Sample records for surface density galaxies

  1. Estimation of the space density of low surface brightness galaxies

    NARCIS (Netherlands)

    Briggs, FH


    The space density of low surface brightness and tiny gas-rich dwarf galaxies are estimated for two recent catalogs: the Arecibo Survey of Northern Dwarf and Low Surface Brightness Galaxies and the Catalog of Low Surface Brightness Galaxies, List II. The goals are (1) to evaluate the additions to the

  2. HI observations of low surface brightness galaxies : Probing low-density galaxies

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS; vanderHulst, JM


    We present Very Large Array (VLA) and Westerbork Synthesis Radio Telescope (WSRT) 21-cm HI observations of 19 late-type low surface brightness (LSB) galaxies. Our main findings are that these galaxies, as well as having low surface brightnesses, have low HI surface densities, about a factor of

  3. Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies (United States)

    Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko


    Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.


    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Lopezlira, Rosa A. [On sabbatical leave from the Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089, Mexico. (Mexico); Pflamm-Altenburg, Jan; Kroupa, Pavel, E-mail: [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)


    We analyze the relationship between maximum cluster mass and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), neutral gas ({Sigma}{sub H{sub I}}), and star formation rate ({Sigma}{sub SFR}) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.4{+-}0.2}}, whereM{sub 3rd} is the median of the five most massive clusters. There is no correlation with{Sigma}{sub gas},{Sigma}{sub H2}, or{Sigma}{sub SFR}. For clusters younger than 10 Myr, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.6{+-}0.1}} and M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 0.5{+-}0.2}; there is no correlation with either {Sigma}{sub H{sub 2}} or{Sigma}{sub SFR}. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 3.8{+-}0.3}, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub 2}{sup 1.2{+-}0.1}}, and M{sub 3rd}{proportional_to}{Sigma}{sub SFR}{sup 0.9{+-}0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet

  5. The SAMI Galaxy Survey: Gravitational Potential and Surface Density Drive Stellar Populations. I. Early-type Galaxies (United States)

    Barone, Tania M.; D’Eugenio, Francesco; Colless, Matthew; Scott, Nicholas; van de Sande, Jesse; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Cortese, Luca; Croom, Scott M.; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Lorente, Nuria P. F.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.


    The well-established correlations between the mass of a galaxy and the properties of its stars are considered to be evidence for mass driving the evolution of the stellar population (SP). However, for early-type galaxies (ETGs), we find that g ‑ i color and stellar metallicity [Z/H] correlate more strongly with gravitational potential Φ than with mass M, whereas SP age correlates best with surface density Σ. Specifically, for our sample of 625 ETGs with integral-field spectroscopy from the Sydney-AAO Multi-object Integral-field Galaxy Survey, compared to correlations with mass, the color–Φ, [Z/H]–Φ, and age–Σ relations show both a smaller scatter and a lower residual trend with galaxy size. For the star formation duration proxy [α/Fe], we find comparable results for trends with Φ and Σ, with both being significantly stronger than the [α/Fe]–M relation. In determining the strength of a trend, we analyze both the overall scatter, and the observational uncertainty on the parameters, in order to compare the intrinsic scatter in each correlation. These results lead us to the following inferences and interpretations: (1) the color–Φ diagram is a more precise tool for determining the developmental stage of the SP than the conventional color–mass diagram; and (2) gravitational potential is the primary regulator of global stellar metallicity, via its relation to the gas escape velocity. Furthermore, we propose the following two mechanisms for the age and [α/Fe] relations with Σ: (a) the age–Σ and [α/Fe]–Σ correlations arise as results of compactness-driven quenching mechanisms; and/or (b) as fossil records of the {{{Σ }}}SFR}\\propto {{{Σ }}}gas} relation in their disk-dominated progenitors.


    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Toshiya; Suto, Yasushi; Taruya, Atsushi; Yahata, Kazuhiro [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan); Kayo, Issha [Department of Physics, Toho University, Funabashi, Chiba 274-8510 (Japan); Nishimichi, Takahiro, E-mail: [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan)


    The most widely used Galactic extinction map is constructed assuming that the observed far-infrared (FIR) fluxes come entirely from Galactic dust. According to the earlier suggestion by Yahata et al., we consider how FIR emission of galaxies affects the SFD map. We first compute the surface number density of Sloan Digital Sky Survey (SDSS) DR7 galaxies as a function of the r-band extinction, A {sub r,} {sub SFD}. We confirm that the surface densities of those galaxies positively correlate with A {sub r,} {sub SFD} for A {sub r,} {sub SFD} < 0.1, as first discovered by Yahata et al. for SDSS DR4 galaxies. Next we construct an analytical model to compute the surface density of galaxies, taking into account the contamination of their FIR emission. We adopt a log-normal probability distribution for the ratio of 100 μm and r-band luminosities of each galaxy, y ≡ (νL){sub 100} {sub μm}/(νL) {sub r}. Then we search for the mean and rms values of y that fit the observed anomaly, using the analytical model. The required values to reproduce the anomaly are roughly consistent with those measured from the stacking analysis of SDSS galaxies. Due to the limitation of our statistical modeling, we are not yet able to remove the FIR contamination of galaxies from the extinction map. Nevertheless, the agreement with the model prediction suggests that the FIR emission of galaxies is mainly responsible for the observed anomaly. Whereas the corresponding systematic error in the Galactic extinction map is 0.1-1 mmag, it is directly correlated with galaxy clustering and thus needs to be carefully examined in precision cosmology.

  7. Do galaxy global relationships emerge from local ones? The SDSS IV MaNGA surface mass density-metallicity relation (United States)

    Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zhu, Guangtun B.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Law, David; Wake, David; Green, Jenny E.; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey; Malanushenko, Elena; Pan, Kaike; Roman Lopes, Alexandre; Lane, Richard R.


    We present the stellar surface mass density versus gas metallicity (Σ*-Z) relation for more than 500 000 spatially resolved star-forming resolution elements (spaxels) from a sample of 653 disc galaxies included in the SDSS IV MaNGA survey. We find a tight relation between these local properties, with higher metallicities as the surface density increases. This relation extends over three orders of magnitude in the surface mass density and a factor of 4 in metallicity. We show that this local relationship can simultaneously reproduce two well-known properties of disc galaxies: their global mass-metallicity relationship and their radial metallicity gradients. We also find that the Σ*-Z relation is largely independent of the galaxy's total stellar mass and specific star formation rate (sSFR), except at low stellar mass and high sSFR. These results suggest that in the present-day universe local properties play a key role in determining the gas-phase metallicity in typical disc galaxies.

  8. Low surface brightness spiral galaxies

    International Nuclear Information System (INIS)

    Romanishin, W.


    This dissertation presents an observational overview of a sample of low surface brightness (LSB) spiral galaxies. The sample galaxies were chosen to have low surface brightness disks and indications of spiral structure visible on the Palomar Sky Survey. They are of sufficient angular size (diameter > 2.5 arcmin), to allow detailed surface photometry using Mayall 4-m prime focus plates. The major findings of this dissertation are: (1) The average disk central surface brightness of the LSB galaxies is 22.88 magnitude/arcsec 2 in the B passband. (2) From broadband color measurements of the old stellar population, we infer a low average stellar metallicity, on the order of 1/5 solar. (3) The spectra and optical colors of the HII regions in the LSB galaxies indicate a lack of hot ionizing stars compared to HII regions in other late-type galaxies. (4) The average surface mass density, measured within the radius containing half the total mass, is less than half that of a sample of normal late-type spirals. (5) The average LSB galaxy neutral hydrogen mass to blue luminosity ratio is about 0.6, significantly higher than in a sample of normal late-type galaxies. (6) We find no conclusive evidence of an abnormal mass-to-light ratio in the LSB galaxies. (7) Some of the LSB galaxies exhibit well-developed density wave patterns. (8) A very crude calculation shows the lower metallicity of the LSB galaxies compared with normal late-type spirals might be explained simply by the deficiency of massive stars in the LSB galaxies

  9. Gemini NIFS survey of feeding and feedback processes in nearby active galaxies - II. The sample and surface mass density profiles (United States)

    Riffel, R. A.; Storchi-Bergmann, T.; Riffel, R.; Davies, R.; Bianchin, M.; Diniz, M. R.; Schönell, A. J.; Burtscher, L.; Crenshaw, M.; Fischer, T. C.; Dahmer-Hahn, L. G.; Dametto, N. Z.; Rosario, D.


    We present and characterize a sample of 20 nearby Seyfert galaxies selected for having BAT 14-195 keV luminosities LX ≥ 1041.5 erg s-1, redshift z ≤ 0.015, being accessible for observations with the Gemini Near-Infrared Field Spectrograph (NIFS) and showing extended [O III]λ5007 emission. Our goal is to study Active Galactic Nucleus (AGN) feeding and feedback processes from near-infrared integral-field spectra, which include both ionized (H II) and hot molecular (H2) emission. This sample is complemented by other nine Seyfert galaxies previously observed with NIFS. We show that the host galaxy properties (absolute magnitudes MB, MH, central stellar velocity dispersion and axial ratio) show a similar distribution to those of the 69 BAT AGN. For the 20 galaxies already observed, we present surface mass density (Σ) profiles for H II and H2 in their inner ˜500 pc, showing that H II emission presents a steeper radial gradient than H2. This can be attributed to the different excitation mechanisms: ionization by AGN radiation for H II and heating by X-rays for H2. The mean surface mass densities are in the range (0.2 ≤ ΣH II ≤ 35.9) M⊙ pc-2, and (0.2 ≤ ΣH2 ≤ 13.9)× 10-3 M⊙ pc-2, while the ratios between the H II and H2 masses range between ˜200 and 8000. The sample presented here will be used in future papers to map AGN gas excitation and kinematics, providing a census of the mass inflow and outflow rates and power as well as their relation with the AGN luminosity.

  10. Automated galaxy surface photometry

    International Nuclear Information System (INIS)

    Cawson, M.G.M.; Kibblewhite, E.J.; Disney, M.J.; Phillipps, S.


    Two-dimensional surface photometry of a very large number of galaxies on a deep Schmidt plate has been obtained using the Automatic Plate Measuring System (APM). A method of photometric calibration, suitable for APM measurements, via pixel-by-pixel comparison with CCD frames of a number of the brighter galaxies is described and its advantages are discussed. The same method is used to demonstrate the consistency of measurement of the APM machine when used for surface photometry. (author)

  11. Galaxy Selection and the Surface Brightness Distribution (United States)

    McGaugh, Stacy S.; Bothun, Gregory D.; Schombert, James M.


    Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney [Nature, 263,573(1976)] suggested that the constancy of disk central surface brightness noticed by Freeman [ApJ, 160,811(1970)] was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (i.e., approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity function at L^*^. An intrinsically sharply peaked "Freeman law" distribution can be completely ruled out, and no Gaussian distribution can fit the data. Low surface brightness galaxies (those with central surface brightness fainter than 22 B mag arcsec^-2^) comprise >~ 1/2 the general galaxy population, so a representative sample of galaxies at z = 0 does not really exist at present since past surveys have been insensitive to this component of the general galaxy population.


    Energy Technology Data Exchange (ETDEWEB)

    Tateuchi, Ken; Konishi, Masahiro; Motohara, Kentaro; Takahashi, Hidenori; Kato, Natsuko Mitani; Kitagawa, Yutaro; Todo, Soya; Toshikawa, Koji; Sako, Shigeyuki; Uchimoto, Yuka K.; Ohsawa, Ryou; Asano, Kentaro; Kamizuka, Takafumi; Nakamura, Tomohiko; Okada, Kazushi [Institute of Astronomy, Graduate School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Ita, Yoshifusa [Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Komugi, Shinya [Division of Liberal Arts, Kogakuin University, 2665-1, Hachioji, Tokyo 192-0015 (Japan); Koshida, Shintaro [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Manabe, Sho [Department of Earth and Planetary Sciences, Kobe University, Kobe 657-8501 (Japan); Nakashima, Asami, E-mail: [Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); and others


    Luminous infrared galaxies (LIRGs) are enshrouded by a large amount of dust produced by their active star formation, and it is difficult to measure their activity in optical wavelengths. We have carried out Paα narrow-band imaging observations of 38 nearby star forming galaxies including 33 LIRGs listed in the IRAS Revised Bright Galaxy Sample catalog with the Atacama Near InfraRed camera on the University of Tokyo Atacama Observatory (TAO) 1.0 m telescope (miniTAO). Star formation rates (SFRs) estimated from the Paα fluxes, corrected for dust extinction using the Balmer decrement method (typically A{sub V} ∼ 4.3 mag), show a good correlation with those from the bolometric infrared luminosity of the IRAS data within a scatter of 0.27 dex. This suggests that the correction of dust extinction for the Paα flux is sufficient in our sample. We measure the physical sizes and surface densities of infrared luminosities (Σ{sub L(IR)}) and the SFR (Σ{sub SFR}) of star forming regions for individual galaxies, and we find that most of the galaxies follow a sequence of local ultra-luminous or luminous infrared galaxies (U/LIRGs) on the L(IR)-Σ{sub L(IR)} and SFR-Σ{sub SFR} plane. We confirm that a transition of the sequence from normal galaxies to U/LIRGs is seen at L(IR) = 8 × 10{sup 10} L {sub ☉}. Also, we find that there is a large scatter in physical size, different from normal galaxies or ULIRGs. Considering the fact that most U/LIRGs are merging or interacting galaxies, this scatter may be caused by strong external factors or differences in their merging stages.

  13. The natural emergence of the correlation between H2 and star formation rate surface densities in galaxy simulations (United States)

    Lupi, Alessandro; Bovino, Stefano; Capelo, Pedro R.; Volonteri, Marta; Silk, Joseph


    In this study, we present a suite of high-resolution numerical simulations of an isolated galaxy to test a sub-grid framework to consistently follow the formation and dissociation of H2 with non-equilibrium chemistry. The latter is solved via the package KROME, coupled to the mesh-less hydrodynamic code GIZMO. We include the effect of star formation (SF), modelled with a physically motivated prescription independent of H2, supernova feedback and mass-losses from low-mass stars, extragalactic and local stellar radiation, and dust and H2 shielding, to investigate the emergence of the observed correlation between H2 and SF rate surface densities. We present two different sub-grid models and compare them with on-the-fly radiative transfer (RT) calculations, to assess the main differences and limits of the different approaches. We also discuss a sub-grid clumping factor model to enhance the H2 formation, consistent with our SF prescription, which is crucial, at the achieved resolution, to reproduce the correlation with H2. We find that both sub-grid models perform very well relative to the RT simulation, giving comparable results, with moderate differences, but at much lower computational cost. We also find that, while the Kennicutt-Schmidt relation for the total gas is not strongly affected by the different ingredients included in the simulations, the H2-based counterpart is much more sensitive, because of the crucial role played by the dissociating radiative flux and the gas shielding.

  14. On Density Waves in Spiral Galaxies (United States)

    Grosbol, P.; Patsis, P. A.

    The spiral structure of five ordinary spiral galaxies was studied using deep BVIK' surface photometry maps obtained at the 2.2m ESO/MPI telescope. The detailed shape of the arms was analyzed in terms of the spiral density wave theory. Grand design spirals were found on the K' maps in all five galaxies although at least two would be classified as flocculent on the blue images. In several of the galaxies, bulges with weak oval distortion (~10%) were observed. Dust spirals also continue, in some cases, inside the ILR where the stellar arms terminate. This emphasizes the strong bias of morphological classifications of spiral galaxies based on blue image due to dust and young stars. The 2--armed spirals were systematically found to be wound tighter on I than on K' maps suggesting the existence of a density wave. Locations of the ILR and the 4/1 resonance were estimated based on the arm morphology and the amplitude ratio between the m = 2,4 Fourier components. The wavenumber of the stellar 2--armed pattern is increasing towards the ILR which could suggest that the density wave is associated to the long waved branch of the dispersion relation. A possible scenario is discussed.


    NARCIS (Netherlands)



    Low surface brightness (LSB) galaxies are galaxies dominated by an exponential disc whose central surface brightness is much fainter than the value of mu(B)(0) = 21.65 +/- 0.30 mag arcsec(-2) found by Freeman. In this paper we present broadband photometry of a sample of 21 late-type LSB galaxies.

  16. Does low surface brightness mean low density?

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS


    We compare the dynamical properties of two galaxies at identical positions on the Tully-Fisher relation, but with different surface brightnesses. We find that the low surface brightness galaxy UGC 128 has a higher mass-to-light ratio, and yet has lower mass densities than the high surface brightness

  17. The Contribution of Normal, Dim, and Dwarf Galaxies to the Local Luminosity Density. (United States)



    From the Hubble Deep Field catalog recently presented by Driver et al., we derive the local (0.3galaxies within a 326 Mpc3 volume-limited sample. The sample contains 47 galaxies which uniformly sample the underlying galaxy population within the specified redshift, magnitude, and surface brightness limits (0.3galaxies account for less than 10% of the L* population, and (3) low-luminosity low surface brightness galaxies outnumber Hubble types by a factor of approximately 1.4; however, their space density is not sufficient to explain the faint blue excess either by themselves or as faded remnants. In terms of the local luminosity density and galaxy dynamical mass budget, normal galaxies (i.e., the Hubble tuning fork) contribute 88% and 72%, respectively. This compares to 7% and 12% for dim galaxies and 5% and 16% for dwarf galaxies (within the above specified limits).

  18. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.


    Correlations between optical surface brightness and the radio properties of spiral galaxies are investigated. It is found that galaxies with high surface brightness are more likely to be strong continuum radio sources and that galaxies with low surface brightness have high 21-cm line emission. (author)

  19. Dark Matter in Low Surface Brightness Galaxies

    NARCIS (Netherlands)

    Blok, W. J. G. de; McGaugh, S. S.


    Abstract: Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that

  20. Dark matter in low surface brightness galaxies

    NARCIS (Netherlands)

    de Blok, WJG; McGaugh, SS; Persic, M; Salucci, P


    Low Surface Brightness (LSB) galaxies form a large population of disc galaxies that extend the Hubble sequence towards extreme late-types. They are only slowly evolving, and still in an early evolutionary state. The Tully-Fisher relation and rotation curves of LSB galaxies both show that LSB

  1. The lowest surface brightness disc galaxy known

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.


    The discovery of a galaxy with a prominent bulge and a dominant extremely low surface brightness disc component is reported. The profile of this galaxy is very similar to the recently discovered giant low surface brightness galaxy Malin 1. The disc central surface brightness is found to be ∼ 26.4 Rμ, some 1.5 mag fainter than Malin 1 and thus by far the lowest yet observed. (author)

  2. Low surface brightness galaxies in the cluster A1367

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.


    We have obtained deep CCD frames of apparently blank regions of sky in the hope of detecting very low surface brightness (LSB) objects in the cluster A1367. We discuss our data reduction, and image detection and selection techniques. If the galaxies detected are actually cluster members then they are dwarfs and the conclusions of a previous paper on the Fornax cluster are essentially confirmed. One area of variance is that the lowest surface brightness galaxies do not appear to be preferentially concentrated towards the cluster centre. This can be explained by there being a much larger density of dwarf galaxies over this bright galaxy-rich region of the universe. We find over our small area approximately four times as many LSB galaxies as would be expected from our Fornax data. We speculate on the possible origin and likely intensity of intergalactic light within clusters. (author)

  3. The dynamical masses, densities, and star formation scaling relations of Lyα galaxies

    International Nuclear Information System (INIS)

    Rhoads, James E.; Malhotra, Sangeeta; Richardson, Mark L. A.; McLinden, Emily M.; Finkelstein, Steven L.; Fynbo, Johan P. U.; Tilvi, Vithal S.


    We present the first dynamical mass measurements for Lyα galaxies at high redshift, based on velocity dispersion measurements from rest-frame optical emission lines and size measurements from Hubble Space Telescope imaging, for nine galaxies drawn from four surveys. We use these measurements to study Lyα galaxies in the context of galaxy scaling relations. The resulting dynamical masses range from 10 9 to 10 10 M ☉ . We also fit stellar population models to our sample and use them to place the Lyα sample on a stellar mass versus line width relation. The Lyα galaxies generally follow the same scaling relation as star-forming galaxies at lower redshift, although, lower stellar mass fits are also acceptable in ∼1/3 of the Lyα galaxies. Using the dynamical masses as an upper limit on gas mass, we show that Lyα galaxies have unusually active star formation for their gas mass surface density. This behavior is consistent with what is observed in starburst galaxies, despite the typically smaller masses and sizes of the Lyα galaxy population. Finally, we examine the mass densities of these galaxies and show that their future evolution likely requires dissipational ('wet') merging. In short, we find that Lyα galaxies are low-mass cousins of larger starbursts.

  4. IRAS galaxies versus POTENT mass - Density fields, biasing, and Omega (United States)

    Dekel, Avishai; Bertschinger, Edmund; Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.


    A comparison of the galaxy density field extracted from a complete redshift survey of IRAS galaxies brighter than 1.936 Jy with the mass-density field reconstructed by the POTENT procedure from the observed peculiar velocities of 493 objects is presented. A strong correlation is found between the galaxy and mass-density fields; both feature the Great Attractor, part of the Perseus-Pisces supercluster, and the large void between them. Monte Carlo noise simulations show that the data are consistent with the hypotheses that the smoothed fluctuations of galaxy and mass densities at each point are proportional to each other with the 'biasing' factor of IRAS galaxies, b(I), and that the peculiar velocity field is related to the mass-density field as expected according to the gravitational instability theory. Under these hypotheses, the two density fields can be related by specifying b(I) and the cosmological density parameter, Omega.

  5. Surface photometry and mass distributions of spiral galaxies

    International Nuclear Information System (INIS)

    Blackman, C.P.


    U, B, V and R surface photometry is presented for the two luminosity class I-II galaxies NGC 1084 and 7331. The reduced profiles of both galaxies have well-defined outer components similar to that described in an earlier paper for NGC 157. The radial variation of M/L has been studied by extrapolating the observed rotation curves. The gross structure and detailed colour and M/L variations for both galaxies are described in terms of the density wave theory of spiral structure, which implies that the rotation curves are not flat at large radii. The outer components of both galaxies are too luminous to form conventional massive haloes. In both galaxies the total luminosity exceeds that expected from their luminosity class. (author)


    Energy Technology Data Exchange (ETDEWEB)

    Behroozi, Peter S.; Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford, CA 94305 (United States); Marchesini, Danilo [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Muzzin, Adam [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Papovich, Casey [Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Stefanon, Mauro [Physics and Astronomy Department, University of Missouri, Columbia, MO 65211 (United States)


    Comparing galaxies across redshifts at fixed cumulative number density is a popular way to estimate the evolution of specific galaxy populations. This method ignores scatter in mass accretion histories and galaxy-galaxy mergers, which can lead to errors when comparing galaxies over large redshift ranges (Δz > 1). We use abundance matching in the ΛCDM paradigm to estimate the median change in cumulative number density with redshift and provide a simple fit (+0.16 dex per unit Δz) for progenitors of z = 0 galaxies. We find that galaxy descendants do not evolve in the same way as galaxy progenitors, largely due to scatter in mass accretion histories. We also provide estimates for the 1σ range of cumulative number densities corresponding to galaxy progenitors and descendants. Finally, we discuss some limits on cumulative number density comparisons, which arise due to difficulties measuring physical quantities (e.g., stellar mass) consistently across redshifts. A public tool to calculate cumulative number density evolution for galaxies, as well as approximate halo masses, is available online.

  7. Cosmic-ray energy densities in star-forming galaxies

    Directory of Open Access Journals (Sweden)

    Persic Massimo


    Full Text Available The energy density of cosmic ray protons in star forming galaxies can be estimated from π0-decay γ-ray emission, synchrotron radio emission, and supernova rates. To galaxies for which these methods can be applied, the three methods yield consistent energy densities ranging from Up ~ 0.1 − 1 eV cm−3 to Up ~ 102 − 103 eV cm−3 in galaxies with low to high star-formation rates, respectively.

  8. Low surface brightness galaxies in the Fornax Cluster: automated galaxy surface photometry

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.


    A sample is presented of low surface brightness galaxies (with extrapolated central surface brightness fainter than 22.0 Bμ) in the Fornax Cluster region which has been measured by the APM machine. Photometric parameters, namely profile shape, scale length, central brightness and total magnitude, are derived for the sample galaxies and correlations between the parameters of low surface brightness dwarf galaxies are discussed, with particular reference to the selection limits. Contrary to previous authors we find no evidence for a luminosity-surface brightness correlation in the sense of lower surface brightness galaxies having lower luminosities and scale sizes. In fact, the present data suggest that it is the galaxies with the largest scale lengths which are more likely to be of very low surface brightness. In addition, the larger scale length galaxies occur preferentially towards the centre of the Cluster. (author)

  9. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.


    It is proposed that Freeman's discovery that the extrapolated central surface brightness of spiral galaxies is approximately constant can be simply explained if the galaxies contain a spheroidal component which dominates the light in their outer isophotes. Calculations of an effective central surface brightness indicate a wide spread of values. This requires either a wide spread in disc properties or significant spheroidal components or, most probably, both. (author)

  10. The surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Disney, M.; Phillipps, S.


    The intrinsic surface brightness Ssub(e) of 500 disc galaxies (0<=T<=9) drawn from the Second Reference Catalogue is computed and it is shown that Ssub(e) does not correlate significantly with Msub(B), (B-V) or type. This is consistent with the notion that there is a heavy selection bias in favour of disc galaxies with that particular surface brightness which allows inclusion in the catalogue over the largest volume of space. (author)

  11. The surface brightness of 1550 galaxies in Fornax: automated galaxy surface photometry: Pt. 2

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.J.; Kibblewhite, E.J.; Cawson, M.G.M.


    A survey of a complete sample of galaxies in the region of the Fornax cluster is presented. Measurements with the Automatic Plate Measuring machine are used to derive the observed distribution of galaxy surface brightness for 1550 objects. Corrections for surface brightness dependent selection effects are then made in order to estimate the true distribution. It is found that the sample (with 16.6 ≤ Msub(APM) ≤ 19.1) is divided into two distinct populations. The 'normal' galaxies with extrapolated central surface brightness Ssub(x) ≤ 22.5 Bμ form a uniformly distributed background of field galaxies. Low surface brightness galaxies (Ssub(x) ≥ 22.5 Bμ), on the other hand, are strongly clumped about the cluster centre. There appear to be few low surface brightness field galaxies. (author)

  12. Giant Low Surface Brightness Galaxies: Evolution in Isolation M. Das

    Indian Academy of Sciences (India)

    galaxies: ISM—galaxies: spiral—cosmology: dark matter. 1. Introduction. Giant Low Surface Brightness (GLSB) galaxies are some of the largest spiral galax- ies in our nearby universe. However, for decades these galaxies remained undetected in galaxy surveys. This is because their optically dim stellar disks have a bright-.

  13. Kinematics of giant low surface brightness galaxies

    NARCIS (Netherlands)

    Pickering, TE; Davies, JI; Impey, C; Phillipps, S


    High sensitivity H I observations now exist for six giant low surface brightness (LSB) disk galaxies including the two prototypes, Malin 1 (Bothun et al. 1987; Impey & Bothun 1989) and F568-6 (also known as Malin 2; Bothun et al. 1990). Their H I surface brightnesses are generally low, but

  14. Automated galaxy surface photometry: Pt. 5

    International Nuclear Information System (INIS)

    Irwin, M.J.; Davies, J.I.; Disney, M.J.; Phillipps, S.


    We show that APM measurement of a standard deep UKSTU plate is equally as successful as photographic amplification in the detection of very low surface brightness galaxies. This method has the advantage of allowing us to detect and quantitatively measure images at the same time (i.e. without recourse to further observations). Suitable median filtering techniques allow us to detect galaxies with scale sizes of a few arcseconds and central surface brightnesses as low as 26.5 B mag arcsec -2 . (author)

  15. Galaxy dynamics and the mass density of the universe. (United States)

    Rubin, V C


    Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density.

  16. Galaxies

    International Nuclear Information System (INIS)


    In studies of the large scale structure of the universe there is a continuing need for extensive galaxy redshift determinations. Optically selected redshift surveys are of particular importance, since flux-limited samples record much higher space densities of galaxies than samples of similar size selected in other wavebands. A considerable amount of the South African Astronomical Observatory (SAAO) observing time is currently being devoted to carrying out a large southern galaxy redshift survey. A recently completed study, the Durham-SAAO redshift survey suggests that the mean density of matter is well below the critical limit for a closed universe and also that the universe may be homogenous at very large scales. Other research conducted by the SAAO include studies on: the distribution of galaxies; Seyfert galaxies; starburst and IRAS galaxies; interacting and compact galaxies; a re-evaluation of the Cepheid distance to NGC 300, and a search for quasars behind galaxies. 1 fig

  17. Extinction in the Galaxy from surface brightnesses of ESO-LV galaxies : Testing "standard" extinction maps

    NARCIS (Netherlands)

    Choloniewski, J.; Valentijn, E. A.

    A new method for the determination of the extinction in the Galaxy is proposed. The method uses surface brightnesses of external galaxies in the B and R-bands. The observational data have been taken from the ESO-LV galaxy catalog. As a first application of our model we derive the ratio of R-band to


    International Nuclear Information System (INIS)

    Hernandez-Toledo, H. M.; Mendez-Hernandez, H.; Aceves, H.; OlguIn, L.


    relative to an isolated galaxy control sample is also interpreted as consistent with interactions in physically bounded aggregates. Our results lead us to suggest that non-negligible populations of physical triplets might be found in complete and well-observed samples. We provide individual mosaics for the 54 galaxies containing (1) logarithmic-scaled R-band images, (2) R-band sharp/filtered images, (3) (B - I) color index maps, (4) RGB images from the SDSS database, (5) co-added J + H + K images generated from the 2MASS archives that were also sharp/filtered, and (6) ε, position angle radial profiles from a surface photometry analysis of (a) the R band and (b) the co-added near-infrared images, all used for the present analysis.

  19. The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chihway; et al.


    Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster, in contrast with other common halo boundary definitions such as R_200. A rapid decline in the matter density profile of the halo is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around RedMapper galaxy clusters in the first year Dark Energy Survey (DES) data. For a cluster sample with mean mass ~2.5 x 10^14 solar masses, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.16 +/- 0.08 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.28 +/- 0.18 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. Applying our analysis to different cluster and galaxy samples, we find that consistent with LambdaCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the RedMapper algorithm may impact the location of r_sp, in particular the choice of scale used to estimate cluster richness. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.

  20. Evolution of velocity and density fields around clusters of galaxies

    International Nuclear Information System (INIS)

    Lilje, P.B.; Lahav, O.


    The evolution of the averaged density and infall velocity profiles around clusters of galaxies in several cosmological scenarios based on gravitational instability is explored. The analysis is based on the statistics of peaks in random Gaussian fields and the spherical infall model. This method is shown to give accurate predictions for the cluster-galaxy cross-correlation function when compared with N-body simulations. The predictions for the average infall velocity as function of radius are not as accurate, but are still useful. The discrepancy is probably caused by shear in the velocity field. The predictions for the cluster-galaxy cross-correlation function on large scales are very different for models with little power on large scales (like the Cold Dark Matter and the Hot Dark Matter models) and models with much power on large scales (like the Primordial Isocurvature Baryon models). The ensemble average infall velocity as a function of radius, if it would be possible to measure it, provides a useful method of for distinguishing between models with different levels of biasing of the galaxy number density fluctuations relative to mass fluctuations. Observations of the density and velocity profiles in one supercluster (i.e., the Local Supercluster) are of limited value for setting constraints on models of structure formation in the Universe. However, the r -1 dependence of the velocity field in the Local Supercluster is in good agreement with the predictions of the Cold Dark Matter model, contrary to some claims. (orig.)

  1. On the Evolution of the Central Density of Quiescent Galaxies (United States)

    Tacchella, Sandro; Carollo, C. Marcella; Faber, S. M.; Cibinel, Anna; Dekel, Avishai; Koo, David C.; Renzini, Alvio; Woo, Joanna


    We investigate the origin of the evolution of the population-averaged central stellar mass density (Σ1) of quiescent galaxies (QGs) by probing the relation between stellar age and Σ1 at z ˜ 0. We use the Zurich ENvironmental Study (ZENS), which is a survey of galaxy groups with a large fraction of satellite galaxies. QGs shape a narrow locus in the Σ1-M ⋆ plane, which we refer to as Σ1 ridgeline. Colors of (B - I) and (I - J) are used to divide QGs into three age categories: young (4 Gyr). At fixed stellar mass, old QGs on the Σ1 ridgeline have higher Σ1 than young QGs. This shows that galaxies landing on the Σ1 ridgeline at later epochs arrive with lower Σ1, which drives the zeropoint of the ridgeline down with time. We compare the present-day zeropoint of the oldest population at z = 0 with the zeropoint of the quiescent population 4 Gyr back in time, at z = 0.37. These zeropoints are identical, showing that the intrinsic evolution of individual galaxies after they arrive on the Σ1 ridgeline must be negligible, or must evolve parallel to the ridgeline during this interval. The observed evolution of the global zeropoint of 0.07 dex over the last 4 Gyr is thus largely due to the continuous addition of newly quenched galaxies with lower Σ1 at later times (“progenitor bias”). While these results refer to the satellite-rich ZENS sample as a whole, our work suggests a similar age-Σ1 trend for central galaxies.

  2. Do Low Surface Brightness Galaxies Host Stellar Bars?

    International Nuclear Information System (INIS)

    Cervantes Sodi, Bernardo; Sánchez García, Osbaldo


    With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.

  3. The GALEX/S4G Surface Brightness and Color Profiles Catalog. I. Surface Photometry and Color Gradients of Galaxies (United States)

    Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Muñoz-Mateos, Juan Carlos; Boissier, Samuel; Sheth, Kartik; Zaritsky, Dennis; Peletier, Reynier F.; Knapen, Johan H.; Gallego, Jesús


    We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 μm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We analyze the radial surface brightness profiles μ FUV, μ NUV, and μ [3.6], as well as the radial profiles of (FUV ‑ NUV), (NUV ‑ [3.6]), and (FUV ‑ [3.6]) colors in 1931 nearby galaxies (z measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than μ [3.6] = 20.89 mag arcsec‑2, or below 3 × 108 M ⊙ kpc‑2 in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.

  4. Star formation and the surface brightness of spiral galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.


    The (blue) surface brightness of spiral galaxies is significantly correlated with their Hα linewidth. This can be most plausibly interpreted as a correlation of surface brightness with star formation rate. There is also a significant difference in surface brightness between galaxies forming stars in a grand design spiral pattern and those with floc star formation regions. (author)

  5. The surface brightness of spiral galaxies: Pt. 4

    International Nuclear Information System (INIS)

    Phillipps, S.; Disney, M.; Ohio State Univ., Columbus


    Using measurements from IRAS correlations are found between optical surface brightness and both infrared-to-optical flux ratio and infrared colour temperature, in the sense that galaxies with high surface brightness have higher FIR emission and higher temperatures. (author)

  6. Spectrophotometry of four galaxies of high surface brightness

    International Nuclear Information System (INIS)

    Arakelyan, M.A.; Magtesyap, A.P.


    Spectrophotometry of emission lines for the nuclei of galaxies of high surface brightness Nos 428, 449, 454 and 532 from the Arakelyan (1975) list is carried out. Clouds of ionized gas are detected at the distances of approximately 2 kpc from the nuclei of the two former galaxies. Besides there seems to be a cloud moving along the line of sight with velocity approximately 1500 km/s in the galaxy No. 449

  7. Active Free Surface Density Maps (United States)

    Çelen, S.


    Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.

  8. Disk mass densities in edge-on spiral galaxies (United States)

    Rupen, Michael P.


    Very Large Array (VLA) observations of the neutral hydrogen (HI) gas in two nearby edge-on spirals (NGC 4565 and NGC 891) successfully resolve the thickness of the gas layers in both disks over a wide range in radii. The combination of B, C, and D array data produces a 4 arcsec (approx. 200 pc) beam and 21 km s(exp -1) velocity resolution, combined with sensitivity to structures as large as 18 arcmin (approx. 54 kpc). These observations directly constrain the mid-plane disk mass densities, under the assumption of an equilibrium between the thermal pressure of the gas and the gravitational attraction of the disk. The results of a preliminary analysis are given regarding the z-velocity dispersion of the gas, the mass-to-light ratio of the disk in NGC 4565, and the roles of atomic and molecular gases. The data also allow a detailed study of the HI in these galaxies; in general their brightness temperature distributions seem similar to that in the Milky Way. Both galaxies show asymmetric HI extensions beyond the optical disk. In NGC 4565 the extension is a surprisingly abrupt warp, which may bend back to parallel the galactic plane; the velocity structure implies the warp is continuous around the disk.

  9. Bright galaxies in the Fornax cluster. Automated galaxy surface photometry: Pt. 7

    International Nuclear Information System (INIS)

    Disney, M.J.; Phillipps, S.; Davies, J.L.; Cawson, M.G.M.; Kibblewhite, E.J.


    We have determined surface-brightness profiles for all galaxies down to magnitude B = 16 in the central region of the Fornax cluster. Using existing redshift data, we have determined the distributions of surface brightness for both the whole sample and for cluster disc galaxies only. Although both distributions peak at extrapolated central surface brightness ∼ 21.7B mag/arcsec 2 (the canonical result), it is shown that they are, in fact, consistent with very broad distributions of disc central surface brightness once selection effects and the effects of bulge contamination of the profile are taken into account. (author)

  10. Galaxies in low density regions of the universe

    International Nuclear Information System (INIS)

    Brosch, N.


    Until recently, no sample of galaxies has been offered for study as being representative of isolated galaxies. However, lately two such samples have been published; one of them is the subject of this study. Both lists of isolated galaxies contain only a few percent of all galaxies considered in the original sources. The study of the isolated galaxies' sample includes optical UBV photometry, infrared photometry, 6-cm radio continuum observations and ultraviolet spectrophotometry. The results provide a database to compare the properties of isolated galaxies to those of nonisolated ones which have probably been modified since their formation by encounters with gas or with other galaxies. A tentative explanation of the detected difference, the apparently enhanced degree of nuclear activity in isolated galaxies is given. (Auth.)

  11. Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Pujol, A.; Gaztañaga, E.; Amara, A.; Réfrégier, A.; Bacon, D.; Becker, M. R.; Bonnett, C.; Carretero, J.; Castander, F. J.; Crocce, M.; Fosalba, P.; Giannantonio, T.; Hartley, W.; Jarvis, M.; Kacprzak, T.; Ross, A. J.; Sheldon, E.; Troxel, M. A.; Vikram, V.; Zuntz, J.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Rosell, A. Carnero; Kind, M. Carrasco; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Flaugher, B.; Frieman, J.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nichol, R. C.; Nord, B.; Ogando, R.; Plazas, A. A.; Reil, K.; Romer, A. K.; Roodman, A.; Rykoff, E. S.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.


    We measure the redshift evolution of galaxy bias from a magnitude-limited galaxy sample by combining the galaxy density maps and weak lensing shear maps for a $\\sim$116 deg$^{2}$ area of the Dark Energy Survey (DES) Science Verification data. This method was first developed in Amara et al. (2012) and later re-examined in a companion paper (Pujol et al., in prep) with rigorous simulation tests and analytical treatment of tomographic measurements. In this work we apply this method to the DES SV data and measure the galaxy bias for a magnitude-limited galaxy sample. We find the galaxy bias and 1$\\sigma$ error bars in 4 photometric redshift bins to be 1.33$\\pm$0.18 (z=0.2-0.4), 1.19$\\pm$0.23 (z=0.4-0.6), 0.99$\\pm$0.36 ( z=0.6-0.8), and 1.66$\\pm$0.56 (z=0.8-1.0). These measurements are consistent at the 1-2$\\sigma$ level with mea- surements on the same dataset using galaxy clustering and cross-correlation of galaxies with CMB lensing. In addition, our method provides the only $\\sigma_8$-independent constraint among the three. We forward-model the main observational effects using mock galaxy catalogs by including shape noise, photo-z errors and masking effects. We show that our bias measurement from the data is consistent with that expected from simulations. With the forthcoming full DES data set, we expect this method to provide additional constraints on the galaxy bias measurement from more traditional methods. Furthermore, in the process of our measurement, we build up a 3D mass map that allows further exploration of the dark matter distribution and its relation to galaxy evolution.

  12. The flat density profiles of massive, and relaxed galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Popolo, A. Del, E-mail: [Dipartimento di Fisica e Astronomia, University Of Catania, Viale Andrea Doria 6, Catania, 95125 (Italy)


    The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction. Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003–0.03r{sub 200}, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = −0.88 in the case of A2390, and minimum value α = −0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5–10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, R{sub e}, and the BCG mass, and a correlation among the core radius r{sub core}, and R{sub e}. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and R{sub e} is due to the fact that in order to have a total

  13. Extinction in the Galaxy from Surface Brightnesses of ESO-LV Galaxies : Determination of A_R/A_B ratio

    NARCIS (Netherlands)

    Choloniewski, J.; Valentijn, E. A.

    A new method for the determination of the extinction in the Galaxy is proposed. The method uses surface brightnesses of external galaxies in the B and R-bands. The observational data have been taken from the ESO-LV galaxy catalog. As a first application of our model we derive the ratio of R-band to

  14. Local extragalactic velocity field, the local mean mass density, and biased galaxy formation

    International Nuclear Information System (INIS)

    Brown, M.E.; Peebles, P.J.E.


    In this paper, a relationship is derived between the local mass density and the perturbation of the local Hubble flow. The local mass density is estimated by the method used in the Virgocentric flow. The infrared Tully-Fisher relation of Aaronson et al. (1982) is used to find limits on the gravitational perturbation to the local Hubble flow and bright galaxy counts (N) are used to estimate the local galaxy concentration. It is concluded that if mass is proportional to N, with no fluctuations, and the local mass per galaxy is a fair sample, then the density parameter is roughly 0.1, consistent with other dynamical estimates and inconsistent with the naive interpretation of biasing which accounts for the low apparent mass density derived from clustering dynamics by the assumption that the mass per galaxy is unusually low in the regions of high density where clustering has been studied. 17 references

  15. Space density and clustering properties of a new sample of emission-line galaxies

    International Nuclear Information System (INIS)

    Wasilewski, A.J.


    A moderate-dispersion objective-prism survey for low-redshift emission-line galaxies has been carried out in an 825 sq. deg. region of sky with the Burrell Schmidt telescope of Case Western Reserve University. A 4 0 prism (300 A/mm at H#betta#) was used with the Illa-J emulsion to show that a new sample of emission-line galaxies is available even in areas already searched with the excess uv-continuum technique. The new emission-line galaxies occur quite commonly in systems with peculiar morphology indicating gravitational interaction with a close companion or other disturbance. About 10 to 15% of the sample are Seyfert galaxies. It is suggested that tidal interaction involving matter infall play a significant role in the generation of an emission-line spectrum. The space density of the new galaxies is found to be similar to the space density of the Makarian galaxies. Like the Markarian sample, the galaxies in the present survey represent about 10% of all galaxies in the absolute magnitude range M/sub p/ = -16 to -22. The observations also indicate that current estimates of dwarf galaxy space densities may be too low. The clustering properties of the new galaxies have been investigated using two approaches: cluster contour maps and the spatial correlation function. These tests suggest that there is weak clustering and possibly superclustering within the sample itself and that the galaxies considered here are about as common in clusters of ordinary galaxies as in the field

  16. Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density

    Energy Technology Data Exchange (ETDEWEB)

    Arnalte-Mur, Pablo; Martínez, Vicent J. [Observatori Astronòmic de la Universitat de València, C/ Catedràtic José Beltrán, 2, 46980 Paterna, València (Spain); Vielva, Patricio; Sanz, José L. [Instituto de Física de Cantabria (CSIC-UC), Avda. de Los Castros s/n, E-39005—Santander (Spain); Saar, Enn [Cosmology Department, Tartu Observatory, Observatooriumi 1, Tõravere (Estonia); Paredes, Silvestre, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, C/Dr. Fleming s/n, 30203 Cartagena (Spain)


    We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on the bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex  = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.

  17. Giant Low Surface Brightness Galaxies: Evolution in Isolation M. Das

    Indian Academy of Sciences (India)

    are much lower than that of normal late type spirals (de Blok et al. 1996). The thinness of the HI distribution has ... 2000) but this is not suprising considering their low star forma- tion rates and low metallicities (Schombert ... normal galaxies in surface brightness and structure (Barth 2007). Galex UV obser- vations of the disks ...

  18. A local leaky-box model for the local stellar surface density-gas surface density-gas phase metallicity relation (United States)

    Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan


    We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.

  19. Galaxies

    International Nuclear Information System (INIS)


    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented

  20. What kind of galaxies dominate the cosmic SFR density at z~2? (United States)

    Perez-Gonzalez, P. G.; Rieke, George; Gonzalez, Anthony; Gallego, Jesus; Guzman, Rafael; Pello, Roser; Egami, Eiichi; Marcillac, D.; Pascual, S.


    We propose to obtain near-infrared (JHK-bands) spectroscopy with GEM-S+GNIRS for a sample of 12 galaxies representative of the 3 types of spitzer/MIPS 24 micron detections at 2.0≲z≲2.6: power-law galaxies, star-forming galaxies with prominent 1.6 micron bumps, and Distant Red Galaxies. These sources are located in the Chandra Deep Field South, a unique field for the study of galaxy evolution, given the top quality data available at all wavelengths. Our main goal is to characterize the mid-IR selected galaxy population at this epoch by measuring H(alpha), H(beta), [NII], and [OIII] fluxes and profiles, and combining these observations with the already merged x-ray, ultraviolet, optical, near- and mid-infrared imaging data, to obtain the most reliable estimations of the SFRs, metallicities, stellar and dynamical masses, AGN activity, and extinction properties of the luminous infrared galaxies detected by MIPS, which dominate the SFR density of the Universe at z≳2. Our targets are complementary to others selected in the rest-frame UV/optical at high-z, and they extend the H(alpha) observations of galaxies selected with ISO from z~1 to z~2.6. The work proposed here will help to interpret the results obtained by the spitzer surveys at z≳2, thus substantially improving our understanding of the formation of massive galaxies and their connection to AGN.

  1. Characterizing bars in low surface brightness disc galaxies (United States)

    Peters, Wesley; Kuzio de Naray, Rachel


    In this paper, we use B-band, I-band, and 3.6 μm azimuthal light profiles of four low surface brightness galaxies (LSBs; UGC 628, F568-1, F568-3, F563-V2) to characterize three bar parameters: length, strength, and corotation radius. We employ three techniques to measure the radius of the bars, including a new method using the azimuthal light profiles. We find comparable bar radii between the I-band and 3.6 μm for all four galaxies when using our azimuthal light profile method, and that our bar lengths are comparable to those in high surface brightness galaxies (HSBs). In addition, we find the bar strengths for our galaxies to be smaller than those for HSBs. Finally, we use Fourier transforms of the B-band, I-band, and 3.6 μm images to characterize the bars as either `fast' or `slow' by measuring the corotation radius via phase profiles. When using the B- and I-band phase crossings, we find three of our galaxies have faster than expected relative bar pattern speeds for galaxies expected to be embedded in centrally dense cold dark matter haloes. When using the B-band and 3.6 μm phase crossings, we find more ambiguous results, although the relative bar pattern speeds are still faster than expected. Since we find a very slow bar in F563-V2, we are confident that we are able to differentiate between fast and slow bars. Finally, we find no relation between bar strength and relative bar pattern speed when comparing our LSBs to HSBs.

  2. Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies .4. Using color profiles to study stellar and dust content of galaxies

    NARCIS (Netherlands)

    deJong, RS

    The stellar and dust content of spiral galaxies as function of radius has been investigated using near-infrared and optical broadband surface photometry of 86 face-on spiral galaxies. Colors of galaxies correlate with the azimuthally averaged local surface brightness both within and among galaxies,


    International Nuclear Information System (INIS)

    Van der Wel, Arjen; Bell, Eric F.; Van den Bosch, Frank C.; Gallazzi, Anna; Rix, Hans-Walter


    We present a simple, empirically motivated model that simultaneously predicts the evolution of the mean size and the comoving mass density of massive (>10 11 M sun ) early-type galaxies from z = 2 to the present. First, we demonstrate that some size evolution of the population can be expected simply due to the continuous emergence of early-type galaxies. The Sloan Digital Sky Survey (SDSS) data reveal that in the present-day universe more compact early-type galaxies with a given dynamical mass have older stellar populations. This implies that with increasing look-back time, the more extended galaxies will be more and more absent from the population. In contrast, at a given stellar velocity dispersion, SDSS data show that there is no relation between size and age, which implies that the velocity dispersion can be used to estimate the epoch at which galaxies stopped forming stars, turning into early-type galaxies. Based on this, we define an empirically motivated, redshift-dependent velocity dispersion threshold above which galaxies do not form stars at a significant rate, which we associate with the transformation into early-type galaxies. Applying this 'formation' criterion to a large sample of nearby early-type galaxies, we predict the redshift evolution in the size distribution and the comoving mass density. The resulting evolution in the mean size is roughly half of the observed evolution. Then we include a prescription for the merger histories of galaxies between the 'formation' redshift and the present, based on cosmological simulations of the assembly of dark matter halos. Such mergers after the transformation into an early-type galaxy are presumably dissipationless ('dry'), where the increase in size is expected to be approximately proportional to the increase in mass. This model successfully reproduces the observed evolution since z ∼ 2 in the mean size and in the comoving mass density of early-type galaxies with mass M > 10 11 M sun . We conclude that

  4. Photographic surface photometry of NGC 2855 and NGC 6771 galaxies

    International Nuclear Information System (INIS)

    Schroeder, M. de F.S.


    Photographic surface photometry in the BV system was carried out two Southern SO's galaxies, NGC 2855 and NGC 6771. B and V isophote maps were obtained as well as geometric and integrated parameters as position angles, inclination, diameters, magnitudes and integrated colors. Each luminosity profile was decomposed into bulge and disk contributions, each component being fitted to convenient laws. For NGC 2855 de Vaucouleurs law described well the bulge whereas the disk showed an exponential distribution. For NGC 6771 the barred nuclear bulge as well as the disk was best fitted by exponential laws. Additional luminosity components due to an inner fragmented ring were identified in NGC 2855 and due to both a quite prominent lens and well defined ring in NGC 6771. In this galaxy the minor axis, oriented almost edge-on, present clues of another luminosity component besides the bulge and the thin disk. For both galaxies the disk central surface brightness was found to be fainter than the standard value observed by Freeman. The fitting parameters were used to determine the bulge-to-disk luminosity ratios as well as their contribution to total luminosity. The domination by the bulge light over the disk light was clear in both galaxies. From the B and V luminosity profile the color gradients were estimated. For both objects the local color indices decreased from inner to outer regions, this effect being relatively smooth in NGC 2855 and more prominent in NGC 6771 [pt

  5. Surface current density K: an introduction

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson


    The author discusses the vector surface of current density K used in electrical insulation studies. K is related to the vector tangential electric field Kt at the surface of a body by the vector equation K=ΓE t where Γ represents the surface conductivity. The author derives a surface continuity...


    African Journals Online (AJOL)


    dissociation of these groups, result into a pH dependent surface charge whose density can be measured by acid-base titration. The surface charge density determined by such method is essentially measured relative to the unknown condition of the oxide/liquid interface prior to reagent addition (i.e. at the point of zero ...

  7. Rediscovering the Giant Low Surface Brightness Spiral Galaxy Malin 1 (United States)

    Galaz, Gaspar


    I summarize the latest discoveries regarding this ramarkable diffuse and giant galaxy, the largest single spiral in the universe so far. I describe how the latest discoveries could have been done easily 20 years ago, but an incredible summation of facts and some astronomical sociology, keeped many of them undisclosed. I present the most conspicuous features of the giant spiral arms of Malin 1, including stellar density, colors, stellar populations and some modeling describing their past evolution to the current state. I conclude with pending issues regarding stellar formation in Malin 1, and the efforts to detect its elusive molecular gas.

  8. Galaxies

    International Nuclear Information System (INIS)


    The size and nature of any large-scale anisotropy in the three-dimensional distribution of galaxies is still little understood. Recent studies have indicated that large fluctuations in the matter distribution on a scale from tens up to several hundreds of megaparsecs may exist. Work at the South African Astronomical Observatory (SAAO) in recent years has made major contributions to studies of the large scale distribution of galaxies, as well as to solving the problems of the galactic and extragalactic distance scale. Other studies of galaxies undertaken at SAAO include: quasars in the fields of nearby galaxies; dwarf irregular galaxies; IRAS galaxies; Seyfert galaxies; 'hot spot' galaxies; supernovae in NGC 5128 and NGC 1559 and superclusters. 4 figs

  9. A new method to measure galaxy bias by combining the density and weak lensing fields

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Manera, Marc; Vikram, Vinu


    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as <κgκ>/<κκ> or <κgκg>/<κgκ>. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.


    International Nuclear Information System (INIS)

    Reid, Beth A.; Spergel, David N.; Bode, Paul


    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a ∼10% correction in the underlying power spectrum at k = 0.1 h Mpc -1 and ∼40% correction at k = 0.2 h Mpc -1 in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the ≤1% level for k ≤ 0.1 h Mpc -1 and ≤4% at k = 0.2 h Mpc -1 . The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter β induced by the FOG smearing of the linear redshift space distortions.

  11. Density and surface tension of ionic liquids. (United States)

    Kolbeck, C; Lehmann, J; Lovelock, K R J; Cremer, T; Paape, N; Wasserscheid, P; Fröba, A P; Maier, F; Steinrück, H-P


    We measured the density and surface tension of 9 bis[(trifluoromethyl)sulfonyl]imide ([Tf(2)N](-))-based and 12 1-methyl-3-octylimidazolium ([C(8)C(1)Im](+))-based ionic liquids (ILs) with the vibrating tube and the pendant drop method, respectively. This comprehensive set of ILs was chosen to probe the influence of the cations and anions on density and surface tension. When the alkyl chain length in the [C(n)C(1)Im][Tf(2)N] series (n = 1, 2, 4, 6, 8, 10, 12) is increased, a decrease in density is observed. The surface tension initially also decreases but reaches a plateau for alkyl chain lengths greater than n = 8. Functionalizing the alkyl chains with ethylene glycol groups results in a higher density as well as a higher surface tension. For the dependence of density and surface tension on the chemical nature of the anion, relations are only found for subgroups of the studied ILs. Density and surface tension values are discussed with respect to intermolecular interactions and surface composition as determined by angle-resolved X-ray photoelectron spectroscopy (ARXPS). The absence of nonvolatile surface-active contaminants was proven by ARXPS.


    International Nuclear Information System (INIS)

    Brammer, Gabriel B.; Whitaker, K. E.; Van Dokkum, P. G.; Lee, K.-S.; Muzzin, A.; Marchesini, D.; Franx, M.; Kriek, M.; Labbe, I.; Quadri, R. F.; Williams, R.; Rudnick, G.


    We study the buildup of the bimodal galaxy population using the NEWFIRM Medium-Band Survey, which provides excellent redshifts and well-sampled spectral energy distributions of ∼27, 000 galaxies with K 3 x 10 10 M sun increases by a factor of ∼10 from z ∼ 2 to the present day, whereas the mass density in star-forming galaxies is flat or decreases over the same time period. Modest mass growth by a factor of ∼2 of individual quiescent galaxies can explain roughly half of the strong density evolution at masses >10 11 M sun , due to the steepness of the exponential tail of the mass function. The rest of the density evolution of massive, quiescent galaxies is likely due to transformation (e.g., quenching) of the massive star-forming population, a conclusion which is consistent with the density evolution we observe for the star-forming galaxies themselves, which is flat or decreasing with cosmic time. Modest mass growth does not explain the evolution of less massive quiescent galaxies (∼10 10.5 M sun ), which show a similarly steep increase in their number densities. The less massive quiescent galaxies are therefore continuously formed by transforming galaxies from the star-forming population.


    NARCIS (Netherlands)



    It has been argued that the conditional density is superior to the two-point correlation function in providing a more sample-independent description of galaxy correlations and the approach to homogeneity (Pietronero). This is demonstrated here by applying both statistics to two different synthetic

  14. Mass density slope of elliptical galaxies from strong lensing and resolved stellar kinematics (United States)

    Lyskova, N.; Churazov, E.; Naab, T.


    We discuss constraints on the mass density distribution (parametrized as ρ ∝ r-γ) in early-type galaxies provided by strong lensing and stellar kinematics data. The constraints come from mass measurements at two `pinch' radii. One `pinch' radius r1 = 2.2REinst is defined such that the Einstein (i.e. aperture) mass can be converted into the spherical mass almost independently of the mass-model. Another `pinch' radius r2 = Ropt is chosen so that the dynamical mass, derived from the line-of-sight velocity dispersion, is least sensitive to the anisotropy of stellar orbits. We verified the performance of this approach on a sample of simulated elliptical galaxies and on a sample of 15 SLACS lens galaxies at 0.01 ≤ z ≤ 0.35, which have already been analysed in Barnabè et al. by the self-consistent joint lensing and kinematic code. For massive simulated galaxies, the density slope γ is recovered with an accuracy of ˜13 per cent, unless r1 and r2 happen to be close to each other. For SLACS galaxies, we found good overall agreement with the results of Barnabè et al. with a sample-averaged slope γ = 2.1 ± 0.05. Although the two-pinch-radii approach has larger statistical uncertainties, it is much simpler and uses only few arithmetic operations with directly observable quantities.

  15. Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Luminosity Functions and Density Profiles (United States)

    Muzzin, Adam; Yee, H. K. C.; Hall, Patrick B.; Ellingson, E.; Lin, H.


    We present K-band imaging for 15 of the CNOC1 clusters. The extensive spectroscopic data set available for these clusters allows us to determine the cluster K-band luminosity function and density profile without the need for statistical background subtraction. The luminosity density and number density profiles can be described by NFW models with concentration parameters of cl=4.28+/-0.70 and cg=4.13+/-0.57, respectively. Comparing these to the dynamical mass analysis of the same clusters shows that they are similar to the cluster dark matter profile. The luminosity functions show that the evolution of K* over the redshift range 0.2cluster galaxies form at high redshift (zf>1.5) and evolve passively thereafter. The best fit for the faint-end slope of the luminosity function is α=-0.84+/-0.08, which indicates that it does not evolve between z=0 and 0.3. Using principal component analysis of the spectra, we classify cluster galaxies as either star-forming/recently star-forming (EM+BAL) or non-star-forming (ELL) and compute their respective luminosity functions. The faint-end slope of the ELL luminosity function is much shallower than for the EM+BAL galaxies at z=0.3 and suggests that the number of faint ELL galaxies in clusters decreases by a factor of ~3 from z=0 to 0.3. The redshift evolution of K* for both EM+BAL and ELL types is consistent with a passively evolving stellar population formed at high redshift. Passive evolution in both classes demonstrates that the bulk of the stellar population in all bright cluster galaxies is formed at high redshift, and subsequent transformations in morphology/color/spectral type have little effect on the total stellar mass.

  16. Testing the dark matter hypothesis with low surface brightness galaxies and other evidence

    NARCIS (Netherlands)

    McGaugh, SS; de Blok, WJG


    The severity of the mass discrepancy in spiral galaxies is strongly correlated with the central surface brightness of their disks. Progressively lower surface brightness galaxies have ever larger mass discrepancies. No other parameter (luminosity, size, velocity, morphology) is so well correlated

  17. The visibility of galaxies as a function of central surface brightness

    International Nuclear Information System (INIS)

    Disney, M.; Phillipps, S.


    The likelihood of a galaxy with given intrinsic profile appearing in a photograph catalogue with limiting criteria on apparent magnitude and angular size will depend on the maximum distance at which such a galaxy can lie and still obey both criteria. It is demonstrated that the corresponding volume in which the galaxy will be visible is a sensitive function of the galaxy's central surface brightness as well as its absolute magnitude. Before the observed concentrations around preferred values of surface brightness can be regarded as real, it will be necessary to make allowance for this selection effect. (author)

  18. Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Luminosity Functions and Density Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Muzzin, Adam; Yee, H.K.C.; /Toronto U., Astron. Dept.; Hall, Patrick B.; /York U., Canada; Ellingson, E.; /Colorado U., CASA; Lin, Huan; /Fermilab


    We present K-band imaging for 15 of the Canadian Network for Observational Cosmology (CNOC1) clusters. The extensive spectroscopic dataset available for these clusters allows us to determine the cluster K-band luminosity function and density profile without the need for statistical background subtraction. The luminosity density and number density profiles can be described by NFW models with concentration parameters of c{sub l} = 4.28 {+-} 0.70 and c{sub g} = 4.13 {+-} 0.57 respectively. Comparing these to the dynamical mass analysis of the same clusters shows that the galaxy luminosity and number density profiles are similar to the dark matter profile, and are not less concentrated like in local clusters. The luminosity functions show that the evolution of K. over the redshift range 0.2 < z < 0.5 is consistent with a scenario where the majority of stars in cluster galaxies form at high-redshift (z{sub f} > 1.5) and evolve passively thereafter. The best-fit for the faint-end slope of the luminosity function is {alpha} = -0.84 {+-} 0.08, which indicates that it does not evolve between z = 0 and z = 0.3. Using Principal Component Analysis of the spectra we classify cluster galaxies as either star-forming/recently-star-forming (EM+BAL) or non-star forming (ELL) and compute their respective luminosity functions. The faint-end slope of the ELL luminosity function is much shallower than for the EM+BAL galaxies at z = 0.3, and suggests the number of faint ELL galaxies in clusters decreases by a factor of {approx} 3 from z = 0 to z = 0.3. The redshift evolution of K* for both EM+BAL and ELL types is consistent with a passively evolving stellar population formed at high-redshift. Passive evolution in both classes, as well as the total cluster luminosity function, demonstrates that the bulk of the stellar population in all bright cluster galaxies is formed at high-redshift and subsequent transformations in morphology/color/spectral-type have little effect on the total stellar

  19. The Density Profiles of Massive, Relaxed Galaxy Clusters. I. The Total Density Over Three Decades in Radius (United States)

    Newman, Andrew B.; Treu, Tommaso; Ellis, Richard S.; Sand, David J.; Nipoti, Carlo; Richard, Johan; Jullo, Eric


    Clusters of galaxies are excellent locations to probe the distribution of baryons and dark matter (DM) over a wide range of scales. We study a sample of seven massive (M 200 = 0.4-2 × 1015 M ⊙), relaxed galaxy clusters with centrally located brightest cluster galaxies (BCGs) at z = 0.2-0.3. Using the observational tools of strong and weak gravitational lensing, combined with resolved stellar kinematics within the BCG, we measure the total radial density profile, comprising both dark and baryonic matter, over scales of ~= 3-3000 kpc. We present Keck spectroscopy yielding seven new spectroscopic redshifts of multiply imaged sources and extended stellar velocity dispersion profiles of the BCGs. Lensing-derived mass profiles typically agree with independent X-ray estimates within ~= 15%, suggesting that departures from hydrostatic equilibrium are small and that the clusters in our sample (except A383) are not strongly elongated or compressed along the line of sight. The inner logarithmic slope γtot of the total density profile measured over r/r 200 = 0.003-0.03, where ρ_{tot} ∝ r^{-γ_{tot}}, is found to be nearly universal, with a mean langγtotrang = 1.16 ± 0.05(random)+0.05 -0.07 (systematic) and an intrinsic scatter σγ numerical simulations that contain only DM, despite the significant contribution of stellar mass on the scales we probe. The Navarro-Frenk-White profile characteristic of collisionless cold DM is a better description of the total mass density at radii >~ 5-10 kpc than that of DM alone. Hydrodynamical simulations that include baryons, cooling, and feedback currently provide a poorer match. We discuss the significance of our findings for understanding the physical processes governing the assembly of BCGs and cluster cores, particularly the influence of baryons on the inner DM halo.

  20. The Westerbork HI survey of spiral and irregular galaxies - II. R-band surface photometry of late-type dwarf galaxies

    NARCIS (Netherlands)

    Swaters, RA; Balcells, M

    R-band surface photometry is presented for 171 late-type dwarf and irregular galaxies. For a subsample of 46 galaxies B-band photometry is presented as well. We present surface brightness profiles as well as isophotal and photometric parameters including magnitudes, diameters and central surface

  1. The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons (United States)

    Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop


    We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.

  2. B and R CCD surface photometry of selected low surface brightness galaxies in the region of the Fornax cluster

    International Nuclear Information System (INIS)

    Davies, J.I.; Phillipps, S.; Disney, M.J.


    The recent discoveries of large numbers of low surface brightness (LSB) galaxies in clusters and of the extreme LSB giant galaxy Malin 1 are changing our view of the galactic contents of the Universe. In this paper we describe B and R band CCD photometry of a sample of LSB galaxies previously identified from photographic plates of the Fornax cluster. This sample contains some of the lowest surface brightness galaxies known, one having the same central surface brightness as Main 1. The objects in this sample have a wide range of morphologies, and galaxies of similar appearance may have very different (B-R) colours. The range of (B-R) colours for this sample (almost all of which would have been described as dE from their B band morphology alone) is as large as that of the entire Hubble sequence. (author)

  3. Scattered surface charge density: A tool for surface characterization

    KAUST Repository

    Naydenov, Borislav


    We demonstrate the use of nonlocal scanning tunneling spectroscopic measurements to characterize the local structure of adspecies in their states where they are significantly less perturbed by the probe, which is accomplished by mapping the amplitude and phase of the scattered surface charge density. As an example, we study single-H-atom adsorption on the n-type Si(100)-(4 × 2) surface, and demonstrate the existence of two different configurations that are distinguishable using the nonlocal approach and successfully corroborated by density functional theory. © 2011 American Physical Society.

  4. Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics

    International Nuclear Information System (INIS)

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.; Bender, Ralf; Thomas, Jens; Van den Bosch, Remco C. E.; Van de Ven, Glenn; Barentine, John C.; Gebhardt, Karl; Hill, Gary J.; Murphy, Jeremy D.; Swaters, R. A.


    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these


    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Kimberly A. [Penn State Mont Alto, 1 Campus Drive, Mont Alto, PA 17237 (United States); Hunter, Deidre A. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Elmegreen, Bruce G., E-mail:, E-mail:, E-mail: [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)


    In this second paper of a series, we explore the B  −  V , U  −  B , and FUV−NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ∼1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of which mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (−9 >  M{sub B}  > −14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (−14 >  M{sub B}  > −19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1−2  M {sub ⊙} pc{sup −2} for Type II dwarfs but higher at 5.9  M {sub ⊙} pc{sup −2} or 27  M {sub ⊙} pc{sup −2} for

  6. Giant Low Surface Brightness Galaxies: Evolution in Isolation

    Indian Academy of Sciences (India)


    Jan 27, 2016 ... These galaxies have very massive dark matter halos that also contribute to their stability and lack of evolution. In this paper we briefly review the properties of this unique class of galaxies and conclude that both their isolation and their massive dark matter halos have led to the low star formation rates and ...

  7. A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy (United States)

    Hailey, Charles J.; Mori, Kaya; Bauer, Franz E.; Berkowitz, Michael E.; Hong, Jaesub; Hord, Benjamin J.


    The existence of a ‘density cusp’—a localized increase in number—of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.


    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; Martinez, Gregory D.; Bullock, James S.; Kaplinghat, Manoj


    Warm dark matter (WDM) and self-interacting dark matter (SIDM) are often motivated by the inferred cores in the dark matter halos of low surface brightness (LSB) galaxies. We test thermal WDM, non-thermal WDM, and SIDM using high-resolution rotation curves of nine LSB galaxies. We fit these dark matter models to the data and determine the halo core radii and central densities. While the minimum core size in WDM models is predicted to decrease with halo mass, we find that the inferred core radii increase with halo mass and also cannot be explained with a single value of the primordial phase-space density. Moreover, if the core size is set by WDM particle properties, then even the smallest cores we infer would require primordial phase-space density values that are orders of magnitude smaller than lower limits obtained from the Lyα forest power spectra. We also find that the dark matter halo core densities vary by a factor of about 30 from system to system while showing no systematic trend with the maximum rotation velocity of the galaxy. This strongly argues against the core size being directly set by large self-interactions (scattering or annihilation) of dark matter. We therefore conclude that the inferred cores do not provide motivation to prefer WDM or SIDM over other dark matter models.



    Hong Shen


    The concepts of curve profile, curve intercept, curve intercept density, curve profile area density, intersection density in containing intersection (or intersection density relied on intersection reference), curve profile intersection density in surface (or curve intercept intersection density relied on intersection of containing curve), and curve profile area density in surface (AS) were defined. AS expressed the amount of curve profile area of Y phase in the unit containing surface area, S...


    International Nuclear Information System (INIS)

    Faltenbacher, A.; Finoguenov, A.; Drory, N.


    The baryon content of high-density regions in the universe is relevant to two critical unanswered questions: the workings of nurture effects on galaxies and the whereabouts of the missing baryons. In this paper, we analyze the distribution of dark matter and semianalytical galaxies in the Millennium Simulation to investigate these problems. Applying the same density field reconstruction schemes as used for the overall matter distribution to the matter locked in halos, we study the mass contribution of halos to the total mass budget at various background field densities, i.e., the conditional halo mass function. In this context, we present a simple fitting formula for the cumulative mass function accurate to ∼ 10 and 10 15 h -1 M sun . We find that in dense environments the halo mass function becomes top heavy and present corresponding fitting formulae for different redshifts. We demonstrate that the major fraction of matter in high-density fields is associated with galaxy groups. Since current X-ray surveys are able to nearly recover the universal baryon fraction within groups, our results indicate that the major part of the so-far undetected warm-hot intergalactic medium resides in low-density regions. Similarly, we show that the differences in galaxy mass functions with environment seen in observed and simulated data stem predominantly from differences in the mass distribution of halos. In particular, the hump in the galaxy mass function is associated with the central group galaxies, and the bimodality observed in the galaxy mass function is therefore interpreted as that of central galaxies versus satellites.

  11. Surface density of dark matter haloes on galactic and cluster scales (United States)

    Del Popolo, A.; Cardone, V. F.; Belvedere, G.


    In this paper, we analysed the correlation between the central surface density and the halo core radius of galaxies, and cluster of galaxies dark matter (DM) haloes, in the framework of the secondary infall model. We used Del Popolo secondary infall model taking into account ordered and random angular momentum, dynamical friction and DM adiabatic contraction to calculate the density profile of haloes, and then these profiles are used to determine the surface density of DM haloes. The main result is that r* (the halo characteristic radius) is not a universal quantity as claimed by Donato et al. and Gentile et al. On the contrary, we find a correlation with the halo mass M200 in agreement with Cardone & Tortora, Boyarsky et al. and Napolitano, Romanowsky & Tortora, but with a significantly smaller scatter, namely 0.16 ± 0.05. We also consider the baryon column density finding this latter being indeed a constant for low-mass systems, such as dwarfs, but correlating with mass with a slope of α = 0.18 ± 0.05. In the case of the surface density of DM for a system composed only of DM, as in dissipationless simulations, we get α = 0.20 ± 0.05. These results leave little room for the recently claimed universality of (dark and stellar) column density.

  12. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. II. A catalogue of isolated nearby edge-on disk galaxies and the discovery of new low surface brightness systems (United States)

    Henkel, C.; Javanmardi, B.; Martínez-Delgado, D.; Kroupa, P.; Teuwen, K.


    The connection between the bulge mass or bulge luminosity in disk galaxies and the number, spatial and phase space distribution of associated dwarf galaxies is a discriminator between cosmological simulations related to galaxy formation in cold dark matter and generalised gravity models. Here, a nearby sample of isolated Milky Way-class edge-on galaxies is introduced, to facilitate observational campaigns to detect the associated families of dwarf galaxies at low surface brightness. Three galaxy pairs with at least one of the targets being edge-on are also introduced. Approximately 60% of the catalogued isolated galaxies contain bulges of different size, while the remaining objects appear to be bulgeless. Deep images of NGC 3669 (small bulge, with NGC 3625 at the edge of the image) and NGC 7814 (prominent bulge), obtained with a 0.4 m aperture, are also presented, resulting in the discovery of two new dwarf galaxy candidates, NGC 3669-DGSAT-3 and NGC 7814-DGSAT-7. Eleven additional low surface brightness galaxies are identified, previously notified with low quality measurement flags in the Sloan Digital Sky Survey (SDSS). Integrated magnitudes, surface brightnesses, effective radii, Sersic indices, axis ratios, and projected distances to their putative major hosts are displayed. At least one of the galaxies, NGC 3625-DGSAT-4, belongs with a surface brightness of μr ≈ 26 mag arcsec-2 and effective radius >1.5 kpc to the class of ultra-diffuse galaxies (UDGs). NGC 3669-DGSAT-3, the galaxy with the lowest surface brightness in our sample, may also be an UDG.

  13. Surface colour photometry of galaxies with Schmidt telescopes. (United States)

    Wray, J. D.


    A method is described which owes its practicality to the capability of Schmidt telescopes to record a number of galaxy images on a single plate and to the existence of high speed computer controlled area-scanning precision microdensitometers such as the Photometric Data Systems model 1010. The method of analysis results in quantitative color-index information which is displayed in a manner that allows any user to effectively study the morphological properties of the distribution of color-index in galaxies.


    International Nuclear Information System (INIS)

    Lemonias, Jenna J.; Schiminovich, David; Thilker, David; Bianchi, Luciana; Wyder, Ted K.; Martin, D. Christopher; Seibert, Mark; Madore, Barry F.; Treyer, Marie A.; Heckman, Timothy M.; Rich, R. Michael


    We present results of the first unbiased search for extended ultraviolet (XUV)-disk galaxies undertaken to determine the space density of such galaxies. Our sample contains 561 local (0.001 1.5 x 10 4 s) and Sloan Digital Sky Survey DR7 footprints. We explore modifications to the standard classification scheme for our sample that includes both disk- and bulge-dominated galaxies. Visual classification of each galaxy in the sample reveals an XUV-disk frequency of up to 20% for the most nearby portion of our sample. On average over the entire sample (out to z = 0.05) the frequency ranges from a hard limit of 4%-14%. The GALEX imaging allows us to detect XUV disks beyond 100 Mpc. The XUV regions around XUV-disk galaxies are consistently bluer than the main bodies. We find a surprisingly high frequency of XUV emission around luminous red (NUV-r > 5) and green valley (3 (1.5-4.2) x 10 -3 Mpc -3 . Using the XUV emission as an indicator of recent gas accretion, we estimate that the cold gas accretion rate onto these galaxies is >(1.7-4.6) x 10 -3 M sun Mpc -3 yr -1 . The number of XUV disks in the green valley and the estimated accretion rate onto such galaxies points to the intriguing possibility that 7%-18% of galaxies in this population are transitioning away from the red sequence.

  15. Distribution of surface brightness in Seyfert galaxies. III. Analysis of data

    International Nuclear Information System (INIS)

    Afanas'ev, V.L.; Doroshenko, V.T.; Terebizh, V.Yu.


    The observational data on the distribution of the surface brightness μ(r) in normal and Seyfert galaxies given in the first two parts of the study [1,2] are considered. The general form of μ(r) for r ≤ approximately equals 2 kpc is the same for the two groups of galaxies. The values of the parameters that characterize the central part of the spherical component are found, namely, the surface brightness μ 1 /sup (0)/, the brightness, the brightness gradient n 1 , and the color indices (U-B) 1 /sup (0)/ and (B-V) 1 /sup (0)/ at distance 1 kpc from the center. The range of variation of the basic parameters and the correlations of the parameters with each other and with the absolute magnitudes M/sub B//sup (0)/ of the galaxies find a natural explanation in the framework of the standard models of the spherical subsystems of galaxies. The relationships have approximately the same form for normal and Seyfert galaxies. The photometric characteristics of the central regions of Sy 1 and Sy 2 type galaxies are similar. The obtained results do not contradict the idea that all sufficiently bright spiral galaxies can pass through a Seyfert stage with a characteristic time of ∼10 8 yr

  16. Nuclear Activity of Compact Group Galaxies (United States)

    Jubee, Sohn; Hwang, H.; Lee, M.; Lee, G.; Lee, J.


    We present results of a study on nuclear activities of compact group galaxies in the local universe. The triggering mechanism of AGN is an intriguing proble, and one of the suggested AGN triggering mechanism is galaxy interaction. In this regard, compact groups are a great laboratory to study the connection between galaxy interaction and nuclear activities. To study the environmental effects on nuclear activity, we estimate the fraction of AGN-host galaxies for a spectroscopic sample of 238 member galaxies in 59 compact groups from the Sloan Digital Sky Survey using the emission-line ratio diagnostic diagrams in comparison with field and cluster regions. We derive the 17-42% of AGN fraction of the compact groups depending on the AGN classification methods. The AGN fraction of compact groups is not the highest among the galaxy environments for both early and late type galaxies. We also examine the environmental dependence of nuclear activity using the surface galaxy number density. For early type galaxies, the AGN fraction decreases with increasing galaxy number density, while the AGN fraction of late-type galaxies barely changes. Moreover, we do not find any mid-infrared detected AGN-host compact group galaxies in our sample using WISE photometry. These results imply that the compact group galaxies is not stronngly active because of lack of gas supply, in contrast to the expectation that they may experience frequent galaxy-galaxy interactions.

  17. Spectrophotometry of four galaxies of high surface brightness

    International Nuclear Information System (INIS)

    Arakelyan, M.A.; Magtesyan, A.P.


    Spectrophotometry has been performed for the emission lines in the nuclei of Arakelyan galaxies Nos. 428, 449, 454, 532. In the first two objects, H II clouds occur roughly-equal2 kpc out from the nucleus. No. 449 may contain another cloud moving at roughly-equal1500 km/sec radial velocity. radial

  18. Galaxy halo expansions: a new biorthogonal family of potential-density pairs (United States)

    Lilley, Edward J.; Sanders, Jason L.; Wyn Evans, N.; Erkal, Denis


    Efficient expansions of the gravitational field of (dark) haloes have two main uses in the modelling of galaxies: first, they provide a compact representation of numerically-constructed (or real) cosmological haloes, incorporating the effects of triaxiality, lopsidedness or other distortion. Secondly, they provide the basis functions for self-consistent field expansion algorithms used in the evolution of N-body systems. We present a new family of biorthogonal potential-density pairs constructed using the Hankel transform of the Laguerre polynomials. The lowest-order density basis functions are double-power-law profiles cusped like ρ ˜ r-2 + 1/α at small radii with asymptotic density fall-off like ρ ˜ r-3 - 1/(2α). Here, α is a parameter satisfying α ≥ 1/2. The family therefore spans the range of inner density cusps found in numerical simulations, but has much shallower - and hence more realistic - outer slopes than the corresponding members of the only previously-known family deduced by Zhao (1996) and exemplified by Hernquist & Ostriker (1992). When α = 1, the lowest-order density profile has an inner density cusp of ρ ˜ r-1 and an outer density slope of ρ ˜ r-3.5, similar to the famous Navarro, Frenk & White (1997) model. For this reason, we demonstrate that our new expansion provides a more accurate representation of flattened NFW haloes than the competing Hernquist-Ostriker expansion. We utilize our new expansion by analysing a suite of numerically-constructed haloes and providing the distributions of the expansion coefficients.

  19. Cosmic strings and galaxy formation: Current status

    International Nuclear Information System (INIS)

    Stebbins, A.


    Successes and remaining problems with cosmic string theories of galaxy formation are outlined. Successes of the theory include predictions for the correct amplitude of initial inhomogeneities leading to galaxy formation, the distribution of observed inhomogeneities, the observed correlation function of clusters, and the density profiles of dark matter halos. Potentially serious problems which have been raised are the biased galaxy production (why do galaxies occur in clusters?), the core radius problem (density profiles of galactic halos do not match predictions), the maximal rotation velocity problem (why is there a sharp cutoff in observed rotational velocity of galaxies?), the small galaxy problem (why are all the galaxies relatively small structures?), the angular momentum problem (where do baryons acquire their angular momentum in order to form spirals), and the large-scale structure problem (why do most galaxies appear to lie on surfaces surrounding voids?). Possible approaches to each of these problems are suggested and the future of cosmic string theory is discussed. 25 refs

  20. On the density within the dark-matter core in our galaxy

    Directory of Open Access Journals (Sweden)

    Ninković S.


    Full Text Available Assuming that the disc of our Galaxy, the Milky Way, obeys the classical exponential law, that it is maximal and the Sun is rather far from the maximum of its circular velocity, one finds that, most likely, the galactic corona (subsystem containing the dark matter has a nearly constant density within its core which contains the position of the Sun. The approach applied in the present paper is local, i.e. quantities characterizing the solar neighbourhood are treated. The assumptions and the result could explain why the ratio of the moduli of the Oort constants is expected to exceed the value of 1.0 which corresponds to the locally flat rotation curve of the Milky Way.

  1. Northern dwarf and low surface brightness galaxies. II - The Green Bank neutral hydrogen survey (United States)

    Schneider, Stephen E.; Thuan, Trinh X.; Mangum, Jeffrey G.; Miller, John


    The paper reports neutral hydrogen observations of a large sample of dwarf and other low surface brightness galaxies. A detailed discussion and error analysis of the observations are presented, and spectra are displayed for 329 galaxies detected for the first time, or detected with substantially better signal-to-noise ratios than achieved previously. The positions on the sky of 667 galaxies meeting the present selection criteria north of delta = 38 deg are shown. The distribution of the redshifts of galaxies detected at Green Bank is illustrated. The Green Bank detections tapered off strongly below the median H I flux of 3.7 Jy km/s detected at Arecibo: only 12 percent of the Green Bank sample was detected with smaller fluxes.

  2. Deep learning for galaxy surface brightness profile fitting (United States)

    Tuccillo, D.; Huertas-Company, M.; Decencière, E.; Velasco-Forero, S.; Domínguez Sánchez, H.; Dimauro, P.


    Numerous ongoing and future large area surveys (e.g. Dark Energy Survey, EUCLID, Large Synoptic Survey Telescope, Wide Field Infrared Survey Telescope) will increase by several orders of magnitude the volume of data that can be exploited for galaxy morphology studies. The full potential of these surveys can be unlocked only with the development of automated, fast, and reliable analysis methods. In this paper, we present DeepLeGATo, a new method for 2-D photometric galaxy profile modelling, based on convolutional neural networks. Our code is trained and validated on analytic profiles (HST/CANDELS F160W filter) and it is able to retrieve the full set of parameters of one-component Sérsic models: total magnitude, effective radius, Sérsic index, and axis ratio. We show detailed comparisons between our code and GALFIT. On simulated data, our method is more accurate than GALFIT and ˜3000 time faster on GPU (˜50 times when running on the same CPU). On real data, DeepLeGATo trained on simulations behaves similarly to GALFIT on isolated galaxies. With a fast domain adaptation step made with the 0.1-0.8 per cent the size of the training set, our code is easily capable to reproduce the results obtained with GALFIT even on crowded regions. DeepLeGATo does not require any human intervention beyond the training step, rendering it much automated than traditional profiling methods. The development of this method for more complex models (two-component galaxies, variable point spread function, dense sky regions) could constitute a fundamental tool in the era of big data in astronomy.

  3. SDSS-IV MaNGA: Probing the Kinematic Morphology–Density Relation of Early-type Galaxies with MaNGA (United States)

    Greene, J. E.; Leauthaud, A.; Emsellem, E.; Goddard, D.; Ge, J.; Andrews, B. H.; Brinkman, J.; Brownstein, J. R.; Greco, J.; Law, D.; Lin, Y.-T.; Masters, K. L.; Merrifield, M.; More, S.; Okabe, N.; Schneider, D. P.; Thomas, D.; Wake, D. A.; Yan, R.; Drory, N.


    The “kinematic” morphology–density relation for early-type galaxies posits that those galaxies with low angular momentum are preferentially found in the highest-density regions of the universe. We use a large sample of galaxy groups with halo masses {10}12.5MaNGA) survey to examine whether there is a correlation between local environment and rotational support that is independent of stellar mass. We find no compelling evidence for a relationship between the angular momentum content of early-type galaxies and either local overdensity or radial position within the group at fixed stellar mass.

  4. Automated detection of very Low Surface Brightness galaxies in the Virgo Cluster (United States)

    Prole, D. J.; Davies, J. I.; Keenan, O. C.; Davies, L. J. M.


    We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 degree2 portion of the Next-Generation Virgo Survey (NGVS) data to reveal 53 low surface brightness galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with 26.0 ≤ ⟨μe⟩ ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of 106.3 ± 0.5M⊙ assuming cluster membership. After using ProFit to fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.

  5. Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies AO2, AO3 and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters AO3 (United States)

    White, Raymond E., III


    This final report uses ROSAT observations to analyze two different studies. These studies are: Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies; and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters.

  6. Dwarf Galaxies in Voids: Galaxy Luminosity and HI Mass Functions Using SDSS and ALFALFA (United States)

    Moorman, Crystal M.; Vogeley, Michael S.; Alfalfa Collaboration


    We examine the first statistically-significant sample of dwarf galaxies in voids with matched optical (Sloan Digital Sky Survey) and radio (Arecibo Legacy Fast ALFA Survey) observations, which allow us to probe the impact of voids on the luminosity function, the HI mass function, and star formation history of galaxies. Large-scale voids provide a unique environment for studying galaxy formation and evolution. Previous theoretical work predicts that galaxies residing in large-scale voids evolve as if they were in a universe with lower matter density, higher dark energy density, and larger Hubble constant. Environmental processes such as ram pressure stripping and galaxy-galaxy interactions should be less important for void galaxies than for galaxies in denser regions (wall galaxies). We measure the effects of environment on two fundamental tests of galaxy formation: the galaxy luminosity function (LF) and the HI mass function (HIMF). In both cases, we find a significant shift towards lower-mass, fainter galaxies in voids. However, we do not detect a dependence on environment of the low-mass/faint end slope of the HIMF and LF. We further investigate how surface brightness selection effects impact the r-band LF. We also examine how HI selection of galaxies affects the optical LF. Utilizing both optical and HI information on nearby galaxies, we determine how star formation efficiency and star formation rates depend on environment.

  7. Is there really a luminosity-surface brightness relation for dwarf galaxies?

    International Nuclear Information System (INIS)

    Phillipps, S.; Davies, J.I.; Disney, M.J.


    A simple test is used to argue that the luminosity-surface brightness correlation found by several authors in eye-selected samples of cluster dwarf galaxies is likely to be merely the result of selection effects. There are therefore likely to be many more dwarfs in clusters like Virgo than is generally assumed. (author)


    Energy Technology Data Exchange (ETDEWEB)

    Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Diaferio, Antonaldo [Dipartimento di Fisica Generale ' Amedeo Avogadro' , Universita degli Studi di Torino, via P. Giuria 1, 10125 Torino (Italy); Dell' Antonio, Ian P., E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Department of Physics, Brown University, Box 1843, Providence, RI 02912 (United States)


    Smithsonian Hectospec Lensing Survey (SHELS) is a dense redshift survey covering a 4 deg{sup 2} region to a limiting R = 20.6. In the construction of the galaxy catalog and in the acquisition of spectroscopic targets, we paid careful attention to the survey completeness for lower surface brightness dwarf galaxies. Thus, although the survey covers a small area, it is a robust basis for computation of the slope of the faint end of the galaxy luminosity function to a limiting M{sub R} = -13.3 + 5log h. We calculate the faint-end slope in the R band for the subset of SHELS galaxies with redshifts in the range 0.02 {<=}z < 0.1, SHELS{sub 0.1}. This sample contains 532 galaxies with R < 20.6 and with a median surface brightness within the half-light radius of SB{sub 50,R} = 21.82 mag arcsec{sup -2}. We used this sample to make one of the few direct measurements of the dependence of the faint end of the galaxy luminosity function on surface brightness. For the sample as a whole the faint-end slope, {alpha} = -1.31 {+-} 0.04, is consistent with both the Blanton et al. analysis of the Sloan Digital Sky Survey and the Liu et al. analysis of the COSMOS field. This consistency is impressive given the very different approaches of these three surveys. A magnitude-limited sample of 135 galaxies with optical spectroscopic redshifts with mean half-light surface brightness, SB{sub 50,R} {>=} 22.5 mag arcsec{sup -2} is unique to SHELS{sub 0.1}. The faint-end slope is {alpha}{sub 22.5} = -1.52 {+-} 0.16. SHELS{sub 0.1} shows that lower surface brightness objects dominate the faint-end slope of the luminosity function in the field, underscoring the importance of surface brightness limits in evaluating measurements of the faint-end slope and its evolution.

  9. The distribution of star formation and metals in the low surface brightness galaxy UGC 628 (United States)

    Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.


    We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.


    African Journals Online (AJOL)


    . ... include manufacture of aerospace housing, automotive and jet engines and lead acid batteries. [2]. In specialised ... diameter of one hydrated ion) from the surface of the oxide (ψd) are normally measured through methods such as ...

  11. The zCOSMOS 10k-sample: the role of galaxy stellar mass in the colour-density relation up to z ~ 1

    NARCIS (Netherlands)

    Cucciati, O.; Iovino, A.; Kovač, K.; Scodeggio, M.; Lilly, S. J.; Bolzonella, M.; Bardelli, S.; Vergani, D.; Tasca, L. A. M.; Zucca, E.; Zamorani, G.; Pozzetti, L.; Knobel, C.; Oesch, P.; Lamareille, F.; Caputi, K.; Kampczyk, P.; Tresse, L.; Maier, C.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Mainieri, V.; Renzini, A.; Bongiorno, A.; Coppa, G.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Le Borgne, J.-F.; Le Brun, V.; Mignoli, M.; Pellò, R.; Peng, Y.; Perez-Montero, E.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Koekemoer, A. M.; Scoville, N.; Abbas, U.; Bottini, D.; Cappi, A.; Cassata, P.; Cimatti, A.; Guzzo, L.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Meneux, B.; Porciani, C.; Scaramella, R.


    Aims: With the first ˜10 000 spectra of the flux limited zCOSMOS sample (IAB ≤ 22.5) we want to study the evolution of environmental effects on galaxy properties since z ~ 1.0, and to disentangle the dependence among galaxy colour, stellar mass and local density. Methods: We use our previously

  12. Versatile Density Functionals for Computational Surface Science

    DEFF Research Database (Denmark)

    Wellendorff, Jess

    resampling techniques, thereby systematically avoiding problems with overfitting. The first ever density functional presenting both reliable accuracy and convincing error estimation is generated. The methodology is general enough to be applied to more complex functional forms with higher-dimensional fitting...... and resampling. This is illustrated by searching for meta-GGA type functionals that outperform current meta-GGAs while allowing for error estimation....

  13. Biofilm Surface Density Determines Biocide Effectiveness

    Directory of Open Access Journals (Sweden)

    Sara Bas


    Full Text Available High resistance of biofilms for chemical challenges is a serious industrial and medical problem. In this work a gradient of surface covered with biofilm has been produced and correlated to the effectiveness of different commercially available oxidative biocides. The results for thin Escherichia coli biofilms grown in rich media supplemented with glucose or lactose on glass or poly methyl methacrylate surfaces indicate that the effectiveness of hydrogen peroxide or chlorine dioxide and quaternary ammonium compounds is inversely proportional to the fraction of the surface covered with the biofilm. In areas where biofilm covered more than 90% of the available surface the biocide treatment was inefficient after 60 min of incubation. The combined effect of oxidant and surfactant increased the effectiveness of the biocide. On the other hand, the increased biofilm viscoelasticity reduced biocide effectiveness. The results emphasize differential biocide effectiveness depending on the fraction of the attached bacterial cells. The results suggest that biofilm biocide resistance is an acquired property that increases with biofilm maturation. The more dense sessile structures present lower log reductions compared to less dense ones.


    International Nuclear Information System (INIS)

    Elmegreen, Debra Meloy; Putko, Joseph; Dewberry, Janosz; Elmegreen, Bruce G.; Sánchez Almeida, Jorge; Muñoz-Tuñón, Casiana


    Tadpole galaxies have a giant star-forming region at the end of an elongated intensity distribution. Here we use Sloan Digital Sky Survey data to determine the ages, masses, and surface densities of the heads and tails in 14 local tadpoles selected from the Kiso and Michigan surveys of UV-bright galaxies, and we compare them to tadpoles previously studied in the Hubble Ultra Deep Field. The young stellar mass in the head scales linearly with rest-frame galaxy luminosity, ranging from ∼10 5 M ☉ at galaxy absolute magnitude U = –13 mag to 10 9 M ☉ at U = –20 mag. The corresponding head surface density increases from several M ☉ pc –2 locally to 10-100 M ☉ pc –2 at high redshift, and the star formation rate (SFR) per unit area in the head increases from ∼0.01 M ☉ yr –1 kpc –2 locally to ∼1 M ☉ yr –1 kpc –2 at high z. These local values are normal for star-forming regions, and the increases with redshift are consistent with other cosmological SFRs, most likely reflecting an increase in gas abundance. The tails in the local sample look like bulge-free galaxy disks. Their photometric ages decrease from several Gyr to several hundred Myr with increasing z, and their surface densities are more constant than the surface densities of the heads. The far-outer intensity profiles in the local sample are symmetric and exponential. We suggest that most local tadpoles are bulge-free galaxy disks with lopsided star formation, perhaps from environmental effects such as ram pressure or disk impacts, or from a Jeans length comparable to half the disk size.

  15. An Hα Imaging Survey of the Low-surface-brightness Galaxies Selected from the Fall Sky Region of the 40% ALFALFA H I Survey (United States)

    Lei, Feng-Jie; Wu, Hong; Du, Wei; Zhu, Yi-Nan; Lam, Man-I.; Zhou, Zhi-Min; He, Min; Jin, Jun-Jie; Cao, Tian-Wen; Zhao, Pin-Song; Yang, Fan; Wu, Chao-Jian; Li, Hong-Bin; Ren, Juan-Juan


    We present the observed Hα flux and derived star formation rates (SFRs) for a fall sample of low-surface-brightness galaxies (LSBGs). The sample is selected from the fall sky region of the 40% ALFALFA H I Survey–SDSS DR7 photometric data, and all the Hα images were obtained using the 2.16 m telescope, operated by the National Astronomy Observatories, Chinese Academy of Sciences. A total of 111 LSBGs were observed and Hα flux was measured in 92 of them. Though almost all the LSBGs in our sample are H I-rich, their SFRs, derived from the extinction and filter-transmission-corrected Hα flux, are less than 1 M ⊙ yr‑1. LSBGs and star-forming galaxies have similar H I surface densities, but LSBGs have much lower SFRs and SFR surface densities than star-forming galaxies. Our results show that LSBGs deviate from the Kennicutt–Schmidt law significantly, which indicates that they have low star formation efficiency. The SFRs of LSBGs are close to average SFRs in Hubble time and support previous arguments that most of the LSBGs are stable systems and they tend to seldom contain strong interactions or major mergers in their star formation histories.


    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher


    We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.

  17. Silicon surface barrier detectors used for liquid hydrogen density measurement (United States)

    James, D. T.; Milam, J. K.; Winslett, H. B.


    Multichannel system employing a radioisotope radiation source, strontium-90, radiation detector, and a silicon surface barrier detector, measures the local density of liquid hydrogen at various levels in a storage tank. The instrument contains electronic equipment for collecting the density information, and a data handling system for processing this information.

  18. Analysis of surface degradation of high density polyethylene (HDPE ...

    Indian Academy of Sciences (India)


    Analysis of surface degradation of high density polyethylene (HDPE) insulation ... ammonium chloride as the contaminant, in high density polyethylene ..... liquid in the material. When diffusion is driven by the concentration gradient and if there is no chemical change between liquid and material, this would result in mass.

  19. CLASH-VLT: The stellar mass function and stellar mass density profile of the z=0.44 cluster of galaxies MACS J1206.2-0847

    CERN Document Server

    Annunziatella, M; Mercurio, A.; Nonino, M.; Rosati, P.; Balestra, I.; Presotto, V.; Girardi, M.; Gobat, R.; Grillo, C.; Medezinski, E.; Kelson, D.; Postman, M.; Scodeggio, M.; Brescia, M.; Sartoris, B.; Demarco, R.; Fritz, A.; Koekemoer, A.; Lemze, D.; Lombardi, M.; Bradley, L.; Coe, D.; Donahue, M.; Regös, E.; Umetsu, K.; Vanzella, E.; Infante, L.; Kuchner, U.; Maier, C.; Verdugo, M.; Ziegler, B.


    Context. The study of the galaxy stellar mass function (SMF) in relation to the galaxy environment and the stellar mass density profile, rho(r), is a powerful tool to constrain models of galaxy evolution. Aims. We determine the SMF of the z=0.44 cluster of galaxies MACS J1206.2-0847 separately for passive and star-forming (SF) galaxies, in different regions of the cluster, from the center out to approximately 2 virial radii. We also determine rho(r) to compare it to the number density and total mass density profiles. Methods. We use the dataset from the CLASH-VLT survey. Stellar masses are obtained by SED fitting on 5-band photometric data obtained at the Subaru telescope. We identify 1363 cluster members down to a stellar mass of 10^9.5 Msolar. Results. The whole cluster SMF is well fitted by a double Schechter function. The SMFs of cluster SF and passive galaxies are statistically different. The SMF of the SF cluster galaxies does not depend on the environment. The SMF of the passive population has a signif...

  20. Device for radiometric measurement, e.g. of surface density

    International Nuclear Information System (INIS)

    Gregor, J.; Kopl, F.


    A design is described of a device for radiometric measurements, such as of material surface density, thickness of coating layers, surface moisture, and for the analysis of chemical composition. The device uses backscattered radiation indicated by two ionization chambers with gas filling; the radiation source is placed in between the chambers. (J.K.)

  1. Morphological properties of star-forming galaxies: Connecting the morphological evolution of galaxies and the decline of the star formation rate density of the Universe in the past 9 billion years (United States)

    Zamojski, Michel A.

    In this dissertation, we present results connecting the morphological evolution of galaxies and the decline of the star formation rate density in the Universe since z ~ 2. For our study, we used the high-resolution HST/ACS images of the COSMOS survey to perform non-parametric automated morphological measurement s on all objects with brightness I F 814 W rates. By first looking at the morphological properties of a sub-sample of z ~ 0.7 galaxies, we discover that the morphological bimodality is already in place, that z ~ 0.7 galaxies have masses, sizes and morphologies similar to that of local galaxies, but that they have star formation rates higher than local galaxies by a factor 2.5-3.5, independently of their other physical properties. We infer that the decline of the star formation rate density in the past 6 Gyrs can be mostly accounted for by a global fading of the galaxy population. We discover that morphology correlates well with UV-optical color, but that there also exists a population of red and dusty star-forming galaxies with bulge-like morphologies. We conclude that bulge growth is linked with episodes of high star formation, and interpret these objects as late-phase mergers. By studying the evolution of the luminosity function at 1500Å, we confirm the fading of the character istic FUV magnitude of galaxies since z = 2.0, and discover a flattening of the faint-end slope at z birth rate of galaxies. The morphological composition of our UV-sources indicates that disk galaxies dominate the FUV-luminosity function at all redshifts and all luminosities while interacting systems and galaxies with bulges contribute significantly mostly at the bright-end. Early-type disks appear to be the ones to evolve the most since z ~ 0.7, an epoch through which their faint-end slope steepens. We interpret this as an indication that most small to intermediate-size disk galaxies formed their bulges in the last 6 Gyrs. Finally, we observe, at z > 1, a progressive increase


    International Nuclear Information System (INIS)

    Glass, Lisa; Ferrarese, Laura; Cote, Patrick; Blakeslee, John P.; Chen, Chin-Wei; Jordan, Andres; Infante, Leopoldo; Peng, Eric; Mei, Simona; Tonry, John L.; West, Michael J.


    Although early observations with the Hubble Space Telescope (HST) pointed to a sharp dichotomy among early-type galaxies in terms of the logarithmic slope γ' of their central surface brightness profiles, several studies in the past few years have called this finding into question. In particular, recent imaging surveys of 143 early-type galaxies belonging to the Virgo and Fornax Clusters using the Advanced Camera for Surveys (ACS) on board HST have not found a dichotomy in γ', but instead a systematic progression from central luminosity deficit to excess relative to the inward extrapolation of the best-fitting global Sersic model. Given that earlier studies also found that the dichotomy persisted when analyzing the deprojected density profile slopes, we investigate the distribution of the three-dimensional luminosity density profiles of the ACS Virgo and Fornax Cluster Survey galaxies. Having fitted the surface brightness profiles with modified Sersic models, we then deproject the galaxies using an Abel integral and measure the inner slopes γ 3D of the resulting luminosity density profiles at various fractions of the effective radius R e . We find no evidence of a dichotomy, but rather, a continuous variation in the central luminosity profiles as a function of galaxy magnitude. We introduce a parameter, Δ 3D , that measures the central deviation of the deprojected luminosity profiles from the global Sersic fit, showing that this parameter varies smoothly and systematically along the luminosity function.

  3. Density functional theory in surface science and heterogeneous catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Scheffler, M.; Toulhoat, H.


    Solid surfaces are used extensively as catalysts throughout the chemical industry, in the energy sector, and in environmental protection. Recently, density functional theory has started providing new insight into the atomic-scale mechanisms of heterogeneous catalysis, helping to interpret the large...... amount of experimental data gathered during the last decades. This article shows how density functional theory can be used to describe the state of the surface during reactions and the rate of catalytic reactions. It will also show how we are beginning to understand the variation in catalytic activity...

  4. Cross-correlation Weak Lensing of SDSS galaxy Clusters II: Cluster Density Profiles and the Mass--Richness Relation

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, David E.; Sheldon, Erin S.; Wechsler, Risa H.; Rozo, Eduardo; Koester, Benjamin P.; Frieman, Joshua A.; McKay, Timothy A.; Evrard, August E.; Becker, Matthew; Annis, James


    We interpret and model the statistical weak lensing measurements around 130,000 groups and clusters of galaxies in the Sloan Digital Sky Survey presented by Sheldon et al. (2007). We present non-parametric inversions of the 2D shear profiles to the mean 3D cluster density and mass profiles in bins of both optical richness and cluster i-band luminosity. Since the mean cluster density profile is proportional to the cluster-mass correlation function, the mean profile is spherically symmetric by the assumptions of large-scale homogeneity and isotropy. We correct the inferred 3D profiles for systematic effects, including non-linear shear and the fact that cluster halos are not all precisely centered on their brightest galaxies. We also model the measured cluster shear profile as a sum of contributions from the brightest central galaxy, the cluster dark matter halo, and neighboring halos. We infer the relations between mean cluster virial mass and optical richness and luminosity over two orders of magnitude in cluster mass; the virial mass at fixed richness or luminosity is determined with a precision of {approx} 13% including both statistical and systematic errors. We also constrain the halo concentration parameter and halo bias as a function of cluster mass; both are in good agreement with predictions from N-body simulations of LCDM models. The methods employed here will be applicable to deeper, wide-area optical surveys that aim to constrain the nature of the dark energy, such as the Dark Energy Survey, the Large Synoptic Survey Telescope and space-based surveys.

  5. ALMA Multiple-transition Observations of High-density Molecular Tracers in Ultraluminous Infrared Galaxies (United States)

    Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma


    We present the results of our ALMA observations of 11 (ultra)luminous infrared galaxies ((U)LIRGs) at J = 4–3 of HCN, HCO+, and HNC and J = 3–2 of HNC. This is an extension of our previously published HCN and HCO+ J = 3–2 observations to multiple rotational J-transitions of multiple molecules, to investigate how molecular emission line flux ratios vary at different J-transitions. We confirm that ultraluminous infrared galaxies (ULIRGs) that contain or may contain luminous obscured active galactic nuclei (AGNs) tend to show higher HCN-to-HCO+ flux ratios than starburst galaxies, both at J = 4–3 and J = 3–2. For selected HCN-flux-enhanced AGN-important ULIRGs, our isotopologue H13CN, H13CO+, and HN13C J = 3–2 line observations suggest a higher abundance of HCN than HCO+ and HNC, which is interpreted to be primarily responsible for the elevated HCN flux in AGN-important galaxies. For such sources, the intrinsic HCN-to-HCO+ flux ratios after line opacity correction will be higher than the observed ratios, making the separation between AGNs and starbursts even larger. The signature of the vibrationally excited (v 2 = 1f) HCN J = 4–3 emission line is seen in one ULIRG, IRAS 12112‑0305 NE. P Cygni profiles are detected in the HCO+ J = 4–3 and J = 3–2 lines toward IRAS 15250+3609, with an estimated molecular outflow rate of ∼250–750 M ⊙ yr‑1. The SiO J = 6–5 line also exhibits a P Cygni profile in IRAS 12112+0305 NE, suggesting the presence of shocked outflow activity. Shock tracers are detected in many sources, suggesting ubiquitous shock activity in the nearby ULIRG population.

  6. Power Spectral Density Evaluation of Laser Milled Surfaces

    Directory of Open Access Journals (Sweden)

    Raoul-Amadeus Lorbeer


    Full Text Available Ablating surfaces with a pulsed laser system in milling processes often leads to surface changes depending on the milling depth. Especially if a constant surface roughness and evenness is essential to the process, structural degradation may advance until the process fails. The process investigated is the generation of precise thrust by laser ablation. Here, it is essential to predict or rather control the evolution of the surfaces roughness. Laser ablative milling with a short pulse laser system in vacuum (≈1 Pa were performed over depths of several 10 µm documenting the evolution of surface roughness and unevenness with a white light interference microscope. Power spectral density analysis of the generated surface data reveals a strong influence of the crystalline structure of the solid. Furthermore, it was possible to demonstrate that this effect could be suppressed for gold.


    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, I.; Allen, S. W. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States); Churazov, E. M.; Gaspari, M. [Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, D-85741 Garching (Germany); Schekochihin, A. A. [The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP (United Kingdom); Lau, E. T.; Nagai, D. [Department of Physics, Yale University, New Haven, CT 06520 (United States); Nelson, K. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Parrish, I. J., E-mail: [Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)


    We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρ{sub k}/ρ){sup 2}=η{sub 1}{sup 2}(V{sub 1,k}/c{sub s}){sup 2}, where δρ {sub k}/ρ is the spectral amplitude of the density perturbations at wavenumber k, V{sub 1,k}{sup 2}=V{sub k}{sup 2}/3 is the mean square component of the velocity field, c{sub s} is the sound speed, and η{sub 1} is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η{sub 1} ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales.

  8. Inverse calculation of power density for laser surface treatment

    NARCIS (Netherlands)

    Römer, Gerardus Richardus, Bernardus, Engelina; Meijer, J.


    Laser beam surface treatment requires a well-defined temperature profile. In this paper an analytic method is presented to solve the inverse problem of heat conduction in solids, based on the 2-dimensional Fourier transform. As a result, the required power density profile of the laser beam can be

  9. Variation In Surface Water Vapour Density Over Four Nigerian Stations

    African Journals Online (AJOL)

    The surface water vapour density ρ has been studied using monthly averages of temperature and relative humidity at four selected weather stations in Nigeria for the years 1987 to 1991. It is found that during the dry season months of November to March, ρ is higher at night by an average of about 9.9% than during the day ...


    International Nuclear Information System (INIS)

    Burkert, Andreas; Hartmann, Lee


    Studies by Lada et al. and Heiderman et al. have suggested that star formation mostly occurs above a threshold in gas surface density Σ of Σ c ∼ 120 M ☉ pc –2 (A K ∼ 0.8). Heiderman et al. infer a threshold by combining low-mass star-forming regions, which show a steep increase in the star formation rate per unit area Σ SFR with increasing Σ, and massive cores forming luminous stars which show a linear relation. We argue that these observations do not require a particular density threshold. The steep dependence of Σ SFR , approaching unity at protostellar core densities, is a natural result of the increasing importance of self-gravity at high densities along with the corresponding decrease in evolutionary timescales. The linear behavior of Σ SFR versus Σ in massive cores is consistent with probing dense gas in gravitational collapse, forming stars at a characteristic free-fall timescale given by the use of a particular molecular tracer. The low-mass and high-mass regions show different correlations between gas surface density and the area A spanned at that density, with A ∼ Σ –3 for low-mass regions and A ∼ Σ –1 for the massive cores; this difference, along with the use of differing techniques to measure gas surface density and star formation, suggests that connecting the low-mass regions with massive cores is problematic. We show that the approximately linear relationship between dense gas mass and stellar mass used by Lada et al. similarly does not demand a particular threshold for star formation and requires continuing formation of dense gas. Our results are consistent with molecular clouds forming by galactic hydrodynamic flows with subsequent gravitational collapse

  11. Improved DFT Potential Energy Surfaces via Improved Densities. (United States)

    Kim, Min-Cheol; Park, Hansol; Son, Suyeon; Sim, Eunji; Burke, Kieron


    Density-corrected DFT is a method that cures several failures of self-consistent semilocal DFT calculations by using a more accurate density instead. A novel procedure employs the Hartree-Fock density to bonds that are more severely stretched than ever before. This substantially increases the range of accurate potential energy surfaces obtainable from semilocal DFT for many heteronuclear molecules. We show that this works for both neutral and charged molecules. We explain why and explore more difficult cases, for example, CH(+), where density-corrected DFT results are even better than sophisticated methods like CCSD. We give a simple criterion for when DC-DFT should be more accurate than self-consistent DFT that can be applied for most cases.

  12. Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities (United States)

    Anderson, C. J.; Luciw, N. J.; Li, Y.-C.; Kuo, CY; Yadav, J.; Masui, K. W.; Chang, T.-C.; Chen, X.; Oppermann, N.; Liao, Y.-W.; Pen, U.-L.; Price, D. C.; Staveley-Smith, L.; Switzer, E. R.; Timbie, P. T.; Wolz, L.


    We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057 power spectrum is low relative to the expected dark matter power spectrum, assuming a neutral hydrogen (HI) bias and mass density equal to measurements from the ALFALFA survey. The decrement is pronounced and statistically significant at small scales. At k ˜ 1.5 h Mpc-1, the cross power spectrum is more than a factor of 6 lower than expected, with a significance of 15.3 σ. This decrement indicates either a lack of clustering of neutral hydrogen (HI), a small correlation coefficient between optical galaxies and HI, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with HI on k ˜ 1.5 h Mpc-1 scales, suggesting that HI is more associated with blue star-forming galaxies and tends to avoid red galaxies.

  13. Analysis of flame surface density measurements in turbulent premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Halter, Fabien [Institut PRISME, Universite d' Orleans, 45072 Orleans (France); Chauveau, Christian; Goekalp, Iskender [Institut de Combustion, Aerothermique, Reactivite et Environnement, Centre National de la Recherche Scientifique, 45071 Orleans (France); Veynante, Denis [Laboratoire E.M2.C, Centre National de la Recherche Scientifique, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)


    In premixed turbulent combustion, reaction rates can be estimated from the flame surface density. This parameter, which measures the mean flame surface area available per unit volume, may be obtained from algebraic expressions or by solving a transport equation. In this study, detailed measurements were performed on a Bunsen-type burner fed with methane/air mixtures in order to determine the local flame surface density experimentally. This burner, located in a high-pressure combustion chamber, allows investigation of turbulent premixed flames under various flow, mixture, and pressure conditions. In the present work, equivalence ratio was varied from 0.6 to 0.8 and pressure from 0.1 to 0.9 MPa. Flame front visualizations by Mie scattering laser tomography are used to obtain experimental data on the instantaneous flame front dynamics. The exact equation given by Pope is used to obtain flame surface density maps for different flame conditions. Some assumptions are made in order to access three-dimensional information from our two-dimensional experiments. Two different methodologies are proposed and tested in term of global mass balance (what enters compared to what is burned). The detailed experimental flame surface data provided for the first time in this work should progressively allow improvement of turbulent premixed flame modeling approaches. (author)

  14. Gravitational lensing by a smoothly variable surface mass density (United States)

    Paczynski, Bohdan; Wambsganss, Joachim


    The statistical properties of gravitational lensing due to smooth but nonuniform distributions of matter are considered. It is found that a majority of triple images had a parity characteristic for 'shear-induced' lensing. Almost all cases of triple or multiple imaging were associated with large surface density enhancements, and lensing objects were present between the images. Thus, the observed gravitational lens candidates for which no lensing object has been detected between the images are unlikely to be a result of asymmetric distribution of mass external to the image circle. In a model with smoothly variable surface mass density, moderately and highly amplified images tended to be single rather than multiple. An opposite trend was found in models which had singularities in the surface mass distribution.

  15. Surface determinants of low density lipoprotein uptake by endothelial cells

    International Nuclear Information System (INIS)

    Goeroeg, P.; Pearson, J.D.


    The surface sialic acid content of aortic endothelial cells in vitro was substantially lower in sparse cultures than at confluence. Binding of LDL to endothelial cells did not change at different culture densities and was unaffected by brief pretreatment with neuraminidase to partially remove surface sialic acid residues. In contrast, internalisation of LDL declined by a factor of 3 between low density cell cultures and confluent monolayers; neuraminidase pretreatment increased LDL uptake and the effect was most marked (>10-fold) at confluence. Pretreatment with cationised ferritin, which removed most of the surface sialic acid residues as well as glycosaminoglycans, increased LDL internalisation by up to 20-fold, again with most effect on confluent monolayers. Thus LDL uptake is inversely correlated with sialic acid content. We conclude that changes in the surface density of sialic acid (and possibly other charged) residues significantly modulate endothelial LDL uptake, and suggest that focal increases in LDL accumulation during atherogenesis may be related to alterations in endothelial endocytic properties at sites of increased cell turnover or damage. (author)

  16. Effects of rational surface density on resistive g turbulence

    International Nuclear Information System (INIS)

    Beklemishev, A.D.; Sugama, H.; Horton, W.


    The Beklemishev-Horton theory states that the anomalous transport coefficient is proportional to the density of rational surfaces provided that the interaction between the modes localized around different rational surfaces is weak compared with modes of the same helicity. The authors examine the effects of the density of states ρ using resistive g turbulence in 2D (single-helicity) and 3D (multi-helicity) simulations. They find that the modes with different helicities do not equipartition the available energy, but rather the coalescence or inverse cascade effect is strong so that a few low order mode rational surfaces receive most of the energy. The quasilinear flattening at the surfaces is a strong effect and they use bifurcation theory to derive that the effective diffusivity increases as χ eff = χ 0 ρ/(1 - Cρ) where C is a constant determined by interaction integrals. For a sufficiently high density of states Cρ ≤ 1, the higher order nonlinear interaction must be taken into account


    International Nuclear Information System (INIS)

    Zemcov, M.; Cooray, A.; Bock, J.; Dowell, C. D.; Nguyen, H. T.; Blain, A.; Béthermin, M.; Clements, D. L.; Conley, A.; Glenn, J.; Conversi, L.; Farrah, D.; Oliver, S. J.; Roseboom, I. G.; Griffin, M.; Halpern, M.; Marsden, G.; Jullo, E.; Kneib, J.-P.; Richard, J.


    We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitude of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I 250μm >0.69 -0.03 +0.03 (stat.) -0.06 +0.11 (sys.) MJy sr –1 , with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.

  18. Ultralow energy ion beam surface modification of low density polyethylene. (United States)

    Shenton, Martyn J; Bradley, James W; van den Berg, Jaap A; Armour, David G; Stevens, Gary C


    Ultralow energy Ar+ and O+ ion beam irradiation of low density polyethylene has been carried out under controlled dose and monoenergetic conditions. XPS of Ar+-treated surfaces exposed to ambient atmosphere show that the bombardment of 50 eV Ar+ ions at a total dose of 10(16) cm(-2) gives rise to very reactive surfaces with oxygen incorporation at about 50% of the species present in the upper surface layer. Using pure O+ beam irradiation, comparatively low O incorporation is achieved without exposure to atmosphere (approximately 13% O in the upper surface). However, if the surface is activated by Ar+ pretreatment, then large oxygen contents can be achieved under subsequent O+ irradiation (up to 48% O). The results show that for very low energy (20 eV) oxygen ions there is a dose threshold of about 5 x 10(15) cm(-2) before surface oxygen incorporation is observed. It appears that, for both Ar+ and O+ ions in this regime, the degree of surface modification is only very weakly dependent on the ion energy. The results suggest that in the nonequilibrium plasma treatment of polymers, where the ion flux is typically 10(18) m(-2) s(-1), low energy ions (<50 eV) may be responsible for surface chemical modification.

  19. Nanodrop on a nanorough solid surface: Density functional theory considerations (United States)

    Berim, Gersh O.; Ruckenstein, Eli


    The density distributions and contact angles of liquid nanodrops on nanorough solid surfaces are determined on the basis of a nonlocal density functional theory. Two kinds of roughness, chemical and physical, are examined. The former considers the substrate as a sequence of two kinds of semi-infinite vertical plates of equal thicknesses but of different natures with different strengths for the liquid-solid interactions. The physical roughness involves an ordered set of pillars on a flat homogeneous surface. Both hydrophobic and hydrophilic surfaces were considered. For the chemical roughness, the contact angle which the drop makes with the flat surface increases when the strength of the liquid-solid interaction for one kind of plates decreases with respect to the fixed value of the other kind of plates. Such a behavior is in agreement with the Cassie-Baxter expression derived from macroscopic considerations. For the physical roughness on a hydrophobic surface, the contact angle which a drop makes with the plane containing the tops of the pillars increases with increasing roughness. Such a behavior is consistent with the Wenzel formula developed for macroscopic drops. For hydrophilic surfaces, as the roughness increases the contact angle first increases, in contradiction with the Wenzel formula, which predicts for hydrophilic surfaces a decrease of the contact angle with increasing roughness. However, a further increase in roughness changes nonmonotonously the contact angle, and at some roughness, the drop disappears and only a liquid film is present on the surface. It was also found that the contact angle has a periodic dependence on the volume of the drop.

  20. Diurnal and seasonal variations of surface water vapour density ...

    African Journals Online (AJOL)

    Diurnal and seasonal variations of surface water vapour density over some meteorological stations in Nigeria. ... Ife Journal of Science ... the three Sahelian stations, was 5.29±0.39; while during the rainy season, they were 21.72±1.22, 19.60±0.12 and 19.47±0.07 for the Southern, Midland and Northern regions respectively.

  1. Enviromental Effects on Internal Color Gradients of Early-Type Galaxies (United States)

    La Barbera, F.; de Carvalho, R. R.; Gal, R. R.; Busarello, G.; Haines, C. P.; Mercurio, A.; Merluzzi, P.; Capaccioli, M.; Djorgovski, S. G.


    One of the most debated issues of observational and theoretical cosmology is that of how the environment affects the formation and evolution of galaxies. To gain new insight into this subject, we have derived surface photometry for a sample of 3,000 early-type galaxies belonging to 163 clusters with different richness, spanning a redshift range of 0.05 to 0.25. This large data-set is used to analyze how the color distribution inside galaxies depends on several parameters, such as cluster richness, local galaxy density, galaxy luminosity and redshift. We find that the internal color profile of galaxies strongly depends on the environment where galaxies reside. Galaxies in poor and rich clusters are found to follow two distinct trends in the color gradient vs. redshift diagram, with color gradients beeing less steep in rich rather than in poor clusters. No dependence of color gradients on galaxy luminosity is detected both for poor and rich clusters. We find that color gradients strongly depend on local galaxy density, with more shallow gradients in high density regions. Interestingly, this result holds only for low richness clusters, with color gradients of galaxies in rich clusters showing no dependence on local galaxy density. Our results support a reasonable picture whereby young early-type galaxies form in a dissipative collapse process, and then undergo increased (either major or minor) merging activity in richer rather than in poor clusters.

  2. Surface interactions involved in flashover with high density electronegative gases.

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie


    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  3. High dark matter densities and the formation of extreme dwarf galaxies

    International Nuclear Information System (INIS)

    Lake, G.


    The extreme dwarfs of the Local Group, GR 8, Draco, and Ursa Minor have high densities of dark matter. If the dark matter is dissipationless, then there is a simple relation between the redshift of turnaround z(turn) and its current mean density. Three alternatives for the dSphs are discussed. If the dark matter follows the light, then z(turn) is greater than 30. If a density profile is adopted so that the mean density becomes low enough to be barely consistent with the standard density fluctuation spectrum of cold dark matter, then the mass-to-light ratios are greater than 1000 solar mass/solar luminosity. The last alternative is dissipational dark matter. In this case, the additional collapse factor owing to dissipation allows a later epoch of formation. 39 refs

  4. The Fornax Deep Survey with VST. III. Low surface brightness dwarfs and ultra diffuse galaxies in the center of the Fornax cluster

    NARCIS (Netherlands)

    Venhola, Aku; Peletier, Reynier; Laurikainen, Eija; Salo, Heikki; Lisker, Thorsten; Iodice, Enrichetta; Capaccioli, Massimo; Verdoes Kleijn, Gijs; Valentijn, Edwin; Mieske, Steffen; Hilker, Michael; Wittmann, Carolin; Van de Venn, Glenn; Grado, Aniello; Spavone, Marilena; Cantiello, Michele; Napolitano, Nicola; Paolillo, Maurizio; Falcón-Barroso, Jesus


    Context. Studies of low surface brightness (LSB) galaxies in nearby clusters have revealed a sub-population of extremely diffuse galaxies with central surface brightness of μ0,g' > 24 mag arcsec-2, total luminosity Mg' fainter than -16 mag and effective radius between 1.5 kpc 23 mag arcsec-2. We


    International Nuclear Information System (INIS)

    Eichner, Thomas; Seitz, Stella; Monna, Anna; Suyu, Sherry H.; Halkola, Aleksi; Umetsu, Keiichi; Zitrin, Adi; Coe, Dan; Postman, Marc; Koekemoer, Anton; Bradley, Larry; Rosati, Piero; Grillo, Claudio; Høst, Ole; Balestra, Italo; Zheng, Wei; Lemze, Doron; Broadhurst, Tom; Moustakas, Leonidas; Molino, Alberto


    In this work, we analyze the mass distribution of MACSJ1206.2-0847, particularly focusing on the halo properties of its cluster members. The cluster appears relaxed in its X-ray emission, but has a significant amount of intracluster light that is not centrally concentrated, suggesting that galaxy-scale interactions are still ongoing despite the overall relaxed state. The cluster lenses 12 background galaxies into multiple images and one galaxy at z = 1.033 into a giant arc and its counterimage. The multiple image positions and the surface brightness (SFB) distribution of the arc, which is bent around several cluster members, are sensitive to the cluster galaxy halo properties. We model the cluster mass distribution with a Navarro-Frenk-White profile and the galaxy halos with two parameters for the mass normalization and the extent of a reference halo assuming scalings with their observed near-infrared light. We match the multiple image positions at an rms level of 0.''85 and can reconstruct the SFB distribution of the arc in several filters to a remarkable accuracy based on this cluster model. The length scale where the enclosed galaxy halo mass is best constrained is about 5 effective radii—a scale in between those accessible to dynamical and field strong-lensing mass estimates on the one hand and galaxy-galaxy weak-lensing results on the other hand. The velocity dispersion and halo size of a galaxy with m 160W,AB = 19.2 and M B,Vega = –20.7 are σ = 150 km s –1 and r ≈ 26 ± 6 kpc, respectively, indicating that the halos of the cluster galaxies are tidally stripped. We also reconstruct the unlensed source, which is smaller by a factor of ∼5.8 in area, demonstrating the increase in morphological information due to lensing. We conclude that this galaxy likely has star-forming spiral arms with a red (older) central component

  6. The zCOSMOS 10k-sample : the role of galaxy stellar mass in the colour-density relation up to z similar to 1

    NARCIS (Netherlands)

    Cucciati, O.; Iovino, A.; Kovac, K.; Scodeggio, M.; Lilly, S. J.; Bolzonella, M.; Bardelli, S.; Vergani, D.; Tasca, L. A. M.; Zucca, E.; Zamorani, G.; Pozzetti, L.; Knobel, C.; Oesch, P.; Lamareille, F.; Caputi, K.; Kampczyk, P.; Tresse, L.; Maier, C.; Carollo, C. M.; Contini, T.; Kneib, J. -P.; Le Fevre, O.; Mainieri, V.; Renzini, A.; Bongiorno, A.; Coppa, G.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Le Borgne, J. -F.; Le Brun, V.; Mignoli, M.; Pello, R.; Peng, Y.; Perez-Montero, E.; Ricciardelli, E.; Silverman, J. D.; Tanaka, M.; Koekemoer, A. M.; Scoville, N.; Abbas, U.; Bottini, D.; Cappi, A.; Cassata, P.; Cimatti, A.; Guzzo, L.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Meneux, B.; Porciani, C.; Scaramella, R.


    Aims. With the first similar to 10 000 spectra of the flux limited zCOSMOS sample (I-AB Methods. We use our previously derived 3D local density contrast delta, computed with the 5th nearest neighbour approach, to study the evolution with z of the environmental effects on galaxy U-B colour, D4000

  7. Power Spectral Density Specification and Analysis of Large Optical Surfaces (United States)

    Sidick, Erkin


    The 2-dimensional Power Spectral Density (PSD) can be used to characterize the mid- and the high-spatial frequency components of the surface height errors of an optical surface. We found it necessary to have a complete, easy-to-use approach for specifying and evaluating the PSD characteristics of large optical surfaces, an approach that allows one to specify the surface quality of a large optical surface based on simulated results using a PSD function and to evaluate the measured surface profile data of the same optic in comparison with those predicted by the simulations during the specification-derivation process. This paper provides a complete mathematical description of PSD error, and proposes a new approach in which a 2-dimentional (2D) PSD is converted into a 1-dimentional (1D) one by azimuthally averaging the 2D-PSD. The 1D-PSD calculated this way has the same unit and the same profile as the original PSD function, thus allows one to compare the two with each other directly.

  8. High-Density Infrared Surface Treatments of Refractories

    Energy Technology Data Exchange (ETDEWEB)

    Tiegs, T.N.


    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  9. Simultaneous solution of the geoid and the surface density anomalies (United States)

    Ardalan, A. A.; Safari, A.; Karimi, R.; AllahTavakoli, Y.


    The main application of the land gravity data in geodesy is "local geoid" or "local gravity field" modeling, whereas the same data could play a vital role for the anomalous mass-density modeling in geophysical explorations. In the realm of local geoid computations based on Geodetic Boundary Value Problems (GBVP), it is needed that the effect of the topographic (or residual terrain) masses be removed via application of the Newton integral in order to perform the downward continuation in a harmonic space. However, harmonization of the downward continuation domain may not be perfectly possible unless accurate information about the mass-density of the topographic masses be available. On the other hand, from the exploration point of view the unwanted topographical masses within the aforementioned procedure could be regarded as the signal. In order to overcome the effect of the remaining masses within the remove step of the GBVP, which cause uncertainties in mathematical modeling of the problem, here we are proposing a methodology for simultaneous solution of the geoid and residual surface density modeling In other words, a new mathematical model will be offered which both provides the needed harmonic space for downward continuation and at the same time accounts for the non-harmonic terms of gravitational field and makes use of it for residual mass density modeling within the topographic region. The presented new model enjoys from uniqueness of the solution, opposite to the inverse application of the Newton integral for mass density modeling which is non-unique, and only needs regularization to remove its instability problem. In this way, the solution of the model provides both the incremental harmonic gravitational potential on surface of the reference ellipsoid as the gravity field model and the lateral surface mass-density variations via the second derivatives of the non harmonic terms of gravitational field. As the case study and accuracy verification, the proposed

  10. Dwarf spheroidal galaxies: Keystones of galaxy evolution (United States)

    Gallagher, John S., III; Wyse, Rosemary F. G.


    Dwarf spheroidal galaxies are the most insignificant extragalactic stellar systems in terms of their visibility, but potentially very significant in terms of their role in the formation and evolution of much more luminous galaxies. We discuss the present observational data and their implications for theories of the formation and evolution of both dwarf and giant galaxies. The putative dark-matter content of these low-surface-brightness systems is of particular interest, as is their chemical evolution. Surveys for new dwarf spheroidals hidden behind the stars of our Galaxy and those which are not bound to giant galaxies may give new clues as to the origins of this unique class of galaxy.

  11. Further simulations of merging galaxies

    International Nuclear Information System (INIS)

    White, S.D.M.


    Galaxy collisions and the structure of the resulting merger remnants are studied using a large number of numerical simulations. These experiments extend earlier calculations of mergers between pairs of similar 'galaxies'. The tidal coupling in collisions is found to depend strongly on the rotational properties of the 'galaxies' involved. It is greatly enhanced if their spin vectors are aligned with that of their orbit, and it is suppressed if this alignment is reversed. The structure of a merger product depends only weakly on that of its progenitors. Such remnants are typically axisymmetric oblate systems with radially decreasing velocity dispersions and density profiles which have near power-law form over two decades in radius. This density structure is reasonably well described by de Vaucouleurs' empirical formula for the surface brightness distribution of elliptical galaxies. The flattening of merger remnants may be partly supported by an anisotropic pressure distribution, but the systems studied here nevertheless rotate considerably more rapidly than most observed elliptical galaxies, and a natural preference for nearly head-on collisions must be invoked if all ellipticals are to be identified as merger remnants. Mass and energy losses are found to be very small for mergers between bound or marginally unbound 'galaxies'. Escapers can, however, carry away a significant amount of angular momentum. (author)

  12. ALMA Observations of Gas-rich Galaxies in z ∼ 1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-density Environments

    Energy Technology Data Exchange (ETDEWEB)

    Noble, A. G.; McDonald, M. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Muzzin, A. [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, ON MJ3 1P3 (Canada); Nantais, J. [Departamento de Ciencias Físicas, Universidad Andres Bello, Fernandez Concha 700, Las Condes 7591538, Santiago, Región Metropolitana (Chile); Rudnick, G. [The University of Kansas, Department of Physics and Astronomy, 1251 Wescoe Hall Drive, Lawrence, KS 66045 (United States); Van Kampen, E.; Manilla-Robles, A. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Webb, T. M. A.; Delahaye, A. [Department of Physics, McGill University, 3600 rue University, Montréal, QC H3A 2T8 (Canada); Wilson, G.; DeGroot, A.; Foltz, R. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Boone, K.; Hayden, B.; Perlmutter, S. [Department of Physics, University of California Berkeley, 366 LeConte Hall, MC 7300, Berkeley, CA 94720-7300 (United States); Cooper, M. C. [Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Demarco, R. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción, Región del Biobío (Chile); Lidman, C., E-mail: [Australian Astronomical Observatory, 105 Delhi Road, North Ryde, NSW 2113 (Australia)


    We present ALMA CO (2–1) detections in 11 gas-rich cluster galaxies at z ∼ 1.6, constituting the largest sample of molecular gas measurements in z > 1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5 σ detections of the CO (2–1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z ∼ 1.6 cluster environments. We measure sizable gas reservoirs of 0.5–2 × 10{sup 11} M {sub ☉} in these objects, with high gas fractions ( f {sub gas}) and long depletion timescales ( τ ), averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z = 1.6 toward enhanced gas fractions, at a level of ∼4 σ , but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.

  13. Interfacial Tension and Surface Pressure of High Density Lipoprotein, Low Density Lipoprotein, and Related Lipid Droplets

    DEFF Research Database (Denmark)

    Ollila, O. H. S.; Lamberg, A.; Lehtivaara, M.


    Lipid droplets play a central role in energy storage and metabolism on a cellular scale. Their core is comprised of hydrophobic lipids covered by a surface region consisting of amphiphilic lipids and proteins. For example, high and low density lipoproteins (HDL and LDL, respectively....... Here we use coarse-grained molecular-dynamics simulations to consider a number of related issues by calculating the interfacial tension in protein-free lipid droplets, and in HDL and LDL particles mimicking physiological conditions. First, our results suggest that the curvature dependence...


    International Nuclear Information System (INIS)

    Łokas, Ewa L.; Kazantzidis, Stelios; Mayer, Lucio


    In recent years the Sloan Digital Sky Survey has unraveled a new population of ultra-faint dwarf galaxies (UFDs) whose origin remains a puzzle in the vicinity of the Milky Way (MW). Using a suite of collisionless N-body simulations, we investigate the formation of UFDs in the context of the tidal stirring model for the formation of dwarf spheroidal galaxies in the Local Group (LG). Our simulations are designed to reproduce the tidal interactions between MW-sized host galaxies and rotationally supported dwarfs embedded in 10 9 M ☉ dark matter (DM) halos. We explore a variety of inner density slopes ρ∝r –α for the dwarf DM halos, ranging from core-like (α = 0.2) to cuspy (α = 1), and different dwarf orbital configurations. Our experiments demonstrate that UFDs can be produced via tidal stirring of disky dwarfs on relatively tight orbits, consistent with a redshift of accretion by the host galaxy of z ∼ 1, and with intermediate values for the halo inner density slopes (ρ∝r –0.6 ). The inferred slopes are in excellent agreement with those resulting from both the modeling of the rotation curves of dwarf galaxies and recent cosmological simulations of dwarf galaxy formation. Comparing the properties of observed UFDs with those of their simulated counterparts, we find remarkable similarities in terms of basic observational parameters. We conclude that tidal stirring of rotationally supported dwarfs represents a viable mechanism for the formation of UFDs in the LG environment.

  15. Star formation and the interstellar medium in low surface brightness galaxies - I. Oxygen abundances and abundance gradients in low surface brightness disk galaxies

    NARCIS (Netherlands)

    de Blok, WJG; van der Hulst, JM

    We present measurements of the oxygen abundances in 64 HII regions in 12 LSB galaxies. We find that oxygen abundances are low. No regions with solar abundance have been found, and most have oxygen abundances similar to 0.5 to 0.1 solar. The oxygen abundance appears to be constant as a function of

  16. Star formation and the interstellar medium in low surface brightness galaxies; 1, Oxygen abundances and abundance gradients in low surface brightness disk galaxies

    NARCIS (Netherlands)

    Blok, W. J. G. de; Hulst, J. M. van der


    Submitted to: Astron. Astrophys. Abstract: We present measurements of the oxygen abundances in 64 HII regions in 12 LSB galaxies. We find that oxygen abundances are low. No regions with solar abundance have been found, and most have oxygen abundances $sim 0.5$ to 0.1 solar. The oxygen abundance

  17. Likelihood reconstruction method of real-space density and velocity power spectra from a redshift galaxy survey (United States)

    Tang, Jiayu; Kayo, Issha; Takada, Masahiro


    We develop a maximum likelihood based method of reconstructing the band powers of the density and velocity power spectra at each wavenumber bin from the measured clustering features of galaxies in redshift space, including marginalization over uncertainties inherent in the small-scale, non-linear redshift distortion, the Fingers-of-God (FoG) effect. The reconstruction can be done assuming that the density and velocity power spectra depend on the redshift-space power spectrum having different angular modulations of μ with μ2n (n= 0, 1, 2) and that the model FoG effect is given as a multiplicative function in the redshift-space spectrum. By using N-body simulations and the halo catalogues, we test our method by comparing the reconstructed power spectra with the spectra directly measured from the simulations. For the spectrum of μ0 or equivalently the density power spectrum Pδδ(k), our method recovers the amplitudes to an accuracy of a few per cent up to k≃ 0.3 h Mpc-1 for both dark matter and haloes. For the power spectrum of μ2, which is equivalent to the density-velocity power spectrum Pδθ(k) in the linear regime, our method can recover, within the statistical errors, the input power spectrum for dark matter up to k≃ 0.2 h Mpc-1 and at both redshifts z= 0 and 1, if the adequate FoG model being marginalized over is employed. However, for the halo spectrum that is least affected by the FoG effect, the reconstructed spectrum shows greater amplitudes than the spectrum Pδθ(k) inferred from the simulations over a range of wavenumbers 0.05 ≤k≤ 0.3 h Mpc-1. We argue that the disagreement may be ascribed to a non-linearity effect that arises from the cross-bispectra of density and velocity perturbations. Using the perturbation theory and assuming Einstein gravity as in simulations, we derive the non-linear correction term to the redshift-space spectrum, and find that the leading-order correction term is proportional to μ2 and increases the μ2-power

  18. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    DEFF Research Database (Denmark)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong


    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far...

  19. VizieR Online Data Catalog: Surface Photometry of ESO-Uppsala Galaxies (Lauberts+ 1989)

    NARCIS (Netherlands)

    Lauberts, A.; Valentijn, E. A.


    The 15467 southern galaxies in this catalog were scanned from 407 blue and 407 red original ESO-Schmidt plates using a PDS microdensitometer. The galaxies were selected from the ESO-Uppsala Catalogue (VII/34). The original selection criterion was a minimum visual angular diameter of 1arcmin. The

  20. The field luminosity function and nearby groups of galaxies

    International Nuclear Information System (INIS)

    Huchra, J.


    A catalog of radial velocities and magnitudes on a homogeneous system (the corrected Harvard, B(o) magnitudes of de Vaucouleurs) has been assembled for over 4000 galaxies. Using this catalog, a magnitude limited sample of approximately 1000 galaxies with nearly complete radial velocity data was compiled. The magnitude limit is 13.0 and the galaxies are primarily from the Shapley-Ames catalog plus a few low and high surface brightness objects properly included in a magnitude limited sample. A new determination of the field luminosity function and density plus initial experiments with the use of a redshift catalog to select groups of galaxies, are briefly described. (Auth.)

  1. Ultra-faint ultraviolet galaxies at z ∼ 2 behind the lensing cluster A1689: The luminosity function, dust extinction, and star formation rate density

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, Anahita; Siana, Brian; Freeman, William R.; Dominguez, Alberto [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Richard, Johan [Centre de Recherche Astrophysique de Lyon, Université Lyon 1, 9 Avenue Charles André, F-69561 Saint Genis Laval Cedex (France); Stark, Daniel P.; Robertson, Brant [Department of Astronomy, Steward Observatory, University of Arizona, 933 North Cherry Avenue, Rm N204, Tucson, AZ 85721 (United States); Scarlata, Claudia [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Teplitz, Harry I.; Rafelski, Marc [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Kewley, Lisa, E-mail: [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia)


    We have obtained deep ultraviolet imaging of the lensing cluster A1689 with the WFC3/UVIS camera onboard the Hubble Space Telescope in the F275W (30 orbits) and F336W (4 orbits) filters. These images are used to identify z ∼ 2 star-forming galaxies via their Lyman break, in the same manner that galaxies are typically selected at z ≥ 3. Because of the unprecedented depth of the images and the large magnification provided by the lensing cluster, we detect galaxies 100× fainter than previous surveys at this redshift. After removing all multiple images, we have 58 galaxies in our sample in the range –19.5 < M {sub 1500} < –13 AB mag. Because the mass distribution of A1689 is well constrained, we are able to calculate the intrinsic sensitivity of the observations as a function of source plane position, allowing for accurate determinations of effective volume as a function of luminosity. We fit the faint-end slope of the luminosity function to be α = –1.74 ± 0.08, which is consistent with the values obtained for 2.5 < z < 6. Notably, there is no turnover in the luminosity function down to M {sub 1500} = –13 AB mag. We fit the UV spectral slopes with photometry from existing Hubble optical imaging. The observed trend of increasingly redder slopes with luminosity at higher redshifts is observed in our sample, but with redder slopes at all luminosities and average reddening of (E(B – V)) = 0.15 mag. We assume the stars in these galaxies are metal poor (0.2 Z {sub ☉}) compared to their brighter counterparts (Z {sub ☉}), resulting in bluer assumed intrinsic UV slopes and larger derived values for dust extinction. The total UV luminosity density at z ∼ 2 is 4.31{sub −0.60}{sup +0.68}×10{sup 26} erg s{sup –1} Hz{sup –1} Mpc{sup –3}, more than 70% of which is emitted by galaxies in the luminosity range of our sample. Finally, we determine the global star formation rate density from UV-selected galaxies at z ∼ 2 (assuming a constant dust

  2. The large-scale structure of the halo of the Andromeda galaxy. I. Global stellar density, morphology and metallicity properties

    Energy Technology Data Exchange (ETDEWEB)

    Ibata, Rodrigo A.; Martin, Nicolas F. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de lUniversité, F-67000 Strasbourg (France); Lewis, Geraint F. [Institute of Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Irwin, Michael J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Ferguson, Annette M. N.; Bernard, Edouard J.; Peñarrubia, Jorge [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Babul, Arif; Navarro, Julio [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2 (Canada); Chapman, Scott C. [Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax NS B3H 4R2 (Canada); Collins, Michelle [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Fardal, Mark [University of Massachusetts, Department of Astronomy, LGRT 619-E, 710 North Pleasant Street, Amherst, MA 01003-9305 (United States); Mackey, A. D. [RSAA, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek ACT 2611 (Australia); Rich, R. Michael [Department of Physics and Astronomy, University of California, Los Angeles, PAB, 430 Portola Plaza, Los Angeles, CA 90095-1547 (United States); Tanvir, Nial [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Widrow, Lawrence, E-mail: [Department of Physics, Engineering Physics, and Astronomy Queen' s University, Kingston, Ontario K7L 3N6 (Canada)


    We present an analysis of the large-scale structure of the halo of the Andromeda galaxy, based on the Pan-Andromeda Archeological Survey (PAndAS), currently the most complete map of resolved stellar populations in any galactic halo. Despite the presence of copious substructures, the global halo populations follow closely power-law profiles that become steeper with increasing metallicity. We divide the sample into stream-like populations and a smooth halo component (defined as the population that cannot be resolved into spatially distinct substructures with PAndAS). Fitting a three-dimensional halo model reveals that the most metal-poor populations ([Fe/H]<−1.7) are distributed approximately spherically (slightly prolate with ellipticity c/a = 1.09 ± 0.03), with only a relatively small fraction residing in discernible stream-like structures (f {sub stream} = 42%). The sphericity of the ancient smooth component strongly hints that the dark matter halo is also approximately spherical. More metal-rich populations contain higher fractions of stars in streams, with f {sub stream} becoming as high as 86% for [Fe/H]>−0.6. The space density of the smooth metal-poor component has a global power-law slope of γ = –3.08 ± 0.07, and a non-parametric fit shows that the slope remains nearly constant from 30 kpc to ∼300 kpc. The total stellar mass in the halo at distances beyond 2° is ∼1.1 × 10{sup 10} M {sub ☉}, while that of the smooth component is ∼3 × 10{sup 9} M {sub ☉}. Extrapolating into the inner galaxy, the total stellar mass of the smooth halo is plausibly ∼8 × 10{sup 9} M {sub ☉}. We detect a substantial metallicity gradient, which declines from ([Fe/H]) = –0.7 at R = 30 kpc to ([Fe/H]) = –1.5 at R = 150 kpc for the full sample, with the smooth halo being ∼0.2 dex more metal poor than the full sample at each radius. While qualitatively in line with expectations from cosmological simulations, these observations are of great importance as

  3. Simulations of galaxy mergers

    International Nuclear Information System (INIS)

    Villumsen, J.V.; Yale Univ., New Haven, CT


    A number of N-body simulations of mergers of equal and unequal galaxies are presented. A new code is presented which determines the potential from a mass distribution by a fourth-order expansion in Tesseral harmonics in three dimensions as an approximation to a collisionless system. The total number of particles in the system is 1200. Two galaxies, each a spherical non-rotating system with isothermal or Hubble density profile, are put in orbit around each other where tidal effects and dynamical friction lead to merging. The final system has a Hubble profile, and in some mergers an 'isothermal' halo forms as found in cD galaxies. Equal mass mergers are more flattened than unequal mass mergers. The central surface brightness decreases except in a merger of isothermal galaxies which shows a major redistribution of energy towards a Hubble profile. Mixing is severe in equal mass mergers, where radial gradients are weakened, while in unequal mass encounters gradients can build up due to less mixing and the formation of a halo. Oblate systems with strong rotation form in high angular momentum encounters while prolate systems with little rotation are formed in near head-on collisions. (author)

  4. Zinc surface complexes on birnessite: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kideok D.; Refson, Keith; Sposito, Garrison


    Biogeochemical cycling of zinc is strongly influenced by sorption on birnessite minerals (layer-type MnO2), which are found in diverse terrestrial and aquatic environments. Zinc has been observed to form both tetrahedral (Zn{sup IV}) and octahedral (Zn{sup VI}) triple-corner-sharing surface complexes (TCS) at Mn(IV) vacancy sites in hexagonal birnessite. The octahedral complex is expected to be similar to that of Zn in the Mn oxide mineral, chalcophanite (ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O), but the reason for the occurrence of the four-coordinate Zn surface species remains unclear. We address this issue computationally using spin-polarized Density Functional Theory (DFT) to examine the Zn{sub IV}-TCS and Zn{sup VI}-TCS species. Structural parameters obtained by DFT geometry optimization were in excellent agreement with available experimental data on Zn-birnessites. Total energy, magnetic moments, and electron-overlap populations obtained by DFT for isolated Zn{sup IV}-TCS revealed that this species is stable in birnessite without a need for Mn(III) substitution in the octahedral sheet and that it is more effective in reducing undersaturation of surface O at a Mn vacancy than is Zn{sub VI}-TCS. Comparison between geometry-optimized ZnMn{sub 3}O{sub 7} {center_dot} 3H{sub 2}O (chalcophanite) and the hypothetical monohydrate mineral, ZnMn{sub 3}O{sub 7} {center_dot} H{sub 2}O, which contains only tetrahedral Zn, showed that the hydration state of Zn significantly affects birnessite structural stability. Finally, our study also revealed that, relative to their positions in an ideal vacancy-free MnO{sub 2}, Mn nearest to Zn in a TCS surface complex move toward the vacancy by 0.08-0.11 {angstrom}, while surface O bordering the vacancy move away from it by 0.16-0.21 {angstrom}, in agreement with recent X-ray absorption spectroscopic analyses.

  5. The origin of galaxies

    International Nuclear Information System (INIS)

    Carr, B.J.


    The existence of galaxies implies that the early Universe must have contained initial density fluctuations. Overdense regions would then expand more slowly than the background and eventually - providing the fluctuations were not damped out first - they would stop expanding altogether and collapse to form bound objects. To understand how galaxies form we therefore need to know: how the initial density fluctuations arise, under what circumstances they evolve into bound objects, and how the bound objects develop the observed characteristics of galaxies. (author)

  6. A method to calculate the local density distribution of the Galaxy from the Tycho-Gaia Astrometric Solution data (United States)

    Kipper, Rain; Tempel, Elmo; Tenjes, Peeter


    New and more reliable distances and proper motions of a large number of stars in the Tycho-Gaia Astrometric Solution (TGAS) catalogue allow us to calculate the local matter density distribution more precisely than earlier. We devised a method to calculate the stationary gravitational potential distribution perpendicular to the Galactic plane by comparing the vertical probability density distribution of a sample of observed stars with the theoretical probability density distribution computed from their vertical coordinates and velocities. We applied the model to idealized test stars and to the real observational samples. Tests with two mock data sets proved that the method is viable and provides reasonable results. Applying the method to TGAS data, we derived that the total matter density in the solar neighbourhood is 0.09 ± 0.02 M⊙ pc-3 being consistent with the results from the literature. The matter surface density within |z| ≤ 0.75 kpc is 42 ± 4 M⊙ pc-2. This is slightly less than the results derived by other authors but within errors is consistent with previous estimates. Our results show no firm evidence for significant amount of dark matter in the solar neighbourhood. However, we caution that our calculations at |z| ≤ 0.75 kpc rely on an extrapolation from the velocity distribution function calculated at |z| ≤ 25 pc. This extrapolation can be very sensitive to our assumption that the stellar motions are perfectly decoupled in R and z, and to our assumption of equilibrium. Indeed, we find that ρ(z) within |z| ≤ 0.75 kpc is asymmetric with respect to the Galactic plane at distances |z| = 0.1-0.4 kpc indicating that the density distribution may be influenced by density perturbations.

  7. The physical properties of giant molecular cloud complexes in the outer Galaxy - Implications for the ratio of H2 column density to (C-12)O intensity (United States)

    Sodroski, T. J.


    The physical properties of 35 giant molecular cloud complexes in the outer Galaxy were derived from the Goddard-Columbia surveys of the Galactic plane region (Dame et al., 1987). The spatial and radial velocity boundaries for the individual cloud complexes were estimated by analyzing the spatial and velocity structure of emission features in the (C-12)O surveys, and the distance to each cmplex was determined kinematically on the assumption of a flat rotation curve. The ratio of the H2 column density to the (C-12)O intensity for the outer Galaxy complexes was found to be about 6.0 x 10 to the 20th molecules/sq cm K per km/sec, which is by a factor of 2-3 greater than the value derived by other auhtors for the inner Galaxy complexes. This increase in the H2 column density/(C-12)O intensity with the distance from with the Galactic center is consistent with predictions of the optically thick cloudlet model of giant molecular cloud complexes.

  8. A study of the HI and optical properties of Low Surface Brightness galaxies: spirals, dwarfs and irregulars (United States)

    Honey, M.; van Driel, W.; Das, M.; Martin, J.-M.


    We present a study of the HI and optical properties of nearby (z ≤ 0.1) Low Surface Brightness galaxies (LSBGs). We started with a literature sample of ˜900 LSBGs and divided them into three morphological classes: spirals, irregulars and dwarfs. Of these, we could use ˜490 LSBGs to study their HI and stellar masses, colours and colour magnitude diagrams, and local environment, compare them with normal, High Surface Brightness (HSB) galaxies and determine the differences between the three morphological classes. We found that LSB and HSB galaxies span a similar range in HI and stellar masses, and have a similar MHI/M⋆-M⋆ relationship. Among the LSBGs, as expected, the spirals have the highest average HI and stellar masses, both of about 109.8M⊙. The LSGBs' (g-r) integrated colour is nearly constant as function of HI mass for all classes. In the colour magnitude diagram, the spirals are spread over the red and blue regions whereas the irregulars and dwarfs are confined to the blue region. The spirals also exhibit a steeper slope in the MHI/M⋆-M⋆ plane. Within their local environment we confirmed that LSBGs are more isolated than HSB galaxies, and LSB spirals more isolated than irregulars and dwarfs. Kolmogorov-Smirnov statistical tests on the HI mass, stellar mass and number of neighbours indicates that the spirals are a statistically different population from the dwarfs and irregulars. This suggests that the spirals may have different formation and HI evolution than the dwarfs and irregulars.

  9. Origin of Disk Lopsidedness in Spiral Galaxies

    NARCIS (Netherlands)

    Angiras, R. A.; Jog, C. J.; Dwarakanath, K. S.; Omar, A.; Verheijen, M. A. W.; Saikia, D.J.; Green, D.A.; Gupta, Y.; Venturi, T.


    In our work we have used the atomic hydrogen [H I] gas distribution in the H I 21-cm line emission to study the dark matter halo perturbations. For this analysis, the 2-D H I surface density and velocity maps (archival) of the galaxies in the Eridanus group (obtained using the GMRT) and in the Ursa

  10. Tracing the stellar component of low surface brightness Milky Way dwarf galaxies to their outskirts. I. Sextans (United States)

    Cicuéndez, L.; Battaglia, G.; Irwin, M.; Bermejo-Climent, J. R.; McMonigal, B.; Bate, N. F.; Lewis, G. F.; Conn, A. R.; de Boer, T. J. L.; Gallart, C.; Guglielmo, M.; Ibata, R.; McConnachie, A.; Tolstoy, E.; Fernando, N.


    Aims: We present results from deep and very spatially extended CTIO/DECam g and r photometry (reaching out to 2 mag below the oldest main-sequence turn-off and covering 20 deg2) around the Sextans dwarf spheroidal galaxy. We aim to use this dataset to study the structural properties of Sextans overall stellar population and its member stars in different evolutionary phases, as well as to search for possible signs of tidal disturbance from the Milky Way, which would indicate departure from dynamical equilibrium. Methods: We performed the most accurate and quantitative structural analysis to-date of Sextans' stellar components by applying Bayesian Monte Carlo Markov chain methods to the individual stars' positions. Surface density maps are built by statistically decontaminating the sample through a matched filter analysis of the colour-magnitude diagram, and then analysed for departures from axisymmetry. Results: Sextans is found to be significantly less spatially extended and more centrally concentrated than early studies suggested. No statistically significant distortions or signs of tidal disturbances were found down to a surface brightness limit of 31.8 mag/arcsec2 in V-band. We identify an overdensity in the central regions that may correspond to previously reported kinematic substructure(s). In agreement with previous findings, old and metal-poor stars such as Blue Horizontal Branch stars cover a much larger area than stars in other evolutionary phases, and bright Blue Stragglers (BSs) are less spatially extended than faint ones. However, the different spatial distribution of bright and faint BSs appears consistent with the general age and metallicity gradients found in Sextans' stellar component. This is compatible with Sextans BSs having formed by evolution of binaries and not necessarily due to the presence of a central disrupted globular cluster, as suggested in the literature. We provide structural parameters for the various populations analysed and make

  11. The abundance properties of nearby late-type galaxies. II. The relation between abundance distributions and surface brightness profiles

    International Nuclear Information System (INIS)

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.; Kniazev, A. Y.


    The relations between oxygen abundance and disk surface brightness (OH–SB relation) in the infrared W1 band are examined for nearby late-type galaxies. The oxygen abundances were presented in Paper I. The photometric characteristics of the disks are inferred here using photometric maps from the literature through bulge-disk decomposition. We find evidence that the OH–SB relation is not unique but depends on the galactocentric distance r (taken as a fraction of the optical radius R 25 ) and on the properties of a galaxy: the disk scale length h and the morphological T-type. We suggest a general, four-dimensional OH–SB relation with the values r, h, and T as parameters. The parametric OH–SB relation reproduces the observed data better than a simple, one-parameter relation; the deviations resulting when using our parametric relation are smaller by a factor of ∼1.4 than that of the simple relation. The influence of the parameters on the OH–SB relation varies with galactocentric distance. The influence of the T-type on the OH–SB relation is negligible at the centers of galaxies and increases with galactocentric distance. In contrast, the influence of the disk scale length on the OH–SB relation is at a maximum at the centers of galaxies and decreases with galactocentric distance, disappearing at the optical edges of galaxies. Two-dimensional relations can be used to reproduce the observed data at the optical edges of the disks and at the centers of the disks. The disk scale length should be used as a second parameter in the OH–SB relation at the center of the disk while the morphological T-type should be used as a second parameter in the relation at optical edge of the disk. The relations between oxygen abundance and disk surface brightness in the optical B and infrared K bands at the center of the disk and at optical edge of the disk are also considered. The general properties of the abundance–surface brightness relations are similar for the three

  12. The faint end of the red sequence galaxy luminosity function: unveiling surface brightness selection effects with the CLASH clusters (United States)

    Martinet, Nicolas; Durret, Florence; Adami, Christophe; Rudnick, Gregory


    Characterizing the evolution of the faint end of the cluster red sequence (RS) galaxy luminosity function (GLF) with redshift is a milestone in understanding galaxy evolution. However, the community is still divided in that respect, hesitating between an enrichment of the RS due to efficient quenching of blue galaxies from z 1 to present-day or a scenario in which the RS is built at a higher redshift and does not evolve afterwards. Recently, it has been proposed that surface brightness (SB) selection effects could possibly solve the literature disagreement, accounting for the diminishing RS faint population in ground-based observations. We investigate this hypothesis by comparing the RS GLFs of 16 CLASH clusters computed independently from ground-based Subaru/Suprime-Cam V and Ip or Ic images and space-based HST/ACS F606W and F814W images in the redshift range 0.187 ≤ z ≤ 0.686. We stack individual cluster GLFs in two redshift bins (0.187 ≤ z ≤ 0.399 and 0.400 ≤ z ≤ 0.686) and two mass (6 × 1014M⊙ ≤ M200Japan.

  13. The Inner Regions of Disk Galaxies: A Constant Baryonic Fraction?

    NARCIS (Netherlands)

    Lelli, Federico

    For disk galaxies (spirals and irregulars), the inner circular-velocity gradient (inner steepness of the rotation curve) correlates with the central surface brightness with a slope of ~0.5. This implies that the central dynamical mass density scales almost linearly with the central baryonic density.

  14. The space density of primordial gas clouds near galaxies and groups and their relation to galactic high-velocity clouds

    NARCIS (Netherlands)

    Zwaan, MA; Briggs, FH


    The Arecibo H I Strip Survey probed the halos of similar to 300 cataloged galaxies and the environments of similar to 14 groups with sensitivity to neutral hydrogen masses greater than or equal to 10(7) M-circle dot. The survey detected no objects with properties resembling the high-velocity clouds

  15. A Subhalo-Galaxy Correspondence Model of Galaxy Biasing (United States)

    Kim, Juhan; Park, Changbom; Choi, Yun-Young


    We propose a model for allocating galaxies in cosmological N-body simulations. We identify each subhalo with a galaxy and assign luminosity and morphological type, assuming that the galaxy luminosity is a monotonic function of the host subhalo mass. Morphology is assigned using two simple relations between the subhalo mass and galaxy luminosity for different galaxy types. The first uses a constant luminosity ratio between early-type (E/SO) and late-type (S/Irr) galaxies at a fixed subhalo mass. The other assumes that galaxies of different morphological types but equal luminosity have a constant ratio of subhalo mass. We made a series of comparisons of the properties of these mock galaxies with those of SDSS galaxies. The resulting mock galaxy sample is found to successfully reproduce the observed local number density distribution except in high-density regions. We study the luminosity function as a function of local density, and find that the observed luminosity functions in different local density environments are overall well reproduced by the mock galaxies. A discrepancy is found at the bright end of the luminosity function of early types in the underdense regions and at the faint end of both morphological types in very high density regions. A significant fraction of the observed early-type galaxies in voids seem to have undergone relatively recent star formation and become brighter. The lack of faint mock galaxies in dense regions may be due to the strong tidal force of the central halo, which destroys less massive satellite subhalos around the simulation. The mass-to-light ratio is found to depend on the local density in a way similar to that observed in the SDSS sample. We have found an impressive agreement between our mock galaxies and the SDSS galaxies in the dependence of central velocity dispersion on the local density and luminosity.

  16. Galaxy-Galaxy Lensing in EAGLE: comparison with data from 180 square degrees of the KiDS and GAMA surveys


    Velliscig, Marco; Cacciato, Marcello; Hoekstra, Henk; Schaye, Joop; Heymans, Catherine; Hildebrandt, Hendrik; Loveday, Jon; Norberg, Peder; Sifón, Cristóbal; Schneider, Peter; van Uitert, Edo; Viola, Massimo; Brough, Sarah; Erben, Thomas; Holwerda, Benne W.


    We present predictions for the galaxy-galaxy lensing (GGL) profile from the EAGLE hydrodynamical cosmological simulation at redshift z = 0.18, in the spatial range 0.02 surface density profiles to the observed signal from background galaxies imaged by the Kilo Degree Survey around spectroscopically confirmed foreground galaxies from the Ga...

  17. The luminosity function of field galaxies


    Mahtessian, A. P.


    Schmidt's method for construction of luminosity function of galaxies is generalized by taking into account the dependence of density of galaxies from the distance in the near Universe. The logarithmical luminosity function (LLF) of field galaxies depending on morphological type is constructed. We show that the LLF for all galaxies, and also separately for elliptical and lenticular galaxies can be presented by Schechter function in narrow area of absolute magnitudes. The LLF of spiral galaxies...

  18. Characterization of lacunae density in pictorial surfaces using GIS software

    Directory of Open Access Journals (Sweden)

    Frederico Henriques


    Full Text Available This study deals with the application of simple image-processing techniques, in a geographic information system (GIS environment, on a detailed digital photography of a retabular painting. The aim is to register semi-automatically the lacunae density, through reclassification, and point density estimation. The digital photography image used on the exercise displays a detail of a 16th century panel painting named "Resurrection of Lazarus", from the Rotunda of Christ Convent, in Tomar, Portugal. The final result is a thematic pathology map of lacunae type.

  19. Inversion method applied to the rotation curves of galaxies (United States)

    Márquez-Caicedo, L. A.; Lora-Clavijo, F. D.; Sanabria-Gómez, J. D.


    We used simulated annealing, Montecarlo and genetic algorithm methods for matching both numerical data of density and velocity profiles in some low surface brigthness galaxies with theoretical models of Boehmer-Harko, Navarro-Frenk-White and Pseudo Isothermal Profiles for galaxies with dark matter halos. We found that Navarro-Frenk-White model does not fit at all in contrast with the other two models which fit very well. Inversion methods have been widely used in various branches of science including astrophysics (Charbonneau 1995, ApJS, 101, 309). In this work we have used three different parametric inversion methods (MonteCarlo, Genetic Algorithm and Simmulated Annealing) in order to determine the best fit of the observed data of the density and velocity profiles of a set of low surface brigthness galaxies (De Block et al. 2001, ApJ, 122, 2396) with three models of galaxies containing dark mattter. The parameters adjusted by the inversion methods were the central density and a characteristic distance in the Boehmer-Harko BH (Boehmer & Harko 2007, JCAP, 6, 25), Navarro-Frenk-White NFW (Navarro et al. 2007, ApJ, 490, 493) and Pseudo Isothermal Profile PI (Robles & Matos 2012, MNRAS, 422, 282). The results obtained showed that the BH and PI Profile dark matter galaxies fit very well for both the density and the velocity profiles, in contrast the NFW model did not make good adjustments to the profiles in any analized galaxy.

  20. Dwarf Elliptical Galaxies (United States)

    Caldwell, N.; Murdin, P.


    DWARF SPHEROIDAL GALAXIES were first identified by Shapley, who had noticed two very diffuse collections of stars on Harvard patrol plates. Although these systems had about as many stars as a GLOBULAR CLUSTER, they were of much lower density, and hence much larger radius, and thus were considered distinct galaxies. These two, named Fornax and Sculptor after the constellations in which they ap...

  1. Modified Newtonian Dynamics and the ``Dearth of Dark Matter in Ordinary Elliptical Galaxies'' (United States)

    Milgrom, Mordehai; Sanders, Robert H.


    The recent findings of Romanowsky et al., of an ``unexpectedly'' small mass discrepancy within 5 effective radii in several elliptical galaxies, are not surprising in the context of modified Newtonian dynamics (MOND). As we show here, they are, in fact, in full concordance with its predictions. One is dealing with high surface density galaxies with mean accelerations rather larger than the acceleration constant of MOND. These findings continue, and are now the extreme examples of, the trend predicted by MOND: the mass discrepancy sets in at larger and larger scaled radii in galaxies with larger and larger mean surface densities or, equivalently, mean accelerations.

  2. Extended Schmidt law holds for faint dwarf irregular galaxies (United States)

    Roychowdhury, Sambit; Chengalur, Jayaram N.; Shi, Yong


    Context. The extended Schmidt law (ESL) is a variant of the Schmidt which relates the surface densities of gas and star formation, with the surface density of stellar mass added as an extra parameter. Although ESL has been shown to be valid for a wide range of galaxy properties, its validity in low-metallicity galaxies has not been comprehensively tested. This is important because metallicity affects the crucial atomic-to-molecular transition step in the process of conversion of gas to stars. Aims: We empirically investigate for the first time whether low metallicity faint dwarf irregular galaxies (dIrrs) from the local universe follow the ESL. Here we consider the "global" law where surface densities are averaged over the galactic discs. dIrrs are unique not only because they are at the lowest end of mass and star formation scales for galaxies, but also because they are metal-poor compared to the general population of galaxies. Methods: Our sample is drawn from the Faint Irregular Galaxy GMRT Survey (FIGGS) which is the largest survey of atomic hydrogen in such galaxies. The gas surface densities are determined using their atomic hydrogen content. The star formation rates are calculated using GALEX far ultraviolet fluxes after correcting for dust extinction, whereas the stellar surface densities are calculated using Spitzer 3.6 μm fluxes. The surface densities are calculated over the stellar discs defined by the 3.6 μm images. Results: We find dIrrs indeed follow the ESL. The mean deviation of the FIGGS galaxies from the relation is 0.01 dex, with a scatter around the relation of less than half that seen in the original relation. In comparison, we also show that the FIGGS galaxies are much more deviant when compared to the "canonical" Kennicutt-Schmidt relation. Conclusions: Our results help strengthen the universality of the ESL, especially for galaxies with low metallicities. We suggest that models of star formation in which feedback from previous generations

  3. Irregular Dwarf Galaxy IC 1613 (United States)


    Ultraviolet image (left) and visual image (right) of the irregular dwarf galaxy IC 1613. Low surface brightness galaxies, such as IC 1613, are more easily detected in the ultraviolet because of the low background levels compared to visual wavelengths.

  4. Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters and ROSAT Observations of Bright, Early-Type Galaxies (United States)

    White, Raymond E., III


    Preliminary results on the elliptical galaxy NGC 1407 were published in the proceedings of the first ROSAT symposium. NGC 1407 is embedded in diffuse X-ray-emitting gas which is extensive enough that it is likely to be related to the surrounding group of galaxies, rather than just NGC 1407. Spectral data for NGC 1407 (AO2) and IC 1459 (AO3) are also included in a complete sample of elliptical galaxies I compiled in collaboration with David Davis. This allowed us to construct the first complete X-ray sample of optically-selected elliptical galaxies. The complete sample allows us to apply Malmquist bias corrections to the observed correlation between X-ray and optical luminosities. I continue to work on the implications of this first complete X-ray sample of elliptical galaxies. Paul Eskridge Dave Davis and I also analyzed three long ROSAT PSPC observations of the small (but not dwarf) elliptical galaxy M32. We found the X-ray spectra and variability to be consistent with either a Low Mass X-Ray Binary (LMXRB) or a putative 'micro"-AGN.


    International Nuclear Information System (INIS)

    Swaters, R. A.; Sancisi, R.; Van Albada, T. S.; Van der Hulst, J. M.


    Mass models for a sample of 18 late-type dwarf and low surface brightness galaxies show that in almost all cases the contribution of the stellar disks to the rotation curves can be scaled to explain most of the observed rotation curves out to two or three disk scale lengths. The concept of a maximum disk, therefore, appears to work as well for these late-type dwarf galaxies as it does for spiral galaxies. Some of the mass-to-light ratios required in our maximum disk fits, however, are high, up to about 15 in the R band, with the highest values occurring in galaxies with the lowest surface brightnesses. Equally well-fitting mass models can be obtained with much lower mass-to-light ratios. Regardless of the actual contribution of the stellar disk, the fact that the maximum disk can explain the inner parts of the observed rotation curves highlights the similarity in shapes of the rotation curve of the stellar disk and the observed rotation curve. This similarity implies that the distribution of the total mass density is closely coupled to that of the luminous mass density in the inner parts of late-type dwarf galaxies.

  6. Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities (United States)

    Anderson, C. J.; Luciw, N. J.; Li, Y.-C.; Kuo, C. Y.; Yadav, J.; Masui, K. W.; Chang, T.-C.; Chen, X.; Oppermann, N.; Liao, Y.-W.; Pen, U.-L.; Price, D. C.; Staveley-Smith, L.; Switzer, E. R.; Timbie, P. T.; Wolz, L.


    We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057 galaxies and H I, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with H I on k ˜ 1.5 h Mpc-1 scales, suggesting that H I is more associated with blue star-forming galaxies and tends to avoid red galaxies.

  7. Lactoperoxidase catalyzed radioiodination of cell surface immunoglobulin: incorporated radioactivity may not reflect relative cell surface Ig density

    International Nuclear Information System (INIS)

    Wilder, R.L.; Yuen, C.C.; Mage, R.G.


    Rabbit and mouse splenic lymphocytes were radioiodinated by the lactoperoxidase technique, extracted with non-ionic detergent, immunoprecipitated with high titered rabbit anti-kappa antisera, and compared by SDS-PAGE. Mouse sIg peaks were reproducibly larger in size than rabbit sIg peaks (often greater than 10 times). Neither differences in incorporation of label into the rabbit cell surface, nor differences in average sIg density explain this result. Total TCA-precipitable radioactivity was similar in each species. Estimation of the relative amounts of sIg in the mouse and rabbit showed similar average sIg densities. Differences in detergent solubility, proteolytic lability, or antisera used also do not adequately account for this difference. Thus, these data indicate that radioactivity incorporated after lactoperoxidase catalyzed cell surface radioiodination may not reflect cell surface Ig density. Conclusions about cell surface density based upon relative incorporation of radioactivity should be confirmed by other approaches

  8. N-body simulations of galaxy clustering. II. Groups of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Turner, E.L.; Aarseth, S.J.; Gott, J.R. III; Blanchard, N.T.; Mathieu, R.D.


    Two of the previously presented N-body simulations of galaxy clustering are analyzed in terms of the detailed dynamical and morphological properties of their binaries, groups, and clusters. The analysis is closely analogous to the studies of groups among bright Zwicky catalog galaxies by Turner and Gott. The simulated groups, particularly those in the ..cap omega../sub 0/=0.1 and n= -1 model, resemble the observed groups. The models provide complete (position, velocity, mass) information on group and field ''galaxies'' identified using the Turner and Gott surface density enhancement procedure. These data are used to assess the validity of the membership assignments, the influence of non-Hubble motions on descriptions of the clustering, the accuracy and stability of various M/L estimators, the significance of field galaxies, and the statistical properties of binary systems.

  9. Density-functional calculations of the surface tension of liquid Al and Na (United States)

    Stroud, D.; Grimson, M. J.


    Calculations of the surface tensions of liquid Al and Na are described using the full ionic density functional formalism of Wood and Stroud (1983). Surface tensions are in good agreement with experiment in both cases, with results substantially better for Al than those found previously in the gradient approximation. Preliminary minimization with respect to surface profile leads to an oscillatory profile superimposed on a nearly steplike ionic density disribution; the oscillations have a wavellength of about a hardsphere diameter.

  10. Simulations of galaxy mergers

    International Nuclear Information System (INIS)

    Villumsen, J.V.


    This work is a theoretical investigation of the mechanisms and results of mergers of elliptical galaxies. An N-body code is developed to simulate the dynamics of centrally concentrated collisionless systems. It is used for N-body simulations of the mergers of galaxies with mass ratios of 1:1, 2:1 and 3:1 with a total of 1200 or 2400 particles. The initial galaxies are spherical and non-rotating with Hubble type profiles and isotropic velocity distributions. The remnants are flattened (up to E4) and are oblate, triaxial or prolate depending on the impact parameter. Equal mass mergers are more flattened than unequal mass mergers and have significant velocity anisotropies. The remnants have Hubble type profiles with decreased central surface brightness and increased core radii and tidal radii. In some unequal mass mergers ''isothermal'' haloes tend to form. The density profiles are inconsistent with De Vaucouleurs profiles even though the initial profiles were not. The central velocity dispersion increases in 1:1 and 2:1 mass mergers but decreases in 3:1 mass mergers. Near head-on mergers lead to prolate systems with little rotation while high angular momentum mergers lead to oblate systems with strong rotation. The rotation curves show solid body rotation out to the half mass radius followed by a slow decline. Radial mixing is strong in equal mass mergers where it will weaken radial gradients. In unequal mass mergers there is little radial mixing but matter from the smaller galaxy ends up in the outer parts of the system where it can give rise to colour gradient

  11. Diversity among galaxy clusters

    International Nuclear Information System (INIS)

    Struble, M.F.; Rood, H.J.


    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  12. Isolated galaxies, pairs, and groups of galaxies

    International Nuclear Information System (INIS)

    Kuneva, I.; Kalinkov, M.


    The authors searched for isolated galaxies, pairs and groups of galaxies in the CfA survey (Huchra et al. 1983). It was assumed that the distances to galaxies are given by R = V/H sub o, where H sub o = 100 km s(exp -1) Mpc(exp -1) and R greater than 6 Mpc. The searching procedure is close to those, applied to find superclusters of galaxies (Kalinkov and Kuneva 1985, 1986). A sphere with fixed radius r (asterisk) is described around each galaxy. The mean spatial density in the sphere is m. Let G 1 be any galaxy and G 2 be its nearest neighbor at a distance R 2 . If R sub 2 exceeds the 95 percent quintile in the distribution of the distances of the second neighbors, then G 1 is an isolated galaxy. Let the midpoint of G 1 and G 2 be O 2 and r 2 =R 2 2. For the volume V 2 , defined with the radius r 2 , the density D 2 less than k mu, the galaxy G 2 is a single one and the procedure for searching for pairs and groups, beginning with this object is over and we have to pass to another object. Here the authors present the groups - isolated and nonisolated - with n greater than 3, found in the CfA survey in the Northern galactic hemisphere. The parameters used are k = 10 and r (asterisk) = 5 Mpc. Table 1 contains: (1) the group number, (2) the galaxy, nearest to the multiplet center, (3) multiplicity n, (4) the brightest galaxy if it is not listed in (2); (5) and (6) are R.A. and Dec. (1950), (7) - mean distance D in Mpc. Further there are the mean density rho (8) of the multiplet (galaxies Mpc (exp -3)), (9) the density rho (asterisk) for r (asterisk) = 5 Mpc and (10) the density rho sub g for the group with its nearest neighbor. The parenthesized digits for densities in the last three columns are powers of ten

  13. Density functional theory in surface chemistry and catalysis (United States)

    Nørskov, Jens K.; Abild-Pedersen, Frank; Studt, Felix; Bligaard, Thomas


    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future challenges. PMID:21220337

  14. Density functional theory in surface chemistry and catalysis

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Abild-Pedersen, Frank; Studt, Felix


    Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future...

  15. Density Functional Theory in Surface Chemistry and Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Norskov, Jens


    Recent advances in the understanding of reactivity trends for chemistry at transition metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. Current status of the field is discussed with an emphasis on the role of coupling between theory and experiment and future challenges.

  16. On the central stellar mass density and the inside-out growth of early-type galaxies


    Saracco, P.; Gargiulo, A.; Longhetti, M.


    [Abridged] In this paper we derive the central stellar mass density within a fixed radius and the effective stellar mass density within the effective radius for a complete sample of 34 ETGs morphologically selected at 0.9


    NARCIS (Netherlands)


    The gravitational fields of clusters of galaxies cause systematic distortions of the images of background galaxies. Recently, the lens inversion problem, reconstruction of the mean surface density distribution in the lens from the pattern of systematic distortions, has been the object of several

  18. Density-functional calculation of van der Waals forces for free-electron-like surfaces

    DEFF Research Database (Denmark)

    Hult, E.; Hyldgaard, P.; Rossmeisl, Jan


    A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well as for the in......A recently proposed general density functional for asymptotic van der Waals forces is used to calculate van der Waals coefficients and reference-plane positions for realistic low-indexed Al surfaces. Results are given for a number of atoms and molecules outside the surfaces, as well...... as for the interaction between the surfaces themselves. The densities and static image-plane positions that are needed as input in the van der Waals functional are calculated self-consistently within density-functional theory using the generalized-gradient approximation, pseudopotentials, and plane waves. This study...

  19. An approximate geostrophic streamfunction for use in density surfaces (United States)

    McDougall, Trevor J.; Klocker, Andreas

    An approximate expression is derived for the geostrophic streamfunction in approximately neutral surfaces, φn, namely φ={1}/{2}Δpδ˜˜-{1}/{12}{T}/{bΘρ}ΔΘΔ-∫0pδ˜˜ dp'. This expression involves the specific volume anomaly δ˜˜ defined with respect to a reference point (S,Θ˜˜,p˜˜) on the surface, Δ p and ΔΘ are the differences in pressure and Conservative Temperature with respect to p˜˜ and Θ˜˜, respectively, and TbΘ is the thermobaric coefficient. This geostrophic streamfunction is shown to be more accurate than previously available choices of geostrophic streamfunction such as the Montgomery streamfunction. Also, by writing expressions for the horizontal differences on a regular horizontal grid of a localized form of the above geostrophic streamfunction, an over-determined set of equations is developed and solved to numerically obtain a very accurate geostrophic streamfunction on an approximately neutral surface; the remaining error in this streamfunction is caused only by neutral helicity.

  20. Surface regulated arsenenes as Dirac materials: From density functional calculations

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Junhui; Xie, Qingxing; Yu, Niannian, E-mail:; Wang, Jiafu, E-mail:


    Highlights: • The presence of Dirac cones in chemically decorated buckled arsenene AsX (X = CN, NC, NCO, NCS, and NCSe) has been revealed. • First-principles calculations show that all these chemically decorated arsenenes are kinetically stable in defending thermal fluctuations in room temperature. - Abstract: Using first principle calculations based on density functional theory (DFT), we have systematically investigated the structure stability and electronic properties of chemically decorated arsenenes, AsX (X = CN, NC, NCO, NCS and NCSe). Phonon dispersion and formation energy analysis reveal that all the five chemically decorated buckled arsenenes are energetically favorable and could be synthesized. Our study shows that wide-bandgap arsenene would turn into Dirac materials when functionalized by -X (X = CN, NC, NCO, NCS and NCSe) groups, rendering new promises in next generation high-performance electronic devices.

  1. Interstellar Hydrogen in Galaxies: Radio observations of neutral hydrogen yield valuable information on the properties of galaxies. (United States)

    Roberts, M S


    Measurement of the 21-cm line radiation originating from the interstellar neutral hydrogen in a galaxy yields information on the total mass and total hydrogen content of the galaxy. The ratio of these two quantities is correlated with structural type in the sense that the later type galaxies contain a higher fraction of their total mass in the form of interstellar hydrogen This ratio is one of the few physical parameters known to correlate with structural type. It need not, however, reflect an evolutionary sequence, such as more hydrogen implying a younger galaxy. Efficiency of conversion of hydrogen to stars can just as easily explain the correlation. Except for the very latest systems, the total mass of a spiral does not appear to be correlated with type. Red shifts of galaxies measured at optical wavelengths and at 21 cm are in excellent agreement. The form of the Doppler expression has been shown to hold over a wavelength range of 5 x 105. All spirals earlier than type Ir which have been studied with adequate resolution show a central minimum in their hydrogen distribution. The region of maximum projected HI surface density occurs at some distance from the center. In the earlier type spirals the optical arms are located in the region of this maximum surface density. In the later type spirals the maximum HI density and prominent optical arms are less well correlated and, at times, are anticorrelated. Detailed studies of the HI distribution and motions within a galaxy require the high relative resolution of beam synthesis arrays. We may expect significant new information from such studies, which are now in progress. Filled-aperture telescopes will supply the necessary observations at zero spacing and vital statistical information on large numbers of galaxies, peculiar systems and groups and clusters of galaxies. The two types of telescope systems will complement one another. In the near future we should have a much better description of spiral galaxies and, we

  2. Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.


    First-principles calculations of the conventional and acoustic surface plasmons (CSPs and ASPs) on the (111) surfaces of Cu, Ag, and Au are presented. The effect of s-d interband transitions on both types of plasmons is investigated by comparing results from the local density approximation...

  3. Optical excitation and electron relaxation dynamics at semiconductor surfaces: a combined approach of density functional and density matrix theory applied to the silicon (001) surface

    Energy Technology Data Exchange (ETDEWEB)

    Buecking, N.


    In this work a new theoretical formalism is introduced in order to simulate the phononinduced relaxation of a non-equilibrium distribution to equilibrium at a semiconductor surface numerically. The non-equilibrium distribution is effected by an optical excitation. The approach in this thesis is to link two conventional, but approved methods to a new, more global description: while semiconductor surfaces can be investigated accurately by density-functional theory, the dynamical processes in semiconductor heterostructures are successfully described by density matrix theory. In this work, the parameters for density-matrix theory are determined from the results of density-functional calculations. This work is organized in two parts. In Part I, the general fundamentals of the theory are elaborated, covering the fundamentals of canonical quantizations as well as the theory of density-functional and density-matrix theory in 2{sup nd} order Born approximation. While the formalism of density functional theory for structure investigation has been established for a long time and many different codes exist, the requirements for density matrix formalism concerning the geometry and the number of implemented bands exceed the usual possibilities of the existing code in this field. A special attention is therefore attributed to the development of extensions to existing formulations of this theory, where geometrical and fundamental symmetries of the structure and the equations are used. In Part II, the newly developed formalism is applied to a silicon (001)surface in a 2 x 1 reconstruction. As first step, density-functional calculations using the LDA functional are completed, from which the Kohn-Sham-wave functions and eigenvalues are used to calculate interaction matrix elements for the electron-phonon-coupling an the optical excitation. These matrix elements are determined for the optical transitions from valence to conduction bands and for electron-phonon processes inside the

  4. Surface density profile and surface tension of the one-component classical plasma

    International Nuclear Information System (INIS)

    Ballone, P.; Senatore, G.; Trieste Univ.; Tosi, M.P.; Oxford Univ.


    The density profile and the interfacial tension of two classical plasmas in equilibrium at different densities are evaluated in the square-density-gradient approximation. For equilibrium in the absence of applied external voltage, the profile is oscillatory in the higher-density plasma and the interfacial tension is positive. The amplitude and phase of these oscillations and the magnitude of the interfacial tension are related to the width of the background profile. Approximate representations of the equilibrium profile by matching of its asymptotic forms are analyzed. A comparison with computer simulation data and a critical discussion of a local-density theory are also presented. (author)

  5. Hot-electron-assisted femtochemistry at surfaces: A time-dependent density functional theory approach

    DEFF Research Database (Denmark)

    Gavnholt, Jeppe; Rubio, Angel; Olsen, Thomas


    Using time-evolution time-dependent density functional theory (TDDFT) within the adiabatic local-density approximation, we study the interactions between single electrons and molecular resonances at surfaces. Our system is a nitrogen molecule adsorbed on a ruthenium surface. The surface is modeled...... at two levels of approximation, first as a simple external potential and later as a 20-atom cluster. We perform a number of calculations on an electron hitting the adsorbed molecule from inside the surface and establish a picture, where the resonance is being probed by the hot electron. This enables us...

  6. Simulating measures of wood density through the surface by Compton scattering

    International Nuclear Information System (INIS)

    Penna, Rodrigo; Oliveira, Arno H.; Braga, Mario R.M.S.S.; Vasconcelos, Danilo C.; Carneiro, Clemente J.G.; Penna, Ariane G.C.


    Monte Carlo code (MCNP-4C) was used to simulate a nuclear densimeter for measuring wood densities nondestructively. An Americium source (E = 60 keV) and a NaI (Tl) detector were placed on a wood block surface. Results from MCNP shown that scattered photon fluxes may be used to determining wood densities. Linear regressions between scattered photons fluxes and wood density were calculated and shown correlation coefficients near unity. (author)

  7. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation (United States)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus


    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  8. The RSA survey of dwarf galaxies, 1: Optical photometry (United States)

    Vader, J. Patricia; Chaboyer, Brian


    We present detailed surface photometry, based on broad B-band charge coupled device (CCD) images, of about 80 dwarf galaxies. Our sample represents approximately 10% of all dwarf galaxies identified in the vicinity of Revised Shapley-Ames (RSA) galaxies on high resolution blue photographic plates, referred to as the RSA survey of dwarf galaxies. We derive global properties and radial surface brightness profiles, and examine the morphologies. The radial surface brightness profiles of dwarf galaxies, whether early or late type, display the same varieties in shape and complexity as those of classical giant galaxies. Only a few are well described by a pure r(exp 1/4) law. Exponential profiles prevail. Features typical of giant disk galaxies, such as exponential profiles with a central depression, lenses, and even, in one case (IC 2041), a relatively prominent bulge are also found in dwarf galaxies. Our data suggest that the central region evolves from being bulge-like, with an r(exp 1/4) law profile, in bright galaxies to a lens-like structure in dwarf galaxies. We prove detailed surface photometry to be a helpful if not always sufficient tool in investigating the structure of dwarf galaxies. In many cases kinematic information is needed to complete the picture. We find the shapes of the surface brightness profiles to be loosely associated with morphological type. Our sample contains several new galaxies with properties intermediate between those of giant and dwarf ellipticals (but no M32-like objects). This shows that such intermediate galaxies exist so that at least a fraction of early-type dwarf ellipticals is structurally related to early-type giants instead of belonging to a totally unrelated, disjunct family. This supports an origin of early-type dwarf galaxies as originally more massive systems that acquired their current morphology as a result of substantial, presumable supernova-driven, mass loss. On the other hand, several early-type dwarfs in our sample are

  9. The Stripe 82 Massive Galaxy Project. III. A Lack of Growth among Massive Galaxies (United States)

    Bundy, Kevin; Leauthaud, Alexie; Saito, Shun; Maraston, Claudia; Wake, David A.; Thomas, Daniel


    The average stellar mass (M *) of high-mass galaxies ({log}{M}* /{M}⊙ > 11.5) is expected to grow by ˜30% since z˜ 1, largely through ongoing mergers that are also invoked to explain the observed increase in galaxy sizes. Direct evidence for the corresponding growth in stellar mass has been elusive, however, in part because the volumes sampled by previous redshift surveys have been too small to yield reliable statistics. In this work, we make use of the Stripe 82 Massive Galaxy Catalog (S82-MGC) to build a mass-limited sample of 41,770 galaxies ({log}{M}* /{M}⊙ > 11.2) with optical-to-near-IR photometry and a large fraction (>55%) of spectroscopic redshifts. Our sample spans 139 deg2, significantly larger than most previous efforts. After accounting for a number of potential systematic errors, including the effects of M * scatter, we measure galaxy stellar mass functions over 0.3history assumed for M * estimates, although our inability to characterize low-surface-brightness outskirts may be the most important limitation of our study. Even among these high-mass galaxies, we find evidence for differential evolution when splitting the sample by recent SF activity. While low-SF systems appear to become completely passive, we find a mostly subdominant population of galaxies with residual, but low rates of SF (˜1 M ⊙ yr-1) whose number density does not evolve. Interestingly, these galaxies become more prominent at higher M *, representing ˜10% of all galaxies at {10}12 {M}⊙ and perhaps dominating at even larger masses.

  10. KDG218, a nearby ultra-diffuse galaxy (United States)

    Karachentsev, I. D.; Makarova, L. N.; Sharina, M. E.; Karachentseva, V. E.


    We present properties of the low-surface-brightness galaxy KDG218 observed with the HST/ACS. The galaxy has a half-light (effective) diameter of a e = 47″ and a central surface brightness of SB V (0) = 24.m4/□″. The galaxy remains unresolved with the HST/ACS, which implies its distance of D > 13.1 Mpc and linear effective diameter of A e > 3.0 kpc. We notice that KDG218 is most likely associated with a galaxy group around the massive lenticular NGC4958 galaxy at approximately 22 Mpc, or with the Virgo Southern Extension filament at approximately 16.5 Mpc. At these distances, the galaxy is classified as an ultra-diffuse galaxy (UDG) similar to those found in the Virgo, Fornax, and Coma clusters. We also present a sample of 15 UDG candidates in the Local Volume. These sample galaxies have the following mean parameters: 〈 D〉 = 5.1 Mpc, 〈 A e 〉 = 4.8 kpc, and 〈 SB B ( e)〉 = 27.m4/□″. All the local UDG candidates reside near massive galaxies located in the regions with the mean stellar mass density (within 1 Mpc) about 50 times greater than the average cosmic density. The local fraction of UDGs does not exceed 1.5% of the Local Volume population. We notice that the presented sample of local UDGs is a heterogeneous one containing irregular, transition, and tidal types, as well as objects consisting of an old stellar population.

  11. Characterization of grafting density and binding efficiency of DNA and proteins on gold surfaces. (United States)

    Castelino, Kenneth; Kannan, Balaji; Majumdar, Arun


    The surface grafting density of biomolecules is an important factor for quantitative assays using a wide range of biological sensors. We use a fluorescent measurement technique to characterize the immobilization density of thiolated probe DNA on gold and hybridization efficiency of target DNA as a function of oligonucleotide length and salt concentration. The results indicate the dominance of osmotic and hydration forces in different regimes of salt concentration, which was used to validate previous simulations and to optimize the performance of surface-stress based microcantilever biosensors. The difference in hybridization density between complementary and mismatched target sequences was also measured to understand the response of these sensors in base-pair mismatch detection experiments. Finally, two different techniques for immobilizing proteins on gold were considered and the surface densities obtained in both cases were compared.

  12. Electron density in reasonably real metallic surfaces, including interchange and correlation effects

    International Nuclear Information System (INIS)

    Moraga, L.A.; Martinez, G.


    By means of a new method, the electron density in a jellium surface is calculated taking in account interchange and correlation effects; reproducing, in this way, the Lang and Kohn results. The new method is self-consistent but not iterative and hence is possible extend it to the solution of the same problem in more reasonably real metallic surfaces. (L.C.) [pt

  13. Flame Treatment of Low-Density Polyethylene: Surface Chemistry Across the Length Scale

    NARCIS (Netherlands)

    Song, Jing; Gunst, Ullrich; Arlinghaus, Heinrich F.; Vancso, Gyula J.


    The relationship between surface chemistry and morphology of flame treated low-density polyethylene (LDPE) was studied by various characterization techniques across different length scales. The chemical composition of the surface was determined on the micrometer scale by X-ray photoelectron

  14. Cluster galaxy population evolution from the Subaru Hyper Suprime-Cam survey: brightest cluster galaxies, stellar mass distribution, and active galaxies (United States)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration


    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.

  15. Trends in the chemical properties in early transition metal carbide surfaces: A density functional study

    DEFF Research Database (Denmark)

    Kitchin, J.R.; Nørskov, Jens Kehlet; Barteau, M.A.


    In this paper we present density functional theory (DFT) investigations of the physical, chemical and electronic structure properties of several close-packed surfaces of early transition metal carbides, including beta-Mo2C(0 0 0 1), and the (1 1 1) surfaces of TiC, VC, NbC, and TaC. The results...... are in excellent agreement with experimental values of lattice constants and bulk moduli. The adsorption of atomic hydrogen is used as a probe to compare the chemical properties of various carbide surfaces. Hydrogen adsorbs more strongly to the metal-terminated carbide surfaces than to the corresponding closest......-packed pure metal surfaces, due to the tensile strain induced in the carbide surfaces upon incorporation of carbon into the lattice. Hydrogen atoms were found to adsorb more weakly on carbide surfaces than on the corresponding closest-packed pure metal surfaces only when there were surface carbon atoms...

  16. Self-consistent density functional calculation of the image potential at a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Alvarellos, J E [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain); Chacon, E [Instituto de Ciencias de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain); GarcIa-Gonzalez, P [Departamento de Fisica Fundamental, Universidad Nacional de Educacion a Distancia, Apartado 60141, 28080 Madrid (Spain)


    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z{sub 0}), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z{sub 0}, and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description.

  17. Self-consistent density functional calculation of the image potential at a metal surface

    International Nuclear Information System (INIS)

    Jung, J; Alvarellos, J E; Chacon, E; GarcIa-Gonzalez, P


    It is well known that the exchange-correlation (XC) potential at a metal surface has an image-like asymptotic behaviour given by -1/4(z-z 0 ), where z is the coordinate perpendicular to the surface. Using a suitable fully non-local functional prescription, we evaluate self-consistently the XC potential with the correct image behaviour for simple jellium surfaces in the range of metallic densities. This allows a proper comparison between the corresponding image-plane position, z 0 , and other related quantities such as the centroid of an induced charge by an external perturbation. As a by-product, we assess the routinely used local density approximation when evaluating electron density profiles, work functions, and surface energies by focusing on the XC effects included in the fully non-local description

  18. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng


    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  19. New radiative transfer models for obscuring tori in active galaxies

    NARCIS (Netherlands)

    van Bemmel, IM; Dullemond, CP

    Two-dimensional radiative transfer is employed to obtain the broad-band infrared spectrum of active galaxies. In the models we vary the geometry and size of the obscuring medium, the surface density, the opacity and the grain size distribution. Resulting spectral energy distributions are constructed


    International Nuclear Information System (INIS)

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Dewberry, J.; Putko, J.; Teich, Y.; Popinchalk, M.; Sánchez Almeida, J.; Muñoz-Tuñón, C.


    Local UV-bright galaxies in the Kiso survey include clumpy systems with kiloparsec-size star complexes that resemble clumpy young galaxies in surveys at high redshift. We compare clump masses and underlying disks in several dozen galaxies from each of these surveys to the star complexes and disks of normal spirals. Photometry and spectroscopy for the Kiso and spiral sample come from the Sloan Digital Sky Survey. We find that the largest Kiso clumpy galaxies resemble Ultra Deep Field (UDF) clumpies in terms of the star formation rates, clump masses, and clump surface densities. Clump masses and surface densities in normal spirals are smaller. If the clump masses are proportional to the turbulent Jeans mass in the interstellar medium, then for the most luminous galaxies in the sequence of normal:Kiso:UDF, the turbulent speeds and surface densities increase in the proportions 1.0:4.7:5.0 and 1.0:4.0:5.1, respectively, for fixed restframe B-band absolute magnitude. For the least luminous galaxies in the overlapping magnitude range, the turbulent speed and surface density trends are 1.0:2.7:7.4 and 1.0:1.4:3.0, respectively. We also find that while all three types have radially decreasing disk intensities when measured with ellipse-fit azimuthal averages, the average profiles are more irregular for UDF clumpies (which are viewed in their restframe UV) than for Kiso galaxies (viewed at g-band), and major axis intensity scans are even more irregular for the UDF than Kiso galaxies. Local clumpy galaxies in the Kiso survey appear to be intermediate between UDF clumpies and normal spirals

  1. Nature vs. nurture in the low-density environment: structure and evolution of early-type dwarf galaxies in poor groups (United States)

    Annibali, F.; Grützbauch, R.; Rampazzo, R.; Bressan, A.; Zeilinger, W. W.


    We present the stellar population properties of 13 dwarf galaxies residing in poor groups (low-density environment, LDE) observed with VIMOS at VLT. Ages, metallicities, and [α/Fe] ratios were derived within an r < re/2 aperture from the Lick indices Hβ, Mgb, Fe5270, and Fe5335 through comparison with our simple stellar population (SSP) models that account for variable [α/Fe] ratios. For a fiducial subsample of 10 early-type dwarfs, we derived median values and scatters around the medians of 5.7 ± 4.4 Gyr, -0.26 ± 0.28, and -0.04 ± 0.33 for age, log Z/Z⊙, and [α/Fe] , respectively. For a selection of bright early-type galaxies (ETGs) from an earlier sample residing in a comparable environment, we derive median values of 9.8 ± 4.1 Gyr, 0.06 ± 0.16, and 0.18 ± 0.13 for the same stellar population parameters. It follows that dwarfs are on average younger, less metal rich, and less enhanced in the α-elements than giants, in agreement with the extrapolation to the low-mass regime of the scaling relations derived for giant ETGs. From the total (dwarf + giant) sample, we find that age ∝ σ0.39 ± 0.22, Z ∝ σ0.80 ± 0.16, and α/Fe ∝ σ0.42 ± 0.22. We also find correlations with morphology, in the sense that the metallicity and the [α/Fe] ratio increase with the Sersic index n or with the bulge-to-total light fraction B/T. The presence of a strong morphology-[α/Fe] relation appears to contradict the possible evolution along the Hubble sequence from low B/T (low n) to high B/T (high n) galaxies. We also investigate the role played by environment by comparing the properties of our LDE dwarfs with those of Coma red passive dwarfs from the literature. We find possible evidence that LDE dwarfs experienced more prolonged star formations than Coma dwarfs, however larger data samples are needed to draw firmer conclusions. Based on observations obtained at the European Southern Observatory, La Silla, Chile.

  2. Visibility of galaxies

    International Nuclear Information System (INIS)

    Disney, M.J.


    It is stated that counts of galaxies could be seriously biased by selection effects, largely influenced by the brightness of the night sky. To illustrate this suppose the Earth were situated near the center of a giant elliptical galaxy. The mean surface brightness of the sky would then appear some 8 to 9 mag. brighter than is observed from our position in the Galaxy. Extragalactic space would then appear to be empty void; spiral and irregular galaxies would be invisible, and all that could be easily detected would be the core regions of galaxy ellipticals very similar to our own. Much of the Universe would be blinded by the surface brightness of the parent galaxy. This blinding, however, is a relative matter and the question arises as to what extent we are blinded by the spiral galaxy in which we exist. Strong indirect evidence exists that our knowledge of galaxies is heavily biased by the sky background, and the true population of extragalactic space may be very different from that seen. Other relevant work is also discussed, and further investigational work is indicated. (U.K.)

  3. The X-ray Power Density Spectrum of the Seyfert 2 Galaxy NGC 4945: Analysis and Application of the Method of Light Curve Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Martin; /SLAC


    The study of the power density spectrum (PDS) of fluctuations in the X-ray flux from active galactic nuclei (AGN) complements spectral studies in giving us a view into the processes operating in accreting compact objects. An important line of investigation is the comparison of the PDS from AGN with those from galactic black hole binaries; a related area of focus is the scaling relation between time scales for the variability and the black hole mass. The PDS of AGN is traditionally modeled using segments of power laws joined together at so-called break frequencies; associations of the break time scales, i.e., the inverses of the break frequencies, with time scales of physical processes thought to operate in these sources are then sought. I analyze the Method of Light Curve Simulations that is commonly used to characterize the PDS in AGN with a view to making the method as sensitive as possible to the shape of the PDS. I identify several weaknesses in the current implementation of the method and propose alternatives that can substitute for some of the key steps in the method. I focus on the complications introduced by uneven sampling in the light curve, the development of a fit statistic that is better matched to the distributions of power in the PDS, and the statistical evaluation of the fit between the observed data and the model for the PDS. Using archival data on one AGN, NGC 3516, I validate my changes against previously reported results. I also report new results on the PDS in NGC 4945, a Seyfert 2 galaxy with a well-determined black hole mass. This source provides an opportunity to investigate whether the PDS of Seyfert 1 and Seyfert 2 galaxies differ. It is also an attractive object for placement on the black hole mass-break time scale relation. Unfortunately, with the available data on NGC 4945, significant uncertainties on the break frequency in its PDS remain.

  4. The Number Density Evolution of Extreme Emission Line Galaxies in 3D-HST: Results from a Novel Automated Line Search Technique for Slitless Spectroscopy (United States)

    Maseda, Michael V.; van der Wel, Arjen; Rix, Hans-Walter; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; Lundgren, Britt F.; Skelton, Rosalind E.; Whitaker, Katherine E.


    The multiplexing capability of slitless spectroscopy is a powerful asset in creating large spectroscopic data sets, but issues such as spectral confusion make the interpretation of the data challenging. Here we present a new method to search for emission lines in the slitless spectroscopic data from the 3D-HST survey utilizing the Wide-Field Camera 3 on board the Hubble Space Telescope. Using a novel statistical technique, we can detect compact (extended) emission lines at 90% completeness down to fluxes of 1.5(3.0)× {10}-17 {erg} {{{s}}}-1 {{cm}}-2, close to the noise level of the grism exposures, for objects detected in the deep ancillary photometric data. Unlike previous methods, the Bayesian nature allows for probabilistic line identifications, namely redshift estimates, based on secondary emission line detections and/or photometric redshift priors. As a first application, we measure the comoving number density of Extreme Emission Line Galaxies (restframe [O III] λ5007 equivalent widths in excess of 500 Å). We find that these galaxies are nearly 10× more common above z ∼ 1.5 than at z ≲ 0.5. With upcoming large grism surveys such as Euclid and WFIRST, as well as grisms featured prominently on the NIRISS and NIRCam instruments on the James Webb Space Telescope, methods like the one presented here will be crucial for constructing emission line redshift catalogs in an automated and well-understood manner. This work is based on observations taken by the 3D-HST Treasury Program and the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  5. An HI selected sample of galaxies : The HI mass function and the surface brightness distribution

    NARCIS (Netherlands)

    Zwaan, M; Briggs, F; Sprayberry, D

    Results from the Arecibo HI Strip Survey, an unbiased extragalactic HI survey, combined with optical and 21 cm follow-up observations, determine the HI mass function and the cosmological mass density of HI at the present epoch. Both are consistent with earlier estimates, computed for the population

  6. Occurrence of LINER galaxies within the galaxy group environment (United States)

    Coldwell, Georgina V.; Pereyra, Luis; Alonso, Sol; Donoso, Emilio; Duplancic, Fernanda


    We study the properties of a sample of 3967 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR7, with respect to their proximity to galaxy groups. The host galaxies of LINERs have been analysed and compared with a well-defined control sample of 3841 non-LINER galaxies matched in redshift, luminosity, colour, morphology, age and stellar mass content. We find no difference between LINER and control galaxies in terms of the colour and age of stellar population as a function of the virial mass and distance to the geometric centre of the group. However, we find that LINERs are more likely to populate low-density environments in spite of their morphology, which is typical of high-density regions such as rich galaxy clusters. For rich (poor) galaxy groups, the occurrence of LINERs is approximately two times lower (higher) than the occurrence of matched, non-LINER galaxies. Moreover, LINER hosts do not seem to follow the expected morphology-density relation in groups of high virial mass. The high frequency of LINERs in low-density regions could be due to the combination of a sufficient gas reservoir to power the low-ionization emission and/or enhanced galaxy interaction rates benefiting the gas flow towards their central regions.

  7. Isolated galaxies

    International Nuclear Information System (INIS)

    Einasto, Maret


    To test for the possible presence of really isolated galaxies, which form a randomly distributed population in voids, we compare the distribution of most isolated galaxies in an observed sample with distributions of the same number of random points using the nearest neighbour test. The results show that the random population of really isolated galaxies does not exist - even the most isolated galaxies are connected with systems of galaxies, forming their outlying parts. (author)

  8. Diffuse Surface Scattering in the Plasmonic Resonances of Ultralow Electron Density Nanospheres. (United States)

    Monreal, R Carmina; Antosiewicz, Tomasz J; Apell, S Peter


    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here, we investigate the role that different surface effects, namely, electronic spill-out and diffuse surface scattering, play in the optical properties of these ultralow electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior in both position and width for large particles and a strong blue shift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultralow electron density nanoparticles than the spill-out effect.

  9. Discovery of megaparsec-scale, low surface brightness nonthermal emission in merging galaxy clusters using the green bank telescope

    Energy Technology Data Exchange (ETDEWEB)

    Farnsworth, Damon; Rudnick, Lawrence [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street S.E., Minneapolis, MN 55455 (United States); Brown, Shea [Department of Physics and Astronomy, University of Iowa, 203 Van Allen Hall, Iowa City, IA 52242 (United States); Brunetti, Gianfranco [INAF/Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy)


    We present results from a study of 12 X-ray bright clusters at 1.4 GHz with the 100 m Green Bank Telescope. After subtraction of point sources using existing interferometer data, we reach a median (best) 1σ rms sensitivity level of 0.01 (0.006) μJy arcsec{sup –2}, and find a significant excess of diffuse, low surface brightness emission in 11 of 12 Abell clusters observed. We also present initial results at 1.4 GHz of A2319 from the Very Large Array. In particular, we find: (1) four new detections of diffuse structures tentatively classified as two halos (A2065, A2069) and two relics (A2067, A2073); (2) the first detection of the radio halo in A2061 at 1.4 GHz, which qualifies this as a possible ultra-steep spectrum halo source with a synchrotron spectral index of α ∼ 1.8 between 327 MHz and 1.4 GHz; (3) a ∼2 Mpc radio halo in the sloshing, minor-merger cluster A2142; (4) a >2× increase of the giant radio halo extent and luminosity in the merging cluster A2319; (5) a ∼7× increase to the integrated radio flux and >4× increase to the observed extent of the peripheral radio relic in A1367 to ∼600 kpc, which we also observe to be polarized on a similar scale; (6) significant excess emission of ambiguous nature in three clusters with embedded tailed radio galaxies (A119, A400, A3744). Our radio halo detections agree with the well-known X-ray/radio luminosity correlation, but they are larger and fainter than current radio power correlation studies would predict. The corresponding volume-averaged synchrotron emissivities are 1-2 orders of magnitude below the characteristic value found in previous studies. Some of the halo-like detections may be some type of previously unseen, low surface brightness radio halo or blend of unresolved shock structures and sub-Mpc-scale turbulent regions associated with their respective cluster merging activity. Four of the five tentative halos contain one or more X-ray cold fronts, suggesting a possible connection between gas

  10. Influence of electropolishing current densities on sulfur generation at niobium surface

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, P.V., E-mail: [The Graduate University for Advanced Studies, Tsukuba, Ibaraki (Japan); Nishiwaki, M.; Noguchi, T.; Sawabe, M.; Saeki, T.; Hayano, H.; Kato, S. [KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)


    We report the effect of different current densities on sulfur generation at Nb surface in the electropolishing (EP) with aged electrolyte. In this regard, we conducted a series of electropolishing (EP) experiments in aged EP electrolyte with high (≈50 mA/cm{sup 2}) and low (≈30 mA/cm{sup 2}) current densities on Nb surfaces. The experiments were carried out both for laboratory coupons and a real Nb single cell cavity with six witness samples located at three typical positions (equator, iris and beam pipe). Sample's surfaces were investigated by XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscope) and EDX (energy dispersive X-ray spectroscopy). The surface analysis showed that the EP with a high current density produced a huge amount of sulfate/sulfite particles at Nb surface whereas the EP with a low current density was very helpful to mitigate sulfate/sulfite at Nb surface in both the experiments.

  11. On compact galaxies in the UGC catalogue

    International Nuclear Information System (INIS)

    Kogoshvili, N.G.


    A problem of separation of compact galaxies in the UGC Catalogue is considered. Value of surface brightness equal to or less than 21sup(m) was used as compactness criterion from a square second of arc. 96 galaxies, which are brighter than 14sup(m)5 satisfy this criterion. Among compact galaxies discovered in the UGC Catalogue 7% are the Zwicky galaxies, 15% belong to the Markarian galaxies and 27% of galaxies are part of a galaxy list with high surface brightness. Considerable divergence in estimates of total share of compact galaxies in the B.A. Worontsov-Veljaminov Morphological Catalogue of Galaxies (MCG) and the UGC Catalogue is noted. This divergence results from systematical underestimation of visible sizes of compact galaxies in the MCG Catalogue as compared with the UGC Catalogue [ru

  12. Tidal alignment of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš


    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  13. A thermodynamic perturbation theory for the surface tension and ion density profile of a liquid metal

    International Nuclear Information System (INIS)

    Evans, R.; Kumaravadivel, R.


    A simple scheme for determining the ion density profile and the surface tension of a liquid metal is described. Assuming that the interaction between metallic pseudo-ions is of the form introduced by Evans, an approximate expression for the excess free energy of the system is derived using the thermodynamic perturbation theory of Weeks, Chandler and Anderson. This excess free energy is then minimized with respect to a parameter which specifies the ion density profile, and the surface tension is given directly. From a consideration of the dependence of the interionic forces on the electron density it is predicted that the ions should take up a very steep density profile at the liquid metal surface. This behaviour is contrasted with that to be expected for rare-gas fluids in which the interatomic forces are density-independent. The values of the surface tension calculated for liquid Na, K and Al from a simplified version of the theory are in reasonable agreement with experiment. (author)

  14. Calculation of the surface potential and surface charge density by measurement of the three-phase contact angle. (United States)

    Horiuchi, H; Nikolov, A; Wasan, D T


    The silica/silicon wafer is widely used in the semiconductor industry in the manufacture of electronic devices, so it is essential to understand its physical chemistry and determine the surface potential at the silica wafer/water interface. However, it is difficult to measure the surface potential of a silica/silicon wafer directly due to its high electric resistance. In the present study, the three-phase contact angle (TPCA) on silica is measured as a function of the pH. The surface potential and surface charge density at the silica/water surface are calculated by a model based on the Young-Lippmann equation in conjunction with the Gouy-Chapman model for the electric double layer. In measurements of the TPCA on silica, two distinct regions were identified with a boundary at pH 9.5-showing a dominance of the surface ionization of silanol groups below pH 9.5 and a dominance of the dissolution of silica into the aqueous solution above pH 9.5. Since the surface chemistry changes above pH 9.5, the model is applied to solutions below pH 9.5 (ionization dominant) for the calculation of the surface potential and surface charge density at the silica/aqueous interface. In order to evaluate the model, a galvanic mica cell was made of a mica sheet and the surface potential was measured directly at the mica/water interface. The model results are also validated by experimental data from the literature, as well as the results obtained by the potentiometric titration method and the electro-kinetic measurements. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Probing the spectral density of the surface electromagnetic fields through scattering of waveguide photons. (United States)

    Chen, Guang-Yin


    The spectral density of the metal-surface electromagnetic fields will be strongly modified in the presence of a closely-spaced quantum emitter. In this work, we propose a feasible way to probe the changes of the spectral density through the scattering of the waveguide photon incident on the quantum emitter. The variances of the lineshape in the transmission spectra indicate the coherent interaction between the emitter and the pseudomode resulting from all the surface electromagnetic modes. We further investigate the quantum coherence between the emitter and the pseudomode of the metal-dielectric interface.

  16. Gas-rich dwarf galaxies in dense and sparse environments (United States)

    Hoffman, G. Lyle


    Dwarf irregular galaxies (generically labelled Im for the present purposes) pose an enigma to students of galaxy evolution. In nearby groups and the Virgo cluster, Im galaxies are at least as abundant as spiral galaxies, and their low surface brightnesses and high gas-to-stars ratios suggest that (at least in the stochastic self-propagating star formation scenario) there should be significant numbers of HI clouds with masses approaching 10(exp 8) solar mass which have undergone very little or no star formation. To date, however, no clouds with so little star formation that they would not be recognized as Im galaxies on high-quality photographic plates have been identified. There have been suggestions that such dwarfs may be tidally disrupted in regions of high galactic density, but may be prevalent in low density regions. We offer data from three parallel programs relevant to this issue. (1) A large number of Im galaxies throughout the Local Supercluster have been mapped in the HI spectral line using the Arecibo Radiotelescope, and we can establish the frequency with which HI disks much more extended than their optically visible portions are found. (2) Our extensive mapping of spiral and dwarf galaxies in the Virgo cluster allows us to set stringent limits on the density of star-free Hi clouds in that cluster. (3) We have conducted a sampling of the void in the distribution of galaxies toward the super galactic pole, optimized for finding low-mass HI clouds at redshifts out to approximately 2000 km/s.

  17. The galaxy ancestor problem (United States)

    Disney, M. J.; Lang, R. H.


    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could


    International Nuclear Information System (INIS)

    Kravtsov, Andrey V.


    I use the abundance matching ansatz, which has proven to be successful in reproducing galaxy clustering and other statistics, to derive estimates of the virial radius, R 200 , for galaxies of different morphological types and a wide range of stellar masses. I show that over eight orders of magnitude in stellar mass galaxies of all morphological types follow an approximately linear relation between half-mass radius of their stellar distribution, r 1/2 , and virial radius, r 1/2 ≈ 0.015 R 200 , with scatter of ≈0.2 dex. Such scaling is in remarkable agreement with the expectation of models that assume that galaxy sizes are controlled by halo angular momentum, r 1/2 ∝λR 200 , where λ is the spin of galaxy parent halo. The scatter about the relation is comparable with the scatter expected from the distribution of λ. Moreover, I show that when the stellar and gas surface density profiles of galaxies of different morphological types are rescaled by the radius r n = 0.015 R 200 , the rescaled profiles follow approximately universal exponential (for late types) and de Vaucouleurs (for early types) form with scatter of only ≈30%-50% at R ≈ 1-3r n . Remarkably, both late- and early-type galaxies have similar mean stellar surface density profiles at R ∼> 1r n . The main difference between their stellar distributions is thus at R n . The results of this study imply that galaxy sizes and radial distribution of baryons are shaped primarily by properties of their parent halos and that the sizes of both late-type disks and early-type spheroids are controlled by halo angular momentum.

  19. Analysis of the surface density and reactivity of perfluorophenylazide and the impact on ligand immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, Gilad, E-mail:; Castner, David G. [National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Box 351653, Seattle, Washington 98195-1653 (United States); Tyagi, Anuradha; Wang, Xin; Wang, Hui; Yan, Mingdi, E-mail: [Department of Chemistry, Portland State University, Portland, Oregon 97207-0751 (United States)


    Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution.

  20. Analysis of the surface density and reactivity of perfluorophenylazide and the impact on ligand immobilization

    International Nuclear Information System (INIS)

    Zorn, Gilad; Castner, David G.; Tyagi, Anuradha; Wang, Xin; Wang, Hui; Yan, Mingdi


    Perfluorophenylazide (PFPA) chemistry is a novel method for tailoring the surface properties of solid surfaces and nanoparticles. It is general and versatile, and has proven to be an efficient way to immobilize graphene, proteins, carbohydrates, and synthetic polymers. The main thrust of this work is to provide a detailed investigation on the chemical composition and surface density of the PFPA tailored surface. Specifically, gold surfaces were treated with PFPA-derivatized (11-mercaptoundecyl)tetra(ethylene glycol) (PFPA-MUTEG) mixed with 2-[2-(2-mercaptoethoxy)ethoxy]ethanol (MDEG) at varying solution mole ratios. Complementary analytical techniques were employed to characterize the resulting films including Fourier transform infrared spectroscopy to detect fingerprints of the PFPA group, x-ray photoelectron spectroscopy and ellipsometry to study the homogeneity and uniformity of the films, and near edge x-ray absorption fine structures to study the electronic and chemical structure of the PFPA groups. Results from these studies show that the films prepared from 90:10 and 80:20 PFPA-MUTEG/MDEG mixed solutions exhibited the highest surface density of PFPA and the most homogeneous coverage on the surface. A functional assay using surface plasmon resonance with carbohydrates covalently immobilized onto the PFPA-modified surfaces showed the highest binding affinity for lectin on the PFPA-MUTEG/MDEG film prepared from a 90:10 solution

  1. Formation of dwarf ellipticals and dwarf irregular galaxies by interaction of giant galaxies under environmental influence


    Chattopadhyay, Tanuka; Debsarma, Suma; Karmakar, Pradip; Davoust, Emmanuel


    A model is proposed for the formation of gas-rich dwarf irregular galaxies and gas-poor, rotating dwarf elliptical galaxies following the interaction between two giant galaxies as a function of space density. The formation of dwarf galaxies is considered to depend on a random variable, the tidal index theta, an environmental parameter defined by Karachentsev et al. (2004), such that for theta less than zero, the formation of dwarf irregular galaxy is assured whereas for theta greater than zer...

  2. Surface tension and density of binary lead and lead-free Sn-based solders (United States)

    Kaban, I.; Mhiaoui, S.; Hoyer, W.; Gasser, J.-G.


    The surface tension and density of the liquid Sn60Pb40, Sn90Pb10, Sn96.5Ag3.5 and Sn97Cu3 solder alloys (wt%) have been determined experimentally over a wide temperature interval. It is established that the surface tension of liquid Sn90Pb10 is about 7% higher than that of a traditional Sn60Pb40 solder and that the surface tension of Sn96.5Ag3.5 and Sn97Cu3 alloys is about 12% higher than that of Sn60Pb40. The analytical expressions for the temperature dependences of the surface tension and density are given.

  3. Galaxy mergers

    International Nuclear Information System (INIS)

    Roos, N.


    This thesis contains a series of four papers dealing with the effects of interactions among galaxies during the epoch of cluster formation. Galaxy interactions are investigated and the results incorporated in numerical simulations of the formation of groups and clusters of galaxies. The role of galaxy interactions is analysed in the more general context of simulations of an expanding universe. The evolution of galaxies in rich clusters is discussed. The results of the investigations are presented and their relation to other work done in the field are briefly reviewed and an attempt is made to link galaxy mergers to the occurrence of activity in galactic nuclei. (Auth.)

  4. Design of a vapor-liquid-equilibrium, surface tension, and density apparatus

    International Nuclear Information System (INIS)

    Holcomb, C.D.; Outcalt, S.L.


    The design and performance of a unique vapor-liquid equilibrium (VLE) apparatus with density and surface tension capabilities is presented. The apparatus operates at temperatures ranging from 218 to 423 K, at pressures to 17 MPa, at densities to 1100 kg/m 3 , and at surface tensions ranging from 0.1 to 75 mN/m. Temperatures are measured with a precision of ±0.02 K, pressures with a precision of ±0.1% of full scale, densities with a precision of ±0.5 kg/m 3 , surface tensions with a precision of ±0.2 mN/m, and compositions with a precision of ±0.005 mole fraction. The apparatus is designed to be both accurate and versatile. Capabilities include: (1) the ability to operate the apparatus as a bubble point pressure or an isothermal pressure-volume-temperature (PVT) apparatus, (2) the ability to measure densities and surface tensions of the coexisting phases, and (3) the ability for either trapped or capillary sampling. We can validate our VLE and density data by measuring PVT or bubble point pressures in the apparatus. The use of the apparatus for measurements of VLE, densities, and surface tensions over wide ranges of temperature and pressure is important in equation of state and transport property model development. The use of different sampling procedures allows measurement of a wider variety of fluid mixtures. VLE measurements on the alternative refrigerant system R32/134a are presented and compared to literature results to verify the performance of the apparatus

  5. A Precise Distance to the Host Galaxy of the Binary Neutron Star Merger GW170817 Using Surface Brightness Fluctuations (United States)

    Cantiello, Michele; Jensen, J. B.; Blakeslee, J. P.; Berger, E.; Levan, A. J.; Tanvir, N. R.; Raimondo, G.; Brocato, E.; Alexander, K. D.; Blanchard, P. K.; Branchesi, M.; Cano, Z.; Chornock, R.; Covino, S.; Cowperthwaite, P. S.; D’Avanzo, P.; Eftekhari, T.; Fong, W.; Fruchter, A. S.; Grado, A.; Hjorth, J.; Holz, D. E.; Lyman, J. D.; Mandel, I.; Margutti, R.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.


    The joint detection of gravitational waves (GWs) and electromagnetic radiation from the binary neutron star (BNS) merger GW170817 has provided unprecedented insight into a wide range of physical processes: heavy element synthesis via the r-process; the production of relativistic ejecta; the equation of state of neutron stars and the nature of the merger remnant; the binary coalescence timescale; and a measurement of the Hubble constant via the “standard siren” technique. In detail, all of these results depend on the distance to the host galaxy of the merger event, NGC 4993. In this Letter we measure the surface brightness fluctuation (SBF) distance to NGC 4993 in the F110W and F160W passbands of the Wide Field Camera 3 Infrared Channel (WFC3/IR) on the Hubble Space Telescope (HST). For the preferred F110W passband we derive a distance modulus of (m-M) =33.05+/- 0.08+/- 0.10 mag, or a linear distance d = 40.7 ± 1.4 ± 1.9 Mpc (random and systematic errors, respectively); a virtually identical result is obtained from the F160W data. This is the most precise distance to NGC 4993 available to date. Combining our distance measurement with the corrected recession velocity of NGC 4993 implies a Hubble constant H 0 = 71.9 ± 7.1 km s‑1 Mpc‑1. A comparison of our result to the GW-inferred value of H 0 indicates a binary orbital inclination of i ≳ 137°. The SBF technique can be applied to early-type host galaxies of BNS mergers to ∼100 Mpc with HST and possibly as far as ∼300 Mpc with the James Webb Space Telescope, thereby helping to break the inherent distance-inclination degeneracy of the GW data at distances where many future BNS mergers are likely to be detected. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with Program #15329 (PI: E

  6. Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids. (United States)

    Feng, Wenqian; Li, Linxian; Du, Xin; Welle, Alexander; Levkin, Pavel A


    A facile approach for surface patterning that enables single-step fabrication of high-density arrays of low-surface-tension organic-liquid microdroplets is described. This approach enables miniaturized and parallel high-throughput screenings in organic solvents, formation of homogeneous arrays of hydrophobic nanoparticles, polymer micropads of specific shapes, and polymer microlens arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The formation of cluster galaxies (United States)

    Mancone, Conor L.


    In this work I sought to understand the formation and evolution of galaxies. Specifically, I studied three key aspects of galaxy formation: star formation, mass assembly, and structural evolution. Past research has shown that the formation of a galaxy is strongly coupled to its local environment (i.e. the local galaxy density). Therefore, I studied the evolution of cluster galaxies because clusters are the highest density environments that exist in the universe. In turn, the observational results found herein form a foundation upon which to test theories of galaxy formation in the densest environments. I used the latest sample of galaxy clusters from the Bootes region to measure the near-infrared luminosity function (NIR LF) of cluster galaxies from 0 1.3. I used deeper IRAC imaging to study the NIR LF of high redshift cluster galaxies (1 pulsating AGB stars, which are poorly understood observationally but contribute substantially to the NIR light of a stellar population. I also created the Python Galaxy Fitter (PyGFit), a program which measures PSF matched photometry from crowded imaging with disparate PSFs and resolutions. This enabled accurate measurement of spectral energy distributions (SEDs) in crowded cluster fields.

  8. Dark matter and galaxy formation

    International Nuclear Information System (INIS)

    Umemura, Masayuki


    We propose a hybrid model of universe for galaxy formation, that is, an Einstein- de Sitter universe dominated by two-component dark matter: massive neutrinos and cold dark matter. In this hybrid model, the first luminous objects are dwarf galaxies. The neutrino density fluctuations produce large-scale high density and low density regions, which consequently evolve to superclusters of galaxies and voids, respectively. Dwarf galaxies are formed preferentially in supercluster regions. In voids, the formation of dwarf galaxies is fairly suppressed by diffuse UV flux from QSOs, and instead a number of expanding clouds are born, which produce Lyα forest as seen in QSO spectra. Ordinary galaxies are expected to form as aggregations of dwarf galaxies. In this model, some galaxies are born also in voids, and they tend to evolve to spiral galaxies. Additionally, if the same number of globular clusters are formed in a dwarf, the specific globular cluster frequencies are expected to be much larger in ellipticals than in spirals. (author)

  9. Topics in Galaxy Evolution: Early Star Formation and Quenching (United States)

    Goncalves, Thiago Signorini

    In this thesis, we present three projects designed to shed light on yet unanswered questions on galaxy formation and evolution. The first two concern a sample of UV-bright starburst galaxies in the local universe (z ˜0.2). These objects are remarkably similar to star-forming galaxies that were abundant at high redshifts (2 manipulating our observations to mimic our objects at greater distances, we show how low resolution and signal-to-noise ratios can lead to erroneous conclusions, in particular when attempting to diagnose mergers as the origin of the starburst. Then, we present results from a pilot survey to study the cold, molecular gas reservoir in such objects. Again, we show that the observed properties are analogous to those observed at high redshift, in particular with respect to baryonic gas fractions in the galaxy, higher than normally found in low-extinction objects in the local universe. Furthermore, we show how gas surface density and star-formation surface density follow the same relation as local galaxies, albeit at much higher values. Finally, we discuss an observational project designed to measure the mass flux density from the blue sequence to the red sequence across the so-called green valley. We obtain the deepest spectra ever observed of green valley galaxies at intermediate redshifts (z˜0.8) in order to measure spectral features from which we can measure the star formation histories of individual galaxies. We measure a mass flux ratio that is higher than observed in the local universe, indicating the red sequence was growing faster when the universe was half its present age than today.

  10. The dwarf galaxy population of nearby galaxy clusters

    NARCIS (Netherlands)

    Lisker, Thorsten; Wittmann, Carolin; Pak, Mina; Janz, Joachim; Bialas, Daniel; Peletier, Reynier; Grebel, Eva; Falcon Barroso, Jesus; Toloba, Elisa; Smakced Collaboration, Focus Collaboration

    The Fornax, Virgo, Ursa Major and Perseus galaxy clusters all have very different characteristics, in terms of their density, mass, and large-scale environment. We can regard these clusters as laboratories for studying environmental influence on galaxy evolution, using the sensitive low-mass

  11. Estimating the amount and distribution of radon flux density from the soil surface in China

    International Nuclear Information System (INIS)

    Zhuo Weihai; Guo Qiuju; Chen Bo; Cheng Guan


    Based on an idealized model, both the annual and the seasonal radon ( 222 Rn) flux densities from the soil surface at 1099 sites in China were estimated by linking a database of soil 226 Ra content and a global ecosystems database. Digital maps of the 222 Rn flux density in China were constructed in a spatial resolution of 25 km x 25 km by interpolation among the estimated data. An area-weighted annual average 222 Rn flux density from the soil surface across China was estimated to be 29.7 ± 9.4 mBq m -2 s -1 . Both regional and seasonal variations in the 222 Rn flux densities are significant in China. Annual average flux densities in the southeastern and northwestern China are generally higher than those in other regions of China, because of high soil 226 Ra content in the southeastern area and high soil aridity in the northwestern one. The seasonal average flux density is generally higher in summer/spring than winter, since relatively higher soil temperature and lower soil water saturation in summer/spring than other seasons are common in China

  12. Population studies in groups and clusters of galaxies. III. A catalog of galaxies in five nearby groups

    International Nuclear Information System (INIS)

    Ferguson, H.C.; Sandage, A.


    Five nearby groups of galaxies have been surveyed using large-scale plates from the 2.5 m duPont Telescope at Las Campanas Observatory. Catalogs of galaxies brighter than B(T) = 20 are presented for the Leo, Dorado, NGC 1400, NGC 5044, and Antlia groups. A total of 1044 galaxies are included, from visual inspection of 14 plates, covering 31 deg square. Galaxies have been classified in the extended Hubble system, and group memberships have been assigned based on velocity (where available) and morphology. About half the galaxies listed are likely members of one of the nearby groups. The catalogs are complete to B(T) = 18, although the completeness limits vary slightly from group to group. Based on King model fits to the surface density profiles, the core radii of the groups range from 0.3 to 1 Mpc, and central densities range from 120 to 1900 galaxies Mpc exp-3 brighter than M(BT) = -12.5. Dynamical analysis indicates that all of the groups are likely to be gravitationally bound. 64 refs

  13. Surface of Maximums of AR(2 Process Spectral Densities and its Application in Time Series Statistics

    Directory of Open Access Journals (Sweden)

    Alexander V. Ivanov


    Conclusions. The obtained formula of surface of maximums of noise spectral densities gives an opportunity to realize for which values of AR(2 process characteristic polynomial coefficients it is possible to look for greater rate of convergence to zero of the probabilities of large deviations of the considered estimates.

  14. Solubility of N2O in and density, viscosity, and surface tension of aqueous piperazine solutions

    NARCIS (Netherlands)

    Derks, P. W.; Hogendoorn, K. J.; Versteeg, G. F.


    The physical solubility of N2O in and the density and viscosity of aqueous piperazine solutions have been measured over a temperature range of (293.15 to 323.15) K for piperazine concentrations ranging from about (0.6 to 1.8) kmol·mr-3. Furthermore, the present study contains experimental surface

  15. Functional mapping of the pelvic floor and sphincter muscles from high-density surface EMG recordings. (United States)

    Peng, Yun; He, Jinbao; Khavari, Rose; Boone, Timothy B; Zhang, Yingchun


    Knowledge of the innervation of pelvic floor and sphincter muscles is of great importance to understanding the pathophysiology of female pelvic floor dysfunctions. This report presents our high-density intravaginal and intrarectal electromyography (EMG) probes and a comprehensive innervation zone (IZ) imaging technique based on high-density EMG readings to characterize the IZ distribution. Both intravaginal and intrarectal probes are covered with a high-density surface electromyography electrode grid (8 × 8). Surface EMG signals were acquired in ten healthy women performing maximum voluntary contractions of their pelvic floor. EMG decomposition was performed to separate motor-unit action potentials (MUAPs) and then localize their IZs. High-density surface EMG signals were successfully acquired over the vaginal and rectal surfaces. The propagation patterns of muscle activity were clearly visualized for multiple muscle groups of the pelvic floor and anal sphincter. During each contraction, up to 218 and 456 repetitions of motor units were detected by the vaginal and rectal probes, respectively. MUAPs were separated with their IZs identified at various orientations and depths. The proposed probes are capable of providing a comprehensive mapping of IZs of the pelvic floor and sphincter muscles. They can be employed as diagnostic and preventative tools in clinical practices.

  16. The Minimum-Mass Surface Density of the Solar Nebula using the Disk Evolution Equation (United States)

    Davis, Sanford S.


    The Hayashi minimum-mass power law representation of the pre-solar nebula (Hayashi 1981, Prog. Theo. Phys.70,35) is revisited using analytic solutions of the disk evolution equation. A new cumulative-planetary-mass-model (an integrated form of the surface density) is shown to predict a smoother surface density compared with methods based on direct estimates of surface density from planetary data. First, a best-fit transcendental function is applied directly to the cumulative planetary mass data with the surface density obtained by direct differentiation. Next a solution to the time-dependent disk evolution equation is parametrically adapted to the planetary data. The latter model indicates a decay rate of r -1/2 in the inner disk followed by a rapid decay which results in a sharper outer boundary than predicted by the minimum mass model. The model is shown to be a good approximation to the finite-size early Solar Nebula and by extension to extra solar protoplanetary disks.

  17. ATLASGAL-selected massive clumps in the inner Galaxy. VI. Kinetic temperature and spatial density measured with formaldehyde (United States)

    Tang, X. D.; Henkel, C.; Wyrowski, F.; Giannetti, A.; Menten, K. M.; Csengeri, T.; Leurini, S.; Urquhart, J. S.; König, C.; Güsten, R.; Lin, Y. X.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.


    Context. Formaldehyde (H2CO) is a reliable tracer to accurately measure the physical parameters of dense gas in star-forming regions. Aim. We aim to determine directly the kinetic temperature and spatial density with formaldehyde for the 100 brightest ATLASGAL-selected clumps (the TOP100 sample) at 870 μm representing various evolutionary stages of high-mass star formation. Methods: Ten transitions (J = 3-2 and 4-3) of ortho- and para-H2CO near 211, 218, 225, and 291 GHz were observed with the Atacama Pathfinder EXperiment (APEX) 12 m telescope. Results: Using non-LTE models with RADEX, we derived the gas kinetic temperature and spatial density with the measured para-H2CO 321-220/303-202, 422-321/404-303, and 404-303/303-202 ratios. The gas kinetic temperatures derived from the para-H2CO 321-220/303-202 and 422-321/404-303 line ratios are high, ranging from 43 to >300 K with an unweighted average of 91 ± 4 K. Deduced Tkin values from the J = 3-2 and 4-3 transitions are similar. Spatial densities of the gas derived from the para-H2CO 404-303/303-202 line ratios yield 0.6-8.3 × 106 cm-3 with an unweighted average of 1.5 (±0.1) × 106 cm-3. A comparison of kinetic temperatures derived from para-H2CO, NH3, and dust emission indicates that para-H2CO traces a distinctly higher temperature than the NH3 (2, 2)/(1, 1) transitions and the dust, tracing heated gas more directly associated with the star formation process. The H2CO line widths are found to be correlated with bolometric luminosity and increase with the evolutionary stage of the clumps, which suggests that higher luminosities tend to be associated with a more turbulent molecular medium. It seems that the spatial densities measured with H2CO do not vary significantly with the evolutionary stage of the clumps. However, averaged gas kinetic temperatures derived from H2CO increase with time through the evolution of the clumps. The high temperature of the gas traced by H2CO may be mainly caused by radiation from


    Energy Technology Data Exchange (ETDEWEB)

    Lagana, Tatiana F. [Universidade de Sao Paulo, Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Departamento de Astronomia, Cidade Universitaria, CEP:05508-090, Sao Paulo, SP (Brazil); Zhang Yuying; Reiprich, Thomas H.; Schneider, Peter [Argelander-Institut fuer Astronomie, Universitaet Bonn, 53121 Bonn (Germany)


    It is believed that the global baryon content of clusters of galaxies is representative of the matter distribution of the universe, and can, therefore, be used to reliably determine the matter-density parameter {Omega}{sub m}. This assumption is challenged by the growing evidence from optical and X-ray observations that the total baryon mass fraction increases toward rich clusters. In this context, we investigate the dependence of stellar and total baryon mass fractions as a function of mass. To do so, we used a subsample of 19 clusters extracted from the X-ray flux-limited sample HIFLUGCS that have available Sloan Digital Sky Survey Data Release 7 data. From the optical analysis we derived the stellar masses. Using XMM-Newton we derived the gas masses. Then, adopting a scaling relation we estimate the total masses. Adding the gas and the stellar mass fractions we obtain the total baryonic content that we find to increase with cluster mass, reaching seven-year Wilkinson Microwave Anisotropy Probe (WMAP7) prediction for clusters with M{sub 500} = 1.6 Multiplication-Sign 10{sup 15} M{sub Sun }. We observe a decrease of the stellar mass fraction (from 4.5% to {approx}1.0%) with increasing total mass where our findings for the stellar mass fraction agree with previous studies. This result suggests a difference in the number of stars formed per unit of halo mass, though with a large scatter for low-mass systems. That is, the efficiency of star formation varies on a cluster scale that lower mass systems are likely to have higher star formation efficiencies. It follows immediately that the dependence of the stellar mass fraction on total mass results in an increase of the mass-to-light ratio from lower to higher mass systems. We also discuss the consequences of these results in the context of determining the cosmic matter-density parameter {Omega}{sub m}.

  19. The Stability of Galaxy Disks (United States)

    Westfall, K. B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T. P. K.; Swaters, R. A.; Verheijen, M. A. W.


    We calculate the stellar surface mass density (Σ*) and two-component (gas+stars) disk stability (QRW) for 25 late-type galaxies from the DiskMass Survey. These calculations are based on fits of a dynamical model to our ionized-gas and stellar kinematic data performed using a Markov Chain Monte Carlo sampling of the Bayesian posterior. Marginalizing over all galaxies, we find a median value of QRW = 2.0±0.9 at 1.5 scale lengths. We also find that QRW is anti-correlated with the star-formation rate surface density (Σ*), which can be predicted using a closed set of empirical scaling relations. Finally, we find that the star-formation efficiency (Σ*/Σg) is correlated with Σ* and weakly anti-correlated with QRW. The former is consistent with an equilibrium prediction of Σ*/Σg ∝ Σ*1/2. Despite its order-of-magnitude range, we find no correlation of Σ*/ΣgΣ*1/2 with any other physical quantity derived by our study.

  20. Lack of small-scale clustering in 21-cm intensity maps crossed with 2dF galaxy densities at z ~ 0.08 (United States)

    Anderson, Christopher; Luciw, Nicholas; Li, Yi-Chao; Kuo, Cheng-Yu; Yadav, Jaswant; Masui, Kiyoshi; Chang, Tzu-Ching; Chen, Xuelei; Oppermann, Niels; Pen, Ue-Li; Timbie, Peter T.


    I report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057ALFALFA surveys at slightly lower redshifts.

  1. Active Galaxies

    DEFF Research Database (Denmark)

    Kilerci Eser, Ece

    Galaxy formation and evolution is one of the main research themes of modern astronomy. Active galaxies such as Active Galactic Nuclei (AGN) and Ultraluminous Infrared Galaxies (ULIRGs) are important evolutionary stages of galaxies. The ULIRG stage is mostly associated with galaxy mergers...... and interactions. During the interactions of gas-rich galaxies, the gas inflows towards the centers of the galaxies and can trigger both star formation and AGN activity. The ULIRG stage includes rapid star formation activity and fast black hole growth that is enshrouded by dust. Once the AGN emission...... one is related to the mass estimates of supermassive black holes (SMBHs). Mass estimates of SMBHs are important to understand the formation and evolution of SMBHs and their host galaxies. Black hole masses in Type 1 AGN are measured with the reverberation mapping (RM) technique. Reverberation mapping...

  2. Galaxy Formation

    DEFF Research Database (Denmark)

    Sparre, Martin

    Galaxy formation is an enormously complex discipline due to the many physical processes that play a role in shaping galaxies. The objective of this thesis is to study galaxy formation with two different approaches: First, numerical simulations are used to study the structure of dark matter and how...... galaxies form stars throughout the history of the Universe, and secondly it is shown that observations of gamma-ray bursts (GRBs) can be used to probe galaxies with active star formation in the early Universe. A conclusion from the hydrodynamical simulations is that the galaxies from the stateof...... is important, since it helps constraining chemical evolution models at high redshift. A new project studying how the population of galaxies hosting GRBs relate to other galaxy population is outlined in the conclusion of this thesis. The core of this project will be to quantify how the stellar mass function...

  3. Dark matter halo properties from galaxy-galaxy lensing

    International Nuclear Information System (INIS)

    Brimioulle, Fabrice


    redshift and galaxy shape catalogs. The complete galaxy sample consists of a total number of 5 x 10 6 lens galaxies within a redshift range of 0.05 phot ≤1 and 1.7 x 10 6 corresponding source galaxies with redshifts of 0.05 phot ≤2 and successfully extracted shapes. Assuming that the galaxy halos can be described by analytic profiles, the scaling relations with absolute luminosity for the galaxy masses, their mass-to-light ratios and the corresponding halo parameters have been extracted. Based on the obtained scaling relations, the average values for the corresponding halo parameters and the mean galaxy masses for a given luminosity were derived as a function of considered halo model, the galaxy SED and the local environment density. We obtain a total mass of M total =23.2 +2.8 -2.5 x 10 11 h -1 M s un for an average galaxy with chosen reference luminosity of L * =1.6 x 10 10 h -2 L s un. In contrast, the mean total masses for red galaxies of same luminosity exceed the value of the average galaxy about 130%, while the mass of a blue galaxy is about 65% below the value of an average fiducial galaxy. Investigating the influence of the environmental density on the galaxy properties we observe a significant increase of the total integrated masses with galaxy density, however the velocity dispersions are not affected. This indicates that the central galaxy matter density mostly depends on the galaxy luminosity but not on the environment. Simulations based on the extracted scientific results were built, verifying the robustness of the scientific results. They give a clear hint that multiple deflections on different lens galaxies have to be properly accounted for in order to avoid systematically biased results.

  4. Test data on electrical contacts at high surface velocities and high current densities for homopolar generators

    International Nuclear Information System (INIS)

    Brennan, M.; Tolk, K.M.; Weldon, W.F.; Rylander, H.G.; Woodson, H.H.


    Test data is presented for one grade of copper graphite brush material, Morganite CMlS, over a wide range of surface velocities, atmospheres, and current densities that are expected for fast discharge (<100 ms) homopolar generators. The brushes were run on a copper coated 7075-T6 aluminum disk at surface speeds up to 277 m/sec. One electroplated copper and three flame sprayed copper coatings were used during the tests. Significant differences in contact voltage drops and surface mechanical properties of the copper coatings were observed

  5. The Next Generation Virgo Cluster Survey (NGVS). XVIII. Measurement and Calibration of Surface Brightness Fluctuation Distances for Bright Galaxies in Virgo (and Beyond) (United States)

    Cantiello, Michele; Blakeslee, John P.; Ferrarese, Laura; Côté, Patrick; Roediger, Joel C.; Raimondo, Gabriella; Peng, Eric W.; Gwyn, Stephen; Durrell, Patrick R.; Cuillandre, Jean-Charles


    We describe a program to measure surface brightness fluctuation (SBF) distances to galaxies observed in the Next Generation Virgo Cluster Survey (NGVS), a photometric imaging survey covering 104 deg2 of the Virgo cluster in the u*, g, i, and z bandpasses with the Canada–France–Hawaii Telescope. We describe the selection of the sample galaxies, the procedures for measuring the apparent i-band SBF magnitude {\\overline{m}}i, and the calibration of the absolute Mibar as a function of observed stellar population properties. The multiband NGVS data set provides multiple options for calibrating the SBF distances, and we explore various calibrations involving individual color indices as well as combinations of two different colors. Within the color range of the present sample, the two-color calibrations do not significantly improve the scatter with respect to wide-baseline, single-color calibrations involving u*. We adopt the ({u}* -z) calibration as a reference for the present galaxy sample, with an observed scatter of 0.11 mag. For a few cases that lack good u* photometry, we use an alternative relation based on a combination of (g-i) and (g-z) colors, with only a slightly larger observed scatter of 0.12 mag. The agreement of our measurements with the best existing distance estimates provides confidence that our measurements are accurate. We present a preliminary catalog of distances for 89 galaxies brighter than B T ≈ 13.0 mag within the survey footprint, including members of the background M and W Clouds at roughly twice the distance of the main body of the Virgo cluster. The extension of the present work to fainter and bluer galaxies is in progress.

  6. Influence of the Ion Treatment Regime on Defects Density and Surface Destruction of the Polycrystalline Glass

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov


    Full Text Available The ion beam technology is used for finish treatment of large-scale optic parts to achieve highest precision and minimal surface roughness. The surface roughness increases during the ion treatment of polycrystalline materials in contrast to usual optic materials. This is caused, first, by polycrystalline structure of material and, second, by micro-defects appearing on its surface. The aim of the work is to investigate the influence of ion processing conditions on the amount of defects formed on the polycrystalline glass CO-115M.As an ion source, was used the anode layer accelerator with electromagnetically focusing ion beam and with excess charge compensation on the residual gas. The ion accelerator provided Gaussian ion current distribution on the treated sample surface. The accelerator had three operation conditions: 1 – Ud = 2 kV, Id = 110 mA; 2 – Ud = 3 kV, Id = 110 mA; 3 – Ud = 3,8 kV, Id = 50 mA (Ud – discharge voltage, Id – discharge current. Processing time was 30 min.For quantitative estimation of surface destruction degree the surface defects density was used which is equal to the ratio of total area of defects within the region under consideration to entire area. Defects area was calculated using the microphotography of treated surface.The investigations have shown that the defects occurred as microscopic chips in all operation conditions of treatment. The defects density distribution corresponds to ion current distribution on the sample surface. With increasing ion current power density a size of defects has grown and their amount has increased. With the constant power density an increasing acceleration voltage results in decreasing density of defects. It was shown that a process of appearing defects is of the threshold nature. For each accelerated voltage there is a power density at which defects do not appear. The work results may be useful to choose the ion beam processing operation conditions in manufacturing large

  7. Pressure and surface tension of soild-liquid interface using Tarazona density functional theory

    Directory of Open Access Journals (Sweden)

    M. M.


    Full Text Available   The weighted density functional theory proposed by Tarazona is applied to study the solid-liquid interface. In the last two decades the weighted density functional became a useful tool to consider the properties of inhomogeneous liquids. In this theory, the role of the size of molecules or the particles of which the matter is composed, was found to be important. In this resarch we study a hard sphere fluid beside a hard wall. For this study the liquid is an inhomogeneous system. We use the definition of the direct correlation function as a second derivative of free energy with respect to the density. We use this definition and the definition of the weighting function, then we minimize the grand potential with respect to the density to get the Euler Lagrange equation and we obtain an integral equation to find the inhomogeneous density profile. The obtained density profile as a function of the distance from the wall, for different bulk density is plotted in three dimensions. We also calculate the pressure and compare it with the Carnahan-starling results, and finally we obtained the surface tension at liquid-solid interface and compared it with the results of Monte Carlo simulation.

  8. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size


    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  9. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations. (United States)

    Ge, Zhenpeng; Wang, Yi


    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  10. Surface tension and density of liquid In-Sn-Zn alloys (United States)

    Pstruś, Janusz


    Using the dilatometric method, measurements of the density of liquid alloys of the ternary system In-Sn-Zn in four sections with a constant ratio Sn:In = 24:1, 3:1, 1:1, 1:3, for various Zn additions (5, 10, 14, 20, 3 5, 50 and 75 at.% Zn) were performed at the temperature ranges of 500-1150 K. Density decreases linearly for all compositions. The molar volume calculated from density data exhibits close to ideal dependence on composition. Measurements of the surface tension of liquid alloys have been conducted using the method of maximum pressure in the gas bubbles. There were observed linear dependences on temperature with a negative gradients dσ/dT. Generally, with two exceptions, there was observed the increase of surface tension with increasing content of zinc. Using the Butler's model, the surface tension isotherms were calculated for temperatures T = 673 and 1073 K. Calculations show that only for high temperatures and for low content of zinc (up to about 35 at.%), the modeling is in very good agreement with experiment. Using the mentioned model, the composition of the surface phase was defined at two temperatures T = 673 and 973 K. Regardless of the temperature and of the defined section, the composition of the bulk is very different in comparison with the composition of the surface.

  11. Highly collimated monoenergetic target-surface electron acceleration in near-critical-density plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mao, J. Y. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern 67663 (Germany); Chen, L. M., E-mail: [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, K.; Ma, Y.; Zhao, J. R.; Yan, W. C.; Ma, J. L.; Wei, Z. Y. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Li, D. Z. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Institute of High Energy Physics, CAS, Beijing 100049 (China); Aeschlimann, M. [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Kaiserslautern 67663 (Germany); Zhang, J. [Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)


    Optimized-quality monoenergetic target surface electron beams at MeV level with low normalized emittance (0.03π mm mrad) and high charge (30 pC) per shot have been obtained from 3 TW laser-solid interactions at a grazing incidence. The 2-Dimension particle-in-cell simulations suggest that electrons are wake-field accelerated in a large-scale, near-critical-density preplasma. It reveals that a bubble-like structure as an accelerating cavity appears in the near-critical-density plasma region and travels along the target surface. A bunch of electrons are pinched transversely and accelerated longitudinally by the wake field in the bubble. The outstanding normalized emittance and monochromaticity of such highly collimated surface electron beams could make it an ideal beam for fast ignition or may serve as an injector in traditional accelerators.

  12. The Metallicity of Void Dwarf Galaxies

    NARCIS (Netherlands)

    Kreckel, K.; Croxall, K.; Groves, B.; van de Weygaert, R.; Pogge, R. W.

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the

  13. The properties of the first galaxies in the BlueTides simulation (United States)

    Wilkins, Stephen M.; Feng, Yu; Di Matteo, Tiziana; Croft, Rupert; Lovell, Christopher C.; Waters, Dacen


    We employ the very large cosmological hydrodynamical simulation BlueTides to investigate the predicted properties of the galaxy population during the epoch of reionization (z > 8). BlueTides has a resolution and volume ((400/h ≈ 577)3 cMpc3) providing a population of galaxies that is well matched to depth and area of current observational surveys targeting the high-redshift Universe. At z = 8, BlueTides includes almost 160 000 galaxies with stellar masses >108 M⊙. The population of galaxies predicted by BlueTides closely matches observational constraints on both the galaxy stellar mass function and far-UV (150 nm) luminosity function. Galaxies in BlueTides are characterized by rapidly increasing star formation histories. Specific star formation rates decrease with redshift though remain largely insensitive to stellar mass. As a result of the enhanced surface density of metals, more massive galaxies are predicted to have higher dust attenuation resulting in a significant steepening of the observed far-UV luminosity function at high luminosities. The contribution of active supermassive black holes (SMBHs) to the UV luminosities of galaxies with stellar masses 109-10 M⊙ is around 3 per cent on average. Approximately 25 per cent of galaxies with M* ≈ 1010 M⊙ are predicted to have active SMBHs that contribute >10 per cent of the total UV luminosity.

  14. Density-matrix simulation of small surface codes under current and projected experimental noise (United States)

    O'Brien, T. E.; Tarasinski, B.; DiCarlo, L.


    We present a density-matrix simulation of the quantum memory and computing performance of the distance-3 logical qubit Surface-17, following a recently proposed quantum circuit and using experimental error parameters for transmon qubits in a planar circuit QED architecture. We use this simulation to optimize components of the QEC scheme (e.g., trading off stabilizer measurement infidelity for reduced cycle time) and to investigate the benefits of feedback harnessing the fundamental asymmetry of relaxation-dominated error in the constituent transmons. A lower-order approximate calculation extends these predictions to the distance-5 Surface-49. These results clearly indicate error rates below the fault-tolerance threshold of the surface code, and the potential for Surface-17 to perform beyond the break-even point of quantum memory. However, Surface-49 is required to surpass the break-even point of computation at state-of-the-art qubit relaxation times and readout speeds.

  15. Lopsidedness of cluster galaxies in modified gravity

    International Nuclear Information System (INIS)

    Wu, Xufen; Zhao, HongSheng; Famaey, Benoit


    We point out an interesting theoretical prediction for elliptical galaxies residing inside galaxy clusters in the framework of modified Newtonian dynamics (MOND), that could be used to test this paradigm. Apart from the central brightest cluster galaxy, other galaxies close enough to the centre experience a strong gravitational influence from the other galaxies of the cluster. This influence manifests itself only as tides in standard Newtonian gravity, meaning that the systematic acceleration of the centre of mass of the galaxy has no consequence. However, in the context of MOND, a consequence of the breaking of the strong equivalence principle is that the systematic acceleration changes the own self-gravity of the galaxy. We show here that, in this framework, initially axisymmetric elliptical galaxies become lopsided along the external field's direction, and that the centroid of the galaxy, defined by the outer density contours, is shifted by a few hundreds parsecs with respect to the densest point

  16. Can AGN and galaxy clusters explain the surface brightness fluctuations of the cosmic X-ray background? (United States)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid


    Fluctuations of the surface brightness of cosmic X-ray background (CXB) carry unique information about faint and low-luminosity source populations, which is inaccessible for conventional large-scale structure (LSS) studies based on resolved sources. We used XBOOTES (5ks deep Chandra X-ray Observatory ACIS-I maps of the ˜ 9 deg2 Bootes field of the NOAO Deep Wide-Field Survey) to conduct the most accurate measurement to date of the power spectrum of fluctuations of the unresolved CXB on the angular scales of 3 arcsec-17 arcmin. We find that at sub-arcmin angular scales, the power spectrum is consistent with the active galactic nucleus (AGN) shot noise, without much need for any significant contribution from their one-halo term. This is consistent with the theoretical expectation that low-luminosity AGN reside alone in their dark matter haloes. However, at larger angular scales, we detect a significant LSS signal above the AGN shot noise. Its power spectrum, obtained after subtracting the AGN shot noise, follows a power law with the slope of -0.8 ± 0.1 and its amplitude is much larger than what can be plausibly explained by the two-halo term of AGN. We demonstrate that the detected LSS signal is produced by unresolved clusters and groups of galaxies. For the flux limit of the XBOOTES survey, their flux-weighted mean redshift equals ˜ 0.3, and the mean temperature of their intracluster medium (ICM), ≈ 1.4 keV, corresponds to the mass of M500 ˜ 1013.5 M⊙. The power spectrum of CXB fluctuations carries information about the redshift distribution of these objects and the spatial structure of their ICM on the linear scales of up to ˜Mpc, I.e. of the order of the virial radius.

  17. Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter. (United States)

    Koushiappas, Savvas M; Loeb, Abraham


    We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.

  18. A new experimental method for determining liquid density and surface tension (United States)

    Chou, Kjo-Chih; Hu, Jian-Hong


    A summary concerning the measurement of liquid density relying on the Archimedes principle has been presented, based on which a new effective method with a specially designed bob for determining liquid density has been suggested. The application of this method to ethyl alcohol solution and liquid glycerol, as well as a theoretical error analysis, shows that this new method is significant, because not only can it simplify the procedure of measurement but it can also offer more precise results. Besides, this method can further provide surface tension or contact angle simultaneously. It is expected that this new method will find its application in hightemperature melts.

  19. Near-surface bulk densities of asteroids derived from dual-polarization radar observations (United States)

    Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.


    We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.

  20. Novel method for the simultaneous estimation of density and surface tension of liquids

    International Nuclear Information System (INIS)

    Thirunavukkarasu, G.; Srinivasan, G.J.


    The conventional Hare's apparatus generally used for the determination of density of liquids has been modified by replacing its vertical arms (glass tubes) with capillary tubes of 30 cm length and 0.072 cm diameter. When the columns of liquids are drawn through the capillary tubes with reduced pressure at the top of the liquid columns and kept at equilibrium with the atmospheric pressure acting on the liquid surface outside the capillary tubes, the downward pressure due to gravity of the liquid columns has to be coupled with the pressure arising due to the effect of surface tension of the liquids. A fresh expression for the density and surface tension of liquids has been arrived at while equating the pressure balancing system for the two individual liquid columns of the modified Hare's apparatus. The experimental results showed that the proposed method is precise and accurate in the simultaneous estimation of density and surface tension of liquids, with an error of less than 5%

  1. Surface tension and orthobaric densities for vibrating square well dumbbells. I. (United States)

    Chapela, Gustavo A; Alejandre, José


    Surface tensions and liquid-vapor orthobaric densities are calculated for a wide variety of vibrating square well dumbbells using discontinuous molecular dynamics simulations. The size of the vibration well, the elongation or bond distance of the two particles of the dumbbell, the asymmetry in size (and interaction range) of the two particles, and the depth of the interaction well are the variables whose effects are systematically evaluated in this work. Extensive molecular dynamics simulations were carried out and the orthobaric liquid-vapor densities are compared with those obtained previously by other authors using different methods of simulation for rigid and vibrating square well dumbbells. Surface tension values are reported for the first time for homonuclear and heteronuclear vibrating square well dumbbells as well as for all the simulated series. The molecular dynamics results of tangent homonuclear dumbbells are compared with those from Monte Carlo simulations also obtained in this work, as a way of checking the order of magnitude of the molecular dynamics results. The size of the vibration well is shown to have a small influence on the resulting properties. Decreasing elongation and the size of the second particle increase critical temperatures, liquid densities, and surface tensions. Moderate increases in the depth of the interaction well have the same effect. For larger asymmetries of the depth of the interaction well on the dumbbell particles, a strong association phenomenon is observed and the main effects are a maximum on the critical temperature for increasing well depth and a decrease in the surface tension.

  2. The dependence of galactic outflows on the properties and orientation of zCOSMOS galaxies at z ∼ 1

    International Nuclear Information System (INIS)

    Bordoloi, R.; Lilly, S. J.; Hardmeier, E.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Fevre, O. Le; Garilli, B.; Mainieri, V.; Renzini, A.; Scodeggio, M.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Cucciati, O.; De la Torre, S.; De Ravel, L.; Iovino, A.


    We present an analysis of cool outflowing gas around galaxies, traced by Mg II absorption lines in the coadded spectra of a sample of 486 zCOSMOS galaxies at 1 ≤ z ≤ 1.5. These galaxies span a range of stellar masses (9.45 ≤ log 10 [M * /M ☉ ] ≤ 10.7) and star formation rates (0.14 ≤ log 10 [SFR/M ☉ yr –1 ] ≤ 2.35). We identify the cool outflowing component in the Mg II absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses, the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong correlation with the star formation surface density (Σ SFR ) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from –150 km s –1 ∼–200 km s –1 and, on average, the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit mass outflow rates >5-7 M ☉ yr –1 and a mass loading factor (η = M-dot out /SFR) comparable to the star formation rates of the galaxies.


    International Nuclear Information System (INIS)

    Bell, Eric F.; Herrington, Jessica; Van der Wel, Arjen; Papovich, Casey; Kocevski, Dale; Faber, S. M.; Cheung, Edmond; Koo, David C.; McGrath, Elizabeth J.; Lotz, Jennifer; Ferguson, Harry; Koekemoer, Anton; Grogin, Norman; McIntosh, Daniel H.; Kartaltepe, Jeyhan; Wuyts, Stijn; Conselice, Christopher J.; Dekel, Avishai; Dunlop, James S.; Giavalisco, Mauro


    We use HST/WFC3 imaging from the CANDELS Multi-Cycle Treasury Survey, in conjunction with the Sloan Digital Sky Survey, to explore the evolution of galactic structure for galaxies with stellar masses >3 × 10 10 M ☉ from z = 2.2 to the present epoch, a time span of 10 Gyr. We explore the relationship between rest-frame optical color, stellar mass, star formation activity, and galaxy structure. We confirm the dramatic increase from z = 2.2 to the present day in the number density of non-star-forming galaxies above 3 × 10 10 M ☉ reported by others. We further find that the vast majority of these quiescent systems have concentrated light profiles, as parameterized by the Sérsic index, and the population of concentrated galaxies grows similarly rapidly. We examine the joint distribution of star formation activity, Sérsic index, stellar mass, inferred velocity dispersion, and stellar surface density. Quiescence correlates poorly with stellar mass at all z 1.3, and somewhat less well at lower redshifts. Yet, there is significant scatter between quiescence and galaxy structure: while the vast majority of quiescent galaxies have prominent bulges, many of them have significant disks, and a number of bulge-dominated galaxies have significant star formation. Noting the rarity of quiescent galaxies without prominent bulges, we argue that a prominent bulge (and perhaps, by association, a supermassive black hole) is an important condition for quenching star formation on galactic scales over the last 10 Gyr, in qualitative agreement with the active galactic nucleus feedback paradigm.

  4. Cluster and field elliptical galaxies at z 1.3. The marginal role of the environment and the relevance of the galaxy central regions (United States)

    Saracco, P.; Gargiulo, A.; Ciocca, F.; Marchesini, D.


    Aims: The aim of this work is twofold: first, to assess whether the population of elliptical galaxies in cluster at z 1.3 differs from the population in the field and whether their intrinsic structure depends on the environment where they belong; second, to constrain their properties 9 Gyr back in time through the study of their scaling relations. Methods: We compared a sample of 56 cluster elliptical galaxies selected from three clusters at 1.2 morphology. We compared physical and structural parameters of galaxies in the two environments and we derived the relationships between effective radius, surface brightness, stellar mass, and stellar mass density ΣRe within the effective radius and central mass density Σ1 kpc, within 1 kpc radius. Results: We find that the structure and the properties of cluster elliptical galaxies do not differ from those in the field: they are characterized by the same structural parameters at fixed mass and they follow the same scaling relations. On the other hand, the population of field elliptical galaxies at z 1.3 shows a significant lack of massive (ℳ∗> 2 × 1011M⊙) and large (Re> 4-5 kpc) elliptical galaxies with respect to the cluster. Nonetheless, at ℳ∗mt) defining a transition mass density Σ1 kpc ≃ 2-3 × 103M⊙ pc-2. The effective stellar mass density ΣRe does not correlate with mass; dense/compact galaxies can be assembled over a wide mass regime, independently of the environment. The central stellar mass density, Σ1 kpc, besides being correlated with the mass, is correlated to the age of the stellar population: the higher the central stellar mass density, the higher the mass, the older the age of the stellar population. Conclusions: While we found some evidence of environmental effects on the elliptical galaxies as a population, we did not find differences between the intrinsic properties of cluster and field elliptical galaxies at comparable redshift. The structure and the shaping of elliptical galaxies at z

  5. Distribution of dark and luminous mass in galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Lovas, Stephen [University of Louisville, 2301 South Third Street, Louisville, KY 40292 (United States); Kielkopf, John F., E-mail: [Department of Physics and Astronomy, University of Louisville, 2301 South Third Street, Louisville, KY 40292 (United States)


    A uniform scale relation between dark and baryonic matter is observed in galaxies over a broad range of physical parameter space. The ratio of dark to baryonic mass is found to increase proportionately with radial distance in observational data spanning a wide dynamic range of morphological type, rotation velocity, radius, surface density, and mass. This close relation between dark and baryonic mass poses a fine-tuning problem for galaxy formation models. Such a uniform scale relation, extending from the inner galactic region to the outermost kinematic data point, may play a role in clarifying the dark matter phenomenon.

  6. The Properties of the Massive Star-forming Galaxies with an Outside-in Assembly Mode (United States)

    Wang, Enci; Kong, Xu; Wang, Huiyuan; Wang, Lixin; Lin, Lin; Gao, Yulong; Liu, Qing


    Previous findings show that massive ({M}* > {10}10 {M}⊙ ) star-forming (SF) galaxies usually have an “inside-out” stellar mass assembly mode. In this paper, we have for the first time selected a sample of 77 massive SF galaxies with an “outside-in” assembly mode (called the “targeted sample”) from the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey. For comparison, two control samples are constructed from the MaNGA sample matched in stellar mass: a sample of 154 normal SF galaxies and a sample of 62 quiescent galaxies. In contrast to normal SF galaxies, the targeted galaxies appear to be smoother and more bulge-dominated and have a smaller size and higher concentration, star formation rate, and gas-phase metallicity as a whole. However, they have a larger size and lower concentration than quiescent galaxies. Unlike the normal SF sample, the targeted sample exhibits a slightly positive gradient of the 4000 Å break and a pronounced negative gradient of Hα equivalent width. Furthermore, the median surface mass density profile is between those of the normal SF and quiescent samples, indicating that the gas accretion of quiescent galaxies is not likely to be the main approach for the outside-in assembly mode. Our results suggest that the targeted galaxies are likely in the transitional phase from normal SF galaxies to quiescent galaxies, with rapid ongoing central stellar mass assembly (or bulge growth). We discuss several possible formation mechanisms for the outside-in mass assembly mode.

  7. ISM stripping from cluster galaxies and inhomogeneities in cooling flows (United States)

    Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.


    Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide

  8. Dynamics of Triaxial Elliptical Galaxies with Cusps (United States)

    Fridman, Tema


    The gravitational potentials, orbital properties, and self-consistent equilibria of triaxial stellar systems with central density cusps are examined. Observations of the nuclei of early-type galaxies with the Hubble Space Telescope (HST) suggest that their surface brightness profiles fall into two categories: the 'cores' and the 'power laws.' We show that this dichotomy results from an optical illusion associated with projection onto the plane of the sky. Galaxies of both types have deprojected density profiles that are well-described as power-laws at small radii, with slopes 0≤γ 0.8. Regular box orbits, which depend for their existence on the stability of the long-axis orbit, do not exist in these models. The next-lowest resonance, the 2: 1 banana family, is present whenever the long-axis orbit is unstable. However the banana orbits have a very restricted range of shapes and are thicker than the model isodensity surfaces when c/a/ ~self-consistent models of triaxial galaxies with Dehnen's (1993) density law. We consider central density cusps defined by γ = 1 (weak cusp) and γ = 2 (strong cusp). These values are representative of the nuclear density profiles of bright ('core') and faint ('power-law') galaxies as observed with HST. Both mass models have short-to-long axis ratios of 1:2 and are maximally triaxial. We compute libraries of ~7000 orbits in each of the models and map them as a function of energy. A large fraction of the orbits in both model potentials are stochastic, which diffuse relatively quickly through their allowed phase-space in the strong-cusp potential (~103 dynamical times) and more slowly in the weak-cusp potential (104 dynamical times or longer). Attempts to construct self-consistent solutions using just the regular orbits failed for both mass models. Quasi-equilibrium solutions that include the stochastic orbits exist for both models; however, real galaxies constructed in this way would evolve near the center due to the continued

  9. Simultaneous measurements of work function and H‒ density including caesiation of a converter surface (United States)

    Cristofaro, S.; Friedl, R.; Fantz, U.


    Negative hydrogen ion sources rely on the surface conversion of neutral atomic hydrogen and positive hydrogen ions to H-. The efficiency of this process depends on the actual work function of the converter surface. By introducing caesium into the source the work function decreases, enhancing the negative ion yield. In order to study the impact of the work function on the H- surface production at similar conditions to the ones in ion sources for fusion devices like ITER and DEMO, fundamental investigations are performed in a flexible laboratory experiment. The work function of the converter surface can be absolutely measured by photoelectric effect, while a newly installed cavity ring-down spectroscopy system (CRDS) measures the H- density. The CRDS is firstly tested and characterized by investigations on H- volume production. Caesiation of a stainless steel sample is then performed in vacuum and the plasma effect on the Cs layer is investigated also for long plasma-on times. A minimum work function of (1.9±0.1) eV is reached after some minutes of plasma treatment, resulting in a reduction by a value of 0.8 eV compared to vacuum measurements. The H- density above the surface is (2.1±0.5)×1015 m-3. With further plasma exposure of the caesiated surface, the work function increases up to 3.75 eV, due to the impinging plasma particles which gradually remove the Cs layer. As a result, the H- density decreases by a factor of at least 2.

  10. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, Farzin; Nouranian, Sasan, E-mail:; Mahdavi, Mina [University of Mississippi, Department of Chemical Engineering (United States); Al-Ostaz, Ahmed [University of Mississippi, Department of Civil Engineering (United States)


    In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (−16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (−13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (−7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.


    International Nuclear Information System (INIS)

    Erkal, Denis; Gnedin, Nickolay Y.; Kravtsov, Andrey V.


    We study the high column density regime of the H I column density distribution function and argue that there are two distinct features: a turnover at N H I ≈ 10 21 cm –2 , which is present at both z = 0 and z ≈ 3, and a lack of systems above N H I ≈ 10 22 cm –2 at z = 0. Using observations of the column density distribution, we argue that the H I-H 2 transition does not cause the turnover at N H I ≈ 10 21 cm –2 but can plausibly explain the turnover at N H I ∼> 10 22 cm –2 . We compute the H I column density distribution of individual galaxies in the THINGS sample and show that the turnover column density depends only weakly on metallicity. Furthermore, we show that the column density distribution of galaxies, corrected for inclination, is insensitive to the resolution of the H I map or to averaging in radial shells. Our results indicate that the similarity of H I column density distributions at z = 3 and 0 is due to the similarity of the maximum H I surface densities of high-z and low-z disks, set presumably by universal processes that shape properties of the gaseous disks of galaxies. Using fully cosmological simulations, we explore other candidate physical mechanisms that could produce a turnover in the column density distribution. We show that while turbulence within giant molecular clouds cannot affect the damped Lyα column density distribution, stellar feedback can affect it significantly if the feedback is sufficiently effective in removing gas from the central 2-3 kpc of high-redshift galaxies. Finally, we argue that it is meaningful to compare column densities averaged over ∼ kpc scales with those estimated from quasar spectra that probe sub-pc scales due to the steep power spectrum of H I column density fluctuations observed in nearby galaxies.

  12. Individual stellar haloes of massive galaxies measured to 100 kpc at 0.3 Hyper Suprime-Cam (United States)

    Huang, Song; Leauthaud, Alexie; Greene, Jenny E.; Bundy, Kevin; Lin, Yen-Ting; Tanaka, Masayuki; Miyazaki, Satoshi; Komiyama, Yutaka


    Massive galaxies display extended light profiles that can reach several hundreds of kiloparsecs. We use data from the Hyper Suprime-Cam (HSC) survey that is simultaneously wide (˜100 deg2) and deep (>28.5 mag arcsec-2 in i band) to study the stellar haloes of a sample of ˜7000 massive galaxies at z ˜ 0.4. The depth of the HSC data enables us to measure surface mass density profiles to 100 kpc for individual galaxies without stacking. As in previous work, we find that more massive galaxies exhibit more extended outer profiles than smaller galaxies. When this extended light is not properly accounted for (because of shallow imaging and/or inadequate profile modelling), the derived stellar mass function can be significantly underestimated at the high-mass end. Across our sample, the ellipticity of outer light profile increases substantially with radius. We show for the first time that these ellipticity gradients steepen dramatically as a function of galaxy mass, but we detect no mass dependence in outer colour gradients. Our results support the two-phase formation scenario for massive galaxies in which outer envelopes are built up at a later time from a series of merging events. We provide surface mass density profiles in a convenient tabulated format to facilitate comparisons with predictions from numerical simulations of galaxy formation.

  13. A Small Angle Neutron Scattering Study of Cylindrical nanoparticle with Controlled Surface Charge Density

    International Nuclear Information System (INIS)

    Kim, Tae-Hwan; Choi, Sung-Min; Kline, Steven R.


    Surfactant molecules in aqueous solution self assemble into various micellar structures such as sphere, rod, vesicle, and lamellar, above critical micelle concentration (CMC). Self-assembled surfactants systems, therefore, have been very popular as templates for preparing various nanostructured materials. Due to their dynamic nature, however, micellar structures are very susceptible to solution conditions such as temperature, concentration, pH and pressure, limiting their applications. In this study, we have developed rigid rod-like nanoparticles with controlled surface charge density by the free radical polymerization of cationic surfactants with polymerizable counterions, cetyltrimethylammonium 4- vinylbenzoate (CTVB), with varying concentration of sodium styrenesulfonate (NaSS). The structure and surface charge density of the nanoparticles were characterized by small angle neutron scattering (SANS) and zeta potential measurements

  14. Morphological features of the copper surface layer under sliding with high density electric current

    Energy Technology Data Exchange (ETDEWEB)

    Fadin, V. V., E-mail: [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Aleutdinova, M. I., E-mail: [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Seversk Technological Institute, Branch of State Autonomous Educational Institution of Higher Professional Education “National Research Nuclear University “MEPhI”, Seversk, 636036 (Russian Federation); Rubtsov, V. Ye., E-mail: [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Aleutdinova, V. A., E-mail: [National Research St. Petersburg State Polytechnical University, St. Petersburg, 195251 (Russian Federation)


    Conductivity and wear intensity of copper under the influence of dry friction and electric current with contact density higher 100 A/cm{sup 2} are presented. It is shown that an increase in hardness and heat outflow from a friction zone leads to the reduction of wear intensity and current contact density increase corresponding to the beginning of catastrophic wear. Structural changes, such as the formation of FeO oxide and α-Fe particles in the copper surface layer, have also been found. It is observed that a worn surface is deformed according to a viscous liquid mechanism. Such singularity is explained in terms of appearance of high-excited atomic states in deforming micro-volumes near contact spots that lead to easy stress relaxation by local plastic shears in the vicinity of stress concentrators. In common this effect allows to achieve high wear resistance.

  15. Density-waves instability and a skyrmion lattice on the surface of strong topological insulators (United States)

    Baum, Yuval; Stern, Ady


    In this work we analyze the instability conditions for spin-density-wave (SDW) formation on the surface of strong topological insulators. We find that for a certain range of Fermi energies and strength of interactions the SDW state is favored compared to the unmagnetized and the uniform-magnetization states. We also find that the SDWs are of spiral nature and, for a certain range of parameters, a Skyrmion lattice may form on the surface. We show that this phase may have a nontrivial Chern number even in the absence of an external magnetic field.

  16. Adhesion of oxide layer to metal-doped aluminum hydride surface: Density functional calculations (United States)

    Takezawa, Tomoki; Itoi, Junichi; Kannan, Takashi


    The density functional theory (DFT) calculations were carried out to evaluate the adhesion energy of the oxide layer to the metal-doped surface of hydrogen storage material, aluminum hydride (alane, AlH3). The total energy calculations using slab model revealed that the surface doping of some metals to aluminum hydride weakens the adhesion strength of the oxide layer. The influence of titanium, iron, cobalt, and zirconium doping on adhesion strength were evaluated. Except for iron doping, the adhesion strength becomes weak by the doping.

  17. Modeling butadiene adsorption on oxidized graphene surface using density functional theory (United States)

    Akimenko, Ju. Y.; Akimenko, S. S.; Gorbunov, V. A.


    In this paper, the process of chemisorption of cis-butadiene rubber on the surface of oxidized graphene was studied using the density functional theory. The polymer is interacting to a quinone group, an oxygen bridge, and an OH group which was differently located on the surface of the graphene sheet. Based on the calculated value of ΔG298, the possibility of spontaneous formation of the bond between butadiene rubber and these functional groups was estimated. The features of the temperature dependence of the change in free Gibbs energy for thermodynamically possible coupled systems are considered.

  18. Inversion of gravity and gravity gradiometry data for density contrast surfaces using Cauchy-type integrals

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu


    We introduce a new method of modeling and inversion of potential field data generated by a density contrast surface. Our method is based on 3D Cauchy-type integral representation of the potential fields. Traditionally, potential fields are calculated using volume integrals of the domains occupied...... by anomalous masses subdivided into prismatic cells. This discretization is computationally expensive, especially in a 3D case. The Cauchy-type integral technique makes it possible to represent the gravity field and its gradients as surface integrals. This is especially significant in the solution of problems...

  19. Surface-plasmon dispersion relation for the inhomogeneous charge-density medium

    International Nuclear Information System (INIS)

    Harsh, O.K.; Agarwal, B.K.


    The surface-plasmon dispersion relation is derived for the plane-bounded electron gas when there is an inhomogeneous charge-density distribution in the plasma. The hydrodynamical model is used. Both cphi and dcphi/dx are taken to be continuous at the surface of the slab, where cphi is the scalar potential. The dispersion relation is compared with the theoretical works of Stern and Ferrell and of Harsh and Agarwal. It is also compared with the observations of Kunz. A dispersion relation for the volume-plasmon oscillations is derived which resembles the well-known relation of Bohm and Pines

  20. Positron study of electron momentum density and Fermi surface in titanium and zirconium

    International Nuclear Information System (INIS)

    Suzuki, Ryoichi; Osawa, Makoto; Tanigawa, Shoichiro; Matsumoto, Makoto; Shiotani, Nobuhiro.


    The three dimensional electron-positron momentum densities have been obtained on Ti and Zr from measurements of two dimensional angular correlation of positron annihilation radiation followed by an image reconstruction technique based on direct Fourier transformation. Augmented-plane wave band structure calculations have been carried out and the results are compared with the experiments. Agreement between the experiment and the theory leads to a conclusion that both Ti and Zr have electron surface sheets which are centered at H and hole surface sheets which are running along the Γ-A axis. (author)

  1. CO2 adsorption on the copper surfaces: van der Waals density functional and TPD studies (United States)

    Muttaqien, Fahdzi; Hamamoto, Yuji; Hamada, Ikutaro; Inagaki, Kouji; Shiozawa, Yuichiro; Mukai, Kozo; Koitaya, Takanori; Yoshimoto, Shinya; Yoshinobu, Jun; Morikawa, Yoshitada


    We investigated the adsorption of CO2 on the flat, stepped, and kinked copper surfaces from density functional theory calculations as well as the temperature programmed desorption and X-ray photoelectron spectroscopy. Several exchange-correlation functionals have been considered to characterize CO2 adsorption on the copper surfaces. We used the van der Waals density functionals (vdW-DFs), i.e., the original vdW-DF (vdW-DF1), optB86b-vdW, and rev-vdW-DF2, as well as the Perdew-Burke-Ernzerhof (PBE) with dispersion correction (PBE-D2). We have found that vdW-DF1 and rev-vdW-DF2 functionals slightly underestimate the adsorption energy, while PBE-D2 and optB86b-vdW functionals give better agreement with the experimental estimation for CO2 on Cu(111). The calculated CO2 adsorption energies on the flat, stepped, and kinked Cu surfaces are 20-27 kJ/mol, which are compatible with the general notion of physisorbed species on solid surfaces. Our results provide a useful insight into appropriate vdW functionals for further investigation of related CO2 activation on Cu surfaces such as methanol synthesis and higher alcohol production.

  2. Nanodrop on a smooth solid surface with hidden roughness. Density functional theory considerations (United States)

    Berim, Gersh O.; Ruckenstein, Eli


    A nanodrop of a test fluid placed on a smooth surface of a solid material of nonuniform density which covers a rough solid surface (hidden roughness) is examined, on the basis of the density functional theory (DFT), in the presence of an external perturbative force parallel to the surface. The contact angles which the drop profile makes with the surface at the leading edges of the drop are determined as functions of drop size and perturbative external force. A critical sticking force, defined as the largest value of the perturbative force for which the drop remains at equilibrium, is determined and its dependence on the size of the drop is explained on the basis of the shape of the interaction potential generated by the solid in vicinity of the leading edges of the drop. For even larger values of the perturbative force no drop-like solution of the Euler-Lagrange equation of the DFT was found. The upper bound of the inclination angle of a surface containing a macroscopic drop is estimated on the basis of results obtained for nanodrops and some experimental results are interpreted. The main conclusion is that the hidden roughness has a similar effect on the drop features as the traditionally considered physical and chemical roughnesses.

  3. Galaxies and clusters of galaxies

    International Nuclear Information System (INIS)

    Salpeter, E.E.


    Stellar populations and massive halos, the properties of individual galaxies, and the clusters of galaxies are discussed. Baade's concept of the two stellar populations in our Galaxy had an important influence on the theories of stellar evolution. In Baade's day, there were two puzzling questions. Population II stars manage to form more rapidly than population I stars. Population II has lower rotational velocity than population I. This story is affected by the presence of an extended, massive halo which was not known in Baade's day. It is known from galaxy rotation curves that massive halos extend much further out. The most striking feature about the variation amongst galaxies is the separation between elliptical and spiral galaxies, with SO-galaxies occupying an intermediate position. The absolute luminosity L of a galaxy provides the second parameter in a two-dimensional classification scheme. In many ways, elliptical galaxies bear the same relationship to late-type spirals as does our stellar population II to population I. Most galaxies occur in some kind of groupings, ranging from a small group such as Local Group to a rich and dense cluster such as the Coma cluster. The formation of galaxies is connected with the formation of clusters. Various models are presented and discussed. (Kato, T.)

  4. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    International Nuclear Information System (INIS)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh


    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO 4 . 7H 2 O concentration at 13.83 g/L and (NH 4 ) 2 SO 4 concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  5. Application of response surface methodology to optimize uranium biological leaching at high pulp density

    Energy Technology Data Exchange (ETDEWEB)

    Fatemi, Faezeh; Arabieh, Masoud; Jahani, Samaneh [NSTRI, Tehran (Iran, Islamic Republic of). Nuclear Fuel Cycle Research School


    The aim of the present study was to carry out uranium bioleaching via optimization of the leaching process using response surface methodology. For this purpose, the native Acidithiobacillus sp. was adapted to different pulp densities following optimization process carried out at a high pulp density. Response surface methodology based on Box-Behnken design was used to optimize the uranium bioleaching. The effects of six key parameters on the bioleaching efficiency were investigated. The process was modeled with mathematical equation, including not only first and second order terms, but also with probable interaction effects between each pair of factors.The results showed that the extraction efficiency of uranium dropped from 100% at pulp densities of 2.5, 5, 7.5 and 10% to 68% at 12.5% of pulp density. Using RSM, the optimum conditions for uranium bioleaching (12.5% (w/v)) were identified as pH = 1.96, temperature = 30.90 C, stirring speed = 158 rpm, 15.7% inoculum, FeSO{sub 4} . 7H{sub 2}O concentration at 13.83 g/L and (NH{sub 4}){sub 2}SO{sub 4} concentration at 3.22 g/L which achieved 83% of uranium extraction efficiency. The results of uranium bioleaching experiment using optimized parameter showed 81% uranium extraction during 15 d. The obtained results reveal that using RSM is reliable and appropriate for optimization of parameters involved in the uranium bioleaching process.

  6. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M. [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Kóspál, Ágnes; Moór, Attila; Ábrahám, Peter [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Kamp, Inga [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Wilner, David J.; Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); Kastner, Joel H., E-mail: [Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)


    We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  7. Flame Surface Density Measurements and Curvature Statistics for Turbulent Premixed Bunsen Flames


    Capil, Tyler George


    In this work, turbulent premixed combustion was analyzed through CH (methylidyne) planar laser induced fluorescence (PLIF). Flame topography measurements in terms of flame surface density and curvature were calculated based on the flame front detected by the CH PLIF signal. The goal of this work was to investigate turbulent flames with extremely high turbulence intensity using a recently developed HiPilot burner (a Bunsen-type burner). The studies were first conducted on a series of piloted j...


    Energy Technology Data Exchange (ETDEWEB)

    Pan, Zhizheng; Kong, Xu; Fan, Lulu, E-mail:, E-mail: [Center of Astrophysics, University of Science and Technology of China, Hefei 230026 (China)


    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  9. Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. (United States)

    He, Xianming; Guo, Hengyu; Yue, Xule; Gao, Jun; Xi, Yi; Hu, Chenguo


    Nanogenerators with capacitor structures based on piezoelectricity, pyroelectricity, triboelectricity and electrostatic induction have been extensively investigated. Although the electron flow on electrodes is well understood, the maximum efficiency-dependent structure design is not clearly known. In this paper, a clear understanding of triboelectric generators with capacitor structures is presented by the investigation of polydimethylsiloxane-based composite film nanogenerators, indicating that the generator, in fact, acts as both an energy storage and output device. Maximum energy storage and output depend on the maximum charge density on the dielectric polymer surface, which is determined by the capacitance of the device. The effective thickness of polydimethylsiloxane can be greatly reduced by mixing a suitable amount of conductive nanoparticles into the polymer, through which the charge density on the polymer surface can be greatly increased. This finding can be applied to all the triboelectric nanogenerators with capacitor structures, and it provides an important guide to the structural design for nanogenerators. It is demonstrated that graphite particles with sizes of 20-40 nm and 3.0% mass mixed into the polydimethylsiloxane can reduce 34.68% of the effective thickness of the dielectric film and increase the surface charges by 111.27% on the dielectric film. The output power density of the triboelectric nanogenerator with the composite polydimethylsiloxane film is 3.7 W m(-2), which is 2.6 times as much as that of the pure polydimethylsiloxane film.

  10. Advances in electric field and atomic surface derived properties from experimental electron densities. (United States)

    Bouhmaida, Nouzha; Ghermani, Nour Eddine


    The present study is devoted to a general use of the Gauss law. This is applied to the atomic surfaces derived from the topological analysis of the electron density. The method proposed here is entirely numerical, robust and does not necessitate any specific parametrization of the atomic surfaces. We focus on two fundamental properties: the atomic charges and the electrostatic forces acting on atoms in molecules. Application is made on experimental electron densities modelized by the Hansen-Coppens model from which the electric field is derived for a heterogenic set of compounds: water molecule, NO(3) anion, bis-triazine molecule and MgO cluster. Charges and electrostatic forces are estimated by the atomic surface flux of the electric field and the Maxwell stress tensor, respectively. The charges obtained from the present method are in good agreement with those issued from the conventional volume integration. Both Feynman and Ehrenfest forces as well as the electrostatic potential at the nuclei (EPN) are here estimated from the experimental electron densities. The values found for the molecular compounds are presented and discussed in the scope of the mechanics of atomic interactions.

  11. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.


    A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the

  12. Formation of Triaxial Galaxy

    Directory of Open Access Journals (Sweden)

    Jang-Hyeon Park


    Full Text Available Results of N-body simulation of dissipationless cold collapse of spherical gravitating system are presented. We compared the results with properties of elliptical galaxies. The system gradually evolved to triaxial system. The projected density profile is in good agreement with observations. In addition to triaxial instability, it seems that there is another instability.

  13. Optically abrupt localized surface plasmon resonances in si nanowires by mitigation of carrier density gradients. (United States)

    Chou, Li-Wei; Boyuk, Dmitriy S; Filler, Michael A


    Spatial control of carrier density is critical for engineering and exploring the interactions of localized surface plasmon resonances (LSPRs) in nanoscale semiconductors. Here, we couple in situ infrared spectral response measurements and discrete dipole approximation (DDA) calculations to show the impact of axially graded carrier density profiles on the optical properties of mid-infrared LSPRs supported by Si nanowires synthesized by the vapor-liquid-solid technique. The region immediately adjacent to each intentionally encoded resonator (i.e., doped segment) can exhibit residual carrier densities as high as 10(20) cm(-3), which strongly modifies both near- and far-field behavior. Lowering substrate temperature during the spacer segment growth reduces this residual carrier density and results in a spectral response that is indistinguishable from nanowires with ideal, atomically abrupt carrier density profiles. Our experiments have important implications for the control of near-field plasmonic phenomena in semiconductor nanowires, and demonstrate methods for determining and controlling axial dopant profile in these systems.

  14. Density, Viscosity and Surface Tension of Binary Mixtures of 1-Butyl-1-Methylpyrrolidinium Tricyanomethanide with Benzothiophene. (United States)

    Domańska, Urszula; Królikowska, Marta; Walczak, Klaudia


    The effects of temperature and composition on the density and viscosity of pure benzothiophene and ionic liquid (IL), and those of the binary mixtures containing the IL 1-butyl-1-methylpyrrolidynium tricyanomethanide ([BMPYR][TCM] + benzothiophene), are reported at six temperatures (308.15, 318.15, 328.15, 338.15, 348.15 and 358.15) K and ambient pressure. The temperature dependences of the density and viscosity were represented by an empirical second-order polynomial and by the Vogel-Fucher-Tammann equation, respectively. The density and viscosity variations with compositions were described by polynomials. Excess molar volumes and viscosity deviations were calculated and correlated by Redlich-Kister polynomial expansions. The surface tensions of benzothiophene, pure IL and binary mixtures of ([BMPYR][TCM] + benzothiophene) were measured at atmospheric pressure at four temperatures (308.15, 318.15, 328.15 and 338.15) K. The surface tension deviations were calculated and correlated by a Redlich-Kister polynomial expansion. The temperature dependence of the interfacial tension was used to evaluate the surface entropy, the surface enthalpy, the critical temperature, the surface energy and the parachor for pure IL. These measurements have been provided to complete information of the influence of temperature and composition on physicochemical properties for the selected IL, which was chosen as a possible new entrainer in the separation of sulfur compounds from fuels. A qualitative analysis on these quantities in terms of molecular interactions is reported. The obtained results indicate that IL interactions with benzothiophene are strongly dependent on packing effects and hydrogen bonding of this IL with the polar solvent.

  15. Galaxies at High Redshift (United States)

    Bauer, F. E.


    Recent years have seen tremendous progress in finding and charactering star-forming galaxies at high redshifts across the electromagnetic spectrum, giving us a more complete picture of how galaxies evolve, both in terms of their stellar and gas content, as well as the growth of their central supermassive black holes. A wealth of studies now demonstrate that star formation peaked at roughly half the age of the Universe and drops precariously as we look back to very early times, and that their central monsters apparently growth with them. At the highest-redshifts, we are pushing the boundaries via deep surveys at optical, X-ray, radio wavelengths, and more recently using gamma-ray bursts. I will review some of our accomplishments and failures. Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 - 8 seems to be much lower than at z = 2 - 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).

  16. Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes (United States)

    Ma, Xiangcheng; Hopkins, Philip F.; Boylan-Kolchin, Michael; Faucher-Giguère, Claude-André; Quataert, Eliot; Feldmann, Robert; Garrison-Kimmel, Shea; Hayward, Christopher C.; Kereš, Dušan; Wetzel, Andrew


    We study the morphologies and sizes of galaxies at z ≥ 5 using high-resolution cosmological zoom-in simulations from the Feedback In Realistic Environments project. The galaxies show a variety of morphologies, from compact to clumpy to irregular. The simulated galaxies have more extended morphologies and larger sizes when measured using rest-frame optical B-band light than rest-frame UV light; sizes measured from stellar mass surface density are even larger. The UV morphologies are usually dominated by several small, bright young stellar clumps that are not always associated with significant stellar mass. The B-band light traces stellar mass better than the UV, but it can also be biased by the bright clumps. At all redshifts, galaxy size correlates with stellar mass/luminosity with large scatter. The half-light radii range from 0.01 to 0.2 arcsec (0.05-1 kpc physical) at fixed magnitude. At z ≥ 5, the size of galaxies at fixed stellar mass/luminosity evolves as (1 + z)-m, with m ˜ 1-2. For galaxies less massive than M* ˜ 108 M⊙, the ratio of the half-mass radius to the halo virial radius is ˜10% and does not evolve significantly at z = 5-10; this ratio is typically 1-5% for more massive galaxies. A galaxy's `observed' size decreases dramatically at shallower surface brightness limits. This effect may account for the extremely small sizes of z ≥ 5 galaxies measured in the Hubble Frontier Fields. We provide predictions for the cumulative light distribution as a function of surface brightness for typical galaxies at z = 6.


    International Nuclear Information System (INIS)

    Park, Changbom; Choi, Yun-Young


    We inspect the coupled dependence of physical parameters of the Sloan Digital Sky Survey galaxies on the small-scale (distance to and morphology of the nearest neighbor galaxy) and the large-scale (background density smoothed over 20 nearby galaxies) environments. The impacts of interaction on galaxy properties are detected at least out to the neighbor separation corresponding to the virial radius of galaxies, which is typically between 200 and 400 h -1 kpc for the galaxies in our sample. To detect these long-range interaction effects, it is crucial to divide galaxy interactions into four cases dividing the morphology of target and neighbor galaxies into early and late types. We show that there are two characteristic neighbor-separation scales where the galaxy interactions cause abrupt changes in the properties of galaxies. The first scale is the virial radius of the nearest neighbor galaxy r vir,nei . Many physical parameters start to deviate from those of extremely isolated galaxies at the projected neighbor separation r p of about r vir,nei . The second scale is at r p ∼ 0.05r vir,nei = 10-20 h -1 kpc, and is the scale at which the galaxies in pairs start to merge. We find that late-type neighbors enhance the star formation activity of galaxies while early-type neighbors reduce it, and that these effects occur within r vir,nei . The hot halo gas and cold disk gas must be participating in the interactions at separations less than the virial radius of the galaxy plus dark halo system. Our results also show that the role of the large-scale density in determining galaxy properties is minimal once luminosity and morphology are fixed. We propose that the weak residual dependence of galaxy properties on the large-scale density is due to the dependence of the halo gas property on the large-scale density.

  18. Kinetic Control of Histidine-Tagged Protein Surface Density on Supported Lipid Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nye, Jeffrey A. [Univ. of California, Berkeley, CA (United States); Groves, Jay T. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Nickel-chelating lipids are general tools for anchoring polyhistidine-tagged proteins to supported lipid bilayers (SLBs), but controversy exists over the stability of the protein-lipid attachment. In this study, we show that chelator lipids are suitable anchors for building stable, biologically active surfaces but that a simple Langmuirian model is insufficient to describe their behavior. Desorption kinetics from chelator lipids are governed by the valency of surface binding: monovalently bound proteins desorb within minutes (t1/2 ≈ 6 min), whereas polyvalently bound species remain bound for hours (t1/2 ≈ 12 h). Evolution between surface states is slow, so equilibrium is unlikely to be reached on experimental timescales. However, by tuning incubation conditions, the populations of each species can be kinetically controlled, providing a wide range of protein densities on SLBs with a single concentration of chelator lipid. In conclusion, we propose guidelines for the assembly of SLB surfaces functionalized with specific protein densities and demonstrate their utility in the formation of hybrid immunological synapses.

  19. Studying the ICM in clusters of galaxies via surface brightness fluctuations of the cosmic X-ray background (United States)

    Kolodzig, Alexander; Gilfanov, Marat; Hütsi, Gert; Sunyaev, Rashid


    We study surface brightness fluctuations of the cosmic X-ray background (CXB) using Chandra data of XBOOTES. After masking out resolved sources we compute the power spectrum of fluctuations of the unresolved CXB for angular scales from {≈ } 2 arcsec to ≈3°. The non-trivial large-scale structure (LSS) signal dominates over the shot noise of unresolved point sources on angular scales above {˜ } 1 arcmin and is produced mainly by the intracluster medium (ICM) of unresolved clusters and groups of galaxies, as shown in our previous publication. The shot-noise-subtracted power spectrum of CXB fluctuations has a power-law shape with the slope of Γ = 0.96 ± 0.06. Their energy spectrum is well described by the redshifted emission spectrum of optically thin plasma with the best-fitting temperature of T ≈ 1.3 keV and the best-fitting redshift of z ≈ 0.40. These numbers are in good agreement with theoretical expectations based on the X-ray luminosity function and scaling relations of clusters. From these values we estimate the typical mass and luminosity of the objects responsible for CXB fluctuations, M500 ∼ 1013.6 M⊙ h-1 and L0.5-2.0 keV ∼ 1042.5 erg s-1. On the other hand, the flux-weighted mean temperature and redshift of resolved clusters are T ≈ 2.4 keV and z ≈ 0.23 confirming that fluctuations of unresolved CXB are caused by cooler (i.e. less massive) and more distant clusters, as expected. We show that the power spectrum shape is sensitive to the ICM structure all the way to the outskirts, out to ∼few × R500. We also searched for possible contribution of the warm-hot intergalactic medium (WHIM) to the observed CXB fluctuations. Our results underline the significant diagnostic potential of the CXB fluctuation analysis in studying the ICM structure in clusters.

  20. Three types of galaxy disks

    NARCIS (Netherlands)

    Pohlen, M.; Erwin, P.; Trujillo, I.; Beckman, J. E.; Knapen, JH; Mahoney, TJ; Vazdekis, A


    We present our new scheme for the classification of radial stellar surface brightness profiles for disk galaxies. We summarize the current theoretical attempts to understand their origin and give an example of an application by comparing local galaxies with their counterparts at high redshift (z

  1. Methyl Butanoate Adsorption on MoS2 Surface: A Density Functional Theory Investigation

    Directory of Open Access Journals (Sweden)

    Prabowo Wahyu Aji Eko


    Full Text Available Methyl butanoate is one of the compound which is obtained from triglyceride molecule. It has hydrocarbon components and hence may produce hydrocarbon through hydrodeoxygenation (HDO or decarbonylation (DCO processes. The first step to uncover the underlying mechanism of HDO or DCO is to find the active site of methyl butanoate adsorption over the catalyst. This study attempts to investigate the active site of methyl butanoate adsorption on MoS2 surface. Stable bonding configuration for methyl butanoate adsorption on MoS2 is investigated by using density functional theory (DFT. This investigation consists of geometry optimisation and adsorption energy calculations. The stable configuration of methyl butanoate adsorption on MoS2 surface is found to be on top of Mo atom in Mo-edge surface.

  2. Best Phd thesis Prize : Statistical analysis of ALFALFA galaxies: insights in galaxy

    NARCIS (Netherlands)

    Papastergis, E.

    We use the rich dataset of local universe galaxies detected by the ALFALFA 21cm survey to study the statistical properties of gas-bearing galaxies. In particular, we measure the number density of galaxies as a function of their baryonic mass ("baryonic mass function") and rotational velocity

  3. The Void Galaxy Survey: Galaxy Evolution and Gas Accretion in Voids

    NARCIS (Netherlands)

    Kreckel, Kathryn; van Gorkom, Jacqueline H.; Beygu, Burcu; van de Weygaert, Rien; van der Hulst, J. M.; Aragon-Calvo, Miguel A.; Peletier, Reynier F.


    Voids represent a unique environment for the study of galaxy evolution, as the lower density environment is expected to result in shorter merger histories and slower evolution of galaxies. This provides an ideal opportunity to test theories of galaxy formation and evolution. Imaging of the neutral

  4. Two-component gravitational instability in spiral galaxies (United States)

    Marchuk, A. A.; Sotnikova, N. Y.


    We applied a criterion of gravitational instability, valid for two-component and infinitesimally thin discs, to observational data along the major axis for seven spiral galaxies of early types. Unlike most papers, the dispersion equation corresponding to the criterion was solved directly without using any approximation. The velocity dispersion of stars in the radial direction σR was limited by the range of possible values instead of a fixed value. For all galaxies, the outer regions of the disc were analysed up to R ≤ 130 arcsec. The maximal and sub-maximal disc models were used to translate surface brightness into surface density. The largest destabilizing disturbance stars can exert on a gaseous disc was estimated. It was shown that the two-component criterion differs a little from the one-fluid criterion for galaxies with a large surface gas density, but it allows to explain large-scale star formation in those regions where the gaseous disc is stable. In the galaxy NGC 1167 star formation is entirely driven by the self-gravity of the stars. A comparison is made with the conventional approximations which also include the thickness effect and with models for different sound speed cg. It is shown that values of the effective Toomre parameter correspond to the instability criterion of a two-component disc Qeff < 1.5-2.5. This result is consistent with previous theoretical and observational studies.

  5. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    International Nuclear Information System (INIS)

    Tachikawa, Hiroto


    Highlights: • The reaction pathway of the hydrogen addition to graphene surface was determined by the DFT method. • Binding energies of atomic hydrogen to graphene surface were determined. • Absorption spectrum of hydrogenated graphene was theoretically predicted. • Hyperfine coupling constant of hydrogenated graphene was theoretically predicted. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4–37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2–7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8–28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  6. Hydrogen atom addition to the surface of graphene nanoflakes: A density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Hiroto, E-mail:


    Highlights: • The reaction pathway of the hydrogen addition to graphene surface was determined by the DFT method. • Binding energies of atomic hydrogen to graphene surface were determined. • Absorption spectrum of hydrogenated graphene was theoretically predicted. • Hyperfine coupling constant of hydrogenated graphene was theoretically predicted. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) provide a 2-dimensional (2D) reaction surface in 3-dimensional (3D) interstellar space and have been utilized as a model of graphene surfaces. In the present study, the reaction of PAHs with atomic hydrogen was investigated by means of density functional theory (DFT) to systematically elucidate the binding nature of atomic hydrogen to graphene nanoflakes. PAHs with n = 4–37 were chosen, where n indicates the number of benzene rings. Activation energies of hydrogen addition to the graphene surface were calculated to be 5.2–7.0 kcal/mol at the CAM-B3LYP/6-311G(d,p) level, which is almost constant for all PAHs. The binding energies of hydrogen atom were slightly dependent on the size (n): 14.8–28.5 kcal/mol. The absorption spectra showed that a long tail is generated at the low-energy region after hydrogen addition to the graphene surface. The electronic states of hydrogenated graphenes were discussed on the basis of theoretical results.

  7. Multiple charge density wave states at the surface of TbT e3 (United States)

    Fu, Ling; Kraft, Aaron M.; Sharma, Bishnu; Singh, Manoj; Walmsley, Philip; Fisher, Ian R.; Boyer, Michael C.


    We studied TbT e3 using scanning tunneling microscopy (STM) in the temperature range of 298-355 K. Our measurements detect a unidirectional charge density wave (CDW) state in the surface Te layer with a wave vector consistent with that of the bulk qCDW=0.30 ±0.01 c* . However, unlike previous STM measurements, and differing from measurements probing the bulk, we detect two perpendicular orientations for the unidirectional CDW with no directional preference for the in-plane crystal axes (a or c axis) and no noticeable difference in wave vector magnitude. In addition, we find regions in which the bidirectional CDW states coexist. We propose that observation of two unidirectional CDW states indicates a decoupling of the surface Te layer from the rare-earth block layer below, and that strain variations in the Te surface layer drive the local CDW direction to the specific unidirectional or, in rare occurrences, bidirectional CDW orders observed. This indicates that similar driving mechanisms for CDW formation in the bulk, where anisotropic lattice strain energy is important, are at play at the surface. Furthermore, the wave vectors for the bidirectional order we observe differ from those theoretically predicted for checkerboard order competing with stripe order in a Fermi-surface nesting scenario, suggesting that factors beyond Fermi-surface nesting drive CDW order in TbT e3 . Finally, our temperature-dependent measurements provide evidence for localized CDW formation above the bulk transition temperature TCDW.

  8. Near Surface Stoichiometry in UO2: A Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Jianguo Yu


    Full Text Available The mechanisms of oxygen stoichiometry variation in UO2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110 surface relaxation and stoichiometry in UO2 have been studied with density functional theory (DFT calculations. On the basis of the point-defect model (PDM, a general expression for the near surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.

  9. Density functional theory formulation for fluid adsorption on correlated random surfaces (United States)

    Aslyamov, Timur; Khlyupin, Aleksey


    We provide novel random surface density functional theory (RSDFT) formulation in the case of geometric heterogeneous surfaces of solid media which is essential for the description of thermodynamic properties of confined fluids. The major difference of our theoretical approach from the existing ones is a stochastic model of solid surfaces which takes into account the correlation properties of geometry. The main building blocks are effective fluid-solid potentials developed in the work of Khlyupin and Aslyamov [J. Stat. Phys. 167, 1519 (2017)] and geometry-based modification of the Helmholtz free energy for Lennard-Jones fluids. The efficiency of RSDFT is demonstrated in the calculation of argon and nitrogen low temperature adsorption on real heterogeneous surfaces (BP280 carbon black). These results are in good agreement with experimental data published in the literature. Also several models of corrugated materials are developed in the framework of RSDFT. Numerical analysis demonstrates a strong influence of surface roughness characteristics on adsorption isotherms. Thus the developed formalism provides a connection between a rigorous description of the stochastic surface and confined fluid thermodynamics.

  10. Catalytic water dissociation by greigite Fe3S4 surfaces: density functional theory study (United States)

    Roldan, A.; de Leeuw, N. H.


    The iron sulfide mineral greigite, Fe3S4, has shown promising capability as a hydrogenating catalyst, in particular in the reduction of carbon dioxide to produce small organic molecules under mild conditions. We employed density functional theory calculations to investigate the {001},{011} and {111} surfaces of this iron thiospinel material, as well as the production of hydrogen ad-atoms from the dissociation of water molecules on the surfaces. We systematically analysed the adsorption geometries and the electronic structure of both bare and hydroxylated surfaces. The sulfide surfaces presented a higher flexibility than the isomorphic oxide magnetite, Fe3O4, allowing perpendicular movement of the cations above or below the top atomic sulfur layer. We considered both molecular and dissociative water adsorption processes, and have shown that molecular adsorption is the predominant state on these surfaces from both a thermodynamic and kinetic point of view. We considered a second molecule of water which stabilizes the system mainly by H-bonds, although the dissociation process remains thermodynamically unfavourable. We noted, however, synergistic adsorption effects on the Fe3S4{001} owing to the presence of hydroxyl groups. We concluded that, in contrast to Fe3O4, molecular adsorption of water is clearly preferred on greigite surfaces. PMID:27274698


    Directory of Open Access Journals (Sweden)



    Full Text Available We present a density functional theory (DFT to describe adsorption in systems where molecules of associating fluids can bond (or associate with discrete, localized functional groups attached to the surfaces, in addition to other fluid molecules. For such systems as water adsorbing on activated carbon, silica, clay minerals etc. this is a realistic model to account for surface heterogeneity rather than using a continuous smeared surface-fluid potential employed in most of the theoretical works on adsorption on heterogeneous surfaces. Association is modelled within the framework of first order thermodynamic perturbation theory (TPT1. The new theory accurately predicts the distribution of bonded and non-bonded species and adsorption behavior under various conditions of bulk pressure, surface-fluid and fluid-fluid association strengths. Competition between the surface-fluid and fluid-fluid association is analyzed for fluids with multiple association sites and its impact on adsorption is discussed. The theory, supported by simulations demonstrates that the extent and the nature of adsorption (e.g. monolayer vary with the number of association sites on the fluid molecules.

  12. Origin of synergistic effect over Ni-based bimetallic surfaces: A density functional theory study (United States)

    Fan, Chen; Zhu, Yi-An; Xu, Yue; Zhou, Yan; Zhou, Xing-Gui; Chen, De


    Density functional theory calculations have been conducted to explore the physical origin of the synergistic effect over Ni-based surface alloys using methane dissociation as a probe reaction. Some late transition metal atoms (M = Cu, Ru, Rh, Pd, Ag, Pt, and Au) are substituted for surface Ni atoms to examine the variation in electronic structure and adsorption property of Ni(111). Two types of threefold hollow sites, namely, the Ni2M and Ni3 sites, are taken into account. The calculated results indicate that the variation in the CHx adsorption energy at the Ni2M and Ni3 sites is dominated by the ensemble and ligand effect, respectively, and the other factors such as surface and adsorbate distortion and electrostatic interaction affect the catalytic properties of the bimetallic surfaces to a smaller extent. Both the Brønsted-Evans-Polanyi relationship and the scaling correlation hold true on the Ni-based bimetallic surfaces. With the combination of these two linear energy relations, the corrected binding energy of atomic C is found to be a good descriptor for representing the catalytic activity of the alloyed surfaces. Considering the compromise between the catalytic activity and catalyst stability, we suggest that the Rh/Ni catalyst is a good candidate for methane dissociation.

  13. First Results on the Cluster Galaxy Population from the Subaru Hyper Suprime-Cam Survey. III. Brightest Cluster Galaxies, Stellar Mass Distribution, and Active Galaxies (United States)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-Non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi


    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z∼ 1 to date. In this exploratory study of cluster galaxy evolution from z = 1 to z = 0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), the evolution of stellar mass and luminosity distributions, the stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high-redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Over the 230 deg2 area of the current HSC-SSP footprint, selecting the top 100 clusters in each of the four redshift bins allows us to observe the buildup of galaxy population in descendants of clusters whose z≈ 1 mass is about 2× {10}14 {M}ȯ . Our stellar mass is derived from a machine-learning algorithm, which is found to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs (about 35% between z = 1 and 0.3), and no evidence for evolution in both the total stellar mass–cluster mass correlation and the shape of the stellar mass surface density profile. We also present the first measurement of the radio luminosity distribution in clusters out to z∼ 1, and show hints of changes in the dominant accretion mode powering the cluster radio galaxies at z∼ 0.8.

  14. The HIX galaxy survey II: HI kinematics of HI eXtreme galaxies (United States)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.


    By analysing a sample of galaxies selected from the HI Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected HI content based on their optical properties, we investigate what drives these HI eXtreme (HIX) galaxies to be so HI-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed HIX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in HIX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of HIX galaxies is comparable to the control sample, (3) HIX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most HIX galaxies live in higher-spin haloes than most control galaxies. These results suggest that HIX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the HIX galaxies inherits their high specific angular momentum from their halo. The H I content of HIX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array (ATCA) through the large program C 2705.

  15. Overall structure of gas in the Galaxy

    International Nuclear Information System (INIS)

    Knapp, G.R.


    This paper considers the physical structure and the distribution of gas in the Galaxy, with particular attention given to the galactic distribution of the interstellar atomic and molecular hydrogen. These two components, which contain essentially all of the interstellar gas by mass, are distributed in a thin disk in which both the total gas surface density and the ratio of molecular to atomic hydrogen decrease more or less monotonically with distance from the center of the Galaxy. The molecular hydrogen is concentrated in large (up to a million solar masses) clouds in which star formation is taking place. Due to mass loss from evolving stars, about 20 percent of gas is returned to the interstellar medium. The scale height of the interstellar molecular hydrogen is about half that of the atomic gas. 63 references

  16. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang. (United States)

    Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M


    Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.

  17. Surface flux density distribution characteristics of bulk high-T c superconductor in external magnetic field

    International Nuclear Information System (INIS)

    Nishikawa, H.; Torii, S.; Yuasa, K.


    This paper describes the measured results of the two-dimensional flux density distribution of a YBCO bulk under applied AC magnetic fields with various frequency. Melt-processed oxide superconductors have been developed in order to obtain strong pinning forces. Various electric mechanical systems or magnetic levitation systems use those superconductors. The major problem is that cracks occur because the bulk superconductors are brittle. The bulk may break in magnetizing process after cracks make superconducting state instable. The trapped flux density and the permanent current characteristics of bulk superconductors have been analyzed, so as to examine the magnetizing processes or superconducting states of the bulk. In those studies, the two-dimensional surface flux density distributions of the bulk in static fields are discussed. On the other hand, the distributions in dynamic fields are little discussed. We attempted to examine the states of the bulk in the dynamic fields, and made a unique experimental device which has movable sensors synchronized with AC applied fields. As a result, the two-dimensional distributions in the dynamic fields are acquired by recombining the one-dimensional distributions. The dynamic states of the flux of the bulk and the influences of directions of cracks are observed from the distributions. In addition, a new method for measuring two-dimensional flux density distribution under dynamic magnetic fields is suggested

  18. LINER galaxy properties and the local environment (United States)

    Coldwell, Georgina V.; Alonso, Sol; Duplancic, Fernanda; Mesa, Valeria


    We analyse the properties of a sample of 5560 low-ionization nuclear emission-line region (LINER) galaxies selected from SDSS-DR12 at low red shift, for a complete range of local density environments. The host LINER galaxies were studied and compared with a well-defined control sample of 5553 non-LINER galaxies matched in red shift, luminosity, morphology and local density. By studying the distributions of galaxy colours and the stellar age population, we find that LINERs are redder and older than the control sample over a wide range of densities. In addition, LINERs are older than the control sample, at a given galaxy colour, indicating that some external process could have accelerated the evolution of the stellar population. The analysis of the host properties shows that the control sample exhibits a strong relation between colours, ages and the local density, while more than 90 per cent of the LINERs are redder and older than the mean values, independently of the neighbourhood density. Furthermore, a detailed study in three local density ranges shows that, while control sample galaxies are redder and older as a function of stellar mass and density, LINER galaxies mismatch the known morphology-density relation of galaxies without low-ionization features. The results support the contribution of hot and old stars to the low-ionization emission although the contribution of nuclear activity is not discarded.

  19. Periodic density functional theory calculations of bulk and the (010 surface of goethite

    Directory of Open Access Journals (Sweden)

    Sparks Donald L


    Full Text Available Abstract Background Goethite is a common and reactive mineral in the environment. The transport of contaminants and anaerobic respiration of microbes are significantly affected by adsorption and reduction reactions involving goethite. An understanding of the mineral-water interface of goethite is critical for determining the molecular-scale mechanisms of adsorption and reduction reactions. In this study, periodic density functional theory (DFT calculations were performed on the mineral goethite and its (010 surface, using the Vienna Ab Initio Simulation Package (VASP. Results Calculations of the bulk mineral structure accurately reproduced the observed crystal structure and vibrational frequencies, suggesting that this computational methodology was suitable for modeling the goethite-water interface. Energy-minimized structures of bare, hydrated (one H2O layer and solvated (three H2O layers (010 surfaces were calculated for 1 × 1 and 3 × 3 unit cell slabs. A good correlation between the calculated and observed vibrational frequencies was found for the 1 × 1 solvated surface. However, differences between the 1 × 1 and 3 × 3 slab calculations indicated that larger models may be necessary to simulate the relaxation of water at the interface. Comparison of two hydrated surfaces with molecularly and dissociatively adsorbed H2O showed a significantly lower potential energy for the former. Conclusion Surface Fe-O and (FeO-H bond lengths are reported that may be useful in surface complexation models (SCM of the goethite (010 surface. These bond lengths were found to change significantly as a function of solvation (i.e., addition of two extra H2O layers above the surface, indicating that this parameter should be carefully considered in future SCM studies of metal oxide-water interfaces.

  20. Optimizing the surface density of polyethylene glycol chains by grafting from binary solvent mixtures (United States)

    Arcot, Lokanathan; Ogaki, Ryosuke; Zhang, Shuai; Meyer, Rikke L.; Kingshott, Peter


    Polyethylene glycol (PEG) brushes are very effective at controlling non-specific deposition of biological material onto surfaces, which is of paramount importance to obtaining successful outcomes in biomaterials, tissue engineered scaffolds, biosensors, filtration membranes and drug delivery devices. We report on a simple 'grafting to' approach involving binary solvent mixtures that are chosen based on Hansen's solubility parameters to optimize the solubility of PEG thereby enabling control over the graft density. The PEG thiol-gold model system enabled a thorough characterization of PEG films formed, while studies on a PEG silane-silicon system examined the versatility to be applied to any substrate-head group system by choosing an appropriate solvent pair. The ability of PEG films to resist non-specific adsorption of proteins was quantitatively assessed by full serum exposure studies and the binary solvent strategy was found to produce PEG films with optimal graft density to efficiently resist protein adsorption.

  1. Optical photometry of galaxies

    International Nuclear Information System (INIS)

    Comte, G.


    The present status of the optical and near-infrared photometry of galaxies is reviewed. Part I introduces to the goals and general methods of both photographic surface photometry and integrated multicolor aperture photoelectric photometry for extended stellar systems, with a summary of the necessary corrections to the observed magnitudes and colors. Part II (surface photometry) summarizes recent results on the empirical luminosity laws for spheroidal systems and the separation of components in disk-plus-bulge systems. Part III (color problems) discusses integrated color effects (color and gas content, color-absolute magnitude relation for early-type systems, colors of interacting galaxies) and color gradient across spheroidal and disk galaxies. In part IV are summarized some constraints on the luminosity function of the stellar population in spheroidal systems given by narrow-band photometry [fr

  2. Galaxy Disks

    NARCIS (Netherlands)

    van der Kruit, P. C.; Freeman, K. C.

    The disks of disk galaxies contain a substantial fraction of their baryonic matter and angular momentum, and much of the evolutionary activity in these galaxies, such as the formation of stars, spiral arms, bars and rings, and the various forms of secular evolution, takes place in their disks. The

  3. Analytical performance of molecular beacons on surface immobilized gold nanoparticles of varying size and density. (United States)

    Uddayasankar, Uvaraj; Krull, Ulrich J


    The high quenching efficiency of metal nanoparticles has facilitated its use as quenchers in molecular beacons. To optimize this system, a good understanding of the many factors that influence molecular beacon performance is required. In this study, molecular beacon performance was evaluated as a function of gold nanoparticle size and its immobilization characteristics. Gold nanoparticles of 4 nm, 15 nm and 87 nm diameter, were immobilized onto glass slides. Each size regime offered distinctive optical properties for fluorescence quenching of molecular dyes that were conjugated to oligonucleotides that were immobilized to the gold nanoparticles. Rigid double stranded DNA was used as a model to place fluorophores at different distances from the gold nanoparticles. The effect of particle size and also the immobilization density of nanoparticles was evaluated. The 4 nm and 87 nm gold nanoparticles offered the highest sensitivity in terms of the change in fluorescence intensity as a function of distance (3-fold improvement for Cy5). The optical properties of the molecular fluorophore was of significance, with Cy5 offering higher contrast ratios than Cy3 due to the red-shifted emission spectrum relative to the plasmon peak. A high density of gold nanoparticles reduced contrast ratios, indicating preference for a monolayer of immobilized nanoparticles when considering analytical performance. Molecular beacon probes were then used in place of the double stranded oligonucleotides. There was a strong dependence of molecular beacon performance on the length of a linker used for attachment to the nanoparticle surface. The optimal optical performance was obtained with 4 nm gold nanoparticles that were immobilized as monolayers of low density (5.7×10(11)particles cm(-2)) on glass surfaces. These nanoparticle surfaces offered a 2-fold improvement in analytical performance of the molecular beacons when compared to other nanoparticle sizes investigated. The principles developed

  4. Covalent and density-controlled surface immobilization of E-cadherin for adhesion force spectroscopy.

    Directory of Open Access Journals (Sweden)

    Dagmar Fichtner

    Full Text Available E-cadherin is a key cell-cell adhesion molecule but the impact of receptor density and the precise contribution of individual cadherin ectodomains in promoting cell adhesion are only incompletely understood. Investigating these mechanisms would benefit from artificial adhesion substrates carrying different cadherin ectodomains at defined surface density. We therefore developed a quantitative E-cadherin surface immobilization protocol based on the SNAP-tag technique. Extracellular (EC fragments of E-cadherin fused to the SNAP-tag were covalently bound to self-assembled monolayers (SAM of thiols carrying benzylguanine (BG head groups. The adhesive functionality of the different E-cadherin surfaces was then assessed using cell spreading assays and single-cell (SCSF and single-molecule (SMSF force spectroscopy. We demonstrate that an E-cadherin construct containing only the first and second outmost EC domain (E1-2 is not sufficient for mediating cell adhesion and yields only low single cadherin-cadherin adhesion forces. In contrast, a construct containing all five EC domains (E1-5 efficiently promotes cell spreading and generates strong single cadherin and cell adhesion forces. By varying the concentration of BG head groups within the SAM we determined a lateral distance of 5-11 nm for optimal E-cadherin functionality. Integrating the results from SCMS and SMSF experiments furthermore demonstrated that the dissolution of E-cadherin adhesion contacts involves a sequential unbinding of individual cadherin receptors rather than the sudden rupture of larger cadherin receptor clusters. Our method of covalent, oriented and density-controlled E-cadherin immobilization thus provides a novel and versatile platform to study molecular mechanisms underlying cadherin-mediated cell adhesion under defined experimental conditions.

  5. The Carina dwarf spheroidal galaxy - How dark is it? (United States)

    Mateo, Mario; Olszewski, Edward W.; Pryor, Carlton; Welch, Douglas L.; Fischer, Philippe


    Precise radial velocities obtained with a photon-counting echelle spectrograph for a sample of 17 red giants in the Carina dwarf spheroidal galaxy are presented. The calculation of the systemic velocity and central velocity dispersion of Carina is described, the existing data constraining the structural parameters of Carina are reviewed, and an estimate of the central surface brightness of the galaxy is derived. These data are used to estimate the central mass density of Carina, as well as central and global mass-to-light ratios. It is concluded that the inferred mass densities and mass-density limits for all acceptable models imply the presence of a significant DM component in Carina. DM properties of all well-studied dSph systems are summarized and compared.

  6. Research of the Ion Current Density Influence on the Glass-Ceramics Surface Defects Forming under Ion-Beam Processing

    Directory of Open Access Journals (Sweden)

    V. G. Pozdnyakov


    Full Text Available Development of modern optics is primarily determined by manufacturing accuracy of the working surfaces of optical parts. Therefore, at the last stage of manufacturing optical parts the ion-beam treatment is applied. This method uses spraying the high-energy ions of heavy gases on the surface of a solid body. After an intense ion treatment there are microscopic defects, resembling chips, on the surface of polycrystalline glass. The aim of this work is to study distribution of the surface density of defects by sizes, depending on the density of ion current.Accelerator with an anode layer and a focused ion beam was used as an ion source. The accelerator worked on argon and created ion beam with Gaussian distribution of current density along the radius. The excess positive charge of the ion beam was compensated owing to ionization of residual gas. To eliminate the influence of slow ions with peripheral regions of the ion beam, the etching was performed through a circular aperture with a diameter of 40 mm.Surface treatment of the sample was carried out at the discharge voltage of 3800 V and current of 50 mA for 30 min. The maximum ion current density on the sample surface was 20.2 A/m2 and a power density was of 5.4·104 W/m2 .Distribution of defects by size was measured in three areas of the treated surface corresponding to different densities of ion current, namely: 20.2 A/m2 , 11.3A/m2 , and 3.4 A/m2 . Their number per area unit defines a density of defects.The results show that with increasing ion current density the density of defects on the surface of polycrystalline glass decreases. Thus a view of distribution function of defect density according to size is changed: density of small defects is reduced, and density of large ones increases. Also with increasing ion current density is observed an increase in the size of defects: a 6 times increase of the average size of defects results in 1.6 times increasing ion current density.These data will

  7. Database of Pb - free soldering materials, surface tension and density, experiment vs. Modeling

    Directory of Open Access Journals (Sweden)

    Z Moser


    Full Text Available Experimental studies of surface tension and density by the maximum bubble pressure method and dilatometric technique were undertaken and the accumulated data for liquid pure components, binary, ternary and multicomponent alloys were used to create the SURDAT data base for Pb-free soldering materials. The data base enabled, also to compare the experimental results with those obtained by the Butler’s model and with the existing literature data. This comparison has been extended by including the experimental data of Sn-Ag-Cu-Sb alloys.

  8. Selective Laser Sintering of PA2200: Effects of print parameters on density, accuracy, and surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Bajric, Sendin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Additive manufacturing needs a broader selection of materials for part production. In order for the Los Alamos National Laboratory (LANL) to investigate new materials for selective laser sintering (SLS), this paper reviews research on the effect of print parameters on part density, accuracy, and surface roughness of polyamide 12 (PA12, PA2200). The literature review serves to enhance the understanding of how changing the laser powder, scan speed, etc. will affect the mechanical properties of a commercial powder. By doing so, this understanding will help the investigation of new materials for SLS.

  9. Energy density and energy flow of surface waves in a strongly magnetized graphene (United States)

    Moradi, Afshin


    General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.

  10. Temperature-dependent conformational change of PNIPAM grafted chains at high surface density in water.

    Energy Technology Data Exchange (ETDEWEB)

    Satija, Sushil K. (National Institute of Standards and Technology, Gaithersburg, MD); Mendez, Sergio (University of New Mexico, Albuquerque, NM); Balamurugan, Sreelatha S. (University of New Mexico, Albuquerque, NM); Balamurugan, Subramanian (University of New Mexico, Albuquerque, NM); Kent, Michael Stuart; Yim, Hyun; Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM)


    1500 {angstrom}. More recently, Balamurugan et al. used surface plasmon resonance (SPR) to probe conformational changes in a PNIPAM brush grafted onto a gold layer by atom transfer radical polymerization (ATRP). For a sample with a dry film thickness of 517 {angstrom}, the SPR measurements indicated a significant contraction (extension of the layer with increasing/decreasing) temperature through the transition. Quantification of the change in profile characteristics was not reported, but it was noted that the change in the SPR signal occurred over a much broader range of temperature (15-35 C) than is typical of the transition for free chains in bulk solution. No systematic study of detailed PNIPAM chain conformations has yet been reported as a function of the two critical brush parameters, the surface density and molecular weight. A recent theoretical analysis by Baulin and Halperin has identified the surface density as a critical parameter demarcating different regimes of behavior. This arises from the concentration dependence of the Flory {chi} parameter as obtained from a recent phase behavior study of free chains in solution. Little attention has been paid to the surface density in previous experimental studies of grafted PNIPAM chains. We have begun a systematic study of the temperature-dependent conformational changes of PNIPAM grafted chains in water as a function of surface density and molecular weight using neutron reflection (NR). In previous work, we investigated the conformational changes of PNIPAM chains tethered to silicon oxide using two methods. The first was the 'grafting from' method in which N-isopropylacrylamide monomers were polymerized from the silicon surface with a chain transfer, free-radical technique. In the second method, preformed PNIPAM chains with carboxylic acid end groups associated with terminal hydroxyl groups of a mixed self-assembling monolayer. Detailed concentration profiles of the PNIPAM brushes were determined in D

  11. Cosmology with void-galaxy correlations. (United States)

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S


    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  12. Relic galaxies: where are they? (United States)

    Peralta de Arriba, L.; Quilis, V.; Trujillo, I.; Cebrián, M.; Balcells, M.


    The finding that massive galaxies grow with cosmic time fired the starting gun for the search of objects which could have survived up to the present day without suffering substantial changes (neither in their structures, neither in their stellar populations). Nevertheless, and despite the community efforts, up to now only one firm candidate to be considered one of these relics is known: NGC 1277. Curiously, this galaxy is located at the centre of one of the most rich near galaxy clusters: Perseus. Is its location a matter of chance? Should relic hunters focus their search on galaxy clusters? In order to reply this question, we have performed a simultaneous and analogous analysis using simulations (Millennium I-WMAP7) and observations (New York University Value-Added Galaxy Catalogue). Our results in both frameworks agree: it is more probable to find relics in high density environments.

  13. Calculating the Maximum Density of the Surface Packing of Ions in Ionic Liquids (United States)

    Kislenko, S. A.; Moroz, Yu. O.; Karu, K.; Ivaništšev, V. B.; Fedorov, M. V.


    The maximum density of monolayer packing on a graphene surface is calculated by means of molecular dynamics (MD) for ions of characteristic size and symmetry: 1-butyl-3-methylimidazolium [BMIM]+, tetrabutylammonium [TBA]+, tetrafluoroborate [BF4]-, dicyanamide [DCA]-, and bis(trifluoromethane) sulfonimide [TFSI]-. The characteristic orientations of ions in a closely packed monolayer are found. It is shown that the formation of a closely packed monolayer is possible for [DCA]- and [BF4]- anions only at surface charges that exceed the limit of the electrochemical stability of the corresponding ionic liquids. For the [TBA]+ cation, a monolayer structure can be observed at the charge of nearly 30 μC/cm2 attainable in electrochemical experiment.

  14. Galaxy evolution. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang. (United States)

    Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G


    Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. Copyright © 2015, American Association for the Advancement of Science.

  15. Coma cluster ultradiffuse galaxies are not standard radio galaxies (United States)

    Struble, Mitchell F.


    Matching members in the Coma cluster catalogue of ultradiffuse galaxies (UDGs) from SUBARU imaging with a very deep radio continuum survey source catalogue of the cluster using the Karl G. Jansky Very Large Array (VLA) within a rectangular region of ∼1.19 deg2 centred on the cluster core reveals matches consistent with random. An overlapping set of 470 UDGs and 696 VLA radio sources in this rectangular area finds 33 matches within a separation of 25 arcsec; dividing the sample into bins with separations bounded by 5, 10, 20 and 25 arcsec finds 1, 4, 17 and 11 matches. An analytical model estimate, based on the Poisson probability distribution, of the number of randomly expected matches within these same separation bounds is 1.7, 4.9, 19.4 and 14.2, each, respectively, consistent with the 95 per cent Poisson confidence intervals of the observed values. Dividing the data into five clustercentric annuli of 0.1° and into the four separation bins, finds the same result. This random match of UDGs with VLA sources implies that UDGs are not radio galaxies by the standard definition. Those VLA sources having integrated flux >1 mJy at 1.4 GHz in Miller, Hornschemeier and Mobasher without SDSS galaxy matches are consistent with the known surface density of background radio sources. We briefly explore the possibility that some unresolved VLA sources near UDGs could be young, compact, bright, supernova remnants of Type Ia events, possibly in the intracluster volume.

  16. New radiative transfer models for obscuring tori in active galaxies


    van Bemmel, I. M.; Dullemond, C. P.


    Two-dimensional radiative transfer is employed to obtain the broad-band infrared spectrum of active galaxies. In the models we vary the geometry and size of the obscuring medium, the surface density, the opacity and the grain size distribution. Resulting spectral energy distributions are constructed for different orientations of the toroid. Colour-colour comparisons with observational data are consistent with previous observations that the emission longward of 60 micron is produced by star-fo...

  17. Large-scale galaxy bias (United States)

    Jeong, Donghui; Desjacques, Vincent; Schmidt, Fabian


    Here, we briefly introduce the key results of the recent review (arXiv:1611.09787), whose abstract is as following. This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy (or halo) statistics. We then review the excursion set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  18. Large-scale galaxy bias (United States)

    Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian


    This review presents a comprehensive overview of galaxy bias, that is, the statistical relation between the distribution of galaxies and matter. We focus on large scales where cosmic density fields are quasi-linear. On these scales, the clustering of galaxies can be described by a perturbative bias expansion, and the complicated physics of galaxy formation is absorbed by a finite set of coefficients of the expansion, called bias parameters. The review begins with a detailed derivation of this very important result, which forms the basis of the rigorous perturbative description of galaxy clustering, under the assumptions of General Relativity and Gaussian, adiabatic initial conditions. Key components of the bias expansion are all leading local gravitational observables, which include the matter density but also tidal fields and their time derivatives. We hence expand the definition of local bias to encompass all these contributions. This derivation is followed by a presentation of the peak-background split in its general form, which elucidates the physical meaning of the bias parameters, and a detailed description of the connection between bias parameters and galaxy statistics. We then review the excursion-set formalism and peak theory which provide predictions for the values of the bias parameters. In the remainder of the review, we consider the generalizations of galaxy bias required in the presence of various types of cosmological physics that go beyond pressureless matter with adiabatic, Gaussian initial conditions: primordial non-Gaussianity, massive neutrinos, baryon-CDM isocurvature perturbations, dark energy, and modified gravity. Finally, we discuss how the description of galaxy bias in the galaxies' rest frame is related to clustering statistics measured from the observed angular positions and redshifts in actual galaxy catalogs.

  19. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents (United States)

    Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J.


    Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.

  20. Adsorption of atomic nitrogen and oxygen on [Formula: see text] surface: a density functional theory study. (United States)

    Breedon, M; Spencer, M J S; Yarovsky, I


    The adsorption of atomic nitrogen and oxygen on the ([Formula: see text]) crystal face of zinc oxide (ZnO) was studied. Binding energies, workfunction changes, vibrational frequencies, charge density differences and electron localization functions were calculated. It was elucidated that atomic oxygen binds more strongly than nitrogen, with the most stable [Formula: see text] structure exhibiting a binding energy of -2.47 eV, indicating chemisorption onto the surface. Surface reconstructions were observed for the most stable minima of both atomic species. Positive workfunction changes were calculated for both adsorbed oxygen and nitrogen if the adsorbate interacted with zinc atoms. Negative workfunction changes were calculated when the adsorbate interacted with both surface oxygen and zinc atoms. Interactions between the adsorbate and the surface zinc atoms resulted in ionic-type bonding, whereas interactions with oxygen atoms were more likely to result in the formation of covalent-type bonding. The positive workfunction changes correlate with an experimentally observed increase in resistance of ZnO conductometric sensor devices.

  1. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection. (United States)

    Ueda, Erica; Feng, Wenqian; Levkin, Pavel A


    High-density microarrays can screen thousands of genetic and chemical probes at once in a miniaturized and parallelized manner, and thus are a cost-effective alternative to microwell plates. Here, high-density cell microarrays are fabricated by creating superhydrophilic-superhydrophobic micropatterns in thin, nanoporous polymer substrates such that the superhydrophobic barriers confine both aqueous solutions and adherent cells within each superhydrophilic microspot. The superhydrophobic barriers confine and prevent the mixing of larger droplet volumes, and also control the spreading of droplets independent of the volume, minimizing the variability that arises due to different liquid and surface properties. Using a novel liposomal transfection reagent, ScreenFect A, the method of reverse cell transfection is optimized on the patterned substrates and several factors that affect transfection efficiency and cytotoxicity are identified. Higher levels of transfection are achieved on HOOC- versus NH 2 -functionalized superhydrophilic spots, as well as when gelatin and fibronectin are added to the transfection mixture, while minimizing the amount of transfection reagent improves cell viability. Almost no diffusion of the printed transfection mixtures to the neighboring microspots is detected. Thus, superhydrophilic-superhydrophobic patterned surfaces can be used as cell microarrays and for optimizing reverse cell transfection conditions before performing further cell screenings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G. [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Hunter, Deidre A., E-mail:, E-mail: [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, Arizona 86001 (United States)


    The radial profiles of gas, stars, and far-ultraviolet radiation in 20 dwarf Irregular galaxies are converted to stability parameters and scale heights for a test of the importance of two-dimensional (2D) instabilities in promoting star formation. A detailed model of this instability involving gaseous and stellar fluids with self-consistent thicknesses and energy dissipation on a perturbation crossing time gives the unstable growth rates. We find that all locations are effectively stable to 2D perturbations, mostly because the disks are thick. We then consider the average volume densities in the midplanes, evaluated from the observed H i surface densities and calculated scale heights. The radial profiles of the star-formation rates are equal to about 1% of the H i surface densities divided by the free fall times at the average midplane densities. This 1% resembles the efficiency per unit free fall time commonly found in other cases. There is a further variation of this efficiency with radius in all of our galaxies, following the exponential disk with a scale length equal to about twice the stellar mass scale length. This additional variation is modeled by the molecular fraction in a diffuse medium using radiative transfer solutions for galaxies with the observed dimensions and properties of our sample. We conclude that star formation is activated by a combination of three-dimensional gaseous gravitational processes and molecule formation. Implications for outer disk structure and formation are discussed.


    Energy Technology Data Exchange (ETDEWEB)

    Diaz Tello, J.; Donzelli, C. [IATE, Observatorio Astronomico de Cordoba, Universidad Nacional de Cordoba (Argentina); Padilla, N. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile (Chile); Fujishiro, N.; Yoshikawa, T. [Koyama Astronomical Observatory, Kyoto Sangyo University (Japan); Hanami, H. [Physics Section, Iwate University (Japan); Hatsukade, B., E-mail: [Department of Astronomy, Kyoto University (Japan)


    We present a spectroscopic study with the derivation of the physical properties of 37 Balmer break galaxies, which have the necessary lines to locate them in star-forming-active galactic nuclei (AGNs) diagnostic diagrams. These galaxies span a redshift range from 0.045 to 0.93 and are somewhat less massive than similar samples of previous works. The studied sample has multiwavelength photometric data coverage from the ultraviolet to mid-infrared (MIR) Spitzer bands. We investigate the connection between star formation and AGN activity via optical, mass-excitation (MEx), and MIR diagnostic diagrams. Through optical diagrams, 31 (84%) star-forming galaxies, two (5%) composite galaxies, and three (8%) AGNs were classified, whereas from the MEx diagram only one galaxy was classified as AGN. A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands. Of these, three AGN candidates were not classified as AGN in the optical diagrams, suggesting they are dusty/obscured AGNs, or that nuclear star formation has diluted their contributions. By fitting the spectral energy distribution of the galaxies, we derived the stellar masses, dust reddening E(B - V), ages, and UV star formation rates (SFRs). Furthermore, the relationship between SFR surface density ({Sigma}{sub SFR}) and stellar mass surface density per time unit ({Sigma}{sub M{sub */{tau}}}) as a function of redshift was investigated using the [O II] {lambda}3727, 3729, H{alpha} {lambda}6563 luminosities, which revealed that both quantities are larger for higher redshift galaxies. We also studied the SFR and specific SFR (SSFR) versus stellar mass and color relations, with the more massive galaxies having higher SFR values but lower SSFR values than less massive galaxies. These results are consistent with previous ones showing that, at a given mass, high-redshift galaxies have on average larger SFR and SSFR values than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values than redder

  4. How does ionizing radiation escape from galaxies? (United States)

    Orlitova, Ivana


    Search for sources that reionized the Universe from z 15 to z 6 is one of the main drivers of present-day astronomy. Low-mass star-forming galaxies are the most favoured sources of ionizing photons, but the searches of escaping Lyman continuum (LyC) have not been extremely successful. Our team has recently detected prominent LyC escape from five Green Pea galaxies at redshift 0.3, using the HST/COS spectrograph, which represents a significant breakthrough. We propose here to study the LyC escape of the strongest among these leakers, J1152, with spatial resolution. From the comparison of the ionizing and non-ionizing radiation maps, and surface brightness profiles, we will infer the major mode in which LyC is escaping: from the strongest starburst, from the galaxy edge, through a hole along our line-of-sight, through clumpy medium, or directly from all the production sites due to highly ionized medium in the entire galaxy. In parallel, we will test the predictive power of two highly debated indirect indicators of LyC leakage: the [OIII]5007/[OII]3727 ratio, and Lyman-alpha. We predict that their spatial distribution should closely follow that of the ionizing continuum if column densities of the neutral gas are low. This combined study, which relies on the HST unique capabilities, will bring crucial information on the structure of the leaking galaxies, provide constraints for hydrodynamic simulations, and will lead to efficient future searches for LyC leakers across a large range of redshifts.

  5. Toward accurate prediction of potential energy surfaces and the spectral density of hydrogen bonded systems

    International Nuclear Information System (INIS)

    Rekik, Najeh


    Despite the considerable progress made in quantum theory and computational methods, detailed descriptions of the potential energy surfaces of hydrogen-bonded systems have not yet been achieved. In addition, the hydrogen bond (H-bond) itself is still so poorly understood at the fundamental level that it remains unclear exactly what geometry constitutes a “real” H-bond. Therefore, in order to investigate features essential for hydrogen bonded complexes, a simple, efficient, and general method for calculating matrix elements of vibrational operators capable of describing the stretching modes and the H-bond bridges of hydrogen-bonded systems is proposed. The derived matrix elements are simple and computationally easy to evaluate, which makes the method suitable for vibrational studies of multiple-well potentials. The method is illustrated by obtaining potential energy surfaces for a number of two-dimensional systems with repulsive potentials chosen to be in Gaussian form for the stretching mode and of the Morse-type for the H-bond bridge dynamics. The forms of potential energy surfaces of weak and strong hydrogen bonds are analyzed by varying the asymmetry of the Gaussian potential. Moreover, the choice and applicability of the selected potential for the stretching mode and comparison with other potentials used in the area of hydrogen bond research are discussed. The approach for the determination of spectral density has been constructed in the framework of the linear response theory for which spectral density is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The approach involves anharmonic coupling between the high frequency stretching vibration (double well potential) and low-frequency donor-acceptor stretching mode (Morse potential) as well as the electrical anharmonicity of the dipole moment operator of the fast mode. A direct relaxation mechanism is incorporated through a time decaying exponential

  6. Formation of double galaxies by tidal capture

    International Nuclear Information System (INIS)

    Alladin, S.M.; Potdar, A.; Sastry, K.S.


    The conditions under which double galaxies may be formed by tidal capture are considered. Estimates for the increase in the internal energy of colliding galaxies due to tidal effects are used to determine the magnitudes Vsub(cap) and Vsub(dis) of the maximum relative velocities at infinite separation required for tidal capture and tidal disruption respectively. A double galaxy will be formed by tidal capture without tidal disruption of a component if Vsub(cap)>Vsub(i) and Vsub(cap)>Vsub(dis) where Vsub(i) is the initial relative speed of the two galaxies at infinite separation. If the two galaxies are of the same dimension, formulation of double galaxies by tidal capture is possible in a close collision either if the two galaxies do not differ much in mass and density distribution or if the more massive galaxy is less centrally concentrated than the other. If it is assumed as statistics suggest, that the mass of a galaxy is proportional to the square of its radius, it follows that the probability of the formation of double galaxies by tidal capture increases with the increase in mass of the galaxies and tidal distribution does not occur in a single collision for any distance of closest approach of the two galaxies. (Auth.)


    Energy Technology Data Exchange (ETDEWEB)

    Elmegreen, Bruce G., E-mail: [IBM Research Division, T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States)


    A dynamical model for star formation on a galactic scale is proposed in which the interstellar medium is constantly condensing to star-forming clouds on the dynamical time of the average midplane density, and the clouds are constantly being disrupted on the dynamical timescale appropriate for their higher density. In this model, the areal star formation rate scales with the 1.5 power of the total gas column density throughout the main regions of spiral galaxies, and with a steeper power, 2, in the far outer regions and in dwarf irregular galaxies because of the flaring disks. At the same time, there is a molecular star formation law that is linear in the main and outer parts of disks and in dIrrs because the duration of individual structures in the molecular phase is also the dynamical timescale, canceling the additional 0.5 power of surface density. The total gas consumption time scales directly with the midplane dynamical time, quenching star formation in the inner regions if there is no accretion, and sustaining star formation for ∼100 Gyr or more in the outer regions with no qualitative change in gas stability or molecular cloud properties. The ULIRG track follows from high densities in galaxy collisions.

  8. Deficiency of normal galaxies among Markaryan galaxies

    International Nuclear Information System (INIS)

    Iyeveer, M.M.


    Comparison of the morphological types of Markaryan galaxies and other galaxies in the Uppsala catalog indicates a strong deficiency of normal ellipticals among the Markaryan galaxies, for which the fraction of type E galaxies is ≤ 1% against 10% among the remaining galaxies. Among the Markaryan galaxies, an excess of barred galaxies is observed - among the Markaryan galaxies with types Sa-Scd, approximately half or more have bars, whereas among the remaining galaxies of the same types bars are found in about 1/3

  9. Density functional theory study of carbon dioxide electrochemical reduction on the Fe(100) surface. (United States)

    Bernstein, Nicole J; Akhade, Sneha A; Janik, Michael J


    Carbon dioxide electroreduction offers the possibility of producing hydrocarbon fuels using energy from renewable sources. Herein, we use density functional theory to analyze the feasibility of CO2 electroreduction on a Fe(100) surface. Experimentally, iron is nonselective for hydrocarbon formation. A simplistic analysis of low-coverage reaction intermediate energies for the paths to produce CH4 and CH3OH from CO2 suggests Fe(100) could be more active than Cu(111), currently the only metallic catalyst to show selectivity towards hydrocarbon formation. We consider a series of impediments to CO2 electroreduction on Fe(100) including O*/OH* (* denotes surface bound species) blockage of active surface sites; competitive adsorption effects of H*, CO* and C*; and iron carbide formation. Our results indicate that under CO2 electroreduction conditions, Fe(100) is predicted to be covered in C* or CO* species, blocking any C-H bond formation. Further, bulk Fe is predicted to be unstable relative to FeCx formation at potentials relevant to CO2 electroreduction conditions.

  10. The visibility of high-redshift galaxies

    International Nuclear Information System (INIS)

    Phillipps, S.; Davies, J.I.; Disney, M.J.


    The most visible galaxies - that is, those which have the largest apparent sizes and isophotal luminosities when seen at a given distance - are those with a particular observed surface brightness. Extending this argument to high-redshift galaxies, it is clear that this optimum surface brightness moves progressively to brighter intrinsic surface brightnesses, so as to counteract the effect of K-corrections and cosmological dimming. Thus the galaxies appearing in faint surveys will be from a population distinctly different from those 'normal' galaxies observed nearby. Galaxies in deep surveys are more likely to be spirals and to be of high surface brightness. This has very important implications for observational studies of galaxy evolution. (author)

  11. Galaxy Formation

    CERN Document Server

    Longair, Malcolm S


    This second edition of Galaxy Formation is an up-to-date text on astrophysical cosmology, expounding the structure of the classical cosmological models from a contemporary viewpoint. This forms the background to a detailed study of the origin of structure and galaxies in the Universe. The derivations of many of the most important results are derived by simple physical arguments which illuminate the results of more advanced treatments. A very wide range of observational data is brought to bear upon these problems, including the most recent results from WMAP, the Hubble Space Telescope, galaxy surveys like the Sloan Digital Sky Survey and the 2dF Galaxy Redshift Survey, studies of Type 1a supernovae, and many other observations.

  12. How do spiral arm contrasts relate to bars, disc breaks and other fundamental galaxy properties? (United States)

    Bittner, Adrian; Gadotti, Dimitri A.; Elmegreen, Bruce G.; Athanassoula, Evangelie; Elmegreen, Debra M.; Bosma, Albert; Muñoz-Mateos, Juan-Carlos


    We investigate how the properties of spiral arms relate to other fundamental galaxy properties, including bars and disc breaks. We use previously published measurements of those properties, and our own measurements of arm and bar contrasts for a large sample of galaxies, using 3.6 μm images from the Spitzer Survey of Stellar Structure in Galaxies. Flocculent galaxies are clearly distinguished from other spiral arm classes, especially by their lower stellar mass and surface density. Multi-armed and grand-design galaxies are similar in most of their fundamental parameters, excluding some bar properties and the bulge-to-total ratio. Based on these results, we revisit the sequence of spiral arm classes, and discuss classical bulges as a necessary condition for standing spiral wave modes in grand-design galaxies. We find a strong correlation between bulge-to-total ratio and bar contrast, and a weaker correlation between arm and bar contrasts. Barred and unbarred galaxies exhibit similar arm contrasts, but the highest arm contrasts are found exclusively in barred galaxies. Interestingly, the bar contrast, and its increase from flocculent to grand-design galaxies, is systematically more significant than that of the arm contrast. We corroborate previous findings concerning a connection between bars and disc breaks. In particular, in grand-design galaxies, the bar contrast correlates with the normalized disc break radius. This does not hold for other spiral arm classes or the arm contrast. Our measurements of arm and bar contrast and radial contrast profiles are publicly available.


    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Delgado, David; Grebel, Eva K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12–14, D-69120 Heidelberg (Germany); Läsker, Ronald [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Sharina, Margarita; Karachentsev, Igor D. [Special Astrophysical Observatory, Russian Academy of Sciences (Russian Federation); Toloba, Elisa; Romanowsky, Aaron J. [University of California Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Fliri, Jürgen [Instituto de Astrofísica de Canarias, Vía Láctea s/n, E-38200 La Laguna, Tenerife (Spain); Beaton, Rachael [The Observatories of the Carnegie Institutions for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Valls-Gabaud, David [LERMA, CNRS UMR 8112, Observatoire de Paris, 61 Avenue de l’Observatoire, F-75014 Paris (France); Chonis, Taylor S. [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Forbes, Duncan A. [Center for Astrophysics and Supercomputing, Swinburne University, Hawthorn VIC 3122 (Australia); Gallego-Laborda, J. [Fosca Nit Observatory, Montsec Astronomical Park, Ager (Spain); Teuwen, Karel [Remote Observatories Southern Alpes, Verclause (France); Gómez-Flechoso, M. A. [Departamento de Matemática Aplicada (Biomatemática), Universidad Complutense de Madrid, E-28040 Madrid (Spain); and others


    We report the discovery of DGSAT I, an ultra-diffuse, quenched galaxy located 10.°4 in projection from the Andromeda galaxy (M31). This low-surface brightness galaxy (μ{sub V} = 24.8 mag arcsec{sup −2}), found with a small amateur telescope, appears unresolved in sub-arcsecond archival Subaru/Suprime-Cam images, and hence has been missed by optical surveys relying on resolved star counts, in spite of its relatively large effective radius (R{sub e}(V) = 12″) and proximity (15′) to the well-known dwarf spheroidal galaxy And II. Its red color (V − I = 1.0), shallow Sérsic index (n{sub V} = 0.68), and the absence of detectable Hα emission are typical properties of dwarf spheroidal galaxies and suggest that it is mainly composed of old stars. Initially interpreted as an interesting case of an isolated dwarf spheroidal galaxy in the local universe, our radial velocity measurement obtained with the BTA 6 m telescope (V{sub h} = 5450 ± 40 km s{sup −1}) shows that this system is an M31-background galaxy associated with the filament of the Pisces-Perseus supercluster. At the distance of this cluster (∼78 Mpc), DGSAT I would have an R{sub e} ∼ 4.7 kpc and M{sub V} ∼ −16.3. Its properties resemble those of the ultra-diffuse galaxies (UDGs) recently discovered in the Coma cluster. DGSAT I is the first case of these rare UDGs found in this galaxy cluster. Unlike the UDGs associated with the Coma and Virgo clusters, DGSAT I is found in a much lower density environment, which provides a fresh constraint on the formation mechanisms for this intriguing class of galaxy.

  14. The evolution of the cold interstellar medium in galaxies following a starburst (United States)

    Rowlands, K.; Wild, V.; Nesvadba, N.; Sibthorpe, B.; Mortier, A.; Lehnert, M.; da Cunha, E.


    We present the evolution of dust and molecular gas properties in a sample of 11 z ˜ 0.03 starburst to post-starburst (PSB) galaxies selected to span an age sequence from ongoing starburst to 1 Gyr after the starburst ended. All PSBs harbour significant molecular gas and dust reservoirs and residual star formation, indicating that complete quenching of the starburst due to exhaustion or expulsion of gas has not occurred during this timespan. As the starburst ages, we observe a clear decrease in the star formation efficiency, molecular gas and star formation rate (SFR) surface density, and effective dust temperature, from levels coincident with starburst galaxies to those of normal star-forming galaxies. These trends are consistent with a natural decrease in the SFR following consumption of molecular gas by the starburst, and corresponding decrease in the interstellar radiation field strength as the starburst ages. The gas and dust contents of the PSBs are coincident with those of star-forming galaxies and molecular gas-rich early-type galaxies, and are not consistent with galaxies on the red sequence. We find no evidence that the global gas reservoir is expelled by stellar winds or active galactic nuclei feedback. Our results show that although a strong starburst in a low-redshift galaxy may cause the galaxy to ultimately have a lower specific SFR and be of an earlier morphological type, the galaxy will remain in the `green valley' for an extended time. Multiple such episodes may be needed to complete migration of the galaxy from the blue- to red sequence.

  15. Star-Formation Histories of MUSCEL Galaxies (United States)

    Young, Jason; Kuzio de Naray, Rachel; Xuesong Wang, Sharon


    The MUSCEL program (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies) uses combined ground-based/space-based data to determine the spatially resolved star-formation histories of low surface brightness (LSB) galaxies. LSB galaxies are paradoxical in that they are gas rich but have low star-formation rates. Here we present our observations and fitting technique, and the derived histories for select MUSCEL galaxies. It is our aim to use these histories in tandem with velocity fields and metallicity profiles to determine the physical mechanism(s) that give these faint galaxies low star-formation rates despite ample gas supplies.

  16. Improving constraints on the growth rate of structure by modelling the density-velocity cross-correlation in the 6dF Galaxy Survey (United States)

    Adams, Caitlin; Blake, Chris


    We present the first simultaneous analysis of the galaxy overdensity and peculiar velocity fields by modelling their cross-covariance. We apply our new maximum-likelihood approach to data from the 6-degree Field Galaxy Survey (6dFGS), which has the largest single collection of peculiar velocities to date. We present a full derivation of the analytic expression for the cross-covariance between the galaxy overdensity and peculiar velocity fields and find direct evidence for a non-zero correlation between the fields on scales up to ˜50 h-1 Mpc. When utilizing the cross-covariance, our measurement of the normalized growth rate of structure is fσ _8(z=0) = 0.424^{+0.067}_{-0.064} (15 per cent precision), and our measurement of the redshift-space distortion parameter is β =0.341^{+0.062}_{-0.058} (18 per cent precision). Both measurements improve by ˜20 per cent compared to only using the autocovariance information. This is consistent with the literature on multiple-tracer approaches, as well as Fisher matrix forecasts and previous analyses of 6dFGS. Our measurement of fσ8 is consistent with the standard cosmological model, and we discuss how our approach can be extended to test alternative models of gravity.

  17. Evaluation of surface charge density and surface potential by electrophoretic mobility for solid lipid nanoparticles and human brain-microvascular endothelial cells. (United States)

    Kuo, Yung-Chih; Chen, I-Chun


    Electrophoretic mobility, zeta potential, surface charge density, and surface potential of cacao butter-based solid lipid nanoparticles (SLN) and human brain-microvascular endothelial cells (HBMEC) were analyzed in this study. Electrophoretic mobility and zeta potential were determined experimentally. Surface charge density and surface potential were evaluated theoretically via incorporation of ion condensation theory with the relationship between surface charge density and surface potential. The results revealed that the lower the pH value, the weaker the electrostatic properties of the negatively charged SLN and HBMEC. A higher content of cacao butter or a slower stirring rate yielded a larger SLN and stronger surface electricity. On the contrary, storage led to instability of SLN suspension and weaker electrical behavior because of hydrolysis of ionogenic groups on the particle surfaces. Also, high H+ concentration resulted in excess adsorption of H+ onto HBMEC, rendering charge reversal and cell death. The largest normalized discrepancy between surface potential and zeta potential occurred at pH = 7. For a fixed biocolloidal species, the discrepancy was nearly invariant at high pH value. However, the discrepancy followed the order of electrical intensity for HBMEC system at low pH value because mammalian cells were sensitive to H+. The present study provided a practical method to obtain surface charge properties by capillary electrophoresis.

  18. Molecular-scale model for the mass density of electrolyte solutions bound by clay surfaces: application to bentonites. (United States)

    Gonçalvès, J; Rousseau-Gueutin, P


    A model to simulate the density of solutions adsorbed onto clay mineral surfaces is proposed. In this model, the alteration of the ionic distribution caused by the electric field associated with the surface charge of clay platelets is accounted for using an electrical triple-layer model with an overlapping diffuse layer. The combined effects of ion hydration and the electric field on the structure of water are introduced through their influence on the partial molar volume of water. This model, applied to Na-montmorillonite, simulates the distribution of the interplatelet solution density as a function of the distance to the mineral surface. High densities in the direct vicinity of the surface and slightly lower density (a few percent) than the normal density in the diffuse layer are obtained. These results show good consistency with the available data on bentonite and with the densities that can be inferred from molecular dynamics simulations. This model shows that the interplatelet distance plays an important role in the distribution of the mass density of the solution in the pore space of clay rocks.

  19. Fermi Surface Evolution Across Multiple Charge Density Wave Transitions in ErTe3

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.G.; /SLAC, SSRL /Stanford U., Geballe Lab.; Brouet, V.; /Orsay, LPS; He, R.; /SLAC, SSRL /Stanford U., Geballe Lab.; Lu, D.H.; /SLAC, SSRL; Ru, N.; Chu, J.-H.; Fisher, I.R.; /Stanford U., Geballe Lab.; Shen, Z.-X.; /SLAC, SSRL /Stanford U., Geballe Lab.


    The Fermi surface (FS) of ErTe{sub 3} is investigated using angle-resolved photoemission spectroscopy (ARPES). Low temperature measurements reveal two incommensurate charge density wave (CDW) gaps created by perpendicular FS nesting vectors. A large {Delta}{sub 1} = 175 meV gap arising from a CDW with c* - q{sub CDW1} {approx} 0.70(0)c* is in good agreement with the expected value. A second, smaller {Delta}{sub 2} = 50 meV gap is due to a second CDW with a* - q{sub CDW2} {approx} 0.68(5)a*. The temperature dependence of the FS, the two gaps and possible interaction between the CDWs are examined.

  20. Improvement of flow and bulk density of pharmaceutical powders using surface modification. (United States)

    Jallo, Laila J; Ghoroi, Chinmay; Gurumurthy, Lakxmi; Patel, Utsav; Davé, Rajesh N


    Improvement in flow and bulk density, the two most important properties that determine the ease with which pharmaceutical powders can be handled, stored and processed, is done through surface modification. A limited design of experiment was conducted to establish a standardized dry coating procedure that limits the extent of powder attrition, while providing the most consistent improvement in angle of repose (AOR). The magnetically assisted impaction coating (MAIC) was considered as a model dry-coater for pharmaceutical powders; ibuprofen, acetaminophen, and ascorbic acid. Dry coated drug powders were characterized by AOR, particle size as a function of dispersion pressure, particle size distribution, conditioned bulk density (CBD), Carr index (CI), flow function coefficient (FFC), cohesion coefficient using different instruments, including a shear cell in the Freeman FT4 powder rheometer, and Hansen flowability index. Substantial improvement was observed in all the measured properties after dry coating relative to the uncoated powders, such that each powder moved from a poorer to a better flow classification and showed improved dispersion. The material intrinsic property such as cohesion, plotted as a function of particle size, gave a trend similar to those of bulk flow properties, AOR and CI. Property improvement is also illustrated in a phase map of inverse cohesion (or FFC) as a function of bulk density, which also indicated a significant positive shift due to dry coating. It is hoped that such phase maps are useful in manufacturing decisions regarding the need for dry coating, which will allow moving from wet granulation to roller compaction or to direct compression based formulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors

    DEFF Research Database (Denmark)

    Vojvodic, Aleksandra; Ruberto, C.; Lundqvist, Bengt


    This study explores atomic and molecular adsorption on a number of early transition-metal carbides (TMCs) in NaCl structure by means of density-functional theory calculations. The investigated substrates are the TM-terminated TMC(111) surfaces, of interest because of the presence of different types......, surface relaxations, Bader charges, and surface-localized densities of states (DOSs). Detailed comparisons between surface and bulk DOSs reveal the existence of transition-metal localized SRs (TMSRs) in the pseudogap and of several C-localized SRs (CSRs) in the upper valence band on all considered TMC(111......) surfaces. The spatial extent and the dangling bond nature of these SRs are supported by real-space analyses of the calculated Kohn-Sham wavefunctions. Then, atomic and molecular adsorption energies, geometries, and charge transfers are presented. An analysis of the adsorbate-induced changes in surface DOSs...

  2. Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective (United States)

    Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim


    Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.

  3. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    DEFF Research Database (Denmark)

    Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas


    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...... the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error...... estimation functional with van der Waals correlation (BEEF-vdW), a semilocal approximation with an additional nonlocal correlation term. Furthermore, an ensemble of functionals around BEEF-vdW comes out naturally, offering an estimate of the computational error. An extensive assessment on a range of data...

  4. Kernel density surface modelling as a means to identify significant concentrations of vulnerable marine ecosystem indicators.

    Directory of Open Access Journals (Sweden)

    Ellen Kenchington

    Full Text Available The United Nations General Assembly Resolution 61/105, concerning sustainable fisheries in the marine ecosystem, calls for the protection of vulnerable marine ecosystems (VME from destructive fishing practices. Subsequently, the Food and Agriculture Organization (FAO produced guidelines for identification of VME indicator species/taxa to assist in the implementation of the resolution, but recommended the development of case-specific operational definitions for their application. We applied kernel density estimation (KDE to research vessel trawl survey data from inside the fishing footprint of the Northwest Atlantic Fisheries Organization (NAFO Regulatory Area in the high seas of the northwest Atlantic to create biomass density surfaces for four VME indicator taxa: large-sized sponges, sea pens, small and large gorgonian corals. These VME indicator taxa were identified previously by NAFO using the fragility, life history characteristics and structural complexity criteria presented by FAO, along with an evaluation of their recovery trajectories. KDE, a non-parametric neighbour-based smoothing function, has been used previously in ecology to identify hotspots, that is, areas of relatively high biomass/abundance. We present a novel approach of examining relative changes in area under polygons created from encircling successive biomass categories on the KDE surface to identify "significant concentrations" of biomass, which we equate to VMEs. This allows identification of the VMEs from the broader distribution of the species in the study area. We provide independent assessments of the VMEs so identified using underwater images, benthic sampling with other gear types (dredges, cores, and/or published species distribution models of probability of occurrence, as available. For each VME indicator taxon we provide a brief review of their ecological function which will be important in future assessments of significant adverse impact on these habitats here

  5. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures

    Energy Technology Data Exchange (ETDEWEB)

    Hedayat, Seyed Mahdi [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of); Karimi-Sabet, Javad, E-mail: [NFCRS, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Shariaty-Niassar, Mojtaba, E-mail: [Transport Phenomena & Nanotechnology Lab., School of Chemical Engineering, College of Engineering, University of Tehran (Iran, Islamic Republic of)


    Highlights: • Manipulation of the Cu surface morphology in a wide range by electropolishing treatment. • Comparison of the nucleation density of graphene at low pressure and atmospheric pressure CVD processes. • Controlling the evolution of the Cu surface morphology inside a novel confined space. • Growth of large-size graphene domains. - Abstract: In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  6. Luminous compact blue galaxies in the local Universe: A key reference for high-redshift studies (United States)

    Pérez Gallego, J.; Guzmán, R.; Castander, F. J.; Garland, C. A.; Pisano, D. J.


    Luminous Compact Blue Galaxies (LCBGs) are high surface brightness starburst galaxies, bluer than a typical Sbc and brighter than ˜0.25Lstar. LCBGs have evolved more than any other galaxy class in the last ˜8 Gyr, and are a major contributor to the observed enhancement of the UV luminosity density of the Universe at z≤1. Despite the key role LCBGs may play in galaxy evolution, their statistical properties are still largely unknown. We have selected a complete sample of ˜25 LCBGs within 100 Mpc, after investigating over 106 nearby galaxies from the DR1 of the SDSS database. This sample, although small, provides an excellent reference for comparison with current and future surveys of similar galaxies at high redshift, including the population of Lyman-break galaxies. We present preliminary results of this study using 3D spectroscopic observations obtained over a very wide range in wavelength, using WIYN/DENSEPAK in the optical, FISICA in the infrared, and the VLA at cm wavelengths.

  7. Predicting HCN, HCO+, multi-transition CO, and dust emission of star-forming galaxies. From local spiral and ultraluminous infrared galaxies to high-z star-forming and submillimeter galaxies (United States)

    Vollmer, B.; Gratier, P.; Braine, J.; Bot, C.


    . The integrated Kennicutt-Schmidt law has a slope of approximately 1 for the local spirals, ULIRGs, and smm-galaxies, whereas the slope is 1.7 for high-z star-forming galaxies. The model shows Kennicutt-Schmidt laws with respect to the molecular gas surface density with slopes of approximately 1.5 for local spiral galaxies, high-z star-forming galaxies. The relation steepens for compact starburst galaxies. The model star-formation rate per unit area is, as observed, proportional to the molecular gas surface density divided by the dynamical timescale. Our relatively simple analytic model together with the recipes for the molecular line emission appears to capture the essential physics of galactic clumpy gas disks.

  8. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms (United States)

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei


    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  9. Concentration Dependences of the Surface Tension and Density of Solutions of Acetone-Ethanol-Water Systems at 293 K (United States)

    Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.


    Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.

  10. A study of the rates of heat transfer and bubble site density for nucleate boiling on an inclined heating surface

    International Nuclear Information System (INIS)

    Bonamy, S.E.; Symons, J.G.


    Nucleate pool boiling of distilled water from an electrically heated surface at atmospheric pressure is studied for varying heating surface inclinations. The constants of the accepted boiling equation phi = K Tsup(B) and the Rohsenow Correlation Coefficient are found to be dependent on surface orientation. Convection cooling is observed to play a major role in pool boiling phenomena and causes large changes in the heat transfer rates for a given excess of temperature of the heated surface. Active nucleation site density is studied and found to be independent of surface inclination. Empirical relations are presented to provide an understanding of the effects of inclination on other boiling parameters. (author)

  11. The Physical Origin of Long Gas Depletion Times in Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y., E-mail: [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)


    We present a model that explains why galaxies form stars on a timescale significantly longer than the timescales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a relatively short timescale, and thus the rate of this evolution does not limit the star formation rate (SFR). Instead, the SFR is limited because only a small fraction of star-forming gas is converted into stars before star-forming regions are dispersed by feedback and dynamical processes. Thus, gas cycles into and out of a star-forming state multiple times, which results in a long timescale on which galaxies convert gas into stars. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in simulations. In particular, the model explains how feedback self-regulates the SFR in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated L {sub *}-sized galaxy simulation that reproduces the observed Kennicutt–Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is almost linear on kiloparsec scales, although a nonlinear relation is adopted in simulation cells. We discuss how a linear relation emerges from non-self-similar scaling of the gas density PDF with the average gas surface density.

  12. The Physical Origin of Long Gas Depletion Times in Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, Vadim A.; Kravtsov, Andrey V.; Gnedin, Nickolay Y.


    We present a model that elucidates why gas depletion times in galaxies are long compared to the time scales of the processes driving the evolution of the interstellar medium. We show that global depletion times are not set by any "bottleneck" in the process of gas evolution towards the star-forming state. Instead, depletion times are long because star-forming gas converts only a small fraction of its mass into stars before it is dispersed by dynamical and feedback processes. Thus, complete depletion requires that gas transitions between star-forming and non-star-forming states multiple times. Our model does not rely on the assumption of equilibrium and can be used to interpret trends of depletion times with the properties of observed galaxies and the parameters of star formation and feedback recipes in galaxy simulations. In particular, the model explains the mechanism by which feedback self-regulates star formation rate in simulations and makes it insensitive to the local star formation efficiency. We illustrate our model using the results of an isolated $L_*$-sized disk galaxy simulation that reproduces the observed Kennicutt-Schmidt relation for both molecular and atomic gas. Interestingly, the relation for molecular gas is close to linear on kiloparsec scales, even though a non-linear relation is adopted in simulation cells. This difference is due to stellar feedback, which breaks the self-similar scaling of the gas density PDF with the average gas surface density.

  13. Galaxy Clustering Around Nearby Luminous Quasars (United States)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.


    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  14. The spatially resolved star formation history of CALIFA galaxies. Cosmic time scales (United States)

    García-Benito, R.; González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; Cortijo-Ferrero, C.; López Fernández, R.; de Amorim, A. L.; Lacerda, E. A. D.; Vale Asari, N.; Sánchez, S. F.


    This paper presents the mass assembly time scales of nearby galaxies observed by CALIFA at the 3.5 m telescope in Calar Alto. We apply the fossil record method of the stellar populations to the complete sample of the 3rd CALIFA data release, with a total of 661 galaxies, covering stellar masses from 108.4 to 1012M⊙ and a wide range of Hubble types. We apply spectral synthesis techniques to the datacubes and process the results to produce the mass growth time scales and mass weighted ages, from which we obtain temporal and spatially resolved information in seven bins of galaxy morphology (E, S0, Sa, Sb, Sc, and Sd) and six bins of stellar mass and stellar mass surface density. We use three different tracers of the spatially resolved star formation history (mass assembly curves, ratio of half mass to half light radii, and mass-weighted age gradients) to test if galaxies grow inside-out, and its dependence with galaxy stellar mass, stellar mass surface density, and morphology. Our main results are as follows: (a) the innermost regions of galaxies assemble their mass at an earlier time than regions located in the outer parts; this happens at any given stellar mass (M⋆), stellar mass surface density (Σ⋆), or Hubble type, including the lowest mass systems in our sample. (b) Galaxies present a significant diversity in their characteristic formation epochs for lower-mass systems. This diversity shows a strong dependence of the mass assembly time scales on Σ⋆ and Hubble type in the lower-mass range (108.4 to 1010.4), but a very mild dependence in higher-mass bins. (c) The lowest half mass radius (HMR) to half light radius (HLR) ratio is found for galaxies between 1010.4 and 1011.1M⊙, where galaxies are 25% smaller in mass than in light. Low-mass galaxies show the largest ratio with HMR/HLR 0.89. Sb and Sbc galaxies present the lowest HMR/HLR ratio (0.74). The ratio HMR/HLR is always, on average, below 1, indicating that galaxies grow faster in mass than in light

  15. Surface density and volume density measurements of chloroplast thylakoids in maize ( Zea mays L.) under chilling conditions

    Czech Academy of Sciences Publication Activity Database

    Kubínová, Lucie; Kutík, J.


    Roč. 45, č. 4 (2007), s. 481-488 ISSN 0300-3604 R&D Projects: GA AV ČR(CZ) IAA100110502; GA MŠk(CZ) LC06063 Grant - others:GA ČR(CZ) GA522/01/0846 Institutional research plan: CEZ:AV0Z50110509 Keywords : stereology * surface area * thylakoid membranes Subject RIV: EA - Cell Biology Impact factor: 0.976, year: 2007

  16. Velocity evolution of galaxy clustering

    Energy Technology Data Exchange (ETDEWEB)

    Saslaw, W.C.; Aarseth, S.J.


    We have examined the changing velocity distribution of galaxies as they cluster in computer models of the expanding universe. The models are 4000-body numerical simulations of galaxies with a large range of masses interacting gravitationally. Clustering in velocity space is measured by calculating the residual peculiar velocities around the Hubble expansion. These form ''Hubble streaks as clustering progresses. We distinguish isolated field galaxies from clustered galaxies. In contrast to the usual belief, the velocity dispersion of the most extreme field galaxies does not decrease adiabatically. Rather, it is dominated by the perturbations of distant large clusters as they form and it decreases much more slowly than the inverse expansion length scale, R/sup -1/. The velocity dispersion of extreme field galaxies is a good cosmological indicator of ..cap omega.. = rho/rho/sub crit/. Preliminary comparison of several simulations with observtions shows that our universe agrees better with low density models, ..cap omega..< or =0.1. The velocity dispersion of cluster centers of mass is a good cosmological marker as well. We also suggest another new method for estimating ..cap omega.., based on the history of extreme field galaxies.

  17. Luminosity dependence in the Fundamental Plane projections of elliptical galaxies (United States)

    Desroches, Louis-Benoit; Quataert, Eliot; Ma, Chung-Pei; West, Andrew A.


    We analyse the Fundamental Plane projections of elliptical galaxies as a function of luminosity, using a sample of ~80000 galaxies drawn from Data Release 4 (DR4) of the Sloan Digital Sky Survey (SDSS). We separate brightest cluster galaxies (BCGs) from our main sample and reanalyse their photometry due to a problem with the default pipeline sky subtraction for BCGs. The observables we consider are effective radius (Re), velocity dispersion (σ), dynamical mass (Mdyn ~ Reσ2), effective density (σ2/R2e) and effective surface brightness (μe). With the exception of the L -Mdyn correlation, we find evidence of variations in the slope (i.e. the power-law index) of the Fundamental Plane projections with luminosity for our normal elliptical galaxy population. In particular, the radius-luminosity and Faber-Jackson relations are steeper at high luminosity relative to low luminosity, and the more luminous ellipticals become progressively less dense and have lower surface brightnesses than lower luminosity ellipticals. These variations can be understood as arising from differing formation histories, with more luminous galaxies having less dissipation. Data from the literature and our reanalysis of BCGs show that BCGs have radius-luminosity and Faber-Jackson relations steeper than the brightest non-BCG ellipticals in our sample, consistent with significant growth of BCGs via dissipationless mergers. The variations in slope we find in the Faber-Jackson relation of non-BCGs are qualitatively similar to that reported in the black hole mass-velocity dispersion (MBH-σ) correlation. This similarity is consistent with a roughly constant value of MBH/M* over a wide range of early-type galaxies, where M* is the stellar mass.


    International Nuclear Information System (INIS)

    Leroy, Adam K.; Hughes, Annie; Schruba, Andreas; Rosolowsky, Erik; Blanc, Guillermo A.; Escala, Andres; Bolatto, Alberto D.; Colombo, Dario; Kramer, Carsten; Kruijssen, J. M. Diederik; Meidt, Sharon; Querejeta, Miguel; Schinnerer, Eva; Sliwa, Kazimierz; Pety, Jerome; Sandstrom, Karin


    The cloud-scale density, velocity dispersion, and gravitational boundedness of the interstellar medium (ISM) vary within and among galaxies. In turbulent models, these properties play key roles in the ability of gas to form stars. New high-fidelity, high-resolution surveys offer the prospect to measure these quantities across galaxies. We present a simple approach to make such measurements and to test hypotheses that link small-scale gas structure to star formation and galactic environment. Our calculations capture the key physics of the Larson scaling relations, and we show good correspondence between our approach and a traditional “cloud properties” treatment. However, we argue that our method is preferable in many cases because of its simple, reproducible characterization of all emission. Using, low- J 12 CO data from recent surveys, we characterize the molecular ISM at 60 pc resolution in the Antennae, the Large Magellanic Cloud (LMC), M31, M33, M51, and M74. We report the distributions of surface density, velocity dispersion, and gravitational boundedness at 60 pc scales and show galaxy-to-galaxy and intragalaxy variations in each. The distribution of flux as a function of surface density appears roughly lognormal with a 1 σ width of ∼0.3 dex, though the center of this distribution varies from galaxy to galaxy. The 60 pc resolution line width and molecular gas surface density correlate well, which is a fundamental behavior expected for virialized or free-falling gas. Varying the measurement scale for the LMC and M31, we show that the molecular ISM has higher surface densities, lower line widths, and more self-gravity at smaller scales.


    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Adam K. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Hughes, Annie [CNRS, IRAP, 9 av. du Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Schruba, Andreas [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Rosolowsky, Erik [Department of Physics, University of Alberta, Edmonton, AB (Canada); Blanc, Guillermo A.; Escala, Andres [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Bolatto, Alberto D. [Department of Astronomy, Laboratory for Millimeter-wave Astronomy, and Joint Space Institute, University of Maryland, College Park, MD 20742 (United States); Colombo, Dario [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Kramer, Carsten [Instituto Radioastronomía Milimétrica (IRAM), Av. Divina Pastora 7, Nucleo Central, E-18012 Granada (Spain); Kruijssen, J. M. Diederik [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstrasse 12-14, D-69120 Heidelberg (Germany); Meidt, Sharon; Querejeta, Miguel; Schinnerer, Eva; Sliwa, Kazimierz [Max Planck Institute für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Pety, Jerome [Institut de Radioastronomie Millimtrique (IRAM), 300 Rue de la Piscine, F-38406 Saint-Martin-d’Hères (France); Sandstrom, Karin [Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); and others


    The cloud-scale density, velocity dispersion, and gravitational boundedness of the interstellar medium (ISM) vary within and among galaxies. In turbulent models, these properties play key roles in the ability of gas to form stars. New high-fidelity, high-resolution surveys offer the prospect to measure these quantities across galaxies. We present a simple approach to make such measurements and to test hypotheses that link small-scale gas structure to star formation and galactic environment. Our calculations capture the key physics of the Larson scaling relations, and we show good correspondence between our approach and a traditional “cloud properties” treatment. However, we argue that our method is preferable in many cases because of its simple, reproducible characterization of all emission. Using, low- J {sup 12}CO data from recent surveys, we characterize the molecular ISM at 60 pc resolution in the Antennae, the Large Magellanic Cloud (LMC), M31, M33, M51, and M74. We report the distributions of surface density, velocity dispersion, and gravitational boundedness at 60 pc scales and show galaxy-to-galaxy and intragalaxy variations in each. The distribution of flux as a function of surface density appears roughly lognormal with a 1 σ width of ∼0.3 dex, though the center of this distribution varies from galaxy to galaxy. The 60 pc resolution line width and molecular gas surface density correlate well, which is a fundamental behavior expected for virialized or free-falling gas. Varying the measurement scale for the LMC and M31, we show that the molecular ISM has higher surface densities, lower line widths, and more self-gravity at smaller scales.

  20. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses (United States)

    Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao


    Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.

  1. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka (United States)

    Phillips, D.H.; Kumara, M.P.; Jayatissa, L.P.; Krauss, Ken W.; Huxham, M.


    Understanding the effects of seedling density on sediment accretion, biogeochemistry and belowground biomass in mangrove systems can help explain ecological functioning and inform appropriate planting densities during restoration or climate change mitigation programs. The objectives of this study were to examine: 1) impacts of mangrove seedling density on surface sediment accretion, texture, belowground biomass and biogeochemistry, and 2) origins of the carbon (C) supplied to the mangroves in Palakuda, Puttalam Lagoon, Sri Lanka. Rhizophora mucronata propagules were planted at densities of 6.96, 3.26, 1.93 and 0.95 seedlings m−2along with an unplanted control (0 seedlings m−2). The highest seedling density generally had higher sediment accretion rates, finer sediments, higher belowground biomass, greatest number of fine roots and highest concentrations of C and nitrogen (N) (and the lowest C/N ratio). Sediment accretion rates, belowground biomass (over 1370 days), and C and N concentrations differed significantly between seedling densities. Fine roots were significantly greater compared to medium and coarse roots across all plantation densities. Sulphur and carbon stable isotopes did not vary significantly between different density treatments. Isotope signatures suggest surface sediment C (to a depth of 1 cm) is not derived predominantly from the trees, but from seagrass adjacent to the site.

  2. A search for megamaser galaxies

    International Nuclear Information System (INIS)

    Norris, R.P.; Gardner, F.F.; Whiteoak, J.B.


    The results are reported of a search for OH megamaser emission from a sample of 32 galaxies selected from the IRAS Point Source Catalog on the basis of their infrared properties. For each galaxy (other than those few already observed elsewhere) we have obtained an optical redshift and have searched for both OH and H I emission. The search yielded one new OH megamaser galaxy and H I was detected towards nine objects. We conclude that there are unlikely to be any OH megamasers in the Southern Hemisphere with flux densities comparable to that of Arp 220 (280 mJy), although there may be a population of weaker megamasers. From the statistics of our search we conclude that no special conditions are required to explain the known OH megamasers other than those expected in a cool, dusty, active galaxy. (author)

  3. The dynamics of the spiral galaxy M81

    International Nuclear Information System (INIS)

    Visser, H.C.D.


    A detailed comparison of the observations of the spiral galaxy M81 with the density-wave theory for tightly-wound spirals is presented. In particular, hydrogen-line observations are compared with the nonlinear density-wave theory for the gas with the aim of constructing a density-wave model for the spiral galaxy M81

  4. Galaxy evolution in dense environments: a concise HI perspective

    NARCIS (Netherlands)

    Verheijen, Marc A. W.; Diaferio, Antonaldo


    Observing the neutral hydrogen in galaxy clusters provides crucial insights in the physical processes that influence the evolution of gas-rich galaxies as they migrate from the lower-density filaments through the cluster outskirts into to the higher-density central regions. The morphology-density

  5. The Frequency of Active and Quiescent Galaxies with Companions


    Schmitt, Henrique R.


    We study the percentage of active, HII and quiescent galaxies with companions in the Palomar survey. We find that when we separate the galaxies by their morphological types (ellipticals or spirals), to avoid morphology-density effects, there is no difference in the percentage of galaxies with companions among the different activity types.

  6. Submillimeter galaxies as progenitors of compact quiescent galaxies

    International Nuclear Information System (INIS)

    Toft, S.; Zirm, A.; Krogager, J.-K.; Man, A. W. S.; Smolčić, V.; Krpan, J.; Magnelli, B.; Karim, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Wuyts, S.; Lutz, D.; Staguhn, J.; Berta, S.; Sanders, D.; Mccracken, H.; Riechers, D.


    Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 −29 +40 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.

  7. Mass balance of the Greenland ice sheet - a study of ICESat data, surface density and firn compaction modelling

    DEFF Research Database (Denmark)

    Sørensen, L. S.; Simonsen, Sebastian Bjerregaard; Nielsen, K.


    in estimating the mass balance of the Greenland ice sheet. We find firn dynamics and surface densities to be important factors in deriving the mass loss from remote sensing altimetry. The volume change derived from ICESat data is corrected for firn compaction, vertical bedrock movement and an intercampaign...... elevation bias in the ICESat data. Subsequently, the corrected volume change is converted into mass change by surface density modelling. The firn compaction and density models are driven by a dynamically downscaled simulation of the HIRHAM5 regional climate model using ERA-Interim reanalysis lateral......ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique data set for monitoring the changes of the cryosphere. Here we present a novel method for determining the mass balance of the Greenland ice sheet derived from ICESat...

  8. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    International Nuclear Information System (INIS)

    Zhang, PengFei; Qiu, Aici; Hu, Yang; Yang, HaiLiang; Sun, Jiang; Wang, Liangping; Cong, Peitian


    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode and anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10 21 /cm 3 ), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).

  9. IRAC Imaging of LSB Galaxies (United States)

    Schombert, James; McGaugh, Stacy; Lelli, Federico


    We propose a program to observe a large sample of Low Surface Brightness (LSB) galaxies. Large galaxy surveys conducted with Spitzer suffer from the unavoidable selection bias against LSB systems (e.g., the S4G survey). Even those programs thathave specifically targeted LSB galaxies have usually been restricted objects of intermediate surface brightness (between 22 and 23 B mag/ []). Our sample is selected to be of a more extreme LSB nature (with central surface brightness fainter than 23 Bmag/[]). Even warm, Spitzer is the ideal instrument to image these low contrast targets in the near infrared: our sample goes a considerable way towards remedying this hole in the Spitzer legacy archive, also increasing coverage in terms of stellar mass, gas mass, and SFR. The sample will be used to address the newly discovered radial acceleration relation (RAR) in disk galaxies. While issues involving the connection between baryons and dark matter have been known since the development of the global baryonic Tully-Fisher (bTF) relation, it is only in the last six months that the particle physics and theoretical communities have recognized and responded to the local coupling between dark and baryonic matter represented by the RAR. This important new correlation is effectively a new natural law for galaxies. Spitzer photometry has been at the forefront of resolving the stellar mass component in galaxies that make-up the RAR and is the primary reason for the discovery of this new kinematic law.

  10. Mass Distribution in Rotating Thin-Disk Galaxies According to Newtonian Dynamics

    Directory of Open Access Journals (Sweden)

    James Q. Feng


    Full Text Available An accurate computational method is presented for determining the mass distribution in a mature spiral galaxy from a given rotation curve by applying Newtonian dynamics for an axisymmetrically rotating thin disk of finite size with or without a central spherical bulge. The governing integral equation for mass distribution is transformed via a boundary-element method into a linear algebra matrix equation that can be solved numerically for rotation curves with a wide range of shapes. To illustrate the effectiveness of this computational method, mass distributions in several mature spiral galaxies are determined from their measured rotation curves. All the surface mass density profiles predicted by our model exhibit approximately a common exponential law of decay, quantitatively consistent with the observed surface brightness distributions. When a central spherical bulge is present, the mass distribution in the galaxy is altered in such a way that the periphery mass density is reduced, while more mass appears toward the galactic center. By extending the computational domain beyond the galactic edge, we can determine the rotation velocity outside the cut-off radius, which appears to continuously decrease and to gradually approach the Keplerian rotation velocity out over twice the cut-off radius. An examination of circular orbit stability suggests that galaxies with flat or rising rotation velocities are more stable than those with declining rotation velocities especially in the region near the galactic edge. Our results demonstrate the fact that Newtonian dynamics can be adequate for describing the observed rotation behavior of mature spiral galaxies.

  11. Extracting Extensor Digitorum Communis Activation Patterns using High-Density Surface Electromyography

    Directory of Open Access Journals (Sweden)

    Xiaogang eHu


    Full Text Available The extensor digitorum communis muscle plays an important role in hand dexterity during object manipulations. This multi-tendinous muscle is believed to be controlled through separate motoneuron pools, thereby forming different compartments that control individual digits. However, due to the complex anatomical variations across individuals and the flexibility of neural control strategies, the spatial activation patterns of the extensor digitorum communis compartments during individual finger extension have not been fully tracked under different task conditions.The objective of this study was to quantify the global spatial activation patterns of the extensor digitorum communis using high-density (7×9 surface electromyogram (EMG recordings. The muscle activation map (based on the root mean square of the EMG was constructed when subjects performed individual four finger extensions at the metacarpophalangeal joint, at different effort levels and under different finger constraints (static and dynamic. Our results revealed distinct activation patterns during individual finger extensions, especially between index and middle finger extensions, although the activation between ring and little finger extensions showed strong covariance. The activation map was relatively consistent at different muscle contraction levels and for different finger constraint conditions. We also found that distinct activation patterns were more discernible in the proximal-distal direction than in the radial-ulnar direction. The global spatial activation map utilizing surface grid EMG of the extensor digitorum communis muscle provides information for localizing individual compartments of the extensor muscle during finger extensions. This is of potential value for identifying more selective control input for assistive devices. Such information can also provide a basis for understanding hand impairment in individuals with neural disorders.

  12. S0 galaxies in Formax

    DEFF Research Database (Denmark)

    Bedregal...[], A. G.; Aragón-Salamanca, A.; Merrifield, M. R.


    Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1......Galaxies: elliptical and lenticular, cD: galaxies: kinematics and dynamics Udgivelsesdato: Oct.1...

  13. Surface Ligand Density of Antibiotic-Nanoparticle Conjugates Enhances Target Avidity and Membrane Permeabilization of Vancomycin-Resistant Bacteria. (United States)

    Hassan, Marwa M; Ranzoni, Andrea; Phetsang, Wanida; Blaskovich, Mark A T; Cooper, Matthew A


    Many bacterial pathogens have now acquired resistance toward commonly used antibiotics, such as the glycopeptide antibiotic vancomycin. In this study, we show that immobilization of vancomycin onto a nanometer-scale solid surface with controlled local density can potentiate antibiotic action and increase target affinity of the drug. Magnetic nanoparticles were conjugated with vancomycin and used as a model system to investigate the relationship between surface density and drug potency. We showed remarkable improvement in minimum inhibitory concentration against vancomycin-resistant strains with values of 13-28 μg/mL for conjugated vancomycin compared to 250-4000 μg/mL for unconjugated vancomycin. Higher surface densities resulted in enhanced affinity toward the bacterial target compared to that of unconjugated vancomycin, as measured by a competition experiment using a surrogate ligand for bacterial Lipid II, N-Acetyl-l-Lys-d-Ala-d-Ala. High density vancomycin nanoparticles required >64 times molar excess of ligand (relative to the vancomycin surface density) to abrogate antibacterial activity compared to only 2 molar excess for unconjugated vancomycin. Further, the drug-nanoparticle conjugates caused rapid permeabilization of the bacterial cell wall within 2 h, whereas no effect was seen with unconjugated vancomycin, suggesting additional modes of action for the nanoparticle-conjugated drug. Hence, immobilization of readily available antibiotics on nanocarriers may present a general strategy for repotentiating drugs that act on bacterial membranes or membrane-bound targets but have lost effectiveness against resistant bacterial strains.

  14. Infrared spectroscopy and density functional theory investigation of calcite, chalk, and coccoliths-do we observe the mineral surface?

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Hem, Caroline Piper; Schultz, Logan Nicholas


    broadening from macroscopic dielectric effects. We detect water adsorbed on the high surface area synthetic calcite, which permits observation of the chemistry of thin liquid films on calcite using transmission infrared spectroscopy. The combination of infrared spectroscopy and density functional theory also...... asymmetric for the coccoliths and the synthetic calcite prepared using the carbonation method. It can be very well fitted by two peaks: a narrow Lorenzian at lower frequency and a broader Gaussian at higher frequency. These two samples both have a high specific surface area. Density functional theory...

  15. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces. (United States)

    Qin, Wu; Li, Xin; Bian, Wen-Wen; Fan, Xiu-Juan; Qi, Jing-Yao


    There is increasing attention in the unique biological and medical properties of graphene, and it is expected that biomaterials incorporating graphene will be developed for the graphene-based drug delivery systems and biomedical devices. Despite the importance of biomolecules-graphene interactions, a detailed understanding of the adsorption mechanism and features of biomolecules onto the surfaces of graphene is lacking. To address this, we have performed density functional theory (DFT) and molecular dynamics (MD) methods exploring the adsorption geometries, adsorption energies, electronic band structures, adsorption isotherms, and adsorption dynamics of l-leucine (model biomolecule)/graphene composite system. DFT calculations confirmed the energetic stability of adsorption model and revealed that electronic structure of graphene can be controlled by the adsorption direction of l-leucine. MD simulations further investigate the potential energy and van der Waals energy for the interaction processes of l-leucine/graphene system at different temperatures and pressures. We find that the van der Waals interaction between the l-leucine and the graphene play a dominant role in the adsorption process under a certain range of temperature and pressure, and the l-leucine molecule could be adsorbed onto graphene spontaneously in aqueous solution.

  16. Determination of surface charge density of α-alumina by acid-base titration

    Directory of Open Access Journals (Sweden)

    Justin W. Ntalikwa


    Full Text Available The surface charge density (σo of colloidal alpha alumina suspended in various 1:1 electrolytes was measured using acid-base titration. An autotitrator capable of dispensing accurately 25 plus or minus 0.1 μL of titrant was used. The pH and temperature in the titration cell were monitored using single junction electrodes and platinum resistance thermometers, respectively. A constant supply of nitrogen gas in the cell was used to maintain inert conditions. The whole set up was interfaced with a computer for easy data acquisition. It was observed that the material exhibits a point of zero charge (PZC, this occurred at pH of 7.8 plus or minus 0.1, 7.6 plus or minus 0.2, 8.5 plus or minus 0.1, 8.3 plus or minus 0.1 for NaCl, NaNO3, CsCl and CsNO3 systems, respectively. It was also observed that below PZC, σo increases with increase in electrolyte concentration (Co whereas above PZC, σo decreases with increase in Co. It was concluded that σo of this material is a function of pH and Co and that its polarity can be varied through zero by varying these parameters.

  17. Normalised Mutual Information of High-Density Surface Electromyography during Muscle Fatigue

    Directory of Open Access Journals (Sweden)

    Adrian Bingham


    Full Text Available This study has developed a technique for identifying the presence of muscle fatigue based on the spatial changes of the normalised mutual information (NMI between multiple high density surface electromyography (HD-sEMG channels. Muscle fatigue in the tibialis anterior (TA during isometric contractions at 40% and 80% maximum voluntary contraction levels was investigated in ten healthy participants (Age range: 21 to 35 years; Mean age = 26 years; Male = 4, Female = 6. HD-sEMG was used to record 64 channels of sEMG using a 16 by 4 electrode array placed over the TA. The NMI of each electrode with every other electrode was calculated to form an NMI distribution for each electrode. The total NMI for each electrode (the summation of the electrode’s NMI distribution highlighted regions of high dependence in the electrode array and was observed to increase as the muscle fatigued. To summarise this increase, a function, M(k, was defined and was found to be significantly affected by fatigue and not by contraction force. The technique discussed in this study has overcome issues regarding electrode placement and was used to investigate how the dependences between sEMG signals within the same muscle change spatially during fatigue.

  18. Impact of land cover and population density on land surface temperature: case study in Wuhan, China (United States)

    Li, Lin; Tan, Yongbin; Ying, Shen; Yu, Zhonghai; Li, Zhen; Lan, Honghao


    With the rapid development of urbanization, the standard of living has improved, but changes to the city thermal environment have become more serious. Population urbanization is a driving force of residential expansion, which predominantly influences the land surface temperature (LST). We obtained the land covers and LST maps of Wuhan from Landsat-5 images in 2000, 2002, 2005, and 2009, and discussed the distribution of land use/cover change and LST variation, and we analyzed the correlation between population distribution and LST values in residential regions. The results indicated massive variation of land cover types, which was shown as a reduction in cultivatable land and the expansion of building regions. High-LST regions concentrated on the residential and industrial areas with low vegetation coverage. In the residential region, the population density (PD) had effects on the LST values. Although the area or variation of residential regions was close, lower PD was associated with lower mean LST or LST variation. Thus, decreasing the high-LST regions concentration by reducing the PD may alleviate the urban heat island effect on the residential area. Taken together, these results can provide supports for urban planning projects and studies on city ecological environments.

  19. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology. (United States)

    Wong, S L; Ngadi, N; Amin, N A S; Abdullah, T A T; Inuwa, I M


    Pyrolysis of low density polyethylene (LDPE) waste from local waste separation company in subcritical water was conducted to investigate the effect of reaction time, temperature, as well as the mass ratio of water to polymer on the liquid yield. The data obtained from the study were used to optimize the liquid yield using response surface methodology. The range of reaction temperature used was 162-338°C, while the reaction time ranged from 37 min to 143 min, and the ratio of water to polymer ranged from 1.9 to 7.1. It was found that pyrolysis of LDPE waste in subcritical water produced hydrogen, methane, carbon monoxide and carbon dioxide, while the liquid product contained alkanes and alkenes with 10-50 carbons atoms, as well as heptadecanone, dichloroacetic acid and heptadecyl ester. The optimized conditions were 152.3°C, reaction time of 1.2 min and ratio of water solution to polymer of 32.7, with the optimum liquid yield of 13.6 wt% and gases yield of 2.6 wt%.

  20. Modeling the Electric Potential and Surface Charge Density Near Charged Thunderclouds (United States)

    Neel, Matthew Stephen


    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and cloud-to-ground lightning. We wish to examine the latter form, in which upward leaders from Earth connect with downward leaders from the cloud to form a plasma channel and produce lightning. Much of the literature indicates that the lower part of a thundercloud becomes negatively charged while the upper part becomes positively charged via convective charging, although the opposite polarity can certainly exist along with various, complex intra-cloud currents. It is estimated that >90% of cloud-to-ground lightning is "negative lightning," or the flow of charges from the bottom of the cloud, while the remaining the flow of charges from the top of the cloud. We wish to understand the electric potential surrounding charged thunderclouds as well as the resulting charge density on the surface of Earth below them. In this paper we construct a simple and adaptable model that captures the very basic features of the cloud/ground system and that exhibits conditions favorable for both forms of lightning. In this way, we provide a practical application of electrostatic dipole physics as well as the method of images that can serve as a starting point for further modeling and analysis by students.

  1. Adsorption and activation of methane and methanol on Pt(100) surface: a density functional study

    International Nuclear Information System (INIS)

    Moussounda, P.S.


    The activation of methane (CH 4 ) and methanol (CH 3 OH) on Pt(100) surface has been investigated using density functional theory calculations based on plane-wave basis and pseudo-potential. We optimised CH 4 /Pt(100) system. The calculated adsorption energies over the top, bridge and hollow sites are small, weakly dependent on the molecular orientation. The nature of the CH 4 -Pt interaction was examined through the electronic structure changes. The adsorption of methyl (CH 3 ) and hydrogen (H) and the co-adsorption of CH 3 +H were also calculated. From these results, we examined the dissociation of CH 4 to CH 3 +H, and the activation energies found are in good agreement with the experimental and theoretical values. The activation of CH 3 OH/Pt(100) has been studied. All the sites have almost the same adsorption energy. The adsorption of oxygen (O) and the co-adsorption of CH 4 and O were also examined. In addition, the formation of CH 3 OH assuming a one-step mechanism step via the co-adsorption of CH 4 +O has been studied and the barrier height was found to be high. (authors)

  2. A model for the origin of bursty star formation in galaxies (United States)

    Faucher-Giguère, Claude-André


    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  3. The Galaxy's Eating Habits (United States)

    Putman, M. E.; Thom, C.; Gibson, B. K.; Staveley-Smith, L.


    The possibility of a gaseous halo stream which was stripped from the Sagittarius dwarf galaxy is presented. The total mass of the neutral hydrogen along the orbit of the Sgr dwarf in the direction of the Galactic Anti-Center is 4 - 10 × 106 M⊙ (at 36 kpc, the distance to the stellar debris in this region). Both the stellar and gaseous components have negative velocities in this part of the sky, but the gaseous component extends to higher negative velocities. We suggest this gaseous stream was stripped from the main body of the dwarf 0.2 - 0.3 Gyr ago during its current orbit after a passage through a diffuse edge of the Galactic disk with a density > 10-4 cm-3. The gas would then represent the dwarf's last source of star formation fuel and explains how the galaxy was forming stars 0.5-2 Gyr ago.


    International Nuclear Information System (INIS)

    Choi, Yun-Young; Kim, Juhan; Kim, Sungsoo S.; Park, Changbom; Gott, J. Richard; Weinberg, David H.; Vogeley, Michael S.


    We measure the topology of the main galaxy distribution using the Seventh Data Release of the Sloan Digital Sky Survey, examining the dependence of galaxy clustering topology on galaxy properties. The observational results are used to test galaxy formation models. A volume-limited sample defined by M r -1 Mpc smoothing scale, with 4.8% uncertainty including all systematics and cosmic variance. The clustering topology over the smoothing length interval from 6 to 10 h -1 Mpc reveals a mild scale dependence for the shift (Δν) and void abundance (A V ) parameters of the genus curve. We find substantial bias in the topology of galaxy clustering with respect to the predicted topology of the matter distribution, which varies with luminosity, morphology, color, and the smoothing scale of the density field. The distribution of relatively brighter galaxies shows a greater prevalence of isolated clusters and more percolated voids. Even though early (late)-type galaxies show topology similar to that of red (blue) galaxies, the morphology dependence of topology is not identical to the color dependence. In particular, the void abundance parameter A V depends on morphology more strongly than on color. We test five galaxy assignment schemes applied to cosmological N-body simulations of a ΛCDM universe to generate mock galaxies: the halo-galaxy one-to-one correspondence model, the halo occupation distribution model, and three implementations of semi-analytic models (SAMs). None of the models reproduces all aspects of the observed clustering topology; the deviations vary from one model to another but include statistically significant discrepancies in the abundance of isolated voids or isolated clusters and the amplitude and overall shift of the genus curve. SAM predictions of the topology color dependence are usually correct in sign but incorrect in magnitude. Our topology tests indicate that, in these models, voids should be emptier and more connected and the threshold for

  5. Harassment Origin for Kinematic Substructures in Dwarf Elliptical Galaxies?


    Gonzalez-Garcia, A. C.; Aguerri, J. A. L.; Balcells, M.


    [EN]We have run high resolution N-body models simulating the encounter of a dwarf galaxy with a bright elliptical galaxy. The dwarf absorbs orbital angular momentum and shows counter-rotating features in the external regions of the galaxy. To explain the core-envelope kinematic decoupling observed in some dwarf galaxies in high-density environments requires nearly head-on collisions and very little dark matter bound to the dwarf. These kinematic structures appear under rather restrictive cond...

  6. Galaxy evolution in clusters since z=1 (United States)

    Aragón-Salamanca, A.


    It is now 30 years since Alan Dressler published his seminal paper onthe morphology-density relation. Although there is still much to learnon the effect of the environment on galaxy evolution, extensive progress has been made since then both observationally and theoretically.Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature'' vs. "nurture'' in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age.Many of the results presented here have been obtainedwithin the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.

  7. Membrane effects of Vitamin E deficiency: bioenergetic and surface-charge-density studies of skeletal muscle and liver mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Quintanilha, A.T.; Packer, L.; Szyszlo Davies, J.M.; Racanelli, T.L.; Davies, K.J.A.


    Vitamin E (dl-..cap alpha..-tocopherol) deficiency in rats increased the sensitivity of liver and muscle mitochondria to damage during incubation at various temperatures, irradiation with visible light, or steady state respiration with substrates. In all cases, vitamin E deficient mitochondria exhibited increased lipid peroxidation, reduced transmembrane potential, decreased respiratory coupling, and lower rates of electron transport, compared to control mitochondria. Muscle mitochondria always showed greater negative inner membrane surface charge density, and were also more sensitive to damage than were liver mitochondria. Vitamin E deficient mitochondria also showed slightly more negative inner membrane surface charge density compared to controls. The relationship between greater negative surface potential and increased sensitivity to damage observed, provides for a new and sensitive method to further probe the role of surface charge in membrane structure and function. Implications of these new findings for the well known human muscle myopathies and those experimentally induced by Vitamin E deficiency in animals, are discussed.

  8. Microwave modification of surface hydroxyl density for g-C3N4 with enhanced photocatalytic activity (United States)

    An, Na; Zhao, Yang; Mao, Zhiyong; Agrawal, Dinesh Kumar; Wang, Dajian


    Microwave modification was performed on graphitic carbon nitride (g-C3N4) photocatalysts to tail the surface hydroxyl content for enhanced photocatalytic activity in this work. The influence of microwave heating on the surface hydroxyl density was investigated by a suite of characterization methods. The microwave treated g-C3N4 (MT-g-C3N4) delivered a higher photocatalytic activity in degradation of Rhodamine B (RhB) under visible light irradiation than pristine g-C3N4 due to its improved separation efficiency of photogenerated charge carries and promoted absorption capacity of RhB reactants on surface, which resulted from the increased surface hydroxyl density induced by microwave treatment. This study provides a simple and convenient method to modify g-C3N4 materials with enhanced photocatalytic activity for the potential application in photocatalytic elimination of environmental pollutants.

  9. Dust and Molecular Gas in the Winds of Nearby Galaxies (United States)

    McCormick, Alexander N.


    PAH emission and star formation rate surface density, supporting the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material. New, very deep Herschel data of six nearby dwarf galaxies with known winds show circumgalactic cold dust features on galactic scales, often well beyond the stellar component. Comparisons of these features with ancillary data show an imperfect spatial correlation with the ionized gas and warm dust wind components. We found ˜10-20% of the total dust mass in these known wind galaxies resides outside their stellar disks, and ˜70% in one case. Our data also hint at metallicity depletion via cold dust ejection and possible correlations of dust and other host galaxy properties, though these tantalizing implications are not statistically significant given the small number of objects in the sample and the uncertainties in the measurements.

  10. Molecular gas in dusty high-redshift galaxies (United States)

    Sharon, Chelsea Electra


    We present high-resolution observations of carbon monoxide (CO) emission lines for three high-redshift galaxies in order to determine their molecular gas and star formation properties. These galaxies (SMM J14011+0252, SMM J00266+1708, and SDSS J0901+1814) have large infrared luminosities, which imply high dust enshrouded star formation rates and substantial molecular gas masses. We observed these sources using the Robert C. Byrd Green Bank Telescope, the Karl G. Jansky Very Large Array, the Plateau de Bure Interferometer, and the Submillimeter Array in order to obtain measurements of multiple CO spectral lines, allowing us to determine the physical conditions of the molecular gas. Our high resolution and multi-line CO mapping of SMM J00266+1708 reveals that it is a pair of merging galaxies, whose two components have different gas excitation conditions and different gas kinematics. For SMM J14011+0252 (J14011), we find a near-unity CO(3--2)/CO(1--0) intensity ratio, consistent with a single phase (i.e., a single temperature and density) of molecular gas and different from the average population value for dusty galaxies selected at submillimeter wavelengths. Our radiative transfer modeling (using the large velocity gradient approximation) indicates that converting the CO line luminosity to molecular gas mass requires a Galactic (disk-like) scale factor rather than the typical conversion factor assumed for starbursts. Despite this choice of conversion factor, J14011 falls in the same region of star formation rate surface density and gas mass surface density (the Schmidt-Kennicutt relation) as other starburst galaxies. SDSS J0901+1814 (J0901) was initially selected as a star-forming galaxy at ultraviolet wavelengths, but also has a large infrared luminosity. We use the magnification provided by the strong gravitational lensing affecting this system to examine the spatial variation of the CO excitation within J0901. We find that the CO(3--2)/CO(1--0) line ratio is

  11. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe (United States)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.


    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  12. Potential energy surface of the reaction of imidazole with peroxynitrite: Density functional theory study (United States)

    Gogonea, Valentin

    This article presents a theoretical investigation of the reaction mechanism of imidazole nitration by peroxynitrite using density functional theory calculations. Understanding this reaction mechanism will help in elucidating the mechanism of guanine nitration by peroxynitrite, which is one of the assumed chemical pathways for damaging DNA in cells. This work focuses on the analysis of the potential energy surface (PES) for this reaction in the gas phase. Calculations were carried out using Hartree-Fock (HF) and density functional theory (DFT) Hamiltonians with double-zeta basis sets ranging from 6-31G(d) to 6-31++G(d,p), and the triple-zeta basis set 6-311G(d). The computational results reveal that the reaction of imidazole with peroxynitrite in gas phase produces the following species: (i) hydroxide ion and 2-nitroimidazole, (ii) hydrogen superoxide ion and 2-nitrosoimidazole, and (iii) water and 2-nitroimidazolide. The rate-determining step is the formation of a short-lived intermediate in which the imidazole C2 carbon is covalently bonded to peroxynitrite nitrogen. Three short-lived intermediates were found in the reaction path. These intermediates are involved in a proton-hopping transport from C2 carbon to the terminal oxygen of the OO moiety of peroxynitrite via the nitroso (ON) oxygen. Both HF and DFT calculations (using the Becke3-Lee-Yang-Parr functional) lead to similar reaction paths for proton transport, but the landscape details of the PES for HF and DFT calculations differ. This investigation shows that the reaction of imidazole with peroxynitrite produces essentially the same types of products (nitro- and nitroso-) as observed experimentally in the reaction of guanine with peroxynitrite, which makes the former reaction a good model to study by computation the essential characteristics of the latter reaction. Nevertheless, the computationally determined activation energy for imidazole nitration by peroxynitrite in the gas phase is 84.1 kcal

  13. Searches for High Redshift Galaxies (United States)

    Stevens, R.

    In recent years, the technique of Lyman break imaging has proven very effective at identifying large numbers of galaxies at high redshifts through deep multicolour imaging (Steidel et al 1996b; Steidel et al 1999). The combination of an intrinsic break in the spectra of star-forming galaxies below the rest-frame wavelength of Lyman-alpha and attenuation by intervening HI systems on the line of sight to high redshifts makes for a pronounced drop in the flux of high redshift galaxies between 912 Å and 1216 Å in the rest-frame. At redshifts z> 3, the break is shifted sufficiently far into the optical window accessible to ground-based telescopes for galaxies at such redshift to be distinguished from the foreground galaxy population through photometry alone. Through modelling of the expected colours of a wide range of galaxy types, ages and redshifts, taking into account the effects of reddening (Calzetti, Kinney and Storchi-Bergmann 1994) and intergalactic attenuation (Madau 1995), we assess the likely colours of high redshift galaxies and determine the redshift ranges most effectively probed by the imaging filters. We obtain multicolour imaging of the fields of four high redshift radio galaxies, covering around 40 arcmin2 in each, allowing us to attempt to find ordinary galaxies at similar redshifts to the central radio galaxies through photometric colour selection techniques. Some idea as to the effectiveness comes through additional colour and morphological information obtained from high-resolution Hubble Space Telescope images and from data taken in the near infra-red. While we do not have spectroscopic evidence for the redshifts of our candidates, given the available evidence we conclude that the number densities of Lyman break galaxies in the radio galaxy fields are in broad agreement with the data of Steidel et al (1999). Finally, we assess the prospects for future studies of the high redshift Universe, in particular the potential of the Oxford Deep Wide Field

  14. A model for the Lin-Shu type density-wave structure of our Galaxy: Line-of-sight and transverse-longitudinal velocities of 242 optically visible open clusters (United States)

    Griv, E.; Jiang, I.-G.


    In this paper, the fourth in a series, we examine again one of the implications of the Lin-Shu density-wave theory, specifically, the noncircular systematic motion of the Galactic objects. Our previous investigation is extended by analyzing simultaneously both the line-of-sight and transversal velocities of a sample of open clusters for which velocities, distances and ages are available. The ordinary equations of the Oort-Lindblad theory of galactic differential rotation are used. The minor effects caused by the two-dimensional tightly-wound density waves are also taken into account. The published data of 242 currently known optically visible clusters having distances rsight and transversal along the Galactic longitude velocities are nearly equal. We argue that the resemblance of these Galactic wave structures is so remarkable that no doubt is felt as to the theory's truth with respect to these data. The results obtained allow us to conclude that several low-m trailing density-wave patterns with different number of spiral arms m (say, m=1, 2, 3, and 4), pitch angles (about 5o, 8o, 11o, and 14o, respectively) and amplitudes of the perturbed gravitational potential may coexist in the Galaxy. The latter suggests the asymmetric multiarm, not well-organized (``flocculent'') spiral structure of the system. In memory of Professors Alexei M. Fridman (1940-2010) and Chi Yuan (1937-2008)

  15. Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures (United States)

    Hedayat, Seyed Mahdi; Karimi-Sabet, Javad; Shariaty-Niassar, Mojtaba


    In this work, we study the influence of the surface morphology of the catalytic copper substrate on the nucleation density and the growth rate of graphene domains at low and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) processes. In order to obtain a wide range of initial surface morphology, precisely controlled electropolishing methods were developed to manipulate the roughntreess value of the as-received Cu substrate (RMS = 30 nm) to ultra-rough (RMS = 130 nm) and ultra-smooth (RMS = 2 nm) surfaces. The nucleation and growth of graphene domains show obviously different trends at LPCVD and APCVD conditions. In contrast to APCVD condition, the nucleation density of graphene domains is almost equal in substrates with different initial roughness values at LPCVD condition. We show that this is due to the evolution of the surface morphology of the Cu substrate during the graphene growth steps. By stopping the surface sublimation of copper substrate in a confined space saturated with Cu atoms, the evolution of the Cu surface was impeded. This results in the reduction of the nucleation density of graphene domains up to 24 times in the pre-smoothed Cu substrates at LPCVD condition.

  16. Ultraviolet luminosity density of the universe during the epoch of reionization. (United States)

    Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph


    The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be log ρ(UV) = 27.4(+0.2)(-1.2) ergs(-1) Hz(-1) Mpc(-3) (1σ). This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.

  17. Insertion torques influenced by bone density and surface roughness of HA–TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, T.; Chen, Y.; Nie, X., E-mail:


    Bio-ceramic TiO{sub 2} coatings containing calcium (Ca) and phosphorous (P) were deposited onto Ti–6Al–4V alloy screws using plasma electrolytic oxidation (PEO) processes in an alkaline electrolyte with hydroxyapatite (HA) suspension. Coating on each screw had different surface roughness and morphology. Insertion torque (IT) of the coated screws in low (10 pcf, pounds per cubic feet), medium–high (20 pcf), and high (40 pcf) density of artificial bones was measured in comparison with that of the uncoated and sandblasted screws having similar surface roughness. Higher insertion torques and final seating torques were obtained in the coated screws which may result in less micro-movement during the primary implantation stage and thus lower the risk of implant failure. Scanning electron microscopy (SEM) analysis indicated that all coatings still adhesively remained on the screw surfaces after inserted into the bones with different densities. The relationship between coefficient of friction and surface roughness was also addressed to better understand the results of insertion torque. It was found that a lower density bone (similar to aged bone) would need a surface-rougher coated screw to achieve a high torque while a high density bone can have a wide range of selections for surface roughness of the screw. - Highlights: • The insertion torque of PEO-coated screws is higher than machined and sandblasting implants. • Lower density bone needs a rougher coated implant to increase the insertion torque. • The composite HA–TiO{sub 2} coating could benefit dental implants in both primary and secondary stability stages.

  18. Weak Lensing by Galaxy Troughs in DES Science Verification Data

    Energy Technology Data Exchange (ETDEWEB)

    Gruen, D. [Ludwig Maximilian Univ., Munich (Germany); Max Planck Inst. for Extraterrestrial Physics, Garching (Germany). et al.


    We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ϵ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. Furthermore, the prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. Finally, the lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.


    International Nuclear Information System (INIS)

    Cen Renyue


    Utilizing high-resolution large-scale galaxy formation simulations of the standard cold dark matter model, we examine global trends in the evolution of galaxies due to gravitational shock heating by collapse of large halos and large-scale structure. We find two major global trends. (1) The mean specific star formation rate (sSFR) at a given galaxy mass is a monotonically increasing function with increasing redshift. (2) The mean sSFR at a given redshift is a monotonically increasing function of decreasing galaxy mass that steepens with decreasing redshift. The general dimming trend with time merely reflects the general decline of gas inflow rate with increasing time. The differential evolution of galaxies of different masses with redshift is a result of gravitational shock heating of gas due to formation of large halos (groups and clusters) and large-scale structure that moves a progressively larger fraction of galaxies and their satellites into environments where gas has too high an entropy to cool to continue feeding resident galaxies. Overdense regions where larger halos are preferentially located begin to be heated earlier and have higher temperatures than lower density regions at any given time, causing sSFR of larger galaxies to fall below the general dimming trend at higher redshift than less massive galaxies and galaxies with high sSFR to gradually shift to lower density environments at lower redshift. We find that several noted cosmic downsizing phenomena are different manifestations of these general trends. We also find that the great migration of galaxies from blue cloud to red sequence as well as color-density relation, among others, may arise naturally in this picture.

  20. The H IX galaxy survey - II. H I kinematics of H I eXtreme galaxies (United States)

    Lutz, K. A.; Kilborn, V. A.; Koribalski, B. S.; Catinella, B.; Józsa, G. I. G.; Wong, O. I.; Stevens, A. R. H.; Obreschkow, D.; Dénes, H.


    By analysing a sample of galaxies selected from the H I Parkes All Sky Survey (HIPASS) to contain more than 2.5 times their expected H I content based on their optical properties, we investigate what drives these H I eXtreme (H IX) galaxies to be so H I-rich. We model the H I kinematics with the Tilted Ring Fitting Code TiRiFiC and compare the observed H IX galaxies to a control sample of galaxies from HIPASS as well as simulated galaxies built with the semi-analytic model DARK SAGE. We find that (1) H I discs in H IX galaxies are more likely to be warped and more likely to host H I arms and tails than in the control galaxies, (2) the average H I and average stellar column density of H IX galaxies is comparable to the control sample, (3) H IX galaxies have higher H I and baryonic specific angular momenta than control galaxies, (4) most H IX galaxies live in higher spin haloes than most control galaxies. These results suggest that H IX galaxies are H I-rich because they can support more H I against gravitational instability due to their high specific angular momentum. The majority of the H IX galaxies inherits their high specific angular momentum from their halo. The H I content of H IX galaxies might be further increased by gas-rich minor mergers. This paper is based on data obtained with the Australia Telescope Compact Array through the large program C 2705.

  1. Evolution of Mars’ Northern Polar Seasonal CO2 deposits: variations in surface brightness and bulk density (United States)

    Mount, Christopher P.; Titus, Timothy N.


    Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.

  2. Catalyst-Free Conjugation and In Situ Quantification of Nanoparticle Ligand Surface Density Using Fluorogenic Cu-Free Click Chemistry

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Sun, Honghao; Berg, Rolf Henrik


    A highly efficient method for functionalizing nanoparticles and directly quantifying conjugation efficiency and ligand surface density has been developed. Attachment of 3-azido-modifed RGD-peptides to PEGylated liposomes was achieved by using Cu-free click conditions. Upon coupling a fluorophore ...

  3. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard (United States)

    Nadir Ayrilimis; Jerrold E. Winandy


    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  4. The galactic disk surface mass density and the Galactic force K(z) at z = 1.1 kiloparsecs

    International Nuclear Information System (INIS)

    Kuijken, K.; Gilmore, G.


    A set of distance and velocity data previously obtained and analyzed is rediscussed to determine the surface mass density of the Galactic disk. These data reliably determine the integral surface mass density of all (disk + halo) Galactic components within 1.1 kpc from the Galactic plane near the sun to be 71 + or 6 solar masses/sq pc, independent of the disk/halo ratio. Determination of the fraction of this total mass which is distributed in the Galactic disk and the fraction which is associated with an extended halo remains highly model-dependent. The best available estimate of the relative contributions of disk mass and halo mass to the local integral surface density, obtained from modeling of the Galactic rotation curve, yields a surface mass density of 48 + or - 9 solar masses/sq pc for mass associated with the Galactic disk near the sun. The corresponding mass of identified disk matter is 48 + or - 8 solar masses/sq pc. 7 refs

  5. Density Functional Theory Study of Chemical Sensing on Surfaces of Single-Layer MOS2 and Graphene (Postprint) (United States)


    Surface contour plots of charge densities for graphene and MoS2 adsorbed on SiO2 plotted along a plane passing through the center of (a) car- bon of...graphene, silicon, and oxygen atoms and (b) molybdenum, sulfur, sil- icon , and oxygen atoms. 164302-6 F. Mehmood and R. Pachter J. Appl. Phys. 115, 164302

  6. Crashing galaxies, cosmic fireworks

    International Nuclear Information System (INIS)

    Keel, W.C.


    The study of binary systems is reviewed. The history of the study of interacting galaxies, the behavior of gas in binary systems, studies to identify the processes that occur when galaxies interact, and the relationship of Seyfert galaxies and quasars to binary systems are discussed. The development of an atlas of peculiar galaxies (Arp, 1966) and methods for modeling galaxy interactions are examined

  7. The use of surface power for characterisation of structure-borne sound sources of low modal density

    DEFF Research Database (Denmark)

    Ohlrich, Mogens


    The use of the surface power methods for source characterisaiton of vibrating machinery of low modal density is investigated in this paper. It was demonstrated by Ohlrich and Larsen that this relatively simple, but very useful measurement technique for quantifying the vibratory strength...... of machinery, is very suitable in cases of high modal density, especially with respect to overall evaluation of machinery vibration characteristics and for estimation of the power produced by internal source mechanisms of the machine. Thus, it is envisaged that the method can be used in the development stage...... of new machines, in comparison studies of different machines, and in factory quality control to ensure that vibro-acoustic specifications are met. Carefully controlled experiments with an instrumented 3/4-scale structural model of a helicopter gearbox of low modal density, show that the surface power...

  8. The dynamical role of the central molecular ring within the framework of a seven-component Galaxy model (United States)

    Simin, A. A.; Fridman, A. M.; Haud, U. A.


    A Galaxy model in which the surface density of the gas component has a sharp (two orders of magnitude) jump in the region of the outer radius of the molecular ring is constructed on the basis of observational data. This model is used to calculate the contributions of each population to the model curve of Galactic rotation. The value of the dimensionless increment of hydrodynamical instability for the gas component, being much less than 1, coincides with a similar magnitude for the same gas in the gravity field of the entire Galaxy. It is concluded that the unstable gas component of the Galaxy lies near the limit of the hydrodynamical instability, which is in accordance with the Le Chatelier principle. The stellar populations of the Galaxy probably do not affect the generation of the spiral structure in the gaseous component.

  9. First Characterization of the Neutral ISM in Two Local Volume Dwarf Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Bralts-Kelly, Lilly; Bulatek, Alyssa M.; Chinski, Sarah; Ford, Robert N.; Gilbonio, Hannah E.; Helmel, Greta; McGlasson, Riley; Mizener, Andrew; Cannon, John M. [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Kaisin, Serafim; Karachentsev, Igor [Special Astrophysical Observatory of RAS, Nizhnij Arkhyz, KChR, 369167 (Russian Federation); Denn, Grant, E-mail:, E-mail:, E-mail:, E-mail: [Department of Physics, Metropolitan State University of Denver, P.O. Box 173362, Denver, CO 80217 (United States)


    We present the first H i spectral-line images of the nearby, star-forming dwarf galaxies UGC 11411 and UGC 8245, acquired as part of the “Observing for University Classes” program with the Karl G. Jansky Very Large Array (VLA). These low-resolution images localize the H i gas and reveal the bulk kinematics of each system. Comparing with Hubble Space Telescope ( HST ) broadband and ground-based H α imaging, we find that the ongoing star formation in each galaxy is associated with the highest H i mass surface density regions. UGC 8245 has a much lower current star formation rate than UGC 11411, which harbors very high surface brightness H α emission in the inner disk and diffuse, lower surface brightness nebular gas that extends well beyond the stellar disk as traced by HST . We measure the dynamical masses of each galaxy and find that the halo of UGC 11411 is more than an order of magnitude more massive than the halo of UGC 8245, even though the H i and stellar masses of the sources are similar. We show that UGC 8245 shares similar physical properties with other well-studied low-mass galaxies, while UGC 11411 is more highly dark matter dominated. Both systems have negative peculiar velocities that are associated with a coherent flow of nearby galaxies at high supergalactic latitude.

  10. Methane formation from the hydrogenation of carbon dioxide on Ni(110) surface--a density functional theoretical study. (United States)

    Bothra, Pallavi; Periyasamy, Ganga; Pati, Swapan K


    The complete hydrogenation mechanisms of CO2 are explored on Ni(110) surface catalyst using density functional theory. We have studied the possible hydrogenation mechanism to form product methane from the stable adsorption-co-adsorption intermediates of CO2 and H2 on Ni(110) surface. Our computations clearly elucidate that the mechanism for the formation of methyl, methoxy and methane moieties from carbon dioxide on the nickel catalyst. Moreover, our studies clearly show that the methane formation via hydroxyl carbonyl intermediate requires a lower energy barrier than via carbon monoxide and formate intermediates on the Ni(110) surface.

  11. The interstellar medium and star formation in nearby galaxies. Ludwig Biermann Award Lecture 2013 (United States)

    Bigiel, F.; Cormier, D.; Schmidt, T.

    In this overview article we present some of the key projects we pursue in our Emmy Noether group. Our work is focused on nearby galaxies, where we use multi-wavelength, state-of-the-art survey data to probe distribution, abundance and properties of gas and dust in the interstellar medium (ISM) on [Si II] kpc scales. We study the average, radial distributions of atomic (H I) and molecular hydrogen (H2) across the disks of spiral galaxies and assess local (on 1 kpc scales) correlations between H I, H2 and star formation rate (SFR) surface densities across the inner, optical disks of our sample of [Si II] 30 spiral galaxies. The short H2 depletion times ([Si II] 2 Gyr) we find raises the question of if and how star formation is refueled in galactic disks. We look for such signatures of radial gas flows in our H I data and find compelling evidence at least in one case. We extend and compare our gas-SFR studies to the outer disks of galaxies, where conditions change significantly in the ISM, e.g., low metallicity and dust abundance. We focus on star formation at low-metallicity further with detailed ISM studies in dwarf galaxies, where we combine spectroscopic observations in the infrared with detailed modelling to learn about composition and detailed physical properties of the ISM. Of particular interest is the question of what drives large scale star formation in galaxies at low metallicity.

  12. Radio observations confirm young stellar populations in local analogues to z ˜ 5 Lyman break galaxies (United States)

    Greis, Stephanie M. L.; Stanway, Elizabeth R.; Levan, Andrew J.; Davies, Luke J. M.; Eldridge, J. J.


    We present radio observations at 1.5 GHz of 32 local objects selected to reproduce the physical properties of z ˜ 5 star-forming galaxies. We also report non-detections of five such sources in the sub-millimetre. We find a radio-derived star formation rate that is typically half than that derived from H α emission for the same objects. These observations support previous indications that we are observing galaxies with a young dominant stellar population, which has not yet established a strong supernova-driven synchrotron continuum. We stress caution when applying star formation rate calibrations to stellar populations younger than 100 Myr. We calibrate the conversions for younger galaxies, which are dominated by a thermal radio emission component. We improve the size constraints for these sources, compared to previous unresolved ground-based optical observations. Their physical size limits indicate very high star formation rate surface densities, several orders of magnitude higher than the local galaxy population. In typical nearby galaxies, this would imply the presence of galaxy-wide winds. Given the young stellar populations, it is unclear whether a mechanism exists in our sources that can deposit sufficient kinetic energy into the interstellar medium to drive such outflows.

  13. {sup 13}CO/C{sup 18}O Gradients across the Disks of Nearby Spiral Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank [Institut für theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle Str. 2, D-69120 Heidelberg (Germany); Leroy, Adam K.; Gallagher, Molly [Department of Astronomy, The Ohio State University, 140 W 18th St, Columbus, OH 43210 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Usero, Antonio [Observatorio Astronómico Nacional, Alfonso XII 3, E-28014, Madrid (Spain); Hughes, Annie [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Kramer, Carsten [Instituto de Astrofísica de Andalucía IAA-CSIC, Glorieta de la Astronomía s/n, E-18008, Granada (Spain); Meier, David [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Pl, Soccoro, NM 87801 (United States); Murphy, Eric [National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903 (United States); Pety, Jérôme; Schuster, Karl [Institut de Radioastronomie Millimétrique (IRAM), 300 Rue de la Piscine, F-38406 Saint Martin d’Hères (France); Schinnerer, Eva; Sliwa, Kazimierz; Tomicic, Neven [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Schruba, Andreas, E-mail: [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany)


    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure {sup 13}CO(1-0)/C{sup 18}O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of {sup 12}CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved {sup 13}CO/C{sup 18}O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean {sup 13}CO/C{sup 18}O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the {sup 13}CO/C{sup 18}O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  14. A multiwavelength survey of HI-excess galaxies with surprisingly inefficient star formation (United States)

    Geréb, K.; Janowiecki, S.; Catinella, B.; Cortese, L.; Kilborn, V.


    We present the results of a multiwavelength survey of H I-excess galaxies, an intriguing population with large H I reservoirs associated with little current star formation. These galaxies have stellar masses M⋆ > 1010 M⊙, and were identified as outliers in the gas fraction vs. NUV-r color and stellar mass surface density scaling relations based on the GALEX Arecibo SDSS Survey (GASS). We obtained H I interferometry with the GMRT, Keck optical long-slit spectroscopy and deep optical imaging (where available) for four galaxies. Our analysis reveals multiple possible reasons for the H I excess in these systems. One galaxy, AGC 10111, shows an H I disk that is counter-rotating with respect to the stellar bulge, a clear indication of external origin of the gas. Another galaxy appears to host a Malin 1-type disk, where a large specific angular momentum has to be invoked to explain the extreme MHI/M⋆ ratio of 166%. The other two galaxies have early-type morphology with very high gas fractions. The lack of merger signatures (unsettled gas, stellar shells and streams) in these systems suggests that these gas-rich disks have been built several Gyr-s ago, but it remains unclear how the gas reservoirs were assembled. Numerical simulations of large cosmological volumes are needed to gain insight into the formation of these rare and interesting systems.

  15. Verification of surface contamination density standard using clearance automatic laser inspection system for objects from a nuclear power plant

    International Nuclear Information System (INIS)

    Sasaki, Michiya; Ogino, Haruyuki; Ichiji, Takeshi; Hattori, Takatoshi


    In the clearance level inspection in Japan, it is necessary to indicate that the activity level of the target object must be less than not only the clearance levels, but also the surface contamination density standards. The classification measurements for these two standards have been performed separately, and the GM survey meters based on beta-ray measurement have mainly been used for surface contamination density measurement so far. Recently the Clearance Automatic Laser Inspection System, named CLALIS, has been developed to estimate the low-level activity concentration. This system consists of 3-dimensional laser scanner for shape measurement and eight large NE102A plastic scintillation detectors for gamma-ray measurement, and it has been clarified that the CLALIS has adequate detection ability for clearance measurement of both metal scraps and concrete debris. In this study, we compared the surface contamination densities for a number of actual contaminated and non-contaminated objects generated inside from the radiation controlled area at the Kashiwazaki-Kariwa nuclear power station by using the CLALIS and the GM survey meter. As a result, since CLALIS could detect the surface contamination as well as the GM survey meter for all measurement targets, it was revealed that CLALIS can rationally achieve clearance level inspection in a single radiation measurement. The practicality of CLALIS in view of the detection limit and processing time was discussed by comparison with the usual radiation monitors for surface contamination measurement. (author)

  16. The SAMI Galaxy Survey: first 1000 galaxies (United States)

    Allen, J. T.


    The Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey is an ongoing project to obtain integral field spectroscopic observations of ~3400 galaxies by mid-2016. Including the pilot survey, a total of ~1000 galaxies have been observed to date, making the SAMI Galaxy Survey the largest of its kind in existence. This unique dataset allows a wide range of investigations into different aspects of galaxy evolution. The first public data from the SAMI Galaxy Survey, consisting of 107 galaxies drawn from the full sample, has now been released. By giving early access to SAMI data for the entire research community, we aim to stimulate research across a broad range of topics in galaxy evolution. As the sample continues to grow, the survey will open up a new and unique parameter space for galaxy evolution studies.

  17. Controlled atom transfer radical polymerization of MMA onto the surface of high-density functionalized graphene oxide. (United States)

    Kumar, Mukesh; Chung, Jin Suk; Hur, Seung Hyun


    We report on the grafting of poly(methyl methacrylate) (PMMA) onto the surface of high-density functionalized graphene oxides (GO) through controlled radical polymerization (CRP). To increase the density of surface grafting, GO was first diazotized (DGO), followed by esterification with 2-bromoisobutyryl bromide, which resulted in an atom transfer radical polymerization (ATRP) initiator-functionalized DGO-Br. The functionalized DGO-Br was characterized by X-ray photoelectron spectroscopy (XPS), Raman, and XRD patterns. PMMA chains were then grafted onto the DGO-Br surface through a 'grafting from' technique using ATRP. Gel permeation chromatography (GPC) results revealed that polymerization of methyl methacrylate (MMA) follows CRP. Thermal studies show that the resulting graphene-PMMA nanocomposites have higher thermal stability and glass transition temperatures (T g) than those of pristine PMMA.

  18. SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties (United States)

    Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting


    The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.


    International Nuclear Information System (INIS)

    Tal, Tomer; Van Dokkum, Pieter G.; Leja, Joel; Franx, Marijn; Wake, David A.; Whitaker, Katherine E.


    We present a statistical study of the environments of massive galaxies in four redshift bins between z = 0.04 and z = 1.6, using data from the Sloan Digital Sky Survey and the NEWFIRM Medium Band Survey. We measure the projected radial distribution of galaxies in cylinders around a constant number density selected sample of massive galaxies and utilize a statistical subtraction of contaminating sources. Our analysis shows that massive primary galaxies typically live in group halos and are surrounded by 2-3 satellites with masses more than one-tenth of the primary galaxy mass. The cumulative stellar mass in these satellites roughly equals the mass of the primary galaxy itself. We further find that the radial number density profile of galaxies around massive primaries has not evolved significantly in either slope or overall normalization in the past 9.5 Gyr. A simplistic interpretation of this result can be taken as evidence for a lack of mergers in the studied groups and as support for a static evolution model of halos containing massive primaries. Alternatively, there exists a tight balance between mergers and accretion of new satellites such that the overall distribution of galaxies in and around the halo is preserved. The latter interpretation is supported by a comparison to a semi-analytic model, which shows a similar constant average satellite distribution over the same redshift range.

  20. Does the galaxy-halo connection vary with environment? (United States)

    Dragomir, Radu; Rodríguez-Puebla, Aldo; Primack, Joel R.; Lee, Christoph T.


    (Sub)halo abundance matching (SHAM) assumes that one (sub) halo property, such as mass Mvir or peak circular velocity Vpeak, determines properties of the galaxy hosted in each (sub) halo such as its luminosity or stellar mass. This assumption implies that the dependence of galaxy luminosity functions (GLFs) and the galaxy stellar mass function (GSMF) on environmental density is determined by the corresponding halo density dependence. In this paper, we test this by determining from a Sloan Digital Sky Survey sample the observed dependence with environmental density of the ugriz GLFs and GSMF for all galaxies, and for central and satellite galaxies separately. We then show that the SHAM predictions are in remarkable agreement with these observations, even when the galaxy population is divided between central and satellite galaxies. However, we show that SHAM fails to reproduce the correct dependence between environmental density and g - r colour for all galaxies and central galaxies, although it better reproduces the colour dependence on environmental density of satellite galaxies.

  1. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone

    Directory of Open Access Journals (Sweden)

    M. G. Cooper


    Full Text Available We document the density and hydrologic properties of bare, ablating ice in a mid-elevation (1215 m a.s.l. supraglacial internally drained catchment in the Kangerlussuaq sector of the western Greenland ice sheet. We find low-density (0.43–0.91 g cm−3, μ = 0.69 g cm−3 ice to at least 1.1 m depth below the ice sheet surface. This near-surface, low-density ice consists of alternating layers of water-saturated, porous ice and clear solid ice lenses, overlain by a thin (< 0.5 m, even lower density (0.33–0.56 g cm−3, μ = 0.45 g cm−3 unsaturated weathering crust. Ice density data from 10 shallow (0.9–1.1 m ice cores along an 800 m transect suggest an average 14–18 cm of specific meltwater storage within this low-density ice. Water saturation of this ice is confirmed through measurable water levels (1–29 cm above hole bottoms, μ = 10 cm in 84 % of cryoconite holes and rapid refilling of 83 % of 1 m drilled holes sampled along the transect. These findings are consistent with descriptions of shallow, depth-limited aquifers on the weathered surface of glaciers worldwide and confirm the potential for substantial transient meltwater storage within porous low-density ice on the Greenland ice sheet ablation zone surface. A conservative estimate for the  ∼  63 km2 supraglacial catchment yields 0.009–0.012 km3 of liquid meltwater storage in near-surface, porous ice. Further work is required to determine if these findings are representative of broader areas of the Greenland ice sheet ablation zone, and to assess the implications for sub-seasonal mass balance processes, surface lowering observations from airborne and satellite altimetry, and supraglacial runoff processes.

  2. Developing the Next Generation of Tools for Simulating Galaxy Outflows (United States)

    Scannapieco, Evan

    Outflows are observed in starbursting galaxies of all masses and at all cosmological epochs. They play a key role throughout the history of the Universe: shaping the galaxy mass-metallicity relation, drastically affecting the content and number density of dwarf galaxies, and transforming the chemical composition of the intergalactic medium. Yet, a complete model of galaxy out ows has proven to be elusive, as it requires both a better understanding of the evolution of the turbulent, multiphase gas in and around starbursting galaxies, and better tools to reproduce this evolution in galaxy-scale simulations. Here we propose to conduct a detailed series of numerical simulations designed to help develop such next-generation tools for the simulation of galaxy outflows. The program will consist of three types of direct numerical simulations, each of which will be targeted to allow galaxy-scale simulations to more accurately model key microphysical processes and their observational consequences. Our first set of simulations will be targeted at better modeling the starbursting interstellar medium (ISM) from which galaxy outflows are driven. The surface densities in starbursting galaxies are much larger than those in the Milky Way, resulting in larger gravitational accelerations and random velocities exceeding 30 or even 100 km/s. Under these conditions, the thermal stability of the ISM is changed dramatically, due to the sharp peak in gas cooling efficiency at H 200,000 K. Our simulations will carefully quantify the key ways in which this medium differs from the local ISM, and the consequences of these differences for when, where, and how outflows are driven. A second set of simulations will be targeted at better modeling the observed properties of rapidly cooling, highly turbulent gas. Because gas cooling in and around starbursts is extremely efficient, turbulent motions are often supersonic, which leads to a distribution of ionization states that is vastly different than

  3. Spectrophotometry of nearby field galaxies : The data

    NARCIS (Netherlands)

    Jansen, RA; Fabricant, D; Franx, M; Caldwell, N

    We have obtained integrated and nuclear spectra as well as U, B, R surface photometry for a representative sample of 196 nearby galaxies. These galaxies span the entire Hubble sequence in morphological type, as well as a wide range of luminosities (M(B) = -14 to -22). Here we present the

  4. Planetary Nebulae as kinematic and dynamical tracers of galaxy halos

    NARCIS (Netherlands)

    Coccato, Lodovico; Napolitano, Nicola; Arnaboldi, Magda; Cortesi, Arianna; Romanowsky, Aaron; Gerhard, Ortwin; Merrifield, Michael; Kuijken, Konrad; Freeman, Ken; Douglas, Nigel


    The kinematics and dynamical properties of galaxy halos are difficult to measure, given the faint stellar surface brightness that characterizes those regions. Gas-rich systems such as spiral galaxies can be probed using the radio emission of their gas component. Early type galaxies contain less gas,

  5. Near-infrared photometry of bright elliptical galaxies

    NARCIS (Netherlands)

    Peletier, R. F.; Valentijn, E. A.; Jameson, R. F.

    High-quality visual-infrared color profiles have been determined for elliptical galaxies for the first time. Surface photometry in J and K is presented for 12 bright elliptical galaxies, and the results have been combined with CCD data in visual passbands. It is shown that the galaxies become bluer

  6. CCD photometry of apparent dwarf galaxies in Fornax

    International Nuclear Information System (INIS)

    Phillipps, S.; Grimley, P.L.; Disney, M.J.; Cawson, M.G.M.; Kibblewhite, E.J.


    Blue and red CCD surface photometry of two apparent dwarf galaxies in the Fornax cluster region is presented. Luminosity profiles are derived and their form discussed. The fainter galaxy resembles an archetypal diffuse dwarf elliptical but the brighter of the pair is either an unusual red dwarf or a background galaxy in chance juxtaposition. (author)


    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Park, Changbom


    We study the galaxy morphology-luminosity-environmental relation and its redshift evolution using a spectroscopic sample of galaxies in the Great Observatories Origins Deep Survey. In the redshift range of 0.4 ≤ z ≤ 1.0, we detect conformity in morphology between neighboring galaxies. The realm of conformity is confined within the virialized region associated with each galaxy plus dark matter halo system. When a galaxy is located within the virial radius of its nearest neighbor galaxy, its morphology strongly depends on the neighbor's distance and morphology: the probability for a galaxy to be an early type (f E ) increases as it approaches an early-type neighbor, but decreases as it approaches a late-type neighbor. We find that f E evolves much faster in high-density regions than in low-density regions, and that the morphology-density relation becomes significantly weaker at z ∼ 1. This may be because the rate of galaxy-galaxy interactions is higher in high-density regions, and a series of interactions and mergers over the course of galaxy life eventually transform late types into early types. We find more isolated galaxies are more luminous, which supports luminosity transformation through mergers at these redshifts. Our results are consistent with those from nearby galaxies, and demonstrate that galaxy-galaxy interactions have been strongly affecting the galaxy evolution over a long period of time.

  8. Poloidal density variation of impurities in a rotating tokamak plasma - flux surface coordinates and effect on transport coefficients

    International Nuclear Information System (INIS)

    Romanelli, M.


    The poloidal variation of impurity densities over magnetic surfaces brings about an enhancement of neoclassical transport coefficients, as shown by Romanelli and Ottaviani for impurities in the Pfirsch Schlueter regime and by Helander for particles in the banana-plateau regime, both in a large aspect ratio tokamak. The same effect will occur in a finite aspect ratio tokamak and therefore it is considered to be relevant for inclusion in transport codes for comparison with the experimental measurements of impurity transport. Here an expression for the impurity-density poloidal-variation generated by the fast toroidal rotation of the plasma column is presented in general coordinates. (author)

  9. Properties of hot gas in halos of active galaxies and clusters of galaxies

    International Nuclear Information System (INIS)

    Durret-Isnard, F.


    The importance of the inverse Compton effect in the X-ray emission of cluster galaxies is discussed; the X-ray origin problem from galaxy clusters (spectra and emission mechanisms) is studied. The insufficiency of the X-ray bremsstrahlung emission model in an isothermal gas is proved. The ionized halos in narrow-line galaxies (NLG) are studied; after some general points on NLG, one NLG is described and a brief view an emission mechanism models is given; a detailed study of the galaxy IC 5063 and its nebulosity is given: the ionized gas density is calculated together with the evaporation rate for such clouds [fr

  10. On order and chaos in the mergers of galaxies (United States)

    Vandervoort, Peter O.


    This paper describes a low-dimensional model of the merger of two galaxies. The governing equations are the complete sets of moment equations of the first and second orders derived from the collisionless Boltzmann equations representing the galaxies. The moment equations reduce to an equation governing the relative motion of the galaxies, tensor virial equations, and equations governing the kinetic energy tensors. We represent the galaxies as heterogeneous ellipsoids with Gaussian stratifications of their densities, and we represent the mean stellar motions in terms of velocity fields that sustain those densities consistently with the equation of continuity. We reduce and solve the governing equations for a head-on encounter of a dwarf galaxy with a giant galaxy. That reduction includes the effect of dynamical friction on the relative motion of the galaxies. Our criterion for chaotic behaviour is sensitivity of the motion to small changes in the initial conditions. In a survey of encounters and mergers of a dwarf galaxy with a giant galaxy, chaotic behaviour arises mainly in non-linear oscillations of the dwarf galaxy. The encounter disrupts the dwarf, excites chaotic oscillations of the dwarf, or excites regular oscillations. Dynamical friction can drive a merger to completion within a Hubble time only if the dwarf is sufficiently massive. The survey of encounters and mergers is the basis for a simple model of the evolution of a `Local Group' consisting of a giant galaxy and a population of dwarf galaxies bound to the giant as satellites on radial orbits.

  11. Structure and electronic properties of the V 2O 3(0001) surface: ab initio density functional theory cluster studies (United States)

    Czekaj, I.; Witko, M.; Hermann, K.


    Electronic properties of the V 2O 3(0001) surface are studied using ab initio density functional theory method. In addition, the nature of surface V-O bonding as well as the electronic states of the structurally different surface oxygen and vanadium sites are discussed and compared with bulk oxygen/vanadium centers. The (0001) surface of vanadium sesquioxide is modeled using clusters of different size where the three ideal bulk-terminated surfaces, denoted as VV 'O (terminated by a double layer of vanadium atoms), V 'OV (terminated by one layer of V atoms), and OVV ' (terminated by one layer of oxygen atoms), are considered. For these surface terminations electronic properties of various surface and bulk centers are discussed. The results confirm bonding in vanadium sesquioxide as a mixture of ionic and covalent characters. Further, charging of structurally non-equivalent surface vanadium and oxygen sites is found to increase with the corresponding coordination number. Large differences in charging between surface and bulk vanadium atoms are found. In addition, the strong interaction between neighboring vanadium ions are observed.

  12. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Vigroux, Laurent


    This research thesis addresses theories on the chemical evolution of galaxies which aim at explaining abundances of different elements in galaxies, and more particularly aims at improving the model by modifying hypotheses. After a description of the simple model and of its uncertainties, the author shows how it is possible to understand the evolution of the main elements. Predictions obtained with this model are then compared with the present knowledge on galaxies by considering them according to an increasing complexity: Sun's neighbourhood, our galaxy, other spiral galaxies, elliptical galaxies, and finally galaxy clusters. A specific attention is given to irregular galaxies which are the simplest systems [fr

  13. Star formation properties of galaxy cluster A1767

    International Nuclear Information System (INIS)

    Yan, Peng-Fei; Li, Feng; Yuan, Qi-Rong


    Abell 1767 is a dynamically relaxed, cD cluster of galaxies with a redshift of 0.0703. Among 250 spectroscopically confirmed member galaxies within a projected radius of 2.5r 200 , 243 galaxies (∼ 97%) are spectroscopically covered by the Sloan Digital Sky Survey. Based on this homogeneous spectral sample, the stellar evolutionary synthesis code STARLIGHT is applied to investigate the stellar populations and star formation histories of galaxies in this cluster. The star formation properties of galaxies, such as mean stellar ages, metallicities, stellar masses, and star formation rates, are presented as functions of local galaxy density. A strong environmental effect is found such that massive galaxies in the high-density core region of the cluster tend to have higher metallicities, older mean stellar ages, and lower specific star formation rates (SSFRs), and their recent star formation activities have been remarkably suppressed. In addition, the correlations of the metallicity and SSFR with stellar mass are confirmed. (paper)

  14. The Westerbork HI Survey os spiral and irregular galaxies III : HI observations of early-type disk galaxies

    NARCIS (Netherlands)

    Noordermeer, E.; Hulst, J.M. van der; Sancisi, R.; Swaters, R.A.; Abada, T.S. van


    Abstract: We present HI observations of 68 early-type disk galaxies from the WHISP survey. They have morphological types between S0 and Sab and absolute B-band magnitudes between -14 and -22. These galaxies form the massive, high surface-brightness extreme of the disk galaxy population, few of which

  15. Separation of density and viscosity influence on liquid-loaded surface acoustic wave devices (United States)

    Herrmann, F.; Hahn, D.; Büttgenbach, S.


    Love-mode sensors are reported for separate measurement of liquid density and viscosity. They combine the general merits of Love-mode devices, e.g., ease of sensitivity adjustment and robustness, with a highly effective procedure of separate determination of liquid density and viscosity. A model is proposed to describe the frequency response of the devices to liquid loading. Moreover, design rules are given for further optimization and sensitivity enhancement.

  16. Abnormal changes in the density of thermal neutron flux in biocenoses near the earth surface. (United States)

    Plotnikova, N V; Smirnov, A N; Kolesnikov, M V; Semenov, D S; Frolov, V A; Lapshin, V B; Syroeshkin, A V


    We revealed an increase in the density of thermal neutron flux in forest biocenoses, which was not associated with astrogeophysical events. The maximum spike of this parameter in the biocenosis reached 10,000 n/(sec x m2). Diurnal pattern of the density of thermal neutron flux depended only on the type of biocenosis. The effects of biomodulation of corpuscular radiation for balneology are discussed.

  17. Do satellite galaxies trace matter in galaxy clusters? (United States)

    Wang, Chunxiang; Li, Ran; Gao, Liang; Shan, Huanyuan; Kneib, Jean-Paul; Wang, Wenting; Chen, Gang; Makler, Martin; Pereira, Maria E. S.; Wang, Lin; Maia, Marcio A. G.; Erben, Thomas


    The spatial distribution of satellite galaxies encodes rich information of the structure and assembly history of galaxy clusters. In this paper, we select a red-sequence Matched-filter Probabilistic Percolation cluster sample in SDSS Stripe 82 region with 0.1 ≤ z ≤ 0.33, 20 0.7. Using the high-quality weak lensing data from CS82 Survey, we constrain the mass profile of this sample. Then we compare directly the mass density profile with the satellite number density profile. We find that the total mass and number density profiles have the same shape, both well fitted by an NFW profile. The scale radii agree with each other within a 1σ error (r_s,gal=0.34_{-0.03}^{+0.04} Mpc versus r_s=0.37_{-0.10}^{+0.15} Mpc).


    International Nuclear Information System (INIS)

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.


    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 10 M sun , are mostly S0 galaxies, have a median effective radius (R e ) = 1.61 ± 0.29 kpc, a median Sersic index (n) = 3.0 ± 0.6, and very old stellar populations with a median mass-weighted age of 12.1 ± 1.3 Gyr. We calculate a number density of 2.9 x 10 -2 Mpc -3 for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10 -5 Mpc -3 in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z ∼ 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M * > 4 x 10 11 M sun compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  19. Massive relic galaxies prefer dense environments (United States)

    Peralta de Arriba, Luis; Quilis, Vicent; Trujillo, Ignacio; Cebrián, María; Balcells, Marc


    We study the preferred environments of z ∼ 0 massive relic galaxies (M⋆ ≳ 1010 M⊙ galaxies with little or no growth from star formation or mergers since z ∼ 2). Significantly, we carry out our analysis on both a large cosmological simulation and an observed galaxy catalogue. Working on the Millennium I-WMAP7 simulation we show that the fraction of today massive objects which have grown less than 10 per cent in mass since z ∼ 2 is ∼0.04 per cent for the whole massive galaxy population with M⋆ ≳ 1010 M⊙. This fraction rises to ∼0.18 per cent in galaxy clusters, confirming that clusters help massive galaxies remain unaltered. Simulations also show that massive relic galaxies tend to be closer to cluster centres than other massive galaxies. Using the New York University Value-Added Galaxy Catalogue, and defining relics as M⋆ ≳ 1010 M⊙ early-type galaxies with colours compatible with single-stellar population ages older than 10 Gyr, and which occupy the bottom 5-percentile in the stellar mass-size distribution, we find 1.11 ± 0.05 per cent of relics among massive galaxies. This fraction rises to 2.4 ± 0.4 per cent in high-density environments. Our findings point in the same direction as the works by Poggianti et al. and Stringer et al. Our results may reflect the fact that the cores of the clusters are created very early on, hence the centres host the first cluster members. Near the centres, high-velocity dispersions and harassment help cluster core members avoid the growth of an accreted stellar envelope via mergers, while a hot intracluster medium prevents cold gas from reaching the galaxies, inhibiting star formation.

  20. Are We Really Missing Small Galaxies? (United States)

    Kohler, Susanna


    One long-standing astrophysical puzzle is that of so-called missing dwarf galaxies: the number of small dwarf galaxies that we observe is far fewer than that predicted by theory. New simulations, however, suggest that perhaps theres no mystery after all.Missing DwarfsDark-matter cosmological simulations predict many small galaxy halos for every large halo that forms. [The Via Lactea project]Models of a lambda-cold-dark-matter (CDM) universe predict the distribution of galaxy halo sizes throughout the universe, suggesting there should be many more small galaxies than large ones. In what has become known as the missing dwarf problem, however, we find that while we observe the expected numbers of galaxies at the larger end of the scale, we dont see nearly enough small galaxies to match the predictions.Are these galaxies actually missing? Are our predictions wrong? Or are the galaxies there and were just not spotting them? A recent study led by Alyson Brooks (Rutgers University) uses new simulations to explore whatscausing the difference between theory and observation.The fraction of detectable halos as a function of velocity, according to the authors simulations. Below 35 km/s, the detectability of the galaxies drops precipitously. [Brooks et al. 2017]Simulating Galactic VelocitiesBecause we cant weigh a galaxy directly, one proxy used for galaxy mass is its circular velocity; the more massive a galaxy, the faster gas and stars rotate around its center. The discrepancy between models and observations lies in whats known as the galaxy velocity function, which describes the number density of galaxies for a given circular velocity. While theory and observations agree for galaxies with circular velocities above 100 km/s, theory predicts far more dwarfs below this velocity than we observe.To investigate this problem, Brooks and collaborators ran a series of cosmological simulations based on our understanding of a CDM universe. Instead of exploring the result using only

  1. Rotation curves of galaxies and the stellar mass-to-light ratio (United States)

    Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel


    Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c - Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration and virial mass. Although accounting for a NFW dark halo profile can explain rotation curve observations, the implied c - Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L -color correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L - ratios of 51 galaxies (30% of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark halos of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disk galaxies.

  2. Surface Brightness Profiles of Composite Images of Compact Galaxies at Z approximately equal 4-6 in the Hubble Ultra Deep Field

    National Research Council Canada - National Science Library

    Hathi, N. P; Jansen, R. A; Windhorst, R. A; Cohen, S. H; Keel, W. C; Corbin, M. R; Ryan, Jr, R. E


    The Hubble Ultra Deep Field (HUDF) contains a significant number of B-, V-, and iota'-band dropout objects, many of which were recently confirmed to be young star-forming galaxies at Z approximately equal 4-6...

  3. Adsorption and oxidation of oxalic acid on anatase TiO2 (001) surface: A density functional theory study. (United States)

    Sun, Tao; Wang, Yun; Zhang, Haimin; Liu, Porun; Zhao, Huijun


    Anatase TiO2 (001) surfaces have attracted great interest for photo-degradation of organic species recently due to their high reactivity. In this work, adsorption properties and oxidation mechanisms of oxalic acid on the anatase TiO2 (001) surface have been theoretically investigated using the first-principles density functional theory. Various possible adsorption configurations are considered by diversifying the connectivity of carboxylic groups with the surface. It is found that the adsorption of oxalic acid on the anatase (001) surface prefer the dissociative states. A novel double-bidentate configuration has been found due to the structural match between oxalic acid and the (001) surface. More charge is transferred from the adsorbed oxalic acid to the surface with the double-bidentate configuration when comparing with other adsorption structures. Thus, there is a positive correlation relationship between the transferred charge amount and the interfacial bond numbers when oxalic acid adsorbs on the anatase TiO2 (001) surface. The adsorption energies with dispersion corrections have demonstrated that the van der Waals interactions play an important role in the adsorption, especially when adsorbates are close to the surface. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Initial oxidation of gallium arsenide (001)-β2(2 x 4) surface using density functional theory. (United States)

    Kim, Dae-Hee; Kim, Dae-Hyun; Kim, Yeong-Cheol


    The initial oxidation of a gallium arsenide (001)-β2(2 x 4) surface with an oxygen molecule was investigated using density functional theory. The oxygen molecule was adsorbed on the surface without any energy barrier. The dissociation of the oxygen molecule on the first arsenic layer had two dissociation paths; the inter-dimer and intra-dimer. The inter-dimer dissociation was the dominant dissociation path based on the energy barriers. The two dissociated oxygen atoms preferred breaking the arsenic-gallium back-bond to form arsenic-oxygen-gallium bonds. Our results are in good agreement with literature of the scanning tunneling microscope study.

  5. H I and mass distribution in the dwarf regular galaxy UGC 2259

    International Nuclear Information System (INIS)

    Carignan, C.; Sancisi, R.; Van Albada, T.S.


    The paper presents a study of the H I and mass distribution for the dwarf regular galaxy UGC 2259. The H I content of UGC 2259 is typical of that found in more luminous Scd galaxies. The distribution of H I surface densities is shown to be constant out to about D(25) before starting to decrease. The H I velocity field is regular; no systematic variation of the orientation parameters with radius is found. The shape of this galaxy's rotation curve is similar to that seen in more luminous spirals while the rotational velocities on the rising branch coincide with those predicted for a low-luminosity Sc spiral. To reproduce the observed rotation curve, a minimum isothermal halo with sigma = 55 km/s and r(c) = 5.5 kpc must be added to the stellar disk. 31 references

  6. Do Galaxies Follow Darwinian Evolution? (United States)


    Using VIMOS on ESO's Very Large Telescope, a team of French and Italian astronomers have shown the strong influence the environment exerts on the way galaxies form and evolve. The scientists have for the first time charted remote parts of the Universe, showing that the distribution of galaxies has considerably evolved with time, depending on the galaxies' immediate surroundings. This surprising discovery poses new challenges for theories of the formation and evolution of galaxies. The 'nature versus nurture' debate is a hot topic in human psychology. But astronomers too face similar conundrums, in particular when trying to solve a problem that goes to the very heart of cosmological theories: are the galaxies we see today simply the product of the primordial conditions in which they formed, or did experiences in the past change the path of their evolution? ESO PR Photo 17/06 ESO PR Photo 45/06 Galaxy Distribution in Space In a large, three-year long survey carried out with VIMOS [1], the Visible Imager and Multi-Object Spectrograph on ESO's VLT, astronomers studied more than 6,500 galaxies over a wide range of distances to investigate how their properties vary over different timescales, in different environments and for varying galaxy luminosities [2]. They were able to build an atlas of the Universe in three dimensions, going back more than 9 billion years. This new census reveals a surprising result. The colour-density relation, that describes the relationship between the properties of a galaxy and its environment, was markedly different 7 billion years ago. The astronomers thus found that the galaxies' luminosity, their initial genetic properties, and the environments they reside in have a profound impact on their evolution. "Our results indicate that environment is a key player in galaxy evolution, but there's no simple answer to the 'nature versus nurture' problem in galaxy evolution," said Olivier Le Fèvre from the Laboratoire d'Astrophysique de Marseille

  7. Ammonia synthesis over a Ru(0001) surface studied by density functional calculations

    DEFF Research Database (Denmark)

    Logadottir, Ashildur; Nørskov, Jens Kehlet


    In this paper we present DFT studies of all the elementary steps in the synthesis of ammonia from gaseous hydrogen and nitrogen over a ruthenium crystal. The stability and configurations of intermediates in the ammonia synthesis over a Ru(0001) surface have been investigated, both over a flat...... surface and over a stepped surface. The calculations show that the step sites on the surface are much more reactive than the terrace sites. The DFT results are then used to study the mechanism of promotion by alkalies over the Ru(0001) and to determine the rate-determining step in the synthesis of ammonia...

  8. Comparison of the surface ion density of silica gel evaluated via spectral induced polarization versus acid-base titration (United States)

    Hao, Na; Moysey, Stephen M. J.; Powell, Brian A.; Ntarlagiannis, Dimitrios


    Surface complexation models are widely used with batch adsorption experiments to characterize and predict surface geochemical processes in porous media. In contrast, the spectral induced polarization (SIP) method has recently been used to non-invasively monitor in situ subsurface chemical reactions in porous media, such as ion adsorption processes on mineral surfaces. Here we compare these tools for investigating surface site density changes during pH-dependent sodium adsorption on a silica gel. Continuous SIP measurements were conducted using a lab scale column packed with silica gel. A constant inflow of 0.05 M NaCl solution was introduced to the column while the influent pH was changed from 7.0 to 10.0 over the course of the experiment. The SIP measurements indicate that the pH change caused a 38.49 ± 0.30 μS cm- 1 increase in the imaginary conductivity of the silica gel. This increase is thought to result from deprotonation of silanol groups on the silica gel surface caused by the rise in pH, followed by sorption of Na+ cations. Fitting the SIP data using the mechanistic model of Leroy et al. (Leroyet al., 2008), which is based on the triple layer model of a mineral surface, we estimated an increase in the