with an annular channel was modeled numerically for different diffusion constants and boundary conditions. Numerical and experimental results were compared, allowing determination of the effective diffusion coefficient for each case. Experimental results for 6 different riboflavin solutions were in all cases found to be higher than for the common crosslinking (CXL) riboflavin protocol, where the diffusion constant is D0 = 6.5 × 10(-5) mm(2)/sec. For the intrastromal channel, 2 isotonic solutions containing riboflavin 0.1% correlated with a diffusion constant of 5D0 = 32.5 × 10(-5) mm(2)/sec. Hypotonic solutions and transepithelium had a higher diffusion coefficient approaching 10D0 = 65.0 × 10(-5) mm(2)/sec, which is an order-of-magnitude increase compared with the typical diffusion coefficient found in standard CXL. In this study, riboflavin had a faster stromal diffusion when injected into a corneal channel than when applied as drops to the anterior corneal surface. Further numerical modeling might allow optimization of the channel structure for any specific choice of riboflavin. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Maruyama, S.; Aihara, T. [Tohoku University, Sendai (Japan). Institute of Fluid Sceince
1993-10-25
A radiation light tracking method was used to derive shape factors of arbitrary axisymmetric bodies consisted of specular and diffuse surfaces or an annular face element as a composite surface of the former surfaces. This paper illustrates the summary of an analytical method to calculate radiation heat transfer amount of these bodies using the shape factors, and describes the following matters: The difference between the shape factor obtained by applying this method to the inner face of a cylindrical body and conventional analytical solution can be reduced by increasing the number of splits in outgoing light. The numerical solution from this method on radiation heat transfer amount in the particular body agrees well with the conventional analytical solution. Radiation heat transfer amount when the specular reflectivity was increased either increases or decreases depending on the face shape, not necessarily changing monotonously. The paper further describes briefly a composite heat transfer analysis applied to a silicon crystal growing equipment using the Czochralski method, the analysis combining a radiation heat transfer analysis that splits the equipment interior into 88 annular elements with a general purpose heat transfer analysis. 13 refs., 11 figs., 1 tab.
International Nuclear Information System (INIS)
Brune, D.; Lorenzen, J.; Witalis, E.
1972-05-01
Depth distribution studies of carbon in steel and iron were carried out in the concentration range 0.05-1 %, using proton activation analysis. Surface content studies were performed in the concentration range 0.01-1 % using deuteron activation analysis. The following reactions were utilized: 12 C(p,γ) 13 N and 12 C(d,n) 13 N Evaluations of depth distribution were based on resonances in the excitation function. The carbon content was determined with the aid of the positron emitter, 13 N, using either single-peak or coincidence measurements. The heat dissipation in the irradiated region of the samples was calculated, and the temperature rise was measured using thermocouples. The temperature distribution within the hot zone subjected to irradiation by charged particles, together with the temperature distribution around this zone, was studied in order to estimate any effect this might have on the carbon diffusion. A device for automatic sample exchange which is remotely controlled is described
Fractional diffusion equations and anomalous diffusion
Evangelista, Luiz Roberto
2018-01-01
Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.
Schwartz, Martin; Steidle, Günter; Martirosian, Petros; Ramos-Murguialday, Ander; Preißl, Hubert; Stemmer, Alto; Yang, Bin; Schick, Fritz
2018-05-01
Assessment of temporal and spatial relations between spontaneous mechanical activities in musculature (SMAM) at rest as revealed by diffusion-weighted imaging (DWI) and electrical muscular activities in surface EMG (sEMG). Potential influences of static and radiofrequency magnetic fields on muscular activity on sEMG measurements at rest were examined systematically. Series of diffusion-weighted stimulated echo planar imaging were recorded with concurrent sEMG measurements. Electrical activities in sEMG were analyzed by non-parametric Friedman and two-sample Kolmogorov-Smirnov test. Direct correlation of both modalities was investigated by temporal mapping of electrical activity in sEMG to DWI repetition interval. Electrical activities in sEMG and number of visible SMAMs in DWI showed a strong correlation (ρ = 0.9718). High accordance between sEMG activities and visible SMAMs in DWI in a near-surface region around sEMG electrodes was achieved. Characteristics of sEMG activities were almost similar under varying magnetic field conditions. Visible SMAMs in DWI have shown a close and direct relation to concurrent signals recorded by sEMG. MR-related magnetic fields had no significant effects on findings in sEMG. Hence, appearance of SMAMs in DWI should not be considered as imaging artifact or as effects originating from the special conditions of MR examinations. Spatial and temporal distributions of SMAMs indicate characteristics of spontaneous (microscopic) mechanical muscular action at rest. Therefore, DWI techniques should be considered as non-invasive tools for studying physiology and pathophysiology of spontaneous activities in resting muscle. Magn Reson Med 79:2784-2794, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Directory of Open Access Journals (Sweden)
Neal Jackson
2015-09-01
Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72–74 km s^–1 Mpc^–1, with typical errors of 2–3 km s^–1 Mpc^–1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67–68 km s^–1 Mpc^–1 and typical errors of 1–2 km s^–1 Mpc^–1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.
Determination of the diffusion constant using phase-sensitive measurements
Vellekoop, Ivo Micha; Lodahl, P.; Lagendijk, Aart
2005-01-01
We apply a pulsed-light interferometer to measure both the intensity and the phase of light that is transmitted through a strongly scattering disordered material. From a single set of measurements we obtain the time-resolved intensity, frequency correlations and statistical phase information
Wolf, Joseph A
2010-01-01
This book is the sixth edition of the classic Spaces of Constant Curvature, first published in 1967, with the previous (fifth) edition published in 1984. It illustrates the high degree of interplay between group theory and geometry. The reader will benefit from the very concise treatments of riemannian and pseudo-riemannian manifolds and their curvatures, of the representation theory of finite groups, and of indications of recent progress in discrete subgroups of Lie groups. Part I is a brief introduction to differentiable manifolds, covering spaces, and riemannian and pseudo-riemannian geomet
A low cost light diffuser made of metal coil.
Morita, Nozomi; Arai, Tsunenori
2008-01-01
We proposed a low cost flexible light diffuser made of metal coil to obtain an appropriate light dose against certain laser therapies in narrow bending organs. We investigated experimentally the diffusion light dose of prototype coils made of stainless steel (sus304). We measured the diffusion light intensity of the prototype coils along the irradiation direction and the circumferential direction with the various pitch distances of the prototype coils and numerical aperture (NA) of laser light beam as the characteristic parameters of the light diffusion. We measured the temperature elevation of the prototype coils to study the waste energy of these prototype coils. The FWHM on the light intensity along the prototype coils marked up to 12.8mm with the constant pitch distance of 0.09 mm and the fiber output light NA of 0.038. The FWHM on the light intensity was improved to 13.7 mm with the composite pitch distance coils of which the pitch distances were 0.09 mm in the proximate and 0.18 mm in the distal. Since the efficiency of the diffusion irradiation against the fiber output was typically 7.7% in the prototype coils of which the surface reflectance was 50%, approximately 90% of the laser light energy was transferred to the temperature elevation. We estimated the practical diffusion efficiency around 75% using the high reflection of the prototype coils surface up to 90%.
Martin, Michael A.; Nettles, Mindy
2015-01-01
The propellant tanks used in liquid rockets require pressurization gases in order to maintain tank pressure while the tanks are being drained during engine operation. The pressurization gas, which is typically much warmer than the relatively cold propellants in the tank, must be introduced into the empty ullage space at the top of the tank. The purpose of the diffuser is to control the flow of the gas into the tank in order to prevent direct impingement of the gas on the liquid surface and/or the tank walls. If the diffuser did not perform those tasks, the warm gas can create excess heat transfer causing an increase in the amount of pressurization mass required. Typical diffusers are long vertical cylinders that create a large exit area in order to minimize gas velocities. However, long vertical cylinders limit the amount of liquid that can be loaded into the tank in order not to have the liquid surface near the diffuser. A design goal for a pressurization diffuser is to create uniform flow in order to prevent jets that can impact the liquid surface and/or tank walls. The purpose of the task was to create a diffuser design that had a lower vertical profile (in order to be able to raise the liquid surface) while still maintaining uniform flow.
Premixed combustion under electric field in a constant volume chamber
Cha, Min Suk
2012-12-01
The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.
Salcedo Ortega, Manuela; Pontificia Universidad Javeriana, Cali
2013-01-01
La presencia familiar estará siempre en mi vida: Creo que esa unión va más allá de los lazos que creamos en ese primer abrir de ojos del nacimiento pues los lazos se fortalecen con el tiempo. Es que esos lazos van de la genética al riñón y puede que suene muy raro, pero esta es mi enfermedad, la primera y la constante, la que desaparece y reaparece, la heredada y la que cada vez que me saluda, deja su huella. Comenzó hace 16 años. Mis infecciones urinarias fueron el comienzo de muchas maluque...
Directory of Open Access Journals (Sweden)
Jackson Neal
2007-09-01
Full Text Available I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. In the last 20 years, much progress has been made and estimates now range between 60 and 75 km s^-1 Mpc^-1, with most now between 70 and 75 km s^-1 Mpc^-1, a huge improvement over the factor-of-2 uncertainty which used to prevail. Further improvements which gave a generally agreed margin of error of a few percent rather than the current 10% would be vital input to much other interesting cosmology. There are several programmes which are likely to lead us to this point in the next 10 years.
Constant Proportion Portfolio Insurance
DEFF Research Database (Denmark)
Jessen, Cathrine
2014-01-01
Portfolio insurance, as practiced in 1987, consisted of trading between an underlying stock portfolio and cash, using option theory to place a floor on the value of the position, as if it included a protective put. Constant Proportion Portfolio Insurance (CPPI) is an option-free variation...... on the theme, originally proposed by Fischer Black. In CPPI, a financial institution guarantees a floor value for the “insured” portfolio and adjusts the stock/bond mix to produce a leveraged exposure to the risky assets, which depends on how far the portfolio value is above the floor. Plain-vanilla portfolio...... insurance largely died with the crash of 1987, but CPPI is still going strong. In the frictionless markets of finance theory, the issuer’s strategy to hedge its liability under the contract is clear, but in the real world with transactions costs and stochastic jump risk, the optimal strategy is less obvious...
International Nuclear Information System (INIS)
Pitak, O.; Fresl, M.
1985-01-01
The protection of the metal membrane of the diffusion probe is designed such that it uses a metal casing filled with an alcohol capable of reacting with the liquid metal under formation of an alcoholate. The casing is fitted to the probe after termination of measurements. During the measurement, hydrogen diffuses from liquid sodium through the metal membrane. After termination of measurement, structural changes take place in the surface layer of the membrane owing to corrosion and oxidation which are enhanced by sodium which remains in the subsurface layers of the diffusion membrane following exposure to sodium. The proposed technology allows to continuously wash liquid metal from the membrane while preventing access of air and moisture to the membrane; air and moisture reduce the rate of hydrogen diffusion through the membrane. (Pu)
Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.
2016-01-01
Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011
Reid, Lee B; Cunnington, Ross; Boyd, Roslyn N; Rose, Stephen E
2016-01-01
Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43-0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences.
Apparatus for diffusion separation
International Nuclear Information System (INIS)
Nierenberg, W.A.; Pontius, R.B.
1976-01-01
The method of testing the separation efficiency of porous permeable membranes is described which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane
Internal Diffusion-Controlled Enzyme Reaction: The Acetylcholinesterase Kinetics.
Lee, Sangyun; Kim, Ji-Hyun; Lee, Sangyoub
2012-02-14
Acetylcholinesterase is an enzyme with a very high turnover rate; it quenches the neurotransmitter, acetylcholine, at the synapse. We have investigated the kinetics of the enzyme reaction by calculating the diffusion rate of the substrate molecule along an active site channel inside the enzyme from atomic-level molecular dynamics simulations. In contrast to the previous works, we have found that the internal substrate diffusion is the determinant of the acetylcholinesterase kinetics in the low substrate concentration limit. Our estimate of the overall bimolecular reaction rate constant for the enzyme is in good agreement with the experimental data. In addition, the present calculation provides a reasonable explanation for the effects of the ionic strength of solution and the mutation of surface residues of the enzyme. The study suggests that internal diffusion of the substrate could be a key factor in understanding the kinetics of enzymes of similar characteristics.
In vivo P-31 MR diffusion spectroscopy
International Nuclear Information System (INIS)
Moonen, C.T.W.; Vanzijl, P.C.M.; LeBihan, D.
1988-01-01
This paper discusses the Stejskal-Tanner diffusion spin-echo sequence modified for the in vivo diffusion spectroscopy. The apparent diffusion constant D α was measured as a function of the diffusion time. Contrary to the results in phantom samples, a strong dependency of the D α for phosphocreatine (PCr) in the rat muscle tissue on diffusion time was observed, clearly indicating restricted diffusion effects and allowing an approximation of the size of the restricted volume (8-13 μm). This size fits well with the known dimensions of a normal muscle cell
Zhang, X. Y.; Cherniak, D. J.; Watson, E. B.
2004-05-01
Oxygen diffusion in natural and synthetic single-crystal titanite was characterized under both dry and water-present conditions. For the dry experiments, pre-polished titanite samples were packed in 18O-enriched quartz powder inside Ag-Pd capsules, along with an FMQ buffer assemblage maintained physically separate by Ag-Pd strips. The sealed Ag-Pd capsules were themselves sealed inside evacuated silica glass tubes and run at 700-1050° C and atmospheric pressure for durations ranging from 1 hour to several weeks. The hydrothermal experiments were conducted by encapsulating polished titanite crystals with 18O enriched water and running them at 700-900° C and 10-160MPa in standard cold-seal pressure vessels for durations of 1 day to several weeks. Diffusive uptake profiles of 18O were measured in all cases by nuclear reaction analysis (NRA) using the 18O (p,α ) 15N reaction. For the experiments on natural crystals, under both dry and hydrothermal conditions, two mechanisms could be recognized responsible for oxygen diffusion. The diffusion profiles showed two segments: a steep one close to the initial surface attributed to self-diffusion in the titanite lattice; and a "tail" reaching deeper into the sample attributable to diffusion in a "fast path" such as sub-grain boundaries or dislocations. For the dry experiments, the following Arrhenius relation was obtained: D{dry lattice} = 2.6×10-8exp (-275 kJmol-1/RT) m2/s Under wet conditions at PH2O = 100MPa, Oxygen diffusion conforms to the following Arrehenius relation: D{wet lattice} = 9.7× 10-13exp (-174 kJmol-1/RT) m2/s Oxygen diffusivity shows only a slight dependence on water pressure at the following conditions we explored: temperatures 800° C, PH2O = 10-160MPa, and 880° C, PH2O =10-100MPa. For diffusive anisotropy, we explored it only at hydrothermal conditions, and no diffusive anisotropy was observed. Like many other silicates, titanite shows lower activation energy for oxygen diffusion in the presence of
Surface electrical resistivity of insulators
International Nuclear Information System (INIS)
Senn, B. C.; Liesegang, J.
1996-01-01
A method is presented here for measuring surface charge decay, and theory has been developed so as to produce determinations of resistivity in the surface region of insulator films or wafers. This method incorporates the use of a coaxial cylindrical capacitor arrangement and an electrometer interfaced to a PC. The charge transport theory given here is based on Mott-Gurney diffusion, and allows easy interpretation of the experimental data, especially for the initial phase of surface charge decay. Resistivity measurements are presented for glass, mica, perspex and polyethylene, covering a range of 10 9 to 10 18 Ωm, as an illustration of the useful range of the instrument for static and antistatic materials, particularly in film or sheet form. Values for the surface charge diffusion constants of the materials are also presented. The charge transport theory has also been extended to allow the experimental and computational theoretical comparison of surface charge decay not only over the initial phase of charge decay, but also over longer times. The theoretical predictions show excellent agreement with experiment using the values for the diffusion constants referred to above
The limitation and modification of flux-limited diffusion theory
International Nuclear Information System (INIS)
Liu Chengan; Huang Wenkai
1986-01-01
The limitation of various typical flux-limited diffusion theory and advantages of asymptotic diffusion theory with time absorption constant are analyzed and compared. The conclusions are as following: Though the flux-limited problem in neutron diffusion theory are theoretically solved by derived flux-limited diffusion equation, it's going too far to limit flux due to the inappropriate assumption in deriving flux-limited diffusion equation. The asymptotic diffusion theory with time absorption constant has eliminated the above-mentioned limitation, and it is more accurate than flux-limited diffusion theory in describing neutron transport problem
Bala, G.; Kalidindi, S.; Modak, A.; Caldeira, K.
2014-12-01
Several climate modelling studies in the past have used reduction in solar constant to simulate the climatic effects of Solar Radiation Management (SRM) geoengineering. This is most likely valid only for space-based mirrors/reflectors but not for SRM methods that rely on stratospheric aerosols. In this study, we use a climate model to evaluate the differences in climate response to SRM by uniform solar constant reduction and stratospheric aerosols. The experiments are designed such that global mean warming from a doubling of atmospheric CO2 concentration (2xCO2) is nearly cancelled in each case. In such a scenario, the residual climate effects are similar when important surface and tropospheric climate variables such as temperature and precipitation are considered. However, there are significant differences in stratospheric temperature response and diffuse and direct radiation reaching the surface. A difference of 1K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods, with warming in the aerosol scheme and a slight cooling for sunshades. While the global mean surface diffuse radiation increases by ~23% and direct radiation decreases by about 9% in the case of aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (~1.0%) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2% decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (~ 8%) and NPP (~3%) relative to 2xCO2, indicating the negligible effect of the fractional changes in direct/diffuse radiation on the overall plant productivity. Based on our modelling study, we conclude that the climate states produced by a
A Memorandum Report: Physical Constants of MCE
2016-08-01
the density and surface tension. In effect, this constant is a corrected molar volume = P = MS / = S / where P = Parachor M = molar volume ...Clapeyron equation Surface tension Viscosity Freezing point GA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER...to the Figure will show. The volatility of the MCE was calculated from the calculated values of vapor pressure by the ideal gas law and the values
International Nuclear Information System (INIS)
Solovetskii, Yu.I.; Miroshinichenko, I.I.; Lunin, V.V.
1993-01-01
Radiation-thermal damage of the surface and the active metal phases of hydrodesulfurization Ni-Mo/Al 2 O 3 catalysts by a fast electron beam of up to 2.0 MeV energy was studied. UV-Vis diffuse reflectance spectra of the industrial and model coked systems after radiation-thermal treatment were measured. 14 refs., 2 figs
Diffraction and diffusion in room acoustics
DEFF Research Database (Denmark)
Rindel, Jens Holger; Rasmussen, Birgit
1996-01-01
Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....
Internal machining accomplished at constant radii
Gollihugh, T. E.
1966-01-01
Device machines fluid passages in workpieces at constant radii through two adjacent surfaces that are at included angles up to approximately 120 degrees. This technique has been used extensively in fabricating engine parts where close control of fluid flow is a requirement.
1995-08-01
about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the
Koscher, Brent A; Bronstein, Noah D; Olshansky, Jacob H; Bekenstein, Yehonadav; Alivisatos, A Paul
2016-09-21
Ion-exchange transformations allow access to nanocrystalline materials with compositions that are inaccessible via direct synthetic routes. However, additional mechanistic insight into the processes that govern these reactions is needed. We present evidence for the presence of two distinct mechanisms of exchange during anion exchange in CsPbX3 nanocrystals (NCs), ranging in size from 6.5 to 11.5 nm, for transformations from CsPbBr3 to CsPbCl3 or CsPbI3. These NCs exhibit bright luminescence throughout the exchange, allowing their optical properties to be observed in real time, in situ. The iodine exchange presents surface-reaction-limited exchanges allowing all anionic sites within the NC to appear chemically identical, whereas the chlorine exchange presents diffusion-limited exchanges proceeding through a more complicated exchange mechanism. Our results represent the first steps toward developing a microkinetic description of the anion exchange, with implications not only for understanding the lead halide perovskites but also for nanoscale ion exchange in general.
Charge diffusion and the butterfly effect in striped holographic matter
Energy Technology Data Exchange (ETDEWEB)
Lucas, Andrew [Department of Physics, Harvard University,Cambridge, MA 02138 (United States); Department of Physics, Stanford University,Stanford, CA 94305 (United States); Steinberg, Julia [Department of Physics, Harvard University,Cambridge, MA 02138 (United States)
2016-10-26
Recently, it has been proposed that the butterfly velocity — a speed at which quantum information propagates — may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength “hydrodynamic' disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.
Aspects of diffusion in the stadium billiard
Lozej, Črt; Robnik, Marko
2018-01-01
We perform a detailed numerical study of diffusion in the ɛ stadium of Bunimovich, and propose an empirical model of the local and global diffusion for various values of ɛ with the following conclusions: (i) the diffusion is normal for all values of ɛ (≤0.3 ) and all initial conditions, (ii) the diffusion constant is a parabolic function of the momentum (i.e., we have inhomogeneous diffusion), (iii) the model describes the diffusion very well including the boundary effects, (iv) the approach to the asymptotic equilibrium steady state is exponential, (v) the so-called random model (Robnik et al., 1997) is confirmed to apply very well, (vi) the diffusion constant extracted from the distribution function in momentum space and the one derived from the second moment agree very well. The classical transport time, an important parameter in quantum chaos, is thus determined.
Radon diffusion studies in some building materials using solid state nuclear track detectors
Singh, S; Singh, B; Singh, J
1999-01-01
LR-115 plastic track detector has been used to study radon diffusion through some building materials, viz. cement, soil, marble chips, sand and lime as well as air. Diffusion constant and diffusion length is calculated for all these materials.
Hinata, Sintaro; Jo, Shin; Saito, Shin
2018-05-01
Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.
Surface Complexation Modeling in Variable Charge Soils: Prediction of Cadmium Adsorption
Directory of Open Access Journals (Sweden)
Giuliano Marchi
2015-10-01
Full Text Available ABSTRACT Intrinsic equilibrium constants for 22 representative Brazilian Oxisols were estimated from a cadmium adsorption experiment. Equilibrium constants were fitted to two surface complexation models: diffuse layer and constant capacitance. Intrinsic equilibrium constants were optimized by FITEQL and by hand calculation using Visual MINTEQ in sweep mode, and Excel spreadsheets. Data from both models were incorporated into Visual MINTEQ. Constants estimated by FITEQL and incorporated in Visual MINTEQ software failed to predict observed data accurately. However, FITEQL raw output data rendered good results when predicted values were directly compared with observed values, instead of incorporating the estimated constants into Visual MINTEQ. Intrinsic equilibrium constants optimized by hand calculation and incorporated in Visual MINTEQ reliably predicted Cd adsorption reactions on soil surfaces under changing environmental conditions.
Development of a methodology to generate materials constant for the FLARE-G computer code
International Nuclear Information System (INIS)
Martinez, A.S.; Rosier, C.J.; Schirru, R.; Silva, F.C. da; Thome Filho, Z.D.
1983-01-01
The methodology of calculation aiming to determine the parametrization constants of the multiplication factor and migration area is presented. These physical parameters are necessary in the solution of the diffusion equation with the nodal method, and they represent the adequated form of the macrogroup constants in the cell calculation. An automatic system was done to generate the parametrization constants. (E.G.) [pt
Hydrogen Diffusion and H{sub 2}S Corrosion in Steel
Energy Technology Data Exchange (ETDEWEB)
Haugstveit, Bjarte Erlend
2001-01-01
The electrochemical permeation technique introduced by Devanathan and Stachurski has been used to measure the effective diffusivity of hydrogen in steel in a H{sub 2}S-saturated aqueous environment. The linear polarization resistance (LPR) method has been used to measure the corrosion rate. The effective diffusion coefficient of hydrogen has been found to be in the range of 1*10-12 to 7*10-11, depending on the environmental conditions. The corrosion film was identified as mackinawite, and it affected the permeation process of hydrogen. The results supported the assumption that the diffusion process can be described by a three layer model and indicated that the model could be reduced to a two layer model in the cases of iron and steel. A model aimed to describe the reaction pathway of hydrogen through the surface film and into the steel is proposed. The corrosion film influenced the corrosion rate, and it was least protective against corrosion at pH 6.5. Corrosion rates were in the range of 0.2-1 mm/year. The corrosion rate was increased significantly at pH 3.5, but the effect of the surface film was stronger and overshadowed the pH effect at the higher pH values. Increased flow velocity also lead to increased corrosion rate, but this effect was less significant compared to the effect of pH and the surface film. DEG decreased the corrosion rate. The uncertainty in the diffusion measurements was mainly due to the assumption of a constant sub-surface concentration of atomic hydrogen, which was not fulfilled. A method less dependent on constant surface conditions would probably yield better estimates of the effective diffusivity. The uncertainty in the corrosion measurements was mainly due to the uncertainty in the value of the Stern-Geary constant. The qualitative assumptions based on the results in this thesis are assumed to be valid. A test section designed for this thesis was tested and was found successful in corrosion rate measurements, but proved to be
Analytical boron diffusivity model in silicon for thermal diffusion from boron silicate glass film
Kurachi, Ikuo; Yoshioka, Kentaro
2015-09-01
An analytical boron diffusivity model in silicon for thermal diffusion from a boron silicate glass (BSG) film has been proposed in terms of enhanced diffusion due to boron-silicon interstitial pair formation. The silicon interstitial generation is considered to be a result of the silicon kick-out mechanism by the diffused boron at the surface. The additional silicon interstitial generation in the bulk silicon is considered to be the dissociation of the diffused pairs. The former one causes the surface boron concentration dependent diffusion. The latter one causes the local boron concentration dependent diffusion. The calculated boron profiles based on the diffusivity model are confirmed to agree with the actual diffusion profiles measured by secondary ion mass spectroscopy (SIMS) for a wide range of the BSG boron concentration. This analytical diffusivity model is a helpful tool for p+ boron diffusion process optimization of n-type solar cell manufacturing.
Intracellular transport by active diffusion
Brangwynne, C. P.; Koenderink, G.H.; Mac Kintosh, F.C.; Weitz, D. A.
2009-01-01
All substances exhibit constant random motion at the microscopic scale. This is a direct consequence of thermal agitation, and leads to diffusion of molecules and small particles in a liquid. In addition to this nondirected motion, living cells also use active transport mechanisms, such as motor
Pelleg, Joshua
2016-01-01
This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...
Acetylene diffusion in Na-Y zeolite
Indian Academy of Sciences (India)
The diffusion constant, residence time between jumps and root mean square jump length are determined. Keywords. Porous materials; diffusion; neutron scattering. ... of diameter ~11.8 Å. The pores are interconnected through windows of diameter. ~7.8 Å. Recent molecular dynamics (MD) simulation studies [6] show a ...
Universality in edge-source diffusion dynamics
DEFF Research Database (Denmark)
Mortensen, Asger; Okkels, Fridolin; Bruus, Henrik
2006-01-01
We show that in edge-source diffusion dynamics the integrated concentration N(t) has a universal dependence with a characteristic time scale tau=(A/P)(2)pi/(4D), where D is the diffusion constant while A and P are the cross-sectional area and perimeter of the domain, respectively. For the short...
Spectrophotometric determination of association constant
DEFF Research Database (Denmark)
2016-01-01
Least-squares 'Systematic Trial-and-Error Procedure' (STEP) for spectrophotometric evaluation of association constant (equilibrium constant) K and molar absorption coefficient E for a 1:1 molecular complex, A + B = C, with error analysis according to Conrow et al. (1964). An analysis of the Charg...
Bounds on Gromov hyperbolicity constant in graphs
Indian Academy of Sciences (India)
is a topic of recent and increasing interest in graph theory; see, for instance [3–5, 8–10,. 15–17, 18–20, 22, 23, 25–27]. The theory ..... the Laplace matrix μ∗, we have δ(G) ≤ n(μ∗ − d0) μ∗ . Proof. ..... [27] Tourís E, Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces,. J. Math. Anal. Appl. 380 (2011) ...
Energy Technology Data Exchange (ETDEWEB)
Avila, R.E., E-mail: ravila@cchen.c [Departamento de Materiales Nucleares, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile); Pena, L.A.; Jimenez, J.C. [Departamento de Produccion y Servicios, Comision Chilena de Energia Nuclear, Cas. 188-D, Santiago (Chile)
2010-10-30
The release of tritium from Li{sub 2}TiO{sub 3} and Li{sub 2}ZrO{sub 3} pebbles, in batch experiments, is studied by means of temperature programmed desorption. Data reduction focuses on the analysis of the non-oxidized and oxidized tritium components in terms of release limited by diffusion from the bulk of ceramic grains, or by first or second order surface desorption. By analytical and numerical methods the in-furnace tritium release is deconvoluted from the ionization chamber transfer functions, for which a semi-empirical form is established. The release from Li{sub 2}TiO{sub 3} follows second order desorption kinetics, requiring a temperature for a residence time of 1 day (T{sub 1dRes}) of 620 K, and 603 K, of the non-oxidized, and the oxidized components, respectively. The release from Li{sub 2}ZrO{sub 3} appears as limited by either diffusion from the bulk of the ceramic grains, or by first order surface desorption, the first possibility being the more probable. The respective values of T{sub 1dRes} for the non-oxidized component are 661 K, according to the first order surface desorption model, and 735 K within the bulk diffusion limited model.
Ammonia diffusion through Nalophan™ bags.
Sironi, Selena; Eusebio, Lidia; Dentoni, Licinia; Capelli, Laura; Del Rosso, Renato
2014-01-01
The aim of the work is to verify the diffusion rate of ammonia through the Nalophan™ film that constitutes the sampling bag, considering storage times ranging from 1 to 26 h. The ammonia decay over time was evaluated using gas-chromatography for the quantification of ammonia concentration inside the bag. The research assesses the roles of both of ammonia and water concentration gradients at the polymeric film interface on the diffusion process. The results show that both the ammonia concentration gradient and, in a less pronounced way, the water concentration gradient are the main 'engines' of ammonia diffusion. Double bags seem to represent a simple solution for preventing ammonia losses during storage. Another interesting result concerns the role of the bag surface on the ammonia diffusion rate: the higher the surface/volume (S/V) ratio, the higher the ammonia diffusion rate through the polymeric film.
American Society for Testing and Materials. Philadelphia
2008-01-01
1.1 This test method provides procedures for measuring the leach rates of elements from a solidified matrix material, determining if the releases are controlled by mass diffusion, computing values of diffusion constants based on models, and verifying projected long-term diffusive releases. This test method is applicable to any material that does not degrade or deform during the test. 1.1.1 If mass diffusion is the dominant step in the leaching mechanism, then the results of this test can be used to calculate diffusion coefficients using mathematical diffusion models. A computer program developed for that purpose is available as a companion to this test method (Note 1). 1.1.2 It should be verified that leaching is controlled by diffusion by a means other than analysis of the leach test solution data. Analysis of concentration profiles of species of interest near the surface of the solid waste form after the test is recommended for this purpose. 1.1.3 Potential effects of partitioning on the test results can...
Energy Technology Data Exchange (ETDEWEB)
Marcolino, Juliane Bernardes
2011-01-15
Photovoltaics is based on the direct conversion of solar energy into electricity and is a promising alternative to diversify the world's energy matrix. This work aims to develop and analyse the deposition of Al paste by screen printing and firing/diffusion in a belt furnace to produce a BSF region in monocrystalline Si wafers. The diffusion of Al into the substrate was implemented by two different processes. In the first process the diffusion/firing of the Al paste and the firing of the Ag paste was carried out in independent steps. In this case, solar cells with an average efficiency ({eta}{sub average}) of 11.5 % and a maximum of 12.0 % were produced, but with the formation Al clusters in the back surface of the devices. In the second process firing/diffusion of such pastes was done on the same step. In this case, the best results were obtained for a firing/diffusion temperature of 860 deg C and belt furnace speed (V{sub E}) of 150 cm/min and also for 890 deg C and 180 cm/min. For the former parameters, {eta}{sub average} was 12.4 % and the maximum was 12.8 %. For the later, {eta}{sub average} was 12.5 % and the maximum was 12.6 %. Considering a temperature of 900 deg C and V{sub E} of 190 cm/min, {eta}{sub average} was 12.4 %. It was observed that minority carriers diffusion lengths were smaller than the thickness of silicon wafers. Open circuit voltages were 30 mV lower than that from similar cells fabricated at NT-Solar by using high purity Al deposited by e-beam evaporation indicating that the developed process produced low quality BSF. (author)
Energy Technology Data Exchange (ETDEWEB)
Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)
1996-12-31
While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.
Energy Technology Data Exchange (ETDEWEB)
Brogaard Kristensen, S.
2000-06-01
This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)
Sedimentary radioactive tracers and diffusive models
International Nuclear Information System (INIS)
Carroll, J.; Lerche, I.
2010-01-01
This paper examines the underlying assumptions and consequences of applying a steady-state equation to sediment profiles of radioactive tracers in order to deconvolute sedimentation from bioturbation processes modelled as a diffusive type process. Several factors follow immediately from this investigation: (i)if the observed radioactive concentration increases with depth over any finite depth range then the proposed steady-state, constant flux equation is not applicable. Any increase in radioactive concentration with depth implies a negative mixing coefficient which is a physical impossibility; (ii)when the radioactive concentration systematically decreases with increasing sedimentary depth then solutions to the steady-state conservation equation exist only when either the constant solid state flux to the sediment surface is small enough so that a positive mixing coefficient results or when the mixing coefficient is small enough so that a positive flux results. If the radioactive concentration, porosity and/or density of the solid phase are such that the proposed equation is inappropriate (because no physically acceptable solution exists) then one must abandon the proposed steady-state equation. Further: if the flux of solid sediment to the sediment surface varies with time then, of course, a steady-state conservation equation is also inappropriate. Simple examples illustrate that the assumption of steady-state restricts the applicability of this modelling approach to a relatively small sub-set of expected situations in the real world.
Gossmann, Hans-Joachim L.
1996-03-01
Ion implantation is the standard method for dopant introduction during integrated circuit manufacturing, determining crucial device characteristics. Implantation creates point-defects, such as Si self-interstitials and vacancies, far in excess of equilibrium concentrations. Since the diffusion of common dopants involves Si point defects, the interaction of damage and dopants during subsequent annealing steps leads to the phenomenon known as "transient enhanced diffusion" (TED): The dopant diffusivities are enhanced, possibly by many orders of magnitude. The enhancement is transient since the intrinsic defects eventually diffuse into the bulk or annihilate at the surface. The desired specific dopant profile of the device is thus the result of a complex reaction, involving the creation of damage and its spatial distribution, diffusion, and interaction of the point defects among themselves and with interfaces and other defects. As device dimensions shrink and experiments become more and more expensive, the capability to predict these kinds of non-equilibrium phenomena accurately becomes crucial to Si technology development. In our experiments to extract physical mechanisms and parameters of TED we use the method of sharp B- and Sb doping spikes to track interstitial and vacancy concentrations as a function of depth during processing. Thus we gain sensitivity to small diffusion distances (low temperatures) and separate the damaged region from the region of the interaction with dopants. In addition, our method yields directly the actual point defect diffusivity. Although an ion implant initially produces Frenkel pairs, Monte-carlo simulations show that the vacancies annihilate quickly. The excess interstitials, roughly one for each implanted ion coalesce into 311defects. The subsequent evaporation of interstitials from 311ś drives TED. Si interstitial diffusion is influenced by carbon-related traps and we will demonstrate that this finding reconciles quantitatively a
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Varying Constants, Gravitation and Cosmology.
Uzan, Jean-Philippe
2011-01-01
Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.
Varying Constants, Gravitation and Cosmology
Directory of Open Access Journals (Sweden)
Jean-Philippe Uzan
2011-03-01
Full Text Available Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.
From the Rydberg constant to the fundamental constants metrology
International Nuclear Information System (INIS)
Nez, F.
2005-06-01
This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)
International Nuclear Information System (INIS)
Hanna, S.R.
1976-01-01
It is hoped that urban diffusion models of air pollutants can eventually confidently be used to make major decisions, such as in planning the layout of a new industrial park, determining the effects of a new highway on air quality, or estimating the results of a new automobile emissions exhaust system. The urban diffusion model itself should be able to account for point, line, and area sources, and the local aerodynamic effects of street canyons and building wakes. Removal or transformations due to dry or wet deposition and chemical reactions are often important. It would be best if the model included meteorological parameters such as wind speed and temperature as dependent variables, since these parameters vary significantly when air passes from rural surfaces over urban surfaces
Czech Academy of Sciences Publication Activity Database
Čermáková, Jiřina; Fialová, Kateřina; Petričkovič, Roman; Kudrna, V.; Uchytil, Petr
2006-01-01
Roč. 15, č. 3 (2006), s. 246-251 ISSN 1022-1344 R&D Projects: GA AV ČR(CZ) 1QS401250509; GA AV ČR(CZ) IAA4072402 Institutional research plan: CEZ:AV0Z40720504 Keywords : diffusion coefficient * flux * dispersion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.073, year: 2006
van der Haar, L.M.; den Otter, M.W.; Morskate, M.; Bouwmeester, Henricus J.M.; Verweij, H.
2002-01-01
The chemical diffusion coefficient and oxygen-transfer coefficients of selected compositions in the series $La_1-xSr_xCoO_3-delta$ were studied using the conductivity relaxation technique. Measurements were performed in the temperature range 600-850Â°C and oxygen partial pressure $10-4$ to 1 bar.
Constant fields and constant gradients in open ionic channels.
Chen, D P; Barcilon, V; Eisenberg, R S
1992-05-01
Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant.
Learning Read-constant Polynomials of Constant Degree modulo Composites
DEFF Research Database (Denmark)
Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt
2011-01-01
Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \\textACC0ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class...... is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...
Baldo, Marcello; Grassi, Antonio; Raudino, Antonio
1990-10-01
In this paper we extend a previous model [M. Baldo, A. Grassi, and A. Raudino, J. Chem. Phys. 91, 4658 (1989)] describing the orientational effects in diffusion-controlled enzyme (or membrane surface) reactions. The present generalization takes into account the reactants internal motions involving the interconversion between configurational states, one of them being much more reactive than the others. The problem leads to a system of rotational-translational diffusion equations (RT-DEs) coupled through the interconversion reactions between the conformers. For sake of simplicity, we have restricted the analysis to the case of only two conformational states. The steady-state RT-DE with the proper boundary conditions has been solved by an exact analytical procedure, leading to a set of linear algebraic equations which have been numerically solved. The model allows one to calculate the kinetic constants of the enzyme reactions as a function of available experimental parameters, such as the rotational and translational diffusion coefficients, the reactant's orientational constraints and the rates of interconversion between its different conformations. The numerical results show a monotonous but very nonlinear increasing of the enzyme kinetic constant on raising either the rotational diffusion constant or the interconversion rate between the P+ and P- reactant's conformations. Well-defined regions where the influence of the above parameters on the enzyme kinetics reaches a maximum have been identified.
Diffusion data in granite. Recommended values
International Nuclear Information System (INIS)
Ohlsson, Yvonne; Neretniks, I.
1997-10-01
Diffusion data for radionuclide transport in the porous matrix of rock are proposed for Swedish rock and ground waters, for performance assessment. Suggested data are based on an experimental diffusion study, where tritiated water was used as noninteracting diffusing species in stationary diffusion experiments in Aespoe fine grained granite and diorite. These data, for tritiated water, were used as reference in our study. For other species the effective diffusivities could be predicted from knowledge of the relative behaviour of these species to that of tritiated water. The behaviour is influenced by the difference in free water diffusivity and sometimes the existence of anion exclusion of surface diffusion. Apparent diffusivities are also calculated using sorption data, in addition to the effective diffusivities. Data are proposed for high saline and low saline ground water conditions
International Nuclear Information System (INIS)
Lalis, A.; Rouviere, R.; Simon, G.
1976-01-01
A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture
Energy Technology Data Exchange (ETDEWEB)
Lim, Dae-Kwang; Jeon, Sang-Yun; Singh, Bhupendra [Ionics Lab, School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwang-Ju 500-757 (Korea, Republic of); Park, Jun-Young [Department of Advanced Materials Engineering, Sejong University, Seoul 143-747 (Korea, Republic of); Song, Sun-Ju, E-mail: song@chonnam.ac.kr [Ionics Lab, School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwang-Ju 500-757 (Korea, Republic of)
2014-10-15
Highlights: • Electrical conductivity relaxation in BaCe{sub 0.65}Zr{sub 0.2}Y{sub 0.15}O{sub 3−δ} was monitored. • Monotonic relaxation behavior was observed during oxidation/reduction. • Nonmonotonic twofold relaxation behavior was observed during hydration/dehydration. • Surface exchange coefficients and diffusivities of O and H were calculated. - Abstract: Perovskite-type oxide BaCe{sub 0.65}Zr{sub 0.2}Y{sub 0.15}O{sub 3−δ} (BCZY2015) was synthesized by a solid state reaction method. BCZY2015 samples were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The time dependent variation in electrical conductivity of BCZY2015 was monitored during the oxidation/reduction in oxygen partial pressure (pO{sub 2}) range of −2.28 ⩽ log (pO{sub 2}/atm) ⩽ −0.68 at a fixed water vapor pressure (pH{sub 2}O), and during the hydration/dehydration in −3.15 ⩽ log (pH{sub 2}O/atm) ⩽ −2.35 range in air. The electrical conductivity showed a monotonic relaxation behavior by the ambipolar diffusion of V{sub o}{sup ··} and OH{sub o}{sup ·} during the oxidation/reduction and the relaxation process was governed by the diffusivity of oxygen (D-tilde{sub vO}). On the other hand, during the hydration/dehydration process, a non-monotonic twofold relaxation behavior was observed due to the decoupled diffusion of H and O components with the mediation of holes, and the conductivity relaxation process was governed by the diffusivities of both H (D-tilde{sub iH}) and O (D-tlde{sub vH}). The values of surface exchange coefficients and diffusivities of oxygen and hydrogen were calculated from Fick’s second law by the nonlinear least squares fitting of the conductivity data, as proposed by Yoo et al. (2008)
Energy Technology Data Exchange (ETDEWEB)
Nez, F
2005-06-15
This document reviews the theoretical and experimental achievements of the author since the beginning of his scientific career. This document is dedicated to the spectroscopy of hydrogen, deuterium and helium atoms. The first part is divided into 6 sub-sections: 1) the principles of hydrogen spectroscopy, 2) the measurement of the 2S-nS/nD transitions, 3) other optical frequency measurements, 4) our contribution to the determination of the Rydberg constant, 5) our current experiment on the 1S-3S transition, 6) the spectroscopy of the muonic hydrogen. Our experiments have improved the accuracy of the Rydberg Constant by a factor 25 in 15 years and we have achieved the first absolute optical frequency measurement of a transition in hydrogen. The second part is dedicated to the measurement of the fine structure constant and the last part deals with helium spectroscopy and the search for optical references in the near infrared range. (A.C.)
Systematics of constant roll inflation
Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.
2018-02-01
We study constant roll inflation systematically. This is a regime, in which the slow roll approximation can be violated. It has long been thought that this approximation is necessary for agreement with observations. However, recently it was understood that there can be inflationary models with a constant, and not necessarily small, rate of roll that are both stable and compatible with the observational constraint ns ≈ 1. We investigate systematically the condition for such a constant-roll regime. In the process, we find a whole new class of inflationary models, in addition to the known solutions. We show that the new models are stable under scalar perturbations. Finally, we find a part of their parameter space, in which they produce a nearly scale-invariant scalar power spectrum, as needed for observational viability.
Strain fluctuations and elastic constants
Energy Technology Data Exchange (ETDEWEB)
Parrinello, M.; Rahman, A.
1982-03-01
It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.
International Nuclear Information System (INIS)
Lee, Gun Do; Wang, C. Z.; Lu, Z. Y.; Ho, K. M.
1999-01-01
The diffusion pathways along the trough and between the trough and the dimer row on the Si(100) surface are investigated by tight-binding molecular dynamics calculations using the environment dependent tight-binding silicon potential and by ab initio calculations using the Car-Parrinello method. The studies discover new diffusion pathways consisting of rotation of addimer. The calculated energy barrier are in excellent agreement with experiment. The rotational diffusion pathway between the trough and the dimer row is much more energetically favorable than other diffusion pathways by parallel and perpendicular addimer. The new pathway along the trough is nearly same as the energy barrier of the diffusion pathway by dissociation of the addimer
Atmospheric turbulence and diffusion research
International Nuclear Information System (INIS)
Hosker, R.P. Jr.
1993-01-01
The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange
Non-constant retardation coefficient
International Nuclear Information System (INIS)
Wang Zhiming; Gu Zhijie; Yang Yue'e; Li Shushen
2004-12-01
Retardation coefficient is one of the important parameters used in transport models describing radionuclide migration in geological media and usually regarded as a constant in the models. The objectives of the work are to understand: (1) Whether the retardation coefficient, R d , is a constant? (2) How much effect is R d on calculated consequence if R d is not constant? (3) Is the retardation coefficient derived from distribution coefficient, k d , according to conventional equation suitable for safety assessment? The objectives are achieved through test and analysis of the test results on radionuclide migration in unsaturated loess. It can be seen from the results that retardation coefficient, R d , of 85 Sr is not constant and increases with water content, θ, under unsaturated condition. R d , of 85 Sr derived from k d according to conventional equation can not be used for safety assessment. R d , used for safety assessment should be directly measured, rather than derived from k d . It is shown from calculation that the effect of R d on calculated consequence is very considerable. (authors)
Universal relation between spectroscopic constants
Indian Academy of Sciences (India)
(3) The author has used eq. (6) of his paper to calculate De. This relation leads to a large deviation from the correct value depending upon the extent to which experimental values are known. Guided by this fact, in our work, we used experimentally observed De values to derive the relation between spectroscopic constants.
Boron diffusion in silicon devices
Rohatgi, Ajeet; Kim, Dong Seop; Nakayashiki, Kenta; Rounsaville, Brian
2010-09-07
Disclosed are various embodiments that include a process, an arrangement, and an apparatus for boron diffusion in a wafer. In one representative embodiment, a process is provided in which a boric oxide solution is applied to a surface of the wafer. Thereafter, the wafer is subjected to a fast heat ramp-up associated with a first heating cycle that results in a release of an amount of boron for diffusion into the wafer.
Guobao, FENG; Wanzhao, CUI; Lu, LIU
2018-03-01
A series of synthetic variations of material intrinsic properties always come with charging phenomena due to electron beam irradiation. The effects of charging on the dielectric constant will influence the charging dynamic in return. In this paper, we propose a numerical simulation for investigating the dynamic characteristics of charging effects on the dielectric constant due to electron beam irradiation. The scattering process between electrons and atoms is calculated considering elastic and inelastic collisions via the Rutherford model and the fast secondary electron model, respectively. Internal charge drift due to E-field, density gradient caused diffusion, charges trap by material defect, free electron and hole neutralization, and variation in the internal dielectric constant are considered when simulating the transport process. The dynamics of electron and hole distributions and charging states are demonstrated during E-beam irradiation. As a function of material nonlinear susceptibility and primary energy, the dynamics of charging states and dielectric constants are then presented in the charging process. It is found that the variation in the internal dielectric constant is more with respect to the depth and irradiation time. Material with a larger nonlinear susceptibility corresponds a faster charging enhancement. In addition, the effective dielectric constant and the surface potential have a linear relationship in the charging balance. Nevertheless, with shrinking charging affect range, the situation with a higher energy primary electron comes with less dielectric constant variation. The proposed numerical simulation mode of the charging process and the results presented in this study offer a comprehensive insight into the complicated charging phenomena in electron irradiation related fields.
Stabilized power constant alimentation; Alimentation regulee a puissance constante
Energy Technology Data Exchange (ETDEWEB)
Roussel, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1968-06-01
The study and realization of a stabilized power alimentation variable from 5 to 100 watts are described. In order to realize a constant power drift of Lithium compensated diodes, we have searched a 1 per cent precision of regulation and a response time minus than 1 sec. Recent components like Hall multiplicator and integrated amplifiers give this possibility and it is easy to use permutable circuits. (author) [French] On decrit l'etude et la realisation d'une alimentation a puissance constante reglable dans une gamme de 5 a 100 watts. Prevue pour le drift a puissance constante des diodes compensees au lithium, l'etude a ete menee en vue d'obtenir une precision de regulation de 1 pour cent et un temps de reponse inferieur a la seconde. Des systemes recents tels que multiplicateurs a effet Hall et circuits integres ont permis d'atteindre ce but tout en facilitant l'emploi de modules interchangeables. (auteur)
Constant-bandwidth constant-temperature hot-wire anemometer.
Ligeza, P
2007-07-01
A constant-temperature anemometer (CTA) enables the measurement of fast-changing velocity fluctuations. In the classical solution of CTA, the transmission band is a function of flow velocity. This is a minor drawback when the mean flow velocity does not significantly change, though it might lead to dynamic errors when flow velocity varies over a considerable range. A modification is outlined, whereby an adaptive controller is incorporated in the CTA system such that the anemometer's transmission band remains constant in the function of flow velocity. For that purpose, a second feedback loop is provided, and the output signal from the anemometer will regulate the controller's parameters such that the transmission bandwidth remains constant. The mathematical model of a CTA that has been developed and model testing data allow a through evaluation of the proposed solution. A modified anemometer can be used in measurements of high-frequency variable flows in a wide range of velocities. The proposed modification allows the minimization of dynamic measurement errors.
A study of dye molecule diffusion in human hair using positron lifetime spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Chandrashekara, M.N.; Ranganathaiah, C. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore (India)
2009-11-15
The diffusion behavior of a commercial permanent liquid hair dye in human hair has been investigated using Positron Annihilation Lifetime Spectroscopy (PALS) and gravimetric sorption method. The o-Ps lifetime parameters {tau}{sub 3} and I{sub 3} decrease rapidly during the first 60 minutes of sorption time. This is understood in terms of dye molecules filling the free volume cavities in hair. The sorption results suggest that the dye molecule diffusion is essentially a Fickian process. In the latter part of the sorption, where positron parameters remain almost constant, mass increase might be due to surface adhesion. These two stages of sorption are well separated by the positron technique. The study shows that the free volume theory and positron technique, widely used in polymer research, may expediently be used to understand hair properties, more importantly diffusion of dye molecules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Czech Academy of Sciences Publication Activity Database
Nekvindová, P.; Cajzl, J.; Švecová, B.; Macková, Anna; Malinský, Petr; Oswald, Jiří; Vacík, Jiří; Spirkova, J.
2013-01-01
Roč. 36, č. 2 (2013), s. 402-407 ISSN 0925- 3467 R&D Projects: GA ČR(CZ) GAP106/10/1477; GA ČR GA106/09/0125; GA MŠk(XE) LM2011019; GA TA ČR TA01010237 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : lithium niobate * erbium * erbium oxide * diffusion doping * luminescent materials Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.075, year: 2013
Growth morphologies of crystal surfaces
Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz
1991-03-01
We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation and growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly with the mean free path in the vapor. However, the three-dimensional (3D) the systems show increased shape stability compared to corresponding 2D cases. Extrapolation of the model results to mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude agreement of the predicted critical size with experimental findings. The stability region for macroscopically smooth (faceted) surfaces in the parameter space of temperature and supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The atomic surface roughness increases with increase in growth temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be advantageously used at low temperatures and supersaturations, is insufficient to describe the growth dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing temperature or supersaturation. When the mean free path in the nutrient is comparable to the lattice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a growth spiral in its center region. At elevated
Diffusion coefficient in photon diffusion theory
Graaff, R; Ten Bosch, JJ
2000-01-01
The choice of the diffusion coefficient to be used in photon diffusion theory has been a subject of discussion in recent publications on tissue optics. We compared several diffusion coefficients with the apparent diffusion coefficient from the more fundamental transport theory, D-app. Application to
DEFF Research Database (Denmark)
Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.
2014-01-01
As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...... on thermal comfort in the occupant zone. Another characteristic of this system is its lower pressure drop compared with conventional ventilation systems, which reduces the noise problem and, at the same time, the energy consumption of the fan can be reduced. This review is based on a number of experimental...... and numerical studies on diffuse ceiling ventilation. Performance in terms of thermal comfort, air quality, pressure drop as well as radiant cooling potential are examined. Finally, a discussion on the proper design of the suspended ceiling and plenum to achieve a uniform air distribution and surface...
Directory of Open Access Journals (Sweden)
Roberto Cipriani
2011-06-01
Full Text Available It is quite likely that the origins of prayer are to be found in ancient mourning and bereavement rites. Primeval ritual prayer was codified and handed down socially to become a deep-rooted feature of people’s cultural behavior, so much so, that it may surface again several years later, in the face of death, danger, need, even in the case of relapse from faith and religious practice. Modes of prayer depend on religious experience, on relations between personal prayer and political action, between prayer and forgiveness, and between prayer and approaches to religions. Various forms of prayer exist, from the covert-hidden to the overt-manifest kind. How can they be investigated? How can one, for instance, explore mental prayer? These issues regard the canon of diffused religion and, therefore, of diffused prayer.
Cosmological Constant and Local Gravity
Bernabeu, Jose; Mavromatos, Nick E
2010-01-01
We discuss the linearization of Einstein equations in the presence of a cosmological constant, by expanding the solution for the metric around a flat Minkowski space-time. We demonstrate that one can find consistent solutions to the linearized set of equations for the metric perturbations, in the Lorentz gauge, which are not spherically symmetric, but they rather exhibit a cylindrical symmetry. We find that the components of the gravitational field satisfying the appropriate Poisson equations have the property of ensuring that a scalar potential can be constructed, in which both contributions, from ordinary matter and $\\Lambda > 0$, are attractive. In addition, there is a novel tensor potential, induced by the pressure density, in which the effect of the cosmological constant is repulsive. We also linearize the Schwarzschild-de Sitter exact solution of Einstein's equations (due to a generalization of Birkhoff's theorem) in the domain between the two horizons. We manage to transform it first to a gauge in whic...
Evolution of the solar constant
International Nuclear Information System (INIS)
Newman, M.J.
1978-01-01
The ultimate source of the energy utilized by life on Earth is the Sun, and the behavior of the Sun determines to a large extent the conditions under which life originated and continues to thrive. What can be said about the history of the Sun. Has the solar constant, the rate at which energy is received by the Earth from the Sun per unit area per unit time, been constant at its present level since Archean times. Three mechanisms by which it has been suggested that the solar energy output can vary with time are discussed, characterized by long (approx. 10 9 years), intermediate (approx. 10 8 years), and short (approx. years to decades) time scales
International Nuclear Information System (INIS)
Jones, L.H.; Kennedy, C.; Ekberg, S.
1978-01-01
The infrared spectra of the 12 C, 13 C, and 14 C isotopic species of CF 4 have been observed at a resolution of 0.06 cm -1 . In addition to the fundamentals ν 3 and ν 4 a number of combination bands have been observed. Using these results, combined with Raman data in the literature, we have calculated the quadratic valence force field, in terms of force constants as well as compliance constants, with considerably better precision than previously obtained. Interaction displacement coordinates have been calculated and show that stretching one CF bond leads, for minimum energy near equilibrium, to opening up of the angles between the other three bonds as well as to their contraction
Photodissociation constant of NO2
International Nuclear Information System (INIS)
Nootebos, M.A.; Bange, P.
1992-01-01
The velocity of the dissociation of NO 2 into ozone and NO mainly depends on the ultraviolet sunlight quantity, and with that the cloudiness. A correct value for this reaction constant is important for the accurate modelling of O 3 - and NO 2 -concentrations in plumes of electric power plants, in particular in the case of determination of the amount of photochemical summer smog. An advanced signal processing method (deconvolution, correlation) was applied on the measurements. The measurements were carried out from aeroplanes
Universal equations and constants of turbulent motion
Baumert, H. Z.
2013-07-01
This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t-1. With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/\\sqrt {2\\,\\pi }= 0.399 . Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108-20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as \\frac {1}{3}(4\\,\\pi )^{2/3}=1.802 , well within the scatter range of observational, experimental and direct numerical simulation results.
Searching for Kaprekar's constants: algorithms and results
Walden, Byron L.
2005-01-01
We examine some new results on Kaprekar's constants, specifically establishing the unique 7-digit (in base 4) and 9-digit (in base 5) Kaprekar's constants and showing that there are no 15-, 21-, 27-, or 33-digit Kaprekar's constants.
Itoh, Hidenosuke; Sakuma, Hiroshi
2015-05-14
Water in confining geometries shows various anomalous properties related to its structure and dynamics compared with bulk water. Here, the dielectric constant of water as a function of separation in a graphite slab geometry was studied using molecular dynamics simulations. The dielectric constants of water were calculated from the orientational polarization of water molecules when an external electric field was applied parallel and normal to the slabs. The reduction of the dielectric constant of water compared with bulk water can be explained by investigating the structure and dynamics of water in slab geometries. We found a preferred orientation of water molecules in the layer closest to the graphite surface. The self-diffusion coefficient distribution of water molecules along the direction normal to the slabs was also computed. Highly mobile water molecules in the intermediate region were generated by the weak hydrogen bonding produced by the preferred orientation of water molecules in the layer. We concluded that the dielectric constant of water in the slab geometry is lower than that of bulk water because of the reduction of the polarization of water and the highly mobile water molecules in the intermediate region arising from the preferred orientation of water molecules.
Iotov, Mihail S.
The goals of this research are twofold: First, to develop methods and tools for studying problems in chemistry, material science and biology, as well as accurate prediction of the properties of structures and materials of importance to those fields. Second, use those tools to apply the methods to practical problems. In terms of methodology development this thesis focuses on two topics: One: Development of a massively parallel computer program to perform electronic, atomic, molecular levels simulations of problems in chemistry, material science and biology. This computer program uses existing and emerging hardware platforms and parallel tools and is based on decades long research in computer modeling and algorithms. We report on that development in Chapter 3. Two: Development of tools for Molecular Dynamics simulation and methods and tools for course-grained meso-scale modeling of transport properties and especially diffusion of gas penetrants in polymers. We have formulated a new method for extracting coarse-grained information from short (0.2-0.5 nanoseconds [ns]) MD simulations and use this in a meso-scale simulation to calculate diffusion constants in polymer matrices. This is a grid-based method, which calculates the average probability of each grid point of being a void and performs constrained and biased Monte Carlo (MC) dynamics to reach much longer time regimes than possible in MD. The MC method mimics the three regimes of mean square deviation (MSD) behavior seen in MD, thus accounting for the proper mobility of the voids and the compressibility of the polymer matrix. Theoretical discussions and justification for the method is presented in chapter 6. Initial results on He diffusion in a low-density polyethylene (PE) matrix are presented in chapter 7. The behavior at different temperatures follows closely the trend observed from calibrating long term MD for this particular system.
Determination of spatially dependent diffusion parameters in bovine bone using Kalman filter.
Shokry, Abdallah; Ståhle, Per; Svensson, Ingrid
2015-11-07
Although many studies have been made for homogenous constant diffusion, bone is an inhomogeneous material. It has been suggested that bone porosity decreases from the inner boundaries to the outer boundaries of the long bones. The diffusivity of substances in the bone matrix is believed to increase as the bone porosity increases. In this study, an experimental set up is used where bovine bone samples, saturated with potassium chloride (KCl), were put into distilled water and the conductivity of the water was followed. Chloride ions in the bone samples escaped out in the water through diffusion and the increase of the conductivity was measured. A one-dimensional, spatially dependent mathematical model describing the diffusion process is used. The diffusion parameters in the model are determined using a Kalman filter technique. The parameters for spatially dependent at endosteal and periosteal surfaces are found to be (12.8 ± 4.7) × 10(-11) and (5 ± 3.5) × 10(-11)m(2)/s respectively. The mathematical model function using the obtained diffusion parameters fits very well with the experimental data with mean square error varies from 0.06 × 10(-6) to 0.183 × 10(-6) (μS/m)(2). Copyright © 2015 Elsevier Ltd. All rights reserved.
Low power constant fraction discriminator
International Nuclear Information System (INIS)
Krishnan, Shanti; Raut, S.M.; Mukhopadhyay, P.K.
2001-01-01
This paper describes the design of a low power ultrafast constant fraction discriminator, which significantly reduces the power consumption. A conventional fast discriminator consumes about 1250 MW of power whereas this low power version consumes about 440 MW. In a multi detector system, where the number of discriminators is very large, reduction of power is of utmost importance. This low power discriminator is being designed for GRACE (Gamma Ray Atmospheric Cerenkov Experiments) telescope where 1000 channels of discriminators are required. A novel method of decreasing power consumption has been described. (author)
Can coupling constants be related
International Nuclear Information System (INIS)
Nandi, Satyanarayan; Ng, Wing-Chiu.
1978-06-01
We analyze the conditions under which several coupling constants in field theory can be related to each other. When the relation is independent of the renormalization point, the relation between any g and g' must satisfy a differential equation as follows from the renormalization group equations. Using this differential equation, we investigate the criteria for the feasibility of a power-series relation for various theories, especially the Weinberg-Salam type (including Higgs bosons) with an arbitrary number of quark and lepton flavors. (orig./WL) [de
Measurement of Newton's gravitational constant
International Nuclear Information System (INIS)
Schlamminger, St.; Holzschuh, E.; Kuendig, W.; Nolting, F.; Pixley, R. E.; Schurr, J.; Straumann, U.
2006-01-01
A precision measurement of the gravitational constant G has been made using a beam balance. Special attention has been given to determining the calibration, the effect of a possible nonlinearity of the balance and the zero-point variation of the balance. The equipment, the measurements, and the analysis are described in detail. The value obtained for G is 6.674 252(109)(54)x10 -11 m 3 kg -1 s -2 . The relative statistical and systematic uncertainties of this result are 16.3x10 -6 and 8.1x10 -6 , respectively
Exact constants in approximation theory
Korneichuk, N
1991-01-01
This book is intended as a self-contained introduction for non-specialists, or as a reference work for experts, to the particular area of approximation theory that is concerned with exact constants. The results apply mainly to extremal problems in approximation theory, which in turn are closely related to numerical analysis and optimization. The book encompasses a wide range of questions and problems: best approximation by polynomials and splines; linear approximation methods, such as spline-approximation; optimal reconstruction of functions and linear functionals. Many of the results are base
Measurements of cesium and strontium diffusion in biotite gneiss
International Nuclear Information System (INIS)
Skagius, K.; Neretnieks, I.
1988-01-01
A significant retardation of radionuclides transported by flowing water from an underground repository can be expected if the nuclides are able to diffuse into the water filled micropores in the rock. This diffusion into the pores will also increase the surface available to interactions between the nuclides in the ground water and the rock material, such as sorption. To calculate the retardation, it is necessary to know the sorption properties and the diffusivities in the rock matrix for the radionuclides. Diffusion experiments with cesium and strontium in biotite gneiss samples have been performed. Both the transport of strontium and cesium through rock samples and the concentration profiles of cesium and strontium inside rock samples have been determined. The result shows that diffusion of cesium and strontium occurs in the rock material. A diffusion model has been used to evaluate the diffusivity. Both pore diffusion and surface diffusion had to be included in the model to give good agreement with the experimental data. If surface diffusion is not included in the model, the effective pore diffusivity that gives the best fit to the experimental data is found to be higher than expected from earlier measurement of iodide diffusion in the same type of rock material. This indicates that the diffusion of cesium and strontium (sorbing components) in rock material is caused by both pore diffusion and surface diffusion acting in parallel
Kurtosis as a diffuseness measure
DEFF Research Database (Denmark)
Jeong, Cheol-Ho
2016-01-01
This study presents a kurtosis analysis of room impulse responses as a potential room diffuseness measure. In the early part of an impulse response, sound pressure samples do not constitute a Gaussian distribution due to the direct sound and strong reflections. Such deterministic reflections...... are extreme events, which prevent the pressure samples from being normally distributed, leading to a high kurtosis. As the reflections are sparser and stronger, the sound field becomes less diffuse and the kurtosis systematically increases, indicating that it can be used as a diffuseness measure. The kurtosis...... converges to zero, as the reflection overlap becomes heavier, which is an important condition for a perfect diffuse field. Two rooms are analyzed. A small rectangular room shows that a non-uniform surface absorption distribution tends to increase the kurtosis significantly. A full scale reverberation...
Energy Technology Data Exchange (ETDEWEB)
Souza, Adilson P.; Escobedo, Joao F. [Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)], E-mail: pachecopgid@yahoo.com.br
2010-07-01
This study evaluated the monthly and annual total radiation global, direct and diffuse on horizontal surfaces and tilted surfaces to 12.85 deg (|L|-10 deg), 22.85 deg (|L|) and 32.85 deg (|L|+10 deg), with the north face, in Botucatu, SP. The measures occurred in the following dates: 04/1998 to 07/2001 at 22.85 deg; 08/2001 to 02/2003 at 12.85 deg, and 03/2003 to 12/2007 in 32.85. In all periods occurred concurrent measures in the horizontal plane (reference). The total annual global radiation equal to 6500.87; 7044.21; 7193.24 and 6854.99 MJ m{sup -2}, for horizontal surfaces, 12.85 deg, 22.85 deg e 32.85 deg. The change of the angles of inclination throughout the year enabled gains of 324.92 MJ m{sup -2} (4.74%) in global radiation in relation to 22,85 deg, distributed as follows: I) horizontal: December, January and February; II) of 12.85: March and October; III) of 22.85: April, May, September and November, IV) of 32.85: June-August. In 22.85 were recorded the annual radiation directly (4367.40 MJ m{sup -2}), exceeding 12.85 deg, 32.85 deg and horizontal, 72.40, 284.67 and 718.03 MJ m{sup -2}, however, were achieved gains 16.82% compared to 22.85 deg. For diffuse radiation, annual earnings totaled 226.57 MJ m{sup -2} (compared with 22.85 deg), with differences of less than 103.00 MJ m{sup -2} between 12.85 deg, 22.85 deg and 32.85 deg. (author)
Voutilainen, M.; Sardini, P.; Togneri, L.; Siitari-Kauppi, M.; Timonen, J.
2010-12-01
In this work an effect of rock heterogeneity on diffusion was investigated. Time domain diffusion simulations were used to compare behavior of diffusion in homogeneous and heterogeneous 3D media. Tomographic images were used as heterogeneous rock media. One altered tonalite sample from Sievi, Finland, was chosen as test case for introduced analysis procedure. Effective diffusion coefficient of tonalite sample was determined with lab-scale experiments and the same coefficient was used also for homogeneous media. Somewhat technically complicated mathematical solution for analysis of through diffusion experiment is shortly described. Computed tomography (CT) is already quite widely used in many geological, petrological, and paleontological applications when the three-dimensional (3D) structure of the material is of interest, and is an excellent method for gaining information especially about its heterogeneity, grain size, or porosity. In addition to offering means for quantitative characterization, CT provides a lot of qualitative information [1]. A through -diffusion laboratory experiment using radioactive tracer was fitted using the Time Domain Diffusion (TDD) method. This rapid particle tracking method allows simulation of the heterogeneous diffusion based on pore-scale images and local values of diffusivities [2]. As a result we found out that heterogeneity has only a small effect to diffusion coefficient and in-diffusion profile for used geometry. Also direction dependency was tested and was found to be negligible. Whereas significant difference between generally accepted value and value obtained from simulations for constant m in Archie’s law was found. [1] Voutilainen, M., Siitari-Kauppi, M., Sardini, P., and Timonen, J., (2010). On pore-space characterization of an altered tonalite by X-ray µCT and the 14C-PMMA method (in progress). [2] Sardini, P., Robinet, J., Siitari-Kauppi, M., Delay, F., and Hellmuth, K-H, (2007). On direct simulation of heterogeneous
Tan, C. S.; Lim, D. F.; Singh, S. G.; Goulet, S. K.; Bergkvist, M.
2009-11-01
Self-assembled monolayer (SAM) of 1-hexanethiol is applied on copper (Cu) surface to retard surface oxidation during exposure in the ambient. This SAM layer can be desorbed effectively with an annealing step in inert N2 ambient to provide a clean Cu surface. Using this passivation method with SAM, wafers covered with thin Cu layer are passivated, stored, desorbed, and bonded at 250 °C. The bonded Cu layer presents clear evidence of substantial interdiffusion and grain growth despite prolonged exposure in the ambient. This method of passivation is proven to be effective and can be further optimized to enable high quality Cu-Cu direct bonding at low temperature for application in three-dimensional integration.
Xu, Guang-Kui; Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R
2015-12-28
Adhesion processes of biological membranes that enclose cells and cellular organelles are essential for immune responses, tissue formation, and signaling. These processes depend sensitively on the binding constant K2D of the membrane-anchored receptor and ligand proteins that mediate adhesion, which is difficult to measure in the "two-dimensional" (2D) membrane environment of the proteins. An important problem therefore is to relate K2D to the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in three dimensions (3D). In this article, we present a general theory for the binding constants K2D and K3D of rather stiff proteins whose main degrees of freedom are translation and rotation, along membranes and around anchor points "in 2D," or unconstrained "in 3D." The theory generalizes previous results by describing how K2D depends both on the average separation and thermal nanoscale roughness of the apposing membranes, and on the length and anchoring flexibility of the receptors and ligands. Our theoretical results for the ratio K2D/K3D of the binding constants agree with detailed results from Monte Carlo simulations without any data fitting, which indicates that the theory captures the essential features of the "dimensionality reduction" due to membrane anchoring. In our Monte Carlo simulations, we consider a novel coarse-grained model of biomembrane adhesion in which the membranes are represented as discretized elastic surfaces, and the receptors and ligands as anchored molecules that diffuse continuously along the membranes and rotate at their anchor points.
Diffusion archeology for diffusion progression history reconstruction.
Sefer, Emre; Kingsford, Carl
2016-11-01
Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.
Chude-Okonkwo, Uche A. K.; Malekian, Reza; Maharaj, B. T.
2015-12-01
Inspired by biological systems, molecular communication has been proposed as a new communication paradigm that uses biochemical signals to transfer information from one nano device to another over a short distance. The biochemical nature of the information transfer process implies that for molecular communication purposes, the development of molecular channel models should take into consideration diffusion phenomenon as well as the physical/biochemical kinetic possibilities of the process. The physical and biochemical kinetics arise at the interfaces between the diffusion channel and the transmitter/receiver units. These interfaces are herein termed molecular antennas. In this paper, we present the deterministic propagation model of the molecular communication between an immobilized nanotransmitter and nanoreceiver, where the emission and reception kinetics are taken into consideration. Specifically, we derived closed-form system-theoretic models and expressions for configurations that represent different communication systems based on the type of molecular antennas used. The antennas considered are the nanopores at the transmitter and the surface receptor proteins/enzymes at the receiver. The developed models are simulated to show the influence of parameters such as the receiver radius, surface receptor protein/enzyme concentration, and various reaction rate constants. Results show that the effective receiver surface area and the rate constants are important to the system's output performance. Assuming high rate of catalysis, the analysis of the frequency behavior of the developed propagation channels in the form of transfer functions shows significant difference introduce by the inclusion of the molecular antennas into the diffusion-only model. It is also shown that for t > > 0 and with the information molecules' concentration greater than the Michaelis-Menten kinetic constant of the systems, the inclusion of surface receptors proteins and enzymes in the models
Kushibiki, Juin-ichi; Takanaga, Izumi; Nishiyama, Shouichi
2002-01-01
Accurate measurements of the acoustical physical constants (elastic constants, piezoelectric constants, dielectric constants, and density) of commercially available and widely used surface acoustic wave (SAW)-grade synthetic a-quartz are reported. The propagation directions and modes of bulk waves optimal for accurately determining the constants were selected through numerical calculations, and three principal X-, Y-, and Z-cut specimens and several rotated Y-cut specimens were prepared from a single crystal ingot to determine the constants and to confirm their accuracy. All of the constants were determined through highly accurate measurements of the longitudinal velocities, shear velocities, dielectric constants, and density. The velocity values measured for the specimens that were not used to determine the constants agreed well with those calculated from the determined constants, within a difference of +/- 0.20 m/s (+/- 0.004%).
Li, Qingqing; Li, Yungui; Zhu, Lizhong; Xing, Baoshan; Chen, Baoliang
2017-04-01
The uptake of organic chemicals by plants is considered of great significance as it impacts their environmental transport and fate and threatens crop growth and food safety. Herein, the dependence of the uptake, penetration, and distribution of sixteen polycyclic aromatic hydrocarbons (PAHs) on the morphology and micro-structures of cuticular waxes on leaf surfaces was investigated. Plant surface morphologies and wax micro-structures were examined by scanning emission microscopy, and hydrophobicities of plant surfaces were monitored through contact angle measurements. PAHs in the cuticles and inner tissues were distinguished by sequential extraction, and the cuticle was verified to be the dominant reservoir for the accumulation of lipophilic pollutants. The interspecies differences in PAH concentrations cannot be explained by normalizing them to the plant lipid content. PAHs in the inner tissues became concentrated with the increase of tissue lipid content, while a generally negative correlation between the PAH concentration in cuticles and the epicuticular wax content was found. PAHs on the adaxial and abaxial sides of a leaf were differentiated for the first time, and the divergence between these two sides can be ascribed to the variations in surface morphologies. The role of leaf lipids was redefined and differentiated.
Remote Sensing of Salinity: The Dielectric Constant of Sea Water
LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.
2011-01-01
Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.
Solid-state diffusion in amorphous zirconolite
Energy Technology Data Exchange (ETDEWEB)
Yang, C.; Dove, M. T.; Trachenko, K. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Zarkadoula, E. [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6138 (United States); Todorov, I. T. [STFC Daresbury Laboratory, Warrington WA4 1EP (United Kingdom); Geisler, T. [Steinmann-Institut für Geologie, Mineralogie und Paläontologie, University of Bonn, D-53115 Bonn (Germany); Brazhkin, V. V. [Institute for High Pressure Physics, RAS, 142190 Moscow (Russian Federation)
2014-11-14
We discuss how structural disorder and amorphization affect solid-state diffusion, and consider zirconolite as a currently important case study. By performing extensive molecular dynamics simulations, we disentangle the effects of amorphization and density, and show that a profound increase of solid-state diffusion takes place as a result of amorphization. Importantly, this can take place at the same density as in the crystal, representing an interesting general insight regarding solid-state diffusion. We find that decreasing the density in the amorphous system increases pre-factors of diffusion constants, but does not change the activation energy in the density range considered. We also find that atomic species in zirconolite are affected differently by amorphization and density change. Our microscopic insights are relevant for understanding how solid-state diffusion changes due to disorder and for building predictive models of operation of materials to be used to encapsulate nuclear waste.
Carrier illumination measurement of dopant lateral diffusion
International Nuclear Information System (INIS)
Budiarto, E.; Segovia, M.; Borden, P.; Felch, S.
2005-01-01
This paper describes the application of the carrier illumination technique to non-destructively measure the lateral diffusion of implanted dopants after annealing. Experiments to validate the feasibility of this method employed test structures with a constant line width of 300 nm and varying undoped spaces of 100-5000 nm. The test patterns were implanted with a p-type dopant and annealed in a 3 x 3 matrix. For each implant condition, the measured lateral diffusion was found to increase with annealing temperature, as expected. More interestingly, the lateral diffusion was not observed to relate to the vertical diffusion by a fixed proportionality factor, as is usually assumed. The ratio of lateral to vertical diffusion varies with annealing temperature, with a trend that depends on the implant condition
Radon progeny distribution in cylindrical diffusion chambers
International Nuclear Information System (INIS)
Pressyanov, Dobromir S.
2008-01-01
An algorithm to model the diffusion of radioactive decay chain atoms is presented. Exact mathematical solutions in cylindrical geometry are given. They are used to obtain expressions for the concentrations of 222 Rn progeny atoms in the volume and deposited on the wall surface in cylindrical diffusion chambers. The dependence of volume fractions of 222 Rn progeny and chamber sensitivity on the coefficient of diffusion of 222 Rn progeny atoms in air is modeled.
Characterizing unsaturated diffusion in porous tuff gravel
Energy Technology Data Exchange (ETDEWEB)
Hu, Qinhong; Kneafsey, Timothy J.; Roberts, Jeffery J.; Tomutsa, Liviu; Wang, Joseph, S.Y.
2003-11-12
Evaluation of solute diffusion in unsaturated porous gravel is very important for investigations of contaminant transport and remediation, risk assessment, and waste disposal (for example, the potential high-level nuclear waste repository at Yucca Mountain, Nevada). For a porous aggregate medium such as granular tuff, the total water content is comprised of surface water and interior water. The surface water component (water film around grains and pendular water between the grain contacts) could serve as a predominant diffusion pathway. To investigate the extent to which surface water films and contact points affect solute diffusion in unsaturated gravel, we examined the configuration of water using x-ray computed tomography in partially saturated gravel, and made quantitative measurements of diffusion at multiple water contents using two different techniques. In the first, diffusion coefficients of potassium chloride in 2-4 mm granular tuff at multiple water contents were calculated from electrical conductivity measurements using the Nernst-Einstein equation. In the second, we used laser ablation with inductively coupled plasma-mass spectrometry to perform micro-scale mapping, allowing the measurement of diffusion coefficients for a mixture of chemical tracers for tuff cubes and tetrahedrons having two contact geometries (cube-cube and cube-tetrahedron). The x-ray computed tomography images show limited contact between grains, and this could hinder the pathways for diffusive transport. Experimental results show the critical role of surface water in controlling transport pathways and hence the magnitude of diffusion. Even with a bulk volumetric water content of 1.5%, the measured solute diffusion coefficient is as low as 1.5 x 10{sup -14} m{sup 2}/s for tuff gravel. Currently used diffusion models relating diffusion coefficients to total volumetric water content inadequately describe unsaturated diffusion behavior in porous gravel at very low water contents.
The fundamental constants a mystery of physics
Fritzsch, Harald
2009-01-01
The speed of light, the fine structure constant, and Newton's constant of gravity — these are just three among the many physical constants that define our picture of the world. Where do they come from? Are they constant in time and across space? In this book, physicist and author Harald Fritzsch invites the reader to explore the mystery of the fundamental constants of physics in the company of Isaac Newton, Albert Einstein, and a modern-day physicist
Omnidirectional antenna having constant phase
Energy Technology Data Exchange (ETDEWEB)
Sena, Matthew
2017-04-04
Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintaining a required spacing/parallelism therebetween.
Constant Proportion Debt Obligations (CPDOs)
DEFF Research Database (Denmark)
Cont, Rama; Jessen, Cathrine
2012-01-01
be made arbitrarily small—and thus the credit rating arbitrarily high—by increasing leverage, but the ratings obtained strongly depend on assumptions on the credit environment (high spread or low spread). More importantly, CPDO loss distributions are found to exhibit a wide range of tail risk measures......Constant Proportion Debt Obligations (CPDOs) are structured credit derivatives that generate high coupon payments by dynamically leveraging a position in an underlying portfolio of investment-grade index default swaps. CPDO coupons and principal notes received high initial credit ratings from...... the major rating agencies, based on complex models for the joint transition of ratings and spreads for all names in the underlying portfolio. We propose a parsimonious model for analysing the performance of CPDO strategies using a top-down approach that captures the essential risk factors of the CPDO. Our...
Ho, Wen-Dar; Ma, Chen-Chi M.
1998-02-01
This study employs the ray tracing method to develop and analyze mathematical formulae for the IR diffuse reflectance of the polymeric coating on a metal substrate. The effects of the thickness and the absorption property of the polymer film on the internal reflectance are also investigated. In addition, the diffuse reflectance of the coating/substrate system which is irradiated with a perfect diffuse source is formulated as well. Analysis results indicate that the internal reflectance of the internal front surface (polymer/air interface) is not a constant which depends on the film thickness and absorption property. Closely examining the internal multiple reflections between the front and the substrate surface reveals that the diffuse reflectance of the coating/substrate system can be obtained by summing the fractions of rays emerging from the front surface. By knowing the refractive index and the extinction coefficient of the polymer, the diffuse reflectance of the coating/substrate system can be calculated by the formulae presented here. In addition an alkyd resin coating/aluminum substrate system is also implemented to compare the experimental reflectances with the calculated ones. According to the comparisons the analysis and developed formulae are quite effective.
Energy Technology Data Exchange (ETDEWEB)
Abdel-Rahman, Gamal M., E-mail: gamalm60@yahoo.co [Department of Mathematics, Faculty of Science, Benha University, 13518 Benha (Egypt)
2010-06-01
In this paper, the thermal-diffusion and magnetic field effects on a stagnation point flowing over a flat stretching surface have been obtained and studied numerically with the variation of the viscosity under the Soret and Dufour's effects. The governing continuity, momentum, energy and concentration equations are converted into a system of non-linear ordinary differential equations by means of similarity transformation. The resulting system of coupled non-linear ordinary differential equations is solved numerically. Numerical results were presented for velocity, temperature and concentration profiles for different parameters of the problem as radiation parameter, magnetic field parameter, porous medium parameter, endothermic chemical reaction, heat source parameter, stretching parameter, the Soret and Dufour number and other. Also the effects of the pertinent parameters on the skin friction, the rate of heat and mass transfer are obtained and discussed numerically and illustrated graphically.
Kaul, Neerej; Agrawal, Himani; Paradkar, A R; Mahadik, K R
2005-08-31
A multifactor optimization technique is successfully applied to study the effect of simultaneously varying the system variables on feasibility of nevirapine analysis by packed column supercritical fluid chromatography (PC-SFC). The optimal conditions were determined with the aid of the response surface methodology using 3(3) factorial designs. The method is based on methanol-modified carbon dioxide as the mobile phase at flow rate of 3.0 ml/min with elution through a JASCO Finepak SIL-5, [C18 (5-micron, 25 cm x 4.6 mm, i.d.)] column using photodiode array detection. The method has been successfully used to analyze commercial solid dosage form to assess the chromatographic performance of SFC system. The present work briefs the thermodynamic applications of PC-SFC with an emphasis on the results of nevirapine. The foremost of such applications is the determination of solute diffusion coefficient in supercritical mobile phase by Taylor-Aris peak broadening technique.
Excess Entropy and Diffusivity
Indian Academy of Sciences (India)
First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.
Multicomponent diffusivities from the free volume theory
Wesselingh, J.A; Bollen, A.M
In this paper the free volume theory of diffusion is extended to multicomponent mixtures. The free volume is taken to be accessible for any component according to its surface. fraction. The resulting equations predict multicomponent (Maxwell-Stefan) diffusivities in simple liquid mixtures from pure
Ion diffusion in compacted bentonite
International Nuclear Information System (INIS)
Lehikoinen, J.
1999-03-01
In the study, a two-dimensional molecular-level diffusion model, based on a modified form of the Gouy-Chapman (GC) theory of the electrical double layers, for hydrated ionic species in compacted bentonite was developed. The modifications to the GC theory, which forms the very kernel of the diffusion model, stem from various non-conventional features: ionic hydration, dielectric saturation, finite ion-sizes and specific adsorption. The principal objectives of the study were met. With the aid of the consistent diffusion model, it is a relatively simple matter to explain the experimentally observed macroscopic exclusion for anions as well as the postulated, but greatly controversial, surface diffusion for cations. From purely theoretical grounds, it was possible to show that the apparent diffusivities of cations, anions and neutral molecules (i) do not exhibit order-or-magnitude differences, and (ii) are practically independent of the solution ionic strength used and, consequently, of the distribution coefficient, K d , unless they experience specific binding onto the substrate surface. It was also of interest to investigate the equilibrium anionic concentration distribution in the pore geometry of the GMM model as a function of the solution ionic strength, and to briefly speculate its consequences to diffusion. An explicit account of the filter-plate effect was taken by developing a computerised macroscopic diffusion model, which is based upon the very robust and efficient Laplace Transform Finite-Difference technique. Finally, the inherent limitations as well as the potential fields of applications of the models were addressed. (orig.)
Arrhenius Rate: constant volume burn
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-12-06
A constant volume burn occurs for an idealized initial state in which a large volume of reactants at rest is suddenly raised to a high temperature and begins to burn. Due to the uniform spatial state, there is no fluid motion and no heat conduction. This reduces the time evolu tion to an ODE for the reaction progress variable. With an Arrhenius reaction rate, two characteristics of thermal ignition are illustrated: induction time and thermal runaway. The Frank-Kamenetskii approximation then leads to a simple expression for the adiabatic induction time. For a first order reaction, the analytic solution is derived and used to illustrate the effect of varying the activation temperature; in particular, on the induction time. In general, the ODE can be solved numerically. This is used to illustrate the effect of varying the reaction order. We note that for a first order reaction, the time evolution of the reaction progress variable has an exponential tail. In contrast, for a reaction order less than one, the reaction completes in a nite time. The reaction order also affects the induction time.
Murthy, P.V.S.N.
2011-12-26
Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non - Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temperature and concentration fields are affected by the complex interactions among the diffusion ratio Le, buoyancy ratio N, thermo-diffusion parameter Sr and stratification parameter ?. Non-linear interactions of all these parameters on the convective transport has been analyzed and variation of heat and mass transfer coefficients with thermo-diffusion parameter in the thermally stratified non-Darcy porous media is presented through computer generated plots.
International Nuclear Information System (INIS)
Bergknut, Magnus; Meijer, Sandra; Halsall, Crispin; Agren, Anneli; Laudon, Hjalmar; Koehler, Stephan; Jones, Kevin C.; Tysklind, Mats; Wiberg, Karin
2010-01-01
The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day -1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons. - The fate of hydrophobic organic contaminants in a boreal forest catchment is connected to the flux of dissolved organic carbon and seasonal deposition.
Nonlinear variational models for reaction and diffusion systems
International Nuclear Information System (INIS)
Tanyi, G.E.
1983-08-01
There exists a natural metric w.r.t. which the density dependent diffusion operator is harmonic in the sense of Eells and Sampson. A physical corollary of this statement is the property that any two regular points on the orbit of a reaction or diffusion operator can be connected by a path along which the reaction rate is constant. (author)
DEFF Research Database (Denmark)
Brander, David
2016-01-01
We study surfaces of constant positive Gauss curvature in Euclidean 3-space via the harmonicity of the Gauss map. Using the loop group representation, we solve the regular and the singular geometric Cauchy problems for these surfaces, and use these solutions to compute several new examples. We give...
Proximity effect and hot-electron diffusion in Ag/Al2O3/Al tunnel junctions
International Nuclear Information System (INIS)
Netel, H.; Jochum, J.; Labov, S.E.; Mears, C.A.; Frank, M.; Chow, D.; Lindeman, M.A.; Hiller, L.J.
1997-01-01
We have fabricated Ag/Al 2 O 3 /Al tunnel junctions on Si substrates using a new process. This process was developed to fabricate superconducting tunnel junctions (STJs) on the surface of a superconductor. These junctions allow us to study the proximity effect of a superconducting Al film on a normal metal trapping layer. In addition, these devices allow us to measure the hot-electron diffusion constant using a single junction. Lastly these devices will help us optimize the design and fabrication of tunnel junctions on the surface of high-Z, ultra-pure superconducting crystals. 5 refs., 8 figs
Some Debye temperatures from single-crystal elastic constant data
Robie, R.A.; Edwards, J.L.
1966-01-01
The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.
International Nuclear Information System (INIS)
Faircloth, R.L.; Thomas, R.B.
1976-01-01
A theoretical treatment is given of the migration of fission products through a porous medium in the presence of a temperature gradient. The system is simplified by considering the behaviour in an idealised single pore in which movement is occurring by a combination of gas phase and surface diffusion, the distribution between these modes of transfer being governed by the adsorption isotherm constant. The effect of carrier gas flow within the pore is also considered. (author)
Constant Proportion Portfolio Insurance Strategies in Contagious Markets
DEFF Research Database (Denmark)
Buccioli, Alice; Kokholm, Thomas
2018-01-01
charging and for risk management. The literature on CPPI modeling typically assumes diffusive or Lévy-driven dynamics for the risky asset underlying the strategy. In either case the self-contagious nature of asset prices is not taken into account. In order to account for contagion while preserving......Constant Proportion Portfolio Insurance (CPPI) strategies are popular as they allow to gear up the upside potential of a stock index while limiting its downside risk. From the issuer's perspective it is important to adequately assess the risks associated with the CPPI, both for correct "gap'' fee...
International Nuclear Information System (INIS)
Hamdi, Adel
2009-01-01
This paper deals with the identification of a point source (localization of its position and recovering the history of its time-varying intensity function) that constitutes the right-hand side of the first equation in a system of two coupled 1D linear transport equations. Assuming that the source intensity function vanishes before reaching the final control time, we prove the identifiability of the sought point source from recording the state relative to the second coupled transport equation at two observation points framing the source region. Note that at least one of the two observation points should be strategic. We establish an identification method that uses these records to identify the source position as the root of a continuous and strictly monotonic function. Whereas the source intensity function is recovered using a recursive formula without any need of an iterative process. Some numerical experiments on a variant of the surface water pollution BOD–OD coupled model are presented
Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations
Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.
2013-09-01
In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.
Constant-Energy Synchronous Probe for Surface Monitoring, Phase I
National Aeronautics and Space Administration — During the next decade, NASA intends to send robotic exploration missions to Mars and other planets. Missions are planned to obtain samples from Mars and return them...
ESR melting under constant voltage conditions
Energy Technology Data Exchange (ETDEWEB)
Schlienger, M.E.
1997-02-01
Typical industrial ESR melting practice includes operation at a constant current. This constant current operation is achieved through the use of a power supply whose output provides this constant current characteristic. Analysis of this melting mode indicates that the ESR process under conditions of constant current is inherently unstable. Analysis also indicates that ESR melting under the condition of a constant applied voltage yields a process which is inherently stable. This paper reviews the process stability arguments for both constant current and constant voltage operation. Explanations are given as to why there is a difference between the two modes of operation. Finally, constant voltage process considerations such as melt rate control, response to electrode anomalies and impact on solidification will be discussed.
Lepton decay constants of light mesons
International Nuclear Information System (INIS)
Simonov, Yu. A.
2016-01-01
A theory of lepton decay constants based on the path-integral formalism is given for chiral and vector mesons. Decay constants of the pseudoscalar and vector mesons are calculated and compared to other existing results.
Capacitive Cells for Dielectric Constant Measurement
Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco
2015-01-01
A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.
International Nuclear Information System (INIS)
Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao
2011-01-01
In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.
International Nuclear Information System (INIS)
Barnes, J-P; Lafond, D; Guedj, C; Fayolle, M; Meininger, P; Maitrejean, S; David, T; Posseme, N; Bayle-Guillemaud, P; Chabli, Amal
2006-01-01
The need to reduce RC delay and cross talk in Cu interconnects means that ultra low-k dielectrics such as porous SiCOH are being integrated into microelectronic devices. Unfortunately porous materials lead to integration issues such as metal diffusion into the porosity of the dielectric, especially when chemical vapour deposition (CVD) methods are used for metal deposition. In our case, the copper anti-diffusion barrier used before Cu deposition is MOCVD TiN. Without an appropriate surface treatment (pore sealing) of the low-k the TiN may diffuse in the porosity. The presence of Ti or Cu in the low-k is deleterious as it can raise the dielectric constant and the leakage current. EFTEM EELS and EDX have been used to map Ti, Cu, O and C as a function of process conditions
Effect of uniaxial strain on adatom diffusion across {l_brace}1 1 1{r_brace}-faceted step
Energy Technology Data Exchange (ETDEWEB)
Yang Jianyu, E-mail: wuliyangjianyu@yahoo.com.cn [Department of Maths and Physics, Hunan Institute of Engineering, Donghu Street, Xiangtan 411104 (China); Hu Wangyu, E-mail: Wangyuhu2001@yahoo.com.cn [Department of Applied Physics, Hunan University, Changsha 410082 (China); Tang Jianfeng [Department of Applied Physics, Hunan Agricultural University, Changsha 410128 (China)
2011-02-01
Diffusion of Pt adatom across the strained {l_brace}1 1 1{r_brace}-faceted step is studied by embedded atom method along with nudged elastic band method. For adatom on the flat (1 1 1) surface, the anisotropic diffusion behavior is found as the uniaxial strain is imposed. For the strained {l_brace}1 1 1{r_brace}-faceted step, our results show that the maximum energy barrier for adatom crossing step edge remains approximately constant as the strain varied from -1.0% to 1.0%, and there is a rise as the larger uniaxial strain is applied. The calculated energy barrier for adatom diffusion along the step edge increases with increasing tensile strain, and the slope of the straight line is small.
Size-dependent diffusion of membrane inclusions.
Guigas, Gernot; Weiss, Matthias
2006-10-01
Experimentally determined diffusion constants are often used to elucidate the size and oligomeric state of membrane proteins and domains. This approach critically relies on the knowledge of the size-dependence of diffusion. We have used mesoscopic simulations to thoroughly quantify the size-dependent diffusion properties of membrane inclusions. For small radii R, we find that the lateral diffusion coefficient D is well described by the Saffman-Delbrück relation, which predicts a logarithmic decrease of D with R. However, beyond a critical radius Rc approximately hetam/(2etac) (h, bilayer thickness; etam/c, viscosity of the membrane/surrounding solvent) we observe significant deviations and the emergence of an asymptotic scaling D approximately 1/R2. The latter originates from the asymptotic hydrodynamics and the inclusion's internal degrees of freedom that become particularly relevant on short timescales. In contrast to the lateral diffusion, the size dependence of the rotational diffusion constant Dr follows the predicted hydrodynamic scaling Dr approximately 1/R2 over the entire range of sizes studied here.
Anderegg, G
2013-01-01
Critical Survey of Stability Constants of EDTA Complexes focuses on the computations, values, and characteristics of stability constants. The book emphasizes that for a critical discussion of experimentally determined stability constants, it is important to consider the precision of the values that manifests the self-consistency of the constant, taking into consideration the random errors. The publication reviews the stability constants of metal complexes. The numerical calculations affirm the reactions and transformations of metal ions when exposed to varying conditions. The text also present
Surprises in numerical expressions of physical constants
Amir, Ariel; Lemeshko, Mikhail; Tokieda, Tadashi
2016-01-01
In science, as in life, `surprises' can be adequately appreciated only in the presence of a null model, what we expect a priori. In physics, theories sometimes express the values of dimensionless physical constants as combinations of mathematical constants like pi or e. The inverse problem also arises, whereby the measured value of a physical constant admits a `surprisingly' simple approximation in terms of well-known mathematical constants. Can we estimate the probability for this to be a me...