WorldWideScience

Sample records for surface deposited rare

  1. Metasomatic zoning at some stratiform rare metal deposits

    International Nuclear Information System (INIS)

    Altyntsev, Yu.V.; Bazhenov, M.I.; Bepeshov, G.V.; Komarnitskij, G.M.; Petrov, I.Ya.; Serykh, A.S.

    1985-01-01

    Metasomatic zoning of stratiform deposits of rare metals (Mo, Pb, As, V, Se, U, etc.) in intermontane depresions, deposited at the postorogenic stage of Paleozoic geosyncline region development, is considered. Geochemical and geophysical characteristics of metasomatic zoning in the case of sloping and steep rock deposition are given. It is established, that in rare metal deposits in variegated deposits of molassoid formation of Middle-Upper Paleozoic the external and internal zones of metasomatic alterations are distinctly separated. The external zone is presented by mineral association: quartz + -albile + -calcite + -epidote; the internal one - by hydromica + -chlorite + -analcite, laumontite + -hematite + -ankerite + -kaolinite. Geochemical zoning is manifested quite regularly at all the deposits and it is subjected to metasomatic zoning. Changes in physical properties of rocks reflect the metasomatic zoning. The character of metasomatic alterations of rocks, geochemical zoning of metasomatites at rare metal deposits in molassoid deposits and spatially contiguous deposits in volcanogenic complexes have common features. A supposition is made on polygenic ore formation in sedimentary rocks of the depressions

  2. Rare earth element lithogeochemistry of granitoid mineral deposits

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.P.; Fryer, B.J. (Memorial Univ. of Newfoundland, St. John' s (Canada). Dept. of Earth Sciences)

    1983-12-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl/sup -/ complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F/sup -/ and CO/sub 3//sup 2 -/ become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl/sup -/ versus F/sup -/ versus CO/sub 3//sup 2 -/ in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F/sup -/ and CO/sub 3//sup 2 -/ in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution.

  3. Rare earth element lithogeochemistry of granitoid mineral deposits

    International Nuclear Information System (INIS)

    Taylor, R.P.; Fryer, B.J.

    1983-01-01

    As a monitor of the processes involved in the formation of granitoid mineral deposits the coherent group behaviour of the rare earth elements (REE) actively reflects changing fluid characteristics. For example, in the porphyry environment, magmatic-hydrothermal fluids produce potassic alteration with strong enrichment in the light rare earth elements, reflecting their high pH, low fluid/rock ratios, and the dominant role of Cl - complexing in metal (i.e. Cu, Au) transport. With increasing fluid/rock ratios and decreasing pH accompanying the progressive involvement of meteoric fluids (and the production of propylitic, argillic, and phyllic alteration) anionic species such as F - and CO 3 2- become important in metal (e.g. Mo, W) transport through complexing, and their activity in the hydrothermal fluids is illustrated by mobilization of the heavy rare earth elements. The relative involvement of Cl - versus F - versus CO 3 2- in metal transport in other granite-related systems can also be monitored through REE behaviour. Hence granitoid tin-tungsten mineralization and associated greisenization typically exhibit heavy rare earth enrichment and evidence the importance of F - and CO 3 2- in metal transport. Similarly, heavy rare earth element enrichment in hydrothermal uranium deposits can be related to the transport of uranium as carbonate complexes. REE are widely accepted as powerful tools in the study of rock petrogenesis, but their use has been neglected in the investigation of mineral deposits. The recognition of the systematic variation of REE distributions in granitoid mineral deposits suggests that the application of REE geochemistry, particularly when integrated with fluid inclusion and isotope studies, can provide l) an effective method for identifying the physiochemical controls of metal transport and 2) a useful criterion of elucidating metal distribution

  4. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  5. Alaska's rare earth deposits and resource potential

    Science.gov (United States)

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  6. A deposit model for carbonatite and peralkaline intrusion-related rare earth element deposits: Chapter J in Mineral deposit models for resource assessment

    Science.gov (United States)

    Verplanck, Philip L.; Van Gosen, Bradley S.; Seal, Robert R.; McCafferty, Anne E.

    2014-01-01

    Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. A wide variety of other commodities have been exploited from carbonatites and alkaline igneous rocks including niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other elements enriched in these deposits include manganese, strontium, tantalum, thorium, vanadium, and uranium. Carbonatite and peralkaline intrusion-related rare earth element deposits are presented together in this report because of the spatial, and potentially genetic, association between carbonatite and alkaline rocks. Although these rock types occur together at many locations, carbonatite and peralkaline intrusion-related rare earth element deposits are not generally found together.

  7. Mineral characterisation of Don Pao rare earth deposit in Vietnam

    International Nuclear Information System (INIS)

    XuanBen, T.

    1998-01-01

    Full text: The Don Pao Rare Earth Deposit was discovered in 1959 in Phon Tho district, about 450km North-West of Hanoi capital. Geological work was conducted between 1959-95, resulting in 60 ore bodies of various sizes being identified. The ore bodies are irregularly shaped nests, lenses and veins hosted in the shear zone, at the margin of a Paeleogene aged syenite massif. The mineral composition of Don Pao Deposit is very complex, consisting of more than 50 minerals. Among them, basnaesite, parisite, fluorite and barite are the main constituent minerals of the ore. All the minerals were identified by the modern methods of mineralogical studies. Based on the constituent mineral ratios, four ore types have been distinguished in the deposit: 1. Rare earth ore containing over 5 percent of RE 2 O 3 . 2. Rare Earth-Barite ore containing 0.5 to 30 percent of RE 2 O 3 . 3. Rare Earth-Barite-Fluorite ore containing 1 to 5 percent of RE 2 O 3 . 4. Rare Earth bearing Fluorite ore containing 1 to 5 percent of RE 2 O 3 . According to the benefication test, the ores in Don Pao can be enriched to a concentrate of 60 percent of RE 2 O 3 with a recover of 75 percent

  8. Novel precursors for the deposition of rare earth oxides

    International Nuclear Information System (INIS)

    Ahlers, Mareike

    2010-01-01

    During this work rare earth solvates with nitrate and perchlorate anions have been investigated. All compounds have been structurally characterized and analyzed using thermal gravimetric analysis. The decomposition residues were analyzed using powder diffraction methods. Almost all compounds showed a characteristically intense exothermic decomposition step during the thermal decomposition, most likely caused by an intramolecular redox reaction between the nitrate or perchlorate anion respectively and the organic solvent molecules. The nitrates RE(NO 3 ) 3 (CH(OCH 3 ) 3 ) 2 (RE = Sm, Eu) were isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. The known compound group of dimethoxyethane solvates was then expanded with RE(NO 3 ) 3 (O 2 C 4 H 10 ) (RE = La, Sm, Eu). Considering the possible use as precursor material the already described neodymium compound is also discussed. The thermal decomposition of these compounds yields the respective cubic rare earth oxide and shows the typical intense exothermic decomposition reaction. A variety of different precursor system based on nitrate solvates for the deposition of rare earth oxide layers on a silicon surface was developed and investigated in collaboration with the group of Prof. Dr. Al-Shamery (Univ. Oldenburg). Ultra thin films on a H-Si(111) surface were obtained via the deposition of the precursor, which was dissolved in organic solvents. An oxide layer was detected after the heating of the sample. The film thickness was measured as < 10 nm, whereas the thickness of the film was controlled by the concentration of the precursor solution. Sm(ClO 4 ) 3 (CH(OCH 3 ) 3 ) 3 was isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. Eu(ClO 4 ) 3 (CH(OCH 3 ) 3 ) 2 (MeOH) 2 was obtained without recrystallization. The methanol molecules, formed during the hydrolysis of the trimethyl

  9. Surface Finish after Laser Metal Deposition

    Science.gov (United States)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  10. Aeromagnetic expression of rare earth element (REE) deposits in New Mexico, USA

    Science.gov (United States)

    Li, M.

    2016-12-01

    With the development of high-tech devices and the expanding demands in industrial production, rare earth elements(REE) has been playing an increasingly important role in the global economy in the past several decades. Different types of REE serve irreplaceable functions in high-tech industry, as well as for developing sustainable energy and catalysis of manufacturing. Given that the global supply of REE has become strained since 2009 and no known substitutes for REE have been found, exploration for new REE deposits is imperative for economic sustainability. Ten main regions have REE deposits in New Mexico, some of which have not been exploited, while some sites such as Gallinas mountains vein deposits are in early exploration stage. Exploration for the reserves and quantization of mineral compositions of New Mexico's REE depositional districts can have economic benefits in general. In this study, high-resolution airborne magnetic and gravity data were used for studying the Gallinas mountains REE deposit. The purposes of this study are to: (1) characterize specific aeromagnetic anomaly and gravity features from the REE deposits, and (2) apply the characterized features to suggest other areas among the ten REE depositional regions for further exploration. All REE deposits in the study area are found associated with alkaline to alkali-calcic volcanic rocks. A quantitative modeling based on aeromagnetic and gravity anomaly mapping was constructed with an assumption of three units: carbonatites, alkaline volcanic intrusions and REE-concentrated minerals (barite, bastnaesite, etc.). The results of this study show that alkaline deposit is characterized by negative magnetic anomalies and carbonatite is associated with gravity anomaly and vertical gravity gradient high. The area with significantly high aeromagnetic anomaly area and also gravity anomaly high supposed to reflect REE-concentrated minerals such as bastnaesite. For further research, hyperspectral information and

  11. Surface deposition from radioactive plumes

    International Nuclear Information System (INIS)

    Garland, J.A.

    1980-01-01

    Accidents involving nuclear plants may release radioactive particles and gases to the atmosphere. Dry deposition of particles has been investigated mainly in the laboratory and a general understanding of the transfer mechanisms has been established. However there is apparently a substantial discrepancy between the few field observations of dry deposition of particles and laboratory measurements, particularly for 0.1 - 1 μm particles for which laboratory work shows very small deposition rates. In addition there are few estimates of deposition rates for forest and some other kinds of terrain. The most important gas in the context of a nuclear accident is I-131 and the behaviour of this gas at grass surfaces has received much attention. However smaller quantities of other gases and vapours may be released and the surface absorption of these species may require further investigation. In addition there is little knowledge of the behaviour of gases over many types of surface. The rate of deposition of particles and gases is influenced by many parameters including wind speed and the temperature stratification of the lower atmosphere. Conditions which give poor atmospheric dispersion usually give lower deposition velocities. Transfer to man depends on the availability of deposited materials on crops and grass. A wide range of isotopes including iodine and several metallic fission products are lost with a half life for residence on grass ranging from a few days to a few tens days, depending on climatic conditions

  12. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon- Implications for emplacement and surface modification

    Science.gov (United States)

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-01-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The ~7,700 calendar year B.P. climactic eruption of Mount Mazama, USA vented ~50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Mazama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ±1 m lateral and ±4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow- parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of pit craters caused by phreatic explosions, fractures and cracks caused by extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented

  13. Dry deposition on smooth and rough urban surfaces

    International Nuclear Information System (INIS)

    Roed, J.

    1987-01-01

    Following the Chernobyl accident, dry deposition velocities on smooth surfaces indoors and outdoors have been measured in Denmark. Internal wall surfaces gave deposition velocities of 0.0008-0.0009 cm/s for 131I and 0.0001-0.0002 cm/s for 134Cs and 103Ru. Internal floor surfaces gave higher values for the deposition velocities: for 131I, 0.002 cm/s and for 134Cs and 103Ru, 0.0005-0.0013 cm/s. The deposition velocities on vertical and horizontal external surfaces were nearly equal. Those for 131I were found as 0.02-0.03 cm/s and for 137Cs as 0.001-0.002 cm/s. On external rough surfaces such as grass and corrugated roof material the deposition velocities for 134Cs and 103Ru were 0.03-0.05 cm/s. For iodine, however, deposition velocities were higher for clipped grass (2 cm/s) than for roof material (0.2-0.4 cm/s). The results show that internal deposition velocities are considerably lower than those on external smooth surfaces, and that the deposition velocities on rough surfaces are an order of magnitude higher than on smooth surfaces. It was also shown that the deposition velocities of iodine are considerably higher than those of cesium and ruthenium. This work was supported by EEC Radiation Protection Programme No B16-107-DK and by NKA, The Nordic Liaison Committee for Atomic Energy. (author)

  14. Studies Concerning Water-Surface Deposits in Recovery Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Strandberg, O; Arvesen, J; Dahl, L

    1971-11-15

    The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm

  15. Dry deposition on urban surfaces

    International Nuclear Information System (INIS)

    Roed, J.

    1985-01-01

    In order to facilitate developing a model for deposition in urban areas, beryllium-7, created by cosmic radiation and fall-out cesium-137, have been used as tracers in measurements designed to find the dry deposition velocity on building surfaces. A literature review has revealed that very little work has been done on deposition in urban areas; therefore, a major effort on meausring the deposition parameter is needed to construct reliable models in this field. Deposition velocities in the range from 0.001-0.04 cm/s have been found. (author)

  16. Earth Surface Processes, Landforms and Sediment Deposits

    Science.gov (United States)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  17. Possibility study of use rare earth deposit from Araxa, Minas Gerais State

    International Nuclear Information System (INIS)

    Fernandes, M.D.

    1975-01-01

    Prospecting work done by Instituto de Pesquisas Radioativas on the Barreiro area (Araxa, M.G.) has shown the existence of a rare earth deposit of about 700.000 ton, averaging 13,5 % rare earth oxide, mainly associated to the mineral monazite. In a first stage, the conventional mineral dressing methods were tried to treat the monazite. This was followed by a study of a chemical process for the production of rare earth compounds of commercial grade. The conventional methods of mineral dressing tested did not lead to satisfactory results. This was assumed to be due to insufficient liberation of the monazite. However, the application of the chemical process to the natural material, using concentrated sulfuric acid in the initial attack, allowed more than 90% rare earth extraction and a subsequent yield of commercial grade rare earth oxide, with over 75% rare earth recovery. (author)

  18. MOCVD and ALD of rare earth containing multifunctional materials. From precursor chemistry to thin film deposition and applications

    International Nuclear Information System (INIS)

    Milanov, Andrian Petrov

    2010-01-01

    The present thesis deals with the development of metal-organic complexes of rare elements. They should be used as novel precursors for the production of rare earth thin films by metal-organic chemical vapor deposition (MOCVD) and Atomic Layer Deposition (ALD). Within the work two precursor classes were examined, the tris-Malonato-complexes as well as the tris-Guanidinato-complexes of a series of rare earth metals. The latter showed excellent properties regarding to their volatility, their thermal stability, the defined decomposition and high reactivity towards water. They have been successfully used as precursors for the MOCVD of rare earth oxide layers. By using of a gadolinium guanidinate it could also be shown that the rare earth guanidinates are promising precursors for ALD of rare earth oxide and MOCVD of rare earth nitride layers. [de

  19. Atomic and molecular layer deposition for surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, PO Box 16100, FI‐00076 AALTO (Finland); Koskinen, Jorma T.; Harlin, Ali [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland)

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  20. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  1. Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.

    Science.gov (United States)

    Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo

    2017-12-01

    Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.

  2. Thermal barrier coatings of rare earth materials deposited by electron beam-physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhenhua [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He Limin, E-mail: he_limin@yahoo.co [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Chen Xiaolong; Zhao Yu [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Cao Xueqiang, E-mail: xcao@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-10-15

    Thermal barrier coatings (TBCs) have very important applications in gas turbines for higher thermal efficiency and protection of components at high temperature. TBCs of rare earth materials such as lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}, LZ), lanthanum cerate (La{sub 2}Ce{sub 2}O{sub 7}, LC), lanthanum cerium zirconate (La{sub 2}(Zr{sub 0.7}Ce{sub 0.3}){sub 2}O{sub 7}, LZ7C3) were prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, cross-sectional morphology and cyclic oxidation behavior of these coatings were studied. These coatings have partially deviated from their original compositions due to the different evaporation rates of oxides, and the deviation could be reduced by properly controlling the deposition condition. A double ceramic layer-thermal barrier coatings (DCL-TBCs) of LZ7C3 and LC could also be deposited with a single LZ7C3 ingot by properly controlling the deposition energy. LaAlO{sub 3} is formed due to the chemical reaction between LC and Al{sub 2}O{sub 3} in the thermally grown oxide (TGO) layer. The failure of DCL-TBCs is a result of the sintering-induced of LZ7C3 coating and the chemical incompatibility of LC and TGO. Since no single material that has been studied so far satisfies all the requirements for high temperature applications, DCL-TBCs are an important development direction of TBCs.

  3. Multiwalled Carbon Nanotube Deposition on Model Environmental Surfaces

    Science.gov (United States)

    Deposition of multiwalled carbon nanotubes (MWNTs) on model environmental surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). Deposition behaviors of MWNTs on positively and negatively charged surfaces were in good agreement with Der...

  4. Electrostatic Deposition of Large-Surface Graphene

    Directory of Open Access Journals (Sweden)

    Charles Trudeau

    2018-01-01

    Full Text Available This work describes a method for electrostatic deposition of graphene over a large area using controlled electrostatic exfoliation from a Highly Ordered Pyrolytic Graphite (HOPG block. Deposition over 130 × 130 µm2 with 96% coverage is achieved, which contrasts with sporadic micro-scale depositions of graphene with little control from previous works on electrostatic deposition. The deposition results are studied by Raman micro-spectroscopy and hyperspectral analysis using large fields of view to allow for the characterization of the whole deposition area. Results confirm that laser pre-patterning of the HOPG block prior to cleaving generates anchor points favoring a more homogeneous and defect-free HOPG surface, yielding larger and more uniform graphene depositions. We also demonstrate that a second patterning of the HOPG block just before exfoliation can yield features with precisely controlled geometries.

  5. Carbon deposition on nickel ferrites and nickel-magnetite surfaces

    International Nuclear Information System (INIS)

    Allen, G.C.; Jutson, J.A.

    1988-06-01

    Carbon deposition on Commercial Advanced Gas-Cooled Reactor (CAGR) fuel cladding and heat exchanger surfaces lowers heat transfer efficiency and increases fuel pin temperatures. Several types of deposit have been identified including both thin dense layers and also low density columnar deposits with filamentary or convoluted laminar structure. The low-density types are often associated with particles containing iron, nickel or manganese. To identify the role of nickel in the deposition process surfaces composed of nickel-iron spinels or metallic nickel/magnetite mixtures have been exposed to γ radiation in a gas environment simulating that in the reactor. Examination of these surfaces by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) have shown that while metallic nickel (Ni(O)) catalyses the formation of filamentary low density carbon deposits, the presence of divalent nickel (Ni(II)) sites in spinel type oxides is associated only with dense deposits. (author)

  6. A Unique Yttrofluorite-Hosted Giant Heavy Rare Earth Deposit: Round Top Mountain, Hudspeth County, Texas, USA

    Science.gov (United States)

    Pingitore, N. E.; Clague, J. W.; Gorski, D.

    2013-12-01

    Round Top Mountain is a surface-exposed peraluminous rhyolite laccolith, enriched in heavy rare earth elements, as well as niobium-tantalum, beryllium, lithium, fluorine, tin, rubidium, thorium, and uranium. The extreme extent of the deposit (diameter one mile) makes it a target for recovery of valuable yttrium and HREEs, and possibly other scarce elements. The Texas Bureau of Economic Geology estimated the laccolith mass as at least 1.6 billion tons. A Preliminary Economic Assessment for Texas Rare Earth Resources listed an inferred mineral resource of 430,598,000 kg REOs (rare earth oxides), with over 70% Y+HREEs (YHREE). Put in global perspective, China is thought to produce ~25,000 tons YHREE per year, and exports but a small fraction of that. Because of the extremely fine grain size of the late-phase fluorine-carried critical fluid mineralization, it has not been clear which minerals host the YHREEs. X-ray Absorption Spectroscopy experiments at the Stanford Synchrotron Radiation Lightsource revealed that virtually all of the YHREE content resides in yttrofluorite, rather than in the other reported REE minerals in the deposit, bastnaesite and xenotime. The extended x-ray absorption fine structure (XAFS) spectra of the sample suite were all quite similar, and proved a close match to known model compound specimens of yttrofluorite from two locations, in Sweden and New Mexico. Small spectral variation between the two model compounds and among the samples is attributable to the variable elemental composition and altervalent substitutional nature of yttrofluorite (Ca [1-x] Y,REE [x])F[2+x]. We found no other reported deposit in the world in which yttrofluorite is the exclusive, or even more than a minor, YHREE host mineral. Leaching experiments show that the YHREEs are easily liberated by dissolution with dilute sulfuric acid, due to the solubility of yttrofluorite. Flotation separation of the yttrofluorite had been demonstrated, but was rendered inefficient by the

  7. Measurements of dry-deposition rates on various earth surfaces by 212Pb

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.

    2004-01-01

    Dry deposition rates of 212 Pb on a coniferous forest (Japanese cedar) and a broad-leaf forest (Pasania edulis) have been measured. Those on various kinds of grass fields, various states on artificial surface such as water, paper, and standing paper have been also measured. The dry deposition rates depend on the characteristics of depositing particles and the conditions of deposited surfaces. Dry deposition rates on the forest of Japanese cedar are highest because of the complex and adhesive surface of the leaves. Those on various grass fields are roughly depend on the logarithm of the height of their grasses. The total deposition rates of 7 Be do not depend on the densities or heights of the grasses. 7 Be may be not kept on their leaves or surface soil for a long time. The dry deposition rates of on artificial surface, e.g. paper and water surfaces make clear the mechanism on dry deposition, and suggest that more chances of collision and more adhesive of the surface are important for the dry deposition. About 90% of all deposition on the artificial paper grass was attached on the standing paper. On water surface, 60% of the rate of paper grass was attached, but only about 20% were attached on a dry paper plate. The aerosol particles are deposited by collision with the surface, therefore the deposition velocity depends on the chance of collision and the characteristics of the surface. Therefore the dry deposition rates on forests are larger and those of coniferous forest are largest. (author)

  8. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  9. Responses of Surface Ozone Air Quality to Anthropogenic Nitrogen Deposition

    Science.gov (United States)

    Zhang, L.; Zhao, Y.; Tai, A. P. K.; Chen, Y.; Pan, Y.

    2017-12-01

    Human activities have substantially increased atmospheric deposition of reactive nitrogen to the Earth's surface, inducing unintentional effects on ecosystems with complex environmental and climate consequences. One consequence remaining unexplored is how surface air quality might respond to the enhanced nitrogen deposition through surface-atmosphere exchange. We combine a chemical transport model (GEOS-Chem) and a global land model (Community Land Model) to address this issue with a focus on ozone pollution in the Northern Hemisphere. We consider three processes that are important for surface ozone and can be perturbed by addition of atmospheric deposited nitrogen: emissions of biogenic volatile organic compounds (VOCs), ozone dry deposition, and soil nitrogen oxide (NOx) emissions. We find that present-day anthropogenic nitrogen deposition (65 Tg N a-1 to the land), through enhancing plant growth (represented as increases in vegetation leaf area index (LAI) in the model), could increase surface ozone from increased biogenic VOC emissions, but could also decrease ozone due to higher ozone dry deposition velocities. Meanwhile, deposited anthropogenic nitrogen to soil enhances soil NOx emissions. The overall effect on summer mean surface ozone concentrations show general increases over the globe (up to 1.5-2.3 ppbv over the western US and South Asia), except for some regions with high anthropogenic NOx emissions (0.5-1.0 ppbv decreases over the eastern US, Western Europe, and North China). We compare the surface ozone changes with those driven by the past 20-year climate and historical land use changes. We find that the impacts from anthropogenic nitrogen deposition can be comparable to the climate and land use driven surface ozone changes at regional scales, and partly offset the surface ozone reductions due to land use changes reported in previous studies. Our study emphasizes the complexity of biosphere-atmosphere interactions, which can have important

  10. Study of rare earth elements, uranium and thorium migration in rocks from Espinharas uranium deposit, Paraiba - Brazil

    International Nuclear Information System (INIS)

    Conceicao, Cirilo C.S.

    2009-01-01

    The determination of rare earth elements as natural analogue in patterns geologic has grown as a tool for predicting the long-term safety of nuclear disposal in geological formation. Migration of natural radionuclides is one of the most serious problems in the waste deposit from nuclear fuel cycle. Rare earth elements show the same kinetic behavior in rocks as natural radionuclides. This similar property of the analogues allows perform studies and models on the subject of radionuclides migration. The aim of this study was to determine the distribution of rare earth elements in rocks located at Espinharas - Paraiba - Brazil, uranium deposit. In this work are presented the results from the study above the distribution of rare earth elements in function of the degree of mineralized rocks, composition and the conditions of radioactive equilibrium of the uranium and thorium in some fractures on the rocks from radioactive occurrence of Espinharas-Brazil. The results show that there is a correlation of heavy rare earth elements, uranium and Thorium concentrations to oxidation factor of the rocks. However this correlation was not observed for light rare earth elements. It means that heavy rare earth elements follow the natural radionuclides in oxidation process of rocks. The samples were analyzed by ICP-MS, alpha and gamma spectrometry, X-ray diffraction and fluorimetry. (author)

  11. Surface acoustic wave dust deposition monitor

    Science.gov (United States)

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  12. Climax-Type Porphyry Molybdenum Deposits

    Science.gov (United States)

    Ludington, Steve; Plumlee, Geoffrey S.

    2009-01-01

    Climax-type porphyry molybdenum deposits, as defined here, are extremely rare; thirteen deposits are known, all in western North America and ranging in age from Late Cretaceous to mainly Tertiary. They are consistently found in a postsubduction, extensional tectonic setting and are invariably associated with A-type granites that formed after peak activity of a magmatic cycle. The deposits consist of ore shells of quartz-molybdenite stockwork veins that lie above and surrounding the apices of cupola-like, highly evolved, calc-alkaline granite and subvolcanic rhyolite-porphyry bodies. These plutons are invariably enriched in fluorine (commonly >1 percent), rubidium (commonly >500 parts per million), and niobium-tantalum (Nb commonly >50 parts per million). The deposits are relatively high grade (typically 0.1-0.3 percent Mo) and may be very large (typically 100-1,000 million tons). Molybdenum, as MoS2, is the primary commodity in all known deposits. The effect on surface-water quality owing to natural influx of water or sediment from a Climax-type mineralized area can extend many kilometers downstream from the mineralized area. Waste piles composed of quartz-silica-pyrite altered rocks will likely produce acidic drainage waters. The potential exists for concentrations of fluorine or rare metals in surface water and groundwater to exceed recommended limits for human consumption near both mined and unmined Climax-type deposits.

  13. Rare earth conversion coatings grown on AA6061 aluminum alloys. Corrosion studies

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti S, S. B. [Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo y Sor Juana I. de la Cruz, Col. Los Mangos, 89440 Ciudad Madero, Tanaulipas (Mexico); Dominguez C, M. A.; Torres H, A. M.; Onofre B, E. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada - Altamira, Carretera Tampico-Puerto Industrial Altamira Km. 14.5, 89600 Altamira, Tamaulipas (Mexico); De la Cruz H, W., E-mail: mdominguezc@ipn.mx [UNAM, Centro de Nanociencias y Nanotecnologia, Apdo. Postal 2681, 22800 Ensenada, Baja California (Mexico)

    2014-07-01

    The present work is aimed to investigate the corrosion resistance of rare earth protective coatings deposited by spontaneous deposition on AA6061 aluminum alloy substrates. Coatings were deposited from water-based Ce(NO{sub 3}){sub 3} and La(NO{sub 3}){sub 3} solutions by varing parameters such as rare earth solution concentration, bath temperature and immersion time. The values of the Tafel slopes indicate that the cathodic process is favored by concentration polarization rather than activation polarization. Chemical and morphological characterizations of the surface before and after electrochemical evaluations were performed by X-ray photoelectron spectroscopy and scanning electron microscopy. (Author)

  14. Rare earth conversion coatings grown on AA6061 aluminum alloys. Corrosion studies

    International Nuclear Information System (INIS)

    Brachetti S, S. B.; Dominguez C, M. A.; Torres H, A. M.; Onofre B, E.; De la Cruz H, W.

    2014-01-01

    The present work is aimed to investigate the corrosion resistance of rare earth protective coatings deposited by spontaneous deposition on AA6061 aluminum alloy substrates. Coatings were deposited from water-based Ce(NO 3 ) 3 and La(NO 3 ) 3 solutions by varing parameters such as rare earth solution concentration, bath temperature and immersion time. The values of the Tafel slopes indicate that the cathodic process is favored by concentration polarization rather than activation polarization. Chemical and morphological characterizations of the surface before and after electrochemical evaluations were performed by X-ray photoelectron spectroscopy and scanning electron microscopy. (Author)

  15. Dry deposition to vegetated surfaces: parametric dependencies

    International Nuclear Information System (INIS)

    Underwood, B.Y.

    1987-12-01

    The dry deposition velocity of airborne pollutants to vegetated surfaces depends on the physico-chemical form of the pollutant, on meteorological conditions (windspeed, atmospheric stability) and on characteristics of the surface cover. This report examines these dependencies, drawing on experimental data and on information from theoretical analyses. A canopy model is outlined which uses first-order closure of the equations for turbulent transport of momentum (or matter), with losses of momentum (or matter) to individual canopy elements parameterised in terms of the mean windspeed: the model has previously been tested against experimental data on an artificial 'grass' canopy. The model is used to elucidate the features of the dependence of deposition velocity on windspeed and on whether the pollutant is in gaseous or particulate form: in the former case, the dependence on the molecular diffusivity of the gas is shown; in the latter case, dependencies on particle diameter and density are deduced. The predictions are related to available measurements. Additional hypotheses are introduced to treat the influence of atmospheric stability on deposition, and the analysis is used to shed light on the somewhat confusing picture that has emerged from past experimental studies. In considering the dependence of deposition velocity on the structural properties of the vegetation, it is established that more parameters than the single one conventionally used -aerodynamic roughness length - are needed to characterise the surface cover. Some indications of the extent of variation in deposition velocity from one type of vegetation to another are elicited from the model. (author)

  16. Gasification of carbon deposits on catalysts and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, J L

    1986-10-01

    'Coke' deposited on catalysts and reactor surfaces includes a variety of carbons of different structures and origins, their reactivities being conveniently assessed by Temperature Programmed Reaction (TPR). The gasification of carbon deposits obtained in the laboratory under well controlled conditions, and the regeneration of coked catalysts from petroleum refining processes are reviewed and discussed. Filamentary carbon deposits, containing dispersed metal particles, behave as supported metal catalysts during gasification, and show high reactivities. Pyrolytic and acid catalysis carbons are less reactive on their own, as the gasification is not catalysed; however, metal components of the catalyst or metal impurities deposited on the surface may enhance gasification. 26 refs., 8 figs., 2 tabs.

  17. Deposition of size-selected atomic clusters on surfaces

    International Nuclear Information System (INIS)

    Carroll, S.J.

    1999-06-01

    This dissertation presents technical developments and experimental and computational investigations concerned with the deposition of atomic clusters onto surfaces. It consists of a collection of papers, in which the main body of results are contained, and four chapters presenting a subject review, computational and experimental techniques and a summary of the results presented in full within the papers. Technical work includes the optimization of an existing gas condensation cluster source based on evaporation, and the design, construction and optimization of a new gas condensation cluster source based on RF magnetron sputtering (detailed in Paper 1). The result of cluster deposition onto surfaces is found to depend on the cluster deposition energy; three impact energy regimes are explored in this work. (1) Low energy: n clusters create a defect in the surface, which pins the cluster in place, inhibiting cluster diffusion at room temperature (Paper V). (3) High energy: > 50 eV/atom. The clusters implant into the surface. For Ag 20 -Ag 200 clusters, the implantation depth is found to scale linearly with the impact energy and inversely with the cross-sectional area of the cluster, with an offset due to energy lost to the elastic compression of the surface (Paper VI). For smaller (Ag 3 ) clusters the orientation of the cluster with respect to the surface and the precise impact site play an important role; the impact energy has to be 'focused' in order for cluster implantation to occur (Paper VII). The application of deposited clusters for the creation of Si nanostructures by plasma etching is explored in Paper VIII. (author)

  18. Rare earth mineralogy of the Olympic Dam Cu-U-Au-Ag deposit, South Australia

    International Nuclear Information System (INIS)

    Lottermoser, B.G.; Day, A.

    1993-01-01

    Rare earth elements (REE) and yttrium accompany uranium and copper mineralisation within the polymetallic Olympic Dam deposit. The light and heavy rare earths tend to occur in different host minerals. Most of the light rare earths (LREE) are present as the essential structural constituents of LREE fluorocarbonates such bastnaesite and synchysite, or in phosphates such as florencite and monazite. Yttrium and the heavy rare earths (HREE) occur mostly as minor concentrations in the form of cation substitutions within uranium minerals such as uraninite and coffinite, as well as brannerite to a lesser extent. Selective dissolution of uraninite and coffinite during acid leaching leads to the liberation of yttrium and HREE from their host minerals, resulting in higher percentage extractions of HREE than LREE in uranium bearing leach liquors. LREE liberation is more restricted because only the synchysite dissolves to any significant extent, while bastnaesite is more difficult to dissolve. 9 refs., 2 figs

  19. Extraction of rare earths from iron-rich rare earth deposits

    OpenAIRE

    Bisaka, K.; Thobadi, I.C.; Pawlik, C.

    2017-01-01

    Rare earth metals are classified as critical metals by the United Nations, as they have found wide application in the fabrication of magnets, particularly those used in green energy technologies which mitigate global warming. Processing of ores containing rare earth elements is complex, and differs according to the nature of each ore. In the conventional process, run of mine (ROM) ores are processed in a physical separation plant to produce a concentrate from which rare earth elements are ext...

  20. Magnetic Interaction between Surface-Engineered Rare-Earth Atomic Spins

    Directory of Open Access Journals (Sweden)

    Chiung-Yuan Lin

    2012-06-01

    Full Text Available We report the ab-initio study of rare-earth adatoms (Gd on an insulating surface. This surface is of interest because of previous studies by scanning tunneling microscopy showing spin excitations of transition-metal adatoms. The present work is the first study of rare-earth spin-coupled adatoms, as well as the geometry effect of spin coupling and the underlying mechanism of ferromagnetic coupling. The exchange coupling between Gd atoms on the surface is calculated to be antiferromagnetic in a linear geometry and ferromagnetic in a diagonal geometry. We also find that the Gd dimers in these two geometries are similar to the nearest-neighbor and the next-nearest-neighbor Gd atoms in GdN bulk. We analyze how much direct exchange, superexchange, and Ruderman-Kittel-Kasuya-Yosida interactions contribute to the exchange coupling for both geometries by additional first-principles calculations of related model systems.

  1. Surface-deposition and distribution of the radon-decay products indoors

    International Nuclear Information System (INIS)

    Espinosa, G.; Tommasino, L.

    2015-01-01

    The exposure to radon-decay products is of great concern both in dwellings and workplaces. The model to estimate the lung dose refers to the deposition mechanisms and particle sizes. Unfortunately, most of the dose data available are based on the measurement of radon concentration and the concentration of radon decay products. These combined measurements are widely used in spite of the fact that accurate dose assessments require information on the particle deposition mechanisms and the spatial distribution of radon decay products indoors. Most of the airborne particles and/or radon decay products are deposited onto indoor surfaces, which deposition makes the radon decay products unavailable for inhalation. These deposition processes, if properly known, could be successfully exploited to reduce the exposure to radon decay products. In spite of the importance of the surface deposition of the radon decay products, both for the correct evaluation of the dose and for reducing the exposure; little or no efforts have been made to investigate these deposition processes. Recently, two parallel investigations have been carried out in Rome and at Universidad Nacional Autónoma de México (UNAM) in Mexico City respectively, which address the issue of the surface-deposited radon decay products. Even though these investigations have been carried independently, they complement one another. It is with these considerations in mind that it was decided to report both investigations in the same paper. - Highlights: • Distribution of Radon and Thoron decay indoor products. • Indoor radon measurements complexity. • Short and long term measurements of surface deposit of Radon and Thoron decay products. • Microclimate controlled conditions room. • Nuclear Tracks Detectors

  2. A fundamental study of fission product deposition on the wall surface

    International Nuclear Information System (INIS)

    Ishiguro, R.; Sakashita, H.; Sugiyama, K.

    1987-01-01

    Deposition of soluble matters on wall surfaces is studied in the present report for the purpose to understand a mechanism of fission product deposition on the wall surface in a molten salt reactor. Calcium carbonate solution is used to observe the fundamental mechanism of deposition. The experiments are performed under conditions of turbulent flow of the solution over a heated wall. According to the experimental results a model is proposed to estimate deposition rate. The model consists of two parts, one is the initial nucleus formation on a clean wall surface and the other is the constant increase of deposition succeeding to the first stage. The model is assessed by comparing it with the experimental results. Both results coincide well in some parameters, but not so well in others. (author)

  3. Electroless deposition of Ni-P on a silicon surface

    Directory of Open Access Journals (Sweden)

    hassan El Grini

    2017-06-01

    Full Text Available The present article concerns the metallization of silicon substrates by deposition of the nickel-phosphorus alloy produced by an autocatalytic chemical process. The deposition electrolyte is composed of a metal salt, a reducing agent (sodium hypophosphite, a complexing agent (sodium citrate and a buffer (ammonium acetate. The deposition could only be carried out after activation of the silicon by fixing catalytic species on its surface. The immersion of the silicon samples in palladium chloride made it possible to produce relatively thick and regular Ni-P coatings. The immersion time was optimized. The activation of Si was characterized by XPS and the Ni-P coating by XPS and M.E.B. The electrochemical study did not show any real mechanism changes compared to the Ni-P deposition on a conductive surface

  4. Soft landing of size selected clusters in rare gas matrices

    International Nuclear Information System (INIS)

    Lau, J.T; Wurth, W.; Ehrke, H-U.; Achleitner, A.

    2003-01-01

    Soft landing of mass selected clusters in rare gas matrices is a technique used to preserve mass selection in cluster deposition. To prevent fragmentation upon deposition, the substrate is covered with rare gas matrices to dissipate the cluster kinetic energy upon impact. Theoretical and experimental studies demonstrate the power of this technique. Besides STM, optical absorption, excitation, and fluorescence experiments, x-ray absorption at core levels can be used as a tool to study soft landing conditions, as will be shown here. X-ray absorption spectroscopy is also well suited to follow diffusion and agglomeration of clusters on surfaces via energy shifts in core level absorption

  5. Micro- and nano-surface structures based on vapor-deposited polymers

    Directory of Open Access Journals (Sweden)

    Hsien-Yeh Chen

    2017-07-01

    Full Text Available Vapor-deposition processes and the resulting thin polymer films provide consistent coatings that decouple the underlying substrate surface properties and can be applied for surface modification regardless of the substrate material and geometry. Here, various ways to structure these vapor-deposited polymer thin films are described. Well-established and available photolithography and soft lithography techniques are widely performed for the creation of surface patterns and microstructures on coated substrates. However, because of the requirements for applying a photomask or an elastomeric stamp, these techniques are mostly limited to flat substrates. Attempts are also conducted to produce patterned structures on non-flat surfaces with various maskless methods such as light-directed patterning and direct-writing approaches. The limitations for patterning on non-flat surfaces are resolution and cost. With the requirement of chemical control and/or precise accessibility to the linkage with functional molecules, chemically and topographically defined interfaces have recently attracted considerable attention. The multifunctional, gradient, and/or synergistic activities of using such interfaces are also discussed. Finally, an emerging discovery of selective deposition of polymer coatings and the bottom-up patterning approach by using the selective deposition technology is demonstrated.

  6. Recent field studies of dry deposition to surfaces in plant canopies

    International Nuclear Information System (INIS)

    Lindberg, S.E.; Lovett, G.M.; Bondietti, E.A.; Davidson, C.I.

    1984-01-01

    A variety of field techniques were used to assess the dry deposition of sulfur. In a deciduous forest canopy in eastern Tennessee, inert petri plates and adjacent chestnut oak leaves showed similar SO 4 -2 deposition velocities of about 0.1 cm s -1 . In the same forest, statistical analysis of throughfall yielded a deposition velocity of 0.48 cm s -1 for total sulfur (SO 4 -2 plus SO 2 ). The throughfall technique appears useful for scaling individual surface measurements to larger spatial and temporal scales. On a grassy field in Illinois, flat Teflon plates, petri dishes, and dustfall buckets were exposed side by side. Measured sulfate deposition increased with increasing rim height on the collection surface, and deposition velocities ranged from 0.14 to 0.70 cm s -1 . Much of the deposition to these surfaces can be attributed to large-particle SO 4 -2 . Dry season (summer) deposition velocities of 7 Be in California were found to be similar to dry deposition velocities of 212 Pb in Tennessee, ranging from 0.18 to 0.35 cm s -1 . These natural radionuclides attach to submicron aerosols in the atmosphere and may be useful tracers of submicron SO 4 -2 deposition. 9 references, 5 figures, 4 tables

  7. Influence of deposition temperature of thermal ALD deposited Al2O3 films on silicon surface passivation

    Directory of Open Access Journals (Sweden)

    Neha Batra

    2015-06-01

    Full Text Available The effect of deposition temperature (Tdep and subsequent annealing time (tanl of atomic layer deposited aluminum oxide (Al2O3 films on silicon surface passivation (in terms of surface recombination velocity, SRV is investigated. The pristine samples (as-deposited show presence of positive fixed charges, QF. The interface defect density (Dit decreases with increase in Tdep which further decreases with tanl up to 100s. An effective surface passivation (SRV<8 cm/s is realized for Tdep ≥ 200 °C. The present investigation suggests that low thermal budget processing provides the same quality of passivation as realized by high thermal budget process (tanl between 10 to 30 min.

  8. Distribution characteristics of rare earth elements in plants from a rare earth ore area

    International Nuclear Information System (INIS)

    Zhang, Z.Y.; Wang, Y.Q.; Li, F.L.; Xiao, H.Q.; Chai, Z.F.

    2002-01-01

    The contents of eight rare earth elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in various plant species taken from a rare earth ore area were determined by instrumental neutron activation analysis. For a given plant, the REE patterns in root, leaf and host soil are different from each other. The REE distribution characteristics in roots of various species are very similar and resemble those in the surface water. The results of this study suggest that there is no significant fractionation between the REEs during their uptake by the plant roots from soil solution. However, the variation of the relative abundance of individual REE occurs in the process of transportation and deposition of REEs in plants. (author)

  9. Investigation of surface deposition pertaining to the calculation of the deposition of aerosols released in core-meltdown accidents in power reactors

    International Nuclear Information System (INIS)

    Roed, J.

    1981-10-01

    Deposition of fall-out particles of cesium-137 on vertical building surfaces has been measured. The deposition is combined with the corresponding concentration in air of fall-out particles to give the dry deposition velocity. The dry deposition velocity on plane collectors like building surfaces, plane bare soil, roads, etc. is compared to the velocity on rough surfaces like grass, clover, etc. This is done on the basis of our own measurements and the relevant literature. (author)

  10. A Geochemical Analysis of Rare Earth Elements Associated with Significant Phosphate Deposits of West-Central Florida

    Science.gov (United States)

    Turner, K. M.; Owens, J. D.

    2017-12-01

    Rare earth elements (REEs) such as the lanthanide series as well as yttrium, uranium, and thorium are an important industrial resource for expanding technological sectors; therefore, demand and production will continue to increase. Increased market prices resulting in decreased demand has led to new exploration for REE mineral resources in North America. Phosphorite deposits are being investigated as a possible supply but the overall concentrations, depositional environments, and ages are relatively unexplored. Phosphorite is commonly associated with ocean floor sediment deposition and upwelling; however, it may also form in estuarine and supratidal zones with low wave activity, present along Florida's west coast. Interestingly, it seems that major ancient phosphorite deposits are often, if not always, associated with major icehouse conditions (widespread glaciations) and rarely observed during greenhouse conditions. By analyzing a set of sonic drill cores, spatiotemporal REE concentrations can be better constrained for a wide-age range of the Miocene-Pliocene aged Bone Valley Member of the Peace River Formation, the largest North American phosphate deposit. We present concentrations from a depth-transect of samples collected in West-Central Florida, showing the phosphatic sands and silts of the area are highly enriched sedimentary archives for REE, yielding concentrations up to 200 ppm for some REE. The weathering and transport of igneous and metamorphic minerals from the southern Appalachians to the Florida coast where a series of winnowing events occurred may explain the enrichment seen by our data. Sediment cores showing well-rounded quartz sands, dolomitic silts, teeth, bones, and marine fossils commonly found in a near shore depositional environment support this hypothesis. Previous analysis of phosphate grains, teeth, bones, and bulk sediment indicate REE are not associated with and/or sourcing from biogenic components, but rather entering the lattice

  11. Novel precursors for the deposition of rare earth oxides; Neuartige Precursor zur Abscheidung von Selten-Erd-Oxiden

    Energy Technology Data Exchange (ETDEWEB)

    Ahlers, Mareike

    2010-02-22

    During this work rare earth solvates with nitrate and perchlorate anions have been investigated. All compounds have been structurally characterized and analyzed using thermal gravimetric analysis. The decomposition residues were analyzed using powder diffraction methods. Almost all compounds showed a characteristically intense exothermic decomposition step during the thermal decomposition, most likely caused by an intramolecular redox reaction between the nitrate or perchlorate anion respectively and the organic solvent molecules. The nitrates RE(NO{sub 3}){sub 3}(CH(OCH{sub 3}){sub 3}){sub 2} (RE = Sm, Eu) were isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. The known compound group of dimethoxyethane solvates was then expanded with RE(NO{sub 3}){sub 3}(O{sub 2}C{sub 4}H{sub 10}) (RE = La, Sm, Eu). Considering the possible use as precursor material the already described neodymium compound is also discussed. The thermal decomposition of these compounds yields the respective cubic rare earth oxide and shows the typical intense exothermic decomposition reaction. A variety of different precursor system based on nitrate solvates for the deposition of rare earth oxide layers on a silicon surface was developed and investigated in collaboration with the group of Prof. Dr. Al-Shamery (Univ. Oldenburg). Ultra thin films on a H-Si(111) surface were obtained via the deposition of the precursor, which was dissolved in organic solvents. An oxide layer was detected after the heating of the sample. The film thickness was measured as < 10 nm, whereas the thickness of the film was controlled by the concentration of the precursor solution. Sm(ClO{sub 4}){sub 3}(CH(OCH{sub 3}){sub 3}){sub 3} was isolated and characterized for the first time as the intermediate of the dehydration reaction with trimethyl orthoformate. Eu(ClO{sub 4}){sub 3}(CH(OCH{sub 3}){sub 3}){sub 2}(MeOH){sub 2} was obtained without

  12. Flame spray deposition of porous catalysts on surfaces and in microsystems

    DEFF Research Database (Denmark)

    Thybo, Susanne; Jensen, Søren; Johansen, Johnny

    2004-01-01

    Flame spray synthesis is investigated as a method for one step synthesis and deposition of porous catalysts onto surfaces and into microreactors. Using a standard photolithographic lift-off process, catalyst can be deposited on flat surfaces in patterns with sub-millimeter feature sizes....... With shadow masks, porous catalyst layers can be deposited selectively into microchannels. Using Au/TiO$_2$ as test catalyst and CO-oxidation as test reaction, it is found that the apparent activation energy of the deposited catalyst is similar to what is normally seen for supported gold catalysts...

  13. Effect of surface deposits on electromagnetic waves propagating in uniform ducts

    Science.gov (United States)

    Baumeister, Kenneth J.

    1990-01-01

    A finite-element Galerkin formulation was used to study the effect of material surface deposits on the reflective characteristics of straight uniform ducts with PEC (perfectly electric conducting) walls. Over a wide frequency range, the effect of both single and multiple surface deposits on the duct reflection coefficient were examined. The power reflection coefficient was found to be significantly increased by the addition of deposits on the wall.

  14. From mantle to critical zone: A review of large and giant sized deposits of the rare earth elements

    Directory of Open Access Journals (Sweden)

    M.P. Smith

    2016-05-01

    Full Text Available The rare earth elements are unusual when defining giant-sized ore deposits, as resources are often quoted as total rare earth oxide, but the importance of a deposit may be related to the grade for individual, or a limited group of the elements. Taking the total REE resource, only one currently known deposit (Bayan Obo would class as giant (>1.7 × 107 tonnes contained metal, but a range of others classify as large (>1.7 × 106 tonnes. With the exception of unclassified resource estimates from the Olympic Dam IOCG deposit, all of these deposits are related to alkaline igneous activity – either carbonatites or agpaitic nepheline syenites. The total resource in these deposits must relate to the scale of the primary igneous source, but the grade is a complex function of igneous source, magmatic crystallisation, hydrothermal modification and supergene enrichment during weathering. Isotopic data suggest that the sources conducive to the formation of large REE deposits are developed in subcontinental lithospheric mantle, enriched in trace elements either by plume activity, or by previous subduction. The reactivation of such enriched mantle domains in relatively restricted geographical areas may have played a role in the formation of some of the largest deposits (e.g. Bayan Obo. Hydrothermal activity involving fluids from magmatic to meteoric sources may result in the redistribution of the REE and increases in grade, depending on primary mineralogy and the availability of ligands. Weathering and supergene enrichment of carbonatite has played a role in the formation of the highest grade deposits at Mount Weld (Australia and Tomtor (Russia. For the individual REE with the current highest economic value (Nd and the HREE, the boundaries for the large and giant size classes are two orders of magnitude lower, and deposits enriched in these metals (agpaitic systems, ion absorption deposits may have significant economic impact in the near future.

  15. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  16. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    Science.gov (United States)

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  17. Dendritic surface morphology of palladium hydride produced by electrolytic deposition

    International Nuclear Information System (INIS)

    Julin, Peng; Bursill, L.A.

    1990-01-01

    Conventional and high-resolution electron microscopic studies of electrolytically-deposited palladium hydride reveal a fascinating variety of surface profile morphologies. The observations provide direct information concerning the surface structure of palladium electrodes and the mechanism of electrolytic deposition of palladium black. Both classical electrochemical mechanisms and recent 'modified diffusion-limited-aggregation' computer simulations are discussed in comparison with the experimental results. 13 refs., 9 figs

  18. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Nevenick, Calec

    2013-01-01

    Whether by chronic or accidental releases, the impact of a nuclear installation on the environment mainly depends on atmospheric transfers; and as the accidents at Chernobyl and Fukushima show, affect the contamination of surfaces and impacts in the medium and long-term on the environment and the population. In this context, this work focuses on the characterization and modeling of dry deposition of submicron aerosols on liquid surfaces in motion such as rivers. Unlike wet deposition which is conditioned by washout and rainout (rain and clouds), dry deposition is a phenomenon that depends entirely on the characteristics of aerosols, receiving surfaces, and air flow. In practice, the evaluation of dry deposition is based on the estimation of flux modeling as the product of particle concentration and deposition velocity which can vary over several orders of magnitude depending on the receiving surfaces (forest, snow, urban, grassland...). This topic is motivated by the virtual non-existence of studies on the mechanisms of dry deposition on continental water systems such as rivers; and respect for submicron aerosols. They have the lowest deposition efficiencies and filtration and the longer residence time in the atmosphere. In addition, they are potentially the most dangerous to living beings because they can penetrate deeper into the airway. Due to the lack of data on the dry deposition of submicron aerosols on a liquid surface in motion, the approach was based on two axes: 1) the acquisition of experimental deposition velocities and 2) the analysis and interpretation of results through modeling. The experiments were performed with uranine aerosols released into the IOA wind tunnel (Interface Ocean Atmosphere) of the Institute for Research on Non Equilibrium Phenomena which is configured to study the coupling between the air flow and water. These experiments have given many dry deposition velocities for different configurations characterized according to wind

  19. Dry deposition of submicron atmospheric aerosol over water surfaces in motion

    International Nuclear Information System (INIS)

    Calec, Nevenick

    2013-01-01

    Whether by chronic or accidental releases, the impact of a nuclear installation on the environment mainly depends on atmospheric transfers; and as the accidents at Chernobyl and Fukushima show, affect the contamination of surfaces and impacts in the medium and long-term on the environment and the population. In this context, this work focuses on the characterization and modeling of dry deposition of submicron aerosols on liquid surfaces in motion such as rivers. Unlike wet deposition which is conditioned by washout and rainout (rain and clouds), dry deposition is a phenomenon that depends entirely on the characteristics of aerosols, receiving surfaces, and air flow. In practice, the evaluation of dry deposition is based on the estimation of flux modeling as the product of particle concentration and deposition velocity which can vary over several orders of magnitude depending on the receiving surfaces (forest, snow, urban, grassland..). This topic is motivated by the virtual non-existence of studies on the mechanisms of dry deposition on continental water systems such as rivers; and respect for submicron aerosols. They have the lowest deposition efficiencies and filtration and the longer residence time in the atmosphere. In addition, they are potentially the most dangerous to living beings because they can penetrate deeper into the airway. Due to the lack of data on the dry deposition of submicron aerosols on a liquid surface in motion, the approach was based on two axes: 1) the acquisition of experimental deposition velocities and 2) the analysis and interpretation of results through modeling. The experiments were performed with uranine aerosols released into the IOA wind tunnel (Interface Ocean Atmosphere) of the Institute for Research on Non Equilibrium Phenomena which is configured to study the coupling between the air flow and water. These experiments have given many dry deposition velocities for different configurations characterized according to wind

  20. Analysis of the Surface of Deposited Copper After Electroerosion Treatment

    Science.gov (United States)

    Ablyaz, T. R.; Simonov, M. Yu.; Shlykov, E. S.

    2018-03-01

    An electron microscope analysis of the surface of deposited copper is performed after a profiling-piercing electroerosion treatment. The deposited copper is treated with steel, duralumin, and copper electrode tools at different pulse energies. The treatment with the duralumin electrode produces on the treated surface a web-like structure and cubic-morphology polyhedral dimples about 10 μm in size. The main components of the surface treated with the steel electrode are developed polyhedral dimples with a size of 10 - 50 μm. After the treatment with the copper electrode the main components of the treated surface are large polyhedral dimples about 30 - 80 μm in size.

  1. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    Science.gov (United States)

    Nesterov, A.; Löffler, F.; Cheng, Yun-Chien; Torralba, G.; König, K.; Hausmann, M.; Lindenstruth, V.; Stadler, V.; Bischoff, F. R.; Breitling, F.

    2010-04-01

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  2. Characterization of triboelectrically charged particles deposited on dielectric surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nesterov, A; Torralba, G; Hausmann, M; Lindenstruth, V [Kirchhoff Institute of Physics, In Neuenheimer Feld 227, Heidelberg (Germany); Loeffler, F; Cheng, Yun-Chien; Koenig, K; Stadler, V; Bischoff, F R [German Cancer Research Centre, In Neuenheimer Feld 280, Heidelberg (Germany); Breitling, F, E-mail: Frank.Breitling@KIT.ed, E-mail: alexander.nesterov-mueller@kit.ed [Karlsruhe Institute of Technology (KIT), Institute for Microstructure Technology, Herrmann von Helmholtzplatz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2010-04-28

    A device for the measurement of q/m-values and charge degradation of triboelectrically charged particles deposited on a surface was developed. The setup is based on the integration of currents, which are induced in a Faraday cage by insertion of a solid support covered with charged particles. The conductivity of different particle supports was taken into account. The 'blow-off' method, in which the particles are first deposited, and then blown off using an air stream, can be used for characterization of triboelectric properties of particles relative to different surfaces.

  3. Rare-earth elements in uranium deposits in the municipality of Pedra, Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Kennedy Francys Rodrigues Damascena; Romilton dos Santos Amaral; Jose Araujo dos Santos Junior; Alberto Antonio da Silva; Romulo Simoes Cezar Menezes

    2015-01-01

    In the present study, soil and rock samples were collected from uranium deposits in the city of Pedra, Pernambuco, Brazil. These samples were analyzed using neutron activation analysis to identify the occurrence of rare-earth elements (REE). The most abundant elements found were Ce, Nd and La, with concentrations 12 times higher than the average in the earth's crust and 4.6 times higher than values reported in worldwide studies, including Brazil. Nonetheless, further studies to examine the economic feasibility of mining REEs from this site are necessary. (author)

  4. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  5. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    International Nuclear Information System (INIS)

    Petala, M.; Tsiridis, V.; Mintsouli, I.; Pliatsikas, N.; Spanos, Th.; Rebeyre, P.; Darakas, E.; Patsalas, P.; Vourlias, G.; Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th.

    2017-01-01

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  6. Silver deposition on stainless steel container surfaces in contact with disinfectant silver aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Petala, M., E-mail: petala@civil.auth.gr [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Tsiridis, V. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Mintsouli, I. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Pliatsikas, N. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Spanos, Th. [Department of Petroleum and Mechanical Engineering Sciences, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 (Greece); Rebeyre, P. [ESA/ESTEC, P.O.Box 299, 2200 AG, Noordwijk (Netherlands); Darakas, E. [Department of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Patsalas, P.; Vourlias, G. [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece); Kostoglou, M.; Sotiropoulos, S.; Karapantsios, Th. [Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124 (Greece)

    2017-02-28

    Highlights: • Silver is one of the biocides of water consumed in the International Space Station. • Ionic silver is depleted from potable water when in contact with stainless steel (SS). • SEM and XPS analysis reveal a uniform silver deposition over the SS surface. • Silver deposits in its metallic form, in line with a galvanic deposition mechanism. • Evidence is provided that Cr and/ or Ni oxide builds-up on SS surfaces. - Abstract: Silver is the preservative used on the Russian segment of the International Space Station (ISS) to prevent microbial proliferation within potable water supplies. Yet, in the frame of the European Automated Transfer Vehicle (ATV) missions to ISS, silver depletion from water has been detected during ground transportation of this water to launch site, thereby indicating a degradation of water quality. This study investigates the silver loss from water when in contact with stainless steel surfaces. Experiments are conducted with several types of stainless steel surfaces being exposed to water containing 10 or 0.5 mg/L silver ions. Results show that silver deposits on stainless steel surfaces even when a passivation layer protects the metallic surface. The highest protection to silver deposition is offered by acid passivated and electropolished SS 316L. SEM and XPS experiments were carried out at several locations of the sample area that was in contact with the Ag solution and found similar morphological (SEM) and compositional (sputter-etch XPS) results. The results reveal that silver deposits uniformly across the wetted surface to a thickness larger than 3 nm. Moreover, evidence is provided that silver deposits in its metallic form on all stainless steel surfaces, in line with a galvanic deposition mechanism. Combination of ICP-MS and XPS results suggests a mechanism for Ag deposition/reduction with simultaneous substrate oxidation resulting in oxide growth at the exposed stainless steel surface.

  7. Bone surface deposition of 241Am in a person with occupational exposure

    International Nuclear Information System (INIS)

    Schlenker, R.A.; Oltman, B.G.; Kathren, R.L.

    1989-01-01

    We have measured the 241 Am concentrations in the vicinity of bone surfaces in 11 samples of cortical bone from a man whose occupational exposure occurred 25 to 27 years before death. Concentrations in bone surface deposits ranged between 44 and 185 Bq.cm -3 ; concentrations in subjacent bone ranged between 0 and 8.4 Bq.cm -3 . Thicknesses of the bone surface deposits were in the range 0.6 to 1.2 μm. An analysis of dose rates indicates that bone surface deposits contributed 40% or more of the terminal dose rate to bone surface tissues. Half-lives for the reduction of bone surface concentrations are estimated at 4.8 to 24 years, compared with the 50-and 100-year estimates recommended in current ICRP publications. These data are important for the estimation of the dose rate to bone surface tissues for radiation protection. (author)

  8. Reaction kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers

    International Nuclear Information System (INIS)

    Gokcen, Dincer; Bae, Sang-Eun; Brankovic, Stanko R.

    2011-01-01

    The study of the kinetics of metal deposition via surface limited red-ox replacement of underpotentially deposited metal monolayers is presented. The model system was Pt submonolayer deposition on Au(1 1 1) via red-ox replacement of Pb and Cu UPD monolayers on Au(1 1 1). The kinetics of a single replacement reaction was studied using the formalism of the comprehensive analytical model developed to fit the open circuit potential transients from deposition experiments. The practical reaction kinetics parameters like reaction half life, reaction order and reaction rate constant are determined and discussed with their relevance to design and control of deposition experiments. The effects of transport limitation and the role of the anions/electrolyte on deposition kinetics are investigated and their significance to design of effective deposition process is discussed.

  9. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  10. Rare earth silicide nanowires on silicon surfaces

    International Nuclear Information System (INIS)

    Wanke, Martina

    2008-01-01

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti Γ point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi 2 -monolayer and the Dy 3 Si 5 -multilayer on the Si(111) surface are investigated in comparison to the known ErSi 2 /Si(111) and Er 3 Si 5 /Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the vector k parallel space is elliptical at the anti M points, while the hole pocket at the anti Γ point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas of the sample surface, which are oriented

  11. Measurement of the specific surface area of loose copper deposit by electrochemical methods

    Directory of Open Access Journals (Sweden)

    E. A. Dolmatova

    2016-07-01

    Full Text Available In the work the surface area of the electrode with dispersed copper deposit obtained within 30 seconds was evaluated by techniques of chronopotentiometry (CPM and impedance spectroscopy. In method CPM the electrode surface available for measurement depends on the value of the polarizing current. At high currents during the transition time there is a change of surface relief that can not determine the full surface of loose deposit. The electrochemical impedance method is devoid of this shortcoming since the measurements are carried out in indifferent electrolyte in the absence of current. The area measured by the impedance is tens of times higher than the value obtained by chronopotentiometry. It is found that from a solution containing sulfuric acid the deposits form with a high specific surface area. Based on these data it was concluded that the method of impedance spectroscopy can be used to measure in situ the surface area of the dispersed copper deposits.

  12. Deposition of heated whey proteins on a chromium oxide surface.

    NARCIS (Netherlands)

    Jeurnink, Th.; Verheul, M.; Cohen Stuart, M.A.; Kruif, de C.G.

    1996-01-01

    Whey protein solutions were given different heat treatments after which their deposition on a chromium oxide surface (the outer layer of stainless steel) was measured by reflectometry. The deposition was studied under controlled flow conditions by using a stagnation point flow configuration. The

  13. ELECTROCATALYSIS ON SURFACES MODIFIED BY METAL MONOLAYERS DEPOSITED AT UNDERPOTENTIALS.

    Energy Technology Data Exchange (ETDEWEB)

    ADZIC,R.

    2000-12-01

    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  14. Molecular weight evaluation of poly-dimethylsiloxane on solid surfaces using silver deposition/TOF-SIMS

    Science.gov (United States)

    Inoue, Masae; Murase, Atsushi

    2004-06-01

    Molecular ions include information about end groups, functional groups and molecular weight. A method for directly detecting this in the high-mass region of the spectrum (>1000 amu) from poly-dimethylsiloxane (PDMS) on a solid surface was investigated. It was found that a TOF-SIMS analysis of silver-deposited surfaces (silver deposition/TOF-SIMS) is useful for this purpose. Two methods for silver deposition, the diode sputtering method and the vacuum evaporation coating method, were tried. The former required the sample to be cooled so as to prevent the damage of the sample surface due to thermal oxidation; the latter caused no damage to sample surfaces at room temperature. Using silver deposition/TOF-SIMS analysis, silver-cationized quasi-molecular ions were clearly detected from PDMS on solid surfaces and their images were observed without the interference of deposited silver. By applying to the analysis of paint defects, etc., it was confirmed that this technique is useful to analyze practical industrial materials. Silver-cationized ions were detected not only from PDMS, but also from other organic materials, such as some kinds of lubricant additives and fluorine oils on solid surfaces. Therefore, silver deposition/TOF-SIMS was proved to be useful for the analysis of thin substances on solid surfaces.

  15. Deposition of RuO 4 on various surfaces in a nuclear reactor containment

    Science.gov (United States)

    Holm, Joachim; Glänneskog, Henrik; Ekberg, Christian

    2009-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium can be released from the nuclear fuel in the form of ruthenium tetroxide. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. The aim of this work was to investigate the deposition of gaseous ruthenium tetroxide on aluminium, copper and zinc, which all appear in relatively large amounts in reactor containment. The experiments show that ruthenium tetroxide is deposited on all the metal surfaces, especially on the copper and zinc surfaces. A large deposition of ruthenium tetroxide also appeared on the relatively inert glass surfaces in the experimental set-ups. The analyses of the different surfaces, with several analytical methods, showed that the form of deposited ruthenium was mainly ruthenium dioxide.

  16. Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis?

    Science.gov (United States)

    Emsbo, Poul; McLaughlin, Patrick I.; Breit, George N.; du Bray, Edward A.; Koenig, Alan E.

    2015-01-01

    The critical role of rare earth elements (REEs), particularly heavy REEs (HREEs), in high-tech industries has created a surge in demand that is quickly outstripping known global supply and has triggered a worldwide scramble to discover new sources. The chemical analysis of 23 sedimentary phosphate deposits (phosphorites) in the United States demonstrates that they are significantly enriched in REEs. Leaching experiments using dilute H2SO4 and HCl, extracted nearly 100% of their total REE content and show that the extraction of REEs from phosphorites is not subject to the many technological and environmental challenges that vex the exploitation of many identified REE deposits. Our data suggest that phosphate rock currently mined in the United States has the potential to produce a significant proportion of the world's REE demand as a byproduct. Importantly, the size and concentration of HREEs in some unmined phosphorites dwarf the world's richest REE deposits. Secular variation in phosphate REE contents identifies geologic time periods favorable for the formation of currently unrecognized high-REE phosphates. The extraordinary endowment, combined with the ease of REE extraction, indicates that such phosphorites might be considered as a primary source of REEs with the potential to resolve the global REE (particularly for HREE) supply shortage.

  17. Rare Earth Element Behaviour in Apatite from the Olympic Dam Cu–U–Au–Ag Deposit, South Australia

    Directory of Open Access Journals (Sweden)

    Sasha Krneta

    2017-08-01

    Full Text Available Apatite is a common magmatic accessory in the intrusive rocks hosting the giant ~1590 Ma Olympic Dam (OD iron-oxide copper gold (IOCG ore system, South Australia. Moreover, hydrothermal apatite is a locally abundant mineral throughout the altered and mineralized rocks within and enclosing the deposit. Based on compositional data for zoned apatite, we evaluate whether changes in the morphology and the rare earth element and Y (REY chemistry of apatite can be used to constrain the fluid evolution from early to late hydrothermal stages at OD. The ~1.6 Ga Roxby Downs granite (RDG, host to the OD deposit, contains apatite as a magmatic accessory, locally in the high concentrations associated with mafic enclaves. Magmatic apatite commonly contains REY-poor cores and REY-enriched margins. The cores display a light rare earth element (LREE-enriched chondrite-normalized fractionation pattern with a strong negative Eu anomaly. In contrast, later hydrothermal apatite, confined to samples where magmatic apatite has been obliterated due to advanced hematite-sericite alteration, displays a conspicuous, convex, middle rare earth element (MREE-enriched pattern with a weak negative Eu anomaly. Such grains contain abundant inclusions of florencite and sericite. Within high-grade bornite ores from the deposit, apatite displays an extremely highly MREE-enriched chondrite-normalized fractionation trend with a positive Eu anomaly. Concentrations of U and Th in apatite mimic the behaviour of ∑REY and are richest in magmatic apatite hosted by RDG and the hydrothermal rims surrounding them. The shift from characteristic LREE-enriched magmatic and early hydrothermal apatite to later hydrothermal apatite displaying marked MREE-enriched trends (with lower U, Th, Pb and ∑REY concentrations reflects the magmatic to hydrothermal transition. Additionally, the strong positive Eu anomaly in the MREE-enriched trends of apatite in high-grade bornite ores are attributable to

  18. Bacterial Cell Surface Adsorption of Rare Earth Elements

    Science.gov (United States)

    Jiao, Y.; Park, D.; Reed, D.; Fujita, Y.; Yung, M.; Anderko, A.; Eslamimanesh, A.

    2015-12-01

    Rare earth elements (REE) play a critical role in many emerging clean energy technologies, including high-power magnets, wind turbines, solar panels, hybrid/electric vehicle batteries and lamp phosphors. In order to sustain demand for such technologies given current domestic REE shortages, there is a need to develop new approaches for ore processing/refining and recycling of REE-containing materials. To this end, we have developed a microbially-mediated bioadsorption strategy with application towards enrichment of REE from complex mixtures. Specifically, the bacterium Caulobacter crescentus was genetically engineered to display lanthanide binding tags (LBTs), short peptides that possess high affinity and specificity for rare earth elements, on its cell surface S-layer protein. Under optimal conditions, LBT-displayed cells adsorbed greater than 5-fold more REE than control cells lacking LBTs. Competition binding experiments with a selection of REEs demonstrated that our engineered cells could facilitate separation of light- from heavy- REE. Importantly, binding of REE onto our engineered strains was much more favorable compared to non-REE metals. Finally, REE bound to the cell surface could be stripped off using citrate, providing an effective and non-toxic REE recovery method. Together, this data highlights the potential of our approach for selective REE enrichment from REE containing mixtures.

  19. Deposition and characterization of noble metal onto surfaces of 304l stainless steel

    International Nuclear Information System (INIS)

    Contreras R, A.; Arganis J, C. R.; Aguilar T, J. A.; Medina A, A. L.

    2010-10-01

    Noble metal chemical addition (NMCA) plus hydrogen water chemistry is an industry-wide accepted approach for potential intergranular stress corrosion cracking mitigation of BWR internals components. NMCA is a method of applying noble metal onto BWR internals surfaces using reactor water as the transport medium that causes the deposition of noble metal from the liquid onto surfaces. In this work different platinum concentration solutions were deposited onto pre-oxidized surfaces of 304l steel at 180 C during 48 hr in an autoclave. In order to simulate the zinc water conditions, deposits of Zn and Pt-Zn were also carried out. The solutions used to obtain the deposits were: sodium hexahydroxyplatinate (IV), zinc nitrate hydrate and zinc oxide. The deposits obtained were characterized by scanning electron microscopy and X-ray diffraction. Finally, the electrochemical corrosion potential of pre-oxidized samples with Pt deposit were obtained and compared with the electrochemical corrosion potential of only pre-oxidized samples. (Author)

  20. Rare earth silicide nanowires on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Martina

    2008-11-10

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti {gamma} point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi{sub 2}-monolayer and the Dy{sub 3}Si{sub 5}-multilayer on the Si(111) surface are investigated in comparison to the known ErSi{sub 2}/Si(111) and Er{sub 3}Si{sub 5}/Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the (vector)k {sub parallel} space is elliptical at the anti M points, while the hole pocket at the anti {gamma} point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas

  1. Rare Earth Elements (REE Deposits Associated with Great Plain Margin Deposits (Alkaline-Related, Southwestern United States and Eastern Mexico

    Directory of Open Access Journals (Sweden)

    Virginia T. McLemore

    2018-01-01

    Full Text Available W.G. Lindgren in 1933 first noted that a belt of alkaline-igneous rocks extends along the eastern edge of the Rocky Mountains and Basin and Range provinces from Alaska and British Columbia southward into New Mexico, Trans-Pecos Texas, and eastern Mexico and that these rocks contain relatively large quantities of important commodities such as, gold, fluorine, zirconium, rare earth elements (REE, tellurium, gallium, and other critical elements. In New Mexico, these deposits were called Great Plain Margin (GPM deposits, because this north-south belt of alkaline-igneous rocks roughly coincides with crustal thickening along the margin between the Great Plains physiographic province with the Basin and Range (including the Rio Grande rift and Rocky Mountains physiographic provinces, which extends into Trans-Pecos Texas and eastern Mexico. Since 1996, only minor exploration and development of these deposits in New Mexico, Texas, and eastern Mexico has occurred because of low commodity prices, permitting issues, and environmental concerns. However, as the current demand for gold and critical elements, such as REE and tellurium has increased, new exploration programs have encouraged additional research on the geology of these deposits. The lack of abundant quartz in these systems results in these deposits being less resistant to erosion, being covered, and not as well exposed as other types of quartz-rich deposits, therefore additional undiscovered alkaline-related gold and REE deposits are likely in these areas. Deposits of Th-REE-fluorite (±U, Nb epithermal veins and breccias are found in the several GPM districts, but typically do not contain significant gold, although trace amounts of gold are found in most GPM districts. Gold-rich deposits in these districts tend to have moderate to low REE and anomalously high tungsten and sporadic amounts of tellurium. Carbonatites are only found in New Mexico and Mexico. The diversity of igneous rocks, including

  2. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  3. Rare-earth elements

    Science.gov (United States)

    Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare in terms of average crustal abundance, the concentrated deposits of REEs are limited in number.Because of their unusual physical and chemical properties, the REEs have diverse defense, energy, industrial, and military technology applications. The glass industry is the leading consumer of REE raw materials, which are used for glass polishing and as additives that provide color and special optical properties to the glass. Lanthanum-based catalysts are used in petroleum refining, and cerium-based catalysts are used in automotive catalytic converters. The use of REEs in magnets is a rapidly increasing application. Neodymium-iron-boron magnets, which are the strongest known type of magnets, are used when space and weight are restrictions. Nickel-metal hydride batteries use anodes made of a lanthanum-based alloys.China, which has led the world production of REEs for decades, accounted for more than 90 percent of global production and supply, on average, during the past decade. Citing a need to retain its limited REE resources to meet domestic requirements as well as concerns about the environmental effects of mining, China began placing restrictions on the supply of REEs in 2010 through the imposition of quotas, licenses, and taxes. As a result, the global rare-earth industry has increased its stockpiling of REEs; explored for deposits outside of China; and promoted new efforts to conserve, recycle, and substitute for REEs. New mine production began at Mount Weld in Western Australia, and numerous other exploration and development projects noted in this chapter are ongoing throughout the world.The REE-bearing minerals are

  4. Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.

    Science.gov (United States)

    Kang, In-Je; Joa, Sang-Beom; Lee, Heon-Ju

    2013-11-01

    To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.

  5. Chemical Controls of Ozone Dry Deposition to the Sea Surface Microlayer

    Science.gov (United States)

    Carpenter, L.; Chance, R.; Tinel, L.; Saint, A.; Sherwen, T.; Loades, D.; Evans, M. J.; Boxhall, P.; Hamilton, J.; Stolle, C.; Wurl, O.; Ribas-Ribas, M.; Pereira, R.

    2017-12-01

    Oceanic dry deposition of atmospheric ozone (O3) is both the largest and most uncertain O3 depositional sink, and is widely acknowledged to be controlled largely by chemical reactions in the sea surface microlayer (SML) involving iodide (I-) and dissolved organic material (DOM). These reactions not only determine how quickly O3 can be removed from the atmosphere, but also result in emissions of trace gases including volatile organic compounds and may constitute a source of secondary organic aerosols to the marine atmosphere. Iodide concentrations at the sea surface vary by approximately an order of magnitude spatially, leading to more than fivefold variation in ozone deposition velocities (and volatile iodine fluxes). Sea-surface temperature is a reasonable predictor of [I-], however two recent parameterisations for surface I- differ by a factor of two at low latitudes. The nature and reactivity of marine DOM to O3 is almost completely unknown, although studies have suggested approximately equivalent chemical control of I- and DOM on ozone deposition. Here we present substantial new measurements of oceanic I- in both bulk seawater and the overlying SML, and show improved estimates of the global sea surface iodide distribution. We also present analyses of water-soluble DOM isolated from the SML and bulk seawater, and corresponding laboratory studies of ozone uptake to bulk and SML seawater, with the aim of characterizing the reactivity of O3 towards marine DOM.

  6. Spatio-selective surface modification of glass assisted by laser-induced deposition of gold nanoparticles

    International Nuclear Information System (INIS)

    Takahashi, Hironobu; Niidome, Yasuro; Hisanabe, Hideyuki; Kuroiwa, Keita; Kimizuka, Nobuo; Yamada, Sunao

    2006-01-01

    Using pulsed laser irradiation (532 nm), dodecanethiol-capped gold nanoparticles (DT-Au) were deposited on the laser-irradiated region of a hydrophobic glass substrate modified with dimethyloctadecylchlorosilane (DMOS). After removal of deposited DT-Au, the laser-deposited region on the substrate was hydrophilic, as verified by static water contact angles. X-ray photoelectron spectroscopy suggested that the naked glass surface was not exposed at the hydrophilic region. Immersion of the substrate into gold nanorod (NR) solution selectively immobilized NRs on the hydrophilic surface via electrostatic interactions, indicating that the hydrophilic region was an anionic surface. From these results, it is expected that some immobilized DMOS groups on the laser-irradiated region of the substrate were oxidized during DT-Au deposition and fragmentation of the deposited DT-Au

  7. Geochemical characteristics of trace and rare earth elements in Xiangyangping uranium deposit of Guangxi

    International Nuclear Information System (INIS)

    Chen Qi; Xiao Jianjun; Fan Liting; Wen Cheng

    2013-01-01

    The trace and rare earth elements analysis were performed on two kinds ore-hosting rocks (Xiangcaoping granite and Douzhashan granite), alternated cataclastic granite and uranium ores in Xiangyangping uranium deposit of Guangxi. The results show that both of the two kinds granites display similar maturity features of highly evolved crust with the enrichment of Rb, Th, U, Ta and Pb, the depletion of Ba and Sr, high Rb/Sr and low Nb/Ta ratio, moderately rich light rare earth elements, strong negative Eu anomaly. Moreover, Douzhashan granite have higher Rb/Sr ratio and U content, which indicate it experienced more sufficient magma evolution and have higher potential of uranium source. There are almost no change in the content of trace and rare earth elements and distribution patterns during chloritization, hydromicazation and potash feldspathization of granite, but there occurred uranium enrichment and mineralization and REE remobilization while hematitization was superposed. This suggest that hematitization is most closely correlated with uranium mineralization in the working area. Because Most hematitization cataclastic rocks and uranium ore display similar geochemical characteristics to Douzhashan granite with relative high Rb/Sr and low Nb/Ta, Zr/Hf, ΣREE, LREE/HREE ration, and the trace and rare earth elements content and distribution patterns of some Xiangcaoping hematitization cataclastic rocks are between the two kinds of granite, therefore it can be concluded that the mineralization materials were mainly from Douzhashan granite and partly from Xiangcaoping granite. (authors)

  8. Uniform Distribution of Yttrium and Heavy Rare Earth Elements in Round Top Mountain Rhyolite Deposit , Sierra Blanca Texas, USA: Data, Significance, and Origin

    Science.gov (United States)

    Pingitore, N. E., Jr.; Clague, J. W.; Gorski, D.

    2014-12-01

    The Round Top Mountain peraluminous rhyolite, exposed at the surface in Sierra Blanca, Hudspeth County, west Texas, USA, is enriched in yttrium and heavy rare earth elements (YHREEs). Other potentially valuable elements in the deposit include Be, Li, U, Th, Sn, F, Nb, and Ta. Texas Rare Earth Resources Corp. proposes to extract the YHREEs from the host mineral variety yttrofluorite by inexpensive heap leaching with dilute sulfuric acid, which also releases some of the Be, Li, U, F, and Th from other soluble minor minerals. Data: Feldspars and quartz comprise 90-95% of the rhyolite, with pheonocrysts of up to 250 microns set in an aphanitic matrix that hosts the typically sub-micron target yttrofluorite. Reverse circulation cuttings from some 100 drill holes, two drill cores, and outcrop and trench observations suggest striking physical homogeneity through this billion-plus ton surface-exposed laccolith, about 1200 feet high and a mile in diameter (375 x 1600 m). Gray to pink, and other minor hues, color variation derives from magnetite—hematite redox reaction. Plots of Y, 13 REEs, U, Th, and Nb analyses from over 1500 samples collected from 64 drill holes (color codes in figure) exhibit remarkably little variation in the concentration of these elements with geographic position or depth within the laccolith. Importance: Uniform mineralization grades help insure against the mining production surprises often associated with vein deposits and heterogeneous open pit deposits. At Round Top, mine feedstock can be relatively constant over the life of the mine (multiple decades), so the mechanical mining process can be optimized early on and not need expensive alterations later. Likewise, the chemical and physical parameters of the heap leach can be perfected. The sensitive and expensive process of extraction of elements and element groups from the pregnant leach solution and purification also can be optimized. Origin: The remarkable homogeneity of the YHREE distribution

  9. Computational study of platinum nanoparticle deposition on the surfaces of crevices

    Energy Technology Data Exchange (ETDEWEB)

    Gu, H.F., E-mail: guhaifeng@hrbeu.edu.cn [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); College of Nuclear Science and Technology, Harbin Engineering University, 150001 Harbin (China); Niceno, B. [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Grundler, P.V. [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Sharabi, M. [Laboratory for Thermal-Hydraulics, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Mechanical Power Engineering Department, Mansoura University, 35516 Mansoura (Egypt); Veleva, L. [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Hot Laboratory Division, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Ritter, S. [Laboratory for Nuclear Materials, Nuclear Energy and Safety Research Department, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2016-08-01

    Highlights: • Nano-particle deposition on the surface of crevices is studied using RANS simulation. • Model results are validated by comparing with experimental data. • Behaviours and mechanisms of particle deposition in different crevices are analyzed. • RANS models with Lagrangian particle tracking method are evaluated and discussed. - Abstract: A well-known issue in boiling water reactors (BWR), which can threaten their structural integrity, is stress corrosion cracking (SCC) of reactor internals and recirculation pipes due to the accumulation of oxidizing radiolysis products of water. Currently, many operators of BWRs use combined platinum particle and hydrogen injection into the reactor water to mitigate SCC by lowering the electrochemical corrosion potential. It is essential for efficient mitigation that Pt particles reach all water-wetted surfaces, including crevices and cracks, which are also reached by the oxidizing species. In this study, a set of crevices with different widths and orientations with respect to the fluid flow are investigated using numerical simulation tools and compared against experimental findings. The Reynolds-Averaged Navier–Stokes models are used to compute the mean turbulent flow quantities in three-dimensional crevices, and the discrete random walk model is used to evaluate the effect of velocity fluctuations on particle movement. The Lagrangian particle tracking analysis is performed and the average concentration of deposited particles on the surface of crevices is evaluated and compared with experimental results. The results show that Reynolds stress model combined with enhanced wall treatment provides a more accurate prediction of particle concentration and distribution on the surface of crevices than SST k–ω turbulence model, which was expected, owing to the anisotropic nature of the Reynolds stress model. Furthermore, analyses on the particle deposition shows that three different mechanisms play important roles in

  10. Low-energy ion-beam deposition apparatus equipped with surface analysis system

    International Nuclear Information System (INIS)

    Ohno, Hideki; Aoki, Yasushi; Nagai, Siro.

    1994-10-01

    A sophisticated apparatus for low energy ion beam deposition (IBD) was installed at Takasaki Radiation Chemistry Research Establishment of JAERI in March 1991. The apparatus is composed of an IBD system and a real time/in-situ surface analysis system for diagnosing deposited thin films. The IBD system provides various kinds of low energy ion down to 10 eV with current density of 10 μA/cm 2 and irradiation area of 15x15 mm 2 . The surface analysis system consists of RHEED, AES, ISS and SIMS. This report describes the characteristics and the operation procedure of the apparatus together with some experimental results on depositing thin carbon films. (author)

  11. Deposition of fine and ultrafine particles on indoor surface materials

    DEFF Research Database (Denmark)

    Afshari, Alireza; Reinhold, Claus

    2008-01-01

    -scale test chamber. Experiments took place in a 32 m3 chamber with walls and ceiling made of glass. Prior to each experiment the chamber was flushed with outdoor air to reach an initial particle concentration typical of indoor air in buildings with natural ventilation. The decay of particle concentrations...... The aim of this study was the experimental determination of particle deposition for both different particle size fractions and different indoor surface materials. The selected surface materials were glass, gypsum board, carpet, and curtain. These materials were tested vertically in a full...... was monitored. Seven particle size fractions were studied. These comprised ultrafine and fine particles. Deposition was higher on carpet and curtain than on glass and gypsum board. Particles ranging from 0.3 to 0.5 µm had the lowest deposition. This fraction also has the highest penetration and its indoor...

  12. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  13. Effect of metal surface composition on deposition behavior of stainless steel component dissolved in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1988-01-01

    Deposition behavior of corrosion products has been investigated to clarify the effect of metal surface composition on the deposition process in liquid sodium. For the study a sodium loop made of Type 304 stainless steel was employed. Deposition test pieces, which were Type 304 stainless steel, iron, nickel or Inconel 718, were immersed in the sodium pool of the test pot. Corrosion test pieces, which were Type 304 stainless steel, 50 at% Fe-50 at%Mn and Inconel 718, were set in a heater pin assembly along the axial direction of the heater pin surface. Sodium temperatures at the outlet and inlet of the heater pin assembly were controlled at 943 and 833 K, respectively. Sodium was purified at a cold trap temperature of 393 K and the deposition test was carried out for 4.3 x 10 2 - 2.9 x 10 4 ks. Several crystallized particles were observed on the surface of the deposition test pieces. The particles had compositions and crystal structures which depended on both the composition of deposition test pieces and the concentration of iron and manganese in sodium. Only iron-rich particles having a polyhedral shape deposited on the iron surface. Two types of particles, iron-rich α-phase and γ-phase with nearly the same composition as stainless steel, were deposited on Type 304 stainless steel. A Ni-Mn alloy was deposited on the nickel surface in the case of a higher concentration of manganese in sodium. On the other hand, for a lower manganese concentration, a Fe-Ni alloy was precipitated on the nickel surface. Particles deposited on nickel had a γ-phase crystal structure similar to the deposition test piece of nickel. Hence, the deposition process can be explained as follows: Corrosion products in liquid sodium were deposited on the metal surface by forming a metal alloy selectively with elements of the metal surface. (author)

  14. Rare earth industry in India

    International Nuclear Information System (INIS)

    Singh, D.S.

    2016-01-01

    Rare Earths (RE) comprises of 17 elements i.e. elements from atomic No. 57-71 (lanthanide series) along with yttrium (atomic No. 39) and scandium (atomic No. 21). They exhibit special electronic, magnetic, optical and catalytic properties. The first 7 elements in the lanthanide series from atomic Nos. 57 to 63 (La to Eu) are called Light Rare Earths (LRE), while the remaining elements from atomic Nos. 64 to 71 (Gd to Lu) are grouped as Heavy Rare Earths (HRE). Scandium and Yttrium have properties similar to HRE. The concentration of the REs in the earth's crust is as high as some other elements including that of copper. The only difference is that REs do not occur as separate minerals amenable for easy exploration and mining and are widely distributed across the earth's surface, hence they are called as REs. Resources In India, monazite has been the principal source of RE. It occurs in association with other heavy minerals, such as ilmenite, rutile, zircon etc. in the beach sands and inland placer deposits. The monazite content in this assemblage varies from negligible quantity to as high as 5%. As per AMD resource estimation, the reported resource of monazite in India is about 11.93 million tons which corresponds with about 6.9 million tons of RE oxides. Although India possesses large deposits of monazite, the heavier RE are not present in sufficient quantities in this mineral. (author)

  15. Deposition of RuO{sub 4} on various surfaces in a nuclear reactor containment

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Joachim, E-mail: joachim.holm@chalmers.s [Department of Nuclear Chemistry, Chalmers University of Technology, Se-412 96 Gothenburg (Sweden); Glaenneskog, Henrik [Ringhals AB, SE-430 22, Vaeroebacka (Sweden); Ekberg, Christian [Department of Nuclear Chemistry, Chalmers University of Technology, Se-412 96 Gothenburg (Sweden)

    2009-07-01

    During a severe nuclear reactor accident with air ingress, ruthenium can be released from the nuclear fuel in the form of ruthenium tetroxide. Hence, it is important to investigate how the reactor containment is able to reduce the source term of ruthenium. The aim of this work was to investigate the deposition of gaseous ruthenium tetroxide on aluminium, copper and zinc, which all appear in relatively large amounts in reactor containment. The experiments show that ruthenium tetroxide is deposited on all the metal surfaces, especially on the copper and zinc surfaces. A large deposition of ruthenium tetroxide also appeared on the relatively inert glass surfaces in the experimental set-ups. The analyses of the different surfaces, with several analytical methods, showed that the form of deposited ruthenium was mainly ruthenium dioxide.

  16. Radionuclide deposits on heat transfer surfaces in a circumt with dissociating N2O4 coolant

    International Nuclear Information System (INIS)

    Dolgov, V.M.; Katanaev, A.O.; Komissarov, F.D.

    1984-01-01

    Radionuclides deposits on heat transfer surfaces of a circuit with dissociating coolant are studied. The areas of preferential deposition of 54 Mn, 51 Cr, 134 Cs and their distribution along the heating and cooling surfaces are determined. The comparison of the obtained data on the nuclide and chemical compositions of the deposits in the areas of N 2 O 4 coolant heating and cooling shows that 54 Mn, 51 Cr, 134 Cs deposit preferentially on heat transfer surfaces in the area of the coolant heating. Fixed and movable deposits consists of the structural material oxides. The quantity of radionuclides in the deposits on the surfaces of heat transfer tubes in the area of cooling decreases with the coolant temperature drop

  17. Guided selective deposition of nanoparticles by tuning of the surface potential

    Science.gov (United States)

    Eklöf, J.; Stolaś, A.; Herzberg, M.; Pekkari, A.; Tebikachew, B.; Gschneidtner, T.; Lara-Avila, S.; Hassenkam, T.; Moth-Poulsen, K.

    2017-07-01

    Guided deposition of nanoparticles onto different substrates is of great importance for a variety of applications such as biosensing, targeted cancer therapy, anti-bacterial coatings and single molecular electronics. It is therefore important to gain an understanding of what parameters are involved in the deposition of nanoparticles. In this work we have deposited 60 nm, negatively charged, citrate stabilized gold nanoparticles onto microstructures consisting of six different materials, (vanadium (V), silicon dioxide (SiO2), gold (Au), aluminum (Al), copper (Cu) and nickel (Ni)). The samples have then been investigated by scanning electron microscopy to extract the particle density. The surface potential was calculated from the measured surface charge density maps measured by atomic force microscopy while the samples were submerged in a KCl water solution. These values were compared with literature values of the isoelectric points (IEP) of different oxides formed on the metals in an ambient environment. According to measurements, Al had the highest surface potential followed by Ni and Cu. The same trend was observed for the nanoparticle densities. No particles were found on V, SiO2 and Au. The literature values of the IEP showed a different trend compared to the surface potential measurements concluding that IEP is not a reliable parameter for the prediction of NP deposition. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  18. Effect of strontium tantalate surface texture on nickel nanoparticle dispersion by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Compean-González, C.L. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Arredondo-Torres, V.M. [Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan #173, Col. Matamoros, Morelia, Michoacán C.P. 58240 (Mexico); Zarazúa-Morin, M.E. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico); Figueroa-Torres, M.Z., E-mail: m.zyzlila@gmail.com [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ecomateriales y Energía, Av. Universidad s/n, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León C.P. 66451 (Mexico)

    2015-09-15

    Highlights: • Efficient short-time procedure for nickel nanoparticles dispersion by electroless. • Nanoparticles are spherical in shape with an average size of 15 nm. • Influence of surface texture on deposition temperature and time was observed. • Nickel deposition can be done below 50 °C. - Abstract: The present work studies the effect of smooth and porous texture of Sr{sub 2}Ta{sub 2}O{sub 7} on its surface modification with nickel nanoparticles through electroless deposition technique. The influence of temperature to control Ni nanoparticles loading amount and dispersion were analyzed. Nitrogen adsorption isotherms were used to examine surface texture characteristics. The morphology was observed by scanning electron microscopy (MEB) equipped with an energy dispersive spectrometry system (EDS), which was used to determine the amount of deposited Ni. The material with smooth texture (SMT) consists of big agglomerates of semispherical shape particles of 400 nm. Whilst the porous texture (PRT) exhibit a pore-wall formed of needles shape particles of around 200 nm in size. Results indicated that texture characteristics strongly influence the deposition reaction rate; for PRT oxide, Ni deposition can be done from 20 °C while for SMT oxide deposition begins at 40 °C. Analysis of Sr{sub 2}Ta{sub 2}O{sub 7} surface indicated that in both textures, Ni nanoparticles with spherical shape in the range of 10–20 nm were obtained.

  19. Environmental and geochemical assessment of surface sediments on irshansk ilmenite deposit area

    Directory of Open Access Journals (Sweden)

    Наталия Олеговна Крюченко

    2015-03-01

    Full Text Available It is revealed the problem of pollution of surface sediments of Irshansk ilmenite deposit area of various chemical elements hazard class (Mn, V, Ba, Ni, Co, Cr, Mo, Cu, Pb, Zn. It is determined its average content in surface sediments of various functional areas (forest and agricultural land, flood deposits, reclaimed land, calculated geochemical criteria, so given ecological and geochemical assessment of area

  20. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  1. Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications

    Directory of Open Access Journals (Sweden)

    Hin On Chu

    2017-02-01

    Full Text Available Surface Enhanced Raman Spectroscopy presents a rapid, non-destructive method to identify chemical and biological samples with up to single molecule sensitivity. Since its discovery in 1974, the technique has become an intense field of interdisciplinary research, typically generating >2000 publications per year since 2011. The technique relies on the localised surface plasmon resonance phenomenon, where incident light can couple with plasmons at the interface that result in the generation of an intense electric field. This field can propagate from the surface from the metal-dielectric interface, so molecules within proximity will experience more intense Raman scattering. Localised surface plasmon resonance wavelength is determined by a number of factors, such as size, geometry and material. Due to the requirements of the surface optical response, Ag and Au are typical metals used for surface enhanced Raman applications. These metals then need to have nano features that improve the localised surface plasmon resonance, several variants of these substrates exist; surfaces can range from nanoparticles in a suspension, electrochemically roughened electrodes to metal nanostructures on a substrate. The latter will be the focus of this review, particularly reviewing substrates made by oblique angle deposition. Oblique angle deposition is the technique of growing thin films so that the material flux is not normal to the surface. Films grown in this fashion will possess nanostructures, due to the atomic self-shadowing effect, that are dependent mainly on the deposition angle. Recent developments, applications and highlights of surface enhanced Raman scattering substrates made by oblique angle deposition will be reviewed.

  2. FE-SEM, FIB and TEM Study of Surface Deposits of Apollo 15 Green Glass Volcanic Spherules

    Science.gov (United States)

    Ross, Daniel K.; Thomas-Keprta, K. L.; Rahman, Z.; Wentworth, S. J.; McKay, D. S.

    2011-01-01

    Surface deposits on lunar pyroclastic green (Apollo 15) and orange (Apollo 17) glass spherules have been attributed to condensation from the gas clouds that accompanied fire-fountain eruptions. The fire fountains cast molten lava high above the lunar surface and the silicate melt droplets quenched before landing producing the glass beads. Early investigations showed that these deposits are rich in sulfur and zinc. The deposits are extremely fine-grained and thin, so that it was never possible to determine their chemical compositions cleanly by SEM/EDX or electron probe x-ray analysis because most of the excited volume was in the under-lying silicate glass. We are investigating the surface deposits by TEM, using focused ion beam (FIB) microscopy to extract and thin the surface deposits. Here we report on chemical mapping of a FIB section of surface deposits of an Apollo green glass bead 15401using the ultra-high resolution JEOL 2500 STEM located at NASA Johnson Space Center.

  3. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    International Nuclear Information System (INIS)

    Xu Juan; Ding Gang; Li Jinlu; Yang Shenhui; Fang Bisong; Sun Hongchen; Zhou Yanmin

    2010-01-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  4. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Xu Juan, E-mail: doctorxue@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China) and Stomatological Hospital, Urumqi, Xinjiang (China); Ding Gang [Department of Stomatology, Yidu Central Hospital, Weifang, Shandong (China); Capital Medical University School of Stomatology, Beijing (China); Li Jinlu; Yang Shenhui; Fang Bisong [Capital Medical University School of Stomatology, Beijing (China); Sun Hongchen, E-mail: hcsun@jlu.edu.cn [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China); Zhou Yanmin, E-mail: zhouym62@126.com [Implant Center, School of Stomatology Jilin University, Changchun, Jilin (China)

    2010-10-01

    While titanium (Ti) is a commonly used dental implant material with advantageous biocompatible and mechanical properties, native Ti surfaces do not have the ability to prevent bacterial colonization. The objective of this study was to evaluate the chemical composition and bacterial adhesive properties of zinc (Zn) ion implanted and deposited Ti surfaces (Zn-PIIID-Ti) as potential dental implant materials. Surfaces of pure Ti (cp-Ti) were modified with increasing concentrations of Zn using plasma immersion ion implantation and deposition (PIIID), and elemental surface compositions were characterized by X-ray photoelectron spectrometry (XPS). To evaluate bacterial responses, Streptococcus mutans were seeded onto the modifiedTi surfaces for 48 h and subsequently observed by scanning electron microscopy. Relative numbers of bacteria on each surface were assessed by collecting the adhered bacteria, reculturing and counting colony forming units after 48 h on bacterial grade plates. Ti, oxygen and carbon elements were detected on all surfaces by XPS. Increased Zn signals were detected on Zn-PIIID-Ti surfaces, correlating with an increase of Zn-deposition time. Substantial numbers of S. mutans adhered to cp-Ti samples, whereas bacterial adhesion on Zn-PIIID-Ti surfaces signficantly decreased as the Zn concentration increased (p < 0.01). In conclusion, PIIID can successfully introduce Zn onto a Ti surface, forming a modified surface layer bearing Zn ions that consequently deter adhesion of S. mutans, a common bacterium in the oral environment.

  5. TEXTILE SURFACE MODIFICATION BY PYHSICAL VAPOR DEPOSITION – (REVIEW

    Directory of Open Access Journals (Sweden)

    YUCE Ismail

    2017-05-01

    Full Text Available Textile products are used in various branches of the industry from automotive to space products. Textiles produced for industrial use are generally referred to as technical textiles. Technical textiles are nowadays applied to several areas including transportation, medicine, agriculture, protection, sports, packaging, civil engineering and industry. There are rapid developments in the types of materials used in technical textiles. Therefore, modification and functionalization of textile surfaces is becoming more crucial. The improvements of the properties such as anti-bacterial properties, fire resistivity, UV radiation resistance, electrical conductivity, self cleaning, and super hydrophobic, is getting more concern with respect to developments in textile engineering. The properties of textile surfaces are closely related to the fiber structure, the differences in the polymer composition, the fiber mixture ratio, and the physical and chemical processes applied. Textile surface modifications can be examined in four groups under the name mechanical, chemical, burning and plasma. Surface modifications are made to improve the functionality of textile products. Textile surface modifications affect the properties of the products such as softness, adhesion and wettability. The purpose of this work is to reveal varieties of vapor deposition modifications to improve functionality. For this purpose, the pyhsical vapor deposition methods, their affects on textile products and their end-uses will be reviewed.

  6. Electrical properties of polyimides containing a near-surface deposit of silver

    Science.gov (United States)

    Rancourt, J. D.; Porta, G. M.; Taylor, L. T.

    1987-01-01

    Films containing a surface or near-surface deposit of palladium, gold or copper metal as well as tin, cobalt, copper, or lithium oxides have been prepared by dissolving appropriate metal salts into poly(amide-acid)/N,N-dimethylacetamide solutions and curing the solvent cast films to temperatures up to 300 C. This preparation technique has been extended to evaluate the thermal, spectroscopic, and electrical characteristics of condensation polyimide films modified with silver nitrate. A near-surface deposit of metallic silver results but the reflective surface has high electrical resistivity (sheet resistivity) due to a polymer coating or overlayer above the metal. Details pertaining to the silver nitrate modified condensation polyimides are presented. Also, the applicability of the structural model and electrical model previously proposed for the cobalt oxide system are assessed.

  7. Studies of mineralogy and geochemistry of Rare Earth Elements in permo-Triassic Bauxite deposit, Northeast of Bukan, North West of Iran

    International Nuclear Information System (INIS)

    Abedini, A.; Calagari, A. A.; Hadjalilu, B.; Jahangiri, A.

    2008-01-01

    Bauxite deposit of Permo-Triassic age in northeast of Bukan was developed stratiformly along the boundary between Ruteh and Elika formations, and includes four distinct rock units. This deposit was affected by tectonic and morphological processes. Mineralogical and geochemical investigations showed that during weathering processes, two mechanisms of ferrugenization and deferrugenization played crucial role in formation of minerals such as Diaspora, boehmite, hematite, goethite, kaolinite, pyrophyllite, clinochlore, illite, montmorillonite, anatase, rutile, albite, sanidine, quartz, and calcite in this deposit. By taking notice of field evidence and of mineralogical and geochemical data, the basalts (whose remnants are still present along the contact of this deposit with carbonate bedrock) are the potential parent rock of this deposit. The distribution pattern of rare earth elements (normalized to chondrite and basaltic parent rock) along with anomaly variations of Eu, Ce, and (La/Yb) N indicates differentiation of LREEs from HREEs during bauxitization processes. Further geochemical considerations indicate that the concentrations of LREEs were occurred by hematite, goethite, manganese oxides, cerianite, and secondary phosphates (rhabdophane, vitusite, gorceixite, monazite) and of HREEs by clay minerals; rutile, anatase, zircon, euxenite, and fergusonite. Incorporation of the results obtained from mineralogical and geochemical investigations suggests that in addition to factors such as p H of weathering solutions, ionic potential, composition of the parent rock, and fixation by residual minerals, adsorption processes also played crucial role in enrichment of rare earth elements during moderate to intense lateritization in the study area

  8. Surface and corrosion characteristics of carbon plasma implanted and deposited nickel-titanium alloy

    International Nuclear Information System (INIS)

    Poon, R.W.Y.; Liu, X.Y.; Chung, C.Y.; Chu, P.K.; Yeung, K.W.K.; Lu, W.W.; Cheung, K.M.C.

    2005-01-01

    Nickel-titanium shape memory alloys (NiTi) are potentially useful in orthopedic implants on account of their super-elastic and shape memory properties. However, the materials are prone to surface corrosion and the most common problem is out-diffusion of harmful Ni ions from the substrate into body tissues and fluids. In order to improve the corrosion resistance and related surface properties, we used the technique of plasma immersion ion implantation and deposition to deposit an amorphous hydrogenated carbon coating onto NiTi and implant carbon into NiTi. Both the deposited amorphous carbon film and carbon plasma implanted samples exhibit much improved corrosion resistances and surface mechanical properties and possible mechanisms are suggested

  9. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods.

    Science.gov (United States)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10(-8) refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  10. Surface Acoustic Wave Monitor for Deposition and Analysis of Ultra-Thin Films

    Science.gov (United States)

    Hines, Jacqueline H. (Inventor)

    2015-01-01

    A surface acoustic wave (SAW) based thin film deposition monitor device and system for monitoring the deposition of ultra-thin films and nanomaterials and the analysis thereof is characterized by acoustic wave device embodiments that include differential delay line device designs, and which can optionally have integral reference devices fabricated on the same substrate as the sensing device, or on a separate device in thermal contact with the film monitoring/analysis device, in order to provide inherently temperature compensated measurements. These deposition monitor and analysis devices can include inherent temperature compensation, higher sensitivity to surface interactions than quartz crystal microbalance (QCM) devices, and the ability to operate at extreme temperatures.

  11. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  12. Controlled surface diffusion in plasma-enhanced chemical vapor deposition of GaN nanowires

    International Nuclear Information System (INIS)

    Hou, W C; Hong, Franklin Chau-Nan

    2009-01-01

    This study investigates the growth of GaN nanowires by controlling the surface diffusion of Ga species on sapphire in a plasma-enhanced chemical vapor deposition (CVD) system. Under nitrogen-rich growth conditions, Ga has a tendency to adsorb on the substrate surface diffusing to nanowires to contribute to their growth. The significance of surface diffusion on the growth of nanowires is dependent on the environment of the nanowire on the substrate surface as well as the gas phase species and compositions. Under nitrogen-rich growth conditions, the growth rate is strongly dependent on the surface diffusion of gallium, but the addition of 5% hydrogen in nitrogen plasma instantly diminishes the surface diffusion effect. Gallium desorbs easily from the surface by reaction with hydrogen. On the other hand, under gallium-rich growth conditions, nanowire growth is shown to be dominated by the gas phase deposition, with negligible contribution from surface diffusion. This is the first study reporting the inhibition of surface diffusion effects by hydrogen addition, which can be useful in tailoring the growth and characteristics of nanowires. Without any evidence of direct deposition on the nanowire surface, gallium and nitrogen are shown to dissolve into the catalyst for growing the nanowires at 900 deg. C.

  13. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    Science.gov (United States)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for

  14. Laboratory study of SO2 dry deposition on limestone and marble: Effects of humidity and surface variables

    Science.gov (United States)

    Spiker, E. C.; Hosker, R.P.; Weintraub, V.C.; Sherwood, S.I.

    1995-01-01

    The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3, nitrogen oxides) can be held constant. An airfoil sample holder holds up to eight stone samples (3.8 cm in diameter and 1 cm thick) in nearly identical exposure conditions. SO2 deposition on limestone was found to increase exponentially with increasing relative humidity (RH). Marble behaves similarly, but with a much lower deposition rate. Trends indicate there is little deposition below 20% RH on clean limestone and below 60% RH on clean marble. This large difference is due to the limestone's greater porosity, surface roughness, and effective surface area. These results indicate surface variables generally limit SO2 deposition below about 70% RH on limestone and below at least 95% RH on marble. Aerodynamic variables generally limit deposition at higher relative humidity or when the surface is wet.The dry deposition of gaseous air pollutants on stone and other materials is influenced by atmospheric processes and the chemical characteristics of the deposited gas species and of the specific receptor material. Previous studies have shown that relative humidity, surface moisture, and acid buffering capability of the receptor surface are very important factors. To better quantify this behavior, a special recirculating wind tunnel/environmental chamber was constructed, in which wind speed, turbulence, air temperature, relative humidity, and concentrations of several pollutants (SO2, O3

  15. Surface treatment of nanocrystal quantum dots after film deposition

    Science.gov (United States)

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  16. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Sun, S.L. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Cheng, Y.L. [Department of Electrical Engineering, National Chi-Nan University, Nan-Tou 54561, Taiwan (China); Chen, G.S.; Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2016-02-28

    Graphical abstract: - Abstract: The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO{sub 4}. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  17. Carbon monoxide oxidation on a Au(111 surface modified by spontaneously deposited Ru

    Directory of Open Access Journals (Sweden)

    ROLF-JÜRGEN BEHM

    2001-04-01

    Full Text Available The spontaneous deposition of Ru on Au(111 was performed in 10-3 M RuCl3 + 0.5 M H2SO4 solution. The obtained surface was characterized by STM under potential control in 0.5 M H2SO4 solution. The coverage of the Au(111 terraces by deposited Ru was estimated by STM to be 0.02 ML. Step decoration could be noticed in the STM images, which indicates that the steps, as lined defects, are active sites for the nucleation of Ru monolayer islands, while the random distribution of Ru nuclei, observed on the terraces indicates point defects as active sites. The electrocatalytic activity of Au(111 surface modified by spontaneously deposited Ru was studied towards CO oxidation. The significant enhancement in the reaction rate compared to CO oxidation on a pure Au(111 surface, indicated that the edges of the deposited Ru islands were the active sites for the reaction.

  18. Mechanism of deposit formation on fuel-wetted metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stavinoha, L.L.; Westbrook, S.R.; McInnis, L.A. [Southwest Research Institute, San Antonio, TX (United States)

    1995-05-01

    Experiments were performed in a Single-Tube Heat Exchanger (STHE) apparatus and a Hot Liquid Process Simulator (HLPS) configured and operated to meet Jet Fuel Thermal Oxidation Tester (JFTOT) ASTM D 3241 requirements. The HLPS-JFTOT heater tubes used were 1018 mild steel, 316 stainless steel (SS), 304 stainless steel (SS), and 304 SS tubes coated with aluminum, magnesium, gold, and copper. A low-sulfur Jet A fuel with a breakpoint temperature of 254{degrees}C was used to create deposits on the heater tubes at temperatures of 300{degrees}C, 340{degrees}C, and 380{degrees}C. Deposit thickness was measured by dielectric breakdown voltage and Auger ion milling. Pronounced differences between the deposit thickness measuring techniques suggested that both the Auger milling rate and the dielectric strength of the deposit may be affected by deposit morphology/composition (such as metal ions that may have become included in the bulk of the deposit). Carbon burnoff data were obtained as a means of judging the validity of DMD-derived deposit evaluations. ESCA data suggest that the thinnest deposit was on the magnesium-coated test tube. The Scanning Electron Microscope (SEM) photographs showed marked variations in the deposit morphology and the results suggested that surface composition has a significant effect on the mechanism of deposition. The most dramatic effect observed was that the bulk of deposits moved to tube locations of lower temperature as the maximum temperature of the tube was increased from 300{degrees} to 380{degrees}C, also verified in a single-tube heat exchanger. The results indicate that the deposition rate and quantity at elevated temperatures is not completely temperature dependent, but is limited by the concentration of dissolved oxygen and/or reactive components in the fuel over a temperature range.

  19. Enceladus' near-surface CO2 gas pockets and surface frost deposits

    Science.gov (United States)

    Matson, Dennis L.; Davies, Ashley Gerard; Johnson, Torrence V.; Combe, Jean-Philippe; McCord, Thomas B.; Radebaugh, Jani; Singh, Sandeep

    2018-03-01

    Solid CO2 surface deposits were reported in Enceladus' South Polar Region by Brown et al. (2006). They noted that such volatile deposits are temporary and posited ongoing replenishment. We present a model for this replenishment by expanding on the Matson et al. (2012) model of subsurface heat and chemical transport in Enceladus. Our model explains the distributions of both CO2 frost and complexed CO2 clathrate hydrate as seen in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. We trace the journey of CO2 from a subsurface ocean. The ocean-water circulation model of Matson et al. (2012) brings water up to near the surface where gas exsolves to form bubbles. Some of the CO2 bubbles are trapped and form pockets of gas in recesses at the bottom of the uppermost ice layer. When fissures break open these pockets, the CO2 gas is vented. Gas pocket venting is episodic compared to the more or less continuous eruptive plumes, emanating from the "tiger stripes", that are supported by plume chambers. Two styles of gas pocket venting are considered: (1) seeps, and (2) blowouts. The presence of CO2 frost patches suggests that the pocket gas slowly seeped through fractured, cold ice and when some of the gas reached the surface it was cold enough to condense (i.e., T ∼70 to ∼119 K). If the fissure opening is large, a blowout occurs. The rapid escape of gas and drop in pocket pressure causes water in the pocket to boil and create many small aerosol droplets of seawater. These may be carried along by the erupting gas. Electrically charged droplets can couple to the magnetosphere, and be dragged away from Enceladus. Most of the CO2 blowout gas escapes from Enceladus and the remainder is distributed globally. However, CO2 trapped in a clathrate structure does not escape. It is much heavier and slower moving than the CO2 gas. Its motion is ballistic and has an average range of about 17 km. Thus, it contributes to deposits in the vicinity of the vent. Local heat

  20. Weathering and decontamination of radioactivity deposited on asphalt surfaces

    International Nuclear Information System (INIS)

    Warming, L.

    1982-12-01

    Longlived fission products might be deposited in the environment after a serious reactor accident. At Risoe we have studied how danish weather conditions and fire hosing influence the decontamination of Rubidium 86 (representing Cesium 134 and 137) Barium-Lanthanum 140 and Ruthenium 103 deposited on asphalt surfaces. Measurements have been done at different types of roads and during all seasons including winter with snow and ice cover of the roads. The results from the first five experiments were used for calculating doses to the population in the land contamination (RISO-R-462). (author)

  1. Microstructure and surface morphology of YSZ thin films deposited by e-beam technique

    International Nuclear Information System (INIS)

    Laukaitis, G.; Dudonis, J.; Milcius, D.

    2008-01-01

    In present study yttrium-stabilized zirconia (YSZ) thin films were deposited on optical quartz (amorphous SiO 2 ), porous Ni-YSZ and crystalline Alloy 600 (Fe-Ni-Cr) substrates using e-beam deposition technique and controlling technological parameters: substrate temperature and electron gun power which influence thin-film deposition mechanism. X-ray diffraction, scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin-film structure and surface morphology depend on these parameters. It was found that the crystallite size, roughness and growth mechanism of YSZ thin films are influenced by electron gun power. To clarify the experimental results, YSZ thin-film formation as well evolution of surface roughness at its initial growing stages were analyzed. The evolution of surface roughness could be explained by the processes of surface mobility of adatoms and coalescence of islands. The analysis of these experimental results explain that surface roughness dependence on substrate temperature and electron gun power non-monotonous which could result from diffusivity of adatoms and the amount of atomic clusters in the gas stream of evaporated material

  2. Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Proslier, T.; /IIT, Chicago /Argonne; Zasadzinski, J.; /IIT, Chicago; Moore, J.; Pellin, M.; Elam, J.; /Argonne; Cooley, L.; /Fermilab; Antoine, C.; /Saclay

    2008-11-01

    A method to treat the surface of Nb is described, which potentially can improve the performance of superconducting rf cavities. We present tunneling and x-ray photoemission spectroscopy measurements at the surface of cavity-grade niobium samples coated with a 3 nm alumina overlayer deposited by atomic layer deposition. The coated samples baked in ultrahigh vacuum at low temperature degraded superconducting surface. However, at temperatures above 450 C, the tunneling conductance curves show significant improvements in the superconducting density of states compared with untreated surfaces.

  3. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn–W deposit, Germany

    OpenAIRE

    T. Monecke; Peter Dulski; U. Kempe

    2007-01-01

    The chondrite-normalized rare earth element (REE) patterns of whole rock samples from evolved granitic systems hosting rare metal deposits sometimes show a split into four consecutive curved segments, referred to as tetrads. In the present contribution, a rigorous statistical method is proposed that can be used to test whether geological significance should be attributed to tetrads that are only of limited size. The method involves a detailed evaluation of element and sample specific random a...

  4. Quantitative measurement of aerosol deposition on skin, hair and clothing for dosimetric assessment. Final report

    DEFF Research Database (Denmark)

    Fogh, C.L.; Byrne, M.A.; Andersson, Kasper Grann

    1999-01-01

    the deposition and subsequent fate of contaminant aerosol on skin, hair and clothing. The main technique applied involves the release and subsequent deposition on volunteers in test rooms of particles of differentsizes labelled with neutron activatable rare earth tracers. Experiments indicate that the deposition...... of magnitudeas the gamma doses received over the first year from contamination on outdoor surfaces. According to the calculations, beta doses from skin deposition to individuals in areas of Russia, where dry deposition of Chernobyl fallout led to very high levels ofcontamination, may have amounted to several...

  5. Pulsed laser deposition in Twente: from research tool towards industrial deposition

    NARCIS (Netherlands)

    Blank, David H.A.; Dekkers, Jan M.; Rijnders, Augustinus J.H.M.

    2014-01-01

    After the discovery of the perovskite high Tc superconductors in 1986, a rare and almost unknown deposition technique attracted attention. Pulsed laser deposition (PLD), or laser ablation as it was called in the beginning, became popular because of the possibility to deposit complex materials, like

  6. Effect of rock fragment embedding on the aeolian deposition of dust on stone-covered surfaces

    NARCIS (Netherlands)

    Goossens, D.

    2005-01-01

    Many stone-covered surfaces on Earth are subject to aeolian deposition of atmospheric dust. This study investigates how the deposition of dust is affected when rock fragments become gradually more embedded in the ground or, inversely, become more concentrated on the surface. Experiments were

  7. Scaling behavior of the surface roughness of platinum films grown by oblique angle deposition

    Science.gov (United States)

    Dolatshahi-Pirouz, A.; Hovgaard, M. B.; Rechendorff, K.; Chevallier, J.; Foss, M.; Besenbacher, F.

    2008-03-01

    Thin platinum films with well-controlled rough surface morphologies are grown by e-gun evaporation at an oblique angle of incidence between the deposition flux and the substrate normal. Atomic force microscopy is used to determine the root-mean-square value w of the surface roughness on the respective surfaces. From the scaling behavior of w , we find that while the roughness exponent α remains nearly unchanged at about 0.90, the growth exponent β changes from 0.49±0.04 to 0.26±0.01 as the deposition angle approaches grazing incidence. The values of the growth exponent β indicate that the film growth is influenced by both surface diffusion and shadowing effects, while the observed change from 0.49 to 0.26 can be attributed to differences in the relative importance of diffusion and shadowing with the deposition angle.

  8. Gamma radiation fields from activity deposited on road and soil surfaces

    International Nuclear Information System (INIS)

    Hedemann Jensen, P.

    1993-12-01

    Radioactive material deposited in the environment after an accidental release would cause exposure of the population living in the affected areas. The radiation field will depend on many factors such as radionuclide composition, surface contamination density, removal of activity by weathering and migration, and protective measures like decontamination, ploughing and covering by asphalt. Methods are described for calculation of air kerma rate from deposited activity on road and soil surfaces, both from the initially deposited activity and from activity distributed in the upper layer of soil as well as from activity covered by asphalt or soil. Air kerma rates are calculated for different source geometries and the results are fitted to a power-exponential function of photon energy, depth distributions in soil and horizontal dimensions. Based on this function calculations of air kerma rate can easily be made on a personal computer or programmable pocket calculator for specific radionuclide compositions and different horizontal and vertical distributions of the deposited activity. The calculations are compared to results from other methods like the Monte Carlo method and good agreement is found between the results. (au) (7 tabs., 12 ills., 8 refs.)

  9. The principal rare earth elements deposits of the United States-A summary of domestic deposits and a global perspective

    Science.gov (United States)

    Long, Keith R.; Van Gosen, Bradley S.; Foley, Nora K.; Cordier, Daniel

    2010-01-01

    The rare earth elements (REE) are fifteen elements with atomic numbers 57 through 71, from lanthanum to lutetium ('lanthanides'), plus yttrium (39), which is chemically similar to the lanthanide elements and thus typically included with the rare earth elements. Although industrial demand for these elements is relatively small in tonnage terms, they are essential for a diverse and expanding array of high-technology applications. REE-containing magnets, metal alloys for batteries and light-weight structures, and phosphors are essential for many current and emerging alternative energy technologies, such as electric vehicles, energy-efficient lighting, and wind power. REE are also critical for a number of key defense systems and other advanced materials. Section 843 of the National Defense Authorization Act for Fiscal Year 2010, Public Law 111-84, directs the Comptroller General to complete a report on REE materials in the defense supply chain. The Office of Industrial Policy, in collaboration with other U.S. Government agencies, has initiated (in addition to this report) a detailed study of REE. This latter study will assess the Department of Defense's use of REE, as well as the status and security of domestic and global supply chains. That study will also address vulnerabilities in the supply chain and recommend ways to mitigate any potential risks of supply disruption. To help conduct this study, the Office of Industrial Policy asked the U.S. Geological Survey (USGS) to report on domestic REE reserves and resources in a global context. To this end, the enclosed report is the initial USGS contribution to assessing and summarizing the domestic REE resources in a global perspective. In 2009, the Mineral Resources Program of the USGS organized a new project under the title Minerals at Risk and For Emerging Technologies in order to evaluate mineral resource and supply issues of rare metals that are of increasing importance to the national economy. Leaders and members of

  10. Surface Modification of Ceramic Membranes with Thin-film Deposition Methods for Wastewater Treatment

    KAUST Repository

    Jahangir, Daniyal

    2017-12-01

    Membrane fouling, which is caused by deposition/adsorption of foulants on the surface or within membrane pores, still remains a bottleneck that hampers the widespread application of membrane bioreactor (MBR) technology for wastewater treatment. Recently membrane surface modification has proved to be a useful method in water/wastewater treatment to improve the surface hydrophilicity of membranes to obtain higher water fluxes and to reduce fouling. In this study, membrane modification was investigated by depositing a thin film of same thickness of TiO2 on the surface of an ultrafiltration alumina membrane. Various thin-film deposition (TFD) methods were employed, i.e. electron-beam evaporation, sputter and atomic layer deposition (ALD), and a comparative study of the methods was conducted to assess fouling inhibition performance in a lab-scale anaerobic MBR (AnMBR) fed with synthetic municipal wastewater. Thorough surface characterization of all modified membranes was carried out along with clean water permeability (CWP) tests and fouling behavior by bovine serum albumin (BSA) adsorption tests. The study showed better fouling inhibition performance of all modified membranes; however the effect varied due to different surface characteristics obtained by different deposition methods. As a result, ALD-modified membrane showed a superior status in terms of surface characteristics and fouling inhibition performance in AnMBR filtration tests. Hence ALD was determined to be the best TFD method for alumina membrane surface modification for this study. ALD-modified membranes were further characterized to determine an optimum thickness of TiO2-film by applying different ALD cycles. ALD treatment significantly improved the surface hydrophilicity of the unmodified membrane. Also ALD-TiO2 modification was observed to reduce the surface roughness of original alumina membrane, which in turn enhanced the anti-fouling properties of modified membranes. Finally, a same thickness of ALD

  11. Kinetics of particle deposition at heterogeneous surfaces

    Science.gov (United States)

    Stojiljković, D. Lj.; Vrhovac, S. B.

    2017-12-01

    The random sequential adsorption (RSA) approach is used to analyze adsorption of spherical particles of fixed diameter d0 on nonuniform surfaces covered by square cells arranged in a square lattice pattern. To characterize such pattern two dimensionless parameters are used: the cell size α and the cell-cell separation β, measured in terms of the particle diameter d0. Adsorption is assumed to occur if the particle (projected) center lies within a cell area. We focus on the kinetics of deposition process in the case when no more than a single disk can be placed onto any square cell (α deposition process is not consistent with the power law behavior. However, if the geometry of the pattern approaches towards ;noninteracting conditions; (β > 1), when adsorption on each cell can be decoupled, approach of the coverage fraction θ(t) to θJ becomes closer to the exponential law. Consequently, changing the pattern parameters in the present model allows to interpolate the deposition kinetics between the continuum limit and the lattice-like behavior. Structural properties of the jammed-state coverings are studied in terms of the radial distribution function g(r) and spatial distribution of particles inside the cell. Various, non-trivial spatial distributions are observed depending on the geometry of the pattern.

  12. The surface chemistry of 3-mercaptopropyltrimethoxysilane films deposited on magnesium alloy AZ91

    International Nuclear Information System (INIS)

    Scott, A.; Gray-Munro, J.E.

    2009-01-01

    Magnesium and its alloys have desirable physical and mechanical properties for a number of applications. Unfortunately, these materials are highly susceptible to corrosion, particularly in the presence of aqueous solutions. The purpose of this study is to develop a uniform, non-toxic surface treatment to enhance the corrosion resistance of magnesium alloys. This paper reports the influence of the coating bath parameters and alloy microstructure on the deposition of 3-mercaptopropyltrimethoxysilane (MPTS) coatings on magnesium alloy AZ91. The surface chemistry at the magnesium/MPTS interface has also been explored. The results indicate that the deposition of MPTS onto AZ91 was influenced by both the pH and MPTS concentration in the coating bath. Furthermore, scanning electron microscopy results showed that the MPTS film deposited uniformly on all phases of the magnesium alloy surface. X-ray photoelectron spectroscopy studies revealed that at the magnesium/MPTS interface, the molecules bond to the surface through the thiol group in an acid-base interaction with the Mg(OH) 2 layer, whereas in the bulk of the film, the molecules are randomly oriented.

  13. Surface studies of tungsten erosion and deposition in JT-60U

    International Nuclear Information System (INIS)

    Ueda, Y.; Fukumoto, M.; Nishikawa, M.; Tanabe, T.; Miya, N.; Arai, T.; Masaki, K.; Ishimoto, Y.; Tsuzuki, K.; Asakura, N.

    2007-01-01

    In order to study tungsten erosion and migration in JT-60U, 13 W tiles have been installed in the outer divertor region and tungsten deposition on graphite tiles was measured. Dense local tungsten deposition was observed on a CFC tile toroidally adjacent to the W tiles, which resulted from prompt ionization and short range migration of tungsten along field lines. Tungsten deposition with relatively high surface density was found on an inner divertor tile around standard inner strike positions and on an outer wing tile of a dome. On the outer wing tile, tungsten deposition was relatively high compared with carbon deposition. In addition, roughly uniform tungsten depth distribution near the upper edge of the inner divertor tile was observed. This could be due to lift-up of strike point positions in selected 25 shots and tungsten flow in the SOL plasma

  14. Fabrication of a Large-Area Superhydrophobic SiO2 Nanorod Structured Surface Using Glancing Angle Deposition

    Directory of Open Access Journals (Sweden)

    Xun Lu

    2017-01-01

    Full Text Available A glancing angle deposition (GLAD technique was used to generate SiO2 nanorods on a glass substrate to fabricate a low-cost superhydrophobic functional nanostructured surface. GLAD-deposited SiO2 nanorod structures were fabricated using various deposition rates, substrate rotating speeds, oblique angles, and deposition times to analyze the effects of processing conditions on the characteristics of the fabricated functional nanostructures. The wettability of the surface was measured after surface modification with a self-assembled monolayer (SAM. The measured water contact angles were primarily affected by substrate rotation speed and oblique angle because the surface fraction of the GLAD nanostructure was mainly affected by these parameters. A maximum contact angle of 157° was obtained from the GLAD sample fabricated at a rotation speed of 5 rpm and an oblique angle of 87°. Although the deposition thickness (height of the nanorods was not a dominant factor for determining the wettability, we selected a deposition thickness of 260 nm as the optimum processing condition based on the measured optical transmittance of the samples because optically transparent films can serve as superhydrophobic functional nanostructures for optical applications.

  15. Measurements of the deposition rates of radon daughters on indoor surfaces

    International Nuclear Information System (INIS)

    Wang, H.; Essling, M.A.; Toohey, R.E.; Rundo, J.

    1982-01-01

    The deposition rates of radon daughters on indoor surfaces have been measured by exposing the window of a proportional counter to the air of a house with high concentrations of radon and its daughters. Deposition velocities for unattached 218 Po (RaA) and 214 Pb (RaB) of approximately 4 mm sec - 1 were obtained by dividing the deposition rates by the concentrations of unattached daughters in the air. These results agree with those obtained by other workers but are dependent on the assumptions made about the fractions of the daughters which are attached to the atmospheric aerosol

  16. Construction of mechanically durable superhydrophobic surfaces by thermal spray deposition and further surface modification

    Science.gov (United States)

    Chen, Xiuyong; Gong, Yongfeng; Suo, Xinkun; Huang, Jing; Liu, Yi; Li, Hua

    2015-11-01

    Here we report a simple and cost-effective technical route for constructing superhydrophobic surfaces with excellent abrasion resistance on various substrates. Rough surface structures were fabricated by thermal spray deposition of a variety of inorganic materials, and further surface modification was made by applying a thin layer of polytetrafluoroethylene. Results show that the Al, Cu, or NiCrBSi coatings with the surface roughness of up to 13.8 μm offer rough surface profile to complement the topographical morphology in micro-/nano-scaled sizes, and the hydrophobic molecules facilitate the hydrophobicity. The contact angles of water droplets of ∼155° with a sliding angle of up to 3.5° on the samples have been achieved. The newly constructed superhydrophobic coatings tolerate strong abrasion, giving clear insight into their long-term functional applications.

  17. Sodium vapor deposition onto a horizontal flat plate above liquid sodium surface, 2

    International Nuclear Information System (INIS)

    Kudo, Kazuhiko; Hirata, Masaru.

    1977-01-01

    The sodium vapor deposition onto a horizontal flat plate above liquid sodium surface was studied. The analysis was performed by assuming that the sodium mist is emitted into the main flow without condensation and then grows up in the main flow and drops on the sodium surface. The effects of growth of sodium mist to the system were investigated. The model of the phenomena is the sodium deposition onto a horizontal flat plate which is placed above the sodium surface with the medium cover gas. One-dimensional analysis can be done. The rate of deposition is greatly reduced when the temperature of the flat plate is lowered. For the analysis of this phenomena, it is assumed that the sodium mist grows by condensation. One of results is that the real state may be the state between the state that the condensation of mist is made in the boundary layer and the state that the mist is condensed in the main flow. Others are that there is no effect of sodium mist condensation on the rate of deposition, and that the rate of the vaporization of sodium is given by the original and the modified model. (Kato, T.)

  18. Surface deposition of iodine on some agricultural plants in laboratory conditions

    International Nuclear Information System (INIS)

    Stano, V.

    1990-01-01

    The surface (primary) deposition of nuclides on the above-ground parts of plants was studied. Iodine retention coefficients were measured in laboratory conditions for maize, peas, spinach, lettuce and paprika grown in loose soil taken in the Kecerovce locality. The results confirmed the assumption that the surface deposition of iodine is closely related to the morphological and physiological properties of the plants, although the substrate on which the plants are grown plays an appreciable role as well (the biomass production is higher for plants grown in loose soil than for those grown in aqueous nutrient solutions). The assumption that the above-ground parts retain iodine in higher quantities than the generative organs do was also proved. In the crops the retention of iodine was markedly differentiated in dependence on their overall consistency or on the structure of the surface cuticle layers. (author). 1 tab., 10 refs

  19. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization.

    Science.gov (United States)

    Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L

    2013-03-13

    We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.

  20. Acidic deposition: State of science and technology. Report 11. Historical changes in surface-water acid-base chemistry in response to acidic deposition. Final report

    International Nuclear Information System (INIS)

    Sullivan, T.J.; Small, M.J.; Kingston, J.C.; Bernert, J.A.; Thomas, D.R.

    1990-09-01

    The objectives of the analyses reported in the State of Science report are to: identify the lake and stream populations in the United States that have experienced chronic changes in biologically significant constituents of surface water chemistry (e.g. pH, Al) in response to acidic deposition; quantify biologically meaningful historical changes in chronic surface water chemistry associated with acidic deposition, with emphasis on ANC, pH, and Al; estimate the proportion of lakes nor acidic that were not acidic in pre-industrial times; estimate the proportional response of each of the major chemical constituents that have changed in response to acidic deposition using a subset of statistically selected Adirondack lakes for which paleolimnological reconstructions of pre-industrial surface water chemistry have been performed; evaluate and improve, where appropriate and feasible, empirical models of predicting changes in ANC; and evaluate the response of seepage lakes to acidic deposition

  1. Thickness of Lipid Deposition on Oral Surfaces Depending on Oil Content and Its Influence on Mouthfeel Perception

    Directory of Open Access Journals (Sweden)

    Urška Pivk Kupirovič

    2012-01-01

    Full Text Available Lipid content in food strongly influences food perception on the level of textural properties. Lipids in contact with the tongue and palate are substantially responsible for the sensory impact of a product. The aim of this study is to investigate the impact of oil content on the thickness of lipid deposition on oral surface as well as on the mouthfeel perception. The fluorescent probe method was used to study the thickness of lipid deposition on oral surface. We observed an increase in the thickness of lipid deposition depending on the increase of oil content in oil/water dispersions. Clear correlation was shown between the thickness of lipid deposition on oral surfaces and the perception of mouthfeel. A direct measure of undisrupted deposition of food components on oral surface contributes to the understanding of the behaviour of food components in the mouth and their influence on mouthfeel perception.

  2. Deposition of a thin electro-polymerized organic film on iron surface

    International Nuclear Information System (INIS)

    Lecayon, Gerard

    1980-01-01

    We use an electrochemical method to prepare a polymerized thin film, obtained from acrylonitrile in a solution of acetonitrile and tetraethylammonium perchlorate. The films are deposited on oxidized iron electrodes, with a surface area varying from a few mm to several cm, their thickness ranges from ten A to thousand A. This result is obtained by controlling the evolution of reactions: duplication, hydrogenation, polymerization which occur during the electrochemical reduction of acrylonitrile. The choice of suitable experimental conditions enhances the polymerization and increases the adherence of the polymer on the electrode. The usual methods of surface studies: S.E.M., A.E.S., S.I.M.S., permit the characterization of the electrode surface and the chemical composition of the deposit films. The molecular structure of polymer, and its evolution under aging or heating was studied by infrared multi-reflection spectroscopy. Very good correlation exists between the electrochemical characteristic: I = f(t), the initial surface state of the electrodes, and the homogeneity of the electro-polymerized films. Diagrams corresponding to mechanisms of different stages of electro-polymerization are proposed. (author) [fr

  3. Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules

    International Nuclear Information System (INIS)

    Coppe, Jean-Philippe; Xu Zhida; Chen Yi; Logan Liu, G

    2011-01-01

    Molecular probe arrays printed on solid surfaces such as DNA, peptide, and protein microarrays are widely used in chemical and biomedical applications especially genomic and proteomic studies (Pollack et al 1999 Nat. Genet. 23 41-6, Houseman et al 2002 Nat. Biotechnol. 20 270-4, Sauer et al 2005 Nat. Rev. Genet. 6 465-76) as well as surface imaging and spectroscopy (Mori et al 2008 Anal. Biochem. 375 223-31, Liu et al 2006 Nat. Nanotechnol. 1 47-52, Liu 2010 IEEE J. Sel. Top. Quantum Electron. 16 662-71). Unfortunately the printed molecular spots on solid surfaces often suffer low distribution uniformity due to the lingering 'coffee stain' (Deegan et al 1997 Nature 389 827-9) problem of molecular accumulations and blotches, especially around the edge of deposition spots caused by solvent evaporation and convection processes. Here we present, without any surface chemistry modification, a unique solid surface of high-aspect-ratio silver-coated silicon nanocone arrays that allows highly uniform molecular deposition and thus subsequent uniform optical imaging and spectroscopic molecular detection. Both fluorescent Rhodamine dye molecules and unlabeled oligopeptides are printed on the metallic nanocone photonic substrate surface as circular spot arrays. In comparison with the printed results on ordinary glass slides and silver-coated glass slides, not only high printing density but uniform molecular distribution in every deposited spot is achieved. The high-uniformity and repeatability of molecular depositions on the 'coffee stain'-free nanocone surface is confirmed by laser scanning fluorescence imaging and surface enhanced Raman imaging experiments. The physical mechanism for the uniform molecular deposition is attributed to the superhydrophobicity and localized pinned liquid-solid-air interface on the silver-coated silicon nanocone surface. The unique surface properties of the presented nanocone surface enabled high-density, high-uniformity probe spotting beneficial

  4. The nanostructure and microstructure of SiC surface layers deposited by MWCVD and ECRCVD

    Science.gov (United States)

    Dul, K.; Jonas, S.; Handke, B.

    2017-12-01

    Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to investigate ex-situ the surface topography of SiC layers deposited on Si(100) by Microwave Chemical Vapour Deposition (MWCVD) -S1,S2 layers and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) - layers S3,S4, using silane, methane, and hydrogen. The effects of sample temperature and gas flow on the nanostructure and microstructure have been investigated. The nanostructure was described by three-dimensional surface roughness analysis based on digital image processing, which gives a tool to quantify different aspects of surface features. A total of 13 different numerical parameters used to describe the surface topography were used. The scanning electron image (SEM) of the microstructure of layers S1, S2, and S4 was similar, however, layer S3 was completely different; appearing like grains. Nonetheless, it can be seen that no grain boundary structure is present in the AFM images.

  5. Microstructure of vapor deposited coatings on curved substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G., E-mail: haydn@virginia.edu [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., P.O. Box 400745, Charlottesville, Virginia 22904 (United States)

    2015-09-15

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness.

  6. Microstructure of vapor deposited coatings on curved substrates

    International Nuclear Information System (INIS)

    Rodgers, Theron M.; Zhao, Hengbei; Wadley, Haydn N. G.

    2015-01-01

    Thermal barrier coating systems consisting of a metallic bond coat and ceramic over layer are widely used to extend the life of gas turbine engine components. They are applied using either high-vacuum physical vapor deposition techniques in which vapor atoms rarely experience scattering collisions during propagation to a substrate, or by gas jet assisted (low-vacuum) vapor deposition techniques that utilize scattering from streamlines to enable non-line-of-sight deposition. Both approaches require substrate motion to coat a substrate of complex shape. Here, direct simulation Monte Carlo and kinetic Monte Carlo simulation methods are combined to simulate the deposition of a nickel coating over the concave and convex surfaces of a model airfoil, and the simulation results are compared with those from experimental depositions. The simulation method successfully predicted variations in coating thickness, columnar growth angle, and porosity during both stationary and substrate rotated deposition. It was then used to investigate a wide range of vapor deposition conditions spanning high-vacuum physical vapor deposition to low-vacuum gas jet assisted vapor deposition. The average coating thickness was found to increase initially with gas pressure reaching a maximum at a chamber pressure of 8–10 Pa, but the best coating thickness uniformity was achieved under high vacuum deposition conditions. However, high vacuum conditions increased the variation in the coatings pore volume fraction over the surface of the airfoil. The simulation approach was combined with an optimization algorithm and used to investigate novel deposition concepts to tailor the local coating thickness

  7. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Science.gov (United States)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  8. Simulation of depositions of a Lennard-Jones cluster on a crystalline surface

    International Nuclear Information System (INIS)

    Saitoh, Kuniyasu; Hayakawa, Hisao

    2009-01-01

    Depositions of amorphous Lennard-Jones clusters on a crystalline surface are numerically investigated. From the results of the molecular dynamics simulation, we found that the deposited clusters exhibit a transition from multilayered adsorption to monolayered adsorption at a critical incident speed. Employing the energy conservation law, we can explain the behavior of the ratio of the number of atoms adsorbed on the substrate to the cluster size. The boundary shape of the deposited cluster depends strongly on the incident speed, and some unstable modes grow during the spread of the deposited cluster on the substrate. We also discuss the wettability between different Lennard-Jones atoms. (author)

  9. The effect of sputter-deposition conditions on the coercive force in amorphous rare-earth - transition-metal thin films

    International Nuclear Information System (INIS)

    Davies, C.F.; Somekh, R.E.; Evetts, J.E.; Storey, P.A.

    1988-01-01

    The origins of the coercive force in amorphous rare earth - transition metal films have been investigated, the results being discussed in terms of how the growth conditions of the sputter-deposited films determine the pinning features which cause the coercive force. The authors have studied the variation of coercive force with film thickness and developed a model which enables a local pinning force per unit area to be deduced. This suggests that it should be possible to increase the coercive force by breaking up the microstructure with a multi-layered structure. An increase in coercive force obtained by making such structures with tungsten is described. They also report on the reduction in coercive force obtained when the films are deposited in the presence of a perpendicular magnetic field

  10. Development of a fluorine-free chemical solution deposition route for rare-earth cuprate superconducting tapes and its application to reel-to-reel processing

    DEFF Research Database (Denmark)

    Tang, Xiao

    temperature, REBCO (RE= rare earth) has some evident advantages compared to other high-temperature superconductors in retaining high current densities under strong magnetic fields, thus REBCO high temperature superconducto rs have significant potential for high field engineering applications. Compared...... to Pulsed Laser Deposition (PLD) and Chemical Vapor Deposition (CVD), the trifluoroacetate metal-organic deposition (TFA-MOD) route is more promising for producing REBCO superconducting films, owing to the high-Jc, high reproducibility, and low cost of this technique, which doesn't require any high vacuum...... on the microstructure and performance of FF-MOD derived YBCO films was investigated. Chapter 9 is the summary of the thesis....

  11. Nucleation and growth of copper phthalocyanine aggregates deposited from solution on planar surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Fatemeh [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Gojzewski, Hubert, E-mail: hubert.gojzewski@put.poznan.pl [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany); Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan (Poland); Riegler, Hans [Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1 Golm, 14476 Potsdam (Germany)

    2015-10-01

    Graphical abstract: - Highlights: • Copper phthalocyanine deposited on planar surfaces by 3 solution process methods. • Aggregate morphology examined for coverage extending over 3 orders of magnitude. • Morphologies vary from small individual domains to mesh-like multilayers. • Nucleation and growth model explains the observed deposit morphologies. - Abstract: Copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is deposited on solid SiO{sub 2} surfaces by solvent evaporation. The deposited CuPc aggregates are investigated by atomic force microscopy (AFM). The CuPc deposits were prepared by spin casting, dip coating, and spray deposition. Depending on the amount of deposited CuPc the aggregate morphology ranges from small individual domains to mesh-like multilayers. Each domain/layer consists of many parallel stacks of CuPc molecules with the square, plate-like molecules piled face-wise within each stack. The parallel stacks are attached sideways (i.e., edgewise attachment molecularly) to the substrate forming “nanoribbons” with uniform thickness of about 1 nm and varying width. The thickness reflects the length of a molecular edge, the width the number of stacks. A nucleation and growth model is presented that explains the observed aggregate and multilayer morphologies as result of the combination of nucleation, transport processes and a consequence of the anisotropic intermolecular interactions due to the shape of the CuPc molecule.

  12. Characterization of deposits formed on catalyst surfaces during hydrotreatment of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1982-04-01

    Loss of catalyst activity is attributed to the formation of polynuclear aromatic structures on the surface. Heavy species containing N and O heteroatoms were also present in deposits. Phenols, aromatic and heterocyclic compounds are considered to be the precursors for the formation of the deposits. (16 refs.)

  13. Fractal characteristics of an asphaltene deposited heterogeneous surface

    International Nuclear Information System (INIS)

    Amin, J. Sayyad; Ayatollahi, Sh.; Alamdari, A.

    2009-01-01

    Several methods have been employed in recent years to investigate homogeneous surface topography based on image analysis, such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Fractal analysis of the images provides fractal dimension of the surface which is used as one of the most common surface indices. Surface topography has generally been considered to be mono-fractal. On the other hand, precipitation of organic materials on a rough surface and its irregular growth result in morphology alteration and converts a homogeneous surface to a heterogeneous one. In this case a mono-fractal description of the surface does not completely describe the nature of the altered surface. This work aims to investigate the topography alteration of a glass surface as a result of asphaltene precipitation and its growth at various pressures using a bi-fractal approach. The experimental results of the deposited surfaces were clearly indicating two regions of micro- and macro-asperities namely, surface types I and II, respectively. The fractal plots were indicative of bi-fractal behavior and for each surface type one fractal dimension was calculated. The topography information of the surfaces was obtained by two image analyses, AFM and SEM imaging techniques. Results of the bi-fractal analysis demonstrated that topography alteration in surface type II (macro-asperities) is more evident than that in surface type I (micro-asperities). Compared to surface type II, a better correlation was observed between the fractal dimensions inferred from the AFM images (D A ) and those of the SEM images (D S ) in surface type I.

  14. Deposition of silver nanoparticles on titanium surface for antibacterial effect

    Directory of Open Access Journals (Sweden)

    Liao Juan

    2010-04-01

    Full Text Available Liao Juan1, Zhu Zhimin3, Mo Anchun1,2, Li Lei1, Zhang Jingchao11State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, PR China; 2Department of Dental Implant, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR China; 3Department of Prosthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041, PR ChinaAbstract: Microbial colonization on implanted devices and biofilm formation is a recurrent complication in implant surgery and may result in loss of implants. The aim of this study was to deposit silver nanoparticles on a titanium surface to obtain antibacterial properties. In the present study, we prepared a silver nanoparticle-modified titanium (Ti-nAg surface using silanization method. The morphology and chemical components of the Ti-nAg surface were characterized by scanning electron microscopy (SEM equipped with energy-dispersive spectroscopy (EDS. Two species of bacteria, Staphylococcus aureus and Escherichia coli, were utilized to test the antibacterial effect of the Ti-nAg treated surface. The SEM examination revealed that a small quantity of silver nanoparticles was sparsely deposited on the titanium surface. The diameter of these nanoparticles ranged from ten to several hundred nm. EDS analyses revealed that there was 4.26% of Ag present on the surface. After a 24-hour incubation, 94% of Staphylococcus aureus and over 95% of Escherichia coli had been killed on the Ti-nAg surface, and the SEM examination of anti-adhesive efficacy test showed that there were less bacteria attached to Ti-nAg surface than to a control surface of untreated Titanium. These data suggest that silver nanoparticle-modified titanium is a promising material with an antibacterial property that may be used as an implantable biomaterial.Keywords: nano-silver, titanium, antibacterial activity, silanization method

  15. Studies on deposition of radon daughters on glass surface

    International Nuclear Information System (INIS)

    Loerinc, M.; Feher, I.; Palfalvi, J.

    1998-01-01

    In a certain village in Northern Hungary, in some houses the radon concentration was found to be in the order of kBq.m -3 . In an attempt to decide whether an earthquake or the near-by mining activity is to blame, past radon concentration was studied making use of radon daughters embedded in the surface layer of glass sheets. In the investigation several conclusions were reached: drastic changes in Rn concentration could be excluded, ie., the high Rn concentration existed over the last 50 years; the continuing deposition of dirt on the glass surface and the occasional cleaning had no significant effect; the effect of corrosion processes at the glass surface should be further investigated. (A.K.)

  16. Protective coating of inner surface of steel tubes via vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maile, K.; Roos, E.; Lyutovich, A.; Boese, J.; Itskov, M. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA); Ashurov, Kh.; Mirkarimov, A.; Kazantsev, S.; Kadirov, Kh. [Uzbek Academy of Science, Tashkent (Uzbekistan). Arifov Inst. of Electronics

    2010-07-01

    The Vacuum Arc Deposition (VAD) technique based on sputtering a chosen electrode material and its deposition via plasma allows highly-productive technology for creating a wide class of protecting coatings on complex structures. In this work, VAD was applied as a method for the protection of the inner surface of tubes for power-plant boilers against steam oxidation. For this aim, a source cathode of an alloy with high chromium and nickel content was employed in two different VAD treatment systems: a horizontal vacuum chamber (MPA) and a vertical system where the work-piece of the tubes to be protected served as a vacuum changer (Arifov Institute of Electronics). Surface coating with variation of deposition parameters and layer thickness was performed. Characterisation of coated tubes has shown that the method realised in this work allows attainment of material transfer from the cathode to the inner surface with nearly equal chemical composition. It was demonstrated that the initial martensitic structure of the tubes was kept after the vacuum-arc treatment which can provide for both the high mechanical robustness and the corrosion-resistance of the final material. (orig.)

  17. Communication: Surface-facilitated softening of ordinary and vapor-deposited glasses

    Science.gov (United States)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-08-01

    A common distinction between the ordinary glasses formed by melt cooling and the stable amorphous films formed by vapor deposition is the apparent mechanism of their devitrification. Using quasi-adiabatic, fast scanning calorimetry that is capable of heating rates in excess of 105 K s-1, we have investigated the softening kinetics of micrometer-scale, ordinary glass films of methylbenzene and 2-propanol. At the limit of high heating rates, the transformation mechanism of ordinary glasses is identical to that of their stable vapor-deposited counterparts. In both cases, softening is likely to begin at the sample surface and progress into its bulk via a transformation front. Furthermore, such a surface-facilitated mechanism complies with zero-order, Arrhenius rate law. The activation energy barriers for the softening transformation imply that the kinetics must be defined, at least in part, by the initial thermodynamic and structural state of the samples.

  18. Overlayer structure of subphthalocyanine derivative deposited on Au (111) surface by a spray-jet technique

    International Nuclear Information System (INIS)

    Suzuki, Hitoshi; Yamada, Toshiki; Miki, Hideki; Mashiko, Shinro

    2006-01-01

    A new spray-jet technique was used to deposit subphthalocyanine derivative (chloro[tri-tert-butyl subphthalocyaninato]boron (TBSubPc)) on Au (111) surface in an ultra-high vacuum (UHV) chamber. The deposited molecular overlayer was observed with UHV scanning tunneling microscopy (STM) at 77 K. The STM images showed that TBSubPc molecules formed a stripe pattern with regular spacing, indicating that they preferentially adsorbed along the herringbone structure of the Au (111) surface. This behavior was very similar to that of TBSubPc molecules deposited by thermal evaporation

  19. Rare earth effect on microstructure, mechanical and tribological properties of CoCrW coatings

    International Nuclear Information System (INIS)

    Zhang Zhenyu; Lu Xinchun; Han Baolei; Luo Jianbin

    2007-01-01

    Eight different CoCrW coatings doped with rare earth oxide were deposited by supersonic plasma spraying (SPS). Environmental scanning electron microscopy, microhardness tester, X-ray diffractometer, and self-developed tribometer for high temperature were employed to investigate the properties of sprayed coatings. The results show that rare earth can refine the microstructure effectively, and make the element distribution uniform, which leads to the increase of average microhardness and the corresponding decrease of fluctuation range of sectioned surface of SPS coatings. Furthermore, the rare earth can reduce the friction coefficient between the SPS coating and glass during the sliding process at about 973 K largely, and the mechanism of anti-friction is also discussed

  20. Air-stable compact of cobalt-rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable magnetic products. An organometallic compound which decomposes at a temperature below 500 0 C is mixed with particles of a transition metal-rare earth alloy. The resulting mixture is pressed to form a green body, which is then heated to decompose the organometallic compound to produce a metal vapor that deposits an interconnecting metal coating on the exposed surfaces of the pressed particles. (U.S.)

  1. Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yi [Department of 702, Beihang University, Beijing (China); Li, Liuhe, E-mail: liliuhe@buaa.edu.cn [Department of 702, Beihang University, Beijing (China); Luo, Sida [Department of 702, Beihang University, Beijing (China); International Research Institute for Multidisciplinary Science, Beihang University, Beijing (China); Lu, Qiuyuan [Dong Feng Commercial Vehicle Technical Center, Dong Feng Commercial Vehicle Co., LTD, Wuhan (China); Gu, Jiabin; Lei, Ning [Department of 702, Beihang University, Beijing (China); Huo, Chunqin [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, Shenzhen University, Guangdong (China)

    2017-01-30

    Highlights: • Effect of inner surface materials of tubes on plasma discharge is examined. • Electron mean free path is used to analyze the films deposition. • Secondary electrons emitted from inner surface of tube enhance plasma discharge. - Abstract: Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PIII&D) have been proved to be highly effective for depositing diamond-like carbon (DLC) films on the inner surface of the slender quartz tube with a deposition rate of 1.3 μm/min. Such a high-efficiency DLC films deposition was explained previously as the short electrons mean free path to cause large collision frequency between electrons and neutral particles. However, in this paper, we found that the inner surface material of the tube itself play a vital role on the films deposition. To disclose the mechanism of this phenomenon, the effect of different inner surface materials on plasma discharge was experimentally and theoretically investigated. Then a self-enhancing plasma discharge is discovered. It is found that secondary electrons emitted from the inner surface material, whatever it is the tube inner surface or deposited DLC films, can dramatically enhance the plasma discharge to improve the DLC films deposition rate.

  2. Memory effect in the deposition of C20 fullerenes on a diamond surface

    Science.gov (United States)

    Du, A. J.; Pan, Z. Y.; Ho, Y. K.; Huang, Z.; Zhang, Z. X.

    2002-07-01

    In this paper, the deposition of C20 fullerenes on a diamond (001)-(2×1) surface and the fabrication of C20 thin film at 100 K were investigated by a molecular dynamics (MD) simulation using the many-body Brenner bond order potential. First, we found that the collision dynamic of a single C20 fullerene on a diamond surface was strongly dependent on its impact energy. Within the energy range 10-45 eV, the C20 fullerene chemisorbed on the surface retained its free cage structure. This is consistent with the experimental observation, where it was called the memory effect in ``C20-type'' films [P. Melion et al., Int. J. Mod. B 9, 339 (1995); P. Milani et al., Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)]. Next, more than one hundred C20 (10-25 eV) were deposited one after the other onto the surface. The initial growth stage of C20 thin film was observed to be in the three-dimensional island mode. The randomly deposited C20 fullerenes stacked on diamond surface and acted as building blocks forming a polymerlike structure. The assembled film was also highly porous due to cluster-cluster interaction. The bond angle distribution and the neighbor-atom-number distribution of the film presented a well-defined local order, which is of sp3 hybridization character, the same as that of a free C20 cage. These simulation results are again in good agreement with the experimental observation. Finally, the deposited C20 film showed high stability even when the temperature was raised up to 1500 K.

  3. Critical review of gamma spectrometry detection approaches for in-plant surface deposition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gregorich, Carola [Nuclear Fuels and Chemistry at the Electric Power Research Institute, Palo Alto, CA 94304, (United States)

    2015-07-01

    Surface deposition of activated corrosion product on oxide layers of light-water reactor primary system components is the primary source for ex-core radiation fields and personnel radiation exposure. Understanding the deposition mechanism and what factors influence the deposition and release behaviors are crucial for developing effective radiation field reduction measures. One of the available tools to assess the surface deposition is in-plant gamma spectrometry, which has been performed for several decades using either sodium iodide (NaI) or high-purity germanium (HPGe) detectors. Lately, the much more mobile cadmium-zinc-telluride (CZT) detectors are increasingly employed by stations because of their ease in use and handling. However, all of these gamma detectors face the same challenges; namely large-geometry samples of inconsistent sample compositions and sometimes gaps in the information necessary to establish proper efficiency calibrations. This paper reviews current measurements and efficiency calibration approaches taken in the industry. The validity of the measurement results and the feasibility of the data's use in understanding source term behavior is examined. Suggestions are made for the development of a more robust deposit characterization and radiation field monitoring program. (authors)

  4. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, C.A., E-mail: smythc2@tcd.ie [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Mirza, I.; Lunney, J.G.; McCabe, E.M. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Pulsed laser deposition (PLD) produces silver nanoparticle films. Black-Right-Pointing-Pointer These films can be used for surface-enhanced Raman spectroscopy (SERS). Black-Right-Pointing-Pointer Commercial film shows good SERS reproducibility but poor signal intensity. Black-Right-Pointing-Pointer PLD shows a good SERS response coupled with good reproducibility. - Abstract: Thin silver nanoparticle films, of thickness 7 nm, were deposited onto glass microslides using pulsed laser deposition (PLD). The films were then characterised using UV-vis spectroscopy and scanning transmission electron microscopy before Rhodamine 6G was deposited onto them for investigation using surface-enhanced Raman spectroscopy (SERS). The sensitivity obtained using SERS was compared to that obtained using a colloidal silver suspension and also to a commercial SERS substrate. The reproducibility of the films is also examined using statistical analysis.

  5. Engineering Particle Surface Chemistry and Electrochemistry with Atomic Layer Deposition

    Science.gov (United States)

    Jackson, David Hyman Kentaro

    Atomic layer deposition (ALD) is a vapor phase thin film coating technique that relies on sequential pulsing of precursors that undergo self-limited surface reactions. The self- limiting reactions and gas phase diffusion of the precursors together enable the conformal coating of microstructured particles with a high degree of thickness and compositional control. ALD may be used to deposit thin films that introduce new functionalities to a particle surface. Examples of new functionalities include: chemical reactivity, a mechanically strong protective coating, and an electrically resistive layer. The coatings properties are often dependent on the bulk properties and microstructure of the particle substrate, though they usually do not affect its bulk properties or microstructure. Particle ALD finds utility in the ability to synthesize well controlled, model systems, though it is expensive due to the need for costly metal precursors that are dangerous and require special handling. Enhanced properties due to ALD coating of particles in various applications are frequently described empirically, while the details of their enhancement mechanisms often remain the focus of ongoing research in the field. This study covers the various types of particle ALD and attempts to describe them from the unifying perspective of surface science.

  6. Particle dry deposition to water surfaces: Processes and consequences

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.

    2000-01-01

    flux to coastal waters, atmosphere-surface exchange represents a significant component of the total flux and may be particularly critical during the summertime when both the riverine input and ambient nutrient concentrations are often at a minimum. In this chapter, we present an overview...... of the physical and chemical processes which dictate the quantity (and direction) of atmosphere-surface fluxes of trace chemicals to (and above) water surfaces with particular emphasis on the role of particles. Dry deposition (transfer to the surface in the absence of precipitation) of particles is determined...... efforts to simulate and measure fluxes close to the coastline. These arise in part from the complexity of atmospheric flow in this region where energy and chemical fluxes are highly inhomogeneous in space and time and thermally generated atmospheric circulations are commonplace. (C) 2000 Elsevier Science...

  7. Process technology - rare and refractory metals

    International Nuclear Information System (INIS)

    Gupta, C.K.; Bose, D.K.

    1989-01-01

    India has fairly rich resreves of rare and refractory metals. Abundant sources of ilmenite, rutile, zircon and rare earths are found in the placer deposits of the southern and eastern coasts of the country. Columbite-tantalite occur in mica and the mining belts of Bihar and cassiterite deposits are found in Bastar (Madhya Pradesh). Vanadium as a minor associate occurs in bauxites and in the vast deposits of titaniferrous magnetites. Over the years, research and development and pilot plant works in many research organisations in India have built up a sound technological base in the country for process metallurgy of many refractory and rare earth metals starting from their indigenous sources. The present paper provides a comprehensive view of the developments that have taken place till now on the processing of various refractory and rare earth metals with particular reference to the extensive work carried out at the Department of Atomic Energy. The coverage includes mineral benification separation of individual elements, preparation of pure intermediates, techniques of reduction to metal and final purification. The paper also reviews some of the recent developments that have been taken place in these fields and the potential application of these metals in the foreseeable future. (author). 22 refs., 18 fi g., 7 tabs

  8. Deposition of fibrinogen on the surface of in vitro thrombi prevents platelet adhesion.

    Science.gov (United States)

    Owaynat, Hadil; Yermolenko, Ivan S; Turaga, Ramya; Lishko, Valeryi K; Sheller, Michael R; Ugarova, Tatiana P

    2015-12-01

    The initial accumulation of platelets after vessel injury is followed by thrombin-mediated generation of fibrin which is deposited around the plug. While numerous in vitro studies have shown that fibrin is highly adhesive for platelets, the surface of experimental thrombi in vivo contains very few platelets suggesting the existence of natural anti-adhesive mechanisms protecting stabilized thrombi from platelet accumulation and continuous thrombus propagation. We previously showed that adsorption of fibrinogen on pure fibrin clots results in the formation of a nonadhesive matrix, highlighting a possible role of this process in surface-mediated control of thrombus growth. However, the deposition of fibrinogen on the surface of blood clots has not been examined. In this study, we investigated the presence of intact fibrinogen on the surface of fibrin-rich thrombi generated from flowing blood and determined whether deposited fibrinogen is nonadhesive for platelets. Stabilized fibrin-rich thrombi were generated using a flow chamber and the time that platelets spend on the surface of thrombi was determined by video recording. The presence of fibrinogen and fibrin on the surface of thrombi was analyzed by confocal microscopy using specific antibodies. Examination of the spatial distribution of two proteins revealed the presence of intact fibrinogen on the surface of stabilized thrombi. By manipulating the surface of thrombi to display either fibrin or intact fibrinogen, we found that platelets adhere to fibrin- but not to fibrinogen-coated thrombi. These results indicate that the fibrinogen matrix assembled on the outer layer of stabilized in vitro thrombi protects them from platelet adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effects of surface deposition and droplet injection on film cooling

    International Nuclear Information System (INIS)

    Wang, Jin; Cui, Pei; Vujanović, Milan; Baleta, Jakov; Duić, Neven; Guzović, Zvonimir

    2016-01-01

    Highlights: • Cooling effectiveness is significantly affected by the deposition size. • Coverage area for model without mist is reduced by increasing the deposition height. • Wall temperature is decreased by 15% with 2% mist injection. • Cooling coverage is increased by more than three times with 2% mist injection. • Cooling effectiveness for mist models is improved by increasing deposition height. - Abstract: In the present research, the influence of the particle dispersion onto the continuous phase in film cooling application was analysed by means of numerical simulations. The interaction between the water droplets and the main stream plays an important role in the results. The prediction of two-phase flow is investigated by employing the discrete phase model (DPM). The results present heat transfer characteristics in the near-wall region under the influence of mist cooling. The local wall temperature distribution and film cooling effectiveness are obtained, and results show that the film cooling characteristics on the downstream wall are affected by different height of surface deposits. It is also found that smaller deposits without mist injection provide a lower wall temperature and a better cooling performance. With 2% mist injection, evaporation of water droplets improves film cooling effectiveness, and higher deposits cause lateral and downstream spread of water droplets. The results indicate that mist injection can significantly enhance film cooling performance.

  10. Surface modification of an epoxy resin with polyamines and polydopamine: The effect on the initial electroless copper deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); De Geyter, Nathalie; Morent, Rino [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2014-06-01

    This paper describes the influence of polydopamine and polyamine surface modifications of an etched epoxy cresol novolak (ECN) resin on the initial electroless copper deposition. Three different strategies to introduce polyamines on a surface in aqueous environment are applied: via polyethyleneimine adsorption (PEI), via polydopamine and via polyamines grafted to polydopamine. Next, the influence of these surface modifications on the catalytic palladium activation is investigated through X-ray photoelectron spectroscopy (XPS) analysis. Finally, the initial electroless copper deposition on modified epoxy surfaces is evaluated using SEM and Energy Dispersive Spectroscopy (EDS). Grafted polyamines on polydopamine surface modifications result in a large increase of the initial deposited copper.

  11. Deposition of gold nanoparticles from colloid on TiO2 surface

    Science.gov (United States)

    Rehacek, Vlastimil; Hotovy, Ivan

    2017-11-01

    In this paper, experimental results are presented on the deposition of colloidal gold nanoparticles on the surfaces of TiO2 prepared on silicon/silicon dioxide. Important procedures, such as titanium dioxide surface hydrophilization as well as functionalization by an organosilane coupling agent (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane were investigated in order to obtain a metal oxide surface with the most convenient properties for immobilization of gold nanoparticles having a dense and uniform distribution. TiO2 nanotips prepared by reactive ion etching of oxide surface covered with self-mask gold nanoparticles are demonstrated.

  12. Depositional patterns of the Mississippi Fan surface: Evidence from GLORIA II and high-resolution seismic profiles

    Science.gov (United States)

    Twichell, David C.; Kenyon, Neil H.; Parson, Lindsay M.; McGregor, Bonnie A.

    1991-01-01

    GLORIA long-range side-scan sonar imagery and 3.5-kHz seismic-reflection profiles depict a series of nine elongate deposits with generally high-backscatter surfaces covering most of the latest fanlobe sequence of the Mississippi Fan in the eastern Gulf of Mexico. The youngest deposit is a “slump” that covers a 250 by 100 km area of the middle and upper fan. The remaining mapped deposits, termed depositional lobes, are long (as much as 200 km) and relatively thin (less than 35 m thick) bodies. Small channels and lineations on the surface of many of these depositional lobes radiate from a single, larger main channel that is the conduit through which sediment has been supplied to these surficial deposits on the fan. The 3.5-kHz profiles show that adjacent depositional lobes overlap one another rather than interfingering, indicating that only one lobe was an active site of deposition at a time. Shifting of the depositional sites appears to be caused by both aggradation and avulsion. The chronology developed from the overlapping relations indicates the oldest of the mapped depositional lobes are on the lowermost fan, and the youngest are further up the fan. Depositional lobes on the lower fan consist of a series of smaller, elongate features with high-backscatter surfaces (540 km in length) located at the ends of previously unrecognized small channels (turbidity currents and/or debris flows, sand flows, or mud flows appear to be the dominant transport process constructing these depositional lobes. Channelized flow is an important mechanism for transporting sediment away from the main channel on this fan and the resulting facies created by these small flows are laterally discontinuous.

  13. Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2015-10-30

    Highlights: • Surface modifications of epoxy resins with polydopamine and grafted polyamines can significantly increase the adhesion toward electroless deposited copper. • A clear characterization of the copper/epoxy interphase is provided by SEM analyses of cross sections. • Tailored conditions such as etching time (roughness) and electroless deposition temperature are needed to increase the adhesion of the modified surfaces. - Abstract: In this paper the influence of the epoxy roughness, surface modifications and ELD (electroless copper deposition) temperatures on the adhesive strength of the copper is studied. Good adhesion at low roughness values is targeted due to their applicability in high density electronic circuits. Roughened epoxy surfaces are modified with adsorbed polyamines, polydopamine and polyamines grafted to polydopamine. Next the, adhesive strength of ELD copper is determined with peel strength measurements and the interphases are examined with SEM (scanning electron microscopy). Polydopamine and polyamines grafted to polydopamine can lead to increased adhesive strength at lower roughness values compared to the non-modified samples at specific plating temperatures.

  14. Geochemical characterization of rare earth elements from fluorite deposits of Tangua district - RJ

    International Nuclear Information System (INIS)

    Coelho, C.E.S.; Dardenne, M.A.

    1987-01-01

    The Tangua fluorite vein-type deposits are related to an alkaline complex of the same name, and situated in the District of Itaborai, in the State of Rio de Janeiro. The plutonic body of nepheline syenites (Tangua Massif) intrudes basement gneisses, with dykes and sills of trachitic and phonolitic nature of hundreds of meters in length and centimeters to tens of meters in thickness. The fluorite veins are emplaced both in gneisses and alkaline rocks (plutonic body and dykes) in NE-ENE structures created or reactivated during the opening of the South Atlantic Ocean. The geochemical study of rare earth elements reveals that these mineralizations show very low contents in these elements, and a relatively high fractionation spectres. In the deposit environment, four mineralization phases were differenciated, with the first one being considered as the initial solution; the second one characterized by a new europium rich-solution; the third one, representing the evolution of this new solution, but in a reducing environment, with precipitation of pyrite; and the last one, representing a new batch of the initial solution. As a consequence of the REE's and fluid inclusions studies, we are able to suggest an origen by weathering of the country rocks due to superficial meteorics solutions along faults and fractures, that when heated in deep environments, promote lixiviation of silica and fluorine and precipitate the fluorites when their ascending movement comes to an end. (author) [pt

  15. Transforming a Simple Commercial Glue into Highly Robust Superhydrophobic Surfaces via Aerosol-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Zhuang, Aoyun; Liao, Ruijin; Lu, Yao; Dixon, Sebastian C; Jiamprasertboon, Arreerat; Chen, Faze; Sathasivam, Sanjayan; Parkin, Ivan P; Carmalt, Claire J

    2017-12-06

    Robust superhydrophobic surfaces were synthesized as composites of the widely commercially available adhesives epoxy resin (EP) and polydimethylsiloxane (PDMS). The EP layer provided a strongly adhered micro/nanoscale structure on the substrates, while the PDMS was used as a post-treatment to lower the surface energy. In this study, the depositions of EP films were taken at a range of temperatures, deposition times, and substrates via aerosol-assisted chemical vapor deposition (AACVD). A novel dynamic deposition temperature approach was developed to create multiple-layered periodic micro/nanostructures that significantly improved the surface mechanical durability. Water droplet contact angles (CA) of 160° were observed with droplet sliding angles (SA) frequently UV testing (365 nm, 3.7 mW/cm 2 , 120 h) were carried out to exhibit the environmental stability of the films. Self-cleaning behavior was demonstrated in clearing the surfaces of various contaminating powders and aqueous dyes. This facile and flexible method for fabricating highly durable superhydrophobic polymer films points to a promising future for AACVD in their scalable and low-cost production.

  16. Selective electrochemical gold deposition onto p-Si (1 0 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Santinacci, L; Etcheberry, A [Institut Lavoisier de Versailles (UMR CNRS 8180), University of Versailles-Saint-Quentin, 45 avenue des Etats-Unis, F-78035 Versailles cedex (France); Djenizian, T [Laboratoire Chimie Provence (UMR CNRS 6264), University of Aix-Marseille I-II-III, Centre Saint-Jerome, F-13397 Marseille Cedex 20 (France); Schwaller, P [Laboratory for Mechanics of Materials and Nanostructures, Swiss Federal Laboratory for Materials Testing and Research, Feuerwerkstr. 39, CH-3602 Thun (Switzerland); Suter, T [Laboratory for Corrosion and Materials Integrity, Swiss Federal Laboratory for Materials Testing and Research, Ueberlandstr. 129, CH-8600 Duebendorf (Switzerland); Schmuki, P [Department of Materials Science, LKO-WW4, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, D-91058 Erlangen (Germany)], E-mail: lionel.santinacci@uvsq.fr

    2008-09-07

    In this paper, we report selective electrochemical gold deposition onto p-type Si (1 0 0) into nanoscratches produced through a thin oxide layer using an atomic force microscope. A detailed description of the substrate engraving process is presented. The influence of the main scratching parameters such as the normal applied force, the number of scans and the scanning velocity are investigated as well as the mechanical properties of the substrate. Gold deposition is carried out in a KAu(CN){sub 2} + KCN solution by applying cathodic voltages for various durations. The gold deposition process is investigated by cyclic voltammetry. Reactivity enhancement at the scratched locations was studied by comparing the electrochemical behaviour of intact and engraved surfaces using a micro-electrochemical setup. Selective electrochemical gold deposition is achieved: metallic patterns with a sub-500 nm lateral resolution are obtained demonstrating, therefore, the bearing potential of this patterning technique.

  17. Effects of acid and alkaline based surface preparations on spray deposited cerium based conversion coatings on Al 2024-T3

    Energy Technology Data Exchange (ETDEWEB)

    Pinc, W. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)], E-mail: wrphw5@mst.edu; Geng, S.; O' Keefe, M.; Fahrenholtz, W.; O' Keefe, T. [Department of Materials Science Engineering, Materials Research Center, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2009-01-15

    Cerium based conversion coatings were spray deposited on Al 2024-T3 and characterized to determine the effect of surface preparation on the deposition rate and surface morphology. It was found that activation of the panel using a 1-wt.% sulfuric acid solution increased the coating deposition rate compared to alkaline cleaning alone. Analysis of the surface morphology of the coatings showed that the coatings deposited on the acid treated panels exhibited fewer visible cracks compared to coatings on alkaline cleaned panels. Auger electron spectroscopy depth profiling showed that the acid activation decreased the thickness of the aluminum oxide layer and the concentration of magnesium on the surface of the panels compared to the alkaline treatment. Additionally, acid activation increased the copper concentration at the surface of the aluminum substrate. Based on the results, the acid based surface treatment appeared to expose copper rich intermetallics, thus increasing the number of cathodic sites on the surface, which led to an overall increase in the deposition rate.

  18. Geological research on rare earth elements, results and outlook

    International Nuclear Information System (INIS)

    Fortin, H

    1999-01-01

    This is a report of the geological investigation of rare earth elements carried out by CCHEN and ENAMI (Empresa Nacional de Mineria) over 70,000 square kilometers in Chile's northern coastal mountain range. Twenty areas were identified with sphena, davidite, ilmenite, pyroxene, anatase and magnetite minerals containing 0.3 kg/t to 6.0 kg/t of rare earth elements. Additional research on Cerro Carmen Prospect, located near Diego de Almagro, define it as a metasomatic deposit, hosted in metamorphic contact rocks, between andesites (Pliensbachian to early Jurassic) and intrusive monzonitic rocks. This information increases knowledge about the metallogenesis of Chile's copper - iron - rare earth - uranium deposits and the application of this geological model of ore deposits as defined in Australia's Olympic Dam

  19. Biocompatibility of Mg Ion Doped Hydroxyapatite Films on Ti-6Al-4V Surface by Electrochemical Deposition.

    Science.gov (United States)

    Lee, Kang; Choe, Han-Cheol

    2016-02-01

    In this study, we prepared magnesium (Mg) doped nano-phase hydroxyapatite (HAp) films on the TiO2 nano-network surface using electrochemical deposition method. Ti-6Al-4V ELI surface was anodized in 5 M NaOH solution at 0.3 A for 10 min. Nano-network TiO2 surface were formed by these anodization steps which acted as templates and anchorage for growth of the Mg doped HAp during subsequent pulsed electrochemical deposition process at 85 degrees C. The phase and morphologies of HAp deposits were influenced by the Mg ion concentration.

  20. Phenomenological study of aerosol dry deposition in urban area: surface properties, turbulence and local meteorology influences

    International Nuclear Information System (INIS)

    Roupsard, P.

    2013-01-01

    Aerosol dry deposition is not much known for urban areas due to the lack of data. Knowledge on this phenomenon is necessary to understand pollutant fluxes in cities and to estimate inhabitant exposition to ionizing radiation of radioactive aerosols. A data providing could enable to enhance dry deposition models for these areas. An original experimental approach is performed to study submicron aerosol dry deposition on urban surfaces. Wind tunnel coupled to in situ experiments give results to study different physical phenomenon governing dry deposition. Dry deposition velocities are measured using aerosol tracers. These data are associated to turbulent and meteorological measured conditions. This database permits to classify the principal physical phenomenon for each experiment type. Finally, different phenomenon must be considered for chronic and acute exposition of urban surfaces to atmospheric particles. (author)

  1. Surface deposition of radon decay products with and without enhanced air motion

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Maher, E.F.; Hinds, W.C.; First, M.W.

    1983-01-01

    The effectiveness of fan-induced air motion in reducing airborne activity of short-lived radon decay products was evaluated in a 78-m 3 chamber. Observed reductions were as high as 50% for RaA ( 218 Po), 79% for RaB ( 214 Pb), and 86% for RaC ( 214 Bi). Activity Measurements of these nuclides on chamber and fan surfaces, along with airborne activity, were used to calculate material balances. Greater than about 90% of deposited activity was found on chamber surfaces, although areal activity density was higher on fan surfaces. Deposition velocity and diffusional boundary thickness were also determined. When no fans were used, boundary layer thickness was estimated to be 25 times the recoil distance of a RaB atom and, with fans, about 4 times the recoil distance, suggesting that recoiling of RaB atoms probably do not play a significant role in the relationship between surface and airborne activity. The results of this study have relevance for all habitable spaces having excessive radon concentration

  2. Surface properties tuning of welding electrode-deposited hardfacings by laser heat treatment

    Science.gov (United States)

    Oláh, Arthur; Croitoru, Catalin; Tierean, Mircea Horia

    2018-04-01

    In this paper, several Cr-Mn-rich hardfacings have been open-arc deposited on S275JR carbon quality structural steel and further submitted to laser treatment at different powers. An overall increase with 34-98% in the average microhardness and wear resistance of the coatings has been obtained, due to the formation of martensite, silicides, as well as simple and complex carbides on the surface of the hardfacings, in comparison with the reference, not submitted to laser thermal treatment. Surface laser treatment of electrode-deposited hardfacings improves their chemical resistance under corrosive saline environments, as determined by the 43% lower amount of leached iron and respectively, 28% lower amount of manganese ions leached in a 10% wt. NaCl aqueous solution, comparing with the reference hardfacings. Laser heat treatment also promotes better compatibility of the hardfacings with water-based paints and oil-based paints and primers, through the relative increasing in the polar component of the surface energy (with up to 65%) which aids both water and filler spreading on the metallic surface.

  3. D2O clusters isolated in rare-gas solids: Dependence of infrared spectrum on concentration, deposition rate, heating temperature, and matrix material

    Science.gov (United States)

    Shimazaki, Yoichi; Arakawa, Ichiro; Yamakawa, Koichiro

    2018-04-01

    The infrared absorption spectra of D2O monomers and clusters isolated in rare-gas matrices were systematically reinvestigated under the control of the following factors: the D2O concentration, deposition rate, heating temperature, and rare-gas species. We clearly show that the cluster-size distribution is dependent on not only the D2O concentration but also the deposition rate of a sample; as the rate got higher, smaller clusters were preferentially formed. Under the heating procedures at different temperatures, the cluster-size growth was successfully observed. Since the monomer diffusion was not enough to balance the changes in the column densities of the clusters, the dimer diffusion was likely to contribute the cluster growth. The frequencies of the bonded-OD stretches of (D2O)k with k = 2-6 were almost linearly correlated with the square root of the critical temperature of the matrix material. Additional absorption peaks of (D2O)2 and (D2O)3 in a Xe matrix were assigned to the species trapped in tight accommodation sites.

  4. Quantitative measurement of aerosol deposition on skin, hair and clothing for dosimetric assessment

    International Nuclear Information System (INIS)

    Roed, J.; Andersson, J.G.; Bell, K.F.; Byrne, M.A.; Fogh, C.L.; Goddard, A.J.H.; Vollmair, D.V.

    1998-01-01

    The deposition to human body surfaces of potentially hazardous aerosol has been investigated through tracer experiments. Particles of different sizes labelled with neutron activatable rare earth tracers were released in test rooms and deposited on volunteers. Various sampling techniques to examine the clearance and retention of the aerosol to skin, hair and clothing were investigated, and a protocol for the most efficient procedure was established and validated. Experiments indicate that the deposition velocity to skin increases linearly with the particle size. A wind tunnel experiment simulating outdoor conditions showed outdoor deposition velocities to be almost an order of magnitude higher than those recorded indoors. Both in vivo and in vitro experiments were conducted, and the influence of various factors, such as surface type, air flow, heating and electrostatics were examined. The dynamics of particle removal from human skin were studied by fluorescence scanning. Using the experimentally determined parameters, a model was established for calculation of radiation doses received from deposition of airborne radioactive aerosol on human body surfaces. It was found that the gamma doses that could be expected from deposition on skin were of the same order of magnitude as the gamma doses received over several years from contamination on outdoor surfaces. Assuming very high dry contamination levels, as were recorded in some areas of Russia after the Chernobyl accident, it was found that beta doses from skin deposition may amount to several Sievert and thus be responsible for a significant cancer risk. (au)

  5. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    Science.gov (United States)

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  6. A Metallurgical Investigation of the Direct Energy Deposition Surface Repair of Ferrous Alloys

    Science.gov (United States)

    Marya, Manuel; Singh, Virendra; Hascoet, Jean-Yves; Marya, Surendar

    2018-02-01

    Among additive manufacturing (AM) processes, the direct energy deposition (DED) by laser is explored to establish its applicability for the repair of ferrous alloys such as UNS G41400 low-alloy steel, UNS S41000 martensitic stainless steel, UNS S17400 precipitation-strengthened martensitic stainless steel, and UNS S32750 super-duplex stainless steel. Unlike plating, thermal spray, and conventional cladding weld, DED laser powder deposition offers potential advantages, e.g., thin deposits, limited dilutions, narrow heat-affected zones (HAZ), potentially improved surface properties. In this investigation, all AM deposits were completed with an IREPA CLAD™ system using a powder feed of UNS N06625, an alloy largely selected for its outstanding corrosion resistance. This investigation first addresses topological aspects of AM deposits (including visual imperfections) before focusing on changes in microstructure, microhardness, chemical composition across AM deposits and base materials. It has been established that dense, uniform, hard ( 300 HVN), crack-free UNS N06625-compliant AM deposits of fine dendritic microstructures are reliably produced. However, except for the UNS S32750 steel, a significant martensitic hardening was observed in the HAZs of UNS G41400 ( 650 HVN), UNS S41000 ( 500 HVN), and UNS S17400 ( 370 HVN). In summary, this investigation demonstrates that the DED laser repair of ferrous parts with UNS N06625 may restore damaged surfaces, but it also calls for cautions and complementary investigations for alloys experiencing a high HAZ hardening, for which industry standard recommendations are exceeded and lead to an increased risk of delayed cracking in corrosive environments.

  7. Simulation of trace metals and PAH atmospheric pollution over Greater Paris: Concentrations and deposition on urban surfaces

    Science.gov (United States)

    Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B.

    2017-10-01

    Urban areas can be subject not only to poor air quality, but also to contamination of other environmental media by air pollutants. Here, we address the potential transfer of selected air pollutants (two metals and three PAH) to urban surfaces. To that end, we simulate meteorology and air pollution from Europe to a Paris suburban neighborhood, using a four-level one-way nesting approach. The meteorological and air quality simulations use urban canopy sub-models in order to better represent the effect of the urban morphology on the air flow, atmospheric dispersion, and deposition of air pollutants to urban surfaces. This modeling approach allows us to distinguish air pollutant deposition among various urban surfaces (roofs, roads, and walls). Meteorological model performance is satisfactory, showing improved results compared to earlier simulations, although precipitation amounts are underestimated. Concentration simulation results are also satisfactory for both metals, with a fractional bias Paris region. The model simulation results suggest that both wet and dry deposition processes need to be considered when estimating the transfer of air pollutants to other environmental media. Dry deposition fluxes to various urban surfaces are mostly uniform for PAH, which are entirely present in fine particles. However, there is significantly less wall deposition compared to deposition to roofs and roads for trace metals, due to their coarse fraction. Meteorology, particle size distribution, and urban morphology are all important factors affecting air pollutant deposition. Future work should focus on the collection of data suitable to evaluate the performance of atmospheric models for both wet and dry deposition with fine spatial resolution.

  8. Leach of the weathering crust elution-deposited rare earth ore for low environmental pollution with a combination of (NH4)2SO4 and EDTA.

    Science.gov (United States)

    Tang, Jie; Qiao, Jiyang; Xue, Qiang; Liu, Fei; Chen, Honghan; Zhang, Guochen

    2018-05-01

    High concentration of ammonium sulfate, a typical leaching agent, was often used in the mining process of the weathering crust elution-deposited rare earth ore. After mining, a lot of ammonia nitrogen and labile heavy metal fractions were residual in tailings, which may result in a huge potential risk to the environment. In this study, in order to achieve the maximum extraction of rare earth elements and reduce the labile heavy metal, extraction effect and fraction changes of lanthanum (La) and lead (Pb) in the weathering crust elution-deposited rare earth ore were studied by using a compound agent of (NH 4 ) 2 SO 4 -EDTA. The extraction efficiency of La was more than 90% by using 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which was almost same with that by using 2.0% (NH 4 ) 2 SO 4 solution. In contrast, the extraction efficiency of Pb was 62.3% when use 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which is much higher than that (16.16%) achieved by using 2.0% (NH 4 ) 2 SO 4 solution. The released Pb fractions were mainly acid extractable and reducible fractions, and the content of reducible fraction being leached accounted for 70.45% of the total reducible fraction. Therefore, the use of 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA can not only reduce the amount of (NH 4 ) 2 SO 4 , but also decrease the labile heavy metal residues in soil, which provides a new way for efficient La extraction with effective preventing and controlling environmental pollution in the process of mining the weathering crust elution-deposited rare earth ore. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  10. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  11. Scaling of surface roughness in sputter-deposited ZnO:Al thin films

    International Nuclear Information System (INIS)

    Mohanty, Bhaskar Chandra; Choi, Hong-Rak; Cho, Yong Soo

    2009-01-01

    We have studied surface roughness scaling of ZnO:Al thin films grown by rf magnetron sputtering of a compound target within framework of the dynamic scaling theory using atomic force microscopy. We have observed a crossover in scaling behavior of surface roughness at a deposition time of 25 min. Both the regimes are characterized by power-law dependence of local surface width w(r,t) on deposition time for small r, typical of anomalous scaling. The scaling exponents for the first regime indicate the existence of a new dynamics. For t≥25 min, the films follow super-rough scaling behavior with global exponents α=1.5±0.2 and β=1.03±0.01, and local exponents α local =1 and β local =0.67±0.05. The anomaly in the scaling behavior of the films is discussed in terms of the shadowing instability and bombardment of energetic particles during growth of the films.

  12. XPS investigations of ruthenium deposited onto representative inner surfaces of nuclear reactor containment buildings

    Energy Technology Data Exchange (ETDEWEB)

    Mun, C. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Prevention des Accidents Majeurs (DPAM), Centre de Cadarache, BP3-13115 Saint-Paul-lez-Durance (France)]. E-mail: christian.mun@irsn.fr; Ehrhardt, J.J. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy University-405, rue de Vandoeuvre 54600 Villers-les-Nancy (France)]. E-mail: ehrhardt@lcpe.cnrs-nancy.fr; Lambert, J. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy University-405, rue de Vandoeuvre 54600 Villers-les-Nancy (France); Madic, C. [Commissariat a l' Energie Atomique (CEA), Direction de l' Energie Nucleaire, Centre de Saclay, 91191 Gif-sur-Yvette Cedex (France)]. E-mail: charles.madic@cea.fr

    2007-07-15

    In the case of a hypothetical severe accident in a nuclear power plant, interactions of gaseous RuO{sub 4} with reactor containment building surfaces (stainless steel and epoxy paint) could possibly lead to a black Ru-containing deposit on these surfaces. Some scenarios include the possibility of formation of highly radiotoxic RuO{sub 4}(g) by the interactions of these deposits with the oxidizing medium induced by air radiolysis, in the reactor containment building, and consequently dispersion of this species. Therefore, the accurate determination of the chemical nature of ruthenium in the deposits is of the high importance for safety studies. An experiment was designed to model the interactions of RuO{sub 4}(g) with samples of stainless steel and of steel covered with epoxy paint. Then, these deposits have been carefully characterised by scanning electron microscopy (SEM/EDS), electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The analysis by XPS of Ru deposits formed by interaction of RuO{sub 4}(g), revealed that the ruthenium is likely to be in the IV oxidation state, as the shapes of the Ru 3d core levels are very similar with those observed on the RuO{sub 2}.xH{sub 2}O reference powder sample. The analysis of O 1s peaks indicates a large component attributed to the hydroxyl functional groups. From these results, it was concluded that Ru was present on the surface of the deposits as an oxyhydroxide of Ru(IV). It has also to be pointed out that the presence of 'pure' RuO{sub 2}, or of a thin layer of RuO{sub 3} or Ru{sub 2}O{sub 5}, coming from the decomposition of RuO{sub 4} on the surface of samples of stainless steel and epoxy paint, could be ruled out. These findings will be used for further investigations of the possible revolatilisation phenomena induced by ozone.

  13. Field experiments for studying the deposition of aerosols onto vegetation and other surfaces

    International Nuclear Information System (INIS)

    Jonas, R.; Heinemann, K.

    1986-01-01

    For some pollutions, dry deposition clearly predominates in the long-term mean over the wash-out or wet deposition. The deposition velocity or fall-out constant, defined as follows, is a measure of the dry deposition of pollutants onto the soil or vegetation: upsilonsub(g) = K/I, where upsilonsub (g) = deposition velocity (cms -1 ); K = contamination of the sampling surface per cm 2 area (quantity deposited per cm 2 ); I = time-integrated air concentration conventionally measured at a reference height of 1 m above the ground. The deposition velocity of radioactively labelled test aerosols (copper sulphate) onto grass, clover, various species of tree (common beech, hornbeam, red oak, common oak, horse chestnut, silver birch, Norway maple, common spruce, Scots pine, Japanese larch, European larch, common silver fir) as well as onto bare soil, water, metals and horizontal filter paper was determined in an extensive series of field tests at the Julich Nuclear Research Centre (Jonas, 1984; Jonas and Heinemann, 1985). For determination of the deposition velocities, the reader is referred to Jonas and Heinemann (1985). (author)

  14. Magnetic field effects on coating deposition rate and surface morphology coatings using magnetron sputtering

    International Nuclear Information System (INIS)

    Yang, Yu-Sen; Huang, Wesley

    2010-01-01

    Chromium nitride coatings exhibit superior hardness, excellent wear and oxidation resistance, and are widely applied in the die and mold industries. The aim of this study was to investigate magnetic field effects on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering. Four types of magnetic field configurations, including the magnetron sputtering system, SNSN, SNNN, and intermediate magnetron modification, are discussed in this paper. SKD11 cold work die steel and a silicon (100) chip were used as substrates in the chromium nitride depositions. The process parameters, such as target current, substrate bias, and the distance between the substrate and target, are at fixed conditions, except for the magnetic arrangement type. The experimental results showed that the deposition rates of the four types of magnetic field configurations were 1.06, 1.38, 1.67 and 1.26 µm h −1 , respectively. In these cases, the SNNN type performs more than 58% faster than the unbalanced magnetron configuration does for the deposition rate. The surface morphology of chromium nitride films was also examined by SEM and is discussed in this paper

  15. Deposition temperature dependence of material and Si surface passivation properties of O3-based atomic layer deposited Al2O3-based films and stacks

    International Nuclear Information System (INIS)

    Bordihn, Stefan; Mertens, Verena; Müller, Jörg W.; Kessels, W. M. M.

    2014-01-01

    The material composition and the Si surface passivation of aluminum oxide (Al 2 O 3 ) films prepared by atomic layer deposition using Al(CH 3 ) 3 and O 3 as precursors were investigated for deposition temperatures (T Dep ) between 200 °C and 500 °C. The growth per cycle decreased with increasing deposition temperature due to a lower Al deposition rate. In contrast the material composition was hardly affected except for the hydrogen concentration, which decreased from [H] = 3 at. % at 200 °C to [H]  2 O 3 /SiN x stacks complemented the work and revealed similar levels of surface passivation as single-layer Al 2 O 3 films, both for the chemical and field-effect passivation. The fixed charge density in the Al 2 O 3 /SiN x stacks, reflecting the field-effect passivation, was reduced by one order of magnitude from 3·10 12  cm −2 to 3·10 11  cm −2 when T Dep was increased from 300 °C to 500 °C. The level of the chemical passivation changed as well, but the total level of the surface passivation was hardly affected by the value of T Dep . When firing films prepared at of low T Dep , blistering of the films occurred and this strongly reduced the surface passivation. These results presented in this work demonstrate that a high level of surface passivation can be achieved for Al 2 O 3 -based films and stacks over a wide range of conditions when the combination of deposition temperature and annealing or firing temperature is carefully chosen

  16. Purity and surface roughness of vacuum deposited aluminium films

    Energy Technology Data Exchange (ETDEWEB)

    Dhere, N G; Arsenio, T P [Instituto Militar de Engenharia, Rio de Janeiro (Brazil); Patnaik, B K [Pontificia Universidade Catolica do Rio de Janeiro (Brazil). Instituto de Fisica; Assuncao, F C.R.; de Souza, A M [Pontificia Universidade Catolica do Rio de Janeiro (Brazil). Departamento de Ciencia dos Materiais e Metalurgia

    1975-04-01

    The authors studied the purity, surface roughness and grain size of vacuum-deposited aluminium films, using an intermetallic crucible and a continuous feed of pure aluminium wire. The grain size and roughness were studied by electron difraction, X-ray diffraction and the scanning electron microscope. Purity was determined by X-ray fluorescence produced by proton bombardment in the Van de Graaff accelerator and by X-ray and optical emission spectrometry.

  17. Influence of rare earth additions on the oxidation resistance of chromia forming alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    1995-01-01

    The addition of rare earths to alloys, either in elemental form or as surface coatings reduces the oxidation rate of chromia forming alloys. The rare earths either act as nucleation sites for surface oxides or get incorporates into the surface oxide and diffuse to oxide grain boundaries. If the latter occurs, a change in the defect structure close to the grain boundaries, probably takes place. In this manner, the rare earths inhibits the movement of chromium ions to the oxide/gas interface. The influence of rare earth additions to AISI 316, AISI 316L and Ni-20 Cr on their oxidation behavior has been studied., AISI 316+Ce, AISI 316+Y, Ni-20 Cr and Ni-20 Cr-2 Al-1 Ce were prepared by melting and AISI 316L, AISI 316L+Ce O 2 and AISI 316L+Y 2 O 3 by powder compaction. The effect of superficial deposits of rare earth oxides was also studied. The alloys were coated with rare earth oxides by high temperature conversion of the respective rare earth nitrates. Isothermal oxidation tests were carried out at 900-1100 deg C and the cyclic oxidation tests consisted of 6 cycles of 2 hours each at 900 deg C, followed by cooling to room temperature. All the tests were carried out in air. Oxidation behavior was evaluated gravimetrically. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis and X-ray diffraction techniques were used to identify oxide constituents. Overall, it has been observed that with the addition of rare earths, oxidation resistance increases by decreasing oxidation rates and increasing oxide adhesion. Addition of rare earths to AISI 316 prepared by melting resulted in rapid formation of a chromium rich oxide layered near the metal/oxide interface which reduced overall oxidation rate. The addition of Ce O 2 to AISI 316L was found to improve oxidation behavior after 10 hours at 1100 deg C and also inhibit the formation of volatile Cr O 3 . The isothermal oxidation behavior of rare earth oxide covered Ni-20 Cr at 900 deg C

  18. Topography evolution of rough-surface metallic substrates by solution deposition planarization method

    Science.gov (United States)

    Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian

    2018-01-01

    As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.

  19. An analytical model for particulate deposition on vertical heat transfer surfaces in a boiling environment

    International Nuclear Information System (INIS)

    Keefer, R.H.; Rider, J.L.; Waldman, L.A.

    1993-01-01

    A frequent problem in heat exchange equipment is the deposition of particulates entrained in the working fluid onto heat transfer surfaces. These deposits increase the overall heat transfer resistance and can significantly degrade the performance of the heat exchanger. Accurate prediction of the deposition rate is necessary to ensure that the design and specified operating conditions of the heat exchanger adequately address the effects of this deposit layer. Although the deposition process has been studied in considerable detail, much of the work has focused on investigating individual aspects of the deposition process. This paper consolidates this previous research into a mechanistically based analytical prediction model for particulate deposition from a boiling liquid onto vertical heat transfer surfaces. Consistent with the well known Kern-Seaton approach, the model postulates net particulate accumulation to depend on the relative contributions of deposition and reentrainment processes. Mechanisms for deposition include boiling, momentum, and diffusion effects. Reentrainment is presumed to occur via an intermittent erosion process, with the energy for particle removal being supplied by turbulent flow instabilities. The contributions of these individual mechanisms are integrated to obtain a single equation for the deposit thickness versus time. The validity of the resulting model is demonstrated by comparison with data published in the open literature. Model estimates show good agreement with data obtained over a range of thermal-hydraulic conditions in both flow and pool boiling environments. The utility of the model in performing parametric studies (e.g. to determine the effect of flow velocity on net deposition) is also demonstrated. The initial success of the model suggests that it could prove useful in establishing a range of heat exchanger. operating conditions to minimize deposition

  20. Modelling atmospheric deposition flux of Cadmium and Lead in urban areas

    International Nuclear Information System (INIS)

    Cherin, Nicolas

    2017-01-01

    According to WHO, air pollution is responsible for more than 3.7 million premature deaths each year (OMS, 2014). Moreover, among these deaths, more than 70 within urban areas. Consequently, the health and environmental impacts of pollutants within these urban areas are of great concern in air quality studies. The deposition fluxes of air pollutants, which can be significant near sources of pollution, have rarely been modeled within urban areas. Historically, atmospheric deposition studies have focused mostly on remote areas to assess the potential impacts on ecosystems of acid deposition and nitrogen loading. Therefore, current atmospheric deposition models may not be suitable to simulate deposition fluxes in urban areas, which include complex surface geometries and diverse land use types. Atmospheric dry deposition is typically modeled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parameterize momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parameterization of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. This approach provides spatially distributed dry deposition fluxes depending on surfaces (streets, walls, roofs) and flow regimes (recirculation and ventilation) within the urban area. (author) [fr

  1. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  2. Electrochemical deposition on surface nanometric defects: Thermodynamics and grand canonical Monte Carlo simulations

    International Nuclear Information System (INIS)

    Luque, Noelia B.; Reinaudi, Luis; Serra, Pablo; Leiva, Ezequiel P.M.

    2009-01-01

    A thermodynamic analysis is performed on electrochemical metal deposition in the cavity of a foreign substrate. In particular, the deposition of Cu and Ag in nanometer-sized holes on Au(1 1 1) is studied by means of off-lattice atomistic Grand Canonical Monte Carlo simulations, using embedded atom method potentials. The present simulation conditions emulate experiments of electrochemical metal deposition in nanocavities, as performed in the literature. Depending on the system, remarkable differences are found in the way in which the defects are decorated, as well as in their energetics. When the interaction of the adsorbate atoms with the substrate is less favorable than the bulk interaction of the adsorbate, clusters are found that grow stepwise over the level of the surface. In the opposite case, the filling of the cavity occurs stepwise, without the occurrence of cluster growth above the surface level. The results of the simulations present a good qualitative agreement with experimental results from the literature

  3. Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications.

    Science.gov (United States)

    Tavtigian, Sean V; Byrnes, Graham B; Goldgar, David E; Thomas, Alun

    2008-11-01

    Many individually rare missense substitutions are encountered during deep resequencing of candidate susceptibility genes and clinical mutation screening of known susceptibility genes. BRCA1 and BRCA2 are among the most resequenced of all genes, and clinical mutation screening of these genes provides an extensive data set for analysis of rare missense substitutions. Align-GVGD is a mathematically simple missense substitution analysis algorithm, based on the Grantham difference, which has already contributed to classification of missense substitutions in BRCA1, BRCA2, and CHEK2. However, the distribution of genetic risk as a function of Align-GVGD's output variables Grantham variation (GV) and Grantham deviation (GD) has not been well characterized. Here, we used data from the Myriad Genetic Laboratories database of nearly 70,000 full-sequence tests plus two risk estimates, one approximating the odds ratio and the other reflecting strength of selection, to display the distribution of risk in the GV-GD plane as a series of surfaces. We abstracted contours from the surfaces and used the contours to define a sequence of missense substitution grades ordered from greatest risk to least risk. The grades were validated internally using a third, personal and family history-based, measure of risk. The Align-GVGD grades defined here are applicable to both the genetic epidemiology problem of classifying rare missense substitutions observed in known susceptibility genes and the molecular epidemiology problem of analyzing rare missense substitutions observed during case-control mutation screening studies of candidate susceptibility genes. (c) 2008 Wiley-Liss, Inc.

  4. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  5. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling

    1984-01-01

    A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed ...... produced as droplets at the surface and ‘continental’ background aerosols brought into the boundary layer at the top by entrainment and gravitational settling. Estimates of Si are provided....

  6. Mid-crustal uranium and rare metal mineralisation in the Mount Isa Inlier: a genetic model for formation of orogenic uranium deposits

    OpenAIRE

    McGloin, Matthew

    2017-01-01

    Uranium mineralisation near Mount Isa in northwest Queensland, Australia, is widespread yet poorly understood. Within this region in the Western Fold Belt, one hundred and ninety uranium-rare metal occurrences are known. This uranium mineralisation is similar to worldwide examples of albitite-hosted or sodium-metasomatic uranium deposits, which host albite-carbonate ore zones enriched in incompatible elements. Various metal sources and ore-forming processes have been sugg...

  7. The Role of Titanium Surface Microtopography on Adhesion, Proliferation, Transformation, and Matrix Deposition of Corneal Cells.

    Science.gov (United States)

    Zhou, Chengxin; Lei, Fengyang; Chodosh, James; Paschalis, Eleftherios I

    2016-04-01

    Titanium (Ti) is an excellent implantable biomaterial that can be further enhanced by surface topography optimization. Despite numerous data from orthopedics and dentistry, the effect of Ti surface topography on ocular cells is still poorly understood. In light of the recent adaptation of Ti in the Boston Keratoprosthesis artificial cornea, we attempted to perform an extended evaluation of the effect of Ti surface topography on corneal cell adhesion, proliferation, cytotoxicity, transformation, and matrix deposition. Different surface topographies were generated on medical grade Ti-6Al-4V-ELI (extra-low interstitial), with linearly increased roughness (polished to grit blasted). Biological response was evaluated in vitro using human corneal limbal epithelial (HCLE) cells, stromal fibroblasts (HCF), and endothelial cells (HCEnC). None of the Ti surface topographies caused cytotoxicity to any of the three corneal cell types. However, rough Ti surface inhibited HCLE and HCF cell adhesion and proliferation, while HCEnC proliferation was unaffected. Long-term experiments with HCF revealed that rough Ti surface with R(a) (the arithmetic average of the profile height from the mean line) ≥ 1.15 μm suppressed HCF focal adhesion kinase phosphorylation, changed fibroblast morphology, and caused less aligned and reduced deposition of collagen matrix as compared to smooth Ti (R(a) ≤ 0.08 μm). In the presence of transforming growth factor β1 (TGFβ1) stimulation, rough Ti inhibited alpha-smooth muscle actin (α-SMA) expression and collagen deposition, leading to decreased myofibroblast transformation and disorganization of the collagen fibrils as compared to smooth Ti. This study suggests that Ti surface topography regulates corneal cell behavior in a tissue-dependent manner that varies across the corneal strata. Contrary to the accepted paradigm, smooth surface topography can enhance cell adhesion and proliferation and increase matrix deposition by corneal cells.

  8. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    Science.gov (United States)

    Yin, Lianhua; Chen, Qiang

    2017-12-01

    In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.

  9. Quantitative measurement of aerosol deposition on skin, hair and clothing for dosimetric assessment

    Energy Technology Data Exchange (ETDEWEB)

    Roed, J.; Andersson, J.G.; Bell, K.F.; Byrne, M.A.; Fogh, C.L.; Goddard, A.J.H.; Vollmair, D.V.

    1998-01-01

    The deposition to human body surfaces of potentially hazardous aerosol has been investigated through tracer experiments. Particles of different sizes labelled with neutron activatable rare earth tracers were released in test rooms and deposited on volunteers. Various sampling techniques to examine the clearance and retention of the aerosol to skin, hair and clothing were investigated, and a protocol for the most efficient procedure was established and validated. Experiments indicate that the deposition velocity to skin increases linearly with the particle size. A wind tunnel experiment simulating outdoor conditions showed outdoor deposition velocities to be almost an order of magnitude higher than those recorded indoors. Both in vivo and in vitro experiments were conducted, and the influence of various factors, such as surface type, air flow, heating and electrostatics were examined. The dynamics of particle removal from human skin were studied by fluorescence scanning. Using the experimentally determined parameters, a model was established for calculation of radiation doses received from deposition of airborne radioactive aerosol on human body surfaces. It was found that the gamma doses that could be expected from deposition on skin were of the same order of magnitude as the gamma doses received over several years from contamination on outdoor surfaces. Assuming very high dry contamination levels, as were recorded in some areas of Russia after the Chernobyl accident, it was found that beta doses from skin deposition may amount to several Sievert and thus be responsible for a significant cancer risk. (au). 12 tabs., 9 ills., 43 refs.

  10. Rare earth elements behavior in Peruibe black mud

    International Nuclear Information System (INIS)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da

    2015-01-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  11. Rare earth elements behavior in Peruibe black mud

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da, E-mail: jeffkoy@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  12. The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces.

    Science.gov (United States)

    Barry, Seán T; Teplyakov, Andrew V; Zaera, Francisco

    2018-03-20

    The deposition of thin solid films is central to many industrial applications, and chemical vapor deposition (CVD) methods are particularly useful for this task. For one, the isotropic nature of the adsorption of chemical species affords even coverages on surfaces with rough topographies, an increasingly common requirement in microelectronics. Furthermore, by splitting the overall film-depositing reactions into two or more complementary and self-limiting steps, as it is done in atomic layer depositions (ALD), film thicknesses can be controlled down to the sub-monolayer level. Thanks to the availability of a vast array of inorganic and metalorganic precursors, CVD and ALD are quite versatile and can be engineered to deposit virtually any type of solid material. On the negative side, the surface chemistry that takes place in these processes is often complex, and can include undesirable side reactions leading to the incorporation of impurities in the growing films. Appropriate precursors and deposition conditions need to be chosen to minimize these problems, and that requires a proper understanding of the underlying surface chemistry. The precursors for CVD and ALD are often designed and chosen based on their known thermal chemistry from inorganic chemistry studies, taking advantage of the vast knowledge developed in that field over the years. Although a good first approximation, however, this approach can lead to wrong choices, because the reactions of these precursors at gas-solid interfaces can be quite different from what is seen in solution. For one, solvents often aid in the displacement of ligands in metalorganic compounds, providing the right dielectric environment, temporarily coordinating to the metal, or facilitating multiple ligand-complex interactions to increase reaction probabilities; these options are not available in the gas-solid reactions associated with CVD and ALD. Moreover, solid surfaces act as unique "ligands", if these reactions are to be

  13. The role of surface defects in HOPG on the electrochemical and physical deposition of Ag

    Directory of Open Access Journals (Sweden)

    R. PETROVIC

    1999-08-01

    Full Text Available The role of defects on a substrate surface during the initial stages of nucleation and growth of Ag deposited electrochemically and physically on highly oriented pyrolytic graphite (HOPG has been observed ex situ by scanning tunneling microscopy (STM. The silver was electrodeposited under current controlled electrochemical conditions at 26 µA/cm2, which corresponded to a deposition rate of 0.1 monolayers (ML per second. For comparison, physical deposition of Ag on HOPG was performed by DC Ar+ ion sputtering, at the same deposition rate and for the same deposition times. In both cases, Ag grows in an island growth mode, but the distribution of the islands appears to be quite different. In physical deposition, the Ag islands are almost homogeneously distributed over the substrate surface and a slight accumulation of islands on steps does not contribute significantly to the overall morphology. This indicates the crucial role of point defects on the substrate in the initial stages of nucleation. In electrochemical deposition, more lined defects are observed after a flow of current, and their role in the beginning of the nucleation is more pronounced. Lined defects are responsible for the string-like shaped domains of deposited atoms. Also, the existence of string-like shaped nucleation exclusion zones is indicated. The problem of the formation of nucleation exclusion zones, which appear only in electrochemical deposition, has been reconsidered and a new explanaton of their formation is given. A mathematical model for the calculation of the radius of the nucleation exclusion zone has been developed.

  14. Surface characterization of ZnO nanorods grown by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mbulanga, C.M., E-mail: crispin.mbulanga@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Urgessa, Z.N.; Tankio Djiokap, S.R.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Duvenhage, M.M.; Swart, H.C. [Department of Physics, University of the Free State, P.O Box 77000, Bloemfontein ZA9300 (South Africa)

    2016-01-01

    The surface composition of as-grown and annealed ZnO nanorods (ZNs) grown by a two-step chemical bath deposition method is investigated by the following surface-sensitive techniques: Time-of-Flight Secondary Ion Mass Spectroscopy (TOF-SIMS), X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). The presence of H on the surface and throughout the entire thickness of ZNs is confirmed by TOF-SIMS. Based on TOF-SIMS results, the O2 XPS peak mostly observable at ~531.5 is assigned to O bound to H. Furthermore, it is found that the near surface region of as-grown ZNs is Zn-rich, and annealing at high temperature (~850 °C) removes H-related defects from the surface of ZNs and affect the balance of zinc and oxygen concentrations.

  15. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    International Nuclear Information System (INIS)

    Lei Caixia; Liao Yingmin; Feng Zude

    2009-01-01

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm -2 to 10 mA cm -2 ) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  16. Activation of Zr-Co-rare earth getter films: An XPS study

    International Nuclear Information System (INIS)

    Petti, D.; Cantoni, M.; Leone, M.; Bertacco, R.; Rizzi, E.

    2010-01-01

    Thin films of non-evaporable getters are employed in the field of electronic devices packaging, as they provide a simple and effective solution for pumping in sealed applications. In particular thin films of Zr-Co-rare earth alloys deposited by sputtering have been developed for this purpose and successfully employed in industrial applications. In this paper we present an X-ray photoelectron spectroscopy investigation of the effect of thermal activation of the getter from the point of view of the induced surface chemical modification as seen by such a surface sensitive technique. We find that the activation process reflects in a clear reduction of Zr, accompanied by a decrease of the oxygen concentration at surface, which is fully accomplished already at 350 deg. C; while at 450 deg. C there is a significant increase of the cobalt concentration at surface.

  17. Neutron activation analysis of the rare earth elements in Nasu hot springs

    International Nuclear Information System (INIS)

    Ikeda, Nagao; Takahashi, Naruto.

    1978-01-01

    Eleven rare earth elements (lanthanum, cerium, neodymium, samarium, europium, gadolinium, terbium, holmium, thulium, ytterbium and lutetium) in hot spring waters and sinter deposits in the Nasu area were determined by the neutron activation method. The rare earth elements in hot spring water were preconcentrated in ferric hydroxide precipitate and neutron-irradiated. The rare earth elements were chemically separated into lighter and heavier groups and the activity of each group was measured with a Ge(Li) detector. Distribution of the rare earth elements between the hot spring water and the sinter deposit was also discussed. (auth.)

  18. Assessment of magmatic vs. metasomatic processes in rare-metal granites: A case study of the Cínovec/Zinnwald Sn–W–Li deposit, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Breiter, Karel; Ďurišová, Jana; Hrstka, Tomáš; Korbelová, Zuzana; Hložková Vaňková, M.; Vašinová Galiová, M.; Kanický, V.; Rambousek, P.; Knésl, I.; Dobeš, P.; Dosbaba, M.

    292/293, November (2017), s. 198-217 ISSN 0024-4937 R&D Projects: GA ČR GA14-13600S Institutional support: RVO:67985831 Keywords : rare-metal granite * Cínovec/Zinnwald deposit * rock textures * metasomatic processes * magmatic processes Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 3.677, year: 2016

  19. Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response

    International Nuclear Information System (INIS)

    Liang, Yuchen; Huang, Jie; Zang, Pengyuan; Kim, Jiyoung; Hu, Walter

    2014-01-01

    Graphical abstract: - Abstract: We report the use of molecular layer deposition (MLD) for depositing 3-aminopropyltriethoxysilane (APTES) on a silicon dioxide surface. The APTES monolayer was characterized using spectroscopic ellipsometry, contact angle goniometry, and atomic force microscopy. Effects of reaction time of repeating pulses and simultaneous feeding of water vapor with APTES were tested. The results indicate that the synergistic effects of water vapor and reaction time are significant for the formation of a stable monolayer. Additionally, increasing the number of repeating pulses improved the APTES surface coverage but led to saturation after 10 pulses. In comparing MLD with solution-phase deposition, the APTES surface coverage and the surface quality were nearly equivalent. The hydrolytic stability of the resulting films was also studied. The results confirmed that the hydrolysis process was necessary for MLD to obtain stable surface chemistry. Furthermore, we compared the pH sensing results of Si nanowire field effect transistors (Si NWFETs) modified by both the MLD and solution methods. The highly repeatable pH sensing results reflected the stability of APTES monolayers. The results also showed an improved pH response of the sensor prepared by MLD compared to the one prepared by the solution treatment, which indicated higher surface coverage of APTES

  20. Molecular layer deposition of APTES on silicon nanowire biosensors: Surface characterization, stability and pH response

    Science.gov (United States)

    Liang, Yuchen; Huang, Jie; Zang, Pengyuan; Kim, Jiyoung; Hu, Walter

    2014-12-01

    We report the use of molecular layer deposition (MLD) for depositing 3-aminopropyltriethoxysilane (APTES) on a silicon dioxide surface. The APTES monolayer was characterized using spectroscopic ellipsometry, contact angle goniometry, and atomic force microscopy. Effects of reaction time of repeating pulses and simultaneous feeding of water vapor with APTES were tested. The results indicate that the synergistic effects of water vapor and reaction time are significant for the formation of a stable monolayer. Additionally, increasing the number of repeating pulses improved the APTES surface coverage but led to saturation after 10 pulses. In comparing MLD with solution-phase deposition, the APTES surface coverage and the surface quality were nearly equivalent. The hydrolytic stability of the resulting films was also studied. The results confirmed that the hydrolysis process was necessary for MLD to obtain stable surface chemistry. Furthermore, we compared the pH sensing results of Si nanowire field effect transistors (Si NWFETs) modified by both the MLD and solution methods. The highly repeatable pH sensing results reflected the stability of APTES monolayers. The results also showed an improved pH response of the sensor prepared by MLD compared to the one prepared by the solution treatment, which indicated higher surface coverage of APTES.

  1. Formation of fouling deposits on a carbon steel surface from Colombian heavy crude oil under preheating conditions

    Science.gov (United States)

    Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.

    2016-02-01

    Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.

  2. Carbon-oxygen isotopes and rare earth elements as an exploration vector for Carlin-type gold deposits: A case study of the Shuiyindong gold deposit, Guizhou Province, SW China

    Science.gov (United States)

    Tan, Qin-Ping; Xia, Yong; Wang, Xueqiu; Xie, Zhuo-Jun; Wei, Dong-Tian

    2017-10-01

    The Shuiyindong gold deposit is a deeply concealed strata-bound Carlin-type deposit in southwestern Guizhou Province, China. The deposit lies on the eastern limb of the Huijiabao anticline with ores mainly along the anticline axis and hosted in bioclastic limestone, containing calcite veins, of the Permian Longtan Formation units. In this study, we measured carbon and oxygen isotopic ratios and rare earth element (REE) concentrations of the host rocks and calcite veins along a profile across the Shuiyindong deposit. Orebodies in the upper unit of the Longtan Formation have higher δ18O values (20.6-22.4‰) and lower δ13C values (-3.7 to -0.5‰) than the country rocks (δ18O: 18.8-21.4‰; δ13C: -0.7 to 0.8‰). However, there are no obvious trends of δ18O and δ13C values from the country rocks to the orebodies in the middle unit of the Longtan Formation. The spatial distribution of the calcite veins displays distinct halos of δ13C and δ18O values and REE concentrations. Calcite veins along the anticlinal axis and major reverse fault are enriched in Middle REE (Sm, Eu, Gd, and Tb) and 18O and depleted in 13C. Surficial veining calcite-filled fractures/faults that connect to deep concealed strata-bound gold mineralization systems can be vectors toward deep ores in southwestern Guizhou Province, China.

  3. Nanostructured diamond film deposition on curved surfaces of metallic temporomandibular joint implant

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Marc D; Vohra, Yogesh K [Department of Physics, University of Alabama at Birmingham (UAB), Birmingham, AL (United States)

    2002-10-21

    Microwave plasma chemical vapour deposition of nanostructured diamond films was carried out on curved surfaces of Ti-6Al-4V alloy machined to simulate the shape of a temporomandibular joint (TMJ) dental implant. Raman spectroscopy shows that the deposited films are uniform in chemical composition along the radius of curvature of the TMJ condyle. Thin film x-ray diffraction reveals an interfacial carbide layer and nanocrystalline diamond grains in this coating. Nanoindentation hardness measurements show an ultra-hard coating with a hardness value of 60{+-}5 GPa averaged over three samples. (rapid communication)

  4. Evaluation and economics aspects of the lying of rare earth and iron-alloys in the Seis Lagos Carbonatite Complex-Amazonas-Brazil

    International Nuclear Information System (INIS)

    Wetterle Bonow, C. de; Issler, R.S.

    1980-01-01

    New data on rare earth mineralization and iron-alloys as well as other rare elements in the Seis Lagos Carbonatite Complex are described. Drilling and field work data have permited to define in surface, subsidence zones (subsurface collapses), in the interval of 14.65 to 73.10 meters depth a carbonaceous clay sequence, sapropelic, neogenic, highly enriched in Re, Nb, Th, V, Zn and Be as well as Sc, Y, Ga, Co and Sn as by-products were detected. Sedimentogenic aspects of the enrichment of detect elements, the scintillometric survey, the reserve calculation, the detected elements, the by-products and the complementary study for the deposit are discussed and finaly a value of US$ 6.7 x 10 9 is estimated for the detect deposit. (Author) [pt

  5. Surface deposition of 222Rn decay products with and without enhanced air motion

    International Nuclear Information System (INIS)

    Rudnick, S.N.; Maher, E.F.

    1986-01-01

    The effectiveness of fan-induced air motion in reducing airborne activities of short-lived 222 Rn decay products was evaluated in a 78.5-m3 chamber. Observed reductions were as high as 50% for 218Po (RaA), 79% for 214 Pb (RaB), and 86% for 214 Bi (RaC). Activity measurements of these nuclides on chamber and fan surfaces, along with airborne activities, were used to calculate material balances. Greater than about 90% of deposited activity was found on chamber surfaces, although areal activity densities were higher on fan surfaces. Deposition velocities for decay products not attached to particles were 2.3 mm s-1 when no fans were in operation and 9.2 to 13 mm s-1 when fans were used. Mean boundary layer thicknesses for unattached decay products were estimated to be about four times the recoil distance of a 214 Pb atom when no fans were used and about equal to the recoil distance when fans were used

  6. Optical properties and surface characterization of pulsed laser-deposited Cu2ZnSnS4 by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Crovetto, Andrea; Cazzaniga, Andrea; Ettlinger, Rebecca B.; Schou, Jørgen; Hansen, Ole

    2015-01-01

    Cu 2 ZnSnS 4 films prepared by pulsed laser deposition at different temperatures are characterized by spectroscopic ellipsometry. The focus is on confirming results from direct measurement techniques, by finding appropriate models of the surface overlayer for data fitting, and extracting the dielectric function of the films. It is found that the surface overlayer changes with film thickness and deposition temperature. Adopting different ellipsometry measurements and modeling strategies for each film, dielectric functions are extracted and compared. As the deposition temperature is increased, the dielectric functions exhibit additional critical points related to optical transitions in the material other than absorption across the fundamental band gap. In the case of a thin film < 200 nm thick, surface features observed by scanning electron microscopy and atomic force microscopy are accurately reproduced by ellipsometry data fitting. - Highlights: • Inhomogeneous Cu 2 ZnSnS 4 films are prepared by pulsed laser deposition. • The film surface includes secondary phases and topographic structures. • We model a film surface layer that fits ellipsometry data. • Ellipsometry data fits confirm results from direct measurement techniques. • We obtain the dielectric function of inhomogeneous Cu 2 ZnSnS 4 films

  7. Novel ion-molecular surface reaction to result in CH3 adsorbates on (111) surface of chemical vapor deposition diamond from ethane and surface anionic sites

    International Nuclear Information System (INIS)

    Komatsu, Shojiro; Okada, Katsuyuki; Shimizu, Yoshiki; Moriyoshi, Yusuke

    2001-01-01

    The existence of CH 3 adsorbates on (111) surface of chemical vapor deposited diamond, which was observed by scanning tunneling microscopy, was explained by the following S N 2 (bimolecular, substitutional, and nucleophilic) type surface reaction; C(s) - +C 2 H 6 ->C(s)-CH 3 +CH 3 - , where C(s) denotes a surface carbon atom. The activation energy was estimated to be 36.78 kcal/mol and the reaction proved to be exothermic with the enthalpy change of -9.250 kcal/mol, according to ab initio molecular orbital calculations at MP2/3-21+G * //RHF/3-21G * level; this result is consistent with typical substrate temperatures, namely about 900 degree C, for chemical vapor deposition of diamond. Charge transfer from the highest occupied molecular orbital of the surface anionic site to the lowest unoccupied molecular orbital of ethane, that is antibonding at the CH 3 - CH 3 bond, has been clearly visualized. A characteristic configuration of an ethane molecule which is associated with an anionic vacant site C(s) - on hydrogenated (111) surface of diamond was also found. [copyright] 2001 American Institute of Physics

  8. TXRF study of electrochemical deposition of metals on glass-ceramic carbon electrode surfaces

    International Nuclear Information System (INIS)

    Alov, N.; Oskolok, K.; Wittershagen, A.; Mertens, M.; Rittmeyer, C.; Kolbesen, B.O.

    2000-01-01

    Nowadays the methods of solid surface analysis are widely used to study the thermodynamic and kinetic aspects of joint electrochemical deposition of metals on solid substrates. In this work the surfaces of some binary and ternary metal electrodeposits on disc glass-ceramic carbon electrodes were studied by total-reflection x-ray fluorescence spectroscopy (TXRF). Metal alloys were obtained as a result of electrochemical co-deposition of copper, cadmium and lead from n x 10 -4 M (Cu, Cd, Pb)(NO 3 ) 2 + 0.01 M HNO 3 solutions under mixing. TXRF measurements were performed with an ATOMIKA EXTRA II A spectrometer using Mo K α and W (Brems) primary excitation. The serious advantage of TXRF as a method of near-surface analysis is very high element sensitivity. Apart from main elements (Cu, Cd, Pb) we have detected trace elements (Cl, Ag, Pt, Hg) which are present in working solution and has an effect to the electrodeposit formation. The comparison of TXRF data with information obtained by X-ray photoelectron spectroscopy and electron-probe x-ray microanalysis permits to realize depth profiling electrochemical alloys. In particular it was found that in binary systems Cu-Pb and Cu-Cd the relative lead and cadmium content on the electrodeposit surface is considerably greater than in the bulk. These phenomena are due to the features of metal nucleation and growth mechanisms. High sensitivity of TXRF to surface morphology and the correlation of TXRF and scanning electron microscopy data allow to determine the area of prevailing location of metal in the heterogeneous alloy surface. So we have established that in Cu-Pb and Cu-Cd-Pb systems solid solution of copper and lead is formed: significant part of lead is deposited not only in specific 3D-clusters but also in copper thin film. It was demonstrated that the near-surface TXRF analysis of metal electrodeposits on solid electrodes is highly effective to study the mechanisms of metal nucleation, metal cluster and thin film

  9. Rare earth industries: Strategies for Malaysia

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many reports cite Malaysia as having reasonably substantial amounts of rare earths elements. In fact, based on the rare earths found in the residual tin deposits alone, Malaysia has about 30,000 tonnes. This does not take into account unmapped deposits which experts believe may offer more tonnages of rare earths. Brazil which is reported to have about 48,000 tonnes has announced plans to invest aggressively in the rare earths business. China has on record the largest reserves with about 36 million tonnes. This explains why China has invested heavily in the entire value chain of the rare earths business. Chinas committed investment in rare earths started many years ago when the country's foremost leaders proclaimed the strategic position of rare earths in the world economy. That forecast is now a reality where the rise in the green high-tech economy is seen driving global demand for rare earths in a big way. Malaysia needs to discover and venture into new economic growth areas. This will help fuel the country's drive to achieve a high income status by 2020 as articulated in the New Economic Model (NEM) and the many supporting Economic Transformation Plans that the Government has recently launched. Rare earths may be the new growth area for Malaysia. However, the business opportunities should not just be confined to the mining, extraction and production of rare earths elements alone if Malaysia is to maximise benefits from this industry. The industry's gold mine is in the downstream products. This is also the sector that China wants to expand. Japan which now controls about 50 % of the global market for downstream rare earths-based high-tech components is desperately looking for partners to grow their stake in the business. Malaysia needs to embark on the right strategies in order to build the rare earths industry in the country. What are the strategies? (author)

  10. Deposition of particles and iodine to outdoor surfaces and in the respiratory tract

    International Nuclear Information System (INIS)

    Garland, J.A.

    1988-01-01

    Dry deposition of particles depends strongly on particle size, and is also influenced by the geometry of the surface and weather parameters. Precipitation scavenging is also influenced to some degree by particle size, but hygroscopic properties of soluble particles are also likely to enhance deposition in precipitation. Similar comments apply in the respiratory tract, where particle size and solubility may influence the extent and site of deposition: the site is important for insoluble particles at least since it determines retention time in the body. Thus measurement of particle size and investigation of solubility would be valuable in interpreting deposition inhalation and air concentration observations. Iodine has several chemical forms in the air. It is valuable to sample in such a way that different forms are partitioned, although there is some uncertainty in their identification. The rate of deposition to vegetation depends strongly on the chemical form of the iodine, but the vapour forms of iodine that occur in the atmosphere may all be retained efficiently on inhalation

  11. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  12. Deposition and surface treatment of Ag-embedded indium tin oxide by plasma processing

    International Nuclear Information System (INIS)

    Kim, Jun Young; Kim, Jae-Kwan; Kim, Ja-Yeon; Kwon, Min-Ki; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-01-01

    Ag-embedded indium tin oxide (ITO) films were deposited on Corning 1737 glass by radio-frequency magnetron sputtering under an Ar or Ar/O 2 mixed gas ambient with a combination of ITO and Ag targets that were sputtered alternately by switching on and off the shutter of the sputter gun. The effects of a subsequent surface treatment using H 2 and H 2 + O 2 mixed gas plasma were also examined. The specific resistance of the as-deposited Ag-embedded ITO sample was lower than that of normal ITO. The transmittance was quenched when Ag was incorporated in ITO. To enhance the specific resistance of Ag-embedded ITO, a surface treatment was conducted using H 2 or H 2 + O 2 mixed gas plasma. Although all samples showed improved specific resistance after the H 2 plasma treatment, the transmittance was quenched due to the formation of agglomerated metals on the surface. The specific resistance of the film was improved without any deterioration of the transmittance after a H 2 + O 2 mixed gas plasma treatment. - Highlights: • Ag-embedded indium tin oxide was deposited. • The contact resistivity was decreased by H 2 + O 2 plasma treatment. • The process was carried out at room temperature without thermal treatment. • The mechanism of enhancing the contact resistance was clarified

  13. Metals in bulk deposition and surface waters at two upland locations in northern England

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, A.J.; Tipping, E

    2003-02-01

    Surface water concentrations of potentially-toxic metals depend upon atmospheric deposition and catchment biogeochemical processes. - Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r{sup 2}{>=}0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) <1 mg l{sup -1}, were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l{sup -1}) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples, {mu}g l{sup -1}): Al 36-530, Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of

  14. 2D surface optical lattice formed by plasmon polaritons with application to nanometer-scale molecular deposition.

    Science.gov (United States)

    Yin, Yanning; Xu, Supeng; Li, Tao; Yin, Yaling; Xia, Yong; Yin, Jianping

    2017-08-10

    Surface plasmon polaritons, due to their tight spatial confinement and high local intensity, hold great promises in nanofabrication which is beyond the diffraction limit of conventional lithography. Here, we demonstrate theoretically the 2D surface optical lattices based on the surface plasmon polariton interference field, and the potential application to nanometer-scale molecular deposition. We present the different topologies of lattices generated by simple configurations on the substrate. By explicit theoretical derivations, we explain their formation and characteristics including field distribution, periodicity and phase dependence. We conclude that the topologies can not only possess a high stability, but also be dynamically manipulated via changing the polarization of the excitation laser. Nanometer-scale molecular deposition is simulated with these 2D lattices and discussed for improving the deposition resolution. The periodic lattice point with a width resolution of 33.2 nm can be obtained when the fullerene molecular beam is well-collimated. Our study can offer a superior alternative method to fabricate the spatially complicated 2D nanostructures, with the deposition array pitch serving as a reference standard for accurate and traceable metrology of the SI length standard.

  15. Main types of rare-metal mineralization in Karelia

    Science.gov (United States)

    Ivashchenko, V. I.

    2016-03-01

    Rare-metal mineralization in Karelia is represented by V, Be, U deposits and In, Re, Nb, Ta, Li, Ce, La, and Y occurrences, which are combined into 17 types of magmatic, pegmatite, albitite-greisen, hydrothermal-metasomatic, sedimentary, and epigenetic groups. The main vanadium resources are localized in the Onega ore district. These are deposits of the Padma group (556 kt) and the Pudozhgorsky complex (1.5 Mt). The REE occurrences are primarily characterized by Ce-La specialization. The perspective of HREE is related to the Eletozero-Tiksheozero alkaline and Salmi anorthosite-rapakivi granite complexes. Rare-metal pegmatites bear complex mineralization with insignificant low-grade resources. The Lobash and Jalonvaara porphyry Cu-Mo deposits are potential sources of rhenium: Re contents in molybdenite are 20-70 and 50-246 ppm and hypothetical resources are 12 and 7.5 t, respectively. The high-grade (˜100 ppm) and metallogenic potential of indium (˜2400 t) make the deposits of the Pitkäranta ore district leading in the category of Russian ore objects most prospective for indium. Despite the diverse rare-metal mineralization known in Karelia, the current state of this kind of mineral commodities at the world market leaves real metallogenic perspective only for V, U, Re, In, and Nb.

  16. Role of SiC substrate surface on local tarnishing of deposited silver mirror stacks

    Science.gov (United States)

    Limam, Emna; Maurice, Vincent; Seyeux, Antoine; Zanna, Sandrine; Klein, Lorena H.; Chauveau, Grégory; Grèzes-Besset, Catherine; Savin De Larclause, Isabelle; Marcus, Philippe

    2018-04-01

    The role of the SiC substrate surface on the resistance to the local initiation of tarnishing of thin-layered silver stacks for demanding space mirror applications was studied by combined surface and interface analysis on model stack samples deposited by cathodic magnetron sputtering and submitted to accelerated aging in gaseous H2S. It is shown that suppressing the surface pores resulting from the bulk SiC material production process by surface pretreatment eliminates the high aspect ratio surface sites that are imperfectly protected by the SiO2 overcoat after the deposition of silver. The formation of channels connecting the silver layer to its environment through the failing protection layer at the surface pores and locally enabling H2S entry and Ag2S growth as columns until emergence at the stack surface is suppressed, which markedly delays tarnishing initiation and thereby preserves the optical performance. The results revealed that residual tarnishing initiation proceeds by a mechanism essentially identical in nature but involving different pathways short circuiting the protection layer and enabling H2S ingress until the silver layer. These permeation pathways are suggested to be of microstructural origin and could correspond to the incompletely coalesced intergranular boundaries of the SiO2 layer.

  17. Surface treatment effect on Si (111) substrate for carbon deposition using DC unbalanced magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Aji, A. S., E-mail: aji.ravazes70@gmail.com; Sahdan, M. F.; Hendra, I. B.; Dinari, P.; Darma, Y. [Quantum Semiconductor and Devices Lab., Physics of Material Electronics Research Division, Department of Physics, Institut Teknologi Bandung (Indonesia)

    2015-04-16

    In this work, we studied the effect of HF treatment in silicon (111) substrate surface for depositing thin layer carbon. We performed the deposition of carbon by using DC Unbalanced Magnetron Sputtering with carbon pallet (5% Fe) as target. From SEM characterization results it can be concluded that the carbon layer on HF treated substrate is more uniform than on substrate without treated. Carbon deposition rate is higher as confirmed by AFM results if the silicon substrate is treated by HF solution. EDAX characterization results tell that silicon (111) substrate with HF treatment have more carbon fraction than substrate without treatment. These results confirmed that HF treatment on silicon Si (111) substrates could enhance the carbon deposition by using DC sputtering. Afterward, the carbon atomic arrangement on silicon (111) surface is studied by performing thermal annealing process to 900 °C. From Raman spectroscopy results, thin film carbon is not changing until 600 °C thermal budged. But, when temperature increase to 900 °C, thin film carbon is starting to diffuse to silicon (111) substrates.

  18. Kinetic model for hydroxyapatite precipitation on human enamel surface by electrolytic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lei Caixia; Liao Yingmin; Feng Zude, E-mail: zdfeng@xmu.edu.c [College of Materials, Xiamen University, Xiamen 361005 (China)

    2009-06-15

    The electrolytic deposition (ELD) of hydroxyapatite (HAP) coating on human enamel surface for different loading times at varied temperatures (ranging from 37 deg. C to 85 deg. C) and varied current densities (ranging from 0.05 mA cm{sup -2} to 10 mA cm{sup -2}) was investigated in this study. Thin film x-ray diffraction, Fourier transform infrared and micro-Raman spectra analysis, as well as an environmental scanning electron microscope, were used to characterize the coating. The results showed that only the HAP phase occurred on the enamel surface after ELD experiments. The contents of HAP deposits on the enamel surface linearly changed proportional to the square root of the loading time, which was in good agreement with the kinetic model of ELD of HAP coating based on one-dimensional diffusion. The induction periods were observed on all the regression lines, and the rate of the HAP coating formation on enamel showed a linear relationship with the current density. It was implied that the diffusion process was the rate-determining step in the ELD of the HAP coating on human enamel.

  19. Magnetic rare earth superlattices

    DEFF Research Database (Denmark)

    Majkrzak, C.F.; Kwo, J.; Hong, M.

    1991-01-01

    Advances in molecular beam epitaxy deposition techniques have recently made it possible to grow, an atomic plane at a time, single crystalline superlattices composed of alternating layers of a magnetic rare earth, such as Gd, Dy, Ho, or Er, and metallic Y, which has an identical chemical structure...

  20. Speciated particle dry deposition to the sea surface: Results from ASEPS '97

    DEFF Research Database (Denmark)

    Pryor, S.C.; Barthelmie, R.J.; Geernaert, L.L.S.

    1999-01-01

    on Precipitation Scavenging and Atmosphere-Surface Exchange Processes. AMS, Richland, Washington, USA, 12pp.) model to calculate size-segregated dry deposition of particle inorganic nitrogen compounds to the western Baltic during the late Spring of 1997 based on data collected as part of the Air-Sea Exchange...

  1. Characterization of Rare Earth Elements in in Clay Deposits Associated with Central Appalachian Coal Seams

    Science.gov (United States)

    Scott, M.; Verba, C.; Falcon, A.; Poston, J.; McKoy, M.

    2017-12-01

    Because of their multiple uses in clean energy technologies, rare earth elements (REE) are critical for national economic and energy security. With no current domestic source, supply remains a major concern for domestic security. Underclay - specifically the layer of stratum beneath a coal bed - is a potentially rich source of REE. This study focuses on the characterization and ion exchange recovery of REE from underclay samples from the Lower Freeport, Middle Kittanning, and Pittsburgh coal seams in West Virginia. Multimodal techniques provided quantitative assessments of REE-bearing mineral phases in select underclays and the influence of organic acid rock treatment on the recovery of REE from both exchangeable and crystalline mineral phases present. All samples are from extensively weathered horizons that contain abundant kaolinite and illite. Total REE concentrations range from 250-450 ppm and all samples have a HREE/LEEE ratio >20%. Rare earth element bearing minerals identified in the clay are monazite, xenotime, florencite, and crandallite. Our selective recovery approach is designed to isolate and recover REE through partial dissolution of the clay matrix and ion exchange rather than dissolution/recovery of phosphate or aluminosilicate bound REE. These results provide a better understanding of coal seam underclay, the affinity of REEs for specific ligands and colloids, and how the rock and ligands respond to different chemical treatments. These processes are important to the development and commercialization of efficient and cost effective methods to extract REE from domestic geologic deposits and recover into salable forms.

  2. Surface modification of 2014 aluminium alloy-Al2O3 particles composites by nickel electrochemical deposition

    International Nuclear Information System (INIS)

    Molina, J.M.; Saravanan, R.A.; Narciso, J.; Louis, E.

    2004-01-01

    A method to modify the surface of aluminium matrix composites (AMC) by electrochemical nickel deposition has been developed. Deposition was carried out in a stirred standard Watt's bath, whereas potential and time were varied to optimize coating characteristics. The method, that allowed to overcome the serious difficulties associated to electrochemical deposition of an inherently inhomogeneous material, was used to nickel coat composites of 2014 aluminium alloy-15 vol.% Al 2 O 3 particles. Coats with a good adherence and up to 60 μm thick were easily obtained. In order to improve surface properties, the coated composite was subjected to rather long (from 10 to 47.5 h) heat treatments at a temperature of 520 deg,C. The heat treatments improved the uniformity of the deposited layer and promoted the formation of Al-Ni intermetallics (mainly Al 3 Ni 2 , as revealed by X-ray diffraction and energy-dispersive X-ray analysis (EDX)). Experimental results indicate that growth of the intermetallic layer is diffusion limited

  3. Tribological investigations of perfluoroalkylsilanes monolayers deposited on titanium surface

    International Nuclear Information System (INIS)

    Cichomski, Michał

    2012-01-01

    Therefore the present work reports a systematic study of titanium modification by fluoroalkylsilanes and surface characterization from the tribological point of view. The vapor phase deposition method was used to modify titanium surfaces by fluoroalkylsilanes and the influence of the used modifier on the tribological properties is presented. The modification procedure efficiency, surface structure and morphology were characterized by secondary ion mass spectrometry, infrared spectroscopy and atomic force microscopy. The effectiveness of modification of the titanium surface was monitored by the measurement of the wetting contact angle and the surface free energy. The increase of surface hydrophobicity was observed upon the modification by increasing the wetting contact angle and reducing the surface free energy. The tribological performance of various perfluoroalkylsilanes films on the titanium surface was investigated in mili- and nano-newton load ranges. Dependence of the adhesive force and coefficient of friction values obtained in nano- and micro-scale on fluoroalkyl chain length was observed. Nano- and micro-tribological measurements show that titanium modified by fluoroalkylsilanes has lower adhesion and coefficient of friction than unmodified one. The investigation also indicates a decrease of the friction coefficient with increasing fluoric alkyl chain length. It was found that the titanium modified by fluoroalkylsilanes with longer alkyl chains is a prime candidate for practical use as a lubricant in biomedical and electronic applications. -- Highlights: ► Titanium surface modification by perfluoroalkylsilanes was investigated. ► The effectiveness of modification was monitored by the surface free energy. ► The modification procedure correctness was characterized by ToF-SIMS, AFM, FT-IR measurements. ► The tribological performance of modified titanium in differed scale was studied.

  4. Quantitative measurement of aerosol deposition on skin, hair and clothing for dosimetric assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fogh, C.L.; Byrne, M.A.; Andersson, K.G.; Bell, K.F.; Roed, J.; Goddard, A.J.H.; Vollmair, D.V.; Hotchkiss, S.A.M

    1999-06-01

    In the past, very little thought has been given to the processes and implications of deposition of potentially hazardous aerosol directly onto humans. This state of unpreparedness is unsatisfactory and suitable protocols have been developed and validated for tracer experiments to investigate the deposition and subsequent fate of contaminant aerosol on skin, hair and clothing. The main technique applied involves the release and subsequent deposition on volunteers in test rooms of particles of different sizes labelled with neutron activatable rare earth tracers. Experiments indicate that the deposition velocity to skin increases linearly with the particle size. A wind tunnel experiment simulating outdoor conditions showed a dependence on skin deposition velocity of wind speed, indicating that outdoor deposition velocities may be great. Both in vivo and in vitro experiments were conducted, and the influence of various factors, such as surface type, air flow, heating and electrostatics were examined. The dynamics of particle removal from human skin were studied by fluorescence scanning. This technique was also applied to estimate the fraction of aerosol dust transferred to skin by contact with a contaminated surface. The various parameters determined were applied to establish a model for calculation of radiation doses received from deposition of airborne radioactive aerosol on human body surfaces. It was found that the gamma doses from deposition on skin may be expected to be of the same order of magnitude as the gamma doses received over the first year from contamination on outdoor surfaces. According to the calculations, beta doses from skin deposition to individuals in areas of Russia, where dry deposition of Chernobyl fallout led to very high levels of contamination, may have amounted to several Sievert and may thus be responsible for a significant cancer risk. (au)

  5. Co-deposition of metallic actinides on a solid cathode

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode.

  6. Co-deposition of metallic actinides on a solid cathode

    International Nuclear Information System (INIS)

    Limmer, S. J.; Williamson, M. A.; Willit, J. L.

    2008-01-01

    The amount of rare earth contamination that will be found in a co-deposit of actinides is a function of the type of cathode used. A non-alloying solid cathode will result in a significantly lower rare earth contamination in the actinide co-deposit than a liquid cadmium cathode. With proper control of the cathode potential vs. a stable reference electrode, co-deposition of uranium with other more electroactive metals has been demonstrated using a non-alloying solid cathode

  7. Surface resistance of YBa2Cu3O7 films deposited on LaGaO3 substrates

    International Nuclear Information System (INIS)

    Cooke, D.W.; Gray, E.R.; Houlton, R.J.; Javadi, H.H.S.; Maez, M.A.; Bennett, B.L.; Rusnak, B.; Meyer, E.A.; Arendt, P.N.; Beery, J.G.; Brown, D.R.; Garzon, F.H.; Raistriek, I.D.; Bolmaro, B.; Elliott, N.E.; Rollett, A.D.; Klein, N.; Muller, G.; Orbach, S.; Piel, H.; Josefowicz, J.Y.; Rensch, O.B.; Drabeck, L.; Gruner, G.

    1989-01-01

    Superconducting films of YBa 2 Cu 3 O 7 deposited onto LaGaO 3 substrates were prepared by e-beam and magnetron sputtering techniques. Surface resistance measurements made at 22 GHz, 86 GHz, and 148 GHz show that these films are superior to those deposited by similar techniques onto SrTiO 3 . Typical surface resistance values measured at 22 GHz and 12 K are ∼2 m(cgom) with the lowest value being 0.2 m(cgom), which is only 2 to 4 times higher than Nb. The surface resistance is proportional to the square of the measuring frequency

  8. Excellent c-Si surface passivation by thermal atomic layer deposited aluminum oxide after industrial firing activation

    International Nuclear Information System (INIS)

    Liao, B; Stangl, R; Ma, F; Mueller, T; Lin, F; Aberle, A G; Bhatia, C S; Hoex, B

    2013-01-01

    We demonstrate that by using a water (H 2 O)-based thermal atomic layer deposited (ALD) aluminum oxide (Al 2 O 3 ) film, excellent surface passivation can be attained on planar low-resistivity silicon wafers. Effective carrier lifetime values of up to 12 ms and surface recombination velocities as low as 0.33 cm s −1 are achieved on float-zone wafers after a post-deposition thermal activation of the Al 2 O 3 passivation layer. This post-deposition activation is achieved using an industrial high-temperature firing process which is commonly used for contact formation of standard screen-printed silicon solar cells. Neither a low-temperature post-deposition anneal nor a silicon nitride capping layer is required in this case. Deposition temperatures in the 100–400 °C range and peak firing temperatures of about 800 °C (set temperature) are investigated. Photoluminescence imaging shows that the surface passivation is laterally uniform. Corona charging and capacitance–voltage measurements reveal that the negative fixed charge density near the AlO x /c-Si interface increases from 1.4 × 10 12 to 3.3 × 10 12 cm −2 due to firing, while the midgap interface defect density reduces from 3.3 × 10 11 to 0.8 × 10 11 cm −2 eV −1 . This work demonstrates that direct firing activation of thermal ALD Al 2 O 3 is feasible, which could be beneficial for solar cell manufacturing. (paper)

  9. Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneous deposition.

    Science.gov (United States)

    Johnston, Christina M; Strbac, Svetlana; Lewera, Adam; Sibert, Eric; Wieckowski, Andrzej

    2006-09-12

    Catalytic activity of the Pt(111)/Os surface toward methanol electrooxidation was optimized by exploring a wide range of Os coverage. Various methods of surface analyses were used, including electroanalytical, STM, and XPS methods. The Pt(111) surface was decorated with nanosized Os islands by spontaneous deposition, and the Os coverage was controlled by changing the exposure time to the Os-containing electrolyte. The structure of Os deposits on Pt(111) was characterized and quantified by in situ STM and stripping voltammetry. We found that the optimal Os surface coverage of Pt(111) for methanol electrooxidation was 0.7 +/- 0.1 ML, close to 1.0 +/- 0.1 Os packing density. Apparently, the high osmium coverage Pt(111)/Os surface provides more of the necessary oxygen-containing species (e.g., Os-OH) for effective methanol electrooxidation than the Pt(111)/Os surfaces with lower Os coverage (vs e.g., Ru-OH). Supporting evidence for this conjecture comes from the CO electrooxidation data, which show that the onset potential for CO stripping is lowered from 0.53 to 0.45 V when the Os coverage is increased from 0.2 to 0.7 ML. However, the activity of Pt(111)/Os for methanol electrooxidation decreases when the Os coverage is higher than 0.7 +/- 0.1 ML, indicating that Pt sites uncovered by Os are necessary for sustaining significant methanol oxidation rates. Furthermore, osmium is inactive for methanol electrooxidation when the platinum substrate is absent: Os deposits on Au(111), a bulk Os ingot, and thick films of electrodeposited Os on Pt(111), all compare poorly to Pt(111)/Os. We conclude that a bifunctional mechanism applies to the methanol electrooxidation similarly to Pt(111)/Ru, although with fewer available Pt sites. Finally, the potential window for methanol electrooxidation on Pt(111)/Os was observed to shift positively versus Pt(111)/Ru. Because of the difference in the Os and Ru oxophilicity under electrochemical conditions, the Os deposit provides fewer

  10. Regional framework and geology of iron oxide-apatite-rare earth element and iron oxide-copper-gold deposits of the Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Slack, John F.; Ayuso, Robert A.; Seeger, Cheryl M.

    2016-01-01

    This paper provides an overview on the genesis of Mesoproterozoic igneous rocks and associated iron oxide ± apatite (IOA) ± rare earth element, iron oxide-copper-gold (IOCG), and iron-rich sedimentary deposits in the St. Francois Mountains terrane of southeast Missouri, USA. The St. Francois Mountains terrane lies along the southeastern margin of Laurentia as part of the eastern granite-rhyolite province. The province formed during two major pulses of igneous activity: (1) an older early Mesoproterozoic (ca. 1.50–1.44 Ga) episode of volcanism and granite plutonism, and (2) a younger middle Mesoproterozoic (ca. 1.33–1.30 Ga) episode of bimodal gabbro and granite plutonism. The volcanic rocks are predominantly high-silica rhyolite pyroclastic flows, volcanogenic breccias, and associated volcanogenic sediments with lesser amounts of basaltic to andesitic volcanic and associated subvolcanic intrusive rocks. The iron oxide deposits are all hosted in the early Mesoproterozoic volcanic and volcaniclastic sequences. Previous studies have characterized the St. Francois Mountains terrane as a classic, A-type within-plate granitic terrane. However, our new whole-rock geochemical data indicate that the felsic volcanic rocks are effusive derivatives from multicomponent source types, having compositional similarities to A-type within-plate granites as well as to S- and I-type granites generated in an arc setting. In addition, the volcanic-hosted IOA and IOCG deposits occur within bimodal volcanic sequences, some of which have volcanic arc geochemical affinities, suggesting an extensional tectonic setting during volcanism prior to emplacement of the ore-forming systems.The Missouri iron orebodies are magmatic-related hydrothermal deposits that, when considered in aggregate, display a vertical zonation from high-temperature, magmatic ± hydrothermal IOA deposits emplaced at moderate depths (~1–2 km), to magnetite-dominant IOA veins and IOCG deposits emplaced at shallow

  11. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J.; Bergstroem, R.; Foltescu, V. [Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden)

    2005-02-01

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition. (author)

  12. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Science.gov (United States)

    Langner, Joakim; Bergström, Robert; Foltescu, Valentin

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition.

  13. Structural and electronic properties of rare-earth silicide thin films at Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Dues, Christof; Schmidt, Wolf Gero; Sanna, Simone [Lehrstuhl fuer Theoretische Physik, Universitaet Paderborn (Germany)

    2016-07-01

    Rare-earth (RE) silicides thin films on silicon surfaces are currently of high interest. They grow nearly defect-free because of the small lattice mismatch, and exhibit very low Schottky-barriers on n-type silicon. They even give rise to the self-organized formation of RE silicide nanowires on the Si(001) and vicinal surfaces. Depending on the amount of deposited RE atoms, a plethora of reconstructions are observed for the RE silicide. While one monolayer leads to the formation of a 1 x 1-reconstruction, several monolayer thick silicides crystallize in a √(3) x √(3) R30 {sup circle} superstructure. Submonolayer RE deposition leads to different periodicities. In this work we investigate the formation of RE silicides thin films on Si(111) within the density functional theory. The energetically favored adsorption site for RE adatoms is determined calculating the potential energy surface. As prototypical RE, Dysprosium is used. Additional calculations are performed for silicides formed by different RE elements. We calculate structural properties, electronic band structures and compare measured and simulated STM images. We consider different terminations for the 5 x 2 reconstruction occurring in the submonolayer regime and investigate their stability by means of ab initio thermodynamics. The same method is employed to predict the stable silicide structure as a function of the deposited RE atoms.

  14. The influence of glancing angle deposited nano-rough platinum surfaces on the adsorption of fibrinogen and the proliferation of primary human fibroblasts

    International Nuclear Information System (INIS)

    Dolatshahi-Pirouz, A; Foss, M; Chevallier, J; Besenbacher, F; Pennisi, C P; Yoshida, K; Skeldal, S; Andreasen, P; Zachar, V

    2009-01-01

    We have used the glancing angle deposition (GLAD) method as a simple and fast method to generate nano-rough surfaces for protein adsorption experiments and cell assays. The surface roughness and the detailed geometrical surface morphology of the thin films were characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). As the GLAD deposition angle approaches grazing incidence, sharp and whisker-like columnar protrusions are formed. Smaller and less sharp surface features appear for the thin films synthesized at higher deposition angles. By changing the GLAD deposition angle together with the total amount of mass deposited per area on the respective surfaces, the size of the surface features can be varied on the nanoscale. Using the GLAD topographies as model surfaces, we have investigated the influence of the nano-roughness on fibrinogen adsorption and on the proliferation of primary human fibroblasts. It is found that fibrinogen, an important blood protein, preferentially adheres on the whisker-like nano-rough substrates in comparison to a flat surface. Furthermore, the proliferation of the human fibroblasts is significantly reduced on the nano-rough substrates. These results demonstrate that the GLAD technique can be used to fabricate nano-rough surface morphologies that significantly influence both protein and cellular adhesion to surfaces and are therefore well suited for biological assays.

  15. Geochemical behavior of rare earth elements of the hydrothermal alterations within the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    Science.gov (United States)

    Doner, Zeynep; Abdelnasser, Amr; Kiran Yildirim, Demet; Kumral, Mustafa

    2016-04-01

    This work reports the geochemical characteristics and behavior of the rare earth elements (REE) of the hydrothermal alteration of the Tepeoba porphyry Cu-Mo-Au deposit located in the Anatolian tectonic belt at Biga peninsula (Locally Balikesir province), NW Turkey. The Cu-Mo-Au mineralization at this deposit hosted in the hornfels rocks and related to the silicic to intermediate intrusion of Eybek pluton. It locally formed with brecciated zones and quartz vein stockworks, as well as the brittle fracture zones associated with intense hydrothermal alteration. Three main alteration zones with gradual boundaries formed in the mine area in the hornfels rock that represents the host rock, along that contact the Eybek pluton; potassic, propylitic and phyllic alteration zones. The potassic alteration zone that formed at the center having high amount of Cu-sulfide minerals contains biotite, muscovite, and sericite with less amount of K-feldspar and associated with tourmalinization alteration. The propylitic alteration surrounds the potassic alteration having high amount of Mo and Au and contains chlorite, albite, epidote, calcite and pyrite. The phyllic alteration zone also surrounds the potassic alteration containing quartz, sericite and pyrite minerals. Based on the REE characteristics and content and when we correlate the Alteration index (AI) with the light REEs and heavy REEs of each alteration zone, it concluded that the light REEs decrease and heavy REEs increase during the alteration processes. The relationships between K2O index with Eu/Eu* and Sr/Sr* reveals a positive correlation in the potassic and phyllic alteration zones and a negative correlation in the propylitic alteration zone. This refers to the hydrothermal solution which is responsible for the studied porphyry deposits and associated potassic and phyllic alterations has a positive Eu and Sr anomaly as well as these elements were added to the altered rock from the hydrothermal solution. Keywords: Rare

  16. Quantification of Gaseous Elemental Mercury Dry Deposition to Environmental Surfaces using Mercury Stable Isotopes in a Controlled Environment

    Science.gov (United States)

    Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.

    2009-12-01

    Andrew P. Rutter (1) * *, James J, Schauer (1,2) *, Martin M. Shafer(1,2), Michael R. Olson (1), Michael Robinson (1), Peter Vanderveer (3), Joel Creswell (1), Justin L. Mallek (1), Andrew M. Parman (1) (1) Environmental Chemistry and Technology Program, 660 N. Park St, Madison, WI 53705. (2) Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718. (3) Biotron, University of Wisconsin - Madison, 2115 Observatory Drive, Madison, WI 53706 * Correspond author(jjschauer@wisc.edu) * *Presenting author (aprutter@wisc.edu) Abstract Gaseous elemental mercury (GEM) is the predominant component of atmospheric mercury outside of arctic depletion events, and locations where anthropogenic point sources are not influencing atmospheric concentrations. GEM constitutes greater than 99% of the mercury mass in most rural and remote locations. While dry and wet deposition of atmospheric mercury is thought to be dominated by oxidized mercury (a.k.a. reactive mercury), only small GEM uptake to environmental surfaces could impact the input of mercury to terrestrial and aquatic ecosystems. Dry deposition and subsequent re-emission of gaseous elemental mercury is a pathway from the atmosphere that remains only partially understood from a mechanistic perspective. In order to properly model GEM dry deposition and re-emission an understanding of its dependence on irradiance, temperature, and relative humidity must be measured and parameterized for a broad spectrum of environmental surfaces colocated with surrogate deposition surfaces used to make field based dry deposition measurements. Measurements of isotopically enriched GEM dry deposition were made with a variety of environmental surfaces in a controlled environment room at the University of Wisconsin Biotron. The experimental set up allowed dry deposition components which are not easily separated in the field to be decoupled. We were able to isolate surface transfer processes from variabilities caused by

  17. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  18. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    International Nuclear Information System (INIS)

    Meininger, M.; Wolf-Brandstetter, C.; Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J.; Moseke, C.

    2016-01-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr 2+ ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr 2+ into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr 2+ ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  19. Deposition behavior of polystyrene latex particles on solid surfaces during migration through an artificial fracture in a granite rock sample

    International Nuclear Information System (INIS)

    Chinju, Hirofumi; Tanaka, Satoru; Kuno, Yoshio

    2001-01-01

    The deposition behavior of colloids during transport through heterogeneous media was observed by conducting column experiments to study migration of polystyrene latex particles (diameter=309 nm) through columns packed with artificially fractured granite rock (length=300 and 150 mm). The experiments were conducted under conditions of different ionic strengths and flow rates. The results were similar to those for colloid deposition in columns packed with glass beads reported previously; the colloid breakthrough curves showed three stages, characterized by different rates of change in the concentration of effluent. Colloid deposition on the fracture surfaces was described by considering strong and weak deposition sites. Scanning Electron Microscopy (SEM) observations indicated the existence of strong and weak sites on the fracture surfaces regardless of mineral composition. The observations also showed that the strong deposition sites tended to exist on surface irregularities such as cracks or protrusions. The degree of colloid deposition increased with increasing ionic strength and decreasing flow rate. The dependencies on ionic strength and flow rate agreed qualitatively with the DLVO theory and the previous experimental results, respectively. (author)

  20. Surface morphology of erbium silicide

    International Nuclear Information System (INIS)

    Lau, S.S.; Pai, C.S.; Wu, C.S.; Kuech, T.F.; Liu, B.X.

    1982-01-01

    The surface of rare-earth silicides (Er, Tb, etc.), formed by the reaction of thin-film metal layers with a silicon substrate, is typically dominated by deep penetrating, regularly shaped pits. These pits may have a detrimental effect on the electronic performance of low Schottky barrier height diodes utilizing such silicides on n-type Si. This study suggests that contamination at the metal-Si or silicide-Si interface is the primary cause of surface pitting. Surface pits may be reduced in density or eliminated entirely through either the use of Si substrate surfaces prepared under ultrahigh vacuum conditions prior to metal deposition and silicide formation or by means of ion irradiation techniques. Silicide layers formed by these techniques possess an almost planar morphology

  1. Facile Deposition of Ultrafine Silver Particles on Silicon Surface Not Submerged in Precursor Solutions for Applications in Antireflective Layer

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2014-01-01

    Full Text Available Using a facile deposition method, the ultrafine silver particles are successfully deposited on the Si surface that is not submerged in precursor solutions. The ultrafine silver particles have many advantages, such as quasiround shape, uniformity in size, monodisperse distribution, and reduction of agglomeration. The internal physical procedure in the deposition is also investigated. The results show that there are more particles on the rough Si surface due to the wetting effect of solid-liquid interface. The higher concentration of ethanol solvent can induce the increase of quantity and size of particles on Si surface not in solutions. The ultrafine particles can be used to prepare porous Si antireflective layer in solar cell applications.

  2. Crack resistance of pvd coatings : Influence of surface treatment prior to deposition

    NARCIS (Netherlands)

    Zoestbergen, E; de Hosson, J.T.M.

    The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack

  3. Surface Morphology Transformation Under High-Temperature Annealing of Ge Layers Deposited on Si(100).

    Science.gov (United States)

    Shklyaev, A A; Latyshev, A V

    2016-12-01

    We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.

  4. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    Energy Technology Data Exchange (ETDEWEB)

    W. M. Roach, D. B. Beringer, J. R. Skuza, W. A. Oliver, C. Clavero, C. E. Reece, R. A. Lukaszew

    2012-06-01

    Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  5. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    Directory of Open Access Journals (Sweden)

    W. M. Roach

    2012-06-01

    Full Text Available Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  6. Niobium thin film deposition studies on copper surfaces for superconducting radio frequency cavity applications

    International Nuclear Information System (INIS)

    Roach, W.M.; Beringer, D.B.; Skuza, J.R.; Oliver, W.A.; Clavero, C.; Reece, C.E.; Lukaszew, R.A.

    2012-01-01

    Thin film coatings have the potential to increase both the thermal efficiency and accelerating gradient in superconducting radio frequency accelerator cavities. However, before this potential can be realized, systematic studies on structure-property correlations in these thin films need to be carried out since the reduced geometry, combined with specific growth parameters, can modify the physical properties of the materials when compared to their bulk form. Here, we present our systematic studies of Nb thin films deposited onto Cu surfaces to clarify possible reasons for the limited success that this process exhibited in previous attempts. We compare these films with Nb grown on other surfaces. In particular, we study the crystal structure and surface morphology and their effect on superconducting properties, such as critical temperature and lower critical field. We found that higher deposition temperature leads to a sharper critical temperature transition, but also to increased roughness indicating that there are competing mechanisms that must be considered for further optimization.

  7. Surface characterization of hydrophobic thin films deposited by inductively coupled and pulsed plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Lee, Ji-Hye; Kim, Kang-Jin; Lee, Yeonhee

    2009-01-01

    Different fluorocarbon thin films were deposited on Si substrates using a plasma-polymerization method. Fluorine-containing hydrophobic thin films were obtained by inductively coupled plasma (ICP) and pulsed plasma (PP) with a mixture of fluorocarbon precursors C 2 F 6 , C 3 F 8 , and c-C 4 F 8 and the unsaturated hydrocarbons of C 2 H 2 . The influence on the fluorocarbon surfaces of the process parameters for plasma polymerization, including the gas ratio and the plasma power, were investigated under two plasma-polymerized techniques with different fluorocarbon gas precursors. The hydrophobic properties, surface morphologies, and chemical compositions were elucidated using water contact angle measurements, field emission-scanning electron microscope, x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In this study, the ICP technique provides coarser grained films and more hydrophobic surfaces as well as a higher deposition rate compared to the PP technique. XPS, FT-IR, and TOF-SIMS analyses indicated that the ICP technique produced more fluorine-related functional groups, including CF 2 and CF 3 , on the surface. From the curve-fitted XPS results, fluorocarbon films grown under ICP technique exhibited less degree of cross-linking and higher CF 2 concentrations than those grown under PP technique.

  8. Adsorption and revaporisation studies of thin iodine oxide and CsI aerosol deposits from containment surface materials in LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, S.; Foreman, M.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden); Kaerkelae, T.; Auvinen, A.; Tapper, U.; Jokiniemi, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-07-15

    During a severe nuclear accident released fission and radiolysis products can react with each other to form new species which might contribute to the volatile source term. Iodine will be released from UO2 fuel mainly in form as CsI aerosol particles and elemental iodine. Elemental iodine can react in gaseous phase with ozone to form solid iodine oxide aerosol particles (IOx). Within the AIAS-2 (Adsorption of Iodine Aerosols on Surfaces) project the interactions of IOx and CsI aerosols with common containment surface materials was investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS. Non-radioactive and {sup 131}I labelled aerosols were produced from a KI solution and ozone with a new facility designed and built at VTT Technical Research Centre of Finland. CsI aerosols were produced from a CsI solution with the same facility. A monolayer of the aerosols was deposited on the surfaces. The deposits were analysed with microscopic and spectroscopic measurement techniques to identify the chemical form of the deposits on the surfaces to identify if a chemical conversion on the different surface materials had occured. The revaporisation behaviour of the deposited aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 with a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The decomposition effect of the radiolysis product carbon monoxide was tested on IOx aerosols deposited on a glass fibre filter. Iodine oxide particles were produced at 50 deg. C, 100 deg. C and 120 deg. C and deposited on filter samples in order to study the chemical

  9. Adsorption and revaporisation studies of thin iodine oxide and CsI aerosol deposits from containment surface materials in LWRs

    International Nuclear Information System (INIS)

    Tietze, S.; Foreman, M.; Ekberg, C.; Kaerkelae, T.; Auvinen, A.; Tapper, U.; Jokiniemi, J.

    2013-07-01

    During a severe nuclear accident released fission and radiolysis products can react with each other to form new species which might contribute to the volatile source term. Iodine will be released from UO2 fuel mainly in form as CsI aerosol particles and elemental iodine. Elemental iodine can react in gaseous phase with ozone to form solid iodine oxide aerosol particles (IOx). Within the AIAS-2 (Adsorption of Iodine Aerosols on Surfaces) project the interactions of IOx and CsI aerosols with common containment surface materials was investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS. Non-radioactive and 131 I labelled aerosols were produced from a KI solution and ozone with a new facility designed and built at VTT Technical Research Centre of Finland. CsI aerosols were produced from a CsI solution with the same facility. A monolayer of the aerosols was deposited on the surfaces. The deposits were analysed with microscopic and spectroscopic measurement techniques to identify the chemical form of the deposits on the surfaces to identify if a chemical conversion on the different surface materials had occured. The revaporisation behaviour of the deposited aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 with a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The decomposition effect of the radiolysis product carbon monoxide was tested on IOx aerosols deposited on a glass fibre filter. Iodine oxide particles were produced at 50 deg. C, 100 deg. C and 120 deg. C and deposited on filter samples in order to study the chemical speciation of

  10. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface fo...

  11. Ensuring the Environmental and Industrial Safety in Solid Mineral Deposit Surface Mining

    Science.gov (United States)

    Trubetskoy, Kliment; Rylnikova, Marina; Esina, Ekaterina

    2017-11-01

    The growing environmental pressure of mineral deposit surface mining and severization of industrial safety requirements dictate the necessity of refining the regulatory framework governing safe and efficient development of underground resources. The applicable regulatory documentation governing the procedure of ore open-pit wall and bench stability design for the stage of pit reaching its final boundary was issued several decades ago. Over recent decades, mining and geomechanical conditions have changed significantly in surface mining operations, numerous new software packages and computer developments have appeared, opportunities of experimental methods of source data collection and processing, grounding of the permissible parameters of open pit walls have changed dramatically, and, thus, methods of risk assessment have been perfected [10-13]. IPKON RAS, with the support of the Federal Service for Environmental Supervision, assumed the role of the initiator of the project for the development of Federal norms and regulations of industrial safety "Rules for ensuring the stability of walls and benches of open pits, open-cast mines and spoil banks", which contribute to the improvement of economic efficiency and safety of mineral deposit surface mining and enhancement of the competitiveness of Russian mines at the international level that is very important in the current situation.

  12. An Artificial Turf-Based Surrogate Surface Collector for the Direct Measurement of Atmospheric Mercury Dry Deposition

    Directory of Open Access Journals (Sweden)

    Naima L. Hall

    2017-02-01

    Full Text Available This paper describes the development of a new artificial turf surrogate surface (ATSS sampler for use in the measurement of mercury (Hg dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more closely mimic the physical structure of many natural surfaces than traditional flat surrogate surface designs (water, filter, greased Mylar film. The ATSS has been designed to overcome several complicating factors that can impact the integrity of samples with other direct measurement approaches by providing a passive system which can be deployed for both short and extended periods of time (days to weeks, and is not contaminated by precipitation and/or invalidated by strong winds. Performance characteristics including collocated precision, in-field procedural and laboratory blanks were evaluated. The results of these performance evaluations included a mean collocated precision of 9%, low blanks (0.8 ng, high extraction efficiency (97%–103%, and a quantitative matrix spike recovery (100%.

  13. A case of regression of atypical dense deposit disease without C3 deposition in a child.

    Science.gov (United States)

    Kim, Min Sun; Hwang, Pyoung Han; Kang, Mung Jae; Lee, Dae-Yeol

    2010-07-01

    Dense deposit disease (DDD) is a rare disorder characterized by the deposition of abnormal electron-dense material within the glomerular basement membrane of the kidneys. The diagnosis is made in most patients between 5 and 15 years of age, and within 10 years, approximately half of the affected patients progress to end-stage renal disease. We report a rare case of regressive DDD without C3 deposition after steroid therapy in an 11-year-old boy. The patient presented with edema, gross hematuria, and nephrotic-range proteinuria. Laboratory testing revealed a serum creatinine level of 1.17 mg/dL, albumin level of 2.3 g/dL, and serum C3 level of 125 mg/dL (range 90-180 mg/dL). The results of the renal biopsy were consistent with DDD without C3 deposition. After 6 weeks of steroid therapy, the nephrotic syndrome completely resolved. The follow-up renal biopsy showed a significant reduction in mesangial proliferation and disappearance of electron-dense deposits in the GBM.

  14. Rare Earth Element Fluorocarbonate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia

    Directory of Open Access Journals (Sweden)

    Danielle S. Schmandt

    2017-10-01

    Full Text Available Olympic Dam is a world-class breccia-hosted iron-oxide copper-gold-uranium ore deposit located in the Gawler Craton, South Australia. It contains elevated concentrations of rare earth elements (REE which occur as the REE minerals bastnäsite, synchysite, florencite, monazite, and xenotime. This is the first study to focus on the mineralogy and composition of the most abundant REE mineral at Olympic Dam, bastnäsite, and subordinate synchysite. The sample suite extends across the deposit and represents different sulfide mineralization styles (chalcopyrite-bornite and bornite-chalcocite and breccias of various types, ranging from those dominated by clasts of granite, dykes, and hematite. The REE-fluorocarbonates (bastnäsite and synchysite typically occur as fine-grained (<50 μm disseminations in Cu-Fe-sulfides and gangue minerals, and also within breccia matrix. They are also locally concentrated within macroscopic REE-mineral-rich pockets at various locations across the deposit. Such coarse-grained samples formed the primary target of this study. Three general textural groups of bastnäsite are recognized: matrix (further divided into disseminated, fine-grained, and stubby types, irregular (sulfide-associated, and clast replacement. Textures are largely driven by the specific location and prevailing mineral assemblage, with morphology and grain size often controlled by the associated minerals (hematite, sulfides. Major element concentration data reveal limited compositional variation among the REE-fluorocarbonates; all are Ce-dominant. Subtle compositional differences among REE-fluorocarbonates define a spectrum from relatively La-enriched to (Ce + Nd-enriched phases. Granite-derived hydrothermal fluids were the likely source of F in the REE-fluorocarbonates, as well as some of the CO2, which may also have been contributed by associated mafic-ultramafic magmatism. However, transport of REE by Cl-ligands is the most likely scenario. Stubby bastn

  15. Formation of Micro- and Nanostructures on the Nanotitanium Surface by Chemical Etching and Deposition of Titania Films by Atomic Layer Deposition (ALD

    Directory of Open Access Journals (Sweden)

    Denis V. Nazarov

    2015-12-01

    Full Text Available In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD, chemical etching and atomic layer deposition (ALD. For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD. Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material.

  16. Heavy and Light chain amyloidosois presenting as complete heart block: A rare presentation of a rare disease.

    Science.gov (United States)

    Priyamvada, P S; Morkhandikar, S; Srinivas, B H; Parameswaran, S

    2015-01-01

    Amyloidosis is an uncommon disease characterized by deposition of proteinaceous material in the extracellular matrix, which results from abnormal protein folding. Even though more than 25 precursor proteins are identified, majority of systemic amyloidosis results from deposition of abnormal immunoglobulin (Ig) light chains. In heavy chain amyloidosis (AH), deposits are derived from both heavy chain alone, whereas in heavy and light chain amyloidosis (AHL), the deposits are derived from Ig heavy chains and light chains. Both AH and AHL are extremely rare diseases. Here, we report an unusual presentation of IgG (lambda) AHL amyloidosis in the background of multiple myeloma, where the initial clinical presentation was complete heart block, which preceded the definitive diagnosis by 18 months.

  17. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  18. Nucleation and growth of microdroplets of ionic liquids deposited by physical vapor method onto different surfaces

    Science.gov (United States)

    Costa, José C. S.; Coelho, Ana F. S. M. G.; Mendes, Adélio; Santos, Luís M. N. B. F.

    2018-01-01

    Nanoscience and technology has generated an important area of research in the field of properties and functionality of ionic liquids (ILs) based materials and their thin films. This work explores the deposition process of ILs droplets as precursors for the fabrication of thin films, by means of physical vapor deposition (PVD). It was found that the deposition (by PVD on glass, indium tin oxide, graphene/nickel and gold-coated quartz crystal surfaces) of imidazolium [C4mim][NTf2] and pyrrolidinium [C4C1Pyrr][NTf2] based ILs generates micro/nanodroplets with a shape, size distribution and surface coverage that could be controlled by the evaporation flow rate and deposition time. No indication of the formation of a wetting-layer prior to the island growth was found. Based on the time-dependent morphological analysis of the micro/nanodroplets, a simple model for the description of the nucleation process and growth of ILs droplets is presented. The proposed model is based on three main steps: minimum free area to promote nucleation; first order coalescence; second order coalescence.

  19. Dry deposition of particles to ocean surfaces

    NARCIS (Netherlands)

    Larsen, S.E.; Edson, J.B.; Hummelshoj, P.; Jensen, N.O.; Leeuw, G. de; Mestayer, P.G.

    1995-01-01

    Dry deposition of atmospheric particles mainly depends on wind speed and particle diameter. The dry deposition velocity, Vd, is found to vary by a factor of 100-1,000 with diameter in a likely diameter range, adding uncertainty to deposition estimates, because the diameter distribution for many

  20. One-step microwave plasma enhanced chemical vapor deposition (MW-PECVD) for transparent superhydrophobic surface

    Science.gov (United States)

    Thongrom, Sukrit; Tirawanichakul, Yutthana; Munsit, Nantakan; Deangngam, Chalongrat

    2018-02-01

    We demonstrate a rapid and environmental friendly fabrication technique to produce optically clear superhydrophobic surfaces using poly (dimethylsiloxane) (PDMS) as a sole coating material. The inert PDMS chain is transformed into a 3-D irregular solid network through microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. Thanks to high electron density in the microwave-activated plasma, coating can be done in just a single step with rapid deposition rate, typically much shorter than 10 s. Deposited layers show excellent superhydrophobic properties with water contact angles of ∼170° and roll-off angles as small as ∼3°. The plasma-deposited films can be ultrathin with thicknesses under 400 nm, greatly diminishing the optical loss. Moreover, with appropriate coating conditions, the coating layer can even enhance the transmission over the entire visible spectrum due to a partial anti-reflection effect.

  1. Effects of negative bias on structure and surface topography of titanium films deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Duan Linglong

    2008-01-01

    Pure Ti films were fabricated by bias sputtering. The deposition rate, the density and the surface topography of the Ti films at different negative bias were studied. The results show that the deposition rate is weakly affected when the bias power is low. As the bias voltage increases, the deposition rate decreases strongly due to the increase of the layer density and the resputtering phenomena. The film density increased and saturated to nearly bulk value at a bias voltage of -119.1 V. SEM view indicates that the columnar-type structure of Ti films can be destroyed by applying negative bias. The experiments demonstrated that a dense Ti film with more smooth surface can be produced by applying negative bias. (authors)

  2. Fiscal 1998 research report on the demand forecast of rare element minerals, recycling technology of rare elements from waste, and substitute rare element minerals; 1998 nendo chosa hokokusho. Kisho genso koseki no juyo yosoku, kisho genso no haikibutsu kara no kaishu gijutsu oyobi daitai kisho genso koseki nado ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Rare element mineral is indispensable material for functionalization of high-tech raw materials. Its deposit is poor, an increase in its future demand is expected, and its information disclosure is insufficient because of strategic important material. To solve these problems, the following were studied systematically, and urgent research themes on rare element minerals were clarified: (1) High-efficiency recycling technology of rare elements, (2) Waste treatment system after recycling of rare elements from the viewpoint of environmental measures, (3) Establishment of the database of rare element minerals, and development of new substitute rare element minerals, and (4) Design method of substitute materials possible to generate various existing functions without any rare elements. Among them, in particular, precise separation of 46 kinds of rare elements from waste of high-tech raw materials, and recycling of rare elements from zinc refining waste and pyrite ore deposit containing copper were pointed out as important themes. (NEDO)

  3. Multi-year Surface Deposition of {sup 210}Pb and {sup 210}Po at Lisbon - Atmospheric Depositions of {sup 210}Pb and {sup 210}Po in Lisbon, Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando P.; Oliveira, Joao M.; Alberto, G. [Instituto Superior Tecnico/ Campus Tecnologico e Nuclear, Universidade Tecnica de Lisboa, E.N. 10, 2686-953 Sacavem (Portugal)

    2014-07-01

    The long lived radon daughters {sup 210}Pb and {sup 210}Po were determined in samples of total atmospheric depositions obtained with surface collectors continuously operated during 5 years, near Lisbon. The average annual {sup 210}Pb flux was 66±12 Bq m{sup -2}, and the average annual {sup 210}Po flux was 8±3 Bq m{sup -2}, with an overall {sup 210}Po/{sup 210}Pb activity ratio of 0.15±0.06. Direct determination of the {sup 210}Pb atmospheric flux was compared with the {sup 210}Pb excess determined in soil surface layers along with atmospheric depositions of {sup 137}Cs. The deposition of atmospheric {sup 210}Pb was positively correlated with seasonal rainfall, while {sup 210}Po was mainly originated in soil particles re-suspension throughout the year and also in seasonal forest fires. Unusually high {sup 210}Po/{sup 210}Pb activity ratios, higher than unity, were occasionally recorded in atmospheric depositions and the sources and causes are discussed. Long time-series of {sup 210}Pb and {sup 210}Po deposition fluxes, as presented herein are useful to test and constrain parameters of the atmospheric Global Circulation Models. (authors)

  4. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meininger, M. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Wolf-Brandstetter, C. [Max Bergmann Center for Biomaterials, Technical University of Dresden, Budapester Straße 27, D-01069 Dresden (Germany); Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Moseke, C., E-mail: claus.moseke@fmz.uni-wuerzburg.de [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany)

    2016-10-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr{sup 2+} ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr{sup 2+} into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr{sup 2+} ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  5. Optimization of deposition conditions of CdS thin films using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Güler, Nuray [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2014-03-15

    Highlights: • Statistical methods used for optimization of CdS deposition parameters. • The morphology of the films was smooth, homogeneous and continuous. • Optimal conditions found as pH 11, stirring speed:361 rpm and deposition time: 55 min. • CdS thin film band gap value was 2.72 eV under the optimum conditions. -- Abstract: Cadmium sulfide (CdS) thin films were prepared on glass substrates by chemical bath deposition (CBD) technique under different pH, stirring speed and deposition time. Response Surface Methodology (RSM) and Central Composite Design (CCD) were used to optimization of deposition parameters of the CdS thin films. RSM and CCD were also used to understand the significance and interaction of the factors affecting the film quality. Variables were determined as pH, stirring speed and deposition time. The band gap was chosen as response in the study. Influences of the variables on the band gap and the film quality were investigated. 5-level-3-factor central composite design was employed to evaluate the effects of the deposition conditions parameters such as pH (10.2–11.8), stirring speed (132–468 rpm) and deposition time (33–67 min) on the band gap of the films. The samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and ultraviolet–visible spectroscopy (UV–vis) measurements. The optimal conditions for the deposition parameters of the CdS thin films have been found to be: pH 11, 361 of stirring speed and 55 min of deposition time. Under the optimal conditions theoretical (predicted) band gap of CdS (2.66 eV) was calculated using optimal coded values from the model and the theoretical value is good agreement with the value (2.72 eV) obtained by verification experiment.

  6. Exogenous deposits

    International Nuclear Information System (INIS)

    Khasanov, A.Kh.

    1988-01-01

    Exogenous deposits forming as a result of complex exogenous processes, passed under the influence of outside forces on the Earth surface. To them relate physical and chemical weathering, decomposition and decay of mineral masses, redistribution and transportation of material, forming and deposit of new minerals and ores steady on the earth surface conditions

  7. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil); Almeida, R. dos S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2014-07-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  8. Surface modification of Ti-30Ta alloy by electrospun PCL deposition

    International Nuclear Information System (INIS)

    Wada, C.M.; Rangel, A.L.R.; Souza, M.A. de; Claro, A.P.R.A.; Rezende, M.C.R.; Almeida, R. dos S.

    2014-01-01

    Full text: Surface modifications techniques have been used for change the inert surface of the titanium alloys for better interaction. Ingots of the experimental alloy Ti30Ta were melted in an arc furnace and re-melted ten times at least. They were homogenized under vacuum at 1000 °C for 86. 4 ks to eliminate chemical segregation and cold-worked by swaging. Discs were immersed in aqueous NaOH solution for 24 h, dried at room temperature, immersed in HCl and dried at 40 °C in oven for 24 hours. Followed, PCL fibers were deposited on the Ti30Ta alloy discs surfaces by electrospinning. Plasma treatment was carried out for change PCL electrospun by using stainless steel plasma reactor. Samples were immersed in SBF 5x solution for apatite growth. Surfaces were evaluated by using SEM, X-rays diffraction and contact angle. Samples exhibited hydrophilic behavior after plasma treatment and SBF immersion. Results are very interesting for biomedical applications. (author)

  9. Environmental geochemical study of Red Mountain--an undisturbed volcanogenic massive sulfide deposit in the Bonnifield District, Alaska range, east-central Alaska: Chapter I in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    Science.gov (United States)

    Eppinger, Robert G.; Briggs, Paul H.; Dusel-Bacon, Cynthia; Giles, Stuart A.; Gough, Larry P.; Hammarstrom, Jane M.; Hubbard, Bernard E.

    2007-01-01

    The Red Mountain volcanogenic massive sulfide (VMS) deposit exhibits well-constrained examples of acid-generating, metal-leaching, metal-precipitation, and self-mitigation (via co-precipitation, dilution, and neutralization) processes that occur in an undisturbed natural setting, a rare occurrence in North America. The unmined pyrite-rich deposit displays a remarkable environmental footprint of natural acid generation, high metal concentrations, and exceedingly high rare-earth-element (REE) concentrations in surface waters. Dissolution of pyrite and associated secondary reactions under near-surface, oxidizing conditions are the primary causes for the acid generation and metal leaching. The deposit is hosted in Devonian to Mississippian felsic metavolcanic rocks of the Mystic Creek Member of the Totatlanika Schist.

  10. Origin and depositional environment of fine-grained sediments since the last glacial maximum in the southeastern Yellow Sea: evidence from rare earth elements

    Science.gov (United States)

    Um, In Kwon; Choi, Man Sik; Lee, Gwang Soo; Chang, Tae Soo

    2015-12-01

    Despite the well-reconstructed seismic stratigraphy of the Holocene mud deposit in the southeastern Yellow Sea, known as the Heuksan mud belt (HMB), the provenances of these sediments and their depositional environments are unclear, especially for the fine-grained sediments. According to seismic data (extracted from another article in this special issue), the HMB comprises several sedimentary units deposited since the last glacial maximum. Based on analytical results on rare earth elements, fine-grained sediments in all sedimentary units can be interpreted as mixtures of sediments discharged from Chinese and Korean rivers. The proportions of fine-grained sediments from Chinese rivers (74.5 to 80.0%) were constant and higher than those from Korean rivers in all units. This fact demonstrates that all units have the same fine-grained sediment provenance: units III-b and III-a, located in the middle and northern parts of the HMB and directly deposited from Chinese rivers during the sea-level lowstand, could be the sediment source for units II-b and II-a. Unit I, while ambiguous, is of mixed origin combining reworked sediments from nearby mud deposits and Changjiang River-borne material with those of the Keum River. The results of this study indicate that at least 18.6% of bulk sediments in the HMB clearly originate from Chinese rivers, despite its location close to the southwestern coast of Korea.

  11. Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling

    International Nuclear Information System (INIS)

    Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael

    2015-01-01

    Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts. (paper)

  12. Rare-earth metal prices in the USA ca. 1960 to 1994

    Science.gov (United States)

    Hedrick, James B.

    1997-01-01

    Rare-earth metal prices were compiled from the late 1950s and early 1960s through 1994. Although commercial demand for rare-earth metals began in 1908, as the alloy mischmetal, commercial quantities of a wide range of individual rare-earth metals were not available until the late 1950s. The discovery of a large, high-grade rare-earth deposit at Mountain Pass. CA, USA, in 1949, was significant because it led to the production of commercial quantities or rare-earth elements that reduced prices and encouraged wider application of the materials. The availability of ore from Mountain Pass, and other large rare-earth deposits, especially those in Australia and China, has provided the world with abundant resources for rare-earth metal production. This availability, coupled with improved technology from Government and private-sector metallurgical research, has resulted in substantial decreases in rare-earth metal prices since the late 1950s and early 1960s. Price series for the individual rare-earth metals (except promethium) are quoted on a kilogram basis from the late 1950s and early 1960s through 1994. Prices are given in US dollars on an actual and constant dollar basis. Industrial and economic factors affecting prices during this time period are examined.

  13. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  14. The measurement of dry deposition and surface runoff to quantify urban road pollution in Taipei, Taiwan.

    Science.gov (United States)

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang

    2013-10-16

    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01-5.14 g/m(2) · day and 78-87% of these solids are in the 75-300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads.

  15. Erosion of pyrolytic carbon under high surface energy deposition from a pulsed hydrogen plasma

    International Nuclear Information System (INIS)

    Bolt, H.

    1992-01-01

    Carbon materials are widely applied as plasma facing materials in nuclear fusion devices and are also the prime candidate materials for the next generation of experimental fusion reactors. During operation these materials are frequently subjected to high energy deposition from plasma disruptions. The erosion of carbon materials is regarded as the main issue governing the operational lifetime of plasma facing components. Laboratory experiments have been performed to study the thermal erosion behaviour of carbon in a plasma environment. In the experiments the surface of pyrolytic carbon specimens was exposed to pulsed energy deposition of up to 3.8 MJ m -2 from a hydrogen plasma. The behaviour of the eroded carbon species in the plasma was measured by time-resolved and space-resolved spectroscopy. Intense line radiation of ionic carbon has been measured in the plasma in front of the carbon surface. The results show that the eroded carbon is immediately ionised in the vicinity of the material surface, with a fraction of it being ionised to the double-charged state. (Author)

  16. Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties

    Science.gov (United States)

    Palmstrom, Axel F.; Santra, Pralay K.; Bent, Stacey F.

    2015-07-01

    Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.

  17. Heavy and Light chain amyloidosois presenting as complete heart block: A rare presentation of a rare disease

    Directory of Open Access Journals (Sweden)

    P S Priyamvada

    2015-01-01

    Full Text Available Amyloidosis is an uncommon disease characterized by deposition of proteinaceous material in the extracellular matrix, which results from abnormal protein folding. Even though more than 25 precursor proteins are identified, majority of systemic amyloidosis results from deposition of abnormal immunoglobulin (Ig light chains. In heavy chain amyloidosis (AH, deposits are derived from both heavy chain alone, whereas in heavy and light chain amyloidosis (AHL, the deposits are derived from Ig heavy chains and light chains. Both AH and AHL are extremely rare diseases. Here, we report an unusual presentation of IgG (lambda AHL amyloidosis in the background of multiple myeloma, where the initial clinical presentation was complete heart block, which preceded the definitive diagnosis by 18 months.

  18. Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition

    NARCIS (Netherlands)

    Fusi, M.; Maccallini, E.; Caruso, T.; Casari, C. S.; Bassi, A. Li; Bottani, C. E.; Rudolf, P.; Prince, K. C.; Agostino, R. G.

    Titanium oxide nanostructured thin films synthesized by pulsed laser deposition (PLD) were here characterized with a multi-technique approach to investigate the relation between surface electronic, structural and morphological properties. Depending on the growth parameters, these films present

  19. Investigation of the evaporation of rare earth chlorides in a LiCl-KCl molten salt

    International Nuclear Information System (INIS)

    Sung Bin Park; Dong Wook Cho; Moon Sik Woo; Sung Chan Hwang; Young Ho Kang; Jeong Guk Kim; Hansoo Lee

    2011-01-01

    Uranium dendrites which were deposited at a solid cathode of an electrorefiner contained a certain amount of salts. These salts should be removed for the recovery of pure metal using a cathode processor. In the uranium deposits from the electrorefining process, there are actinide chlorides and rare earth chlorides in addition to uranium chloride in the LiCl-KCl eutectic salt. The evaporation behaviors of the actinides and rare earth chlorides in the salts should be investigated for the removal of salts in the deposits. Experiments on the salt evaporation of rare earth chlorides in a LiCl-KCl eutectic salt were carried out. Though the vapor pressures of the rare earth chlorides were lower than those of the LiCl and KCl, the rare earth chlorides were co-evaporized with the LiCl-KCl eutectic salt. The Hertz-Langmuir relation was applied for this evaporation, and also the evaporation rates of the salt were obtained. The co-evaporation of the rare earth chlorides and LiCl-KCl eutectic were also discussed. (author)

  20. Evaluation of the salt deposition on the canister surface of concrete cask. Part 2. Measurement test of the salt concentration in air and salt deposition in the field

    International Nuclear Information System (INIS)

    Wataru, Masumi

    2012-01-01

    Concerning the storage facility of spent nuclear fuel using the concrete cask, there is an issue of stress corrosion cracking(SCC). The cooling air goes up along the canister surface in the concrete cask. To evaluate the initiation of SCC or rusting, it is important to verify the estimation method of the sea salt deposition on the metal canister surface transported by cooling air including sea salt particles. To measure the deposition rate, field tests were performed in Choushi test center. In the field test, it was found that the amount of sea salt deposition was very low because the density of the atmospheric sea salt concentration was very low compared with the laboratory test. Using relation between laboratory data and filed data, it is possible to evaluate the salt deposition rate on the canister surface. We also measured atmospheric sea salt concentration in Choushi test center to make the environment condition clear and compared the measurement data with the calculation data to verify the evaluation model. We are developing the automatic measuring device for atmospheric sea salt concentration. To check its performance, we are measuring atmospheric sea salt concentration in Yokosuka Area of CRIEPI and it was confirmed that the device works for one month automatically and fulfills its specifications. (author)

  1. Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Julie A.; Rosenberg, Samantha G.; Barclay, Michael; Fairbrother, D. Howard [Johns Hopkins University, Department of Chemistry, Baltimore, MD (United States); Wu, Yung-Chien; McElwee-White, Lisa [University of Florida, Department of Chemistry, Gainesville, FL (United States)

    2014-12-15

    Standard practice in electron beam-induced deposition (EBID) is to use precursors designed for thermal processes, such as chemical vapor deposition (CVD). However, organometallic precursors that yield pure metal deposits in CVD often create EBID deposits with high levels of organic contamination. This contamination negatively impacts the deposit's properties (e.g., by increasing resistivity or decreasing catalytic activity) and severely limits the range of potential applications for metal-containing EBID nanostructures. To provide the information needed for the rational design of precursors specifically for EBID, we have employed an ultra-high vacuum (UHV) surface science approach to identify the elementary reactions of organometallic precursors during EBID. These UHV studies have demonstrated that the initial electron-induced deposition of the surface-bound organometallic precursors proceeds through desorption of one or more of the ligands present in the parent compound. In specific cases, this deposition step has been shown to proceed via dissociative electron attachment, involving low-energy secondary electrons generated by the interaction of the primary beam with the substrate. Electron beam processing of the surface-bound species produced in the initial deposition event usually causes decomposition of the residual ligands, creating nonvolatile fragments. This process is believed to be responsible for a significant fraction of the organic contaminants typically observed in EBID nanostructures. A few ligands (e.g., halogens) can, however, desorb during electron beam processing while other ligands (e.g., PF{sub 3}, CO) can thermally desorb if elevated substrate temperatures are used during deposition. Using these general guidelines for reactivity, we propose some design strategies for EBID precursors. The ultimate goal is to minimize organic contamination and thus overcome the key bottleneck for fabrication of relatively pure EBID nanostructures. (orig.)

  2. Topography and surface free energy of DPPC layers deposited on a glass, mica, or PMMA support.

    Science.gov (United States)

    Jurak, Malgorzata; Chibowski, Emil

    2006-08-15

    An investigation of energetic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on glass, mica, and PMMA (poly(methyl methacrylate)) surfaces was carried out by means of contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide). DPPC was deposited on the surfaces from water (on glass and mica) or methanol (on PMMA) solutions. The topography of the tested surfaces was determined with a help of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Using the measured contact angles, the total apparent surface free energy and its components of the studied layers were determined from van Oss et al.'s (Lifshitz-van der Waals and acid-base components, LWAB) and contact angle hysteresis (CAH) approaches. It allowed us to learn about changes in the surface free energy of the layers (hydrophobicity/hydrophilicity) depending on their number and kind of support. It was found that the changes in the energy greatly depended on the surface properties of the substrate as well as the statistical number of monolayers of DPPC. However, principal changes took place for first three monolayers.

  3. Modification of TiO(2) nanotube surfaces by electro-spray deposition of amoxicillin combined with PLGA for bactericidal effects at surgical implantation sites.

    Science.gov (United States)

    Lee, Jung-Hwan; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2013-01-01

    To fabricate the antibiotic-releasing coatings on TiO(2) nanotube surfaces for wide applications of implant and bone plate in medical and dental surgery, the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures was found. FE-SEM, ESD and FT-IR were used for confirming deposition of amoxicillin/PLGA on the TiO(2) surface. Also, the elution of amoxicillin/PLGA in a TiO(2) nanotube surface was measured by a UV-VIS spectrophotometer. The bactericidal effect of amoxicillin on the TiO(2) nanotube surface was evaluated by using Staphylococcus aureus (S. aureus). The cytotoxicity and cell proliferation were observed by WST assay using MC3T3-E1 osteoblast cells. The results indicated that the TiO(2) nanotube surface controlled by electro-spray deposition time with amoxicillin/PLGA solution could provide a high bactericidal effect against S. aureus by the bactericidal effect of amoxicillin, as well as good osteoblast cell proliferation at the TiO(2) nanotube surface without toxicity. This study used electro-spray deposition (ESD) methodology to obtain amoxicillin deposition in nanotube structures of TiO(2) and found the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures.

  4. Deposition of Bacillus subtilis spores using an airbrush-spray or spots to study surface decontamination by pulsed light.

    Science.gov (United States)

    Levy, Caroline; Bornard, Isabelle; Carlin, Frédéric

    2011-02-01

    Microbial contamination on surfaces of food processing equipment is a major concern in industries. A new method to inoculate a single-cell layer (monolayer) of microorganisms onto polystyrene was developed, using a deposition with an airbrush. A homogeneous dispersion of Bacillus subtilis DSM 402 spores sprayed on the surface was observed using both plate count and scanning electron microscopy. No clusters were found, even with high spore concentrations (10(7) spores/inoculated surface). A monolayer of microorganisms was also obtained after deposition of 10 μL droplets containing 3×10(4) spores/spot on polystyrene disks, but not with a higher spore concentration. Pulsed light (PL) applied to monolayers of B. subtilis spores allowed log reductions higher than 6. As a consequence of clusters formation in spots of 10 μL containing more than 3×10(5) spores, log reductions obtained by PL were significantly lower. The comparative advantages of spot and spray depositions were discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Direct sputtering- and electro-deposition of gold coating onto the closed surface of ultralow-density carbon-hydrogen foam cylinder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jiaqiu; Yin, Jialing; Zhang, Hao; Yao, Mengqi; Hu, Wencheng, E-mail: huwc@uestc.edu.cn

    2016-12-15

    Highlights: • The surface pores of P(DVB/St) foam cylinder are sealed by CVD method. • Gold film was deposited on the surface of foam cylinder by magnetron sputtering. • Electroless plating was excluded in the present experiments. • The gold coatings were thickened through the electrodeposition process. - Abstract: This work aimed to fabricate a gold coating on the surface of ultralow-density carbon-hydrogen foam cylinder without electroless plating. Poly (divinylbenzene/styrene) foam cylinder was synthetized by high internal phase emulsion, and chemical vapor deposition polymerization approach was used to form a compact poly-p-xylylene film on the foam cylinder. Conducting gold thin films were directly deposited onto the poly-p-xylylene-modified foam cylinder by magnetron sputtering, and electrochemical deposition was adopted to thicken the gold coatings. The micro-structures and morphologies of poly (divinylbenzene/styrene) foam cylinder and gold coating were observed by field-emission scanning electron microscopy. The gold coating content was investigated by energy-dispersive X-ray. The thicknesses of poly-p-xylylene coating and sputtered gold thin-film were approximately 500 and 100 nm, respectively. After electrochemical deposition, the thickness of gold coating increased to 522 nm, and the gold coating achieved a compact and uniform structure.

  6. Preparation of iron-deposited graphite surface for application as cathode material during electrochemical vat-dyeing process

    International Nuclear Information System (INIS)

    Anbu Kulandainathan, M.; Kiruthika, K.; Christopher, G.; Babu, K. Firoz; Muthukumaran, A.; Noel, M.

    2008-01-01

    Iron-deposited graphite surfaces were prepared, characterized and employed as cathode materials for electrochemical vat-dyeing process containing very low concentration of sodium dithionite. The electrodeposition, in presence of ammonium thiocyanate and gelatin or animal glue as binding additives, were found to give finer iron deposits for improved electrochemical dyeing application. The electrodeposits were characterized using scanning electron microscopy, electron-dispersive X-ray spectroscopy and X-ray diffraction methods, before and after electrochemical dyeing process. The electrochemical activity of the iron-deposited graphite electrodes always stored in water seems to depend on the surface-bound Fe 3+ /Fe 2+ redox species. Vat dyes like C.I. Vat Violet 1, C.I. Vat Green 1 and C.I. Vat Blue 4 could be efficiently dyed employing these above electrode materials. The colour intensity and washing fastness of the dyed fabrics were found to be equal with conventionally dyed fabrics. The electrodes could also be reused for the dyeing process

  7. Effect of Ground Surface Roughness on Atmospheric Dispersion and Dry Deposition of Cs-137 in the UAE Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungyeop; Beeley, Philip A. [Khalifa Univ. of Science, Abu Dhabi (United Arab Emirates); Kim, Sungyeop; Chang, Soonheung; Lee, Kunjai [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The site of nuclear power plant (NPP) in the UAE has several unique characteristics as a NPP on the desert environment near coastal region. Those characteristics are represented like below: · Arid ground surface · Low ground surface roughness length · Relatively simple (flat) terrain · Extremely low precipitation · Intense solar radiation and high temperature in day time · Sea breeze · Relatively high humidity of atmosphere · Etc. From the review of this desert environment in the UAE, low ground surface roughness is regarded as one of definitively different characteristics from that of other NPP sites. In this context, surface roughness is selected as independent variables for the sensitivity analyses in this research. Another important reason of this selection is that this parameters is less dependent on the day and night change than other parameters. With ground level concentration, dry deposition rate has been chosen as a dependent variable to be considered rather than wet deposition because UAE shows almost zero rainfall especially in summer. Lower ground level concentration of Cs-137 near the site and extremely lower dry deposition of Cs-137 are predicted in the UAE environment because of the lower ground surface roughness of the desert.

  8. Surface hardening of optic materials by deposition of diamond like carbon coatings from separated plasma of arc discharge

    Science.gov (United States)

    Osipkov, A. S.; Bashkov, V. M.; Belyaeva, A. O.; Stepanov, R.; Mironov, Y. M.; Galinovsky, A. L.

    2015-02-01

    This article considers the issue of strengthening of optic materials used in the IR spectrum by deposition of diamond like carbon coatings from separated plasma arc discharge. The report shows results of tests of bare and strengthened optical materials such as BaF2, MgF2, Si, Ge, including the testing of their strength and spectral characteristics. Results for the determination of optical constants for the DLC coatings deposited on substrates of Ge and Si, by using separated plasma, are also presented. Investigations showed that surface hardening of optical materials operable in the IR range, by the deposition of diamond like carbon coating onto their surface, according to this technology, considerably improves operational properties and preserves or improves their optic properties.

  9. Changes in the atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis

    International Nuclear Information System (INIS)

    Ruehling, Aake; Tyler, Germund

    2004-01-01

    Elements emitted to the atmosphere are partly exported to more remote areas and contribute to the regional and territorial deposition rates. This study is based on the principle that carpet-forming bryophytes (pleurocarpic mosses) absorb elements and particles from rain, melting snow and dry deposition. We compare the concentrations of 60 elements in carpets of the forest moss Pleurozium schreberi sampled in 1975 and 2000 within a sparsely inhabited area dominated by forest and bogland in south Sweden. As an average for all the 60 elements, the median concentration was 2.7 times higher in 1975 than in 2000. The greatest difference was measured for Pb, although In, Bi, Ge, V, Sn, As and Ag had more than 5 times higher concentrations in 1975 than in 2000. Somewhat lower 1975/2000 concentration ratios (3.0-3.8) were measured for U, Sb, Cd, W, Ga, Fe, Li, and Be. The rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), except Eu as well as Th, Ni, Al, Ti, Hf, Nb, and Zr, had concentration ratios around the average (2.5-2.8). Possible causes of these changes are discussed. We conclude that reductions in anthropogenic dust emissions during recent decades have decreased the atmospheric deposition over northern Europe of most elements in the periodical system, as previously reported for a limited number of transition and heavy metals. Changes in the deposition of soil dust would be of minor importance to the decreased deposition rates

  10. Changes in the atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis.

    Science.gov (United States)

    Rühling, Ake; Tyler, Germund

    2004-10-01

    Elements emitted to the atmosphere are partly exported to more remote areas and contribute to the regional and territorial deposition rates. This study is based on the principle that carpet-forming bryophytes (pleurocarpic mosses) absorb elements and particles from rain, melting snow and dry deposition. We compare the concentrations of 60 elements in carpets of the forest moss Pleurozium schreberi sampled in 1975 and 2000 within a sparsely inhabited area dominated by forest and bogland in south Sweden. As an average for all the 60 elements, the median concentration was 2.7 times higher in 1975 than in 2000. The greatest difference was measured for Pb, although In, Bi, Ge, V, Sn, As and Ag had more than 5 times higher concentrations in 1975 than in 2000. Somewhat lower 1975/2000 concentration ratios (3.0-3.8) were measured for U, Sb, Cd, W, Ga, Fe, Li, and Be. The rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), except Eu as well as Th, Ni, Al, Ti, Hf, Nb, and Zr, had concentration ratios around the average (2.5-2.8). Possible causes of these changes are discussed. We conclude that reductions in anthropogenic dust emissions during recent decades have decreased the atmospheric deposition over northern Europe of most elements in the periodical system, as previously reported for a limited number of transition and heavy metals. Changes in the deposition of soil dust would be of minor importance to the decreased deposition rates.

  11. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S H; Suter, G F [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1997-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  12. Proton microprobe study of tin-polymetallic deposits

    Energy Technology Data Exchange (ETDEWEB)

    Murao, S. [Geological Survey of Japan, Tsukuba, Ibaraki (Japan); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1996-12-31

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs.

  13. Proton microprobe study of tin-polymetallic deposits

    International Nuclear Information System (INIS)

    Murao, S.; Sie, S.H.; Suter, G.F.

    1996-01-01

    Tin-polymetallic vein type deposits are a complex mixture of cassiterite and sulfides and they are the main source of technologically important rare metals such as indium and bismuth. Constituent minerals are usually fine grained having wide range of chemical composition and often the elements of interest occur as trace elements not amenable to electron microprobe analysis. PIXE with a proton microprobe can be an effective tool to study such deposits by delineating the distribution of trace elements among carrier minerals. Two representative indium-bearing deposits of tin- polymetallic type, Tosham of India (Cu-ln-Bi-Sn-W-Ag), and Mount Pleasant of Canada (Zn-Cu-In-Bi-Sn-W), were studied to delineate the distribution of medical/high-tech rare metals and to examine the effectiveness of the proton probe analysis of such ore. One of the results of the study indicated that indium and bismuth are present in chalcopyrite in the deposits. In addition to these important rare metals, zinc, copper, arsenic, antimony, selenium, and tin are common in chalcopyrite and pyrite. Arsenopyrite contains nickel, copper, zinc, silver, tin, antimony and bismuth. In chalcopyrite and pyrite, zinc, arsenic, indium, bismuth and lead are richer in Mount Pleasant ore, but silver is higher at Tosham. Also thallium and gold were found only in Tosham pyrite. The Tosham deposit is related to S-type granite, while Mount Pleasant to A-type. It appears that petrographic character of the source magma is one of the factors to determine the trace element distribution in tin-polymetallic deposit. 6 refs., 2 figs

  14. The Measurement of Dry Deposition and Surface Runoff to Quantify Urban Road Pollution in Taipei, Taiwan

    Science.gov (United States)

    Wang, Yunn-Jinn; Chen, Chi-Feng; Lin, Jen-Yang

    2013-01-01

    Pollutants deposited on road surfaces and distributed in the environment are a source of nonpoint pollution. Field data are traditionally hard to collect from roads because of constant traffic. In this study, in cooperation with the traffic administration, the dry deposition on and road runoff from urban roads was measured in Taipei City and New Taipei City, Taiwan. The results showed that the dry deposition is 2.01–5.14 g/m2·day and 78–87% of these solids are in the 75–300 µm size range. The heavy metals in the dry deposited particles are mainly Fe, Zn, and Na, with average concentrations of 34,978, 1,519 and 1,502 ppm, respectively. Elevated express roads show the highest heavy metal concentrations. Not only the number of vehicles, but also the speed of the traffic should be considered as factors that influence road pollution, as high speeds may accelerate vehicle wear and deposit more heavy metals on road surfaces. In addition to dry deposition, the runoff and water quality was analyzed every five minutes during the first two hours of storm events to capture the properties of the first flush road runoff. The sample mean concentration (SMC) from three roads demonstrated that the first flush runoff had a high pollution content, notably for suspended solid (SS), chemical oxygen demand (COD), oil and grease, Pb, and Zn. Regular sweeping and onsite water treatment facilities are suggested to minimize the pollution from urban roads. PMID:24135820

  15. Low energy Cu clusters slow deposition on a Fe (001) surface investigated by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shixu [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gong, Hengfeng [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Division of Nuclear Materials Science and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, Xuanzhi [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Li, Gongping, E-mail: ligp@lzu.edu.cn [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang, Zhiguang, E-mail: zhgwang@impcas.ac.cn [Laboratory of Advanced Nuclear Materials, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-09-30

    Highlights: • We study the deposition of low energy Cu clusters on Fe (001) surface by molecular dynamics. • The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. • The phenomenon of contact epitaxy of cluster occurred. • The thermal diffusion of cluster atoms was analyzed. - Abstract: The slow deposition of low energy Cu clusters on a Fe (001) surface was investigated by molecular dynamics simulation. A many-body potential based on Finnis–Sinclair model was used to describe the interactions among atoms. Three clusters comprising of 13, 55 and 147 atoms, respectively, were deposited with incident energies ranging from 0.0 to 1.0 eV/atom at various substrate temperatures (0, 300 and 800 K). The rearrangement and the diffusion of cluster can occur, only when the cluster atoms are activated and obtained enough migration energy. The interaction between low energy cluster and substrate can be divided to the landing and the thermal diffusion phases. In the former, the migration energy originates from the latent heat of binding energy for the soft deposition regime and primarily comes from the incident energy of cluster for the energetic cluster deposition regime. In the latter, the thermal vibration would result in some cluster atoms activated again at medium and high substrate temperatures. Also, the effects of incident energy, cluster size and substrate temperature on the interaction potential energy between cluster and substrate, the final deposition morphology of cluster, the spreading index and the structure parameter of cluster are analyzed.

  16. Passivation of surface states of α-Fe2O3(0001) surface by deposition of Ga2O3 overlayers: A density functional theory study.

    Science.gov (United States)

    Ulman, Kanchan; Nguyen, Manh-Thuong; Seriani, Nicola; Gebauer, Ralph

    2016-03-07

    There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski-Krastanov) growth mode with a critical layer thickness of 1-2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.

  17. Measurements of dry deposition rates of 212Pb from aerosols on various natural and artificial surfaces

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.; Osaki, T.

    2007-01-01

    The dry deposition rates on various grass fields and two forests have been measured by the use of 212 Pb (T 1/2 = 10.6 hours). The deposition rate on grass fields (average: 7 mm x s -1 ) roughly depends on the logarithms of the heights or densities of the grasses. The dry deposition rates on a broadleaved forest (Lithocarpus edulis) and a coniferous forest (Cryptomeria Japonica) were also measured. The highest (ave. 26 mm x s -1 ) was on the forest of C. Japonica because of the dense and adhesive surfaces of the leaves. (author)

  18. Surface analysis monitoring of polyelectrolyte deposition on Ba0.5Sr0.5TiO3 thin films

    International Nuclear Information System (INIS)

    Morales-Cruz, Angel L.; Fachini, Estevao R.; Miranda, Felix A.; Cabrera, Carlos R.

    2007-01-01

    Thin films are currently gaining interest in many areas such as integrated optics, sensors, friction, reducing coatings, surface orientation layers, and general industrial applications. Recently, molecular self-assembling techniques have been applied for thin film deposition of electrically conducting polymers, conjugated polymers for light-emitting devices, nanoparticles, and noncentrosymmetric-ordered second order nonlinear optical (NOL) devices. Polyelectrolytes self-assemblies have been used to prepare thin films. The alternate immersion of a charged surface in polyannion and a polycation solution leads usually to the formation of films known as polyelectrolyte multilayers. These polyanion and polycation structures are not neutral. However, charge compensation appears on the surface. This constitutes the building driving force of the polyelectrolyte multilayer films. The present approach consists of two parts: (a) the chemisorption of 11-mercaptoundecylamine (MUA) to construct a self-assembled monolayer with the consequent protonation of the amine, and (b) the deposition of opposite charged polyelectrolytes in a sandwich fashion. The approach has the advantage that ionic attraction between opposite charges is the driving force for the multilayer buildup. For our purposes, the multilayer of polyelectrolytes depends on the quality of the surface needed for the application. In many cases, this approach will be used in a way that the roughness factor defects will be diminished. The polyelectrolytes selected for the study were: polystyrene sulfonate sodium salt (PSS), poly vinylsulfate potassium salt (PVS), and polyallylamine hydrochloride (PAH), as shown in . The deposition of polyelectrolytes was carried out by a dipping procedure with the corresponding polyelectrolyte. Monitoring of the alternate deposition of polyelectrolyte bilayers was done by surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), specular reflectance infrared (IR), and

  19. Pulsed laser deposition of metallic films on the surface of diamond particles for diamond saw blades

    International Nuclear Information System (INIS)

    Jiang Chao; Luo Fei; Long Hua; Hu Shaoliu; Li Bo; Wang Youqing

    2005-01-01

    Ti or Ni films have been deposited on the diamond particle surfaces by pulsed laser deposition. Compressive resistance of the uncoated and coated diamond particles was measured, respectively, in the experiments. The compressive resistance of the Ti-coated diamonds particles was found much higher than that of the uncoated ones. It increased by 39%. The surface morphology is observed by the metallography microscope. The surface of the uncoated diamonds particles had many hollows and flaws, while the surface of Ni-coated diamond particles was flat and smooth, and the surface of Ti-coated diamond particles had some metal masses that stood out of the surface of the Ti-coated film. The components of the metallic films of diamond particles were examined by X-ray diffractometry (XRD). TiC was found formed on the Ti-coated diamond surface, which resulted in increased surface bonding strength between the diamond particles and the Ti films. Meanwhile, TiC also favored improving the bonding strength between the coated diamond particles and the binding materials. Moreover, the bending resistance of the diamond saw blade made of Ti-coated diamond was drastically higher than that of other diamond saw blades, which also played an important role in improving the blade's cutting ability and lifetime. Therefore, it was most appropriate that the diamond saw blade was made of Ti-coated diamond particles rather than other materials

  20. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  1. Surface modification of tantalum pentoxide coatings deposited by magnetron sputtering and correlation with cell adhesion and proliferation in in vitro tests

    Science.gov (United States)

    Zykova, A.; Safonov, V.; Goltsev, A.; Dubrava, T.; Rossokha, I.; Donkov, N.; Yakovin, S.; Kolesnikov, D.; Goncharov, I.; Georgieva, V.

    2016-03-01

    The effect was analyzed of surface treatment by argon ions on the surface properties of tantalum pentoxide coatings deposited by reactive magnetron sputtering. The structural parameters of the as-deposited coatings were investigated by means of transmission electron microscopy, atomic force microscopy and scanning electron microscopy. X-ray diffraction profiles and X-ray photoelectron spectra were also acquired. The total surface free energy (SFE), the polar, dispersion parts and fractional polarities, were estimated by the Owens-Wendt-Rabel-Kaeble method. The adhesive and proliferative potentials of bone marrow cells were evaluated for both Ta2O5 coatings and Ta2O5 coatings deposited by simultaneous bombardment by argon ions in in vitro tests.

  2. Environmental Defects And Economic Impact On Global Market Of Rare Earth Metals

    Science.gov (United States)

    Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A.

    2016-11-01

    Rare earth elements include the 14 lanthanides as well as lanthanium and often yttrium. Actually, most of them are not very rare and occur widely dispersed in a variety of rocks. Rare earth metals are vital to some of the world's faster growing industries: catalysts, Nd-magnets, ceramics, glass, metallurgy, battery alloys, electronics and phosphors. Worldwide, the main countries for distribution of rare earths deposits include China, USA, Russia, Brasil, India, Australia, Greenland and Malaysia. The mining and processing of rare earth metals usually result in significant environmental defects. Many deposits are associated with high concentrations of radioactive elements such as uranium and thorium, which requires separate treatment and disposal. The accumulation of rare earth elements in soils has occurred due to pollution caused by the exploitation of rare earth resources and the wide use of rare earths as fertilizers in agriculture. This accumulation has a toxic effect on the soil microfauna community. However, there are large differences in market prices due to the degree of purity determined by the specifications in the applications. The main focus of this article is to overview Rare Earth Metals’ overall impact on global economy and their environmental defects on soils during processing techniques and as they are used as fertilizers.

  3. Electrokinetic deposition of waterborne, particlate FeO(OH) and MnO2 on stainless steel surfaces

    International Nuclear Information System (INIS)

    Hermansson, H.-P.

    1977-01-01

    The study forms part of a programme of research into corrosion product behaviour in progress at Studsvik Energiteknik AB. Attention is in this instance focused on the incluence of electrokinetic factors upon the deposition of particulate corrosion products. The work has involved the development of experimental apparatus and techniques and investigation of the deposition characteristics of FeO(OH) and MnO 2 at temperatures below 100 deg C. The experimental results indicate that the deposition rate of the compounds under review depends mainly upon the zeta potential (zeta) of particles and of the test section wall. The deposition rate attains a maximum when the zeta potential is at a minimum or zero. Deposition occurs when |zeta|< approximately 40 m. Outside this interval deposition is not observed. Furthermore, the deposition rate maximum depends upon the rate of change of pH both as regards its magnitude and its position on the pH scale. This dependence can be accounted for in terms of a general drain of material from the loop as deposition proceeds and a difference in zeta potential between particles and the wall surface of the test section. (author)

  4. Basement to surface expressions and critical factors in the genesis of unconformity-related deposits

    International Nuclear Information System (INIS)

    Potter, Eric

    2014-01-01

    Two subprojects: 1) Basement to surface expressions of deep mineralization and refinement of critical factors leading to the genesis of unconformity-related uranium deposits; and 2) Recognition of uranium ore system alteration signatures in complex terranes: IOCG vs albite-hosted uranium vs volcanic-hosted uranium.

  5. Study of the oxides nature effect of rare and rare earth elements on the aluminium-chromium catalyst properties

    International Nuclear Information System (INIS)

    Dadashev, B.A.; Abbasov, S.G.; Sarydzhanov, A.A.; AN Azerbajdzhanskoj SSR, Baku. Inst. Neftekhimicheskikh Protsessov)

    1975-01-01

    Adsorption studies have shown that oxides of rare and rare earth elements REE appreciably influence the structure of aluminium-chrome catalyst. Alkaline promotors, unlike REE, contribute to the formation of developed contact surface. Electrophysical investigations show that oxides of rare elements introduced into the catalyst increase its conductivity and activation energy. As for REE oxides, they decrease the conductivity and increase the activation energy. Catalysts with developed surface and high conductivity are also more active in the reaction of isopentane dehydration

  6. VARIATION IN CROSION/DEPOSITION RATES OVER THE LAST FIFTTY YEARS ON ALLUVIAL FAN SURFACES OF L. PLEISTOCENE-MID HOLOCENE AGE, ESTIMATIONS USING 137CS SOIL PROFILE DATA, AMARGOSA VALLEY, NEVADA

    International Nuclear Information System (INIS)

    C. Harrington; R. Kelly; K.T. Ebert

    2005-01-01

    Variations in erosion and deposition for the last fifty years (based on estimates from 137Cs profiles) on surfaces (Late Pleistocene to Late Holocene in age) making up the Fortymile Wash alluvial fan south of Yucca Mountain, is a function of surface age and of desert pavement development or absence. For purposes of comparing erosion and deposition, the surfaces can be examined as three groups: (1) Late Pleistocene surfaces possess areas of desert pavement development with thin Av or sandy A horizons, formed by the trapping capabilities of the pavements. These zones of deposition are complemented by coppice dune formation on similar parts of the surface. Areas on the surface where no pavement development has occurred are erosional in nature with 0.0 +/- 0.0 cm to 1.5 +/- 0.5 cm of erosion occurring primarily by winds blowing across the surface. Overall these surfaces may show either a small net depositional gain or small erosional loss. (2) Early Holocene surfaces have no well-developed desert pavements, but may have residual gravel deposits in small areas on the surfaces. These surfaces show the most consistent erosional surface areas on which it ranges from 1.0 +/-.01 cm to 2.0+/- .01 cm. Fewer depositional forms are found on this age of surface so there is probably a net loss of 1.5 cm across these surfaces. (3) The Late Holocene surfaces show the greatest variability in erosion and deposition. Overbank deposition during floods cover many edges of these surfaces and coppice dune formation also creates depositional features. Erosion rates are highly variable and range from 0.0 +/- 0.0 to a maximum of 2.0+/-.01. Erosion occurs because of the lack of protection of the surface. However, the common areas of deposition probably result in the surface having a small net depositional gain across these surfaces. Thus, the interchannel surfaces of the Fortymile Wash fan show a variety of erosional styles as well as areas of deposition. The fan, therefore, is a dynamic

  7. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Paul C. McIntyre

    2012-07-01

    Full Text Available The literature on polar Gallium Nitride (GaN surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  8. Measurements of Deposition, Lung Surface Area and Lung Fluid for Simulation of Inhaled Compounds.

    Science.gov (United States)

    Fröhlich, Eleonore; Mercuri, Annalisa; Wu, Shengqian; Salar-Behzadi, Sharareh

    2016-01-01

    Modern strategies in drug development employ in silico techniques in the design of compounds as well as estimations of pharmacokinetics, pharmacodynamics and toxicity parameters. The quality of the results depends on software algorithm, data library and input data. Compared to simulations of absorption, distribution, metabolism, excretion, and toxicity of oral drug compounds, relatively few studies report predictions of pharmacokinetics and pharmacodynamics of inhaled substances. For calculation of the drug concentration at the absorption site, the pulmonary epithelium, physiological parameters such as lung surface and distribution volume (lung lining fluid) have to be known. These parameters can only be determined by invasive techniques and by postmortem studies. Very different values have been reported in the literature. This review addresses the state of software programs for simulation of orally inhaled substances and focuses on problems in the determination of particle deposition, lung surface and of lung lining fluid. The different surface areas for deposition and for drug absorption are difficult to include directly into the simulations. As drug levels are influenced by multiple parameters the role of single parameters in the simulations cannot be identified easily.

  9. Chemically and size-resolved particulate matter dry deposition on stone and surrogate surfaces inside and outside the low emission zone of Milan: application of a newly developed "Deposition Box".

    Science.gov (United States)

    Ferrero, Luca; Casati, Marco; Nobili, Lara; D'Angelo, Luca; Rovelli, Grazia; Sangiorgi, Giorgia; Rizzi, Cristiana; Perrone, Maria Grazia; Sansonetti, Antonio; Conti, Claudia; Bolzacchini, Ezio; Bernardi, Elena; Vassura, Ivano

    2018-04-01

    The collection of atmospheric particles on not-filtering substrates via dry deposition, and the subsequent study of the particle-induced material decay, is trivial due to the high number of variables simultaneously acting on the investigated surface. This work reports seasonally resolved data of chemical composition and size distribution of particulate matter deposed on stone and surrogate surfaces obtained using a new method, especially developed at this purpose. A "Deposition Box" was designed allowing the particulate matter dry deposition to occur selectively removing, at the same time, variables that can mask the effect of airborne particles on material decay. A pitched roof avoided rainfall and wind variability; a standardised gentle air exchange rate ensured a continuous "sampling" of ambient air leaving unchanged the sampled particle size distribution and, at the same time, leaving quite calm condition inside the box, allowing the deposition to occur. Thus, the "Deposition Box" represents an affordable tool that can be used complementary to traditional exposure systems. With this system, several exposure campaigns, involving investigated stone materials (ISMs) (Carrara Marble, Botticino limestone, Noto calcarenite and Granite) and surrogate (Quartz, PTFE, and Aluminium) substrates, have been performed in two different sites placed in Milan (Italy) inside and outside the low emission zone. Deposition rates (30-90 μg cm -2  month -1 ) showed significant differences between sites and seasons, becoming less evident considering long-period exposures due to a positive feedback on the deposition induced by the deposited particles. Similarly, different stone substrates influenced the deposition rates too. The collected deposits have been observed with optical and scanning electron microscopes and analysed by ion chromatography. Ion deposition rates were similar in the two sites during winter, whereas it was greater outside the low emission zone during summer and

  10. Rare Earths in fluorite deposits of Elika Formation (East of Mazandaran Province

    Directory of Open Access Journals (Sweden)

    Zahra Mehraban

    2016-07-01

    Full Text Available Introduction The Central Alborz in eastern Mazandaran province is host to the most important carbonate-hosted fluorite deposits in Iran, such as Pachi-Miana, Sheshroodbar, Era and Kamarposht. In these deposits, mineralization occurs in the upper parts of the middle Triassic Elika formation (Vahabzadeh et al., 2009 and references therein. These deposits have long been studied, and various models are presented for ore genesis. Nevertheless, ore genesis in these deposits is still unclear. The present study of the geochemistry of the REEs of these deposits is intended to improve genetic models. Materials and methods Three hundred samples were taken from above mentioned deposits. Samples were categorized into 5 groups: (1 fluorite ore types, (2 ore-stage calcite, (3 carbonate host rocks, (4 basaltic rock around the deposits, and (5 shale of the Shemshak formation. Fourteen pure fluorite samples, 4 samples of pure calcite, 4 samples of carbonate host rock, 1 sample of basalt and 1 sample of shale were analyzed for REEs by ICP-MS at West Lab in Australia. Results Analytical data on fluorite from the Elika deposits show very low REE concentrations (0.5-18ppm, in calcite(0.5-3ppm in carbonate host rocks – limestone (1.8-7ppm, and in dolomitic limestone 6.5ppm, compared with upper Triassic basalt (43ppm and shale (261ppm. REE in fluorite of these deposits are strongly enriched (10 3 to 10 6 times relative to normal sea water, ore stage calcite and carbonate host rocks, especially for mid-REEs (Eu, Gd and heavy REEs (Lu, Yb, La/Yb=~0.05. Also, LREEs depletion (La/Sm= 2-10 and HREEs (La/Yb=0.01-0.08 relatively enrichment of fluorites compared with limestone (La/Sm=2.5-4, La/Yb=0.1-1.5 and dolomitic limestone (La/Sm=4.28, La/Yb=0.07-0.4 host rocks as well as positive Eu anomaly are the most important REEs signatures in fluorites. Fluorite elsewhere in the world with low total REE conten thas been interpreted to have a sedimentary origin (Ronchi et al

  11. Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong Xiang, E-mail: Xiong228@sina.co [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Chen Zhaoke; Huang Baiyun; Li Guodong [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China); Zheng Feng [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Xiao Peng; Zhang Hongbo [State Key Lab for Powder Metallurgy, Central South University, Changsha 410083 (China)

    2009-04-02

    TaC film was deposited on (002) graphite sheet by isothermal chemical vapor deposition using TaCl{sub 5}-Ar-C{sub 3}H{sub 6} mixtures, with deposition temperature 1200 {sup o}C and pressure about 200 Pa. The influence of deposition position (or deposition rate) on preferential orientation and surface morphology of TaC crystals were investigated by X-ray diffraction and scanning electron microscopy methods. The deposits are TaC plus trace of C. The crystals are large individual columns with pyramidal-shape at deposition rate of 32.4-37.3 {mu}m/h, complex columnar at 37.3-45.6 {mu}m/h, lenticular-like at 45.6-54.6 {mu}m/h and cauliflower-like at 54.6-77.3 {mu}m/h, with <001>, near <001>, <110> and no clear preferential orientation, respectively. These results agree in part with the preditions of the Pangarov's model of the relationship between deposition rate and preferential growth orientation. The growth mechanism of TaC crystals in <001>, near <001>, <111> and no clear preferential orientation can be fairly explained by the growth parameter {alpha} with Van der Drift's model, deterioration model and Meakin model. Furthermore, a nucleation and coalescence model is also proposed to explain the formation mechanism of <110> lenticular-like crystals.

  12. Assessment of the contrast of rare metal ores

    International Nuclear Information System (INIS)

    Kuznetsova, O.V.

    1987-01-01

    The method of rapid assessment of useful component content on the basis of X-ray radiometric method of analysis of non-crushed ore lumps is presented. Using as an example rare metal deposits, linear dependence between logarithms of Nb 2 O 6 contents and the value of fragment separation index during radiometric separation is established. The use of the dependence ensures sufficient accuracy for the characteristic of rare metal ore content

  13. Impact of microcrystalline silicon carbide growth using hot-wire chemical vapor deposition on crystalline silicon surface passivation

    International Nuclear Information System (INIS)

    Pomaska, M.; Beyer, W.; Neumann, E.; Finger, F.; Ding, K.

    2015-01-01

    Highly crystalline microcrystalline silicon carbide (μc-SiC:H) with excellent optoelectronic material properties is a promising candidate as highly transparent doped layer in silicon heterojunction (SHJ) solar cells. These high quality materials are usually produced using hot wire chemical vapor deposition under aggressive growth conditions giving rise to the removal of the underlying passivation layer and thus the deterioration of the crystalline silicon (c-Si) surface passivation. In this work, we introduced the n-type μc-SiC:H/n-type μc-SiO x :H/intrinsic a-SiO x :H stack as a front layer configuration for p-type SHJ solar cells with the μc-SiO x :H layer acting as an etch-resistant layer against the reactive deposition conditions during the μc-SiC:H growth. We observed that the unfavorable expansion of micro-voids at the c-Si interface due to the in-diffusion of hydrogen atoms through the layer stack might be responsible for the deterioration of surface passivation. Excellent lifetime values were achieved under deposition conditions which are needed to grow high quality μc-SiC:H layers for SHJ solar cells. - Highlights: • High surface passivation quality was preserved after μc-SiC:H deposition. • μc-SiC:H/μc-SiO x :H/a-SiO x :H stack a promising front layer configuration • Void expansion at a-SiO x :H/c-Si interface for deteriorated surface passivation • μc-SiC:H provides a high transparency and electrical conductivity.

  14. Effects of rare earth oxide additive on surface and tribological properties of polyimide composites

    Science.gov (United States)

    Pan, Zihe; Wang, Tianchang; Chen, Li; Idziak, Stefan; Huang, Zhaohui; Zhao, Boxin

    2017-09-01

    Rare earth oxide La2O3 microparticles-reinforced polyimide (PI) composites (La-PI-Cs) were fabricated, aiming to improve the tribological property of PI. Surface roughness, surface composition, bulk structure, friction force (Ff) and coefficient of friction (COF) at macro/micro preload, and anti-wear performances of La-PI-Cs were studied and compared with neat PI. With La2O3 microparticles, La-PI-Cs showed larger surface roughness, lower surface energy, and higher hydrophobicity than neat PI, and displayed beneficial layered structure different from the compact structure of PI. Owing to these advantages, La-PI-Cs were found to show a 70% reduction in Ff and COF, and a 30% reduction in wear rate, indicating significantly lowered friction and enhanced anti-wear properties after adding La2O3 microparticles. Our research findings demonstrated an easy and low cost method to fabricate polymer composites with low friction and high wear resistance, and help meet the demanding of polymer composites with high tribological performances in broaden applications.

  15. Tailoring Si(100) substrate surfaces for GaP growth by Ga deposition: A low-energy electron microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Rienäcker, Michael; Borkenhagen, Benjamin, E-mail: b.borkenhagen@pe.tu-clausthal.de; Lilienkamp, Gerhard; Daum, Winfried [TU Clausthal, Institut für Energieforschung und Physikalische Technologien, Leibnizstraße 4, D-38678 Clausthal-Zellerfeld (Germany)

    2015-08-07

    For GaP-on-Si(100) heteroepitaxy, currently considered as a model system for monolithic integration of III–V semiconductors on Si(100), the surface steps of Si(100) have a major impact on the quality of the GaP film. Monoatomic steps cause antiphase domains in GaP with detrimental electronic properties. A viable route is to grow the III–V epilayer on single-domain Si(100) with biatomic steps, but preferably not at the expense of reduced terrace widths introduced by miscut substrates. We have performed in situ investigations of the influence of Ga deposition on the kinetics of surface steps and terraces of Si(100) at substrate temperatures above 600 °C by low-energy electron microscopy. Starting from nearly equally distributed T{sub A} and T{sub B} terraces of a two-domain Si(100) surface, submonolayer deposition of Ga results in a transformation into a surface dominated by T{sub A} terraces and biatomic D{sub A} steps. This transformation is reversible, and Si(100) with monoatomic steps is recovered upon termination of the Ga flux. Under conditions of higher coverages (but still below 0.25 monolayer), we observe restructuring into a surface with T{sub B} dominance, similar to the findings of Hara et al. [J. Appl. Phys. 98, 083515 (2005)]. The occurrence and mutual transformations of surface structures with different terrace and step structures in a narrow range of temperatures and Ga deposition rates is discussed.

  16. Covalent assembly of poly(ethyleneimine) via layer-by-layer deposition for enhancing surface density of protein and bacteria attachment

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Bing, E-mail: xiabing@njfu.edu.cn [Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037 (China); Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037 (China); Shi, Jisen; Dong, Chen; Zhang, Wenyi; Lu, Ye [Key Laboratory of Forest Genetics and Biotechnology (Ministry of Education of China), Nanjing Forestry University, Nanjing 210037 (China); Guo, Ping [Nanjing College of Information Technology, Nanjing 210023 (China)

    2014-02-15

    Covalently assembly of low molecular weight poly(ethyleneimine) was introduced to glass surfaces via glutaraldehyde crosslinking, with focus on its application on protein immobilization or bacteria attachment. Characterizations of Fourier transform infrared spectroscopy and ellipsometry measurement revealed a stepwise growth of poly(ethyleneimine) films by layer-by-layer deposition. After fluorescein isothiocyanate labelling, photoluminescence spectroscopy measurement indicated that the amount of surface accessible amine groups had been gradually enhanced with increasing poly(ethyleneimine) layers deposition. As compared with traditional aminosilanized surfaces, the surface density of amine groups was enhanced by ∼11 times after five layers grafting, which resulted in ∼9-time increasing of surface density of immobilized bovine serum albumin. Finally, these as-prepared PEI multi-films with excellent biocompatibility were adopted as culture substrates to improve Escherichia coli adherence, which showed that their surface density had been increased by ∼251 times.

  17. Developing alternative resources of rare earth elements in Europe - EURARE and the red mud challenge

    Science.gov (United States)

    Deady, Eimear; Mouchos, Evangelos; Goodenough, Kathryn; Wall, Frances; Williamson, Ben

    2015-04-01

    Rare earth elements (REE) are considered to be highly "critical" by the European Commission [1], owing to the concentration of global supply [2] and their use in a wide range of emerging technologies (e.g. smart phones, electric cars and wind turbines). The main source of REE is the mineral bastnäsite, which is primarily extracted from carbonatites. Alternative resources of REE have been identified in a variety of other environments such as alluvial placers, bauxites and ore tailings. The EURARE project (www.eurare.eu), funded by the European Commission, aims to improve understanding of potential REE resources in Europe with the overall objective of establishing the basis for a European REE industry. As a part of this project, alternative sources of rare earth elements in Europe are being considered. REE have been identified as being particularly enriched in karst-bauxites and hence in the red muds generated as a waste product from the processing of these bauxites to alumina through the Bayer process [3]. Karst-bauxites are widely distributed with deposits known across the Mediterranean and with intermittent exploitation occurring over many decades. REE become concentrated in the bauxite deposits by the bauxitisation process and are retained due to the geochemical barrier created by the limestone bedrock below. This can result in several processes, including the crystallisation of authigenic REE-bearing minerals, the accumulation of residual phases and the adsorption of ions onto clays and other mineral surfaces [4]. Red muds produced from alumina processing represent a potentially important concentration of REE as it has been demonstrated that the REE pass through the alumina extraction process into the waste, and the total REE concentrations are typically enriched by a factor of two compared with the original bauxite ore [5]. Bauxites and red muds from the Parnassus Ghiona region of Greece [6] and the Seydişehir-Akseki region of Turkey have been assessed as

  18. Hydroxyapatite growth induced by native extracellular matrix deposition on solid surfaces

    Directory of Open Access Journals (Sweden)

    Pramatarova L.

    2005-02-01

    Full Text Available Biological systems have a remarkable capability to produce perfect fine structures such as seashells, pearls, bones, teeth and corals. These structures are composites of interacting inorganic (calcium phosphate or carbonate minerals and organic counterparts. It is difficult to say with certainty which part has the primary role. For example, the growth of molluscan shell crystals is thought to be initiated from a solution by the extracellular organic matrix (ECM. According to this theory, the matrix induces nucleation of calcium containing crystals. Recently, an alternative theory has been put forward, stating that a class of granulocytic hemocytes would be directly involved in shell crystal production in oysters. In the work presented here the surface of AISI 316 stainless steel was modified by deposition of ECM proteins. The ability of the modified substrates to induce nucleation and growth of hydroxyapatite (HA from simulated body fluid (SBF was examined by a kinetic study using two methods: (1 a simple soaking process in SBF and (2 a laser-liquid-solid interaction (LLSI process which allows interaction between a scanning laser beam and a solid substrate immersed in SBF. The deposited HA layers were investigated by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was found that a coating of stainless steel surface with native ECM proteins induced nucleation and growth of HA and facilitated its crystallization. By the process of simple soaking of the samples, irrespective of their horizontal or vertical position in the solution, HA layers were grown due to the reactive ECM-coated stainless steel surface. It was shown that the process occurring in the first stages of the growth was not only a result of the force of gravity. The application of the LLSI process strongly influenced HA formation on the ECM-modified substrates by promoting and enhancing the HA nucleation and growth through a synergistic effect

  19. Surface structure of ultrathin metal films deposited on copper single crystals

    International Nuclear Information System (INIS)

    Butterfield, M.T.

    2000-04-01

    Ultrathin films of Cobalt, Iron and Manganese have been thermally evaporated onto an fcc Copper (111) single crystal substrate and investigated using a variety of surface structural techniques. The small lattice mismatch between these metals and the Cu (111) substrate make them an ideal candidate for the study of the phenomena of pseudomorphic film growth. This is important for the understanding of the close relationship between film structure and magnetic properties. Growing films with the structure of their substrate rather than their bulk phase may provide an opportunity to grow materials with novel physical and magnetic properties, and hence new technological applications. Both Cobalt and Iron have been found to initially maintain a registry with the fcc Cu (111) surface in a manner consistent with pseudomorphic growth. This growth is complicated by island rather than layer by layer growth in the initials stages of the film. In both cases a change in the structure of the film seems to occur at a point where the coalescence of islands in the film may be expected to occur. When the film does change structure they do not form a perfect overlayer with the structure of their bulk counterpart. The films do contain a number of features representative of the bulk phase but also contain considerable disorder and possibly remnants of fcc (111) structure. The order present in these films can be greatly improved by annealing. Manganese appears to grow with an fcc Mn (111) lattice spacing and there is no sign of a change in structure in films of up to 4.61 ML thick. The gradual deposition and annealing of a film to 300 deg. C, with a total deposition time the same as that for a 1 ML thick film, causes a surface reconstruction to occur that is apparent in a R30 deg. (√3 x √3) LEED pattern. This is attributed to the formation of a surface alloy, which is also supported by the local expansion of the Cu lattice in the (111) direction. (author)

  20. Evaluation of the salt deposition on the canister surface of concrete cask. Part 3. Long-term measurement of salt concentration in air and evaluation of the salt deposition

    International Nuclear Information System (INIS)

    Wataru, Masumi; Takeda, Hirofumi

    2015-01-01

    To realize the dry storage using concrete cask in Japan, it is important to develop the evaluation method of the SCC of the canister. One of the key issues is sea salt deposition on the canister surface during the storage period. If the amount of salt deposition exceeds the critical value, the SCC may occur. The amount of salt deposition depends on the ambient air condition. We developed the measurement device of salt in air to make clear the ambient condition. The device sucks the air including sea salt and the sea salt dissolves in water. We analyze the water including sea salt. This device works automatically for one or two months. In this study, the performance of this device was verified comparing the data obtained by the air sampler using filter pack. In Yokosuka area of CRIEPI, we measured the ambient air condition using this device for three years. Furthermore, we performed the salt deposition test using the small ducts in the same area. The ambient air including sea salt flows in the duct and the sea salt deposits on the test specimen put on the duct inner surface. We took out the specimen after certain time and measured the salt amount on the test specimen. Using these data, we obtained the relation between the salt deposition and the time on this ambient condition. The results of this study are useful to evaluate the SCC of the canister. (author)

  1. Environmental Characteristics of Carbonatite and Alkaline Intrusion-related Rare Earth Element (REE) Deposits

    Science.gov (United States)

    Seal, R. R., II; Piatak, N. M.

    2017-12-01

    Carbonatites and alkaline intrusions are important sources of REEs. Environmental risks related to these deposit types have been assessed through literature review and evaluation of the geochemical properties of representative samples of mill tailings and their leachates. The main ore mineral in carbonatite deposits is bastnasite [(Ce,La)(CO3)F], which is found with dolomite and calcite ( 65 %), barite (20 - 25 %), plus a number of minor accessory minerals including sulfides such as galena and pyrite. Generally, alkaline intrusion-related REE deposits either occur in layered complexes or with dikes and veins cutting alkaline intrusions. Such intrusions have a more diverse group of REE ore minerals that include fluorcarbonates, oxides, silicates, and phosphates. Ore also can include minor calcite and iron (Fe), lead (Pb), and zinc (Zn) sulfides. The acid-generating potential of both deposit types is low because of a predominance of carbonate minerals in the carbonatite deposits, the presence of feldspars and minor calcite in alkaline intrusion-related deposits, and to only minor to trace occurrence of potentially acid-generating sulfide minerals. Both deposit types, however, are produced by igneous and hydrothermal processes that enrich high-field strength, incompatible elements, which typically are excluded from common rock-forming minerals. Elements such as yttrium (Y), niobium Nb), zirconium (Zr), hafnium (Hf), tungsten (W), titanium (Ti), tantalum (Ta), scandium (Sc), thorium (Th), and uranium (U) can be characteristic of these deposits and may be of environmental concern. Most of these elements, including the REEs, but with the exception of U, have low solubilities in water at the near-neutral pH values expected around these deposits. Mill tailings from carbonatite deposits can exceed residential soil and sediment criteria for Pb, and leachates from mill tailings can exceed drinking water guidelines for Pb. The greatest environmental challenges, however, are

  2. Electrokinetic deposition of waterborne, particulate FeO(OH) and MnO2 on stainless steel surfaces

    International Nuclear Information System (INIS)

    Hermansson, H.-P.

    1977-02-01

    study forms part of a programme of research into corrosion product behaviour in progress at Aktiebolaget Atomenergi. Attention is in this instance focused on the influence of electrokinetic tic factors upon the deposition of particulate corrosion products. The work has involved the development of experimental apparatus and techniques and the investigation of the deposition characteristics of FeO(OH) and MnO 2 at temperatures below 100 degC. The experimental results indicate that the deposition rate of the compounds under review depends mainly upon the zeta potential (zeta) of the particle and of the test section wall. The deposition rate attains a maximum when the zeta potential is at a minimum or zero. Deposition occurs when zeta approx. < 40 mV. Outside this interval deposition is not observed. Furthermore, the deposition rate maximum depends upon the rate of change of pH both as regards its magnitude and its position on the pH scale. This dependence can be accounted for in terms of a general drain of material from the loop and a difference in zeta potential between particles and the wall surface of the test section. (author)

  3. Block Copolymer Patterns as Templates for the Electrocatalyzed Deposition of Nanostructures on Electrodes and for the Generation of Surfaces of Controlled Wettability.

    Science.gov (United States)

    Chandaluri, Chanchayya Gupta; Pelossof, Gilad; Tel-Vered, Ran; Shenhar, Roy; Willner, Itamar

    2016-01-20

    ITO electrodes modified with a nanopatterned film of polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, where the P2VP domains are quaternized with iodomethane, are used for selective deposition of redox-active materials. Electrochemical studies (cyclic voltammetry, Faradaic impedance measurements) indicate that the PS domains insulate the conductive surface toward redox labels in solution. In turn, the quaternized P2VP domains electrostatically attract negatively charged redox labels solubilized in the electrolyte solution, resulting in an effective electron transfer between the electrode and the redox label. This phenomenon is implemented for the selective deposition of the electroactive Prussian blue on the nanopatterned surface and for the electrochemical deposition of Au nanoparticles, modified with a monolayer of p-aminothiophenol/2-mercaptoethanesulfonic acid, on the quaternized P2VP domains. The patterned Prussian blue-modified surface enables controlling the wettability properties by the content of the electrochemically deposited Prussian blue. Controlled wettability is unattainable with the homopolymer-modified surface, attesting to the role of the nanopattern.

  4. Acidic deposition: State of science and technology. Report 14. Methods for projecting future changes in surface water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Thornton, K.W.; Marmorek, D.; Ryan, P.F.; Heltcher, K.; Robinson, D.

    1990-09-01

    The objectives of the report are to: critically evaluate methods for projecting future effects of acidic deposition on surface water acid-base chemistry; review and evaluate techniques and procedures for analyzing projection uncertainty; review procedures for estimating regional lake and stream population attributes; review the U.S. Environmental Protection Agency (EPA) Direct/Delayed Response Project (DDRP) methodology for projecting the effects of acidic deposition on future changes in surface water acid-base chemistry; and present the models, uncertainty estimators, population estimators, and proposed approach selected to project the effects of acidic deposition on future changes in surface water acid-base chemistry in the NAPAP 1990 Integrated Assessment and discuss the selection rationale

  5. A Visual Detection System for Determining Tritium Surface Deposition Employing Phosphor Coated Materials

    International Nuclear Information System (INIS)

    Gentile, C.A.; Skinner, C.H.; Young, K.M.; Zweben, S.J.

    1999-01-01

    A method for visually observing tritium deposition on the surface of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles is being investigated at the Princeton Plasma Physics Laboratory. A green phosphor (P31, zinc sulfide: copper) similar to that used in oscilloscope screens with a wavelength peak of 530 nm was positioned on the surface of a TFTR D-T tile. The approximately 600 gram tile, which contains approximately 1.5 Ci of tritium located on the top approximately 1-50 microns of the surface, was placed in a two liter lexan chamber at Standard Temperature and Pressure (STP). The phosphor plates and phosphor powder were placed on the surface of the tile which resulted in visible light being observed, the consequence of tritium betas interacting with the phosphor. This technique provides a method of visually observing varying concentrations of tritium on the surface of D-T carbon tiles, and may be employed (in a calibrated system) to obtain quantitative data

  6. Application of response surface methodology for optimization of parameters for microwave heating of rare earth carbonates

    Science.gov (United States)

    Yin, Shaohua; Lin, Guo; Li, Shiwei; Peng, Jinhui; Zhang, Libo

    2016-09-01

    Microwave heating has been applied in the field of drying rare earth carbonates to improve drying efficiency and reduce energy consumption. The effects of power density, material thickness and drying time on the weight reduction (WR) are studied using response surface methodology (RSM). The results show that RSM is feasible to describe the relationship between the independent variables and weight reduction. Based on the analysis of variance (ANOVA), the model is in accordance with the experimental data. The optimum experiment conditions are power density 6 w/g, material thickness 15 mm and drying time 15 min, resulting in an experimental weight reduction of 73%. Comparative experiments show that microwave drying has the advantages of rapid dehydration and energy conservation. Particle analysis shows that the size distribution of rare earth carbonates after microwave drying is more even than those in an oven. Based on these findings, microwave heating technology has an important meaning to energy-saving and improvement of production efficiency for rare earth smelting enterprises and is a green heating process.

  7. Investigation of the influence of liquid water films on O3 and PAN deposition on plant leaf surfaces treated with organic / inorganic compounds

    Science.gov (United States)

    Sun, Shang; Moravek, Alexander; von der Heyden, Lisa; Held, Andreas; Kesselmeier, Jürgen; Sörgel, Matthias

    2016-04-01

    Liquid water films on environmental surfaces play an important role in various fields of interest (Burkhardt and Eiden, 1994). For example, the deposition of water soluble trace gases could be increased by surface moisture. Chameides and Stelson (1992) found out that the dissolution of trace gases in airborne particulate matter increases with rising water/solid ratio of the particles. Further, Flechard et al. (1999) concluded that deliquescent salt particles represent a potential sink for trace gases, depending on their chemical property. The formation of surface water films and its influence on the gas deposition was proposed by many previous studies (Fuentes and Gillespie, 1992, Burkhardt and Eiden, 1994, van Hove et al., 1989, Burkhardt et al., 1999, Flechard et al., 1999). In this study we investigate the influence of leaf surface water films on the deposition of O3 and PAN under controlled laboratory conditions. A twin cuvette system described in Sun et al. (2015) was used to control the environmental parameters such as light, temperature, trace gas mixing ratio and humidity. Furthermore, the leaf surface was treated with various organic and inorganic solutions to investigate the influence of deposited compounds on the electrical surface conductance of the leaves and the surface deposition of O3 and PAN at various relative humidities. The result shows that RHcrit, where the electrical surface conductance (G) increases exponentially, was 40 % during the light period and 50 % during the dark period. Furthermore, we observed that the formation of the leaf surface liquid film was depended on the deposited compounds on the leaf cuticles. For the O3 deposition on plants (Quercus ilex) a clear enhancement at rising environmental air humidity under light and dark condition was found. The increase during light conditions can be related partly to increasing stomatal conductance with higher RH. From the non-stomatal deposition measured in dark experiments, we could

  8. Reactive physical vapor deposition of TixAlyN: Integrated plasma-surface modeling characterization

    International Nuclear Information System (INIS)

    Zhang Da; Schaeffer, J.K.

    2004-01-01

    Reactive physical vapor deposition (RPVD) has been widely applied in the microelectronic industry for producing thin films. Fundamental understanding of RPVD mechanisms is needed for successful process development due to the high sensitivity of film properties on process conditions. An integrated plasma equipment-target nitridation modeling infrastructure for RPVD has therefore been developed to provide mechanistic insights and assist optimal process design. The target nitridation model computes target nitride coverage based on self-consistently derived plasma characteristics from the plasma equipment model; target sputter yields needed in the plasma equipment model are also self-consistently derived taking into account the yield-suppressing effect from nitridation. The integrated modeling infrastructure has been applied to investigating RPVD processing with a Ti 0.8 Al 0.2 compound target and an Ar/N 2 gas supply. It has been found that the process produces athermal metal neutrals as the primary deposition precursor. The metal stoichiometry in the deposited film is close to the target composition due to the predominance of athermal species in the flux that reaches the substrate. Correlations between process parameters (N 2 flow, target power), plasma characteristics, surface conditions, and deposition kinetics have been studied with the model. The deposition process is characterized by two regimes when the N 2 flow rate is varied. When N 2 is dilute relative to argon, target nitride coverage increases rapidly with increasing N 2 flow. The sputter yield and deposition rate consequently decrease. For less dilute N 2 mixtures, the sputter yield and deposition rate are stable due to the saturation of target nitridation. With increasing target power, the electron density increases nearly linearly while the variation of N generation is much smaller. Target nitridation and its suppression of the sputter yield saturate at high N 2 flow rendering these parameters

  9. Surface roughening of undoped and in situ B-doped SiGe epitaxial layers deposited by using reduced pressure chemical vapor deposition

    Science.gov (United States)

    Kim, Youngmo; Park, Jiwoo; Sohn, Hyunchul

    2018-01-01

    Si1- x Ge x (:B) epitaxial layers were deposited by using reduced pressure chemical vapor deposition with SiH4, GeH4, and B2H6 source gases, and the dependences of the surface roughness of undoped Si1- x Ge x on the GeH4 flow rate and of Si1- x Ge x :B on the B2H6 flow rate were investigated. The root-mean-square (RMS) roughness value of the undoped Si1- x Ge x at constant thickness increased gradually with increasing Ge composition, resulting from an increase in the amplitude of the wavy surface before defect formation. At higher Ge compositions, the residual strain in Si1- x Ge x significantly decreased through the formation of defects along with an abrupt increase in the RMS roughness. The variation of the surface roughness of Si1- x Ge x :B depended on the boron (B) concentration. At low B concentrations, the RMS roughness of Si1- x Ge x remained constant regardless of Ge composition, which is similar to that of undoped Si1- x Ge x . However, at high B concentrations, the RMS roughness of Si1- x Ge x :B increased greatly due to B islanding. In addition, at very high B concentrations ( 9.9 at%), the RMS roughness of Si1- x Ge x :B decreased due to non-epitaxial growth.

  10. Polymer deposition morphology by electrospray deposition - Modifications through distance variation

    International Nuclear Information System (INIS)

    Altmann, K.; Schulze, R.-D.; Friedrich, J.

    2014-01-01

    Electrospray deposition (ESD) of highly diluted polymers was examined with regard to the deposited surface structure. Only the flight distance (flight time) onto the resulting deposited surface was varied from 20 to 200 mm. An apparatus without any additional heating or gas flows was used. Polyacrylic acid (PAA) and polyallylamine (PAAm) in methanol were deposited on Si wafers. The polymer layers were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, derivatization reactions and Fourier transform infrared spectroscopy using a grazing incidence unit. SEM images illustrated the changing structures of PAA and PAAm. For PAA the deposited structure changed from a smooth film (20 mm) to a film with individual droplets on the coated surface (100 mm and 200 mm), while for PAAm individual droplets can be seen at all distances. The ESD process with cascades of splitting droplets slows down for PAA after distances greater than 40 mm. In contrast, the ESD process for PAAm is nearly stopped within the first flight distance of 20 mm. Residual solvent analysis showed that most of the solvent evaporated within the first 20 mm capillary-sample distance. - Highlights: • We deposited polyacrylic acid and polyallylamine by electrospray ionization (ESI). • The morphology in dependence of flight distance (20 mm to 200 mm) was analyzed. • The amount of residual solvent after deposition was determined. • ESI-process slows down for polyacrylic acid after 40 mm flight distance. • ESI-Process is complete for polyallylamine within the first 20 mm

  11. Ta2O5/ Al2O3/ SiO2 - antireflective coating for non-planar optical surfaces by atomic layer deposition

    Science.gov (United States)

    Pfeiffer, K.; Schulz, U.; Tünnermann, A.; Szeghalmi, A.

    2017-02-01

    Antireflective coatings are essential to improve transmittance of optical elements. Most research and development of AR coatings has been reported on a wide variety of plane optical surfaces; however, antireflection is also necessary on nonplanar optical surfaces. Physical vapor deposition (PVD), a common method for optical coatings, often results in thickness gradients on strongly curved surfaces, leading to a failure of the desired optical function. In this work, optical thin films of tantalum pentoxide, aluminum oxide and silicon dioxide were prepared by atomic layer deposition (ALD), which is based on self-limiting surface reactions. The results demonstrate that ALD optical layers can be deposited on both vertical and horizontal substrate surfaces with uniform thicknesses and the same optical properties. A Ta2O5/Al2O3/ SiO2 multilayer AR coating (400-700 nm) was successfully applied to a curved aspheric glass lens with a diameter of 50 mm and a center thickness of 25 mm.

  12. Laser surface melting of 10 wt% Mo alloyed hardfacing Stellite 12 plasma transferred arc deposits: Structural evolution and high temperature wear performance

    Science.gov (United States)

    Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin

    2018-05-01

    Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.

  13. Structural modification of titanium surface by octacalcium phosphate via Pulsed Laser Deposition and chemical treatment

    Directory of Open Access Journals (Sweden)

    I.V. Smirnov

    2017-06-01

    Full Text Available In the present study, the Pulsed Laser Deposition (PLD technique was applied to coat titanium for orthopaedic and dental implant applications. Calcium carbonate (CC was used as starting coating material. The deposited CC films were transformed into octacalcium phosphate (OCP by chemical treatments. The results of X-ray diffraction (XRD, Raman, Fourier Transform Infrared Spectroscopy (FTIR and scanning electron microscopy (SEM studies revealed that the final OCP thin films are formed on the titanium surface. Human myofibroblasts from peripheral vessels and the primary bone marrow mesenchymal stromal cells (BMMSs were cultured on the investigated materials. It was shown that all the investigated samples had no short-term toxic effects on cells. The rate of division of myofibroblast cells growing on the surface and saturated BMMSs concentration for the OCP coating were about two times faster than of cells growing on the CC films.

  14. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, F., E-mail: francesco.ruffino@ct.infn.it; Grimaldi, M.G.

    2013-06-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced.

  15. Formation of patterned arrays of Au nanoparticles on SiC surface by template confined dewetting of normal and oblique deposited nanoscale films

    International Nuclear Information System (INIS)

    Ruffino, F.; Grimaldi, M.G.

    2013-01-01

    We report on the formation of patterned arrays of Au nanoparticles (NPs) on 6H SiC surface. To this end, we exploit the thermal-induced dewetting properties of a template confined deposited nanoscale Au film. In this approach, the Au surface pattern order, on the SiC substrate, is established by a template confined deposition using a micrometric template. Then, a dewetting process of the patterned Au film is induced by thermal processes. We compare the results, about the patterns formation, obtained for normal and oblique deposited Au films. We show that the normal and oblique depositions, through the same template, originate different patterns of the Au film. As a consequence of these different starting patterns, after the thermal processes, different patterns for the arrays of NPs originating from the dewetting mechanisms are obtained. For each fixed deposition angle α, the pattern evolution is analyzed, by scanning electron microscopy, as a function of the annealing time at 1173 K (900 °C). From these analyses, quantitative evaluations on the NPs size evolution are drawn. - Highlights: • Micrometric template-confined nanoscale gold films are deposited on silicon carbide. • The dewetting process of template-confined gold films on silicon carbide is studied. • Comparison of dewetting process of normal and oblique deposited gold films is drawn. • Patterned arrays of gold nanoparticles on silicon carbide surface are produced

  16. Atomic Layer Deposition on Porous Materials: Problems with Conventional Approaches to Catalyst and Fuel Cell Electrode Preparation

    Directory of Open Access Journals (Sweden)

    Tzia Ming Onn

    2018-03-01

    Full Text Available Atomic layer deposition (ALD offers exciting possibilities for controlling the structure and composition of surfaces on the atomic scale in heterogeneous catalysts and solid oxide fuel cell (SOFC electrodes. However, while ALD procedures and equipment are well developed for applications involving flat surfaces, the conditions required for ALD in porous materials with a large surface area need to be very different. The materials (e.g., rare earths and other functional oxides that are of interest for catalytic applications will also be different. For flat surfaces, rapid cycling, enabled by high carrier-gas flow rates, is necessary in order to rapidly grow thicker films. By contrast, ALD films in porous materials rarely need to be more than 1 nm thick. The elimination of diffusion gradients, efficient use of precursors, and ligand removal with less reactive precursors are the major factors that need to be controlled. In this review, criteria will be outlined for the successful use of ALD in porous materials. Examples of opportunities for using ALD to modify heterogeneous catalysts and SOFC electrodes will be given.

  17. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.M. [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of); Lee, J.I. [Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Lim, Y.J., E-mail: limdds@snu.ac.kr [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of)

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  18. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    International Nuclear Information System (INIS)

    Lee, J.M.; Lee, J.I.; Lim, Y.J.

    2010-01-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  19. Trace elements in the sea surface microlayer: rapid responses to changes in aerosol deposition

    Directory of Open Access Journals (Sweden)

    Alina M. Ebling

    2017-08-01

    Full Text Available Natural and anthropogenic aerosols are a significant source of trace elements to oligotrophic ocean surface waters, where they provide episodic pulses of limiting micronutrients for the microbial community. However, little is known about the fate of trace elements at the air-sea interface, i.e. the sea surface microlayer. In this study, samples of aerosols, sea surface microlayer, and underlying water column were collected in the Florida Keys during a dusty season (July 2014 and non-dusty season (May 2015 and analyzed for the dissolved and particulate elements Al, Fe, Ni, Cu, Zn, and Pb. Microlayer samples were collected using a cylinder of ultra-pure SiO2 (quartz glass, a novel adaptation of the glass plate technique. A significant dust deposition event occurred during the 2014 sampling period which resulted in elevated concentrations of trace elements in the microlayer. Residence times in the microlayer from this event ranged from 12 to 94 minutes for dissolved trace elements and from 1.3 to 3.4 minutes for particulate trace elements. These residence times are potentially long enough for the atmospherically derived trace elements to undergo chemical and biological alterations within the microlayer. Characterizing the trace element distributions within the three regimes is an important step towards our overall goals of understanding the rates and mechanisms of the solubilization of trace elements following aeolian dust deposition and how this might affect microorganisms in surface waters.

  20. Electroless atomic layer deposition

    Science.gov (United States)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  1. The study of major, trace and rare earth elements geochemistry in Shahrestanak Mn deposit, south of Qom: Implications for genesis

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2015-04-01

    Full Text Available Introduction The Shahrestanak Mn deposit is located in southern Qom province, 12 km southwest of the city of Kahak. Based on geological-structural divisions of Iran, the deposit belongs to central volcanic belt or Urumieh-Dokhtar zone. The Venarch deposit is one the most important known manganese deposits in Iran. The Sharestanak and Venarch deposits are spatially and temporally related to each other, and have similar geology, mineral texture and structure, host rocks, relationships with faults, and depositional environment. So, their magmatism and deposition conditions can be related to each other. Since no systematic study on the Shahrestanak deposit had been performed before discussing its geological and geochemical characteristics, here it is being attempted to study the geology, petrography, geochemistry of major, minor and trace elements, and Rare Earth Elements (REE of ore, to distinguish the depositional environments and genesis of this deposit and to compare REE of ore in this deposit with other deposits. Sampling and method of study Fourteen samples of manganese ore were selected for geochemical study and analyzing of major, minor, trace elements and REE by ICP-AES and ICP-MS and were sent to SGS Co., Toronto. Detection limits for major elements and trace elements are 0.01% and 0.05ppm, respectively. Result and discussion The deposit is characterized by various lithology and stratigraphy units, consist of: 1 Middle to -Upper Eocene volcano-sedimentary rocks, 2 Oligocene lower red conglomerate and sandstone, 3 Oligo-Miocene limestone and marl (Qom Formation, and 4 Eocene and Lower Miocene basic to intermediate dykes. The most abundant minerals of the deposit are braunite, hausmannite, pyrolusite, and manganite. Evidences such as high Mn/Fe (11.33 and Si/Al (4.86 ratios, low contents of trace elements specially Co (11.40 ppm, Ni (24 ppm, Cu (81.85 ppm, and Ce, with high amounts of SiO2, Mn, Fe, Ba, Zn, As and Sr, all represent

  2. A radon progeny deposition model

    International Nuclear Information System (INIS)

    Rielage, Keith; Elliott, Steven R.; Hime, Andrew; Guiseppe, Vincent E.; Westerdale, S.

    2010-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  3. A Radon Progeny Deposition Model

    International Nuclear Information System (INIS)

    Guiseppe, V. E.; Elliott, S. R.; Hime, A.; Rielage, K.; Westerdale, S.

    2011-01-01

    The next generation low-background detectors operating underground aim for unprecedented low levels of radioactive backgrounds. Although the radioactive decays of airborne radon (particularly 222 Rn) and its subsequent progeny present in an experiment are potential backgrounds, also problematic is the deposition of radon progeny on detector materials. Exposure to radon at any stage of assembly of an experiment can result in surface contamination by progeny supported by the long half life (22 y) of 210 Pb on sensitive locations of a detector. An understanding of the potential surface contamination from deposition will enable requirements of radon-reduced air and clean room environments for the assembly of low background experiments. It is known that there are a number of environmental factors that govern the deposition of progeny onto surfaces. However, existing models have not explored the impact of some environmental factors important for low background experiments. A test stand has been constructed to deposit radon progeny on various surfaces under a controlled environment in order to develop a deposition model. Results from this test stand and the resulting deposition model are presented.

  4. Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C.

    Directory of Open Access Journals (Sweden)

    Liam Payne

    Full Text Available Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study, a slowly releasable fraction (removed early at 600°C in this study, and an unreleasable fraction (removed later at 600°C in this study.

  5. Rare earth minerals and resources in the world

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Yasuo [Human Resource Department, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)]. E-mail: y.kanazawa@aist.go.jp; Kamitani, Masaharu [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567 (Japan)

    2006-02-09

    About 200 rare earth (RE) minerals are distributed in a wide variety of mineral classes, such as halides, carbonates, oxides, phosphates, silicates, etc. Due to the large ionic radii and trivalent oxidation state, RE ions in the minerals have large coordination numbers (c.n.) 6-10 by anions (O, F, OH). Light rare earth elements (LREEs) tend to occupy the larger sites of 8-10 c.n. and concentrate in carbonates and phosphates. On the other hand, heavy rare earth elements (HREEs) and Y occupy 6-8 c.n. sites and are abundant in oxides and a part of phosphates. Only a few mineral species, such as bastnaesite (Ce,La)(CO{sub 3})F, monazite (Ce,La)PO{sub 4}, xenotime YPO{sub 4}, and RE-bearing clay have been recovered for commercial production. Bayan Obo, China is the biggest RE deposit in the world. One of probable hypotheses for ore geneses is that the deposit might be formed by hydrothermal replacement of carbonate rocks of sedimentary origin. The hydrothermal fluid may be derived from an alkaline-carbonatite intrusive series. Following Bayan Obo, more than 550 carbonatite/alkaline complex rocks constitute the majority of the world RE resources. The distribution is restricted to interior and marginal regions of continents, especially Precambrian cratons and shields, or related to large-scale rift structures. Main concentrated areas of the complexes are East African rift zones, northern Scandinavia-Kola peninsula, eastern Canada and southern Brazil. Representative sedimentary deposits of REE are placer- and conglomerate-types. The major potential countries are Australia, India, Brazil, and Malaysia. Weathered residual deposits have been formed under tropical and sub-tropical climates. Bauxite and laterite nickel deposit are the representative. Ion adsorption clay without radioactive elements is known in southern China. Weathering processes concentrate REE in a particular clay mineral-layer in the weathered crusts whose source were originally REE-rich rocks like granite

  6. Rare earth minerals and resources in the world

    International Nuclear Information System (INIS)

    Kanazawa, Yasuo; Kamitani, Masaharu

    2006-01-01

    About 200 rare earth (RE) minerals are distributed in a wide variety of mineral classes, such as halides, carbonates, oxides, phosphates, silicates, etc. Due to the large ionic radii and trivalent oxidation state, RE ions in the minerals have large coordination numbers (c.n.) 6-10 by anions (O, F, OH). Light rare earth elements (LREEs) tend to occupy the larger sites of 8-10 c.n. and concentrate in carbonates and phosphates. On the other hand, heavy rare earth elements (HREEs) and Y occupy 6-8 c.n. sites and are abundant in oxides and a part of phosphates. Only a few mineral species, such as bastnaesite (Ce,La)(CO 3 )F, monazite (Ce,La)PO 4 , xenotime YPO 4 , and RE-bearing clay have been recovered for commercial production. Bayan Obo, China is the biggest RE deposit in the world. One of probable hypotheses for ore geneses is that the deposit might be formed by hydrothermal replacement of carbonate rocks of sedimentary origin. The hydrothermal fluid may be derived from an alkaline-carbonatite intrusive series. Following Bayan Obo, more than 550 carbonatite/alkaline complex rocks constitute the majority of the world RE resources. The distribution is restricted to interior and marginal regions of continents, especially Precambrian cratons and shields, or related to large-scale rift structures. Main concentrated areas of the complexes are East African rift zones, northern Scandinavia-Kola peninsula, eastern Canada and southern Brazil. Representative sedimentary deposits of REE are placer- and conglomerate-types. The major potential countries are Australia, India, Brazil, and Malaysia. Weathered residual deposits have been formed under tropical and sub-tropical climates. Bauxite and laterite nickel deposit are the representative. Ion adsorption clay without radioactive elements is known in southern China. Weathering processes concentrate REE in a particular clay mineral-layer in the weathered crusts whose source were originally REE-rich rocks like granite and

  7. Effect of chemical treatment on surface characteristics of sputter deposited Ti-rich NiTi shape memory alloy thin-films

    International Nuclear Information System (INIS)

    Sharma, S.K.; Mohan, S.

    2014-01-01

    Graphical abstract: FTIR spectra recorded for sputter deposited (a) untreated and (b) chemically treated NiTi SMA thin-films. - Highlights: • The effect of chemical treatment on surface properties of NiTi films demonstrated. • Chemically treated films offer strong ability to form protective TiO 2 layer. • TiO 2 layer formation offer great application prospects in biomedical fields. - Abstract: NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti:45/55 at.%). The rate of deposition and thickness of sputter deposited films were maintained to ∼35 nm min −1 and 4 μm respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO 3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (1 1 0) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (1 0 0), (1 0 1), and (2 0 0) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO 2 ) along with parent Austenite (1 1 0) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO 2 ) layer on the surface of

  8. Coated air-stable cobalt--rare earth alloy particles and method

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloys. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating on the particles. (U.S.)

  9. Surface chemistry of plasma-assisted atomic layer deposition of Al2O3 studied by infrared spectroscopy

    NARCIS (Netherlands)

    Langereis, E.; Keijmel, J.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2008-01-01

    The surface groups created during plasma-assisted atomic layer deposition (ALD) of Al2O3 were studied by infrared spectroscopy. For temperatures in the range of 25–150 °C, –CH3 and –OH were unveiled as dominant surface groups after the Al(CH3)3precursor and O2 plasma half-cycles, respectively. At

  10. Role of urban surface roughness in road-deposited sediment build-up and wash-off

    Science.gov (United States)

    Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing

    2018-05-01

    Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.

  11. Acidic deposition: State of science and technology. Report 9. Current status of surface-water acid-base chemistry. Final report

    International Nuclear Information System (INIS)

    Baker, L.A.; Kaufmann, P.R.; Brakke, D.F.; Herlihy, A.T.; Eilers, J.M.

    1990-09-01

    The report is based largely upon the National Surface Water Survey (NSWS), augmented by numerous smaller state and university surveys and many detailed watershed studies. In describing the current status of surface waters, the authors go far beyond the description of population statistics, although some of this is necessary, and direct their attention to the interpretation of these data. They address the question of the sources of acidity to surface waters in order to determine the relative importance of acidic deposition compared with other sources, such as naturally produced organic acids and acid mine drainage. They also examine in some detail what they call 'high interest' populations-the specific groups of lakes and streams most likely to be impacted by acidic deposition. The authors then turn to the general question of uncertainty, and finally examine low alkalinity surface waters in several other parts of the world to develop further inferences about the acid-base status of surface waters in the United States

  12. Origin of convex tetrads in rare earth element patterns of hydrothermally altered siliceous igneous rocks from the Zinnwald Sn W deposit, Germany

    Science.gov (United States)

    Monecke, T.; Dulski, P.; Kempe, U.

    2007-01-01

    The chondrite-normalized rare earth element (REE) patterns of whole rock samples from evolved granitic systems hosting rare metal deposits sometimes show a split into four consecutive curved segments, referred to as tetrads. In the present contribution, a rigorous statistical method is proposed that can be used to test whether geological significance should be attributed to tetrads that are only of limited size. The method involves a detailed evaluation of element and sample specific random and systematic errors that are constrained on the basis of independent repeated preparations and analyses of sample and reference materials. Application of the proposed method to samples from the granite-hosted Zinnwald Sn-W deposit, Germany, revealed that at least two tetrads in normalized whole rock REE patterns have to be analytically significant to rule out that fractional crystallization led to the unusual behavior of the REEs. Based on the analysis of altered albite granite and greisen samples from the endocontact of the Zinnwald granite massif, it is demonstrated that the lanthanide tetrad effect is responsible for the formation of the convex tetrads. Geological and petrological evidence suggests that the tetrads in the samples developed prior to greisenization and related cassiterite precipitation. In contrast to the endocontact samples, the rhyolitic wall rocks are typified by normalized REE patterns having tetrads that are variable in size and frequently close to the limit of analytical significance. The sizes of the tetrads apparently correlate with the intensity of albitization, but show no relation to subsequent alteration processes including greisenization and low-temperature argillization. This observation proves that curved segments in normalized whole rock REE patterns can be introduced during hydrothermal fluid-rock interaction.

  13. Surface and interfacial reaction study of half cycle atomic layer deposited HfO{sub 2} on chemically treated GaSb surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhernokletov, D. M. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Dong, H.; Brennan, B.; Kim, J. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Yakimov, M.; Tokranov, V.; Oktyabrsky, S. [College of Nanoscale Science and Engineering, University at Albany - SUNY, Albany, New York 12203 (United States); Wallace, R. M. [Department of Physics, University of Texas at Dallas, Richardson, Texas 75080 (United States); Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States)

    2013-04-01

    An in situ half-cycle atomic layer deposition/X-ray photoelectron spectroscopy (XPS) study was conducted in order to investigate the evolution of the HfO{sub 2} dielectric interface with GaSb(100) surfaces after sulfur passivation and HCl etching, designed to remove the native oxides. With the first pulses of tetrakis(dimethylamido)hafnium(IV) and water, a decrease in the concentration of antimony oxide states present on the HCl-etched surface is observed, while antimony sulfur states diminished below the XPS detection limit on sulfur passivated surface. An increase in the amount of gallium oxide/sulfide is seen, suggesting oxygen or sulfur transfers from antimony to gallium during antimony oxides/sulfides decomposition.

  14. Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate

    Energy Technology Data Exchange (ETDEWEB)

    Wong-ek, Krongkamol [Nanoscience and Technology Program, Chulalongkorn University, Bangkok 10330 (Thailand); Eiamchai, Pitak; Horprathum, Mati; Patthanasettakul, Viyapol [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Limnonthakul, Puenisara [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Chindaudom, Pongpan [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand); Nuntawong, Noppadon, E-mail: noppadon.nuntawong@nectec.or.t [National Electronics and Computer Technology Center, 112 Thailand Science Park, Phahonyothin Rd., Klong Luang, Pathumthani 12120 (Thailand)

    2010-09-30

    Low-cost and highly sensitive surface-enhanced Raman scattering (SERS) substrates have been fabricated by a simple anodizing process and a magnetron sputtering deposition. The substrates, which consist of silver nanoparticles embedded on anodic aluminum oxide (AAO) templates, are investigated by a scanning electron microscope and a confocal Raman spectroscopy. The SERS activities are demonstrated by Raman scattering from adsorbed solutions of methylene blue and pyridine on the SERS substrate surface. The most optimized SERS substrate contains the silver nanoparticles, with a size distribution of 10-30 nm, deposited on the AAO template. From a calculation, the SERS enhancement factor is as high as 8.5 x 10{sup 7}, which suggests strong potentials for direct applications in the chemical detection and analyses.

  15. Importance of root HTO uptake in controlling land-surface tritium dynamics after an-acute HT deposition: a numerical experiment

    International Nuclear Information System (INIS)

    Ota, Masakazu; Nagai, Haruyasu; Koarashi, Jun

    2012-01-01

    To investigate the role of belowground root uptake of tritiated water (HTO) in controlling land-surface tritium (T) dynamics, a sophisticated numerical model predicting tritium behavior in an atmosphere-vegetation-soil system was developed, and numerical experiments were conducted using the model. The developed model covered physical tritiated hydrogen (HT) transport in a multilayered atmosphere and soil, as well as microbial oxidation of HT to HTO in the soil, and it was incorporated into a well-established HTO-transfer organically bound tritium (OBT)-formation model. The model performance was tested through the simulation of an existing HT-release experiment. Numerical experiments involving a hypothetical acute HT exposure to a grassland field with a range of rooting depths showed that the HTO release from the leaves to the atmosphere, driven by the root uptake of the deposited HTO, can exceed the HTO evaporation from the ground surface to the atmosphere when root water absorption preferentially occurs beneath the ground surface. Such enhanced soil-leaf-atmosphere HTO transport, caused by the enhanced root HTO uptake, increased HTO concentrations in both the surface atmosphere and in the cellular water of the leaf. Consequently, leaf OBT assimilation calculated for shallow rooting depths increased by nearly an order of magnitude compared to that for large rooting depths. - Highlights: ► A model that calculates HT deposition from atmosphere to soil was developed. ► Tritium dynamics after an-acute HT deposition was studied by numerical experiments. ► OBT formation highly depends on magnitude of uptake of the deposited HTO by roots.

  16. Photo-Induced conductivity of heterojunction GaAs/Rare-Earth doped SnO2

    Directory of Open Access Journals (Sweden)

    Cristina de Freitas Bueno

    2013-01-01

    Full Text Available Rare-earth doped (Eu3+ or Ce3+ thin layers of tin dioxide (SnO2 are deposited by the sol-gel-dip-coating technique, along with gallium arsenide (GaAs films, deposited by the resistive evaporation technique. The as-built heterojunction has potential application in optoelectronic devices, because it may combine the emission from the rare-earth-doped transparent oxide, with a high mobility semiconductor. Trivalent rare-earth-doped SnO2 presents very efficient emission in a wide wavelength range, including red (in the case of Eu3+ or blue (Ce3+. The advantage of this structure is the possibility of separation of the rare-earth emission centers, from the electron scattering, leading to an indicated combination for electroluminescence. Electrical characterization of the heterojunction SnO2:Eu/GaAs shows a significant conductivity increase when compared to the conductivity of the individual films. Monochromatic light excitation shows up the role of the most external layer, which may act as a shield (top GaAs, or an ultraviolet light absorber sink (top RE-doped SnO2. The observed improvement on the electrical transport properties is probably related to the formation of short conduction channels in the semiconductors junction with two-dimensional electron gas (2DEG behavior, which are evaluated by excitation with distinct monochromatic light sources, where the samples are deposited by varying the order of layer deposition.

  17. Deposition of SiC x H y O z thin film on epoxy resin by nanosecond pulsed APPJ for improving the surface insulating performance

    Science.gov (United States)

    Qing, XIE; Haofan, LIN; Shuai, ZHANG; Ruixue, WANG; Fei, KONG; Tao, SHAO

    2018-02-01

    Non-thermal plasma surface modification for epoxy resin (EP) to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulated transmission line. In this paper, a pulsed Ar dual dielectrics atmospheric-pressure plasma jet (APPJ) was used for SiC x H y O z thin film deposition on EP samples. The film deposition was optimized by varying the treatment time while other parameters were kept at constants (treatment distance: 10 mm, precursor flow rate: 0.6 l min-1, maximum instantaneous power: 3.08 kW and single pulse energy: 0.18 mJ). It was found that the maximum value of flashover voltages for negative and positive voltage were improved by 18% and 13% when the deposition time was 3 min, respectively. The flashover voltage reduced as treatment time increased. Moreover, all the surface conductivity, surface charge dissipation rate and surface trap level distribution reached an optimal value when thin film deposition time was 3 min. Other measurements, such as atomic force microscopy and scanning electron microscope for EP surface morphology, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy for EP surface compositions, optical emission spectra for APPJ deposition process were carried out to better understand the deposition processes and mechanisms. The results indicated that the original organic groups (C-H, C-C, C=O, C=C) were gradually replaced by the Si containing inorganic groups (Si-O-Si and Si-OH). The reduction of C=O in ester group and C=C in p-substituted benzene of the EP samples might be responsible for shallowing the trap level and then enhancing the flashover voltage. However, when the plasma treatment time was longer than 3 min, the significant increase of the surface roughness might increase the trap level depth and then deteriorate the flashover performance.

  18. Hard Surface Layers by Pack Boriding and Gaseous Thermo-Reactive Deposition and Diffusion Treatments

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Bottoli, Federico; Dahl, Kristian Vinter

    2017-01-01

    ) layers with hardnesses up to 1800 HV. Titanizing of ARNE tool steel results in a surface layer consisting of TiC with a hardness of approximately 4000 HV. Duplex treatments, where boriding is combined with subsequent (TRD) titanizing, result in formation of hard TiB2 on top of a thick layer of Fe......Thermo-reactive deposition and diffusion (TRD) and boriding are thermochemical processes that result in very high surface hardness by conversion of the surface into carbides/nitrides and borides, respectively. These treatments offer significant advantages in terms of hardness, adhesion, tribo...... subjected to TRD (chromizing and titanizing) and boriding treatments. For the steels with low carbon content, chromizing results in surface alloying with chromium, i.e., formation of a (soft) “stainless” surface zone. Steels containing higher levels of carbon form chromium carbide (viz. Cr23C6, Cr7C3...

  19. Relation of lifetime to surface passivation for atomic-layer-deposited Al2O3 on crystalline silicon solar cell

    International Nuclear Information System (INIS)

    Cho, Young Joon; Song, Hee Eun; Chang, Hyo Sik

    2015-01-01

    Highlights: • We investigated the relation of potassium contamination on Si solar wafer to lifetime. • We deposited Al 2 O 3 layer by atomic layer deposition (ALD) on Si solar wafer after several cleaning process. • Potassium can be left on Si surface by incomplete cleaning process and degrade the Al 2 O 3 passivation quality. - Abstract: We investigated the relation of potassium contamination on a crystalline silicon (c-Si) surface after potassium hydroxide (KOH) etching to the lifetime of the c-Si solar cell. Alkaline solution was employed for saw damage removal (SDR), texturing, and planarization of a textured c-Si solar wafer prior to atomic layer deposition (ALD) Al 2 O 3 growth. In the solar-cell manufacturing process, ALD Al 2 O 3 passivation is utilized to obtain higher conversion efficiency. ALD Al 2 O 3 shows excellent surface passivation, though minority carrier lifetime varies with cleaning conditions. In the present study, we investigated the relation of potassium contamination to lifetime in solar-cell processing. The results showed that the potassium-contaminated samples, due to incomplete cleaning of KOH, had a short lifetime, thus establishing that residual potassium can degrade Al 2 O 3 surface passivation

  20. The Influence of Selected Fingerprint Enhancement Techniques on Forensic DNA Typing of Epithelial Cells Deposited on Porous Surfaces.

    Science.gov (United States)

    Tsai, Li-Chin; Lee, Cheng-Chang; Chen, Chun-Chieh; Lee, James Chun-I; Wang, Sheng-Meng; Huang, Nu-En; Linacre, Adrian; Hsieh, Hsing-Mei

    2016-01-01

    Fingerprints deposited at crime scene can be a source of DNA. Previous reports on the effects of fingerprint enhancement methods have focused mainly on fingermarks deposited in blood or saliva. Here, we evaluate the effects of fingerprint enhancement methods on fingerprints deposited on porous surfaces. We performed real-time quantification and STR typing, the results of which indicated that two methods (iodine fuming and 1,2-indanedione in ethyl acetate enhancement) had no effect on the quantity of DNA isolated and resultant STR alleles when compared to control samples. DNA quantities and allele numbers were lower for samples enhanced with silver nitrate and 1,2-indanedione in acetic acid when compared to control samples. Based on DNA quantity, quality, and observable stochastic effects, our data indicated that iodine fuming and 1,2-indanedione in ethyl acetate were the preferred options for the enhancement of fingerprints on porous surfaces. © 2015 American Academy of Forensic Sciences.

  1. Uniform-sized silicone oil microemulsions: preparation, investigation of stability and deposition on hair surface.

    Science.gov (United States)

    Nazir, Habiba; Lv, Piping; Wang, Lianyan; Lian, Guoping; Zhu, Shiping; Ma, Guanghui

    2011-12-01

    Emulsions are commonly used in foods, pharmaceuticals and home-personal-care products. For emulsion based products, it is highly desirable to control the droplet size distribution to improve storage stability, appearance and in-use property. We report preparation of uniform-sized silicone oil microemulsions with different droplets diameters (1.4-40.0 μm) using SPG membrane emulsification technique. These microemulsions were then added into model shampoos and conditioners to investigate the effects of size, uniformity, and storage stability on silicone oil deposition on hair surface. We observed much improved storage stability of uniform-sized microemulsions when the droplets diameter was ≤22.7 μm. The uniform-sized microemulsion of 40.0 μm was less stable but still more stable than non-uniform sized microemulsions prepared by conventional homogenizer. The results clearly indicated that uniform-sized droplets enhanced the deposition of silicone oil on hair and deposition increased with decreasing droplet size. Hair switches washed with small uniform-sized droplets had lower values of coefficient of friction compared with those washed with larger uniform and non-uniform droplets. Moreover the addition of alginate thickener in the shampoos and conditioners further enhanced the deposition of silicone oil on hair. The good correlation between silicone oil droplets stability, deposition on hair and resultant friction of hair support that droplet size and uniformity are important factors for controlling the stability and deposition property of emulsion based products such as shampoo and conditioner. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Mineralogy of accessory and rare minerals associated with chromite deposits in the Khoy area

    International Nuclear Information System (INIS)

    Emamalipour, A.

    2008-01-01

    The chromite deposits in the Khoy area have lenticular, tubular and vein-like shapes which are found in serpenlinized hurzburgite. Chromite and serpentine are major minerals and hematite and magnetite are minor phases in the chromitic ores .Furthermore, Fe, Ni, Cu, Co, Zn, Ru, Os, Ir, La, Ce, Gd and S elements are found as base metal sulfides, sulfides of platinum group elements, metal oxides, native elements, natural alloys and solid inclusions in chromite grains and or in serpentinic ground mass. These minerals have very fine grain sizes and recognitions of them by ore microscopic method was limited, so the investigations were continued by EMPA. The majority of these minerals have secondary origin and are related with serpentinization. processes and only a few of them have primary origin. Among sulfide minerals bravoite, pyrotite, milerite, linaite and pyrite have secondary origin, whereas pentlandite has primary one. Chalcopyrite has been formed in two generations, as both primary and secondary origins. Among primary platinum group elements minerals lourite ((Ru, Os, Ir)S 2 ) is considerable, which was found as a solid inclusion in the chromite grain and has primary origin. Native metals and natural alloys such as nickel, copper, iron and josephinite (Ni 3 Fe) have been formed in micro fractures of chromite grains filled by serpentine. A few rare earth element-rich compositions were found in micro fractures also and have secondary origin

  3. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  4. Deposition of Fibrinogen on the Surface of in vitro Thrombi Prevents Platelet Adhesion

    OpenAIRE

    Owaynat, Hadil; Yermolenko, Ivan S.; Turaga, Ramya; Lishko, Valeryi K.; Sheller, Michael R.; Ugarova, Tatiana P.

    2015-01-01

    The initial accumulation of platelets after vessel injury is followed by thrombin-mediated generation of fibrin which is deposited around the plug. While numerous in vitro studies have shown that fibrin is highly adhesive for platelets, the surface of experimental thrombi in vivo contains very few platelets suggesting the existence of natural anti-adhesive mechanisms protecting stabilized thrombi from platelet accumulation and continuous thrombus propagation. We previously showed that adsorpt...

  5. Pulsed laser deposition of Ag nanoparticles on titanium hydroxide/oxide nanobelt arrays for highly sensitive surface-enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Jing, Yuting; Wang, Huanwen; Zhao, Jie; Yi, Huan; Wang, Xuefeng

    2015-01-01

    Highlights: • Silver nanoparticles (NPs) were deposited on Ti(OH) 4 nanobelt by pulsed laser deposition (PLD). • The highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18. • Ag 2 O play important role for the high sensitivity Raman phenomenon. • Charge transfer from Ag NPs is also responsible for the enhancement ability. - Abstract: Surface-enhanced Raman scattering (SERS) substrate of Ti(OH) 4 nanobelt arrays (NBAs) was synthesized by a hydrothermal reaction, on which silver nanoparticles (NPs) were deposited by pulsed laser deposition (PLD). Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) revealed the effective high specific surface area with silver NPs decorated on three-dimensional NBAs. Using rhodamine 6G (R6G) as an analyte molecule, the highest enhancement factor of 10 6 and a maximum relative standard deviation (RSD) of 0.18 were obtained. It has been found that the specific morphology of these composite nanobelt arrays and the formation of Ag 2 O play important role for the high sensitivity Raman phenomenon. In addition, the surface plasmon resonance wavelength of Ag decorated Ti(OH) 4 NBAs and the charge transfer from Ag NPs are also responsible for the enhancement ability. For comparison SERS was investigated with silver particles decorated on TiO 2 NBAs, which is much less active

  6. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO2 on AlGaN

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    Atomic layer deposition (ALD) of ZrO 2 on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO 2 and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications

  7. Deposition and surface characterization of nanoparticles of zinc oxide using dense plasma focus device in nitrogen atmosphere

    International Nuclear Information System (INIS)

    Malhotra, Yashi; Srivastava, M P; Roy, Savita

    2010-01-01

    Nanoparticles of zinc oxide from zinc oxide pellets in the nitrogen plasma atmosphere are deposited on n and p type silicon substrates using Dense Plasma Focus device. The hot and dense nitrogen plasma formed during the focus phase ionizes the ZnO pellet, which then move upward in a fountain like shape and gets deposited on substrates which are placed above the top of the anode. Structural and surface properties of the deposited ZnO are investigated using X-ray diffraction and Atomic force microscope (AFM). X-ray spectra shows the diffraction plane (002) of ZnO nanoparticles deposited on Si with few shots in nitrogen atmosphere. AFM investigations revealed that there are nanoparticles of size between 15-80 nm on n-Si and p-Si substrates. The deposition on n-type Si is better than the p-type Si can be seen from AFM images, this may be due to different orientation of silicon.

  8. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius.

    Science.gov (United States)

    Godoy-Gallardo, Maria; Rodríguez-Hernández, Ana G; Delgado, Luis M; Manero, José M; Javier Gil, F; Rodríguez, Daniel

    2015-10-01

    The aim of this study was to determine the antibacterial properties of silver-doped titanium surfaces prepared with a novel electrochemical anodizing process. Titanium samples were anodized with a pulsed process in a solution of silver nitrate and sodium thiosulphate at room temperature with stirring. Samples were processed with different electrolyte concentrations and treatment cycles to improve silver deposition. Physicochemical properties were determined by X-ray photoelectron spectroscopy, contact angle measurements, white-light interferometry, and scanning electron microscopy. Cellular cytotoxicity in human fibroblasts was studied with lactate dehydrogenase assays. The in vitro effect of treated surfaces on two oral bacteria strains (Streptococcus sanguinis and Lactobacillus salivarius) was studied with viable bacterial adhesion measurements and growth curve assays. Nonparametric statistical Kruskal-Wallis and Mann-Whitney U-tests were used for multiple and paired comparisons, respectively. Post hoc Spearman's correlation tests were calculated to check the dependence between bacteria adhesion and surface properties. X-ray photoelectron spectroscopy results confirmed the presence of silver on treated samples and showed that treatments with higher silver nitrate concentration and more cycles increased the silver deposition on titanium surface. No negative effects in fibroblast cell viability were detected and a significant reduction on bacterial adhesion in vitro was achieved in silver-treated samples compared with control titanium. Silver deposition on titanium with a novel electrochemical anodizing process produced surfaces with significant antibacterial properties in vitro without negative effects on cell viability. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    Science.gov (United States)

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  10. Surface mapping and drilling of extinct seafloor massive sulphide deposits (eSMS) from the TAG Hydrothermal Field, 26oN: A tale of two `Jaspers'

    Science.gov (United States)

    Stobbs, I. J.; Lusty, P.; Petersen, S.; Murton, B. J.

    2017-12-01

    Two extinct seafloor massive sulphide (eSMS) deposits within the TAG hydrothermal field, 26oN, mid-Atlantic ridge, were mapped and drilled: Southern Mound and the newly discovered `Rona Mound'. Surface mapping was undertaken by combining high definition video footage and high resolution bathymetry to interpret surface geological and geomorphological features. Drill core was recovered using the BGS RD2 robotic drilling rig. Surface mapping of the mounds revealed a superficial cover of carbonate and iron-oxyhydroxides sediments, observed to directly overly oxide coated sulphide material within fault scarps, which dissect the flanks of both mounds. Drilling at the summits of the mounds revealed similar stratigraphy to the mapping, with the addition of a coherent and dense layer of red-coloured silica-rich `jasper', up to 3m thick, underlying the sediments and overlying unoxidised massive sulphides. The jasper mineralogy is dominated by silica, with minor iron oxides and rare disseminated sulphides. It displays a range of complex textures including filamentous and dendritic iron oxides often coated in silica. Drill core samples show the material to be porous, but relatively impermeable. Strong and positive Eu (REE) anomalies indicates a hydrothermal origin with little evidence of a seawater signature (lack of negative Ce anomaly). Silica precipitation is associated with low temperature hydrothermal activity, chert and jasper materials are locally present within the nearby hydrothermally active TAG mound and are more widespread at low-temperature diffuse hydrothermal sites such as within the MESO field. We interpret the `jasper' layers to be a common product, formed during the waning, low temperature, stage of the hydrothermal cycle which may form an impermeable and resistant `cap' that protects the underlying massive sulphide ore body from oxidation and dissolution. The formation of a `jasper cap' could act automatically to preserve eSMS deposits when hydrothermal

  11. Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile.

    Science.gov (United States)

    Whelley, Patrick L; Jay, J; Calder, E S; Pritchard, M E; Cassidy, N J; Alcaraz, S; Pavez, A

    Unconsolidated pyroclastic flow deposits of the 1993 eruption of Lascar Volcano, Chile, have, with time, become increasingly dissected by a network of deeply penetrating fractures. The fracture network comprises orthogonal sets of decimeter-wide linear voids that form a pseudo-polygonal grid visible on the deposit surface. In this work, we combine shallow surface geophysical imaging tools with remote sensing observations and direct field measurements of the deposit to investigate these fractures and their underlying causal mechanisms. Based on ground penetrating radar images, the fractures are observed to have propagated to depths of up to 10 m. In addition, orbiting radar interferometry shows that deposit subsidence of up to 1 cm/year -1 occurred between 1993 and 1996 with continued subsidence occurring at a slower rate thereafter. In situ measurements show that 1 m below the surface, the 1993 deposits remain 5°C to 15°C hotter, 18 years after emplacement, than adjacent deposits. Based on the observed subsidence as well as estimated cooling rates, the fractures are inferred to be the combined result of deaeration, thermal contraction, and sedimentary compaction in the months to years following deposition. Significant environmental factors, including regional earthquakes in 1995 and 2007, accelerated settling at punctuated moments in time. The spatially variable fracture pattern relates to surface slope and lithofacies variations as well as substrate lithology. Similar fractures have been reported in other ignimbrites but are generally exposed only in cross section and are often attributed to formation by external forces. Here we suggest that such interpretations should be invoked with caution, and deformation including post-emplacement subsidence and fracturing of loosely packed ash-rich deposits in the months to years post-emplacement is a process inherent in the settling of pyroclastic material.

  12. A new approach to assess the chemical composition of powder deposits damaging the stone surfaces of historical monuments.

    Science.gov (United States)

    Fermo, Paola; Turrion, Raquel Gonzalez; Rosa, Mario; Omegna, Alessandra

    2015-04-01

    The issue of conservation of the monumental heritage worldwide is mainly related to atmospheric pollution that causes the degradation of stone surfaces. The powder deposits present on the stone monuments reflect the composition of the aerosol particulate matter (PM) to which the surfaces are exposed, so the chemical characterization of the outermost damaged layers is necessary in order to adopt mitigation measurements to reduce PM emissions. In the present paper, a new analytical approach is proposed to investigate the chemical composition of powder deposits present on Angera stone, a dolomitic rock used in the Richini courtyard, a masterpiece of Lombard Baroque and placed in Milan. Inorganic and organic components present in these deposits have been analyzed by IC (ion chromatography) and a new approach mainly bases on thermal analyses, respectively. Gypsum is the main inorganic constituent indicating a composition similar to that of black crusts, hard black patina covering the degraded building surfaces. Ammonium nitrate present in the powder is able to react with the stone substrate to form magnesium nitrate which can migrate into the porous stone. The carbonaceous fraction powder deposits (i.e. OC = Organic Carbon and EC = Elemental Carbon) have been quantified by a new simple thermal approach based on carbon hydrogen nitrogen (CHN) analysis. The presence of high concentration of EC confirms that the powder deposits are evolving to black crust. Low values of water-soluble organic carbon (WSOC, determined by total organic carbon-TOC), with respect to what is normally found in PM, may indicate a migration process of organic substances into the stone with a worsening of the conservation conditions. The presence of heavy metals of anthropogenic origin and acting as catalysts in the black crust formation process has been highlighted by SEM-EDS (electron microscopy coupled with an energy dispersive spectrometer) as well.

  13. Study of the deposition features of the organic dye Rhodamine B on the porous surface of silicon with different pore sizes

    Energy Technology Data Exchange (ETDEWEB)

    Lenshin, A. S., E-mail: lenshinas@phys.vsu.ru; Seredin, P. V.; Kavetskaya, I. V.; Minakov, D. A.; Kashkarov, V. M. [Voronezh State University (Russian Federation)

    2017-02-15

    The deposition features of the organic dye Rhodamine B on the porous surface of silicon with average pore sizes of 50–100 and 100–250 nm are studied. Features of the composition and optical properties of the obtained systems are studied using infrared and photoluminescence spectroscopy. It is found that Rhodamine-B adsorption on the surface of por-Si with various porosities is preferentially physical. The optimal technological parameters of its deposition are determined.

  14. Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer.

    Science.gov (United States)

    Black, L E; Cavalli, A; Verheijen, M A; Haverkort, J E M; Bakkers, E P A M; Kessels, W M M

    2017-10-11

    III/V semiconductor nanostructures have significant potential in device applications, but effective surface passivation is critical due to their large surface-to-volume ratio. For InP such passivation has proven particularly difficult, with substantial depassivation generally observed following dielectric deposition on InP surfaces. We present a novel approach based on passivation with a phosphorus-rich interfacial oxide deposited using a low-temperature process, which is critical to avoid P-desorption. For this purpose we have chosen a PO x layer deposited in a plasma-assisted atomic layer deposition (ALD) system at room temperature. Since PO x is known to be hygroscopic and therefore unstable in atmosphere, we encapsulate this layer with a thin ALD Al 2 O 3 capping layer to form a PO x /Al 2 O 3 stack. This passivation scheme is capable of improving the photoluminescence (PL) efficiency of our state-of-the-art wurtzite (WZ) InP nanowires by a factor of ∼20 at low excitation. If we apply the rate equation analysis advocated by some authors, we derive a PL internal quantum efficiency (IQE) of 75% for our passivated wires at high excitation. Our results indicate that it is more reliable to calculate the IQE as the ratio of the integrated PL intensity at room temperature to that at 10 K. By this means we derive an IQE of 27% for the passivated wires at high excitation (>10 kW cm -2 ), which constitutes an unprecedented level of performance for undoped InP nanowires. This conclusion is supported by time-resolved PL decay lifetimes, which are also shown to be significantly higher than previously reported for similar wires. The passivation scheme displays excellent long-term stability (>7 months) and is additionally shown to substantially improve the thermal stability of InP surfaces (>300 °C), significantly expanding the temperature window for device processing. Such effective surface passivation is a key enabling technology for InP nanowire devices such as

  15. Effect of the substrate surface topology and temperature on the structural properties of ZnO layers obtained by plasma enhanced chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kitova, S; Danev, G, E-mail: skitova@clf.bas.b [Acad. J .Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria)

    2010-04-01

    In this work thin ZnO layers were grown by metal-organic PECVD (RF 13.56 MHz) on Si wafers. Zn acetylacetonate was used as a precursor and oxygen as oxidant. A system for dosed injection of the precursor and oxidant into the plasma reactor was developed. The influence of the substrate surface topology and temperature on the structural properties of the deposited layers was studied. ZnO and graphite powder dispersions were used to modify the silicon wafers before starting the deposition process of the layers. Some of the ZnO layers were deposited on the back, unpolished, side of Si wafers. Depositions at 400 {sup 0}C were performed to examine the effect of the substrate temperatures on the layer growth. The film structure was examined by XRD and SEM. The results show that all layers are crystalline with hexagonal wurtzite structure. The crystallites are preferentially oriented along the c-axis direction perpendicular to the substrate surfaces. ZnO layers deposited on thin ZnO seed films and clean Si surface exhibit well-developed grain structures and more c-axis preferred phase with better crystal quality than that of the layers deposited on graphite seed layer or rough, unpolished Si wafer.

  16. A revised surface age for the North Polar Layered Deposits of Mars

    Science.gov (United States)

    Landis, Margaret E.; Byrne, Shane; Daubar, Ingrid J.; Herkenhoff, Kenneth E.; Dundas, Colin M.

    2016-01-01

    The North Polar Layered Deposits (NPLD) of Mars contain a complex stratigraphy that has been suggested to retain a record of past eccentricity- and obliquity-forced climate changes. The surface accumulation rate in the current climate can be constrained by the crater retention age. We scale NPLD crater diameters to account for icy target strength and compare surface age using a new production function for recent small impacts on Mars to the previously used model of Hartmann (2005). Our results indicate that ice is accumulating in these craters several times faster than previously thought, with a 100 m diameter crater being completely infilled within centuries. Craters appear to have a diameter-dependent lifetime, but the data also permit a complete resurfacing of the NPLD at ~1.5 ka.

  17. Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering

    International Nuclear Information System (INIS)

    Auger, M. A.; Vazquez, L.; Sanchez, O.; Cuerno, R.; Castro, M.; Jergel, M.

    2006-01-01

    We study surface kinetic roughening of TiN films grown on Si(100) substrates by dc reactive sputtering. The surface morphology of films deposited for different growth times under the same experimental conditions were analyzed by atomic force microscopy. The TiN films exhibit intrinsic anomalous scaling and multiscaling. The film kinetic roughening is characterized by a set of local exponent values α loc =1.0 and β loc =0.39, and global exponent values α=1.7 and β=0.67, with a coarsening exponent of 1/z=0.39. These properties are correlated to the local height-difference distribution function obeying power-law statistics. We associate this intrinsic anomalous scaling with the instability due to nonlocal shadowing effects that take place during thin-film growth by sputtering

  18. A brief review of ultra-rare alpha decay detection technique

    International Nuclear Information System (INIS)

    Tsyganov, Yu.S.

    2006-01-01

    Three approaches to the measurement of rare alpha decaying products produced in heavy-ion induced nuclear reactions are described. One is based on a chemical extraction and following deposition of the nuclides under investigation onto the surface of the detector, whereas the second one is associated with long-lived products implanted into silicon detectors by using the electromagnetic separation technique. The third approach relates with an application of real-time mode detection of correlated energy-time-position recoil-alpha sequences from 48 Ca-induced nuclear reactions with actinide targets, like 242,244 Pu, 245,248 Cm, 243 Am, and 249 Cf. Namely with this technique it has became possible to provide a radical suppression of backgrounds in the full fusion (3-5n) reactions aimed at the synthesis of superheavy elements with Z = 113-118

  19. Surface free energy of TiC layers deposited by electrophoretic deposition (EPD)

    Science.gov (United States)

    Gorji, Mohammad Reza; Sanjabi, Sohrab

    2018-01-01

    In this study porous structure coatings of bare TiC (i.e. 20 nm, 0.7 µm and 5/45 µm) and core-shell structures of TiC/NiP synthesized through electroless plating were deposited by EPD. Room temperature surface free energy (i.e. γs) of TiC and TiC/NiP coatings were determined via measuring contact angles of distilled water and diiodemethane liquids. The effect of Ni-P shell on spreading behavior of pure copper on porous EPD structures was also investigated by high temperature wetting experiments. According to the results existence of a Ni-P layer around the TiC particles has led to roughness (i.e. at least 0.1 µm), and porosity mean length (i.e. at least 1 µm) increase. This might be related to various sizes of TiC agglomerates formed during electroless plating. It has been observed that room temperature γs changed from 44.49 to 54.12 mJ.m-2 as a consequence of particle size enlargement for TiC. The highest and lowest (67.25 and 44.49 mJ.m-2) γs were measured for TiC nanoparticles which showed 1.5 times increase in surface free energy after being plated with Ni-P. It was also observed that plating Ni-P altered non-spreading (θs > 100 o) behavior of TiC to full-spreading ((θs 0o)) which can be useful for preparation of hard coatings by infiltration sintering phenomenon. Zeta potential of EPD suspensions, morphology, phase structure and topography of as-EPD layers were investigated through Zetasizer, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and atomic force microscopy (AFM) instruments respectively.

  20. Study of 'inadvertent human intrusion or rare natural event scenarios' for sub-surface disposal of radioactive waste

    International Nuclear Information System (INIS)

    Nakatani, Takayoshi; Ishitoya, Kimihide; Funabashi, Hideyuki; Sugaya, Toshikatsu; Sone, Tomoyuki; Shimada, Hidemitsu; Nakai, Kunihiro

    2010-03-01

    Japan Atomic Energy Agency (JAEA) is making preparations for the sub-surface disposal of radioactive wastes, in an integrated fashion according to the properties of the waste material regardless of the generators or waste sources. In this study, 'Inadvertent Human Intrusion or Rare Natural Event Scenarios' of 'Three Types scenarios' was considered according to the standard of the Atomic Energy Society of Japan (AESJ) on the sub-surface disposal system that was based on 'Basic Policy for Safety Regulation Concerning Land Disposal of Low-Level Radioactive Waste (Interim Report)' by Nuclear Safety Commission of Japan (NSC). Selection of the assessed scenarios, development of the assessment tool and preliminary exposure dose assessment for general public were conducted. Among the assessed scenarios, the exposure dose of 'well water drinking scenario' was the highest under the very conservative assessment condition. This scenario assumed that the groundwater in Excavation Disturbed Zone (EDZ) was directly used as drinking water without any dilution. Although this was very conservative condition and the result exceeded 10 mSv/y, it stayed under the upper limit of standard dose value for 'Inadvertent Human Intrusion or Rare Natural Event Scenarios' (10 - 100 mSv/y). (author)

  1. Surface coatings deposited by CVD and PVD

    International Nuclear Information System (INIS)

    Gabriel, H.M.

    1982-01-01

    The demand for wear and corrosion protective coatings is increasing due to economic facts. Deposition processes in gas atmospheres like the CVD and PVD processes attained a tremendous importance especially in the field of the deposition of thin hard refractory and ceramic coatings. CVD and PVD processes are reviewed in detail. Some examples of coating installations are shown and numerous applications are given to demonstrate the present state of the art. (orig.) [de

  2. Diagnostic study about lanthanides (rare earths)

    International Nuclear Information System (INIS)

    Ribeiro, G.F.

    1985-01-01

    The world situation of rare earths (lanthanides) is evaluated, and a comparison of the Brazilian situation in respect to other countries is established, concerning the following aspects: geology of mineral deposits; main sources, uses, reserves and production; their consumption, prices and state-of-art of geological researches and industrial processes for physical and chemical separation / concentration of these elements. (C.L.B.) [pt

  3. Dark Material at the Surface of Polar Crater Deposits on Mercury

    Science.gov (United States)

    Neumann, Gregory A.; Cavanaugh, John F.; Sun, Xiaoli; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.; Paige, Daid A.

    2012-01-01

    Earth-based radar measurements [1-3] have yielded images of radar-bright material at the poles of Mercury postulated to be near-surface water ice residing in cold traps on the permanently shadowed floors of polar impact craters. The Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has now mapped much of the north polar region of Mercury [4] (Fig. 1). Radar-bright zones lie within polar craters or along poleward-facing scarps lying mainly in shadow. Calculations of illumination with respect to solid-body motion [5] show that at least 0.5% of the surface area north of 75deg N lies in permanent shadow, and that most such permanently shadowed regions (PSRs) coincide with radar-bright regions. MLA transmits a 1064-nm-wavelength laser pulse at 8 Hz, timing the leading and trailing edges of the return pulse. MLA can in some cases infer energy and thereby surface reflectance at the laser wavelength from the returned pulses. Surficial exposures of water ice would be optically brighter than the surroundings, but persistent surface water ice would require temperatures over all seasons to remain extremely low (Mercury s eccentric orbit, 3:2 spin-orbit resonance, and near-zero obliquity generally do not support such conditions in all permanently shadowed craters but suggest that water ice buried near the surface ( 1 Gy. We describe measurements of reflectivity derived from MLA pulse returns. These reflectivity data show that surface materials in the shadowed regions are darker than their surroundings, enough to strongly attenuate or extinguish laser returns. Such measurements appear to rule out widespread surface exposures of water ice. We consider explanations for the apparent low reflectivity of these regions involving other types of volatile deposit.

  4. Effect of additional sample bias in Meshed Plasma Immersion Ion Deposition (MPIID) on microstructural, surface and mechanical properties of Si-DLC films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mingzhong [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); School of Materials Science & Engineering, Jiamusi University, Jiamusi 154007 (China); Tian, Xiubo, E-mail: xiubotian@163.com [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); Li, Muqin [School of Materials Science & Engineering, Jiamusi University, Jiamusi 154007 (China); Gong, Chunzhi [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); Wei, Ronghua [Southwest Research Institute, San Antonio, TX 78238 (United States)

    2016-07-15

    Highlights: • A novel Meshed Plasma Immersion Ion Deposition is proposed. • The deposited Si-DLC films possess denser structures and high deposition rate. • It is attributed to ion bombardment of the deposited films. • The ion energy can be independently controlled by an additional bias (novel set up). - Abstract: Meshed Plasma Immersion Ion Deposition (MPIID) using cage-like hollow cathode discharge is a modified process of conventional PIID, but it allows the deposition of thick diamond-like carbon (DLC) films (up to 50 μm) at a high deposition rate (up to 6.5 μm/h). To further improve the DLC film properties, a new approach to the MPIID process is proposed, in which the energy of ions incident to the sample surface can be independently controlled by an additional voltage applied between the samples and the metal meshed cage. In this study, the meshed cage was biased with a pulsed DC power supply at −1350 V peak voltage for the plasma generation, while the samples inside the cage were biased with a DC voltage from 0 V to −500 V with respect to the cage to study its effect. Si-DLC films were synthesized with a mixture of Ar, C{sub 2}H{sub 2} and tetramethylsilane (TMS). After the depositions, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectrons spectroscopy (XPS), Raman spectroscopy and nanoindentation were used to study the morphology, surface roughness, chemical bonding and structure, and the surface hardness as well as the modulus of elasticity of the Si-DLC films. It was observed that the intense ion bombardment significantly densified the films, reduced the surface roughness, reduced the H and Si contents, and increased the nanohardness (H) and modulus of elasticity (E), whereas the deposition rate decreased slightly. Using the H and E data, high values of H{sup 3}/E{sup 2} and H/E were obtained on the biased films, indicating the potential excellent mechanical and tribological properties of the films. In this

  5. Spray-deposition and photopolymerization of organic-inorganic thiol-ene resins for fabrication of superamphiphobic surfaces.

    Science.gov (United States)

    Xiong, Li; Kendrick, Laken L; Heusser, Hannele; Webb, Jamie C; Sparks, Bradley J; Goetz, James T; Guo, Wei; Stafford, Christopher M; Blanton, Michael D; Nazarenko, Sergei; Patton, Derek L

    2014-07-09

    Superamphiphobic surfaces, exhibiting high contact angles and low contact angle hysteresis to both water and low surface tension liquids, have attracted a great deal attention in recent years because of the potential of these materials in practical applications such as liquid-resistant textiles, self-cleaning surfaces, and antifouling/anticorrosion coatings. In this work, we present a simple strategy for fabricating of superamphiphobic coatings based on photopolymerization of hybrid thiol-ene resins. Spray-deposition and UV photopolymerization of thiol-ene resins containing hydrophobic silica nanoparticles and perfluorinated thiols provide a multiscale topography and low-energy surface that endows the surface with superamphiphobicity. The wettability and chemical composition of the surfaces were characterized by contact-angle goniometry and X-ray photoelectron spectroscopy, respectively. The hierarchical roughness features of the thiol-ene surfaces were investigated with field-emission scanning electron microscopy. Droplet impact and sandpaper abrasion tests indicate the coatings respectively possess a robust antiwetting behavior and good mechanical durability.

  6. Rate of mass deposition of scaling compounds from seawater on the outer surface of heat exchangers in MED evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Omar, W. [Department of Natural Resources and Chemical Engineering, Tafila Technical University, Tafila (Jordan); Ulrich, J. [FB Ingenieurwissenschaften, Institut fuer Verfahrenstechnik/TVT, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany)

    2006-08-15

    The scaling problem in Multi Effect Distillation (MED) evaporators is investigated by the experimental measurement of the deposition rate under different operating conditions. The measurements are conducted in a batch vessel containing artificial seawater, which is allowed to contact the outer surface of a hot pipe under controlled temperature, salinity and pH. The rate of mass deposition is higher at elevated temperature. The salinity of the seawater also influences the scaling process - an increase in salinity from 47-59 g/L leads to an increase of 75.6 % in the deposition rate. Decreasing the pH value of seawater to 2.01 results in a complete inhibition of scaling, whereas the severity of the scaling increases in neutral and basic mediums. Polyacrylic acid is tested as an antifoulant and it was found that its presence in seawater reduces the scaling process. The nature of the heat transfer surface material also plays an important role in the scaling process. It is found experimentally that the rate of scaling is higher in the case of a Cu-Ni alloy as the surface material of the tube rather than stainless steel. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. Advanced deposition model for thermal activated chemical vapor deposition

    Science.gov (United States)

    Cai, Dang

    Thermal Activated Chemical Vapor Deposition (TACVD) is defined as the formation of a stable solid product on a heated substrate surface from chemical reactions and/or dissociation of gaseous reactants in an activated environment. It has become an essential process for producing solid film, bulk material, coating, fibers, powders and monolithic components. Global market of CVD products has reached multi billions dollars for each year. In the recent years CVD process has been extensively used to manufacture semiconductors and other electronic components such as polysilicon, AlN and GaN. Extensive research effort has been directed to improve deposition quality and throughput. To obtain fast and high quality deposition, operational conditions such as temperature, pressure, fluid velocity and species concentration and geometry conditions such as source-substrate distance need to be well controlled in a CVD system. This thesis will focus on design of CVD processes through understanding the transport and reaction phenomena in the growth reactor. Since the in situ monitor is almost impossible for CVD reactor, many industrial resources have been expended to determine the optimum design by semi-empirical methods and trial-and-error procedures. This approach has allowed the achievement of improvements in the deposition sequence, but begins to show its limitations, as this method cannot always fulfill the more and more stringent specifications of the industry. To resolve this problem, numerical simulation is widely used in studying the growth techniques. The difficulty of numerical simulation of TACVD crystal growth process lies in the simulation of gas phase and surface reactions, especially the latter one, due to the fact that very limited kinetic information is available in the open literature. In this thesis, an advanced deposition model was developed to study the multi-component fluid flow, homogeneous gas phase reactions inside the reactor chamber, heterogeneous surface

  8. International strategic minerals inventory summary report; rare-earth oxides

    Science.gov (United States)

    Jackson, W.D.; Christiansen, Grey

    1993-01-01

    Bastnaesite, monazite, and xenotime are currently the most important rare-earth minerals. Bastnaesite occurs as a primary mineral in carbonatites. Monazite and xenotime also can be found in primary deposits but are recovered principally from heavy-mineral placers that are mined for titanium or tin. Each of these minerals has a different composition of the 15 rare-earth elements. World resources of economically exploitable rare-earth oxides (REO) are estimated at 93.4 million metric tons in place, composed of 93 percent in primary deposits and 7 percent in placers. The average mineral composition is 83 percent bastnaesite, 13 percent monazite, and 4 percent of 10 other minerals. Annual global production is about 67,000 metric tons of which 41 percent is from placers and 59 percent is from primary deposits; mining methods consist of open pits (94 percent) and dredging (6 percent). This output could be doubled if the operations that do not currently recover rare earths would do so. Resources are more than sufficient to meet the demand for the predictable future. About 52 percent of the world's REO resources are located in China. Ranking of other countries is as follows: Namibia (22 percent), the United States (15 percent), Australia (6 percent), and India (3 percent); the remainder is in several other countries. Conversely, 38 percent of the production is in China, 33 percent in the United States, 12 percent in Australia, and 5 percent each in Malaysia and India. Several other countries, including Brazil, Canada, South Africa, Sri Lanka, and Thailand, make up the remainder. Markets for rare earths are mainly in the metallurgical, magnet, ceramic, electronic, chemical, and optical industries. Rare earths improve the physical and rolling properties of iron and steel and add corrosion resistance and strength to structural members at high temperatures. Samarium and neodymium are used in lightweight, powerful magnets for electric motors. Cerium and yttrium increase the

  9. Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Directory of Open Access Journals (Sweden)

    Jia Ge

    2014-01-01

    Full Text Available We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production.

  10. Surface modification of nanoporous alumina layers by deposition of Ag nanoparticles. Effect of alumina pore diameter on the morphology of silver deposit and its influence on SERS activity

    Science.gov (United States)

    Pisarek, Marcin; Nowakowski, Robert; Kudelski, Andrzej; Holdynski, Marcin; Roguska, Agata; Janik-Czachor, Maria; Kurowska-Tabor, Elżbieta; Sulka, Grzegorz D.

    2015-12-01

    Self-organized Al2O3 nanoporous/nanotubular (Al2O3-NP) oxide layers decorated with silver nanoparticles (Ag-NPs) exhibiting specific properties may serve as attractive SERS substrates for investigating the interactions between an adsorbate and adsorbent, or as stable platforms for detecting various organic compounds. This article presents the influence of the size of the alumina nanopores with a deposit of silver nanoparticles obtained by the magnetron sputtering technique on the morphology of silver film. Moreover, the effect of pore diameter on the intensity of SERS spectra in Ag-NPs/Al2O3-NP/Al composites has also been estimated. For such investigations we used pyridine as a probe molecule, since it has a large cross-section for Raman scattering. To characterize the morphology of the composite oxide layer Ag-NPs/Al2O3-NP/Al, before and after deposition of Ag-NPs by PVD methods (Physical Vapor Deposition), we used scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface analytical technique of surface-enhanced Raman spectroscopy (SERS) was used to investigate the surface activity of the composite. The results obtained show that, for a carefully controlled amount of Ag (0.020 mg/cm2 - deposited on the top of alumina nanopores whose average size varies from ∼86 nm up to ∼320 nm) in the composites investigated, pore size significantly affects SERS enhancement. We obtained distinctly higher intensities of SERS spectra for substrates with an Ag-NPs deposit having a larger diameter of the alumina nanopores. AFM results suggest that both the lateral and perpendicular distribution of Ag-NPs within and on the top of the largest pores is responsible for the highest SERS activity of the resulting Ag-NPs/Al2O3-NP/Al composite layer, since it produces a variety of cavities and slits which function as resonators for the adsorbed molecules. The Ag-NPs/MeOx-NP/Me composite layers obtained ensure a good reproducibility of the SERS measurements.

  11. Roughness evolution in Ga doped ZnO films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Liu Yunyan; Cheng Chuanfu; Yang Shanying; Song Hongsheng; Wei Gongxiang; Xue Chengshan; Wang Yongzai

    2011-01-01

    We analyze the morphology evolution of the Ga doped ZnO(GZO) films deposited on quartz substrates by a laser deposition system. The surface morphologies of the film samples grown with different times are measured by the atomic force microscope, and they are analyzed quantitatively by using the image data. In the initial stage of the growth time shorter than 8 min, our analysis shows that the GZO surface morphologies are influenced by such factors as the random fluctuations, the smoothening effects in the deposition, the lateral strain and the substrate. The interface width uw(t) and the lateral correlation length ξ(t) at first decrease with deposition time t. For the growth time larger than 8 min, w(t) and ξ(t) increase with time and it indicates the roughening of the surface and the surface morphology exhibits the fractal characteristics. By fitting data of the roughness w(t) versus deposition time t larger than 4 min to the power-law function, we obtain the growth exponent β is 0.3; and by the height-height correlation functions of the samples to that of the self-affine fractal model, we obtain the value of roughness exponent α about 0.84 for all samples with different growth time t.

  12. Structure and electronic properties of ordered binay thin-film compounds of rare earths with transition metals

    International Nuclear Information System (INIS)

    Schneider, W.

    2004-01-01

    The present thesis deals with preparation of structurally ordered thin-film compounds of the rare-earths Ce and Dy with the transition metals Pd, Rh, and Ni as well as with investigations of their crystalline and electronic structures. Typically 10 nm-thick films were grown in-situ by deposition of the rare-earth metals onto single crystalline transitionmetal substrates or alternatively by codeposition of both constituents onto a W(110) single crystal. In both cases deposition was followed by short-term annealing at temperatures of 400-1000 C to achieve crystalline order. The latter was analyzed by means of low-energy electron-diffraction (LEED) and evaluated on the basis of a simple kinematic theory. The electronic structure was investigated by means of angle-resolved photoemission (ARPES), partially exploiting synchrotron radiation from BESSY. The studies concentrate mainly on the behavior of the valence bands as a function of structure and composition of the thin films, particularly under consideration of surface phenomena. Measured energy dispersions were compared with results of LDA-LCAO calculations performed in the framework of this thesis. Observed shifts of the energy bands by up to 1 eV are attributed in the light of a simple model to incomplete screening of the photoemission final states. (orig.)

  13. Simulation optimization of filament parameters for uniform depositions of diamond films on surfaces of ultra-large circular holes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinchang, E-mail: wangxinchangz@163.com; Shen, Xiaotian; Sun, Fanghong; Shen, Bin

    2016-12-01

    Highlights: • A verified simulation model using a novel filament arrangement is constructed. • Influences of filament parameters are clarified. • A coefficient between simulated and experimental results is proposed. • Orthogonal simulations are adopted to optimize filament parameters. • A general filament arrangement suitable for different conditions is determined. - Abstract: Chemical vapor deposition (CVD) diamond films have been widely applied as protective coatings on varieties of anti-frictional and wear-resistant components, owing to their excellent mechanical and tribological properties close to the natural diamond. In applications of some components, the inner hole surface will serve as the working surface that suffers severe frictional or erosive wear. It is difficult to realize uniform depositions of diamond films on surfaces of inner holes, especially ultra-large inner holes. Adopting a SiC compact die with an aperture of 80 mm as an example, a novel filament arrangement with a certain number of filaments evenly distributed on a circle is designed, and specific effects of filament parameters, including the filament number, arrangement direction, filament temperature, filament diameter, circumradius and the downward translation, on the substrate temperature distribution are studied by computational fluid dynamics (CFD) simulations based on the finite volume method (FVM), adopting a modified computational model well consistent with the actual deposition environment. Corresponding temperature measurement experiments are also conducted to verify the rationality of the computational model. From the aspect of depositing uniform boron-doped micro-crystalline, undoped micro-crystalline and undoped fine-grained composite diamond (BDM-UMC-UFGCD) film on such the inner hole surface, filament parameters as mentioned above are accurately optimized and compensated by orthogonal simulations. Moreover, deposition experiments adopting compensated optimized

  14. Surface-Enhanced Infrared Absorption of o-Nitroaniline on Nickel Nanoparticles Synthesized by Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yufang Niu

    2014-01-01

    Full Text Available Nickel nanoparticles were electrochemically deposited on indium-tin oxide (ITO coated glass plate in a modified Watt’s electrolyte. The surface-enhanced infrared absorption (SEIRA effect of the nanoparticles was evaluated by attenuated total reflection spectroscopy (ATR-FTIR using o-nitroaniline as a probe molecule. Electrodeposition parameters such as deposition time, pH value, and the type of surfactants were investigated. The morphology and the microstructure of the deposits were characterized by the field emission scanning electron microscope (FESEM and the atomic force microscope (AFM, respectively. The results indicate that the optimum parameters were potential of 1.3 V, time of 30 s, and pH of 8.92 in the solution of 0.3756 mol/L diethanolamine, 0.1 mol/L nickel sulfate, 0.01 mol/L nickel chloride, and 0.05 mol/L boric acid. The FESEM observation shows that the morphology of nickel nanoparticles with best enhancement effect is spherical and narrowly distributed particles with the average size of 50 nm. SEIRA enhancement factor is about 68.

  15. Geology of gemstone deposit Ugljarevats (Central Serbia) and contributions to genetic model

    International Nuclear Information System (INIS)

    Kureshevicj, Lidija; Vushovicj, Olivera; Delicj-Nikolicj, Ivana

    2017-01-01

    Silica gemstone deposit Ugljarevats is situated within the ophiolite sequence of the Vardar zone central deep fault. Genetic processes of this deposit are connected to the Neogene calc-alkaline magmatic activity of the Vardar zone and hydrothermal activity triggered by it. Based on surface occurrences of listwenitized serpentinite containing silica mineralization, it can be inferred that the ore body is an elongated oval stock. Within the stock of hydrothermally altered serpentinite, the gemstone mineralization occurs as veins, stock works and irregular bodies. Present gemstone types include chalcedony varieties (jasper, colourless and greenish chalcedony, carnelian and sard) and opal (opalized serpentinite). Homogenous pieces are very rare. Most often, various types of silica are intimately intermixed and combined. The mineralization has formed in two distinct hydrothermal phases, apparently in close time succession. Jasper and coloured chalcedony (and rare magnesite) are the products of the first phase of hydro- thermal activity, while the colourless chalcedony is formed in the second phase. Newly discovered type of silica vein with central-symmetrical parallel banding gives new contributions to a genetic model, proving the precipitation process and its products are unpredictably changeable, heterogeneous and depending on the evolution of the local environment physico-chemical conditions, notably the contents of impurities and system's openness degree. (author)

  16. Effect of fuel type and deposition surface temperature on the growth and structure of ash deposit collected during co-firing of coal with sewage-sludge, saw-dust and refuse derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Tomasz; Zajac, Krzysztof; Weber, Roman [Clausthal Univ. of Technology, Clausthal-Zellerfeld (Germany). Inst. of Energy Process Engineering and Fuel Technology

    2008-07-01

    Blends of a South African bituminous ''Middleburg'' coal and three alternative fuels (a municipal sewage-sludge, a saw-dust and a refuse derived fuel) have been fired in the slagging reactor to examine the effect of the added fuel on slagging propensity of the mixtures. Two kinds of deposition probes have been used, un-cooled ceramic probes and air-cooled steal probes. Distinct differences in physical and chemical structures of the deposits collected using the un-cooled ceramic probes and air-cooled metal probes have been observed. Glassy, easily molten deposits collected on un-cooled ceramic deposition probes were characteristic for co-firing of municipal sewage-sludge with coal. Porous, sintered (not molten) but easily removable deposits of the same fuel blend have been collected on the air-cooled metal deposition probes. Loose, easy removable deposits have been sampled on air-cooled metal deposition probe during co-firing of coal/saw-dust blends. The mass of the deposit sampled at lower surface temperatures (550-700 C) was always larger than the mass sampled at higher temperatures (1100-1300 C) since the higher temperature ash agglomerated and sintered much faster than the low temperature deposit. (orig.)

  17. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  18. Fertility of Rare-Metal Peraluminous Granites and Formation Conditions of Tungsten Deposits

    Science.gov (United States)

    Syritso, L. F.; Badanina, E. V.; Abushkevich, V. S.; Volkova, E. V.; Terekhov, A. V.

    2018-01-01

    The tungsten distribution in rocks of the Kukulbei Complex in eastern Transbaikal region results in a high potential of rare-metal peraluminous granites (RPG) for W mineralization and displays a different behavior of W in Li-F and "standard" RPG. These subtypes differ in the behavior of W in melt, spatial localization of mineralization, and the timing of wolframite crystallization relative to the age of the parental granitic rocks. The significant of W concentration is assumed to be due to fractionation of the Li-F melt; however, wolframite mineralization in Li-F enriched granite is not typical in nature. The results of experiments and our calculations of W solubility in granitic melt show that wolframite hardly ever crystallizes directly from melt; it likely migrates in the fluid phase and is then removes from the magma chamber to the host rocks, where secondary concentration takes place in exocontact greisens and quartz-cassiterite-wolframite veins. At the same time, the isotopic age of accessory wolframite (139.5 ± 2.1 Ma) within the Orlovka massif of Li-F granite is close to the formation age of the massif (140.6 ± 2.9 Ma). A different W behavior is recorded in the RPG subtype with a low lithium and fluorine concentration, exemplified by the Spokoininsky massif. There is no significant W gain in the melt. All varieties of wolframite mineralization in the Spokoininsky massif are derived from greisens, veins, and pegmatoids yielding the same crystallization ages (139.5 ± 1.1 Ma), which are 0.9-1.8 Ma later (taking into account the mean-square weighted deviation) than the Spokoininsky granite formation (144.5 ± 1.4 Ma). Perhaps this period corresponds to the time of transition from the magmatic stage to hydrothermal alteration. Comparison of the isotope characteristics (Rb-Sr and Sm-Nd isotope systems) of rocks and the associated ore minerals (wolframite, cassiterite) from all examined deposits shows a depletion in ɛNd values for ore minerals relative to the

  19. Electrical and optical properties of thin indium tin oxide films produced by pulsed laser ablation in oxygen or rare gas atmospheres

    DEFF Research Database (Denmark)

    Thestrup, B.; Schou, Jørgen; Nordskov, A.

    1999-01-01

    Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate temperatu......Films of indium tin oxide (ITO) have been produced in different background gases by pulsed laser deposition (PLD). The Films deposited in rare gas atmospheres on room temperature substrates were metallic, electrically conductive, but had poor transmission of visible light. For substrate...

  20. Plasma deposited fluorinated films on porous membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gancarz, Irena [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Bryjak, Marek, E-mail: marek.bryjak@pwr.edu.pl [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Kujawski, Jan; Wolska, Joanna [Department of Polymer and Carbon Materials, Wrocław University of Technology, 50-370 Wrocław (Poland); Kujawa, Joanna; Kujawski, Wojciech [Nicolaus Copernicus University, Faculty of Chemistry, 7 Gagarina St., 87-100 Torun (Poland)

    2015-02-01

    75 KHz plasma was used to modify track etched poly(ethylene terephthalate) membranes and deposit on them flouropolymers. Two fluorine bearing monomers were used: perflourohexane and hexafluorobenzene. The modified surfaces were analyzed by means of attenuated total reflection infra-red spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy and wettability. It was detected that hexaflourobenxene deposited to the larger extent than perflourohaxane did. The roughness of surfaces decreased when more fluoropolymer was deposited. The hydrophobic character of surface slightly disappeared during 20-days storage of hexaflourobenzene modified membrane. Perfluorohexane modified membrane did not change its character within 120 days after modification. It was expected that this phenomenon resulted from post-reactions of oxygen with radicals in polymer deposits. The obtained membranes could be used for membrane distillation of juices. - Highlights: • Plasma deposited hydrophobic layer of flouropolymers. • Deposition degree affects the surface properties. • Hydrohilization of surface due to reaction of oxygen with entrapped radicals. • Possibility to use modified porous membrane for water distillation and apple juice concentration.

  1. Deposition of phospholipid layers on SiO{sub 2} surface modified by alkyl-SAM islands

    Energy Technology Data Exchange (ETDEWEB)

    Tero, R.; Takizawa, M.; Li, Y.J.; Yamazaki, M.; Urisu, T

    2004-11-15

    Formation of the supported planar bilayer of dipalmitoylphosphatidylcholine (DPPC) on SiO{sub 2} surfaces modified with the self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS) has been investigated by atomic force microscopy (AFM). DPPC was deposited by the fusion of vesicles on SiO{sub 2} surfaces with OTS-SAM islands of different sizes and densities. The DPPC bilayer membrane formed self-organizingly on the SiO{sub 2} surface with small and sparse OTS islands, while did not when the OTS islands were larger and denser. The relative size between the vesicles and the SiO{sub 2} regions is the critical factor for the formation of the DPPC bilayer membrane.

  2. Potential dependent adhesion forces on bare and underpotential deposition modified electrode surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Serafin, J.M.; Hsieh, S.J.; Monahan, J.; Gewirth, A.A. [Univ. of Illinois, Urbana, IL (United States)

    1998-12-03

    Adhesion force measurements are used to determine the potential dependence of the force of adhesion between a Si{sub 3}N{sub 4} cantilever and a Au(111) surface modified by the underpotential deposition (upd) of Bi or Cu in acid solution or by oxide formation. The measured work of adhesion is near zero for most of the potential region examined in Bi upd but rises after the formation of a full Bi monolayer. The work of adhesion is high at positive potentials for Cu upd but then decreases as the Cu partial and full monolayers are formed. The work of adhesion is low in the oxide region on Au(111) but rises following the sulfate disordering transition at 1.1 V vs NHE. These results are interpreted in terms of the degree of solvent order on the electrode surface.

  3. High-surface-quality nanocrystalline InN layers deposited on GaN templates by RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Valdueza-Felip, Sirona; Naranjo, Fernando B.; Gonzalez-Herraez, Miguel [Grupo de Ingenieria Fotonica, Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala, Campus Universitario, 28871 Alcala de Henares, Madrid (Spain); Lahourcade, Lise; Monroy, Eva [Equipe mixte CEA-CNRS-UJF, Nanophysique et Semiconducteurs, INAC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Fernandez, Susana [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)

    2011-01-15

    We report a detailed study of the effect of deposition parameters on optical, structural, and morphological properties of InN films grown by reactive radio-frequency (RF) sputtering on GaN-on-sapphire templates in a pure nitrogen atmosphere. Deposition parameters under study are substrate temperature, RF power, and sputtering pressure. Wurtzite crystallographic structure with c-axis preferred growth orientation is confirmed by X-ray diffraction measurements. For the optimized deposition conditions, namely at a substrate temperature of 450 C and RF power of 30 W, InN films present a root-mean-square surface roughness as low as {proportional_to}0.4 nm, comparable to the underlying substrate. The apparent optical bandgap is estimated at 720 nm (1.7 eV) in all cases. However, the InN absorption band tail is strongly influenced by the sputtering pressure due to a change in the species of the plasma. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Self-cleaning and surface chemical reactions during hafnium dioxide atomic layer deposition on indium arsenide.

    Science.gov (United States)

    Timm, Rainer; Head, Ashley R; Yngman, Sofie; Knutsson, Johan V; Hjort, Martin; McKibbin, Sarah R; Troian, Andrea; Persson, Olof; Urpelainen, Samuli; Knudsen, Jan; Schnadt, Joachim; Mikkelsen, Anders

    2018-04-12

    Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

  5. One-dimensional surface-imprinted polymeric nanotubes for specific biorecognition by initiated chemical vapor deposition (iCVD).

    Science.gov (United States)

    Ince, Gozde Ozaydin; Armagan, Efe; Erdogan, Hakan; Buyukserin, Fatih; Uzun, Lokman; Demirel, Gokhan

    2013-07-24

    Molecular imprinting is a powerful, generic, and cost-effective technique; however, challenges still remain related to the fabrication and development of these systems involving nonhomogeneous binding sites, insufficient template removing, incompatibility with aqueous media, low rebinding capacity, and slow mass transfer. The vapor-phase deposition of polymers is a unique technique because of the conformal nature of coating and offers new possibilities in a number of applications including sensors, microfluidics, coating, and bioaffinity platforms. Herein, we demonstrated a simple but versatile concept to generate one-dimensional surface-imprinted polymeric nanotubes within anodic aluminum oxide (AAO) membranes based on initiated chemical vapor deposition (iCVD) technique for biorecognition of immunoglobulin G (IgG). It is reported that the fabricated surface-imprinted nanotubes showed high binding capacity and significant specific recognition ability toward target molecules compared with the nonimprinted forms. Given its simplicity and universality, the iCVD method can offer new possibilities in the field of molecular imprinting.

  6. Model of depositing layer on cylindrical surface produced by induction-assisted laser cladding process

    Directory of Open Access Journals (Sweden)

    Kotlan Václav

    2017-12-01

    Full Text Available A model of hybrid cladding on a cylindrical surface is built and numerically solved. Heating of both substrate and the powder material to be deposited on its surface is realized by laser beam and preheating inductor. The task represents a hard-coupled electromagnetic-thermal problem with time-varying geometry. Two specific algorithms are developed to incorporate this effect into the model, driven by local distribution of temperature and its gradients. The algorithms are implemented into the COMSOL Multiphysics 5.2 code that is used for numerical computations of the task. The methodology is illustrated with a typical example whose results are discussed.

  7. Influence of deposition parameters on morphological properties of biomedical calcium phosphate coatings prepared using electrostatic spray deposition

    International Nuclear Information System (INIS)

    Leeuwenburgh, S.C.G.; Wolke, J.G.C.; Schoonman, J.; Jansen, J.A.

    2005-01-01

    In order to deposit biomedical calcium phosphate (CaP) coatings with a defined surface morphology, the electrostatic spray deposition (ESD) technique was used since this technique offers the possibility to deposit ceramic coatings with a variety of surface morphologies. A scanning electron microscopical study was performed in order to investigate the influence of several deposition parameters on the final morphology of the deposited coatings. The chemical characteristics of the coatings were studied by means of X-ray diffraction and Fourier-transform infrared spectroscopy. Regarding the chemical coating properties, the results showed that the coatings can be described as crystalline carbonate apatite coatings, a crystal phase which is similar to the mineral phase of bone and teeth. The morphology of CaP coatings, deposited using the ESD technique, was strongly dependent on the deposition parameters. By changing the nozzle-to-substrate distance, the precursor liquid flow rate and the deposition temperature, coating morphologies were deposited, which varied from dense to highly porous, reticular morphologies. The formation of various morphologies was the result of an equilibrium between the relative rates of CaP solute precipitation/reaction, solvent evaporation and droplet spreading onto the substrate surface

  8. Adsorption and revaporisation studies on iodine oxide aerosols deposited on containment surface materials in LWR

    International Nuclear Information System (INIS)

    Tietze, S.; Foreman, M.R.StJ.; Ekberg, C.; Kaerkelae, T.; Auvinen, A.; Tapper, U.; Lamminmaeki, S.; Jokiniemi, J.

    2012-12-01

    During a hypothetical severe nuclear accident, the radiation field will be very high in the nuclear reactor containment building. As a result gaseous radiolysis products will be formed. Elemental iodine can react in the gaseous phase with ozone to form solid iodine oxide aerosol particles (iodine oxide). Within the AIAS (Adsorption of Iodine oxide Aerosols on Surfaces) project the interactions of iodine oxide (IOx) aerosols with common containment surface materials were investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS, as well as Pt and Pd surfaces from hydrogen recombiners. Non-radioactive and 131 I labelled iodine oxide aerosols were produced with the EXSI CONT facility from elemental iodine and ozone at VTT Technical Research Centre of Finland. The iodine oxide deposits were analysed with microscopic and spectroscopic measurement techniques to identify the kind of iodine oxide formed and if a chemical conversion on the different surface materials occurs. The revaporisation behaviour of the deposited iodine oxide aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 having a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The revaporisated 131 I species from the surfaces were chemically tested for elemental iodine formation. The parameter dominating the degradation of the produced iodine oxide aerosols was humidity. Cu and Zn surfaces were found to react with iodine from the iodine oxide aerosols to form iodides, while no metal iodides were detected for Al and SS samples. Most of the iodine oxide aerosols are assumed to be

  9. Tandem solar cells deposited using hot-wire chemical vapor deposition

    NARCIS (Netherlands)

    Veen, M.K. van

    2003-01-01

    In this thesis, the application of the hot-wire chemical vapor deposition (HWCVD) technique for the deposition of silicon thin films is described. The HWCVD technique is based on the dissociation of silicon-containing gasses at the catalytic surface of a hot filament. Advantages of this technique

  10. Electrodeposition of ruthenium, rhodium and palladium from nitric acid and ionic liquid media: Recovery and surface morphology of the deposits

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, M.; Venkatesan, K.A.; Sudha, R. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Srinivasan, T.G., E-mail: tgs@igcar.gov.com [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India); Vasudeva Rao, P.R. [Fuel Chemistry Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102 (India)

    2011-07-15

    Research highlights: {yields} Platinum group metals are man-made noble metals. {yields} Electrochemical recovery of fission platinoids. {yields} Recovery from nitric acid medium. {yields} Recovery from ionic liquid medium. {yields} Platinoids with exotic surface morphologies. - Abstract: Electrodeposition is a promising technique for the recovery of platinum group metals with unique surface morphologies. The electrodeposition of palladium, ruthenium and rhodium from aqueous nitric acid, and non-aqueous 1-butyl-3-methylimidazolium chloride ionic liquid medium was studied at stainless steel electrode. The surface morphology and elemental composition of the resultant deposit were probed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDS) analysis. Deposits with diverse surface morphologies and metal compositions were obtained by varying the composition of the electrolytic medium and applied potential. The results demonstrate the possibility of tailoring the morphologies of PGMs by controlling the composition and potential needed for electrodeposition.

  11. Modelling land surface fluxes of CO2 in response to climate change and nitrogen deposition

    DEFF Research Database (Denmark)

    Hansen, Kristina; Ambelas Skjøth, Carsten; Geels, Camilla

    Climate change, land use variations, and impacts of atmospheric nitrogen (N) deposition represent uncertainties for the prediction of future greenhouse gas exchange between land surfaces and the atmosphere as the mechanisms describing nutritional effects are not well developed in climate...... climate feedback mechanisms of CO2 between changes in management, land use practise, and climate change....

  12. Iron corrosion inhibition by phosphonate complexes of rare earth metals

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.I.; Raskol'nikov, A.F.; Starobinskaya, I.V.; Alekseev, V.N.

    1993-01-01

    Capability is shown of trivalent rare earth nitrilotrimethylphosphonates (R= Ce, Pr, Nd, Eu, Lu, Y) to retard steel corrosion in soft water due to the formation of slightly soluble hydroxides on steel surface. The protective film is produced as a result of electrophilic substitution of nascent iron cations for rare earth ions in near the surface layer. The introduction of rare earth cations into the protective film is ascertained by Auger spectroscopy in combination with the argon spraying. A quantitative interrelation between the protective effectiveness and solubility product of rare earth hydroxides is revealed

  13. Surface-driven, one-step chemical vapor deposition of γ-Al{sub 4}Cu{sub 9} complex metallic alloy film

    Energy Technology Data Exchange (ETDEWEB)

    Prud’homme, Nathalie [CIRIMAT, Université de Toulouse - CNRS, 4 allée Emile Monso, BP-44362, 31432 Toulouse Cedex 4 (France); Université Paris-Sud 11, LEMHE/ICMMO, Bat 410, 91405 Orsay Cedex (France); Duguet, Thomas, E-mail: thomas.duguet@ensiacet.fr [CIRIMAT, Université de Toulouse - CNRS, 4 allée Emile Monso, BP-44362, 31432 Toulouse Cedex 4 (France); Samélor, Diane; Senocq, François; Vahlas, Constantin [CIRIMAT, Université de Toulouse - CNRS, 4 allée Emile Monso, BP-44362, 31432 Toulouse Cedex 4 (France)

    2013-10-15

    The present paper is a paradigm for the one-step formation of complex intermetallic coatings by chemical vapor deposition. It genuinely addresses the challenge of depositing an intermetallic coating with comparable contents of Cu and Al. Depending on processing conditions, a pure γ-Al{sub 4}Cu{sub 9} and multi-phase Al-Cu films are grown with wetting properties of the former being similar to its bulk counterpart. The deposition process and its parametric investigation are detailed. Two metalorganic precursors are used taking into account their transport and chemical properties, and deposition temperature ranges. On line and ex situ characterizations enlighten the competition which occurs at the growing surface between molecular fragments, and which limits growth rates. Notably, introducing a partial pressure of hydrogen gas during deposition reduces Al growth rate from dimethylethylamine alane (DMEAA), by displacing the hydrogen desorption equilibrium. This Al partial growth rate decrease is not sufficient to achieve a Cu/Al atomic ratio that is high enough for the formation of intermetallics with close Al and Cu compositions. A fivefold increase of the flux of the gaseous copper(I) cyclopentadienyl triethylphosphine CpCuPEt{sub 3}, whereas the DMEAA flux remains constant, results in the targeted Al/Cu atomic ratio equal to 44/56. Nevertheless, the global growth rate is rendered extremely low by the deposition inhibition caused by a massive phosphine adsorption (-PEt{sub 3}). Despite these limitations, the results pave the way towards the conformal coating of complex surface geometries by such intermetallic compounds.

  14. Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition of TbCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shuai, E-mail: gshuai@nimte.ac.cn; Zhang, Xiaofeng; Ding, Guangfei; Chen, Renjie; Yan, Aru [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Lee, Don [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); University of Dayton, Dayton, Ohio 45469 (United States)

    2014-05-07

    The chemical bath deposition (CBD) and the grain boundary diffusion method were combined to diffuse the heavy rare earth for obtain the thick magnets with high coercivity and low heavy rare earth. The jet mill powders were soaked into the alcohol solution of 0.2 wt. % TbCl{sub 3}. A thin layer of TbCl{sub 3} was wrapped to the surface of (PrNd){sub 2}Fe{sub 14}B powder particles. The coercivity of magnet is increased from 11.89 kOe to 14.72 kOe without significant reduction of remanence after grain boundary diffusion in the sintering and the annealing processes. The temperature coefficients of the remanence and the coercivity are improved by the substitution of PrNd by Tb in the surface of grains. The highly accelerated temperature/humidity stress test (HAST) results indicate that the CBD magnet has poor corrosion resistance, attributing to the present of Cl atoms in the grain boundaries.

  15. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites: Chapter K in Mineral Deposit Models for Resource Assessment

    Science.gov (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V).

  16. Optical properties and surface characterization of pulsed laser-deposited Cu2ZnSnS4 by spectroscopic ellipsometry

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt

    2015-01-01

    the dielectric function of the films. It is found that the surface overlayer changes with film thickness and deposition temperature. Adopting different ellipsometry measurements and modeling strategies for each film, dielectric functions are extracted and compared. As the deposition temperature is increased...

  17. Year-round atmospheric wet and dry deposition of nitrogen and phosphorus on water and land surfaces in Nanjing, China.

    Science.gov (United States)

    Sun, Liying; Li, Bo; Ma, Yuchun; Wang, Jinyang; Xiong, Zhengqin

    2013-06-01

    The dry deposition of ammonium, nitrate, and total phosphorus (TP) to both water (DW) and land (DD) surfaces, along with wet deposition, were simultaneously monitored from March 2009 to February 2011 in Nanjing, China. Results showed that wet deposition of total phosphorus was 1.1 kg phosphorus ha (-1)yr(-1), and inorganic nitrogen was 28.7 kg nitrogen ha (-1)yr(-1), with 43% being ammonium nitrogen. Dry deposition of ammonium, nitrate, and total phosphorus, measured by the DW/DD method, was 7.5/2.2 kg nitrogen ha (-1)yr(-1), 6.3/ 4.9 kg nitrogen ha (-1)yr(-1), and 1.9/0.4 kg phosphorus ha (-1)yr(-1), respectively. Significant differences between the DW and DD methods indicated that both methods should be employed simultaneously when analyzing deposition to aquatic and terrestrial ecosystems in watershed areas. The dry deposition of ammonium, nitrate, and total phosphorus contributed 38%, 28%, and 63%, respectively, to the total deposition in the simulated aquatic ecosystem; this has significance for the field of water eutrophication control.

  18. Influence of deposition time on the surface morphology and photoelectrochemical properties of copper doped titania nanotubes prepared by electrodeposition

    Science.gov (United States)

    Mahmud, M. A.; Chin, L. Y.; Khusaimi, Z.; Zainal, Z.

    2018-05-01

    A great attention has focused on Cu doped titania nanotubes (Cu/TiNT) as a versatile advance material since it can be employed in various promising technological applications. The current study reported on the influence of various deposition times on the surface morphology and photoelectrochemical properties of Cu/TiNT via electrodeposition technique. Cu loaded on the TiNT surface was detected with prolonged deposition time. For photoelectrochemical (PEC) measurement, the highest responsive photocurrent density was obtained at 20 minutes with 54.3 µA/cm2. Too long duration (40 mins) resulted in poor performance of Cu/TiNT as only 22.6 µA/cm2 of photocurrent being generated.

  19. Surficial uranium deposits: summary and conclusions

    International Nuclear Information System (INIS)

    Otton, J.K.

    1984-01-01

    Uranium occurs in a variety of surficial environments in calcretes, gypcretes, silcretes, dolocretes and in organic sediments. Groundwater moving on low gradients generates these formations and, under favourable circumstances, uranium deposits. A variety of geomorphic settings can be involved. Most surficial deposits are formed in desert, temperate wetland, tropical, or transitional environments. The largest deposits known are in sedimentary environments in arid lands. The deposits form largely by the interaction of ground or surface waters on the geomorphic surface in favourable geologic terrains and climates. The deposits are commonly in the condition of being formed or reconstituted, or being destroyed. Carnotite is common in desert deposits while in wetland deposits no uranium minerals may be seen. Radioactive disequilibrium is common, particularly in wetland deposits. Granites and related rocks are major source rocks and most large deposits are in regions with enriched uranium contents, i.e. significantly greater than 5 ppm uranium. Uranium dissolution and transport is usually under oxidizing conditions. Transport in desert conditions is usually as a bicarbonate. A variety of fixation mechanisms operate to extract the uranium and form the deposits. Physical barriers to groundwater flow may initiate ore deposition. Mining costs are likely to be low because of the near surface occurrence, but there may be processing difficulties as clay may be present and the saline or carbonate content may be high. (author)

  20. Atmospheric deposition 2000. NOVA 2003; Atmosfaerisk deposition 2000. NOVA 2003

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Hertel, O.; Hovmand, M.F.; Kemp, K.; Skjoeth, C.A.

    2001-11-01

    This report presents measurements and calculations from the atmospheric part of NOVA 2003 and covers results for 2000. It summarises the main results concerning concentrations and depositions of nitrogen, phosphorus and sulphur compounds related to eutrophication and acidification. Depositions of atmospheric compounds to Danish marine waters as well as land surface are presented. Measurements: In 2000 the monitoring program consisted of eight stations where wet deposition of ammonium, nitrate, phosphate (semi quantitatively) and sulphate were measured using bulk precipitation samplers. Six of the stations had in addition measurements of atmospheric content of A, nitrogen, phosphorus, and sulphur compounds in gas and particulate phase carried out by use of filter pack samplers. Filters were analysed at the National Environmental Research Institute. Furthermore nitrogen dioxide were measured using nitrogen dioxide filter samplers and monitors. Model calculations: The measurements in the monitoring program were supplemented with model calculations of concentrations and depositions of nitrogen and sulphur compounds to Danish land surface, marine waters, fjords and bays using the ACDEP model (Atmospheric Chemistry and Deposition). The model is a so-called trajectory model and simulates the physical and chemical processes in the atmosphere using meteorological and emission data as input. The advantage of combining measurements with model calculations is that the strengths of both methods is obtained. Conclusions concerning: 1) actual concentration levels at the monitoring stations, 2) deposition at the monitoring stations, 3) seasonal variations and 4) long term trends in concentrations and depositions are mainly based on the direct measurements. These are furthermore used to validate the results of the model calculations. Calculations and conclusions concerning: 1) depositions to land surface and to the individual marine water, 2) contributions from different emission

  1. A new temperature and humidity dependent surface site density approach for deposition ice nucleation

    OpenAIRE

    I. Steinke; C. Hoose; O. Möhler; P. Connolly; T. Leisner

    2014-01-01

    Deposition nucleation experiments with Arizona Test Dust (ATD) as a surrogate for mineral dusts were conducted at the AIDA cloud chamber at temperatures between 220 and 250 K. The influence of the aerosol size distribution and the cooling rate on the ice nucleation efficiencies was investigated. Ice nucleation active surface site (INAS) densities were calculated to quantify the ice nucleation efficiency as a function of temperature, humidity and the aerosol ...

  2. Hierarchically structured superhydrophobic coatings fabricated by successive Langmuir-Blodgett deposition of micro-/nano-sized particles and surface silanization.

    Science.gov (United States)

    Tsai, Ping-Szu; Yang, Yu-Min; Lee, Yuh-Lang

    2007-11-21

    The present study demonstrates the creation of a stable, superhydrophobic surface by coupling of successive Langmuir-Blodgett (LB) depositions of micro- and nano-sized (1.5 µm/50 nm, 1.0 µm/50 nm, and 0.5 µm/50 nm) silica particles on a glass substrate with the formation of a self-assembled monolayer of dodecyltrichlorosilane on the surface of the particulate film. Particulate films, in which one layer of 50 nm particles was deposited over one to five sublayers of larger micro-sized particles, with hierarchical surface roughness and superhydrophobicity, were successfully fabricated. Furthermore, the present 'two-scale' (micro- and nano-sized particles) approach is superior to the previous 'one-scale' (micro-sized particles) approach in that both higher advancing contact angle and lower contact angle hysteresis can be realized. Experimental results revealed that the superhydrophobicity exhibited by as-fabricated particulate films with different sublayer particle diameters increases in the order of 0.5 µm>1.0 µm>1.5 µm. However, no clear trend between sublayer number and surface superhydrophobicity could be discerned. An explanation of superhydrophobicity based on the surface roughness introduced by two-scale particles is also proposed.

  3. Simultaneous monitoring of biofilm growth, microbial activity, and inorganic deposits on surfaces with an in situ, online, real-time, non-destructive, optical sensor.

    Science.gov (United States)

    Strathmann, Martin; Mittenzwey, Klaus-Henrik; Sinn, Gert; Papadakis, Wassilios; Flemming, Hans-Curt

    2013-01-01

    Deposits on surfaces in water-bearing systems, also known as 'fouling', can lead to substantial losses in the performance of industrial processes as well as a decreased product quality. Early detection and localization of such deposits can, to a considerable extent, save such losses. However, most of the surfaces that become fouled, for example, in process water pipes, membrane systems, power plants, and food and beverage industries, are difficult to access and analyses conducted on the water phase do not reveal the site or extent of deposits. Furthermore, it is of interest to distinguish biological from non-biological deposits. Although they usually occur together, different countermeasures are necessary. Therefore, sensors are required that indicate the development of surface fouling in real-time, non-destructively, and in situ, preferably allowing for discrimination between chemical and/or biological deposits. In this paper, an optical deposit sensor is presented which fulfills these requirements. Based on multiple fluorescence excitation emission matrix analysis, it detects autofluorescence of amino acids as indicators of biomass. Autofluorescence of nicotinamide adenine dinucleotide + hydrogen is interpreted as an indicator of biological activity, thus it acts as a viability marker, making the method suited for assessing the efficacy of disinfection treatments. Scattering signals from abiotic deposits such as calcium carbonate or corrosion products can clearly be distinguished from biotic substances and monitored separately. The sensor provides an early warning of fouling, allowing for timely countermeasures to be deployed. It also provides an assessment of the success of cleaning treatments and is a promising tool for integrated antifouling strategies.

  4. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Jose Elisandro de; Machado, Rogerio; Macedo, Marcelo Andrade; Cunha, Frederico Guilherme Carvalho [Clinica de Medicina Nuclear e Radiologia de Maceio (MedRadiUS), Radiology and Imaging Diagnosis at Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil)

    2012-07-01

    In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA) epoxy resin cured at 150 deg C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM) in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD) at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111]. (author)

  5. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Jose Elisandro de; Machado, Rogerio; Macedo, Marcelo Andrade [Universidade Federal de Sergipe (UFSE), Aracaju, SE (Brazil). Programa de Pos-graduacao em Fisica; Cunha, Frederico Guilherme Carvalho [Universidade Federal de Sergipe (UFSE), Aracaju, SE (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais

    2012-07-01

    In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA) epoxy resin cured at 150 Degree-Sign C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM) in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD) at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111]. (author)

  6. AFM and XRD characterization of silver nanoparticles films deposited on the surface of DGEBA epoxy resin by ion sputtering

    Directory of Open Access Journals (Sweden)

    José Elisandro de Andrade

    2013-01-01

    Full Text Available In this work, silver atoms were deposited by ion sputtering on the surface of diglycidyl ether of bisphenol A (DGEBA epoxy resin cured at 150 °C for 6 hours in air. The films of DGEBA and its precursors were characterized by Raman spectroscopy to identify the main functional groups and their relationship with the deposited silver atoms. Silver thin films of 5, 10, 15 and 20 nm were deposited on the epoxy resin at room temperature. Both the initial film of DGEBA and the subsequent silver thin film were analyzed by Atomic Force Microscopy (AFM in the non-contact mode. Silver thin films were also analyzed using X-ray diffraction (XRD at room temperature. The AFM results showed the formation of silver crystallites on the surface of DGEBA at very low coverage whereas XRD indicated that most of them had their main axis aligned to the normal of the surface. An increase in the coverage led to an increase in the grain size as indicated by AFM. However, XRD results indicated that the crystallite size remained almost constant while the appearance of peaks corresponding to other crystalline orientations suggests the coalescence of the original crystallites and an increase in size of the more dense planes, namely [111].

  7. Vapor Phase Polymerization Deposition Conducting Polymer Nanocomposites on Porous Dielectric Surface as High Performance Electrode Materials

    Institute of Scientific and Technical Information of China (English)

    Ya jie Yang; Luning Zhang; Shibin Li; Zhiming Wang; Jianhua Xu; Wenyao Yang; Yadong Jiang

    2013-01-01

    We report chemical vapor phase polymerization(VPP) deposition of poly(3,4-ethylenedioxythiophene)(PEDOT) and PEDOT/graphene on porous dielectric tantalum pentoxide(Ta2O5) surface as cathode films for solid tantalum electrolyte capacitors. The modified oxidant/oxidant-graphene films were first deposited on Ta2O5 by dip-coating, and VPP process was subsequently utilized to transfer oxidant/oxidant-graphene into PEDOT/PEDOT-graphene films. The SEM images showed PEDOT/PEDOT-graphene films was successfully constructed on porous Ta2O5 surface through VPP deposition, and a solid tantalum electrolyte capacitor with conducting polymer-graphene nano-composites as cathode films was constructed. The high conductivity nature of PEDOT-graphene leads to resistance decrease of cathode films and lower contact resistance between PEDOT/graphene and carbon paste. This nano-composite cathode films based capacitor showed ultralow equivalent series resistance(ESR) ca. 12 m? and exhibited excellent capacitance-frequency performance, which can keep 82% of initial capacitance at 500 KHz. The investigation on leakage current revealed that the device encapsulation process has no influence on capacitor leakage current, indicating the excellent mechanical strength of PEDOT/PEDOT-gaphene films. This high conductivity and mechanical strength of graphene-based polymer films shows promising future for electrode materials such as capacitors, organic solar cells and electrochemical energy storage devices.

  8. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics

    Science.gov (United States)

    Kogarko, L. N.; Lahaye, Y.; Brey, G. P.

    2010-03-01

    The two world’s largest complexes of highly alkaline nepheline syenites and related rare metal loparite and eudialyte deposits, the Khibina and Lovozero massifs, occur in the central part of the Kola Peninsula. We measured for the first time in situ the trace element concentrations and the Sr, Nd and Hf isotope ratios by LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) in loparite, eudialyte an in some other pegmatitic minerals. The results are in aggreement with the whole rock Sr and Nd isotope which suggests the formation of these superlarge rare metal deposits in a magmatic closed system. The initial Hf, Sr, Nd isotope ratios are similar to the isotopic signatures of OIB indicating depleted mantle as a source. This leads to the suggestion that the origin of these gigantic alkaline intrusions is connected to a deep seated mantle source—possibly to a lower mantle plume. The required combination of a depleted mantle and high rare metal enrichment in the source can be explained by the input of incompatible elements by metasomatising melts/fluids into the zones of alkaline magma generation shortly before the partial melting event (to avoid ingrowth of radiogenic isotopes). The minerals belovite and pyrochlore from the pegmatites are abnormally high in 87Sr /86Sr ratios. This may be explained by closed system isotope evolution as a result of a significant increase in Rb/Sr during the evolution of the peralkaline magma.

  9. Dry deposition of gaseous oxidized mercury in Western Maryland.

    Science.gov (United States)

    Castro, Mark S; Moore, Chris; Sherwell, John; Brooks, Steve B

    2012-02-15

    The purpose of this study was to directly measure the dry deposition of gaseous oxidized mercury (GOM) in western Maryland. Annual estimates were made using passive ion-exchange surrogate surfaces and a resistance model. Surrogate surfaces were deployed for seventeen weekly sampling periods between September 2009 and October 2010. Dry deposition rates from surrogate surfaces ranged from 80 to 1512 pgm(-2)h(-1). GOM dry deposition rates were strongly correlated (r(2)=0.75) with the weekly average atmospheric GOM concentrations, which ranged from 2.3 to 34.1 pgm(-3). Dry deposition of GOM could be predicted from the ambient air concentrations of GOM using this equation: GOM dry deposition (pgm(-2)h(-1))=43.2 × GOM concentration-80.3. Dry deposition velocities computed using GOM concentrations and surrogate surface GOM dry deposition rates, ranged from 0.2 to 1.7 cms(-1). Modeled dry deposition rates were highly correlated (r(2)=0.80) with surrogate surface dry deposition rates. Using the overall weekly average surrogate surface dry deposition rate (369 ± 340 pg m(-2)h(-1)), we estimated an annual GOM dry deposition rate of 3.2 μg m(-2)year(-1). Using the resistance model, we estimated an annual GOM dry deposition rate of 3.5 μg m(-2)year(-1). Our annual GOM dry deposition rates were similar to the dry deposition (3.3 μg m(-2)h(-1)) of gaseous elemental mercury (GEM) at our site. In addition, annual GOM dry deposition was approximately 1/2 of the average annual wet deposition of total mercury (7.7 ± 1.9 μg m(-2)year(-1)) at our site. Total annual mercury deposition from dry deposition of GOM and GEM and wet deposition was approximately 14.4 μg m(-2)year(-1), which was similar to the average annual litterfall deposition (15 ± 2.1 μg m(-2)year(-1)) of mercury, which was also measured at our site. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Crud deposition on fuel in WWER reactors

    International Nuclear Information System (INIS)

    Kysela, J.; Svarc, V.; Androva, K.; Ruzickova, M.

    2008-01-01

    Reliability of nuclear fuel and radiation fields surrounding primary systems are important aspects of overall nuclear reactor safety. Corrosion product (crud) deposition on fuel surfaces has implications for fuel performance through heat transfer and local chemistry modifications. Crud is currently one of the key industry issues and has been implicated in several recent cases of crud-related fuel failures and core plugging. Activated crud is deposited on out-of-core surfaces, mainly steam generators, resulting in high radiation fields and high doses of plant staff. Due to radiation build-up in primary circuit systems, decontamination of primary systems components and steam generators is used. Several issues involving decontamination were observed in some cases. After decontamination higher corrosion product release occurs followed by subsequent crud deposition on fuel surfaces. The paper summarizes experience with water chemistry and decontamination that can influence crud deposition on fuel surfaces. The following areas are discussed: 1) Experience with crud deposition, primary water chemistry and decontamination under operating conditions; 2) The behaviour of organic compounds in primary coolant and on fuel surfaces; 3) A proposed experimental programme to study crud deposition. (authors)

  11. Plasma-polymerized perfluoro(methylcyclohexane) coating on ethylene propylene diene elastomer surface: Effect of plasma processing condition on the deposition kinetics, morphology and surface energy of the film

    International Nuclear Information System (INIS)

    Tran, N.D.; Dutta, N.K.; Choudhury, N. Roy

    2005-01-01

    Plasma polymerization of perfluoro (methylcyclohexane) was carried out under cold plasma process operated at 13.56 MHz to deposit pore-free, uniform, ultra-thin film on an ethylene propylene diene terpolymer (EPDM) substrate in a view to modify the surface characteristics. The plasma fluoropolymeric films were formed at different plasma treatment times (from 20 s to 16 min), applied powers (20 to 100 W) and precursor flow rates to produce high quality films in a controllable yet tunable fashion. Scanning electron microscopy was employed successfully to characterize the evolution of the morphological feature in the film and also to determine the thickness of the coating. The surface energy of the film was determined by sessile drop method using different solvents as probe liquids. It is observed that a pore-free homogeneous plasma polymer thin film is formed within 20 s of treatment time, however, the morphology of the film depends on the plasma processing conditions, such as plasma power, precursor flow rate and deposition time. With increased time and power at a constant flow rate, the morphology of the film progressively changes from flat smooth to globular and rough. The kinetics and activation energy of the plasma polymer film deposition process were also estimated. The surface energy of the EPDM substrate decreased dramatically with plasma coating, however, it appears to be independent of the treatment time

  12. Uniform deposition of size-selected clusters using Lissajous scanning

    International Nuclear Information System (INIS)

    Beniya, Atsushi; Watanabe, Yoshihide; Hirata, Hirohito

    2016-01-01

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonal directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt n (n = 7, 15, 20) clusters uniformly deposited on the Al 2 O 3 /NiAl(110) surface and demonstrated the importance of uniform deposition.

  13. Uniform deposition of size-selected clusters using Lissajous scanning

    Energy Technology Data Exchange (ETDEWEB)

    Beniya, Atsushi; Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Hirata, Hirohito [Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan)

    2016-05-15

    Size-selected clusters can be deposited on the surface using size-selected cluster ion beams. However, because of the cross-sectional intensity distribution of the ion beam, it is difficult to define the coverage of the deposited clusters. The aggregation probability of the cluster depends on coverage, whereas cluster size on the surface depends on the position, despite the size-selected clusters are deposited. It is crucial, therefore, to deposit clusters uniformly on the surface. In this study, size-selected clusters were deposited uniformly on surfaces by scanning the cluster ions in the form of Lissajous pattern. Two sets of deflector electrodes set in orthogonal directions were placed in front of the sample surface. Triangular waves were applied to the electrodes with an irrational frequency ratio to ensure that the ion trajectory filled the sample surface. The advantages of this method are simplicity and low cost of setup compared with raster scanning method. The authors further investigated CO adsorption on size-selected Pt{sub n} (n = 7, 15, 20) clusters uniformly deposited on the Al{sub 2}O{sub 3}/NiAl(110) surface and demonstrated the importance of uniform deposition.

  14. Mechanisms of desorption of 134Cs and 85Sr aerosols deposited on urban surfaces

    International Nuclear Information System (INIS)

    Real, J.; Persin, F.; Camarasa-Claret, C.

    2002-01-01

    The radioactive isotopes of cesium and strontium may be deposited on urban surfaces in the case of an accidental atmospheric discharge from a nuclear facility and thus imply a health hazard. In order to handle the decontamination of these surfaces, we have carried out experiments under controlled conditions on tiles and concrete and we have studied the physical and chemical mechanisms at the solid-liquid interface. The deposition of radionuclides was carried out in the form of aerosols indicating an accidental source term. Their desorption by rainwater is low in all cases, of the order of 5-6% for cesium for any material and 29 and 12% for strontium on tile and concrete, respectively. The low desorption values of cesium may be explained by the strong bonding that occurs with the silicates constituting the tile due to virtually irreversible processes of exchange of ions and by the formation of insoluble complexes with the C-S-H gel of concrete. The strontium-tile bonds are weaker, while strontium precipitates with the carbonates of concrete in the form of SrCO 3 . In view of these characteristics, washing solutions with high concentrations of chloride and oxalate of ammonium chosen for their ion-exchanging and sequestering properties were tested on these surfaces. The desorption of cesium improved strongly since it reached 70% on tile and 90% on concrete after 24 h of contact, which is consistent with our knowledge of the bonds between this element and the surfaces. Strontium, given the greater complexity of physical and chemical forms that it may take is less well desorbed. The ammonium chloride improves the desorption (50% and 40%, for tile and concrete, respectively) but the oxalate, while it does not affect desorption on the tiles, decreases that on the concrete since by strongly etching the concrete, it causes the release of carbonate ions that precipitate with strontium

  15. Laser-Aided Directed Energy Deposition of Steel Powder over Flat Surfaces and Edges.

    Science.gov (United States)

    Caiazzo, Fabrizia; Alfieri, Vittorio

    2018-03-16

    In the framework of Additive Manufacturing of metals, Directed Energy Deposition of steel powder over flat surfaces and edges has been investigated in this paper. The aims are the repair and overhaul of actual, worn-out, high price sensitive metal components. A full-factorial experimental plan has been arranged, the results have been discussed in terms of geometry, microhardness and thermal affection as functions of the main governing parameters, laser power, scanning speed and mass flow rate; dilution and catching efficiency have been evaluated as well to compare quality and effectiveness of the process under conditions of both flat and edge depositions. Convincing results are presented to give grounds for shifting the process to actual applications: namely, no cracks or pores have been found in random cross-sections of the samples in the processing window. Interestingly an effect of the scanning conditions has been proven on the resulting hardness in the fusion zone; therefore, the mechanical characteristics are expected to depend on the processing parameters.

  16. Radionuclide deposition control

    International Nuclear Information System (INIS)

    1980-01-01

    A method is described for controlling the deposition, on to the surfaces of reactor components, of the radionuclides manganese-54, cobalt-58 and cobalt-60 from a liquid stream containing the radionuclides. The method consists of disposing a getter material (nickel) in the liquid stream, and a non-getter material (tantalum, tungsten or molybdenum) as a coating on the surfaces where deposition is not desired. The process is described with special reference to its use in the coolant circuit in sodium cooled fast breeder reactors. (U.K.)

  17. Determination of the composition of surface optical layers prepared with the use of rare earth and zirconium oxides

    International Nuclear Information System (INIS)

    Mishchenko, V.T.; Shilova, L.P.; Shkol'nikova, T.M.

    1991-01-01

    Simple titrimetric and gravimetric methods for determination of optical oxide layers (rare earth and zirconium oxides), sputtered on glass or quartz sublayer, have been developed. The minimal determined oxide mass in surface layers is equal to 0.01 mg in titrimetric determination and 0.1 mg - in gravimetric one. It is shown that composition of films and pellets, used for film sputtering, is identical

  18. Carbon nanotubes/ceria composite layers deposited on surface acoustic wave devices for gas detection at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    David, M., E-mail: marjorie.david@univ-tln.fr [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France); Arab, M.; Martino, C. [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France); Delmas, L. [SENSeOR, Sophia Antipolis, 06250 Mougins (France); Guinneton, F.; Gavarri, J.-R. [Universite du Sud Toulon, Var, IM2NP, UMR CNRS 6242, BP 20132. F 83 957 LA GARDE (France)

    2012-05-01

    Surface acoustic wave (SAW) sensor on ATquartz piezoelectric substrate has been designed and fabricated. Test devices were based on asynchronous single-port resonators operating near the 434-MHz-centered industrial, scientific, and medical band. Multi-Walled Carbon Nanotubes/Ceria (MWNTs/CeO{sub 2}) nanocomposites were used as sensitive layers. The MWNTs were synthesized by catalytic chemical vapor deposition method and coated with nanosized ceria oxide. The composites were deposited on SAW quartz resonator using air-brush technique. MWNTs/CeO{sub 2} nanocomposites were characterized using X-ray diffraction, transmission electron and atomic force microscopy. The sensor responses were tested under acetone (C{sub 3}H{sub 5}OH) and ethanol (C{sub 2}H{sub 5}OH) gases. The output signal was done by S{sub 11} parameter of the SAW device and was monitored using a network analyzer. Frequency changes were observed under acetone and ethanol vapors. These changes depended on the surface conductivity of the nanocomposites deposited on the sensor. The single-port SAW gas sensor coated with the MWNTs/CeO{sub 2} presented the highest sensitivity in the case of acetone vapor interacting with these layers, with a frequency shift of 200 kHz at room temperature.

  19. COPDIRC - calculation of particle deposition in reactor coolants

    International Nuclear Information System (INIS)

    Reeks, M.W.

    1982-06-01

    A description is given of a computer code COPDIRC intended for the calculation of the deposition of particulate onto smooth perfectly sticky surfaces in a gas cooled reactor coolant. The deposition is assumed to be limited by transport in the boundary layer adjacent to the depositing surface. This implies that the deposition velocity normalised with respect to the local friction velocity, is an almost universal function of the normalised particle relaxation time. Deposition is assumed similar to deposition in an equivalent smooth perfectly absorbing pipe. The deposition is calculated using 2 models. (author)

  20. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    International Nuclear Information System (INIS)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D

    2008-01-01

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH i ) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH i values were dependent on the total surface area of the particulates, indicating that no unique threshold RH i for ice nucleation prevails

  1. Ice formation via deposition nucleation on mineral dust and organics: dependence of onset relative humidity on total particulate surface area

    Energy Technology Data Exchange (ETDEWEB)

    Kanji, Zamin A; Florea, Octavian; Abbatt, Jonathan P D [Department of Chemistry, University of Toronto, 80 St George Street, Toronto, ON, M5S 3H6 (Canada)], E-mail: zkanji@chem.utoronto.ca

    2008-04-15

    We present ice nucleation results for Arizona test dust, kaolinite, montmorillonite, silica, silica coated with a hydrophobic octyl chain, oxalic acid dihydrate, Gascoyne leonardite (a humic material), and Aldrich humic acid (sodium salt). The focus was on deposition mode nucleation below water saturation at 233 K. Particles were deposited onto a hydrophobic cold stage by atomization of a slurry/solution and exposed to a constant partial pressure of water vapor. By lowering the temperature of the stage, the relative humidity with respect to ice (RH{sub i}) was gradually increased until ice nucleation was observed using digital photography. Different numbers of particles were deposited onto the cold stage by varying the atomization solution concentration and deposition time. For the same total particulate surface area, mineral dust particles nucleated ice at lower supersaturations than all other materials. The most hydrophobic materials, i.e. Gascoyne leonardite and octyl silica, were the least active. For our limit of detection of one ice crystal, the ice onset RH{sub i} values were dependent on the total surface area of the particulates, indicating that no unique threshold RH{sub i} for ice nucleation prevails.

  2. RF-plasma vapor deposition of siloxane on paper. Part 1: Physical evolution of paper surface

    Science.gov (United States)

    Sahin, Halil Turgut

    2013-01-01

    An alternative, new approach to improve the hydrophobicity and barrier properties of paper was evaluated by radio-frequency (RF) plasma octamethylcyclotetrasiloxane (OMCTSO) vapor treatment. The interaction between OMCTSO and paper, causing the increased hydophobicity, is likely through covalent bonding. The deposited thin silicone-like polymeric layer from OMCTSO plasma treatment possessed desirable hydrophobic properties. The SEM micrographs showed uniformly distributed grainy particles with various shapes on the paper surface. Deposition of the silicone polymer-like layer with the plasma treatment affects the distribution of voids in the network structure and increases the barrier against water intake and air. The water absorptivity was reduced by 44% for the OMCTSO plasma treated sheet. The highest resistance to air flow was an approximately 41% lower air permeability than virgin paper.

  3. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.W., E-mail: lynnww@sohu.com [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China); Li, J.X. [Tianjin Polytechnic University, Tianjin 300160 (China); Gao, C.Y. [Chinese Peoples Armed Police Forces Academy, Langfang 065000 (China); Chang, M. [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China)

    2011-10-15

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  4. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    International Nuclear Information System (INIS)

    Li, X.W.; Li, J.X.; Gao, C.Y.; Chang, M.

    2011-01-01

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  5. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    Science.gov (United States)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  6. Rare earth element mineralogy, geochemistry, and preliminary resource assessment of the Khanneshin carbonatite complex, Helmand Province, Afghanistan

    Science.gov (United States)

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Buttleman, Kim P.

    2011-01-01

    There is increased concern about the future availability of rare earth elements (REE) because of China's dominance as the supplier of more than 95 percent of world REE output, their decision to restrict exports of rare earth products, and the rapid increase in world-wide consumption of rare earth product. As a result, countries such as the United States, Japan, and member nations of the European Union face a future of tight supplies and high prices for rare earth products unless other sources of REE are found and developed (Long and others, 2010; U.S. Geological Survey, 2011, p. 128-129, 184-185). We report and describe a significant new deposit of light rare earth elements (LREE), estimated at 1 Mt, within the Khanneshin carbonatite complex of south Afghanistan. The potential resource is located in a remote and rugged part of the igneous complex in a region previously identified by Soviet geologists in the 1970s. This report reviews the geologic setting of LREE deposit, presents new geochemical data documenting the grade of LREE mineralization, briefly describes the mineralogy and mineralogical associations of the deposit, and presents a preliminary estimate of LREE resources based on our current understanding of the geology.

  7. Native oxide transport and removal during the atomic layer deposition of Ta{sub 2}O{sub 5} on InAs(100) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Henegar, Alex J.; Gougousi, Theodosia, E-mail: gougousi@umbc.edu [Department of Physics, UMBC, Baltimore, Maryland 21250 (United States)

    2016-05-15

    Atomic layer deposition (ALD) was used to deposit Ta{sub 2}O{sub 5} on etched and native oxide-covered InAs(100) using pentakis dimethyl amino tantalum and H{sub 2}O at 200–300 °C. The transport and removal of the native oxides during the ALD process was investigated using x-ray photoelectron spectroscopy (XPS). Depositions above 200 °C on etched surfaces protected the interface from reoxidation. On native oxide-covered surfaces, depositions resulted in enhanced native oxide removal at higher temperatures. The arsenic oxides were completely removed above 250 °C after 3 nm of film growth, but some of the As{sub 2}O{sub 3} remained in the film at lower temperatures. Angle-resolved and sputter depth profiling XPS confirmed indium and arsenic oxide migration into the Ta{sub 2}O{sub 5} film at deposition temperatures as low as 200 °C. Continuous removal of both arsenic and indium oxides was confirmed even after the deposition of several monolayers of a coalesced Ta{sub 2}O{sub 5} film, and it was demonstrated that native oxide transport is a prevalent component of the interface “clean-up” mechanism.

  8. New perspectives on rare connective tissue calcifying diseases.

    Science.gov (United States)

    Rashdan, Nabil A; Rutsch, Frank; Kempf, Hervé; Váradi, András; Lefthériotis, Georges; MacRae, Vicky E

    2016-06-01

    Connective tissue calcifying diseases (CTCs) are characterized by abnormal calcium deposition in connective tissues. CTCs are caused by multiple factors including chronic diseases (Type II diabetes mellitus, chronic kidney disease), the use of pharmaceuticals (e.g. warfarin, glucocorticoids) and inherited rare genetic diseases such as pseudoxanthoma elasticum (PXE), generalized arterial calcification in infancy (GACI) and Keutel syndrome (KTLS). This review explores our current knowledge of these rare inherited CTCs, and highlights the most promising avenues for pharmaceutical intervention. Advancing our understanding of rare inherited forms of CTC is not only essential for the development of therapeutic strategies for patients suffering from these diseases, but also fundamental to delineating the mechanisms underpinning acquired chronic forms of CTC. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Engineering of microorganisms towards recovery of rare metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Kouichi; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2010-06-15

    The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/ peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved. (orig.)

  10. Flow of groundwater from great depths into the near surface deposits - modelling of a local domain in northeast Uppland

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Forsman, Jonas

    2005-01-01

    Purpose: To study the flow of groundwater from rock masses at great depths and into the surface near deposits by use of mathematical models; and to estimate the spatial and temporal distribution of groundwater from great depths in the surface near deposits (quaternary deposits). The study is about the hydraulic interaction between the geosphere and the biosphere. Methodology: The system studied is represented by time dependent three dimensional mathematical models. The models include groundwater flows in the rock mass and in the quaternary deposits as well as surface water flows. The established groundwater models have such a resolution (degree of detail) that both rock masses at great depth and near surface deposits are included in the flow system studied. The modelling includes simulations under both steady state conditions and transient conditions The transient simulations represents the varying state of the groundwater system studied, caused by the variation in hydro-meteorological conditions during a normal year, a wet-year and a dry-year. The boundary condition along the topography of the model is a non-linear boundary condition, representing the ground surface above the sea and the varying actual groundwater recharge. Area studied: The area studied is located in Sweden, in the Northeast of the Uppland province, close to the Forsmark nuclear power plant. Water balance modelling: To obtain three significantly different groundwater recharge periods for the transient groundwater flow simulations a water balance modelling was carried out based on a statistical analysis of available hydro-meteorological data. To obtain a temporal distribution of the runoff (i.e. potential groundwater recharge), we have conducted a numerical time dependent water balance modelling. General conclusions of groundwater modelling: The discharge areas for the flow paths from great depth are given by the topography and located along valleys and lakes; the spatial and temporal extension of

  11. Flow of groundwater from great depths into the near surface deposits - modelling of a local domain in northeast Uppland

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Johan G.; Forsman, Jonas [Golder Associates, Stockholm (Sweden)

    2005-01-15

    Purpose: To study the flow of groundwater from rock masses at great depths and into the surface near deposits by use of mathematical models; and to estimate the spatial and temporal distribution of groundwater from great depths in the surface near deposits (quaternary deposits). The study is about the hydraulic interaction between the geosphere and the biosphere. Methodology: The system studied is represented by time dependent three dimensional mathematical models. The models include groundwater flows in the rock mass and in the quaternary deposits as well as surface water flows. The established groundwater models have such a resolution (degree of detail) that both rock masses at great depth and near surface deposits are included in the flow system studied. The modelling includes simulations under both steady state conditions and transient conditions The transient simulations represents the varying state of the groundwater system studied, caused by the variation in hydro-meteorological conditions during a normal year, a wet-year and a dry-year. The boundary condition along the topography of the model is a non-linear boundary condition, representing the ground surface above the sea and the varying actual groundwater recharge. Area studied: The area studied is located in Sweden, in the Northeast of the Uppland province, close to the Forsmark nuclear power plant. Water balance modelling: To obtain three significantly different groundwater recharge periods for the transient groundwater flow simulations a water balance modelling was carried out based on a statistical analysis of available hydro-meteorological data. To obtain a temporal distribution of the runoff (i.e. potential groundwater recharge), we have conducted a numerical time dependent water balance modelling. General conclusions of groundwater modelling: The discharge areas for the flow paths from great depth are given by the topography and located along valleys and lakes; the spatial and temporal extension of

  12. Vein-type uranium deposits

    International Nuclear Information System (INIS)

    Rich, R.A.; Holland, H.D.; Petersen, U.

    1975-01-01

    A critical review is presented of published data bearing on the mineralogy, paragenesis, geochemistry, and origin of veiw-type uranium deposits. Its aim is to serve as a starting point for new research and as a basis for the development of new exploration strategies. During the formation of both vein and sandstone types of deposits uranium seems to have been dissolved by and transported in rather oxidized solutions, and deposited where these solutions encountered reducing agents such as carbon, sulfides, ferrous minerals and hydrocarbons. Granitic rocks abnormally enriched in uranium have apparently been the most common source for uranium in vein-type deposits. Oxidizing solutions have been derived either from the surface or from depth. Surface solutions saturated with atmospheric oxygen have frequently passed through red bed or clean sandstone conduits on their way to and from uranium source rocks. Deep solutions of non-surface origin have apparently become sufficiently oxidizing by passage through and equilibration with red beds. The common association of clean sandstones or red beds with uranium-rich granites in the vicinity of vein-type uranium deposits is probably not fortuitous, and areas where these rock types are found together are considered particularly favorable targets for uranium exploration

  13. Surface Textural Analysis of Quartz Grains from Modern Point Bar Deposits in Lower Reaches of the Yellow River

    Science.gov (United States)

    Cheng, Yong; Liu, Cong; Lu, Ping; Zhang, Yu; Nie, Qi; Wen, Yiming

    2018-01-01

    The surfaces of quartz grains contain characteristic textures formed during the process of transport, due to their stable physical and chemical properties. The surface textures include the information about source area, transporting force, sedimentary environment and evolution history of sediment. Surface textures of quartz grains from modern point bar deposits in the lower reaches of the Yellow River are observed and studied by scanning electron microscopy (SEM). Results indicate that there are 22 kinds of surface textures. The overall surface morphology of quartz grains shows short transporting time and distance and weak abrasive action of the river water. The combined surface textures caused by mechanical action indicate that quartz grains are transporting in a high-energy hydrodynamic condition and suffer a strong mechanical impact and abrasion. The common solution pits prove that the chemical property of transportation medium is very active and quartz grains receive an obvious chemical action. The combination of these surface textures can be an identification mark of fluvial environment, and that is: quartz grains are main subangular outline, whose roundness is higher with the farther motion distance; Surface fluctuation degree of quartz grains is relatively high, and gives priority to high and medium relief; V-shaped percussion marks are very abundant caused by mechanical action; The conchoidal of different sizes and steps are common-developed with paragenesis relationship; Solution pits are common-developed as well. The study makes up for the blank of surface textures analysis of quartz grains from modern fluvial deposits in China. It provides new ideas and evidence for studies of the sedimentary process and environmental significance, although the deep meanings of these micro textures remain to be further researched.

  14. Annealed coated air-stable cobalt--rare earth alloy particles

    International Nuclear Information System (INIS)

    Smeggil, J.C.; Charles, R.J.

    1975-01-01

    A process is described for producing novel air-stable coated particles of a magnetic transition metal-rare earth alloy. An organometallic compound which decomposes at a temperature below 500 0 C is heated to produce a metal vapor which is contacted with particles of a transition metal-rare earth alloy to deposit a metal coating thereon. The coated particles are heated at a temperature ranging from 50 to 200 0 C for a period of time sufficient to increase their intrinsic coercive force by at least 10 percent. (U.S.)

  15. Surface passivation of n-type doped black silicon by atomic-layer-deposited SiO2/Al2O3 stacks

    Science.gov (United States)

    van de Loo, B. W. H.; Ingenito, A.; Verheijen, M. A.; Isabella, O.; Zeman, M.; Kessels, W. M. M.

    2017-06-01

    Black silicon (b-Si) nanotextures can significantly enhance the light absorption of crystalline silicon solar cells. Nevertheless, for a successful application of b-Si textures in industrially relevant solar cell architectures, it is imperative that charge-carrier recombination at particularly highly n-type doped black Si surfaces is further suppressed. In this work, this issue is addressed through systematically studying lowly and highly doped b-Si surfaces, which are passivated by atomic-layer-deposited Al2O3 films or SiO2/Al2O3 stacks. In lowly doped b-Si textures, a very low surface recombination prefactor of 16 fA/cm2 was found after surface passivation by Al2O3. The excellent passivation was achieved after a dedicated wet-chemical treatment prior to surface passivation, which removed structural defects which resided below the b-Si surface. On highly n-type doped b-Si, the SiO2/Al2O3 stacks result in a considerable improvement in surface passivation compared to the Al2O3 single layers. The atomic-layer-deposited SiO2/Al2O3 stacks therefore provide a low-temperature, industrially viable passivation method, enabling the application of highly n- type doped b-Si nanotextures in industrial silicon solar cells.

  16. The need for verification of the Polish lignite deposits owing to development and nature conservation protection on land at the surface

    Directory of Open Access Journals (Sweden)

    Naworyta Wojciech

    2016-12-01

    Full Text Available Poland is a country rich in lignite. The area where the lignite occurs occupies approx. 22% of the total surface area of the country. Geological resources of Polish lignite deposits are estimated at 23.5 billion Mg, but in the majority (69% the accuracy of their identification is poor. Nevertheless the amount of coal in Polish deposits allows - at least in theory - for mining and energy production at the current level for hundreds of years to come. It is an important raw material for the energy security of the country both currently and in the future. Because the vast majority of Polish and foreign mines use an open pit method for lignite extraction the actual amount of mineral available for the extraction depends not only on the properties of the deposit but to a large extent on the method of development of the surface land above the deposit, as well as on the sensitivity of the environment in the vicinity of any future mines. After careful analysis it can be stated that only a few of the lignite deposits may be subject to cost-effective mining operations. These deposits should be subjected to special protection as a future resource base which will ensure the energy security of the country. Some examples of domestic deposits have been presented where due to the conflict resulting from the development of the area should be deleted from the Balance Sheet of Mineral Deposits because their exploitation is irrational and uneconomic. Keeping such deposits in the Balance Sheet, and the use of large numbers in the context of their resource base leads to an unwarranted sense of wealth which consequently does not encourage the protection of these deposits which may actually be subject to rational exploitation in the near future. In summary there is a need to find a compromise in order to adequately protect all natural resources including mineral deposits.

  17. Deposits on heat exchanging surfaces, causes in the bleaching process and countermeasures; Belaeggningar paa vaermevaexlare, orsaker i blekprocessen och aatgaerder

    Energy Technology Data Exchange (ETDEWEB)

    Bjurstroem, Henrik [AaF-Energi och Miljoe AB, Stockholm (Sweden); Staahl, Charlotte; Widell, Lars [AaF-Celpap AB, Stockholm (Sweden)

    2003-06-01

    Energy conservation in process industry implies to a large extent recovery of heat (or cold) from a process stream and its utilization for another process stream. The savings of energy that can be achieved depend on the process streams, but also on the efficiency of the heat exchange. A small driving temperature difference is a condition for an extensive recovery and a satisfactory preservation of its quality, i.e. its temperature. As process streams contain compounds or components that can precipitate and form deposits on heat exchanging surfaces, the recovery of heat is degraded. In the pulp and paper industry, two trends combine to increase the extent of fouling: a larger degree of closure for the process and a change in pH-profile caused by a switch to elementary chlorine free bleaching. In this study, the occurrence of deposits has been investigated for the mills that produce mechanical pulp and for the fiber line in mills producing chemical pulp. Deposits on the evaporator surfaces are treated in a parallel study. Except for some plants, deposits are not an important problem today. That does not mean that there has not been any problem or that problems will not occur. The origin of deposits lies in the chemistry of the process, but deposits have consequences for the thermal energy management. A list of possible actions in order to avoid deposits or to mitigate their consequences has been dressed in this report. They should be considered with the following order of priority: avoiding that the compounds that may form deposits enter at all the process, section 6.1; avoiding that these compounds form a deposit once they have entered the process, section 6.2; cleaning if nothing else helps or costs too much, section 6.3. Some of these methods are well known or are conventional changes in the processes. Some of these methods are less well proven or less well documented. In a longer time perspective, the kidney technology that is being developed could contribute to

  18. Surface adhesion study of La2O3 thin film on Si and glass substrate for micro-flexography printing

    Science.gov (United States)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2017-01-01

    Adhesive property can be described as an interchangeably with some ink and substance which was applied to one surface of two separate items that bonded together. Lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent or printing ink. This metal deposit was embedded on Silica (Si) wafer and glass substrate using Magnetron Sputtering technique. The choose of Lanthanum oxide as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer and glass substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). This research will focus on 3 narrow scan regions which are C 1s, O 1s and La 3d. Further discussion of the spectrum evaluation will be discussed in detail. Here, it is proposed that from the adhesive and surface chemical properties of La is the best on glass substrate which suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal in a practice of micro-flexography printing.

  19. Deposition characteristics of titanium coating deposited on SiC fiber by cold-wall chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian, E-mail: luo_shenfan@hotmail.com; Wu, Shuai; Yang, Yan-qing; Jin, Na; Liu, Shuai; Huang, Bin

    2016-12-01

    The deposition characteristics of titanium coating on SiC fiber using TiCl{sub 4}-H{sub 2}-Ar gas mixture in a cold-wall chemical vapor deposition were studied by the combination of thermodynamic analysis and experimental studies. The thermodynamic analysis of the reactions in the TiCl{sub 4}-H{sub 2}-Ar system indicates that TiCl{sub 4} transforms to titanium as the following paths: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. The experimental results show that typical deposited coating contains two distinct layers: a TiC reaction layer close to SiC fiber and titanium coating which has an atomic percentage of titanium more than 70% and that of carbon lower than 30%. The results illustrate that a carbon diffusion barrier coating needs to be deposited if pure titanium is to be prepared. The deposition rate increases with the increase of temperature, but higher temperature has a negative effect on the surface uniformity of titanium coating. In addition, appropriate argon gas flow rate has a positive effect on smoothing the surface morphology of the coating. - Highlights: • Both thermodynamic analysis and experimental studies were adopted in this work. • The transformation paths of TiCl{sub 4} to Ti is: TiCl{sub 4} → TiCl{sub 3} → Ti, or TiCl{sub 4} → TiCl{sub 3} → TiCl{sub 2} → Ti. • Typical deposited Ti coating on SiC fiber contained two distinct layers. • Deposition temperature is important on deposition rate and morphologies. • Appropriate argon gas flow rate has a positive effect on smoothing of the coating.

  20. Adsorption and revaporisation studies on iodine oxide aerosols deposited on containment surface materials in LWR

    Energy Technology Data Exchange (ETDEWEB)

    Tietze, S.; Foreman, M.R.StJ.; Ekberg, C. [Chalmers Univ. of Technology, Goeteborg (Sweden); Kaerkelae, T.; Auvinen, A.; Tapper, U.; Lamminmaeki, S.; Jokiniemi, J. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-12-15

    During a hypothetical severe nuclear accident, the radiation field will be very high in the nuclear reactor containment building. As a result gaseous radiolysis products will be formed. Elemental iodine can react in the gaseous phase with ozone to form solid iodine oxide aerosol particles (iodine oxide). Within the AIAS (Adsorption of Iodine oxide Aerosols on Surfaces) project the interactions of iodine oxide (IOx) aerosols with common containment surface materials were investigated. Common surface materials in Swedish and Finnish LWRs are Teknopox Aqua V A paint films and metal surfaces such as Cu, Zn, Al and SS, as well as Pt and Pd surfaces from hydrogen recombiners. Non-radioactive and {sup 131}I labelled iodine oxide aerosols were produced with the EXSI CONT facility from elemental iodine and ozone at VTT Technical Research Centre of Finland. The iodine oxide deposits were analysed with microscopic and spectroscopic measurement techniques to identify the kind of iodine oxide formed and if a chemical conversion on the different surface materials occurs. The revaporisation behaviour of the deposited iodine oxide aerosol particles from the different surface materials was studied under the influence of heat, humidity and gamma irradiation at Chalmers University of Technology, Sweden. Studies on the effects of humidity were performed using the FOMICAG facility, while heat and irradiation experiments were performed in a thermostated heating block and with a gammacell 22 having a dose rate of 14 kGy/h. The revaporisation losses were measured using a HPGe detector. The revaporisated {sup 131}I species from the surfaces were chemically tested for elemental iodine formation. The parameter dominating the degradation of the produced iodine oxide aerosols was humidity. Cu and Zn surfaces were found to react with iodine from the iodine oxide aerosols to form iodides, while no metal iodides were detected for Al and SS samples. Most of the iodine oxide aerosols are assumed to

  1. Effect of microbial treatment on the prevention and removal of paraffin deposits on stainless steel surfaces.

    Science.gov (United States)

    Xiao, Meng; Li, Wen-Hong; Lu, Mang; Zhang, Zhong-Zhi; Luo, Yi-Jing; Qiao, Wei; Sun, Shan-Shan; Zhong, Wei-Zhang; Zhang, Min

    2012-11-01

    In this study, biosurfactant-producing strain N2 and non-biosurfactant producing stain KB18 were used to investigate the effects of microbial treatment on the prevention and removal of paraffin deposits on stainless steel surfaces. Strain N2, with a biosurfactant production capacity, reduced the contact angle of stainless steel to 40.04°, and the corresponding adhesion work of aqueous phase was decreased by 26.5 mJ/m(2). By contrast, KB18 could only reduce the contact angle to 50.83°, with a corresponding 7.6 mJ/m(2) decrease in the aqueous phase work adhesion. The paraffin removal test showed that the paraffin removal efficiencies of strain N2 and KB18 were 79.0% and 61.2%, respectively. Interestingly, the N2 cells could attach on the surface of the oil droplets to inhibit droplets coalescence. These results indicate that biosurfactant-producing strains can alter the wettability of stainless steel and thus eliminate paraffin deposition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Distinct effects of Cr bulk doping and surface deposition on the chemical environment and electronic structure of the topological insulator Bi{sub 2}Se{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Turgut, E-mail: yilmaz@phys.uconn.edu [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Hines, William [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Sun, Fu-Chang [Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269 (United States); Pletikosić, Ivo [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Budnick, Joseph [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States); Valla, Tonica [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Sinkovic, Boris [Department of Physics, University of Connecticut, Storrs, CT 06269 (United States)

    2017-06-15

    Highlights: • Cr doping into the bulk of Bi{sub 2}Se{sub 3} opens an energy gap at the Dirac point which is observable in the non-magnetic state. • Cr surface deposition does not lead to open an energy gap at the Dirac point of Bi{sub 2}Se{sub 3}. • Formation of two distinct Bi and Cr core level peaks was observed upon the deposition of Cr on the surface of Bi{sub 2}Se{sub 3}. - Abstract: In this report, it is shown that Cr doped into the bulk and Cr deposited on the surface of Bi{sub 2}Se{sub 3} films produced by molecular beam epitaxy (MBE) have strikingly different effects on both the electronic structure and chemical environment. Angle resolved photoemission spectroscopy (ARPES) shows that Cr doped into the bulk opens a surface state energy gap which can be seen at room temperature; much higher than the measured ferromagnetic transition temperature of ≈10 K. On the other hand, similar ARPES measurements show that the surface states remain gapless down to 15 K for films with Cr surface deposition. In addition, core-level photoemission spectroscopy of the Bi 5d, Se 3d, and Cr 3p core levels show distinct differences in the chemical environment for the two methods of Cr introduction. Surface deposition of Cr results in the formation of shoulders on the lower binding energy side for the Bi 5d peaks and two distinct Cr 3p peaks indicative of two Cr sites. These striking differences suggests an interesting possibility that better control of doping at only near surface region may offer a path to quantum anomalous Hall states at higher temperatures than reported in the literature.

  3. Anodized porous titanium coated with Ni-CeO{sub 2} deposits for enhancing surface toughness and wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaowei, E-mail: zhouxiaowei901@163.com; Ouyang, Chun

    2017-05-31

    Highlights: • Structural design of anodized nanoporous Ti was introduced for bonding pinholes to achieve a metallurgical bonding interface. • Anodized porous Ti substrate was activated by electroless Ni-P film to be acted as transitional layer to deposit Ni-CeO{sub 2} nanocomposite coatings. • An analytical model was validated for predicting the Ce-rich worn products as a self-lubricant phase for monitoring wear mechanisms. - Abstract: In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO{sub 2} nanocomposite coatings. Regarding TiO{sub 2} barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO{sub 2} deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO{sub 2} nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO{sub 2} nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO{sub 2} coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO{sub 2} deposits, showing the existing Ce-rich worn products to be acted as a

  4. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    Energy Technology Data Exchange (ETDEWEB)

    Chubenko, E. B., E-mail: eugene.chubenko@gmail.com; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P. [Belarusian State University of Information and RadioElectronics (Belarus)

    2016-03-15

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  5. Influence of the Surface Layer on the Electrochemical Deposition of Metals and Semiconductors into Mesoporous Silicon

    International Nuclear Information System (INIS)

    Chubenko, E. B.; Redko, S. V.; Sherstnyov, A. I.; Petrovich, V. A.; Kotov, D. A.; Bondarenko, V. P.

    2016-01-01

    The influence of the surface layer on the process of the electrochemical deposition of metals and semiconductors into porous silicon is studied. It is shown that the surface layer differs in structure and electrical characteristics from the host porous silicon bulk. It is established that a decrease in the conductivity of silicon crystallites that form the surface layer of porous silicon has a positive effect on the process of the filling of porous silicon with metals and semiconductors. This is demonstrated by the example of nickel and zinc oxide. The effect can be used for the formation of nanocomposite materials on the basis of porous silicon and nanostructures with a high aspect ratio.

  6. SnO2 anode surface passivation by atomic layer deposited HfO2 improves li-ion battery performance

    KAUST Repository

    Yesibolati, Nulati; Shahid, Muhammad; Chen, Wei; Hedhili, Mohamed N.; Reuter, Mark C.; Ross, Frances M.; Alshareef, Husam N.

    2014-01-01

    For the first time, it is demonstrated that nanoscale HfO2 surface passivation layers formed by atomic layer deposition (ALD) significantly improve the performance of Li ion batteries with SnO2-based anodes. Specifically, the measured battery

  7. Persisting roughness when deposition stops.

    Science.gov (United States)

    Schwartz, Moshe; Edwards, S F

    2004-12-01

    Useful theories for growth of surfaces under random deposition of material have been developed by several authors. The simplest theory is that introduced by Edwards and Wilkinson (EW), which is linear and soluble. Its nonlinear generalization by Kardar, Parisi, and Zhang (KPZ) resulted in many subsequent studies. Yet both EW and KPZ theories contain an unphysical feature. When deposition of material is stopped, both theories predict that as time tends to infinity, the surface becomes flat. In fact, of course, the final surface is not flat, but simply has no gradients larger than the gradient related to the angle of repose. We modify the EW and KPZ theories to accommodate this feature and study the consequences for the simpler system which is a modification of the EW equation. In spite of the fact that the equation describing the evolution of the surface is not linear, we find that the steady state in the presence of noise is not very different in the long-wavelength limit from that of the linear EW equation. The situation is quite different from that of EW when deposition stops. Initially there is still some rearrangement of the surface, but that stops as everywhere on the surface the gradient is less than that related to the angle of repose. The most interesting feature observed after deposition stops is the emergence of history-dependent steady-state distributions.

  8. Influence of deposition rate on the properties of tin coatings deposited on tool steels using arc method

    International Nuclear Information System (INIS)

    Akhtar, P.; Abbas, M.

    2007-01-01

    Titanium nitride (TiN) widely used as hard coating material, was coated on tool steels, namely on high-speed steel (HSS) and D2 tool steel by physical vapour deposition method. The study concentrated on cathodic arc physical vapour deposition (CAPVD), a technique used for the deposition of hard coatings for tooling applications, and which has many advantages. The main drawback of this technique, however, is the formation of macrodroplets (MD's) during deposition, resulting in films with rougher morphology. Various standard characterization techniques and equipment, such as electron microscopy, atomic force microscopy, hardness testing machine, scratch tester and pin-on-disc machine, were used to analyze and quantify the following properties and parameters, surface morphology, thickness, hardness, adhesion and coefficient of friction (COF) of the deposited coatings. Surface morphology revealed that the MD's produced during the etching stage, protruded through the thin film, resulting in film with deteriorated surface features. Both coating thickness and indentation loads influenced the hardness of the deposited coatings. The coatings deposited on HSS exhibit better adhesion compared to those on D2 tool steel. Standard deviation indicates that the coating deposited with thickness around 6.7 macro m showed the most stable trend of COF versus sliding distance. (author)

  9. Mineralogy and geochemistry of trace and Rare Earth Element from the Manaila massive sulphide deposit (Eastern Carpathians, Romania)

    Science.gov (United States)

    Moldoveanu, S.; Iancu, O. G.; Kasper, H. U.

    2012-04-01

    Keywords: Eastern Carpathians, Mănăila deposit, REE, trace elements, pyrite The present paper deal with the mineralogy and trace elements geochemistry of sulphide deposits from Mănăila mine field located in NE area of Eastern Carpathians Mountains (Romania). The mineralization occurs within metamorphic rocks of Tulgheş terrane, part of Crystalline-Mezozoic zone of the Eastern Carpathians. The metamorphic rocks in Mănăila area consist of felsic metavolcanics rocks with quartzites and quartz-feldspathic rocks as prevailing types. The P-T metamorphic conditions are typical of greenschis facies with biotite and garnet (Mn-Grt) in mineral assemblage. The mineralogical study was performed using reflected light microscope and Scanning Electron Microscopy (SEM) methods. Thus, the both methods show that the main sulphides minerals are represented by pyrite and chalcopyrite, being followed by sphalerite, galena and little amount of Cu sulphosalts (tetrahedrite and bournonite) and also by gangue minerals (quartz and carbonates). Pyrite occurs as large euhedral to subhedral grains in quartz and small rounded inclusion in chalcopyrite. The trace elements analysis was achieved on whole-rock samples and involved the determination of REE, LIL (Rb, Ba, Sr) and HFS (Y, Zr, Hf, U, Th, Nb, Ta) by ICP-MS method. The concentration of LIL and HFS trace elements in mineralized rocks decrease as follows: Ba > Bi > As > Sb > Co > Ga > Ni > Cd. Even if the barium contents in Mănăila ore is high, baritina (BaSO4) was not identified throught the mineralogical analyses carried out so far. The total rare earth element content (REE) of the samples from Mănăila range from 26.84 to 246.46 ppm. Chondrite - normalized REE patterns of the mineralized rocks show that the LREE are enriched in relation to the HREE. Also a positive Ce anomalies and negative Eu anomalies are present. Y/Ho and Zr/Hf ratios are close to the chondritic ratios indicating Charge-and-Radius-Controlled (CHARAC

  10. Leaching Process of Rare Earth Elements, Gallium and Niobium in a Coal-Bearing Strata-Hosted Rare Metal Deposit—A Case Study from the Late Permian Tuff in the Zhongliangshan Mine, Chongqing

    OpenAIRE

    Jianhua Zou; Heming Tian; Zhen Wang

    2017-01-01

    The tuff, a part of coal-bearing strata, in the Zhongliangshan coal mine, Chongqing, southwestern China, hosts a rare metal deposit enriched in rare earth elements (REE), Ga and Nb. However, the extraction techniques directly related to the recovery of rare metals in coal-bearing strata have been little-studied in the literature. The purpose of this paper is to investigate the extractability of REE, Ga and Nb in the tuff in the Zhongliangshan mine using the alkaline sintering-water immersion-...

  11. Quantification of the dry aeolian deposition of dust on horizontal surfaces: an experimental comparison of theory and measurements

    NARCIS (Netherlands)

    Goossens, D.

    2005-01-01

    Eight techniques to quantify the deposition of aeolian dust on horizontal surfaces were tested in a wind tunnel. The tests included three theoretical techniques and five measurement techniques. The theoretical techniques investigated were: the gradient technique, the inferential technique without

  12. Quantification of surface uplift by using paleo beach deposits (Oman, Northern Indian Ocean)

    Science.gov (United States)

    Hoffmann, Gösta; Schneider, Bastian; Monschau, Martin; Mechernich, Silke

    2017-04-01

    The study focusses on a coastal area along the Arabian Sea in Oman. Here, a staircase of marine terraces is seen as geomorphological evidence suggesting sub-recent uplift of a crustal block in the northeast of the Arabian Peninsula. The erosional terraces are cut into Paleocene to Early Eocene limestone formations. These limestone formations are underlain by allochtonous ophiolites. We mapped the terraces over a distance of 60 km and identified at least 8 terrace levels in elevations up to 350 m above present sea level. The uppermost terraces are erosional, whereas the lower ones are depositional in style. Mollusc and coral remains as well as beach-rock are encountered on the terrace surfaces. The formations are dissected by NW-SE trending faults. Some of the terraces are very pronounced features in the landscape and easy to trace, others are partly eroded and preserved as remnants only. The deposit along the shoreline angle act as a datum making use of the fact that the rocks formed in a defined horizontal level which is the paleo-sea level. Hence, any offset from the primary depositional level is evidence for neotectonic movements. We utilise differential GPS to map the elevation of beachrock deposits. Age constraints on terrace formation is derived by sampling the beachrock deposits and dating using cosmogenic nuclii. The results indicate ongoing uplift in the range of less than a millimetre per year. The uplift is differential as the terraces are tilted. We mapped oblique normal and strike-slip faults in the younger terraces. We hypothesise that the mechanism responsible for the uplift is not tectonics but driven by the serpentinisation of the ophiolite that underlie the limestone formations. One process during the serpentinisation is the hydration of the mantle rocks which is responsible for a decrease in density. The resulting buoyancy and significant solid volume increase lead to the observed deformation including uplift.

  13. Deceleration-driven wetting transition of "gently" deposited drops on textured hydrophobic surfaces

    Science.gov (United States)

    Varanasi, Kripa; Kwon, Hyukmin; Paxson, Adam; Patankar, Neelesh

    2010-11-01

    Many applications of rough superhydrophobic surfaces rely on the presence of droplets in a Cassie state on the substrates. A well established understanding is that if sessile droplets are smaller than a critical size, then the large Laplace pressure induces wetting transition from a Cassie to a Wenzel state, i.e., the liquid impales the roughness grooves. Thus, larger droplets are expected to remain in the Cassie state. In this work we report a surprising wetting transition where even a "gentle" deposition of droplets on rough substrates lead to the transition of larger droplets to the Wenzel state. A hitherto unknown mechanism based on rapid deceleration is identified. It is found that modest amount of energy, during the deposition process, is channeled through rapid deceleration into high water hammer pressure which induces wetting transition. A new "phase" diagram is reported which shows that both large and small droplets can transition to Wenzel states due to the deceleration and Laplace mechanisms, respectively. This novel insight reveals for the first time that the attainment of a Cassie state is more restrictive than previous criteria based on the Laplace pressure transition mechanism.

  14. Can We Trust Real Time Measurements of Lung Deposited Surface Area Concentrations in Dust from Powder Nanomaterials?

    DEFF Research Database (Denmark)

    Levin, Marcus; Witschger, Olivier; Bau, Sebastien

    2016-01-01

    A comparison between various methods for real-time measurements of lung deposited surface area (LDSA) using spherical particles and powder dust with specific surface area ranging from 0.03 to 112 m2 g-1 was conducted. LDSA concentrations measured directly using Nanoparticle Surface Area Monitor...... gravimetrical filter measurements and specific surface areas. Measurement of LDSA showed very good correlation in measurements of spherical particles (R2 > 0.97, Ratio 1.0 to 1.04). High surface area nanomaterial powders showed a fairly reliable correlation between NSAM and Aerotrak (R2 0...... present. We conclude that there is currently insufficient reliability and comparability between methods in the measurement of LDSA concentrations. Further development is required to enable use of LDSA for reliable dose metric and regulatory enforcement of exposure....

  15. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Yücel, Ersin, E-mail: dr.ersinyucel@gmail.com [Department of Physics, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey); Yücel, Yasin; Beleli, Buse [Department of Chemistry, Faculty of Arts and Sciences, Mustafa Kemal University, 31034 Hatay (Turkey)

    2015-09-05

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model.

  16. Optimization of synthesis conditions of PbS thin films grown by chemical bath deposition using response surface methodology

    International Nuclear Information System (INIS)

    Yücel, Ersin; Yücel, Yasin; Beleli, Buse

    2015-01-01

    Highlights: • For the first time, RSM and CCD used for optimization of PbS thin film. • Tri-sodium citrate, deposition time and temperature were independent variables. • PbS thin film band gap value was 2.20 eV under the optimum conditions. • Quality of the film was improved after chemometrics optimization. - Abstract: In this study, PbS thin films were synthesized by chemical bath deposition (CBD) under different deposition parameters. Response surface methodology (RSM) was used to optimize synthesis parameters including amount of tri-sodium citrate (0.2–0.8 mL), deposition time (14–34 h) and deposition temperature (26.6–43.4 °C) for deposition of the films. 5-level-3-factor central composite design (CCD) was employed to evaluate effects of the deposition parameters on the response (optical band gap of the films). The significant level of both the main effects and the interaction are investigated by analysis of variance (ANOVA). The film structures were characterized by X-ray diffractometer (XRD). Morphological properties of the films were studied with a scanning electron microscopy (SEM). The optical properties of the films were investigated using a UV–visible spectrophotometer. The optimum amount of tri-sodium citrate, deposition time and deposition temperature were found to be 0.7 mL, 18.07 h and 30 °C respectively. Under these conditions, the experimental band gap of PbS was 2.20 eV, which is quite good correlation with value (1.98 eV) predicted by the model

  17. Uranium isotopes as radioactive pollutants in groundwaters of the Morro do Ferro thorium deposit, Brazil

    International Nuclear Information System (INIS)

    Bonotto, D.M.

    1991-01-01

    Groundwater and surface water samples were collected at Morro do Ferro, a thorium and rare earth deposit located on the Pocos de Caldas Plateau, Minas Gerais State, Brazil, to evaluate if the mechanisms related to the migration of 238 U and 234 U isotopes can generate concentrations greater than the gross-alpha activity contaminant limit. The 238 U content range was 0.003-0.24 pCi/1 and the 234 U content range was 0.004-0.25 pCi/1, showing that the studied hydrologic environment doesn't indicate pollution by radioactivity due to these nuclides. However, 226 Ra and 228 Ra isotopes can be considered as radioactive pollutants in groundwaters but not in surface waters of the Morro do Ferro. (author)

  18. Fabrication of biomimetic superhydrophobic surface on engineering materials by a simple electroless galvanic deposition method.

    Science.gov (United States)

    Xu, Xianghui; Zhang, Zhaozhu; Yang, Jin

    2010-03-02

    We have reported an easy means in this paper to imitate the "lotus leaf" by constructing a superhydrophobic surface through a process combining both electroless galvanic deposition and self-assembly of n-octadecanethiol. Superhydrophobicity with a static water contact angle of about 169 +/- 2 degrees and a sliding angle of 0 +/- 2 degrees was achieved. Both the surface chemical compositions and morphological structures were analyzed. We have obtained a feather-like surface structure, and the thickness of the Ag film is about 10-30 microm. The stability of the superhydrophobic surface was tested under the following three conditions: (1) pH value from 1 to 13; (2) after freezing treatment at -20 degrees C; (3) at ambient temperature. It shows a notable stability in that the contact angle of the sample still remained higher than 150 degrees in different conditions. It can be concluded that our approach can provide an alternative way to fabricate stable superhydrophobic materials.

  19. Preparation and characterization of thick metastable sputter deposits

    International Nuclear Information System (INIS)

    Allen, R.P.; Dahlgren, S.D.; Merz, M.D.

    1975-01-01

    High-rate dc supported-discharge sputtering techniques were developed and used to prepare 0.1 mm to 5.0 mm-thick deposits of a variety of metastable materials including amorphous alloys representing more than 15 different rare-earth-transition metal systems and a wide range of compositions and deposition conditions. The ability to prepare thick, homogeneous deposits has made it possible for the first time to investigate the structure, properties, and annealing behavior of these unique sputtered alloys using neutron diffraction, ultrasonic, and other experimental techniques that are difficult or impractical for thin films. More importantly, these characterization studies show that the structure and properties of the massive sputter deposits are independent of thickness and can be reproduced from deposit to deposit. Other advantages and applications of this metastable materials preparation technique include the possibility of varying structure and properties by control of the deposition parameters and the ability to deposit even reactive alloys with a very low impurity content

  20. Dust deposition effects on growth and physiology of the endangered Astragalus jaegerianus (Fabaceae)

    Science.gov (United States)

    Wijayratne, Upekala C.; Scoles-Sciulla, Sara J.; Defalco, Lesley A.

    2009-01-01

    Human expansion into the Mojave Desert is a significant threat to rare desert plants. While immediate habitat loss is often the greatest concern, rare plants situated near areas where soil surfaces experience frequent disturbance may be indirectly impacted when fine particulate dust accumulates on leaf surfaces. Remaining populations of the federally listed Astragalus jaegerianus (Lane Mountain milkvetch) occur on land open to expanding military activities and on adjacent public land with increasing recreational use. This study was initiated to determine whether dust accumulation could decrease the vigor and fitness of A. jaegerianus through reduced growth. Beginning in early May 2004, plants located on Bureau of Land Management (BLM) land were dusted bimonthly at canopy-level dust concentrations ranging from 0 to 32 g/m2, and physiology and growth were monitored until late June when plants senesced. The maximum experimental dust level simulates dust concentrations of Mojave Desert perennials neighboring military activities at a nearby army training center. Average shoot growth declined with increasing dust accumulation, but seasonal net photosynthesis increased. Further investigation of plants grown in a greenhouse supported similar trends. This pattern of greater net photosynthesis with increasing dust accumulation may be explained by higher leaf temperatures of dusted individuals. Ambient dust deposition measured in traps near field plants (May 2004–July 2004) ranged from 0.04–0.17 g/m2/ d, which was well below the lowest level of dust on experimental plants (3.95 g/m2/d). With this low level of ambient deposition, we expect that A. jaegerianus plants in this population were not greatly affected by the dust they receive at the level of recreational use during the study.