WorldWideScience

Sample records for surface deformation patterns

  1. Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern

    Science.gov (United States)

    Fuchs, L.; Becker, T. W.

    2017-12-01

    How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface

  2. Rates and patterns of surface deformation from laser scanning following the South Napa earthquake, California

    Science.gov (United States)

    DeLong, Stephen B.; Lienkaemper, James J.; Pickering, Alexandra J; Avdievitch, Nikita N.

    2015-01-01

    The A.D. 2014 M6.0 South Napa earthquake, despite its moderate magnitude, caused significant damage to the Napa Valley in northern California (USA). Surface rupture occurred along several mapped and unmapped faults. Field observations following the earthquake indicated that the magnitude of postseismic surface slip was likely to approach or exceed the maximum coseismic surface slip and as such presented ongoing hazard to infrastructure. Using a laser scanner, we monitored postseismic deformation in three dimensions through time along 0.5 km of the main surface rupture. A key component of this study is the demonstration of proper alignment of repeat surveys using point cloud–based methods that minimize error imposed by both local survey errors and global navigation satellite system georeferencing errors. Using solid modeling of natural and cultural features, we quantify dextral postseismic displacement at several hundred points near the main fault trace. We also quantify total dextral displacement of initially straight cultural features. Total dextral displacement from both coseismic displacement and the first 2.5 d of postseismic displacement ranges from 0.22 to 0.29 m. This range increased to 0.33–0.42 m at 59 d post-earthquake. Furthermore, we estimate up to 0.15 m of vertical deformation during the first 2.5 d post-earthquake, which then increased by ∼0.02 m at 59 d post-earthquake. This vertical deformation is not expressed as a distinct step or scarp at the fault trace but rather as a broad up-to-the-west zone of increasing elevation change spanning the fault trace over several tens of meters, challenging common notions about fault scarp development in strike-slip systems. Integrating these analyses provides three-dimensional mapping of surface deformation and identifies spatial variability in slip along the main fault trace that we attribute to distributed slip via subtle block rotation. These results indicate the benefits of laser scanner surveys along

  3. Deformations of surface singularities

    CERN Document Server

    Szilárd, ágnes

    2013-01-01

    The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry.  This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...

  4. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...

  5. Uncovering deformation processes from surface displacements

    Science.gov (United States)

    Stramondo, Salvatore

    2013-04-01

    The aim of this talk is to provide an overview about the most recent outcomes in Earth Sciences, describe the role of satellite remote sensing, together with GPS, ground measurement and further data, for geophysical parameter retrieval in well known case studies where the combined approach dealing with the use of two or more techniques/datasets have demonstrated their effectiveness. The Earth Sciences have today a wide availability of instruments and sensors able to provide scientists with an unprecedented capability to study the physical processes driving earthquakes, volcanic eruptions, landslides, and other dynamic Earth systems. Indeed measurements from satellites allow systematic observation of the Earth surface covering large areas, over a long time period and characterized by growing sample intervals. Interferometric Synthetic Aperture Radar (InSAR) technique has demonstrated its effectiveness to investigate processes responsible for crustal faulting stemming from the detection of surface deformation patterns. Indeed using satellite data along ascending and descending orbits, as well as different incident angles, it is possible in principle to retrieve the full 3D character of the ground motion. To such aim the use of GPS stations providing 3D displacement components is a reliable complementary instrument. Finally, offset tracking techniques and Multiple Aperture Interferometry (MAI) may provide a contribution to the analysis of horizontal and NS deformation vectors. The estimation of geophysical parameters using InSAR has been widely discussed in seismology and volcanology, and also applied to deformation associated with groundwater and other subsurface fluids. These applications often involve the solution of an inverse problem, which means the retrieval of optimal source parameters at depth for volcanoes and earthquakes, from the knowledge of surface deformation from InSAR. In recent years, InSAR measurements combined with traditional seismological and

  6. Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 2. Coeruptive deflation, July-August 2008

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel

    2010-01-01

    A hydrovolcanic eruption near Cone D on the floor of Okmok caldera, Alaska, began on 12 July 2008 and continued until late August 2008. The eruption was preceded by inflation of a magma reservoir located beneath the center of the caldera and ∼3 km below sea level (bsl), which began immediately after Okmok's previous eruption in 1997. In this paper we use data from several radar satellites and advanced interferometric synthetic aperture radar (InSAR) techniques to produce a suite of 2008 coeruption deformation maps. Most of the surface deformation that occurred during the eruption is explained by deflation of a Mogi-type source located beneath the center of the caldera and 2–3 km bsl, i.e., essentially the same source that inflated prior to the eruption. During the eruption the reservoir deflated at a rate that decreased exponentially with time with a 1/e time constant of ∼13 days. We envision a sponge-like network of interconnected fractures and melt bodies that in aggregate constitute a complex magma storage zone beneath Okmok caldera. The rate at which the reservoir deflates during an eruption may be controlled by the diminishing pressure difference between the reservoir and surface. A similar mechanism might explain the tendency for reservoir inflation to slow as an eruption approaches until the pressure difference between a deep magma production zone and the reservoir is great enough to drive an intrusion or eruption along the caldera ring-fracture system.

  7. Surface tension and deformation in soft adhesion

    Science.gov (United States)

    Jensen, Katharine

    Modern contact mechanics was originally developed to account for the competition between adhesion and elasticity for relatively stiff deformable materials like rubber, but much softer sticky materials are ubiquitous in biology, engineering, and everyday consumer products. In such soft materials, the solid surface tension can also play an important role in resisting shape change, and significantly modify the physics of contact with soft matter. We report indentation and pull-off experiments that bring small, rigid spheres into adhesive contact with compliant silicone gel substrates, varying both the surface functionalization of the spheres and the bulk elastic properties of the gels. We map the resulting deformation profiles using optical microscopy and image analysis. We examine the substrate geometry in light of capillary and elastic theories in order to explore the interplay of surface tension and bulk elasticity in governing soft adhesion.

  8. a Research on Monitoring Surface Deformation and Relationships with Surface Parameters in Qinghai Tibetan Plateau Permafrost

    Science.gov (United States)

    Mi, S. J.; Li, Y. T.; Wang, F.; Li, L.; Ge, Y.; Luo, L.; Zhang, C. L.; Chen, J. B.

    2017-09-01

    The Qinghai Tibetan Plateau permafrost has been the largest permafrost region in middle-low latitude in the world for its high altitude. For the large area permafrost, especially surface deformation brought by it, have serious influence on the road engineering, road maintaining and regional economic development. Consequently, it is essential to monitor the surface deformation and study factors that influent it. We monitored an area named Wudaoliang from July 25, 2015 to June 1, 2016 and 15 Sentinel images were obtained during this time. The area we chose is about 35 kilometers long and 2 kilometers wide, and the national road 109 of China passes through the area. The traditional PS-INSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) method is not suitable because less historical images in the research area and leading to the number of PS (Persistent Scatterer) points is not enough to obtain accurate deformation results. Therefore, in this paper, we used another method which named QUASI-PSInSAR (QUASI Persistent Scatterer Interferometric Synthetic Aperture Radar) to acquire deformation for it has the advantage to weaken or eliminate the effects of spatial and temporal correlation, which has proved by other scholar. After processing 15 images in the SARproz software, we got the conclusions that, 1) the biggest deformation velocity in the whole area was about 127.9mm/year and about 109.3 mm/year in the road; 2) apparent deformation which have surface deformation more than 30mm/year was about 1.7Km in the road. Meanwhile, soil moisture(SM), Land surface temperature (LST) and surface water(SW), which are primary parameters of the land surface over the same time were reversed by using Sentinel data, Landsat data and ZY-3 data, respectively. After analyzing SM, LST , SW and deformation, we obtained that wet areas which had bigger SM, lower LST and more SW, had greater percentage of severe deformation than arid areas; besides, deformation pattern were

  9. On infinitesimal conformai deformations of surfaces

    Directory of Open Access Journals (Sweden)

    Юлия Степановна Федченко

    2014-11-01

    Full Text Available A new form of basic equations for conformai deformations is found. The equations involve tensor fields of displacement vector only. Conditions for trivial deformations as well as infinitesimal conformai deformations are studied.

  10. Seasonal slope surface deformation measured with TLS

    International Nuclear Information System (INIS)

    Fan, L; Smethurst, J; Powrie, W; Sellaiya, A

    2014-01-01

    In temperate European climates, soil water removal due to vegetation transpiration peaks in summer and soil rewetting from higher levels of precipitation occurs in winter. In clays of high plasticity, the seasonal cycles of drying and wetting cause the soil to experience a volumetric change, resulting in seasonal shrinking and swelling. For a clay slope exhibiting volume change, such behaviour can lead to excessive deformation and could contribute to strain-softening and progressive slope failure. This can in turn cause traffic disruption and loss of life if roads and railways are founded on or surrounded by such slopes. This paper discusses the driving forces of seasonal surface movement, in particular the role of vegetation, and presents the use of Terrestrial Laser Scanning (TLS) to measure the surface movement of a lightly vegetated London Clay slope near Newbury, UK. Two TLS scans were carried out in early and late summer respectively, representing relative wet and dry conditions of the slope. Continuous field measurements of soil water content in upper layers of the slope were obtained from TDR ThetaProbes already installed at the site. The water content data are used to support the results obtained from TLS by indicating the likely volumetric change in the soil due to loss of water

  11. Pattern of seismic deformation in the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    S. Pondrelli

    1999-06-01

    Full Text Available The seismic deformation of the Western Mediterranean was studied with the aim of defining the strain pattern that characterizes the Africa-Eurasia plate boundary in this area. Within different sections along the boundary the cumulative moment tensor was computed over 90 years of seismological data. The results were compared with NUVELlA plate motion model and geodetic data. A stable agreement was found along Northern Africa to Sicily, where only Africa and Eurasia plates are involved. In this zone it is evident that changes in the strike of the boundary correspond to variations in the prevailing geometry of deformation, tectonic features and in the percentage of seismic with respect to total expected deformation. The geometry of deformation of periadriatic sections (Central to Southern Apennines, Eastern Alps and the Eastern Adriatic area agrees well with VLBI measurements and with regional geological features. Seismicity seems to account for low rates, from 3% to 31%, of total expected deformation. Only in the Sicily Strait, characterized by extensional to strike slip deformation, does the ratio reach a higher value (79%. If the amount of deformation deduced from seismicity seems low, because 90 years are probably not representative of the recurrence seismic cycle of the Western Mediterranean, the strain pattern we obtain from cumulative moment tensors is more representative of the kinematics of this area than global plate motion models and better identifies lower scale geodynamic features.

  12. Nanoscale deformation of a liquid surface.

    Science.gov (United States)

    Ledesma-Alonso, Rene; Legendre, Dominique; Tordjeman, Philippe

    2012-03-09

    We study the interaction between a solid particle and a liquid interface. A semianalytical solution of the nonlinear equation that describes the interface deformation points out the existence of a bifurcation behavior for the apex deformation as a function of the distance. We show that the apex curvature obeys a simple power-law dependency on the deformation. Relationships between physical parameters disclose the threshold distance at which the particle can approach the liquid before capillarity provokes a "jump to contact." A prediction of the interface original position before deformation takes place, as well as the attraction force measured by an approaching probe, are produced. The results of our analysis agree with the force curves obtained from atomic force microscopy experiments over a liquid puddle.

  13. Investigation of surface deformations by double exposure holographic interferometry

    International Nuclear Information System (INIS)

    Ecevit, F.N.; Guven, H.; Aydin, R.

    1990-01-01

    Surface deformations of rigid bodies produced by thermal as well as mechanical strains have been investigated using double-exposure holographic interferometry. The recorded interference fringes have been discussed qualitatively. (author). 9 refs, 4 figs

  14. Stripe patterns in a granular system induced by slow deformation of its container

    OpenAIRE

    Kitsunezaki, So; Kurumatani, Akemi

    2001-01-01

    We investigate the formation of stripe patterns that appear on the surface of a dry granular system as the container is deformed very slowly. In an experimental study using nearly mono-disperse glass beads, we found that many faults develop beneath t he surface. Our results show that the spacing of stripes is independent of the system size and does not depend significantly on the grain size.

  15. Looking into Vulcanian eruption through new analogue experiments and associated deformation patterns

    Science.gov (United States)

    Manta, F.; Taisne, B.

    2017-12-01

    The dynamic of Vulcanian eruptions is one of the most fascinating subjects in volcanology. Its characteristic pattern of inflation-deflation cycles has been observed through geodetic data at several volcanoes. Deformation can occur minutes before an explosion suggesting a rapid escalation of events happening in the shallow conduit region. Several numerical and theoretical models have been proposed to explain the relation between the observed deformation pattern and properties of the system. While all of them have their own way to simplify the complexity of the natural system, no comprehensive studies were done to estimate the uncertainties associated with such simplifications. This is a challenging task since no direct observations about the characteristics of the natural system (e.g. bubbles length, conduit radius, viscosity, density...) can be made. Available models can be used to invert the deformation pattern in order to estimate values of the controlling parameters. While taking into account the uncertainties on the data, limitation of the models are usually neglected. In order to quantify the uncertainties associated with the numerical models, we have performed analogue experiments that simulate surface deformation related to conduit processes. We reproduced a degassing volcanic system embedded into an elastic medium that has analogue elastic properties compared to the earth crust. By applying inversion techniques on the measured deformation data and knowing the values of the controlling parameters, we are able to estimate the uncertainties of the model. Through the experimental approach, we also aim to shed light on the triggering mechanism behind Vulcanian eruptions that is still subject of debate. To this end, we explored different scenarios of pressurization: from bubbly flow regime to gas overpressure below a viscous plug. Results will help to clarify what is the dynamic of Vulcanian eruptions and quantify how the properties of the system affect the

  16. Postseismic surface deformations due to lithospheric and asthenospheric viscoelasticity

    Science.gov (United States)

    Cohen, S. C.

    1979-01-01

    This paper proposes a model for postseismic surface deformations by attributing them to lithospheric and asthenospheric viscoelasticity. The model predicts that the deformations due to lithospheric viscoelasticity depend on the decrease in the effective shear modulus acting long after the lithospheric relaxation compared to that acting immediately following the earthquake. While such deformations are generally smaller than those associated with asthenospheric viscoelasticity, they occur on a shorter time scale and may be in opposite direction to both the motion occurring at the time of the earthquake and that occurring as the asthenospheric relaxation occurs.

  17. Ceres' deformational surface features compared to other planetary bodies.

    Science.gov (United States)

    von der Gathen, Isabel; Jaumann, Ralf; Krohn, Katrin; Buczkowski, Debra L.; Elgner, Stephan; Kersten, Elke; Matz, Klaus-Dieter; Nass, Andrea; Otto, Katharina; Preusker, Frank; Roatsch, Thomas; Schröder, Stefanus E.; Schulzeck, Franziska; Stephan, Katrin; Wagner, Roland; De Sanctis, Maria C.; Schenk, Paul; Scully, Jennifer E. C.; Williams, Dave A.; Raymond, Carol A.

    2016-04-01

    On March 2015, NASA's Dawn spacecraft arrived at the dwarf planet Ceres and has been providing images of its surface. Based on High Altitude Mapping Orbiter (HAMO) clear filter images (140 m/px res.), a Survey mosaic (~400 m/px) and a series of Low Altitude Mapping Orbiter (LAMO) clear filter images (35 m/px) of the Dawn mission [1], deformational features are identified on the surface of Ceres. In order to further our knowledge about the nature and origin of these features, we start a comparative analysis of similar features on different planetary bodies, like Enceladus, Ganymede and the Moon, based on images provided by the Cassini, Galileo and Lunar Orbiter mission. This study focuses on the small scale fractures, mostly located on Ceres' crater floors, in comparison with crater fractures on the planetary bodies named above. The fractures were analyzed concerning the morphology and shape, the distribution, orientation and possible building mechanisms. On Ceres, two different groups of fractures are distinct. The first one includes fractures, normally arranged in subparallel pattern, which are usually located on crater floors, but also on crater rims. Their sense of direction is relatively uniform but in some cases they get deformed by shearing. The second group consists of joint systems, which spread out of one single location, sometimes arranged concentric to the crater rim. They were likely formed by cooling-melting processes linked to the impact process or up doming material. Fractures located on crater floors are also common on the icy satellite Enceladus [3]. While Enceladus' fractures don't seem to have a lot in common compared to those on Ceres, we assume that similar fracture patterns and therefore similar building mechanism can be found e.g. on Ganymede and especially on the Moon [2]. Further work will include the comparison of the fractures with additional planetary bodies and the trial to explain why fracturing e.g. on Enceladus differs from that on

  18. GRINDING OF SURFACES WITH COATINGS FORMED BY ELECTROMAGNETIC FACING WITH SURFACE PLASTIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    Zh. A. Mrochek

    2011-01-01

    Full Text Available The paper presents investigation results on machining of surfaces having a coating formed by electromagnetic facing with surface plastic deformation and using abrasive and diamond wheels having a porous metal binder with orientated drains.

  19. Surface deformation during an action potential in pearled cells

    Science.gov (United States)

    Mussel, Matan; Fillafer, Christian; Ben-Porath, Gal; Schneider, Matthias F.

    2017-11-01

    Electric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of polymer material (extracellular matrix, cell wall material, etc.). It was recently demonstrated in excitable plant cells (Chara braunii) that the rigid external layer (cell wall) hinders the underlying deformation. When the cell membrane was separated from the cell wall by osmosis, a mechanical deformation, in the micrometer range, was observed upon excitation of the cell. The underlying mechanism of this mechanical pulse has, to date, remained elusive. Herein we report that Chara cells can undergo a pearling instability, and when the pearled fragments were excited even larger and more regular cell shape changes were observed (˜10 -100 μ m in amplitude). These transient cellular deformations were captured by a curvature model that is based on three parameters: surface tension, bending rigidity, and pressure difference across the surface. In this paper these parameters are extracted by curve-fitting to the experimental cellular shapes at rest and during excitation. This is a necessary step to identify the mechanical parameters that change during an action potential.

  20. Study on municipal road cracking and surface deformation based on image recognition

    Science.gov (United States)

    Yuan, Haitao; Wang, Shuai; Tan, Jizong

    2017-05-01

    In recent years, the digital image recognition technology of concrete structure cracks and deformation of binocular vision technology detection of civil engineering structure have made substantial development. As a result, people's understanding of the road engineering structure cracking and surface deformation recognition gives rise to a new situation. For the research on digital image concrete structure cracking and masonry structure surface deformation recognition technology, the key is to break through in the method, and to improve the traditional recognition technology and mode. Only in this way can we continuously improve the security level of the highway, to adapt to the new requirements of the development of new urbanization and modernization. This thesis focuses on and systematically analyzes the digital image road engineering structure cracking and key technologies of surface deformation recognition and its engineering applications. In addition, we change the concrete structure cracking and masonry structure surface deformation recognition pattern, and realize the breakthrough and innovation of the road structure safety testing means and methods.

  1. Surface deformation induced by water pumping for construction of Mass Rapid Transportation in Taipei basin

    Science.gov (United States)

    Hu, J. C.; Wu, P. C.; Tung, H.; Tsai, M. C.

    2017-12-01

    In 1968, there were 2,200 wells in the Taipei Basin used for water supply to meet the requirement of high population density. The overuse of ground water lead to the land subsidence rate up to 5 cm/yr. Although the government had already begun to limit groundwater pumping since 1968, the groundwater in the Taipei Basin demonstrated temporary fluctuation induced by pumping water for large deep excavation site or engineering usage. The previous study based on precise leveling suggested that the surface deformation was highly associated with the recovery of water level. In 1989, widespread uplift dominated in Taipei basin due to the recovery of ground water Table. In this study, we use 37 high-resolution X-band COSMO-SkyMed radar images from May 2011 to April 2015 to characterize deformation pattern in the period of construction of Mass Rapid Transportation (MRT). We also use 30 wells and 380 benchmarks of precise leveling in Taipei basin to study the correlation of surface deformation and change of ground water table. The storability is roughly constant across most of the aquifer with values between 0.8 x 10-4 and 1.3 x 10-3. Moreover, the high water pumping in two major aquifers, Jignme and Wuku Foramtions, before the underground construction for MRT led to inflict surface deformation and no time delay observed for surface deformation during the water pumping. It implies that the poro-elastic effect dominates in major aquifers in Taipei basin.

  2. Berry's phase, chaos, and the deformations of Riemann surfaces

    Science.gov (United States)

    Lévay, Péter

    1997-11-01

    Parametrized families of Landau Hamiltonians on compact Riemann surfaces corresponding to classically chaotic families of geodesic motion are investigated. The parameters describe deformations of such surfaces with genus g>=1. It is shown that the adiabatic curvature (responsible for Berry's phase) of the lowest Landau level for g>1 is the sum of two terms. The first term is proportional to the natural symplectic form on deformation space, and the second is a fluctuating term reflecting the chaos of the geodesic motion for g>1. For g=1 (integrable motion on the torus) we have no fluctuating term. We propose our result to be interpreted as a curvature analog of the well-known semiclassical trace formulas. Connections with the viscosity properties of quantum Hall fluids on such surfaces are also pointed out. An interesting possibility in this respect is the fractional quantization of certain components of the viscosity tensor of such fluids.

  3. Surface deformation of the secondary former mining areas

    Directory of Open Access Journals (Sweden)

    Tadeusz Głowacki

    2013-09-01

    Full Text Available The paper discuss the problem of secondary deformation observed on the surface of the land in the area of the old, non-existent copper and coal mines. The authors discuss the formation of the deformation in the final period of the mine, and after his arrest, after the close of any work of protecting the surface area of influence of mining activities. Discusses the reduction of the surface of the example of two disused mines: mining copper “Konrad” in Iwiny and “Thorez” in Walbrzych, an old coal mine. In the first part of the paper discusses a brief history of the creation of old copper basin and the Lower Silesian coal basin. It then discusses the formation of deformation processes in mining areas. Conducting continuous surveying allows you to monitor changes in the formation of land, in the paper indicate the source of the vertical displacements after ending of operation, the closure of the mine and stopped all work safety. In the area of Lower Silesia there are many remnants of disused mines, surface geodetic measurements show a constant activity in post-mining areas and the need to control the formation of the surface.

  4. Surface deformation of Taipei basin detected by Differential SAR Interferometry

    Science.gov (United States)

    Chen, Y.; Chang, C.; Yen, J.; Lin, M.

    2006-12-01

    Taiwan island is located between the southeastern periphery of the Eurasian plate and the Philippine Sea plate. The two converging plates produced very active tectonics, and can be seen by the high seismicity and deformation rate. Taipei, the highest populated area, center of politics, and economics in Taiwan, is in Taipei basin at the northern part of the island. There are several faults in and surrounding the basin, and the city is threatened with a high geological hazard potential that we should keep monitoring the crustal deformation to prevent and mitigate the disaster effect. The aims of our study is to apply the DInSAR technique to determine the surface deformation of Taipei basin area, and discussing the relation between the manifestation of deformation and the tectonically active region, Shanjiao fault. In the past few years, Differential SAR Interferometry (DInSAR) has been proved to be a powerful technique for monitoring the neotectonic activities and natural hazards. High spatial sampling rate of DInSAR technique allows studies of surface deformations with centimeter accuracy. In this area, we used ERS-1/2 SAR images acquired from 1993 to 2005 to generate 10 differential interferograms and processed the data using DIAPASON developed by CNES and SRTM global DEM.From our results, the deformation rate in Taipei is generally high in the western end of the basin along the Shanjiao fault and decrease eastward, while the subsidence center often appeared in the center of the Taipei basin. The neotectonic activity of the Shanjiao fault appeared to be insignificant by itself but it seemed to separate the subsiding basin from the surrounding areas. Further comparison between our DInSAR results and isopach of the Taipei basin revealed that the subsidence centers appeared in the interferograms did not coincide with the location where the sediments are thickest. Our results from differential interferometry will be compared to other geodetic measurements such as the

  5. Experimental Constraints on Forecasting the Location of Volcanic Eruptions from Pre-eruptive Surface Deformation

    Directory of Open Access Journals (Sweden)

    Frank Guldstrand

    2018-02-01

    Full Text Available Volcanic eruptions pose a threat to lives and property when volcano flanks and surroundings are densely populated. The local impact of an eruption depends firstly on its location, whether it occurs near a volcano summit, or down on the flanks. Then forecasting, with a defined accuracy, the location of a potential, imminent eruption would significantly improve the assessment and mitigation of volcanic hazards. Currently, the conventional volcano monitoring methods based on the analysis of surface deformation assesses whether a volcano may erupt but are not implemented to locate imminent eruptions in real time. Here we show how surface deformation induced by ascending eruptive feeders can be used to forecast the eruption location through a simple geometrical analysis. Our analysis builds on the results of 33 scaled laboratory experiments simulating the emplacement of viscous magma intrusions in a brittle, cohesive Coulomb crust under lithostatic stress conditions. The intrusion-induced surface deformation was systematically monitored at high spatial and temporal resolution. In all the experiments, surface deformation preceding the eruptions resulted in systematic uplift, regardless of the intrusion shape. The analysis of the surface deformation patterns leads to the definition of a vector between the center of the uplifted area and the point of maximum uplift, which systematically acted as a precursor to the eruption's location. The temporal evolution of this vector indicated the direction in which the subsequent eruption would occur and ultimately the location itself, irrespective of the feeder shapes. Our findings represent a new approach on how surface deformation on active volcanoes that are not in active rifts could be analysed and used prior to an eruption with a real potential to improve hazard mitigation.

  6. Experimental constraints on forecasting the location of volcanic eruptions from pre-eruptive surface deformation

    Science.gov (United States)

    Guldstrand, Frank; Galland, Olivier; Hallot, Erwan; Burchardt, Steffi

    2018-02-01

    Volcanic eruptions pose a threat to lives and property when volcano flanks and surroundings are densely populated. The local impact of an eruption depends firstly on its location, whether it occurs near a volcano summit, or down on the flanks. Then forecasting, with a defined accuracy, the location of a potential, imminent eruption would significantly improve the assessment and mitigation of volcanic hazards. Currently, the conventional volcano monitoring methods based on the analysis of surface deformation assesses whether a volcano may erupt but are not implemented to locate imminent eruptions in real time. Here we show how surface deformation induced by ascending eruptive feeders can be used to forecast the eruption location through a simple geometrical analysis. Our analysis builds on the results of 33 scaled laboratory experiments simulating magma intrusions in a brittle crust, during which the intrusion-induced surface deformation was systematically monitored at high spatial and temporal resolution. In all the experiments, surface deformation preceding the eruptions resulted in systematic uplift, regardless of the intrusion shape. The analysis of the surface deformation patterns leads to the definition of a vector between the centre of the uplifted zone and the point of maximum uplift, which systematically acted as a precursor to the eruption’s location. The temporal evolution of this vector indicated the direction in which the subsequent eruption would occur and ultimately the location itself, irrespective of the feeder shapes. Our findings represent a new approach on how surface deformation on active volcanoes could be analysed and used prior to an eruption with a real potential to improve hazard mitigation.

  7. SURFACE DEFORMATIONS NEAR THE BAIKAL–AMUR RAILWAY FROM DIFFERENTIAL SAR INTERFEROMETRY DATA

    Directory of Open Access Journals (Sweden)

    M. A. Lebedeva

    2016-01-01

    Full Text Available This paper presents SAR interferometric data obtained in the study of surface deformations of different origin within the Upper Angara-Muya interbasin link of the northeastern segment of the Baikal rift system, Russia. Differential SAR interferometry using images with small perpendicular baselines was applied in this geodynamical study. The potential of using ENVISAT/ASAR and ALOS/PALSAR data is discussed. New geodynamical data on recent strain patterns were obtained. The endogenous linear-localized and areal deformations were revealed in the influence zone of the active Muyakan fault. The origin of these deformations is discussed. The landslide that negatively affects the Baikal-Amur railway facilities is also studied. The use of SAR data for detailed study and monitoring of the landslide is discussed. It is confirmed that natural hazard in the study area is growing due to the ongoing landsliding.

  8. Study on dynamic deformation synchronized measurement technology of double-layer liquid surfaces

    Science.gov (United States)

    Tang, Huiying; Dong, Huimin; Liu, Zhanwei

    2017-11-01

    Accurate measurement of the dynamic deformation of double-layer liquid surfaces plays an important role in many fields, such as fluid mechanics, biomechanics, petrochemical industry and aerospace engineering. It is difficult to measure dynamic deformation of double-layer liquid surfaces synchronously for traditional methods. In this paper, a novel and effective method for full-field static and dynamic deformation measurement of double-layer liquid surfaces has been developed, that is wavefront distortion of double-wavelength transmission light with geometric phase analysis (GPA) method. Double wavelength lattice patterns used here are produced by two techniques, one is by double wavelength laser, and the other is by liquid crystal display (LCD). The techniques combine the characteristics such as high transparency, low reflectivity and fluidity of liquid. Two color lattice patterns produced by laser and LCD were adjusted at a certain angle through the tested double-layer liquid surfaces simultaneously. On the basis of the refractive indexes difference of two transmitted lights, the double-layer liquid surfaces were decoupled with GPA method. Combined with the derived relationship between phase variation of transmission-lattice patterns and out-of plane heights of two surfaces, as well as considering the height curves of the liquid level, the double-layer liquid surfaces can be reconstructed successfully. Compared with the traditional measurement method, the developed method not only has the common advantages of the optical measurement methods, such as high-precision, full-field and non-contact, but also simple, low cost and easy to set up.

  9. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  10. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    International Nuclear Information System (INIS)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-01-01

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  11. SU-E-J-87: Lung Deformable Image Registration Using Surface Mesh Deformation for Dose Distribution Combination

    International Nuclear Information System (INIS)

    Labine, A; Carrier, J; Bedwani, S; Chav, R; DeGuise, J

    2014-01-01

    Purpose: To allow a reliable deformable image registration (DIR) method for dose calculation in radiation therapy. This work proposes a performance assessment of a morphological segmentation algorithm that generates a deformation field from lung surface displacements with 4DCT datasets. Methods: From the 4DCT scans of 15 selected patients, the deep exhale phase of the breathing cycle is identified as the reference scan. Varian TPS EclipseTM is used to draw lung contours, which are given as input to the morphological segmentation algorithm. Voxelized contours are smoothed by a Gaussian filter and then transformed into a surface mesh representation. Such mesh is adapted by rigid and elastic deformations to match each subsequent lung volumes. The segmentation efficiency is assessed by comparing the segmented lung contour and the TPS contour considering two volume metrics, defined as Volumetric Overlap Error (VOE) [%] and Relative Volume Difference (RVD) [%] and three surface metrics, defined as Average Symmetric Surface Distance (ASSD) [mm], Root Mean Square Symmetric Surface Distance (RMSSD) [mm] and Maximum Symmetric Surface Distance (MSSD) [mm]. Then, the surface deformation between two breathing phases is determined by the displacement of corresponding vertices in each deformed surface. The lung surface deformation is linearly propagated in the lung volume to generate 3D deformation fields for each breathing phase. Results: The metrics were averaged over the 15 patients and calculated with the same segmentation parameters. The volume metrics obtained are a VOE of 5.2% and a RVD of 2.6%. The surface metrics computed are an ASSD of 0.5 mm, a RMSSD of 0.8 mm and a MSSD of 6.9 mm. Conclusion: This study shows that the morphological segmentation algorithm can provide an automatic method to capture an organ motion from 4DCT scans and translate it into a volume deformation grid needed by DIR method for dose distribution combination

  12. Asperity Interaction and Substrate Deformation in Statistical Summation Models of Contact Between Rough Surfaces

    NARCIS (Netherlands)

    Vakis, Antonis I.

    A method is proposed to account for asperity interaction and bulk substrate deformation in models that utilize statistical summation of asperity forces to characterize contact between rough surfaces. Interaction deformations of noncontacting asperities are calculated based on the probability that

  13. Monitoring of Land-Surface Deformation in the Karamay Oilfield, Xinjiang, China, Using SAR Interferometry

    Directory of Open Access Journals (Sweden)

    Yusupujiang Aimaiti

    2017-07-01

    Full Text Available Synthetic Aperture Radar (SAR interferometry is a technique that provides high-resolution measurements of the ground displacement associated with various geophysical processes. To investigate the land-surface deformation in Karamay, a typical oil-producing city in the Xinjiang Uyghur Autonomous Region, China, Advanced Land Observing Satellite (ALOS Phased Array L-band Synthetic Aperture Radar (PALSAR data were acquired for the period from 2007 to 2009, and a two-pass differential SAR interferometry (D-InSAR process was applied. The experimental results showed that two sites in the north-eastern part of the city exhibit a clear indication of land deformation. For a further evaluation of the D-InSAR result, the Persistent Scatterer (PS and Small Baseline Subset (SBAS-InSAR techniques were applied for 21 time series Environmental Satellite (ENVISAT C-band Advanced Synthetic Aperture Radar (ASAR data from 2003 to 2010. The comparison between the D-InSAR and SBAS-InSAR measurements had better agreement than that from the PS-InSAR measurement. The maximum deformation rate attributed to subsurface water injection for the period from 2003 to 2010 was up to approximately 33 mm/year in the line of sight (LOS direction. The interferometric phase change from November 2007 to June 2010 showed a clear deformation pattern, and the rebound center has been expanding in scale and increasing in quantity.

  14. A model of short term surface deformation of Soufriere Hills Volcano, Montserrat, constrained by GPS geodesy

    Science.gov (United States)

    McPherson, E. E.; Mattioli, G. S.

    2013-05-01

    Soufriere Hills Volcano (SHV), Montserrat, in the Lesser Antilles island arc, became active in 1995, and for nearly two decades, ground breaking geodetic surveys have been conducted using both continuous GPS and campaign GPS sites. Data have been collected and processed using the latest and most advanced geodetic instruments and technique available. The NSF- funded CALIPSO and SEA-CALIPSO projects have allowed for some of the most in depth studies of the ongoing SHV eruptions to date, and many models for surface deformation and magmatic chamber configuration have resulted. Research for this study is constrained to data gathered from the early stages of eruption in 1996 through 2010 from two continuous GPS sites, Hermitage Peak (HERM - located ~1.6 km from the vent) and Montserrat Volcano Observatory 1 (MVO1- located ~7.6 km away from the vent) and have been reprocessed using GIPSY-OASIS II (v. 6.1.2) with final, precise IGS08 orbits, clocks, and earth orientation parameters using an absolute point positioning (APP) strategy. Our study is being conducted to re-examine spatial and temporal changes in surface deformation, constrained by GPS, and to better illuminate the short term (i.e. sub-daily to weekly) deformation signals noted amongst the longer, cyclic deformation signals (i.e. monthly to annually) that have been previously reported and modeled. The reprocessed time-series show lower variance for daily APP solutions over the entire temporal data set; trends in the long-term inflation and deflation patterns are similar to those previously published (e.g. Elsworth et al., 2008; Mattioli et al., 2010; Odbert et al., 2012), but now superimposed, shorter term signals are more clearly visible. New elastic deformation models are being developed and will be presented for these short-term signals.

  15. Monitor the Surface Deformation in Metropolitan Taipei Basin by Using PS-InSAR Techniques

    Science.gov (United States)

    Chang, Yan-Ru; Tung, Hsin; Hu, Jyr-Ching

    2015-04-01

    Taipei is the most densely populated area and the center of politics and economics in Taiwan. However, the composite geohazards might occur in Taipei area, in which the active Shanchiao fault located in the western margin of Taipei basin and the active Tatun volcano group located 15 km to the north of the basin. Therefore, it is not only an important scientific topic but also a crucial social issue to better understand the assessment and mitigation of geological hazard in the metropolitan Taipei city. We use Persistent Scatterers interferometric synthetic aperture radar (PSInSAR) and small baseline methods to calculate the surface deformation rate with the constraints of continuous GPS and precise leveling measurements. The advantages of PSInSAR technique are wide, periodic, and stable in the temporal and spatial pattern of deformation. In this study C-band ERS-1/2 (1996/1-1999/9), ENVISAT (2003/1-2008/3) and L-band ALOS (2007/4-2011/6) SAR images are used to carry out the surface deformation in three periods. Based on the results of different periods of PS-InSAR, the slant range displacement (SRD) was variable via time which might be related to the deformation in different depth of loose deposits in Taipei basin. Previous study suggested that some factors influence the surface deformation change, including soil compaction, water-table change and tectonic movement. Consequently the assessment in activity of the Shanchiao fault, the induced deformation due to the fluctuation of the water table and the soil compaction should be removed. In general, the average SRD rate in the footwall and hanging wall of the Shanchiao Fault was about 12.2 mm/yr and 9.1 mm/yr, 1.5 mm/yr and 4.0 mm/yr, respectively with descending mode ERS-1/2 an ENVISAT radar images. For the ascending ALOS radar image, the average SRD rate in the footwall and hanging wall of the Shanchiao Fault was about -9.5 and -11.3 mm/yr, respectively. These results suggests that the slight uplift observed in the

  16. Large deformation and instability of soft hollow cylinder with surface effects

    OpenAIRE

    Wu, Jian; Liu, Mingchao; Wang, Zhenyu; Chen, C. Q.

    2017-01-01

    Surface stress, which is always neglected in classical elastic theories, has recently emerged as a key role in the mechanics of highly deformable soft solids. In this paper, the effect of surface stress on the deformation and instability of soft hollow cylinder are analyzed. By incorporating surface energy density function into the constitutive model of a hyper-elastic theory, explicit solutions are obtained for the deformation of soft hollow cylinder under the conditions of uniform pressure ...

  17. Invisible Surface Charge Pattern on Inorganic Electrets

    DEFF Research Database (Denmark)

    Wang, Fei; Hansen, Ole

    2013-01-01

    We propose an easy method to pattern the surface charge of ${\\rm SiO}_{2}$ electrets without patterning the dielectric layer. By eliminating the use of metal guard electrodes, both the charge efficiency and the surface charge stability in humid environments improve. We apply the concept...

  18. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  19. Surface Patterning and Nanowire Biosensor Construction

    DEFF Research Database (Denmark)

    Iversen, Lars

    2008-01-01

    assembly on e.g. glass surfaces, providing parallel patterning via gentle and oriented protein immobilization. Such protein patterns are useful for miniaturized bioassays of protein function. Second, in a very different approach, we use a highly focused laser beam to locally desorb alkanethiols from a self...... assembled monolayer on gold, a technique useful for creating diverse monolayer patterns in a direct-write fashion. Addition of a second alkanethiol forms a topologically ultra flat but chemically patterned surface, which by inspection with scanning electron microscopy and atomic force microscopy revealed...

  20. UAVSAR: An Airborne Window on Earth Surface Deformation

    Science.gov (United States)

    Hensley, Scott

    2011-01-01

    This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.

  1. Invasion Patterns During Two-phase Flow In Deformable Porous Media

    Science.gov (United States)

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik

    2016-04-01

    We will present our experimental study of the viscous fingering and fracturing patterns that occur when air at constant overpressure invades a circular Hele-Shaw cell containing a liquid-saturated deformable porous medium [1] - i.e. during the flow of two non-miscible fluids in a confined granular medium at high enough rate to deform it. The resulting patterns are characterized in terms of growth rate, average finger thickness as function of radius and time, and fractal properties. Based on experiments with various injection pressures, we identify and compare typical pattern characteristics when there is no deformation, compaction, and/or decompaction of the porous medium. This is achieved by preparing monolayers of glass beads in cells with various boundary conditions, ranging from a rigid disordered porous medium to a deformable granular medium with either a semi-permeable or a free outer boundary. We show that the patterns formed have characteristic features depending on the boundary conditions. For example, the average finger thickness is found to be constant with radius in the non-deformable system, while in the deformable ones there is a larger initial thickness decreasing to the non-deformable value. Then, depending on whether the outer boundary is semi-permeable or free there is a further decrease or increase in the average finger thickness. When estimated from the flow patterns, the box-counting fractal dimensions Db= 1.59±0.06 are not found to change significantly with boundary conditions, but by using a method to locally estimate fractal dimensions, we see a transition in behavior with radius for patterns in deformable systems; In the deformable system with a free boundary, it seems to be a transition in universality class as the local fractal dimensions decrease towards the outer rim, where fingers are opening up like fractures in a paste. In addition, we show a collapse of mass N plotted as function of radius r for the patterns at different snapshots

  2. Deformation of the Pannonian lithosphere and related tectonic topography: a depth-to-surface analysis

    NARCIS (Netherlands)

    Dombrádi, E.

    2012-01-01

    Fingerprints of deep-seated, lithospheric deformation are often recognised on the surface, contributing to topographic evolution, drainage organisation and mass transport. Interactions between deep and surface processes were investigated in the Carpathian-Pannonian region. The lithosphere beneath

  3. Near-surface neotectonic deformation associated with seismicity in the northeastern United States

    International Nuclear Information System (INIS)

    Alexander, S.S.; Gold, D.P.; Gardner, T.W.; Slingerland, R.L.; Thornton, C.P.

    1989-10-01

    For the Lancaster, PA seismic zone a multifaceted investigation revealed several manifestations of near-surface, neotectonic deformation. Remote sensing data together with surface geological and geophysical observations, and recent seismicity reveal that the neotectonic deformation is concentrated in a NS-trending fault zone some 50 km in length and 10--20 km in width. Anomalies associated with this zone include distinctive lineament and surface erosional patterns; geologically recent uplift evidenced by elevations of stream terraces along the Susquehanna River; and localized contemporary travertine deposits in streams down-drainage from the inferred active fault zone. In the Moodus seismic zone the frequency of tectonically-controlled lineaments was observed to increase in the Moodus quadrangle compared to adjacent areas and dominant lineament directions were observed that are perpendicular and parallel to the orientation of the maximum horizontal stress direction (N80-85E) recently determined from in-situ stress measurements in a 1.5 km-deep borehole in the seismic zone and from well-constrained earthquake focal mechanisms. 284 refs., 33 figs

  4. Near-surface neotectonic deformation associated with seismicity in the northeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Gold, D.P.; Gardner, T.W.; Slingerland, R.L.; Thornton, C.P. (Pennsylvania State Univ., University Park, PA (USA). Dept. of Geosciences)

    1989-10-01

    For the Lancaster, PA seismic zone a multifaceted investigation revealed several manifestations of near-surface, neotectonic deformation. Remote sensing data together with surface geological and geophysical observations, and recent seismicity reveal that the neotectonic deformation is concentrated in a NS-trending fault zone some 50 km in length and 10--20 km in width. Anomalies associated with this zone include distinctive lineament and surface erosional patterns; geologically recent uplift evidenced by elevations of stream terraces along the Susquehanna River; and localized contemporary travertine deposits in streams down-drainage from the inferred active fault zone. In the Moodus seismic zone the frequency of tectonically-controlled lineaments was observed to increase in the Moodus quadrangle compared to adjacent areas and dominant lineament directions were observed that are perpendicular and parallel to the orientation of the maximum horizontal stress direction (N80-85E) recently determined from in-situ stress measurements in a 1.5 km-deep borehole in the seismic zone and from well-constrained earthquake focal mechanisms. 284 refs., 33 figs.

  5. Deformation patterns and seismic hazard along the eastern Sunda margin

    Science.gov (United States)

    Kopp, Heidrun; Djajadihardja, Yusuf; Flueh, Ernst R.; Hindle, David; Klaeschen, Dirk; Mueller, Christian; Planert, Lars; Reichert, Christian; Shulgin, Alexey; Wittwer, Andreas

    2010-05-01

    The eastern Sunda margin offshore Java, Bali, Lombok and Sumba is the site of oceanic subduction of the Indo-Australian plate underneath the Indonesian archipelago. Data from a suite of geophysical experiments conducted between 1997-2006 using RV SONNE as platform include seismic and seismological studies, potential field measurements and high-resolution seafloor bathymetry mapping. Tomographic inversions provide an image of the ongoing deformation of the forearc and the deep subsurface. We investigate the role of various key mechanisms that shape the first-order features characterizing the present margin architecture. Our contribution evaluates the differences in architecture and evolution along the Java forearc from a marine perspective to better understand the variation in tectonic styles and segmentation of the convergent margin, including its seismic risk potential.

  6. Gyral Folding Pattern Analysis via Surface Profiling

    Science.gov (United States)

    Li, Kaiming; Guo, Lei; Li, Gang; Nie, Jingxin; Faraco, Carlos; Cui, Guangbin; Zhao, Qun; Miller, L. Stephen; Liu, Tianming

    2010-01-01

    Folding is an essential shape characteristic of the human cerebral cortex. Descriptors of cortical folding patterns have been studied for decades. However, many previous studies are either based on local shape descriptors such as curvature, or based on global descriptors such as gyrification index or spherical wavelets. This paper proposes a gyrus-scale folding pattern analysis technique via cortical surface profiling. Firstly, we sample the cortical surface into 2D profiles and model them using a power function. This step provides both the flexibility of representing arbitrary shape by profiling and the compactness of representing shape by parametric modeling. Secondly, based on the estimated model parameters, we extract affine-invariant features on the cortical surface, and apply the affinity propagation clustering algorithm to parcellate the cortex into cortical regions with strict hierarchy and smooth transitions among them. Finally, a second-round surface profiling is performed on the parcellated cortical surface, and the number of hinges is detected to describe the gyral folding pattern. We have applied the surface profiling method to two normal brain datasets and a Schizophrenia patient dataset. The experimental results demonstrate that the proposed method can accurately classify human gyri into 2-hinge, 3-hinge and 4-hinge patterns. The distribution of these folding patterns on brain lobes and the relationship between fiber density and gyral folding patterns are further investigated. Results from the Schizophrenia dataset are consistent with commonly found abnormality in former studies by others, which demonstrates the potential clinical applications of the proposed technique. PMID:20472071

  7. Deformation patterns on Kythnos, Western Cyclades; ongoing work

    Science.gov (United States)

    Rice, A. Hugh N.; Grasemann, Bernhard

    2014-05-01

    Kythnos lies between Kea and Serifos in the Western Cyclades; on the former island, top-SSW directed D2 extensional deformation has essentially fully overprinted the top-SW HP D1 deformation whilst, on the latter, the D2 reworking is restricted to a very narrow zone directly underlying the West Cycladic Detachment System. Kythnos shows an intermediate degree of reworking, with a gradual change in stretching lineation orientation from dominantly SW-directed in the north of the island to SSW-directed in the south, where the Western Cycladic Detachment System is exposed, although the gradient in lineation directions is neither smooth nor perfect. Further, at a single outcrop, in both domains, there is a tendency (but not a rule) for stretching directions within pelitic rocks (which are parallel to contemporary crenulations) to have a more southerly azimuth than that observed in quartz-rich rocks, both metasedimentary and concordant/discordant veins. The opposite has not been observed. The map of de Smeth (1975) shows two marble horizons; a lower blue-grey marble (BGM) with minor amounts of muscovite/quartz and an upper yellow-brown marble (YBM) with large amounts of muscovite/quartz; these are separated by pelites. On the east side of southern Kythnos, the BGM is thick (perhaps > 10 m in places) and is clearly overlain by pelitic schists and then the YBM, the last forming the structurally highest part of the central-southern part of the island. However, NE of Aghios Dimitrios, (S. Kythnos) good exposures clearly show that the BGM thins from west to east and eventually, at the west coast NW of Ag. Dimitrios, it becomes a thin layer of carbonate within yellow quartz mylonites; essentially it is YBM, although de Smeth mapped this still as BGM. Some 3.5 km further north, however, de Smeth mapped exactly the same high-strain lithology as YBM. This band of high strain rocks (YBM) crops-out intermittently along the west side of the island and is likely a continuation of the

  8. Neighborhood binary speckle pattern for deformation measurements insensitive to local illumination variation by digital image correlation.

    Science.gov (United States)

    Zhao, Jian; Yang, Ping; Zhao, Yue

    2017-06-01

    Speckle pattern-based characteristics of digital image correlation (DIC) restrict its application in engineering fields and nonlaboratory environments, since serious decorrelation effect occurs due to localized sudden illumination variation. A simple and efficient speckle pattern adjusting and optimizing approach presented in this paper is aimed at providing a novel speckle pattern robust enough to resist local illumination variation. The new speckle pattern, called neighborhood binary speckle pattern, derived from original speckle pattern, is obtained by means of thresholding the pixels of a neighborhood at its central pixel value and considering the result as a binary number. The efficiency of the proposed speckle pattern is evaluated in six experimental scenarios. Experiment results indicate that the DIC measurements based on neighborhood binary speckle pattern are able to provide reliable and accurate results, even though local brightness and contrast of the deformed images have been seriously changed. It is expected that the new speckle pattern will have more potential value in engineering applications.

  9. Cytocompatibility evaluation and surface characterization of TiNi deformed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Awang Shri, Dayangku Noorfazidah, E-mail: AWANGSHRI.Dayangku@nims.go.jp [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Tsuchiya, Koichi [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Structural Materials Unit, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047 (Japan); Yamamoto, Akiko [Biomaterials Unit, International Center for Material Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan)

    2014-10-01

    Effect of high-pressure torsion (HPT) deformation on biocompatibility and surface chemistry of TiNi was systematically investigated. Ti–50 mol% Ni was subjected to HPT straining for different numbers of turns, N = 0.25, 0.5, 1, 5 and 10 at a rotation speed of 1 rpm. X-ray photoelectron spectroscopy observations after 7 days of cell culture revealed the changes in the surface oxide composition, enrichment of Ti and detection of nitrogen derived from organic molecules in the culture medium. Plating efficiency of L929 cells was slightly increased by HPT deformation though no significant difference was observed. Albumin adsorption was higher in HPT-deformed samples, while vitronectin adsorption was peaked at N = 1. HPT deformation was also found to effectively suppress the Ni ion release from the TiNi samples into the cell culture medium even after the low degree of deformation at N = 0.25. - Highlights: • Nanostructured Ti–50 mol%Ni alloy was produced using high-pressure torsion. • HPT deformation improved L929 growth on TiNi samples. • Changes in surface chemistry were observed in HPT deformed samples. • Protein adsorption behavior was influenced by the surface chemistry. • Ni ion release was suppressed in HPT deformed samples.

  10. Surface Impedance of Copper MOB Depending on the Annealing Temperature and Deformation Degree

    International Nuclear Information System (INIS)

    Kutovoj, V.A.; Nikolaenko, A.A.; Stoev, P.I.; Vinogradov, D.V.

    2006-01-01

    Results of researches of influence of annealing temperature and deformation degree on mechanical features of copper MOB are presented. It is shown that minimal surface resistance is observed in copper samples that were subject to pre-deformation and were annealed in the range of temperatures 873...923 K

  11. Subsurface deformation and the role of surface texture—A study with ...

    Indian Academy of Sciences (India)

    2Department of Mechanical Engineering, Indian Institute of Science,. Bangalore 560 012 e-mail: lancy@mecheng.iisc.ernet.in. Abstract. The extent of subsurface deformation below the worn surface influences friction and transfer layer formation during sliding. Thus, in this study, the extent of plastic deformation and strain ...

  12. Deformation of the surface of gallium arsenide during the deposition of gold

    International Nuclear Information System (INIS)

    Briantseva, T. A.; Lioubtchenko, D. V.; Markov, I. A.; Ten, Yu. A.

    2011-01-01

    Deformation phenomena of near-surface GaAs layers are studied using surface acoustic waves during the deposition of Au and the irradiation of the semiconductor surface by the light of a heated evaporator. It is shown that, in the case of Au deposition, the near-surface layers are plasticized due to the phase transformations in the Au-Ga-As system, while upon irradiation of the GaAs surface with light, a coarse-grained layer with liquid-like interlayers is formed. As a result, the type of surface deformations and their relaxation time change. The integral temporal characteristics of the surface acoustic wave, such as the variation integrals of its rate and dissipated power, reflect the processes occurring on the surface in the real-time mode. In summary, they reflect the current magnitude of the resulting deformation. The parameters of occurring processes such as activation energy and relaxation time are determined.

  13. The deformation of wax patterns and castings in investment casting technology

    Directory of Open Access Journals (Sweden)

    A. Herman

    2012-01-01

    Full Text Available The dimensional accuracy of the final casting of Inconel alloy 738 LC is affected by many aspects. One of them is the choice of method and time of cooling wax model for precision investment casting. The main objective was to study the initial deformation of the complex shape of the casting of the rotor blades. Various approaches have been tested for cooling wax pattern. When wax models are cooling on the air, without clamping in jig for cooling, deviations from the ideal shape of the casting are very noticeable (up to 8 mm and most are in extreme positions of the model. When blade is cooled in fixing jig in water environment, the resulting deviations compared with cooling in air are significantly larger, sometimes up to 10 mm. This itself does not mean that the final shape of the casting is dimensionally more accurate with usage of wax models, which have deviations from the ideal position smaller. Another deformation occurs when shell mould is produced around wax pattern and furthermore deformations emerge while casting of blade is cooling. This paper demonstrates first steps in describing complex process of deformations of Inconel alloy blades produced with investment casting technology by comparing results from thermal imagery, simulations in foundry simulation software ProCAST 2010 and measurements from CNC scanning system Carl Zeiss MC 850. Conclusions are so far not groundbreaking, but it seems deformations of wax pattern and deformations of castings do in some cases cancel each other by having opposite directions. Describing entirely whole process of deformations will help increase precision of blade castings so that models at the beginning and blades in the end are the same.

  14. Wetting films on chemically patterned surfaces.

    Science.gov (United States)

    Karakashev, Stoyan I; Stöckelhuber, Klaus W; Tsekov, Roumen

    2011-11-15

    The behavior of thin wetting films on chemically patterned surfaces was investigated. The patterning was performed by means of imprinting of micro-grid on methylated glass surface with UV-light (λ=184.8 nm). Thus imprinted image of the grid contained hydrophilic cells and hydrophobic bars on the glass surface. For this aim three different patterns of grids were utilized with small, medium and large size of cells. The experiment showed that the drainage of the wetting aqueous films was not affected by the type of surface patterning. However, after film rupturing in the cases of small and medium cells of the patterned grid the liquid from the wetting film underwent fast self-organization in form of regularly ordered droplets covering completely the cells of the grid. The droplets reduced significantly their size upon time due to evaporation. In the cases of the largest cell grid, a wet spot on the place of the imprinted grid was formed after film rupturing. This wet spot disassembled slowly in time. In addition, formation of a periodical zigzag three-phase contact line (TPCL) was observed. This is a first study from the planned series of studies on this topic. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Surface deformation monitoring using synthetic aperture radar data

    African Journals Online (AJOL)

    CGS

    deformation basins over time was recognised and is consistent with the advance of the working face of the mine during the .... Several advanced algorithms have been developed to overcome the limitations due to phase noise. ... or both. Likewise, the antenna can receive either vertically or horizontally polarized waves. The.

  16. Investigating the effects of membrane deformability on artificial capsule adhesion to the functionalized surface.

    Science.gov (United States)

    Balsara, Hiren D; Banton, Rohan J; Eggleton, Charles D

    2016-10-01

    Understanding, manipulating and controlling cellular adhesion processes can be critical in developing biomedical technologies. Adhesive mechanisms can be used to the target, pattern and separate cells such as leukocytes from whole blood for biomedical applications. The deformability response of the cell directly affects the rolling and adhesion behavior under viscous linear shear flow conditions. To that end, the primary objective of the present study was to investigate numerically the influence of capsule membrane's nonlinear material behavior (i.e. elastic-plastic to strain hardening) on the rolling and adhesion behavior of representative artificial capsules. Specifically, spherical capsules with radius of [Formula: see text] were represented using an elastic membrane governed by a Mooney-Rivlin strain energy functions. The surfaces of the capsules were coated with P-selectin glycoprotein-ligand-1 to initiate binding interaction with P-selectin-coated planar surface with density of [Formula: see text] under linear shear flow varying from 100 to [Formula: see text]. The numerical model is based on the Immersed Boundary Method for rolling of deformable capsule in shear flow coupled with Monte Carlo simulation for receptor/ligand interaction modeled using Bell model. The results reveal that the mechanical properties of the capsule play an important role in the rolling behavior and the binding kinetics between the capsule contact surface and the substrate. The rolling behavior of the strain hardening capsules is relatively smoother and slower compared to the elastic-plastic capsules. The strain hardening capsules exhibits higher contact area at any given shear rate compared to elastic-plastic capsules. The increase in contact area leads to decrease in rolling velocity. The capsule contact surface is not in complete contact with the substrate because of thin lubrication film that is trapped between the capsule and substrate. This creates a concave shape on the bottom

  17. Single-plane multiple speckle pattern phase retrieval using a deformable mirror

    DEFF Research Database (Denmark)

    Almoro, Percival F.; Glückstad, Jesper; Hanson, Steen Grüner

    2010-01-01

    A design for a single-plane multiple speckle pattern phase retrieval technique using a deformable mirror (DM) is analyzed within the formalism of complex ABCD-matrices, facilitating its use in conjunction with dynamic wavefronts. The variable focal length DM positioned at a Fourier plane of a lens...

  18. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    Science.gov (United States)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the

  19. Surface Deformation and Direct Field Observation to Constrain Conceptual Models of Hydraulic Fracture Growth and Form

    Science.gov (United States)

    Slack, W.; Murdoch, L.

    2016-12-01

    Hydraulic fractures can be created in shallow soil or bedrock to promote processes that destroy or remove chemical contaminants. The form of the fracture plays an important role in how it is used in such applications. We created more than 4500 environmental hydraulic fractures at approximately 300 sites since 1990, and we measured surface deformation at many. Several of these sites subsequently were excavated to evaluate fracture form in detail. In one recent example, six hydraulic fractures were created at 1.5m depth while we measured upward displacement and tilt at 15 overlying locations. We excavated in the vicinities of two of the fractures and mapped the exposed fractures. Tilt vectors were initially symmetric about the borehole but radiated from a point that moved southwest with time. Upward displacement of as much as 2.5 cm covered a region 5m to 6m across. The maximum displacement was roughly at the center of the deformed region but was 2m southwest of the borehole, consistent with the tilt data. Excavation revealed an oblong, proppant-filled fracture over 4.2 m in length with a maximum thickness of 1 cm, so the proppant covers a region that is smaller than the uplifted area and the proppant thickness is roughly half of the uplift. The fracture was shaped like a shallow saucer with maximum dips of approximately 15o at the southwestern end. The pattern of tilt and uplift generally reflect the aperture of the underlying pressurized fracture, but the deformation extends beyond the extent of the sand proppant so a quantitative interpretation requires inversion. Inversion of the tilt data using a simple double dislocation model under-estimates the extent but correctly predicts the depth, orientation, and off-centered location. Inversion of uplift using a model that assumes the overburden deforms like a plate over-estimates the extent. Neither can characterize the curved shape. A forward model using FEM analysis capable of representing 3D shapes is capable of

  20. Surface deformation recovery algorithm for reflector antennas based on geometric optics.

    Science.gov (United States)

    Huang, Jianhui; Jin, Huiliang; Ye, Qian; Meng, Guoxiang

    2017-10-02

    Surface deformations of large reflector antennas highly depend on elevation angle. This paper adopted a scheme with the ability to conduct measurement at any elevation angle: carrying an emission source, an unmanned aerial vehicle (UAV) scans the antenna on a near-field plane, meanwhile the antenna stays stationary. Near-field amplitude is measured in the scheme. To recover the deformation from the measured amplitude, this paper proposed a novel algorithm by deriving the deformation-amplitude equation, which reveals the relation between the surface deformation and the near-field amplitude. By the algorithm, a precise deformation recovery can be reached at a low frequency (<1GHz) through single near-field amplitude. Simulation results showed the high accuracy and adaptability of the algorithm.

  1. Modeling and simulation of the deformation process of PTFE flexiblestamps for nanoimprint lithography on curved surfaces

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Smistrup, K.; Hannibal, Morten

    2015-01-01

    In the presented work, simulations of the deformation process of flexible stamps used for nanoimprint lithographron curved surfaces are presented. The material used for the flexible stamps was polytetrafluoroethylene (PTFE) whose material behavior was found to be viscoelastic-viscoplastic. This b......In the presented work, simulations of the deformation process of flexible stamps used for nanoimprint lithographron curved surfaces are presented. The material used for the flexible stamps was polytetrafluoroethylene (PTFE) whose material behavior was found to be viscoelastic...

  2. Complex brittle deformation pattern along the Southern Patagonian Andes (Argentina)

    Science.gov (United States)

    Barberón, Vanesa; Sue, Christian; Ronda, Gonzalo; Ghiglione, Matías

    2016-04-01

    The Southern Patagonian Andes is located in the southern extreme of the Pacific subduction zone, where the Antartic oceanic plate sinks underneath South America. The history of the area begins with compression during Paleozoic, Jurassic extension associated to the rift and opening of the South Atlantic Ocean, then a sag stage in the Lower Cretaceous followed by a foreland phase as a result of plate tectonics (Ghiglione et al., 2016). The kinematic study is concentrated in the Argentinean foothills, between 46°40' and 48° SL. We measured around 800 fault planes and their striaes with the sense of movement in order to characterize the stress field. The software used to make the stress inversion were Tensor (Delvaux, 2011) and Multiple Inverse Method MIM (Yamaji et al., 2011). The stress field map was built with the results of the MIM. We present new data from 48 sites located in the northern sector of the Southern Patagonian Andes. The measurements were made in several rocks from Paleozoic to Lower Cretaceous, even though most were taken in pyroclastic jurassic rocks from El Quemado Complex. Paleostress tensors obtained are mostly strike-slip, although a 25% is normal and there are a few compresional. The pattern of faults found is complex. In some sites the tensor can be locally linked to satellite images and observations from the field or be related to a major thrust front. There is no clear correlation between the age and/or lithology with the tensor since the youngest rocks measured are Lower Cretaceous. Probably there are several generations of family faults connected to different and recent tectonic phases then the paleostress tensors might correspond to the latest tectonic events.

  3. Selective functionalization of patterned glass surfaces

    NARCIS (Netherlands)

    Ploetz, E.; Visser, B.; Slingenbergh, W.; Evers, K.; Martinez-Martinez, D.; Pei, Y. T.; Feringa, B. L.; De Hosson, J. Th. M.; Cordes, T.; van Dorp, W. F.

    2014-01-01

    Tailored writing and specific positioning of molecules on nanostructures is a key step for creating functional materials and nano-optical devices, or interfaces for synthetic machines in various applications. We present a novel approach for the selective functionalization of patterned glass surfaces

  4. Submicron Surface-Patterned Fibers and Textiles

    Science.gov (United States)

    2016-11-04

    Alternative substrates, especially flexible polymers, remain challenging to pattern [25,26] due to the highly specific surface chemistry of different...Am. J. Energy Res. 2014, 2, 53–59. [17] D.Y. Kim, S.K. Tripathy, L. Li, J. Kumar, APL 1995, 66, 10, [18] J. Bico, U. Thiele, D. Quéré, Colloids Surf

  5. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo.

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. Noninvasive, three-dimensional full-field body sensor for surface deformation monitoring of human body in vivo

    Science.gov (United States)

    Chen, Zhenning; Shao, Xinxing; He, Xiaoyuan; Wu, Jialin; Xu, Xiangyang; Zhang, Jinlin

    2017-09-01

    Noninvasive, three-dimensional (3-D), full-field surface deformation measurements of the human body are important for biomedical investigations. We proposed a 3-D noninvasive, full-field body sensor based on stereo digital image correlation (stereo-DIC) for surface deformation monitoring of the human body in vivo. First, by applying an improved water-transfer printing (WTP) technique to transfer optimized speckle patterns onto the skin, the body sensor was conveniently and harmlessly fabricated directly onto the human body. Then, stereo-DIC was used to achieve 3-D noncontact and noninvasive surface deformation measurements. The accuracy and efficiency of the proposed body sensor were verified and discussed by considering different complexions. Moreover, the fabrication of speckle patterns on human skin, which has always been considered a challenging problem, was shown to be feasible, effective, and harmless as a result of the improved WTP technique. An application of the proposed stereo-DIC-based body sensor was demonstrated by measuring the pulse wave velocity of human carotid artery.

  7. Corrosion Resistance of Steel 45 Subjected to Electromechanical Treatment and Surface Plastic Deformation

    Science.gov (United States)

    Dudkina, N. G.

    2018-01-01

    The corrosion properties of normalized steel 45 are studied after a combined hardening of its surface layer, which consists of electromechanical treatment and surface plastic deformation (EMT + SPD). The effect of different aggressive environments on the structure, microhardness and corrosion rate of the hardened surface layer is determined.

  8. Deformations of constant mean curvature surfaces preserving symmetries and the Hopf differential

    DEFF Research Database (Denmark)

    Brander, David; Dorfmeister, Josef

    2015-01-01

    We define certain deformations between minimal and non-minimal constant mean curvature (CMC) surfaces in Euclidean space E3 which preserve the Hopf differential. We prove that, given a CMC H surface f, either minimal or not, and a fixed basepoint z0 on this surface, there is a naturally defined...

  9. Patterning pentacene surfaces by local oxidation nanolithography

    International Nuclear Information System (INIS)

    Losilla, N.S.; Martinez, J.; Bystrenova, E.; Greco, P.; Biscarini, F.; Garcia, R.

    2010-01-01

    Sequential and parallel local oxidation nanolithographies have been applied to pattern pentacene samples by creating a variety of nanostructures. The sequential local oxidation process is performed with an atomic force microscope and requires the application of a sequence of voltage pulses of 36 V for 1 ms. The parallel local oxidation process is performed by using a conductive and patterned stamp. Then, a voltage pulse is applied between the stamp and the pentacene surface. Patterns formed by arrays of parallel lines covering 1 mm 2 regions and with a periodicity of less than 1 μm have been generated in a few seconds. We also show that the patterns can be used as templates for the deposition of antibodies.

  10. Patterning pentacene surfaces by local oxidation nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Losilla, N.S., E-mail: nuria@imm.cnm.csic.es [Instituto de Microelectronica de Madrid: CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Martinez, J. [Instituto de Microelectronica de Madrid: CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Bystrenova, E.; Greco, P.; Biscarini, F. [Institute for Nanostructured Materials: CNR (ISMN-CNR), Via Gobetti 101, 40129 Bologna (Italy); Garcia, R., E-mail: rgarcia@imm.cnm.csic.es [Instituto de Microelectronica de Madrid: CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain)

    2010-05-15

    Sequential and parallel local oxidation nanolithographies have been applied to pattern pentacene samples by creating a variety of nanostructures. The sequential local oxidation process is performed with an atomic force microscope and requires the application of a sequence of voltage pulses of 36 V for 1 ms. The parallel local oxidation process is performed by using a conductive and patterned stamp. Then, a voltage pulse is applied between the stamp and the pentacene surface. Patterns formed by arrays of parallel lines covering 1 mm{sup 2} regions and with a periodicity of less than 1 {mu}m have been generated in a few seconds. We also show that the patterns can be used as templates for the deposition of antibodies.

  11. Wetting of two-dimensional physically patterned surfaces

    Science.gov (United States)

    Bell, Michael Scott

    An understanding of wetting phenomena is important, in part, due to the many practical applications of controlled wetting. Some of the most exciting applications involve superhydrophobic surfaces, on which water droplets exhibit contact angles larger than 150° and contact angle hysteresis less than 10°. These surfaces are notable for their low-drag, antifouling, and self-cleaning properties, among others. Wetting is known to be affected by both the chemistry and the physical patterning of a surface, with the chemistry affecting what is called the intrinsic contact angle, which is the contact angle displayed by a droplet on a smooth flat surface made of the given material. To date, the largest intrinsic contact angle observed for any material is only about 120°, which does not confer superhydrophobicity. Thus, physical patterning is a crucial component of any superhydrophobic surface. Interestingly, many natural examples of superhydrophobic surfaces exist, with one of the most notable being the lotus leaf. In designing such surfaces, scientists have turned to the natural examples for inspiration, and have found that most natural examples have multiple (usually two) scales of roughness, commonly referred to as hierarchical roughness. Though hierarchical roughness is ubiquitous in the superhydrophobic surfaces of the natural world, its precise role in conferring superhydrophobicity has so far remained elusive. In this work, we develop a thermodynamic model to study the wetting of two-dimensional physically patterned surfaces. Past models that have been developed for this purpose often make several assumptions: the drop must be much larger than the surface features while simultaneously being small enough that the effects of gravity are negligible. Many of these models ultimately rely on the older Cassie and Wenzel models, which themselves make assumptions about the drop size relative to the surface features--namely that the drop is again much larger than the surface

  12. Ground Surface Deformation around Tehran due to Groundwater Recharge: InSAR Monitoring.

    Science.gov (United States)

    Gourmelen, N.; Peyret, M.; Fritz, J. F.; Cherry, J.

    2003-04-01

    Tehran is located on an active tectonic and seismic zone. The surface deformation monitoring provides a powerful tool for getting a better understanding of faults kinematics and mechanisms. Used in conjunction with GPS networks, InSAR (Interferometric Synthetic Aperture Radar) provides dense and precise deformation measurements which are essential for mapping complex heterogeneous deformation fields. Moreover, urban and arid areas preserve interferometric phase coherence. The archived acquisitions of ERS that span 9 months between September 1998 and June 1999 reveal wide areas of surface uplift (by as much as 9 cm). This vertical deformation (gradual in time) has probably no tectonic meaning but is rather the ground response to ground water recharge. These zones are all located dowstream of large alluvial fans like the one of Karaj. The variation of effective stress caused by intersticial water draining could explain such surface deformation. It can also be noticed that some faults act as boundary for these deformation zones and fluid motion. The understanding of this deformation is relevant for groundwater monitoring and urban developement management. It is also necessary for discriminating it from tectonic deformation that also occurs on this zone. Due to the lack of attitude control of satellite ERS-2 since February 2001, the last images acquired could not be combined with the former acquisitions. Nevertheless, we expect to be able to enrich our set of images in order to map tectonic deformation on a longer period and to monitor in a more continuous way the deformation due to groundwater evolution. This would allow to quantify the permanent and reversible part of this signal.

  13. Quantifying cortical surface harmonic deformation with stereovision during open cranial neurosurgery

    Science.gov (United States)

    Ji, Songbai; Fan, Xiaoyao; Roberts, David W.; Paulsen, Keith D.

    2012-02-01

    Cortical surface harmonic motion during open cranial neurosurgery is well observed in image-guided neurosurgery. Recently, we quantified cortical surface deformation noninvasively with synchronized blood pressure pulsation (BPP) from a sequence of stereo image pairs using optical flow motion tracking. With three subjects, we found the average cortical surface displacement can reach more than 1 mm and in-plane principal strains of up to 7% relative to the first image pair. In addition, the temporal changes in deformation and strain were in concert with BPP and patient respiration [1]. However, because deformation was essentially computed relative to an arbitrary reference, comparing cortical surface deformation at different times was not possible. In this study, we extend the technique developed earlier by establishing a more reliable reference profile of the cortical surface for each sequence of stereo image acquisitions. Specifically, fast Fourier transform (FFT) was applied to the dynamic cortical surface deformation, and the fundamental frequencies corresponding to patient respiration and BPP were identified, which were used to determine the number of image acquisitions for use in averaging cortical surface images. This technique is important because it potentially allows in vivo characterization of soft tissue biomechanical properties using intraoperative stereovision and motion tracking.

  14. Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity

    Science.gov (United States)

    Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.

    2014-09-01

    As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.

  15. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied...... to isolate low-frequency variability from time series of SST anomalies for the 1982-2006 period. The first derived trend pattern reflects a systematic decrease in SST during the 25-year period in the equatorial Pacific and an increase in most of the global ocean. The second trend pattern reflects mainly ENSO...... variability in the Pacific Ocean. The examination of the contribution of these low-frequency modes to the globally averaged SST fluctuations indicates that they are able to account for most (>90%) of the variability observed in global mean SST. Trend-EOFs perform better than conventional EOFs when...

  16. Estimating the Parameters of Deformation Action by Ultrasonic Surface Hardening of Metals

    Science.gov (United States)

    Rakhimyanov, Kharis M.; Rakhimyanov, Konstantin Kh; Rakhimyanov, Andrey Kh

    2017-10-01

    Developing the effective technologies of detail machining greatly depends on understanding the processes laid down in their basis. The technological methods based on electro-physical processes are considered to be attractive. These are the methods of surface plastic deforming which use the energy of ultrasonic oscillations. The peculiarities of these methods are characterized by high intensity and impulse character of the ultrasonic action. The paper presents the results of mathematical modeling of deformation processes under the impact of the ultrasonic tool on the surface layer of metals and alloys. The theoretical approach to studying the process of ultrasonic deforming allowed us to determine the mode parameters of impact and their quantitative correlations with the main characteristics of the deformation process.

  17. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  18. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of two commercial austenitic stainless steels: AISI 304 and EN 1.4369. The materials were plastically deformed to different equivalent strains by uniaxial...... tension. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at 703 K. Microstructural characterization of the as-deformed states and the nitrided case produced included X-ray diffraction analysis, reflected light microscopy, microhardness testing. The results...

  19. Low temperature surface hardening of stainless steel; the role of plastic deformation

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jespersen, Freja Nygaard; Hattel, Jesper Henri

    2016-01-01

    Thermochemical surface engineering by nitriding of austenitic stainless steel transforms the surface zone into expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. As a consequence of the thermochemical surface engineering, huge......: - plastic deformation of metastable austenitic stainless steels leads to the development of strain-induced martensite, which compromises the uniformity and the homogeneity of the expanded austenite zone. - during low temperature surface engineering composition and stress profiles develop. On numerical...

  20. Orientation and deformation of mineral crystals in tooth surfaces.

    Science.gov (United States)

    Fujisaki, Kazuhiro; Todoh, Masahiro; Niida, Atsushi; Shibuya, Ryota; Kitami, Shunsuke; Tadano, Shigeru

    2012-06-01

    Tooth enamel is the hardest material in the human body, and it is mainly composed of hydroxyapatite (HAp)-like mineral particles. As HAp has a hexagonal crystal structure, X-ray diffraction methods can be used to analyze the crystal structure of HAp in teeth. Here, the X-ray diffraction method was applied to the surface of tooth enamel to measure the orientation and strain of the HAp crystals. The c-axis of the hexagonal crystal structure of HAp was oriented to the surface perpendicular to the tooth enamel covering the tooth surface. Thus, the strain of HAp at the surface of teeth was measured by X-ray diffraction from the (004) lattice planes aligned along the c-axis. The X-ray strain measurements were conducted on tooth specimens with intact surfaces under loading. Highly accurate strain measurements of the surface of tooth specimens were performed by precise positioning of the X-ray irradiation area during loading. The strains of the (004) lattice plane were measured at several positions on the surface of the specimens under compression along the tooth axis. The strains were obtained as tensile strains at the labial side of incisor tooth specimens. In posterior teeth, the strains were different at different measurement positions, varying from tensile to compressive types. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Topography and structural heterogeneities in surface ground deformation: a simulation test for Somma-Vesuvius volcano

    Science.gov (United States)

    Tammaro, Umberto; Riccardi, Umberto; Romano, Vittorio; Meo, Michele; Capuano, Paolo

    2017-04-01

    Through a 3D finite element code we simulate, the deformation of Somma-Vesuvius volcano caused by some overpressure sources. Under the assumption of linear elastic isotropic material behavior, the volcano deformation sources are located at various depths and their geometry (shape and lateral extension) is mainly constrained by the results of recent seismic tomography studies. These simulations have the objective to inquire about the influence of topography and structural heterogeneity on ground deformation. Structural heterogeneities have been modeled in terms of dynamical elastic parameters (Young's modulus) accounting for previous seismic tomography and gravity studies. Topography of Somma-Vesuvius is taken into account, using a digital terrain model. The main outcomes of this study is a strong deviation from axially symmetric pattern of the displacement field, which is quietly unaccounted by simplistic Mogi modeling in homogeneous medium with simplified topography. These results demonstrate that real topography and structural heterogeneities are key factors controlling the pattern of ground deformations, i.e. one of the most relevant problem in volcano monitoring. Moreover, an improved knowledge of deformation patterns can significantly help in the location of monitoring sensors as well as in the design of an efficient geodetic network.

  2. 3D Quaternary deformation pattern in the central Po Plain (Northern Italy)

    Science.gov (United States)

    Sileo, G.; Mueller, K.; Michetti, A. M.; Livio, F.; Berlusconi, A.; Carcano, C.; Rogledi, S.; Vittori, E.

    2009-04-01

    The Po Plain is a foredeep basin flanked by the two major and active orogens of the Italian Peninsula, the Alps to the North and the Apennines to the South. The basin has a quasi - triangular shape and grades longitudinally to the East in the Adriatic Sea. We used petroleum industry seismic reflection data acquired by ENI E&P in the Central Po Plain, over an area spanning about 6800 km2 from Lake Como to the W to Lake Garda to the E, and from the Lombardian Southern Alps to the N and the Emilia Apennines to the S, in order to analyze and interpret selected seismic reflectors and to define the evolution in space and time of the local active tectonic structures. Folds associated with underlying thrusts were recognized based on deformation recorded by two regional sequence boundary horizons, i.e. the ‘A' Surface (1.6 Myr) and the ‘R' Surface (0. 9 Myr; e.g., Carcano & Piccin, 2002; Muttoni et al., 2003), characterized by good stratigraphic and age bracketing, and marking significant changes in the sedimentary architecture of the Po Basin. Age controls are based on stratigraphic, paleontological and magnetostratigraphic analysis by ENI E&P and Regione Lombardia (Carcano & Piccin, 2002; Scardia et al., 2006). The analysis of strain recorded by these horizons allowed us to: A) recognize a belt of active fold and thrust structures, each 10 to 20 km long, arranged with an en-echelon pattern across the whole Po Basin, and B) analyze their evolution over the Quaternary. 'A' surface (1.6 Myr) The ‘A' surface has been mapped over about 7800 Km2. From North to South four major morphobathymetric domains can be defined in the Pleistocene marine Po Basin: an Alpine platform domain, a slope that links it with the wider central basin domain, a smaller and steeper slope and an Apennine platform domain. The basin shape has an asymmetric transversal profile and is ca. 40 km wide. Several tectonic structures affect this surface. On the Alpine platform domain two small structures

  3. Ra and the average effective strain of surface asperities deformed in metal-working processes

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Petersen, A. S

    1975-01-01

    Based upon a slip-line analysis of the plastic deformation of surface asperities, a theory is developed determining the Ra-value (c.l.a.) and the average effective strain in the surface layer when deforming asperities in metal-working processes. The ratio between Ra and Ra0, the Ra-value after...... and before deformation, is a function of the nominal normal pressure and the initial slope γ0 of the surface asperities. The last parameter does not influence Ra significantly. The average effective strain View the MathML sourcege in the deformed surface layer is a function of the nominal normal pressure...... and γ0. View the MathML sourcege is highly dependent on γ0, View the MathML sourcege increasing with increasing γ0. It is shown that the Ra-value and the strain are hardly affected by the normal pressure until interacting deformation of the asperities begins, that is until the limit of Amonton's law...

  4. The Research of Phase Retrieval Holography Method Based on the Active Deformation of the Active Reflector Surface

    Science.gov (United States)

    Wang, Z. Q.; Chen, M. Z.; Pei, X.; Wang, J.

    2017-09-01

    The surface accuracy of a large reflector radio telescope is one of the important factors influencing the performance of the antenna. The effects of panel processing, installation, as well as gravity, temperature, and wind load, will greatly limit the observation efficiency of the antenna. Focused on the technology of active surface which is more accurately controllable than the minor reflector surface of six-ploe, the continuous distribution of active deformation phase factor described by Zernike polynomials is adopted for the first time. Only getting the far field amplitude through adjusting the active surface, the surface error can be detected. By building the models of numerical simulation, the retrieval error of arbitrary surface deformation is calculated, and the retrieval results of surface deformation in a variety of continuous active surface deformation is also studied. It is indicated that this method can stably and accurately detect surface deformation, and can also improve the efficiency of radio telescope observations effectively.

  5. Entanglement entropy of singular surfaces under relevant deformations in holography

    Science.gov (United States)

    Ghasemi, Mostafa; Parvizi, Shahrokh

    2018-02-01

    In the vacuum state of a CFT, the entanglement entropy of singular surfaces contains a logarithmic universal term which is only due to the singularity of the entangling surface. We consider the relevant perturbation of a three dimensional CFT for singular entangling surface. We observe that in addition to the universal term due to the entangling surface, there is a new logarithmic term which corresponds to a relevant perturbation of the conformal field theory with a coefficient depending on the scaling dimension of the relevant operator. We also find a new power law divergence in the holographic entanglement entropy. In addition, we study the effect of a relevant perturbation in the Gauss-Bonnet gravity for a singular entangling surface. Again a logarithmic term shows up. This new term is proportional to both the dimension of the relevant operator and the Gauss-Bonnet coupling. We also introduce the renormalized entanglement entropy for a kink region which in the UV limit reduces to a universal positive finite term.

  6. Microstructure refinement of tungsten by surface deformation for irradiation damage resistance

    International Nuclear Information System (INIS)

    Efe, Mert; El-Atwani, Osman; Guo, Yang; Klenosky, Daniel R.

    2014-01-01

    Surface deformation by machining is demonstrated as a way to engineer microstructures of pure tungsten for extreme irradiation environments. Thermomechanical conditions are established for microstructure refinement in the chips and the workpiece subsurface. Ultrafine grains are observed both in the chip and the subsurface, at depths relevant to the typical thickness of the irradiation-induced damage. Guidelines for producing a uniform, ultrafine-grained structure via machining and other surface deformation processes are discussed along with the implications of such microstructures for damage resistance

  7. Macro-carriers of plastic deformation of steel surface layers detected by digital image correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kopanitsa, D. G., E-mail: kopanitsa@mail.ru; Ustinov, A. M., E-mail: artemustinov@mail.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); Potekaev, A. I., E-mail: potekaev@spti.tsu.ru [National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, A. A., E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, 2 Solyanaya Sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk, 634050 (Russian Federation); Kopanitsa, G. D., E-mail: georgy.kopanitsa@mail.com [National Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    This paper presents a study of characteristics of an evolution of deformation fields in surface layers of medium-carbon low-alloy specimens under compression. The experiments were performed on the “Universal Testing Machine 4500” using a digital stereoscopic image processing system Vic-3D. A transition between stages is reflected as deformation redistribution on the near-surface layers. Electronic microscopy shows that the structure of the steel is a mixture of pearlite and ferrite grains. A proportion of pearlite is 40% and ferrite is 60%.

  8. Complex surface deformation of Akutan volcano, Alaska revealed from InSAR time series

    Science.gov (United States)

    Wang, Teng; DeGrandpre, Kimberly; Lu, Zhong; Freymueller, Jeffrey T.

    2018-02-01

    Akutan volcano is one of the most active volcanoes in the Aleutian arc. An intense swarm of volcano-tectonic earthquakes occurred across the island in 1996. Surface deformation after the 1996 earthquake sequence has been studied using Interferometric Synthetic Aperture Radar (InSAR), yet it is hard to determine the detailed temporal behavior and spatial extent of the deformation due to decorrelation and the sparse temporal sampling of SAR data. Atmospheric delay anomalies over Akutan volcano are also strong, bringing additional technical challenges. Here we present a time series InSAR analysis from 2003 to 2016 to reveal the surface deformation in more detail. Four tracks of Envisat data acquired from 2003 to 2010 and one track of TerraSAR-X data acquired from 2010 to 2016 are processed to produce high-resolution surface deformation, with a focus on studying two transient episodes of inflation in 2008 and 2014. For the TerraSAR-X data, the atmospheric delay is estimated and removed using the common-master stacking method. These derived deformation maps show a consistently uplifting area on the northeastern flank of the volcano. From the TerraSAR-X data, we quantify the velocity of the subsidence inside the caldera to be as high as 10 mm/year, and identify another subsidence area near the ground cracks created during the 1996 swarm.

  9. Bayesian estimation of regularization parameters for deformable surface models

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, G.S.; Lehovich, A.; Hanson, K.M.

    1999-02-20

    In this article the authors build on their past attempts to reconstruct a 3D, time-varying bolus of radiotracer from first-pass data obtained by the dynamic SPECT imager, FASTSPECT, built by the University of Arizona. The object imaged is a CardioWest total artificial heart. The bolus is entirely contained in one ventricle and its associated inlet and outlet tubes. The model for the radiotracer distribution at a given time is a closed surface parameterized by 482 vertices that are connected to make 960 triangles, with nonuniform intensity variations of radiotracer allowed inside the surface on a voxel-to-voxel basis. The total curvature of the surface is minimized through the use of a weighted prior in the Bayesian framework, as is the weighted norm of the gradient of the voxellated grid. MAP estimates for the vertices, interior intensity voxels and background count level are produced. The strength of the priors, or hyperparameters, are determined by maximizing the probability of the data given the hyperparameters, called the evidence. The evidence is calculated by first assuming that the posterior is approximately normal in the values of the vertices and voxels, and then by evaluating the integral of the multi-dimensional normal distribution. This integral (which requires evaluating the determinant of a covariance matrix) is computed by applying a recent algorithm from Bai et. al. that calculates the needed determinant efficiently. They demonstrate that the radiotracer is highly inhomogeneous in early time frames, as suspected in earlier reconstruction attempts that assumed a uniform intensity of radiotracer within the closed surface, and that the optimal choice of hyperparameters is substantially different for different time frames.

  10. Earth Surface Patterns in 200 Years (Invited)

    Science.gov (United States)

    Werner, B.

    2009-12-01

    What kinds of patterns will characterize Earth's surface in 200 years? This question is addressed using a complex systems dynamical framework for distinct levels of description in a hierarchy, in which time scale and spatial extent increase and number of variables decrease with level, and in which levels are connected nonlinearly to each other via self-organization and slaving and linearly to the external environment. Self-organized patterns linking the present to 200 years in the future must be described dynamically on a level with a time scale of centuries. Human-landscape coupling will play a prominent role in the formation of these patterns as population peaks and interactions become nonlinear over these time scales. Three related examples illustrate this approach. First, the response of human-occupied coastlines to rising sea level. Coastlines in wealthy regions develop a spatially varying boom and bust pattern, with response amplified by structures meant to delay the effects of sea level rise. Coastlines in economically disadvantaged regions experience a subdued response, with populations developing a culture of displacement that minimizes human-landscape interactions in a context of scarce resources. Second, the evolution of nation-state borders with degrading ecosystems, declining resource availability and increasing transportation costs. The maintenance of strong borders as selective filtration systems (goods, capital and people) is based on a cost-benefit analysis in which the economic benefits accruing from long distance, globalized resource exploitation are weighed against policing and infrastructure costs. As costs rise above benefits, borders fragment, with a transition to local barriers and conflicts, and mobile peoples moving to resources. Third, trends in urbanization and development of megacities under economic and environmental stress. The pattern of rapid growth of megacities through inward migration, with displaced people occupying high

  11. Monitoring of surface deformation via InSAR imaging for petroleum engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Y.; Zhang, X. [National Key Lab of LIESMARS, (China)

    2004-07-01

    Interferometric synthetic aperture radar imaging (InSAR) is emerging as a method of monitoring minute deformations of the ground surface. Inversion of the surface deformation is also being developed to understand the casual effect underground. These techniques therefore have potential applications in petroleum engineering, in such fields as reservoir management, monitoring of subsurface waste re-injection, subsidence monitoring and overburden/casing integrity assessment. In-situ bitumen recovery from Canadian oil sands reservoirs, including cyclic steam stimulation or the SAGD process, is one area that could potentially utilize the new technology. InSAR yields an area view of the deformation in contrast to discrete point-based measurements provided by existing methods. Resolution down to the centimeter or sub-centimeter level is possible. This paper discusses these two new techniques along with typical examples.

  12. A connectionist-geostatistical approach for classification of deformation types in ice surfaces

    Science.gov (United States)

    Goetz-Weiss, L. R.; Herzfeld, U. C.; Hale, R. G.; Hunke, E. C.; Bobeck, J.

    2014-12-01

    Deformation is a class of highly non-linear geophysical processes from which one can infer other geophysical variables in a dynamical system. For example, in an ice-dynamic model, deformation is related to velocity, basal sliding, surface elevation changes, and the stress field at the surface as well as internal to a glacier. While many of these variables cannot be observed, deformation state can be an observable variable, because deformation in glaciers (once a viscosity threshold is exceeded) manifests itself in crevasses.Given the amount of information that can be inferred from observing surface deformation, an automated method for classifying surface imagery becomes increasingly desirable. In this paper a Neural Network is used to recognize classes of crevasse types over the Bering Bagley Glacier System (BBGS) during a surge (2011-2013-?). A surge is a spatially and temporally highly variable and rapid acceleration of the glacier. Therefore, many different crevasse types occur in a short time frame and in close proximity, and these crevasse fields hold information on the geophysical processes of the surge.The connectionist-geostatistical approach uses directional experimental (discrete) variograms to parameterize images into a form that the Neural Network can recognize. Recognizing that each surge wave results in different crevasse types and that environmental conditions affect the appearance in imagery, we have developed a semi-automated pre-training software to adapt the Neural Net to chaining conditions.The method is applied to airborne and satellite imagery to classify surge crevasses from the BBGS surge. This method works well for classifying spatially repetitive images such as the crevasses over Bering Glacier. We expand the network for less repetitive images in order to analyze imagery collected over the Arctic sea ice, to assess the percentage of deformed ice for model calibration.

  13. Understanding cyclic seismicity and ground deformation patterns at volcanoes: Intriguing lessons from Tungurahua volcano, Ecuador

    Science.gov (United States)

    Neuberg, Jürgen W.; Collinson, Amy S. D.; Mothes, Patricia A.; Ruiz, Mario C.; Aguaiza, Santiago

    2018-01-01

    Cyclic seismicity and ground deformation patterns are observed on many volcanoes worldwide where seismic swarms and the tilt of the volcanic flanks provide sensitive tools to assess the state of volcanic activity. Ground deformation at active volcanoes is often interpreted as pressure changes in a magmatic reservoir, and tilt is simply translated accordingly into inflation and deflation of such a reservoir. Tilt data recorded by an instrument in the summit area of Tungurahua volcano in Ecuador, however, show an intriguing and unexpected behaviour on several occasions: prior to a Vulcanian explosion when a pressurisation of the system would be expected, the tilt signal declines significantly, hence indicating depressurisation. At the same time, seismicity increases drastically. Envisaging that such a pattern could carry the potential to forecast Vulcanian explosions on Tungurahua, we use numerical modelling and reproduce the observed tilt patterns in both space and time. We demonstrate that the tilt signal can be more easily explained as caused by shear stress due to viscous flow resistance, rather than by pressurisation of the magmatic plumbing system. In general, our numerical models prove that if magma shear viscosity and ascent rate are high enough, the resulting shear stress is sufficient to generate a tilt signal as observed on Tungurahua. Furthermore, we address the interdependence of tilt and seismicity through shear stress partitioning and suggest that a joint interpretation of tilt and seismicity can shed new light on the eruption potential of silicic volcanoes.

  14. Bone surface extraction from MR images of a temporomandibular joint using deformable modeling technique

    International Nuclear Information System (INIS)

    Miura, Amane; Hattori, Yoshinori; Watanabe, Makoto; Tsukahara, Yasuo

    1999-01-01

    This paper presents a two-step method, based on magnetic resonance (MR) images, for three-dimensional reconstruction of osseous components of a temporomandibular joint (TMJ), the mandibular condyle and the fossa. In the first step, images were segmented in order to extract the bony outline (contour) by using a two-dimensional deformable model. An object in the model was extracted by deforming the initial contour located near the object of the image. In the second step, using the surface reconstructed from the extracted contour as the initial surface, a three-dimensional deformable model was applied in order to extract the surface of the object. These procedures were handled semi-automatically. Multi-section 1-mm-thick sagittal images of the right normal TMJ were obtained with a 1.5-T MR system and surface coils by using a FLASH-3D sequence (TR=50 ms, TE=11 ms) from an asymptomatic volunteer (male, age 31 years). From these images, the bony surfaces of TMJ were extracted using the above-mentioned method. Even though the extracted surfaces were a little smaller than the surface traced by experienced dentists, they showed the normal, anatomical form of TMJ. (author)

  15. The design procedures on brick building against surface ground deformations due to mining and earthquake

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, J.; Yang, S. (China University of Mining and Technology (China))

    1992-05-01

    By analysing the effects of ground motion and deformation on surface buildings, and drawing on the experience of damages caused by the Tangshan and Chenhai earthquakes, the authors discuss the design of brick and concrete buildings which are protected against the damaging effects of both earthquakes and mining activities. 5 figs.

  16. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    Science.gov (United States)

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  17. Surface layers' real structure of metals exposed to inhomogeneous thermal fields and plastic deformation

    Czech Academy of Sciences Publication Activity Database

    Pala, Z.; Ganev, N.; Drahokoupil, Jan; Sveshnikov, Alexey

    2010-01-01

    Roč. 163, - (2010), s. 59-63 ISSN 1012-0394. [21st Conference on Applied Crystallography. Zakopane, 20.09.2009-24.09.2009] Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : residual stress * grain size * surface treatment * thermal fields * plastic deformation Subject RIV: BM - Solid Matter Physics ; Magnetism

  18. Influence of plastic deformation on low temperature surface hardening of stainless steel by gaseous nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were plas...

  19. Adhesion, Deformation, Rolling, and Detachment of a Liquid Capsule on An Adhesive Surface In Shear Flow

    Science.gov (United States)

    Pappu, Vijay; Bagchi, Prosenjit

    2008-11-01

    3D computational modeling and simulation are presented on adhesion, deformation, rolling and detachment of a liquid capsule on adhesive surfaces in shear flow with an objective to understand the adhesive rolling motion of biological cells, such as leukocyte and cancel cells, and the coupling between cell deformation and biophysics of the adhesive bonds. The computational model is based on an immersed boundary method for deformable capsules, and a finite difference-Fourier transform technique for solving the complete Navier-Stokes equations. The flow solver is coupled with a Monte Carlo simulation representing random process for bond formation and breakage between the capsule and the adhesive surface. Becuase of the stochastic process of bond formation and breakage, the roling motion is comprised of intermittent ``stops-and-runs'' which is well-known for biological cells such as leukocytes, which is reproduced in our simulations. The major objective of this talk is to present phase diagrams for cell adhesion which are obtained in terms of the critical bond strength as a function of cell deformability and biophysical parameters of the adhesion bonds. Through these phase diagrams, we elucidate the role of the hydrodynamic lift force, that exists on an wall- bounded deformable particle in shear flow, in the process of cell capture. Funded by NSF (BES-0603035 and CTS-0625936).

  20. Surface deformation in the Western Coastal Plain of Taiwan after removal of groundwater withdrawal effects

    Science.gov (United States)

    Chen, K.; Ching, K.

    2012-12-01

    The effect of widespread groundwater pumping has been proposed to be able to obscure the tectonic signals resulted from the movement of blind thrust faults, such as the metropolitan Los Angeles. In Taiwan, the tip of westward-propagating frontal blind thrust has been suggested to be located beneath the Western Coastal Plain by analyses of the horizontal GPS velocities and the geological uplift rates due to the convergence between the Philippine Sea and the Eurasian plates. However, the serious land subsidence has been consistently occurred in the Western Coastal Plain because of the artificial groundwater pumping for the development of agriculture. The most significant subsidence rate is observed up to 109.4 mm/yr. This effect may disturb the pattern of the surface horizontal velocities caused by the movement of blind thrust. As a result, ignoring the groundwater withdrawal effects will make misunderstandings on the assessment of location and kinematic characteristics of the blind thrust in western Taiwan by analysis of horizontal velocities only. In this study, to obtain a reasonable horizontal velocity field for evaluating the fault behavior in western Taiwan, we therefore used more than 704 precise leveling measurements and 20 continuous GPS observations between 2000 and 2008 in the Western Coastal Plain of Taiwan to estimate and correct the effects of groundwater pumping from horizontal velocities. The distribution of subsidence rates in this area shows a concentric-circle-like pattern with the peak subsidence rates of over 80 and 90 mm/yr at the northeastern and center area of the plain. Next, we will invert the vertical velocities for the land subsidence rate resulted from the groundwater withdrawal, using a dislocation model and a tentative mogi-source model in an elastic half-space material. The accuracy of these tentative models will also be assessed in this study. Then the corrections of horizontal velocities will be provided from this model to help us

  1. Deformation of the Pannonian lithosphere and related tectonic topography: a depth-to-surface analysis

    OpenAIRE

    Dombrádi, E.

    2012-01-01

    Fingerprints of deep-seated, lithospheric deformation are often recognised on the surface, contributing to topographic evolution, drainage organisation and mass transport. Interactions between deep and surface processes were investigated in the Carpathian-Pannonian region. The lithosphere beneath the Pannonian basin has formerly been extended, significantly stretched and heated up and thus became extremely weak from a rheological point of view. From Pliocene times onward the ‘crème brulee’ ty...

  2. A preliminary study on surface ground deformation near shallow foundation induced by strike-slip faulting

    Science.gov (United States)

    Wong, Pei-Syuan; Lin, Ming-Lang

    2016-04-01

    According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation

  3. Using PS-InSAR to detect surface deformation in geothermal areas of West Java in Indonesia

    Science.gov (United States)

    Maghsoudi, Yasser; van der Meer, Freek; Hecker, Christoph; Perissin, Daniele; Saepuloh, Asep

    2018-02-01

    In this paper, the Persistent Scatterer InSAR (PS-InSAR) technique is applied in order to investigate the ground deformation in and around two geothermal areas in West Java, Indonesia. Two time-series of ALOS PALSAR and Sentinel-1A acquisitions, covering the period from 2007 to 2009 and 2015-2016, are analysed. The first case study examines the Wayang Windu geothermal zone where the PS-InSAR analysis provides an overview of the surface deformation around a geothermal reservoir. Uplift is observed around the injection wells in the area. The second example involves the use of the PS-InSAR technique over a more recent geothermal system in Patuha field. Again, a pattern of uplift was observed around the only available injection well in the area. Due to the dense vegetation coverage of the geothermal areas in West Java, the longer wavelength ALOS PALSAR data is provides better results by identifying a larger number of PS points. Additionally, experiments have been carried out to compare the resulting deformation with another example of the fluid migration process i.e. water extraction in Bandung basin. The potential of sentinel-1A and ALOS PALSR data are compared in all the experiments.

  4. Analysis of Shift and Deformation of Planar Surfaces Using the Least Squares Plane

    Directory of Open Access Journals (Sweden)

    Hrvoje Matijević

    2006-12-01

    Full Text Available Modern methods of measurement developed on the basis of advanced reflectorless distance measurement have paved the way for easier detection and analysis of shift and deformation. A large quantity of collected data points will often require a mathematical model of the surface that fits best into these. Although this can be a complex task, in the case of planar surfaces it is easily done, enabling further processing and analysis of measurement results. The paper describes the fitting of a plane to a set of collected points using the least squares distance, with previously excluded outliers via the RANSAC algorithm. Based on that, a method for analysis of the deformation and shift of planar surfaces is also described.

  5. Modeling the mechanical deformation of nickel foils for nanoimprint lithography on double-curved surfaces

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Cech, Jiri; Hattel, Jesper Henri

    2013-01-01

    on an aluminium substrate with three different radii; 500 μm, 1000 μm and 2000 μm, respectively. The nano imprint is performed using a 50 μm thick nickel foil, manufactured using electroforming. During the imprinting process, the nickel foil is stretched due to the curved surface of the aluminium substrate....... Experimentally, it is possible to address this stretch by counting the periods of the cross-gratings via SEM characterization. A model for the deformation of the nickel foil during nanoimprint is developed, utilizing non-linear material and geometrical behaviour. Good agreement between measured and numerically...... calculated stretch ratios on the surface of the deformed nickel foil is found, and it is shown, that from the model it is also possible to predict the geometrical extend of the nano-structured area on the curved surfaces....

  6. Dynamic surface deformation of silicone elastomers for management of marine biofouling: laboratory and field studies using pneumatic actuation.

    Science.gov (United States)

    Shivapooja, Phanindhar; Wang, Qiming; Szott, Lizzy M; Orihuela, Beatriz; Rittschof, Daniel; Zhao, Xuanhe; López, Gabriel P

    2015-01-01

    Many strategies have been developed to improve the fouling release (FR) performance of silicone coatings. However, biofilms inevitably build on these surfaces over time. Previous studies have shown that intentional deformation of silicone elastomers can be employed to detach biofouling species. In this study, inspired by the methods used in soft-robotic systems, controlled deformation of silicone elastomers via pneumatic actuation was employed to detach adherent biofilms. Using programmed surface deformation, it was possible to release > 90% of biofilm from surfaces in both laboratory and field environments. A higher substratum strain was required to remove biofilms accumulated in the field environment as compared with laboratory-grown biofilms. Further, the study indicated that substratum modulus influences the strain needed to de-bond biofilms. Surface deformation-based approaches have potential for use in the management of biofouling in a number of technological areas, including in niche applications where pneumatic actuation of surface deformation is feasible.

  7. Utilization of InSAR differential interferometry for surface deformation detection caused by mining

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F. [Liaoning Technical Univ., Fuxin (China). School of Geomatics; Shao, Y. [Liaoning Technical Univ., Fuxin (China). Dept. of Foreign Language; Guichen, M. [Gifu Univ., Yanagido, Gifu (Japan). Dept. of Civil Engineering

    2010-07-01

    In China, the surface deformation of ground has been a significant geotechnical problem as a result of cracks in the ground surface, collapsing of house, and subsidence of roads. A powerful technology for detecting surface deformation in the ground is differential interferometry using synthetic aperture radar (INSAR). The technology enables the analysis from different phase of micro-wave between two observed data by synthetic aperture radar (SAR) of surface deformation of ground such as ground subsidence, land slide, and slope failure. In January 2006, the advanced land observing satellite was launched by the Japan Aerospace Exploration Agency. This paper presented an analytical investigation to detect ground subsidence or change caused by mining, overuse of ground water, and disaster. Specifically, the paper discussed the INSAR monitoring technology of the mine slope, including INSAR data sources and processing software; the principle of synthetic aperture radar interferometry; principles of differential SAR interferometry; and INSAR technology to slope monitoring of the Haizhou open pit mine. The paper also discussed the Haizhou strip mine side slope INSAR monitoring results and tests. It was concluded that the use of synthetic aperture radar interferometer technique was the optimal technique to provide three-dimensional spatial information and minimal change from ground surface by spatial remote sensing device. 18 refs., 5 figs.

  8. Dynamics of a slowly evaporating solvent-polymer mixture with a deformable upper surface

    KAUST Repository

    Hennessy, M. G.

    2014-06-17

    This paper examines how surface deformations affect the stability of a slowly evaporating solvent-polymer mixture. The destabilizing effect of surface-tension variations arising from evaporation-induced concentration gradients and the counteracting influence of mean gravity and surface tension are incorporated into the mathematical model. A linear stability analysis that takes advantage of the separation between the characteristic time scales of the slowly evolving base state and the perturbations is carried out in combination with numerical solutions of the linearized system. It is shown that the onset of instability can occur for Marangoni numbers that are much lower than the critical value for a non-deformable surface. Moreover, two types of Marangoni instabilities appear in the system: one is associated with the traditional stationary instability, and the other is an oscillatory instability that is not present for a non-deformable liquid surface. A region of the parameter space where the oscillatory instability dominates is identified and used to formulate appropriate conditions for future experiments. © 2014 The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  9. Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Okan, E-mail: unalokan78@gmail.com [Mechanical Engineering Department, Bartın University, Bartın 74100 (Turkey); Varol, Remzi [Mechanical Engineering Department, Suleyman Demirel University, Isparta 32200 (Turkey)

    2015-10-01

    Highlights: • CSP and SSP treatments transform austenite to metastable martensite structure. • Nanograin layer thickness after CSP and SSP is 8 μm and 22 μm, respectively. • Shot peening leads to carbon segregation from coarse to nano grain layer. • Repeening is an effective way to reduce surface roughness. - Abstract: Air blast conventional shot peening (CSP), severe shot peening (SSP) and repeening (RP) as a severe plastic deformation applications on AISI 304 austenitic stainless steel is addressed. Shot peened specimens are investigated based on optical, FESEM and digital microscope. The investigations present the austenite transformation to metastable martensite via mechanical twinning due to plastic deformation with high strain rates. It is found that SSP induces thicker nanograin layer with compared to CSP. In XRD studies, the austenite peaks broaden by means of severe shot peening and FWHM increase reveals the grain size reduction below 25 nm regimes on the surface. In EDAX line analysis of CSP specimen, carbon content increase has been detected from deformed layer through the nanocrystalline layer then the content reduces. The carbon segregation takes place due to the energy level distinction between dislocations and Fe−C bonds. 3d contour digital microscope studies and roughness investigations reveal that SSP has deleterious side effect on the surface roughness and surface flatness. However, RP is an effective way to reduce the surface roughness to reasonable values.

  10. Surface Deformation Caused by a Shallow Magmatic Source at Okmok Volcano, Aleutian Arc

    Science.gov (United States)

    Miyagi, Y.; Freymueller, J. T.; Kimata, F.; Sato, T.; Mann, D.; Kasahara, M.

    2001-12-01

    Okmok Volcano, located on Umnak Island in the eastern Aleutian arc, last erupted in 1997. Okmok consists of a 10 km wide caldera with several cones located inside. Significant surface deformation before, during and after the eruption has been measured using InSAR. However, the area of coherent data has been limited to the northern part of the caldera, with some additional coherent areas along the outer flanks of the volcano. With support from NASDA (National Space Development Agency of Japan) and the International Arctic Research Center, we carried out GPS campaigns in 2000 and 2001 to supplement the InSAR data with 3D measurements of deformation at well-distributed points. We surveyed 24 sites on and around Okmok in 2000, and 31 sites in 2001. As of this date, no SAR data from suitable passes has been acquired in the summer of 2001; if any are acquired, we will also analyze this data. InSAR data for the period 1997-2000 show what appears to be a radially-symmetric pattern of displacements, consistent with the inflation of a shallow (3-4 km) pressure (Mogi) source located beneath the geoemtric center of the caldera. A deflation source at the same location and depth was inferred from an interferogram spanning the eruption. The 2000-2001 GPS data, on the other hand, show evidence for rapid horizontal extension between sites in center of the caldera. This signal cannot be explained by a Mogi source, and may represent the intrusion of a shallow dike. In addition to this probable dike source, it appears that overall inflation of the volcano continues. The proposed dike extends from roughly the center of the caldera toward the 1997 eruptive vent. In May 2001, a swarm of micro-earthquakes occurred somewhere close to Okmok Volcano (location errors are very large as the closest permanent seismic site is ~100 km from Okmok). It is possible that this small earthquake swarm could have been associated with the intrusion of the shallow dike.

  11. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces.

    Science.gov (United States)

    Yang, Meng; Ding, Yonghui; Ge, Xiang; Leng, Yang

    2015-11-01

    It is a great challenge to construct a persistent bacteria-resistant surface even though it has been demonstrated that several surface features might be used to control bacterial behavior, including surface topography. In this study, we develop micro-scale honeycomb-like patterns of different sizes (0.5-10 μm) as well as a flat area as the control on a single platform to evaluate the bacterial adhesion and growth. Bacteria strains, Escherichia coli and Staphylococcus aureus with two distinct shapes (rod and sphere) are cultured on the platforms, with the patterned surface-up and surface-down in the culture medium. The results demonstrate that the 1 μm patterns remarkably reduce bacterial adhesion and growth while suppressing bacterial colonization when compared to the flat surface. The selective adhesion of the bacterial cells on the patterns reveals that the bacterial adhesion is cooperatively mediated by maximizing the cell-substrate contact area and minimizing the cell deformation, from a thermodynamic point of view. Moreover, study of bacterial behaviors on the surface-up vs. surface-down samples shows that gravity does not apparently affect the spatial distribution of the adherent cells although it indeed facilitates bacterial adhesion. Furthermore, the experimental results suggest that two major factors, i.e. the availability of energetically favorable adhesion sites and the physical confinements, contribute to the anti-bacterial nature of the honeycomb-like patterns. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A Computational Study of Plastic Deformation in AISI 304 Induced by Surface Mechanical Attrition Treatment

    Science.gov (United States)

    Zhang, X. C.; Lu, J.; Shi, S. Q.

    2010-05-01

    As a technique of grain refinement process by plastic deformation, surface mechanical attrition treatment (SMAT) has been developed to be one of the most effective ways to optimize the mechanical properties of various materials including pure metals and alloys. SMAT can significantly reduce grain size into nanometer regime in the surface layer of bulk materials, providing tremendous opportunities for improving physical, chemical and mechanical properties of the materials. In this work, a computational modeling of the surface mechanical attrition treatment (SMAT) process is presented, in which Johnson-Cook plasticity model and the finite element method were employed to study the high strain rate, elastic-plastic dynamic process of ball impact on a metallic target. AISI 304 steel with low stacking fault energy was chosen as the target material. First, a random impact model was used to analyze the statistic characteristics of ball impact, and then the plastic deformation behavior and residual stress distribution in AISI 304 stainless steel during SMAT were studied. The simulation results show that the compressive residual stress and vertical deformation of the surface structures were directly affected by ball impact frequency, incident impact angle and ball diameter used in SMAT process.

  13. Global patterns in lake surface temperature trends

    Science.gov (United States)

    O'Reilly, C.; Sharma, S.; Gray, D.; Hampton, S. E.; Read, J. S.; Rowley, R.; McIntyre, P. B.; Lenters, J. D.; Schneider, P.; Hook, S. J.

    2014-12-01

    Temperature profoundly affects dynamics in the water bodieson which human societies depend worldwide. Even relatively small water temperature changes can alter lake thermal structure with implications for water level, nutrient cycling, ecosystem productivity, and food web dynamics. As air temperature increases with climate change and human land use transforms watersheds, rising water temperatures have been reported for individual lakes or regions, but a global synthesis is lacking; such a synthesis is foundational for understanding the state of freshwater resources. We investigated global patterns in lake surface water temperatures between 1985 and 2009 using in-situ and satellite data from 236 lakes. We demonstrate that lakes are warming significantly around the globe, at an average rate of 0.34 °C per decade. The breadth of lakes in this study allowed examination of the diversity of drivers across global lakes, and highlighted the importance of ice cover in determining the suite of morphological and climate drivers for lake temperature dynamics. These empirical results are consistent with modeled predictions of climate change, taking into account the extent to which water warming can be modulated by local environmental conditions and thus defy simple correlations with air temperature. The water temperature changes we report have fundamental importance for thermal structure and ecosystem functioning in global water resources; recognition of the extent to which lakes are currently in transition should have broad implications for regional and global models as well as for management.

  14. Different deformation patterns using GPS in the volcanic process of El Hierro (Canary Island) 2011-2013

    Science.gov (United States)

    García-Cañada, Laura; José García-Arias, María; Pereda de Pablo, Jorge; Lamolda, Héctor; López, Carmen

    2014-05-01

    Ground deformation is one of the most important parameter in volcano monitoring. The detected deformations in volcanic areas can be precursors of a volcanic activity and contribute with useful information to study the evolution of an unrest, eruption or any volcanic process. GPS is the most common technique used to measure volcano deformations. It can be used to detect slow displacement rates or much larger and faster deformations associated with any volcanic process. In volcanoes the deformation is expected to be a mixed of nature; during periods of quiescence it will be slow or not present, while increased activity slow displacement rates can be detected or much larger and faster deformations can be measure due to magma intrusion, for example in the hours to days prior a eruption beginning. In response to the anomalous seismicity detected at El Hierro in July 2011, the Instituto Geográfico Nacional (IGN) improved its volcano monitoring network in the island with continuous GPS that had been used to measure the ground deformation associated with the precursory unrest since summer 2011, submarine eruption (October 2011-March 2012) and the following unrest periods (2012-2013). The continuous GPS time series, together with other techniques, had been used to evaluate the activity and to detect changes in the process. We investigate changes in the direction and module of the deformation obtained by GPS and they show different patterns in every unrest period, very close to the seismicity locations and migrations.

  15. Two strategies of lowering surface deformations of internally cooled X-ray optics

    International Nuclear Information System (INIS)

    Oberta, P.; Áč, V.; Hrdý, J.

    2013-01-01

    Internally cooled X-ray optics, like X-ray monochromators and reflecting X-ray mirrors, play a crucial role in defining a beamlines resolution, degree of coherence and flux. A great effort is invested in the development of these optical components. An important aspect of the functionality of high heat load optics is its cooling and its influence on surface deformation. The authors present a study of two different geometrical cooling approaches. Its influence on beam inhomogeneity due to the strain from the manufacturing process is presented. X-ray topographic images and FWHM measurements are presented. FEA simulations of cooling efficiency and surface deformations were performed. The best achieved results are under an enlargement of 0.4μrad of the measured rocking curve

  16. Progress Report On Techniques Deriving Land Cover And Earth Surface Deformation Information From Polarimetric SAR Interferometry

    Science.gov (United States)

    Pottier, E.; Chen, E.; Li, Z.; Hong, W.; Xiang, M.; Cloude, S. R.; Papathanassiou, K.; Cao, F.; Zhang, H.

    2010-10-01

    In this paper we provide an up-date of activities carried out under the DRAGON collaborative program in a project concerned with the application of Pol-InSAR to deriving land cover and Earth Surface deformation information. This project (ID. 5344) is based around four main scientific topics: Land Cover Analysis, Earth Surface Deformation Monitoring and DEM Extraction, Forest V ertical Structure Parameters Extraction and PolSARpro Software Development. We propose a brief summary of the project objectives and progress to date of each Work Packages, concentrating on different recent developments, original results and important highlights that have been presented during the Dragon2 Mid-Term Results Symposium, that was held on 17-21 May 2010, in Yangshuo, Guilin, P.R. China

  17. A novel surface mesh deformation method for handling wing-fuselage intersections

    Directory of Open Access Journals (Sweden)

    Mario Jaime Martin-Burgos

    2017-02-01

    Full Text Available This paper describes a method for mesh adaptation in the presence of intersections, such as wing-fuselage. Automatic optimization tools, using Computational Fluid Dynamics (CFD simulations, face the problem to adapt the computational grid upon deformations of the boundary surface. When mesh regeneration is not feasible, due to the high cost to build up the computational grid, mesh deformation techniques are considered a cheap approach to adapt the mesh to changes on the geometry. Mesh adaptation is a well-known subject in the literature; however, there is very little work which deals with moving intersections. Without a proper treatment of the intersections, the use of automatic optimization methods for aircraft design is limited to individual components. The proposed method takes advantage of the CAD description, which usually comes in the form of Non-Uniform Rational B-Splines (NURBS patches. This paper describes an algorithm to recalculate the intersection line between two parametric surfaces. Then, the surface mesh is adapted to the moving intersection in parametric coordinates. Finally, the deformation is propagated through the volumetric mesh. The proposed method is tested with the DLR F6 wing-body configuration.

  18. Experimental Investigation of Compliant Wall Surface Deformation in Turbulent Boundary Layer

    Science.gov (United States)

    Wang, Jin; Agarwal, Karuna; Katz, Joseph

    2017-11-01

    On-going research integrates Tomographic PIV (TPIV) with Mach-Zehnder Interferometry (MZI) to measure the correlations between deformation of a compliant wall and a turbulent channel flow or a boundary layer. Aiming to extend the scope to two-way coupling, in the present experiment the wall properties have been designed, based on a theoretical analysis, to increase the amplitude of deformation to several μm, achieving the same order of magnitude as the boundary layer wall unit (5-10 μm). It requires higher speeds and a softer surface that has a Young's modulus of 0.1MPa (vs. 1Mpa before), as well as proper thickness (5 mm) that maximize the wall response to excitation at scales that fall within the temporal and spatial resolution of the instruments. The experiments are performed in a water tunnel extension to the JHU refractive index matched facility. The transparent compliant surface is made of PDMS molded on the tunnel window, and measurements are performed at friction velocity Reynolds numbers in the 1000-7000 range. MZI measures the 2D surface deformation as several magnifications. The time-resolved 3D pressure distribution is determined by calculating to spatial distribution of material acceleration from the TPIV data and integrating it using a GPU-based, parallel-line, omni-directional integration method. ONR.

  19. Evaluating links between deformation, topography and surface temperature at volcanic domes: Results from a multi-sensor study at Volcán de Colima, Mexico

    Science.gov (United States)

    Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.

    2017-12-01

    Dome building activity is common at many volcanoes and due to the gravitational instability, a dome represents one of the most hazardous volcanic phenomena. Shallow volcanic processes as well as rheological and structural changes of the dome affecting the fluid transport have been linked to transitions in eruptive activity. Also, hydrothermal alteration may affect the structural integrity of the dome, increasing the potential for collapse. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging due to difficult access and poor coverage. Here we present for the first time the near-vertical and near-horizontal surface deformation field of a quiescent summit dome and the relationships with degassing and topographic patterns. Our results are derived from high resolution satellite radar interferometry (InSAR) time series based on a year of TerraSAR-X SpotLight acquisitions and Structure from Motion (SfM) processing of overflight infrared data at Volcán de Colima, Mexico. The identified deformation is dominated by localized heterogeneous subsidence of the summit dome exceeding rates of 15 cm/yr, and strongly decreasing over the year 2012, up to the renewal of explosive and extrusive activity in early 2013. We tentatively attribute the deformation to the degassing, cooling and contraction of the dome and shallow conduit material. We also find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. The combined interpretation of the deformation and infrared data reveals a complex spatial relationship between the degassing pathways and the deformation. While we observe no deformation across the crater rim fumaroles, discontinuities in the deformation field are more commonly observed around the dome rim fumaroles and occasionally on the

  20. Patterning nanowire and micro-nanoparticle array on micropillar-structured surface: Experiment and modeling.

    Science.gov (United States)

    Lin, Chung Hsun; Guan, Jingjiao; Chau, Shiu Wu; Chen, Shia Chung; Lee, L James

    2010-08-04

    DNA molecules in a solution can be immobilized and stretched into a highly ordered array on a solid surface containing micropillars by molecular combing technique. However, the mechanism of this process is not well understood. In this study, we demonstrated the generation of DNA nanostrand array with linear, zigzag, and fork-zigzag patterns and the microfluidic processes are modeled based on a deforming body-fitted grid approach. The simulation results provide insights for explaining the stretching, immobilizing, and patterning of DNA molecules observed in the experiments.

  1. EM Bias-Correction for Ice Thickness and Surface Roughness Retrievals over Rough Deformed Sea Ice

    Science.gov (United States)

    Li, L.; Gaiser, P. W.; Allard, R.; Posey, P. G.; Hebert, D. A.; Richter-Menge, J.; Polashenski, C. M.

    2016-12-01

    The very rough ridge sea ice accounts for significant percentage of total ice areas and even larger percentage of total volume. The commonly used Radar altimeter surface detection techniques are empirical in nature and work well only over level/smooth sea ice. Rough sea ice surfaces can modify the return waveforms, resulting in significant Electromagnetic (EM) bias in the estimated surface elevations, and thus large errors in the ice thickness retrievals. To understand and quantify such sea ice surface roughness effects, a combined EM rough surface and volume scattering model was developed to simulate radar returns from the rough sea ice `layer cake' structure. A waveform matching technique was also developed to fit observed waveforms to a physically-based waveform model and subsequently correct the roughness induced EM bias in the estimated freeboard. This new EM Bias Corrected (EMBC) algorithm was able to better retrieve surface elevations and estimate the surface roughness parameter simultaneously. In situ data from multi-instrument airborne and ground campaigns were used to validate the ice thickness and surface roughness retrievals. For the surface roughness retrievals, we applied this EMBC algorithm to co-incident LiDAR/Radar measurements collected during a Cryosat-2 under-flight by the NASA IceBridge missions. Results show that not only does the waveform model fit very well to the measured radar waveform, but also the roughness parameters derived independently from the LiDAR and radar data agree very well for both level and deformed sea ice. For sea ice thickness retrievals, validation based on in-situ data from the coordinated CRREL/NRL field campaign demonstrates that the physically-based EMBC algorithm performs fundamentally better than the empirical algorithm over very rough deformed sea ice, suggesting that sea ice surface roughness effects can be modeled and corrected based solely on the radar return waveforms.

  2. Investigation of mechanism of pattern deformation on TiN substrate and O2 plasma effect without BARC

    Science.gov (United States)

    Moon, Juhyoung; Yun, Young-Je; Yang, Taek-seung; Choi, Kwangseon; Kim, Jeahee; Han, Jaewon

    2008-03-01

    The pattern deformation such as photoresist lifting after lithography due to not enough photoresist adhesion to substrate is become critical issue when aspect ratio is much higher than what photoresist adhesion can support. This aspect ratio is getting higher when our design rule of device requests smaller feature size in lithography process. The BARC (Bottom Antireflective Coating), which advanced lithography is using, is very good layer to improve adhesion of photoresist since they are same kind of chemical. However, BARC needs extra etching process before main etching which is step to remove substrate. Sometimes, this BARC etching step generated defects which makes yield loss. Especially, lithography step for metallization with aluminum likes without BARC process to be free from those defect. We think that adhesion of photoresist on metal substrate such as aluminum or TiN is very important to develop lithography process without BARC. The adhesion change between photoresist and metal substrate will be changed as function of how we apply pretreatments for metal substrate. The typical pretreatments before patterning are dry ash, wet cleaning and HMDS treatment. In this paper, we study that adhesion changes as function of pretreatments and their mechanism. To understand the interaction between photoresist and substrate, we analyze surface change of wafers which prepared with several different experimental conditions using XPS (X-ray photoelectron spectroscopy) and Dynamic Contact Angle Analyzer. The results will explain how photoresist adhesion may be changed with different pretreatment conditions and how we can optimize process condition to improve photoresist adhesion without BARC.

  3. On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature

    Science.gov (United States)

    Novelli, M.; Fundenberger, J.-J.; Bocher, P.; Grosdidier, T.

    2016-12-01

    The effect of cryogenic temperature (CT) on the graded microstructures obtained by severe shot peening using surface mechanical attrition treatment (SMAT) was investigated for two austenitic steels that used different mechanisms for assisting plastic deformation. For the metastable 304L steel, the depth of the hardened region increases because CT promotes the formation of strain induced martensite. Comparatively, for the 310S steel that remained austenitic, the size of the subsurface affected region decreases because of the improved strength of the material at CT but the fine twinned nanostructures results in significant top surface hardening.

  4. Optimization of freeform surfaces using intelligent deformation techniques for LED applications

    Science.gov (United States)

    Isaac, Annie Shalom; Neumann, Cornelius

    2018-04-01

    For many years, optical designers have great interests in designing efficient optimization algorithms to bring significant improvement to their initial design. However, the optimization is limited due to a large number of parameters present in the Non-uniform Rationaly b-Spline Surfaces. This limitation was overcome by an indirect technique known as optimization using freeform deformation (FFD). In this approach, the optical surface is placed inside a cubical grid. The vertices of this grid are modified, which deforms the underlying optical surface during the optimization. One of the challenges in this technique is the selection of appropriate vertices of the cubical grid. This is because these vertices share no relationship with the optical performance. When irrelevant vertices are selected, the computational complexity increases. Moreover, the surfaces created by them are not always feasible to manufacture, which is the same problem faced in any optimization technique while creating freeform surfaces. Therefore, this research addresses these two important issues and provides feasible design techniques to solve them. Finally, the proposed techniques are validated using two different illumination examples: street lighting lens and stop lamp for automobiles.

  5. Quartz Crystal Microbalance Model for Quantitatively Probing the Deformation of Adsorbed Particles at Low Surface Coverage.

    Science.gov (United States)

    Gillissen, Jurriaan J J; Jackman, Joshua A; Tabaei, Seyed R; Yoon, Bo Kyeong; Cho, Nam-Joon

    2017-11-07

    Characterizing the deformation of nanoscale, soft-matter particulates at solid-liquid interfaces is a demanding task, and there are limited experimental options to perform quantitative measurements in a nonperturbative manner. Previous attempts, based on the quartz crystal microbalance (QCM) technique, focused on the high surface coverage regime and modeled the adsorbed particles as a homogeneous film, while not considering the coupling between particles and surrounding fluid and hence resulting in an underestimation of the known particle height. In this work, we develop a model for the hydrodynamic coupling between adsorbed particles and surrounding fluid in the limit of a low surface coverage, which can be used to extract shape information from QCM measurement data. We tackle this problem by using hydrodynamic simulations of an ellipsoidal particle on an oscillating surface. From the simulation results, we derived a phenomenological relation between the aspect ratio r of the absorbed particles and the slope and intercept of the line that fits instantaneous, overtone-dependent QCM data on (δ/a, -Δf/n) coordinates where δ is the viscous penetration depth, a is the particle radius, Δf is the QCM frequency shift, and n is the overtone number. The model was applied to QCM measurement data pertaining to the adsorption of 34 nm radius, fluid-phase and gel-phase liposomes onto a titanium oxide-coated surface. The osmotic pressure across the liposomal bilayer was varied to induce shape deformation. By combining these results with a membrane bending model, we determined the membrane bending energy for the gel-phase liposomes, and the results are consistent with literature values. In summary, a phenomenological model is presented and validated in order to show for the first time that QCM experiments can quantitatively measure the deformation of adsorbed particles at low surface coverage.

  6. Olopatadine Inhibits Exocytosis in Rat Peritoneal Mast Cells by Counteracting Membrane Surface Deformation

    Directory of Open Access Journals (Sweden)

    Asuka Baba

    2015-01-01

    Full Text Available Backgroud/Aims: Besides its anti-allergic properties as a histamine receptor antagonist, olopatadine stabilizes mast cells by inhibiting the release of chemokines. Since olopatadine bears amphiphilic features and is preferentially partitioned into the lipid bilayers of the plasma membrane, it would induce some morphological changes in mast cells and thus affect the process of exocytosis. Methods: Employing the standard patch-clamp whole-cell recording technique, we examined the effects of olopatadine and other anti-allergic drugs on the membrane capacitance (Cm in rat peritoneal mast cells during exocytosis. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on the deformation of the plasma membrane. Results: Low concentrations of olopatadine (1 or 10 µM did not significantly affect the GTP-γ-S-induced increase in the Cm. However, 100 µM and 1 mM olopatadine almost totally suppressed the increase in the Cm. Additionally, these doses completely washed out the trapping of the dye on the cell surface, indicating that olopatadine counteracted the membrane surface deformation induced by exocytosis. As shown by electron microscopy, olopatadine generated inward membrane bending in mast cells. Conclusion: This study provides electrophysiological evidence for the first time that olopatadine dose-dependently inhibits the process of exocytosis in rat peritoneal mast cells. Such mast cell stabilizing properties of olopatadine may be attributed to its counteracting effects on the plasma membrane deformation in degranulating mast cells.

  7. In vivo measures of cartilage deformation: patterns in healthy and osteoarthritic female knees using 3T MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Cotofana, Sebastian; Eckstein, Felix; Wirth, Wolfgang [Paracelsus Medical University, Institute of Anatomy and Musculoskeletal Research, Salzburg (Austria); Chondrometrics GmbH, Ainring (Germany); Souza, Richard B.; Li, Xiaojuan; Link, Thomas; Majumdar, Sharmila [University of California, San Francisco, CA (United States); Wyman, Bradley; Hellio-Le Graverand, Marie-Pierre [Pfizer, Groton, CT (United States)

    2011-06-15

    To explore and to compare the magnitude and spatial pattern of in vivo femorotibial cartilage deformation in healthy and in osteoarthritic (OA) knees. One knee each in 30 women (age: 55 {+-} 6 years; BMI: 28 {+-} 2.4 kg/m{sup 2}; 11 healthy and 19 with radiographic femorotibial OA) was examined at 3Tesla using a coronal fat-suppressed gradient echo SPGR sequence. Regional and subregional femorotibial cartilage thickness was determined under unloaded and loaded conditions, with 50% body weight being applied to the knee in 20 knee flexion during imaging. Cartilage became significantly (p < 0.05) thinner during loading in the medial tibia (-2.7%), the weight-bearing medial femur (-4.1%) and in the lateral tibia (-1.8%), but not in the lateral femur (+0.1%). The magnitude of deformation in the medial tibia and femur tended to be greater in osteoarthritic knees than in healthy knees. The subregional pattern of cartilage deformation was similar for the different stages of radiographic OA. Osteoarthritic cartilage tended to display greater deformation upon loading than healthy cartilage, suggesting that knee OA affects the mechanical properties of cartilage. The pattern of in vivo deformation indicated that cartilage loss in OA progression is mechanically driven. (orig.)

  8. Polyhedral patterns

    KAUST Repository

    Jiang, Caigui

    2015-10-27

    We study the design and optimization of polyhedral patterns, which are patterns of planar polygonal faces on freeform surfaces. Working with polyhedral patterns is desirable in architectural geometry and industrial design. However, the classical tiling patterns on the plane must take on various shapes in order to faithfully and feasibly approximate curved surfaces. We define and analyze the deformations these tiles must undertake to account for curvature, and discover the symmetries that remain invariant under such deformations. We propose a novel method to regularize polyhedral patterns while maintaining these symmetries into a plethora of aesthetic and feasible patterns.

  9. Deformation patterns in the southwestern part of the Mediterranean Ridge (South Matapan Trench, Western Greece)

    Science.gov (United States)

    Andronikidis, Nikolaos; Kokinou, Eleni; Vafidis, Antonios; Kamberis, Evangelos; Manoutsoglou, Emmanouil

    2017-12-01

    Seismic reflection data and bathymetry analyses, together with geological information, are combined in the present work to identify seabed structural deformation and crustal structure in the Western Mediterranean Ridge (the backstop and the South Matapan Trench). As a first step, we apply bathymetric data and state of art methods of pattern recognition to automatically detect seabed lineaments, which are possibly related to the presence of tectonic structures (faults). The resulting pattern is tied to seismic reflection data, further assisting in the construction of a stratigraphic and structural model for this part of the Mediterranean Ridge. Structural elements and stratigraphic units in the final model are estimated based on: (a) the detected lineaments on the seabed, (b) the distribution of the interval velocities and the presence of velocity inversions, (c) the continuity and the amplitudes of the seismic reflections, the seismic structure of the units and (d) well and stratigraphic data as well as the main tectonic structures from the nearest onshore areas. Seabed morphology in the study area is probably related with the past and recent tectonics movements that result from African and European plates' convergence. Backthrusts and reverse faults, flower structures and deep normal faults are among the most important extensional/compressional structures interpreted in the study area.

  10. Mapping three-dimensional surface deformation caused by the 2010 Haiti earthquake using advanced satellite radar interferometry.

    Directory of Open Access Journals (Sweden)

    Hyung-Sup Jung

    Full Text Available Mapping three-dimensional (3D surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR and multiple aperture interferometry (MAI. In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake.

  11. Mapping three-dimensional surface deformation caused by the 2010 Haiti earthquake using advanced satellite radar interferometry.

    Science.gov (United States)

    Jung, Hyung-Sup; Hong, Soo-Min

    2017-01-01

    Mapping three-dimensional (3D) surface deformation caused by an earthquake is very important for the environmental, cultural, economic and social sustainability of human beings. Synthetic aperture radar (SAR) systems made it possible to measure precise 3D deformations by combining SAR interferometry (InSAR) and multiple aperture interferometry (MAI). In this paper, we retrieve the 3D surface deformation field of the 2010 Haiti earthquake which occurred on January 12, 2010 by a magnitude 7.0 Mw by using the advanced interferometric technique that integrates InSAR and MAI data. The surface deformation has been observed by previous researchers using the InSAR and GPS method, but 3D deformation has not been measured yet due to low interferometric coherence. The combination of InSAR and MAI were applied to the ALOS PALSAR ascending and descending pairs, and were validated with the GPS in-situ measurements. The archived measurement accuracy was as little as 1.85, 5.49 and 3.08 cm in the east, north and up directions, respectively. This result indicates that the InSAR/MAI-derived 3D deformations are well matched with the GPS deformations. The 3D deformations are expected to allow us to improve estimation of the area affected by the 2010 Haiti earthquake.

  12. Plastic Deformations of Measured Object Surface in Contact with Undeformable Surface of Measuring Tool

    Directory of Open Access Journals (Sweden)

    Kowalik Marek

    2016-10-01

    Full Text Available Measuring errors caused by deformation (flattening of a measured object appear under the influence of pressure force and weight of the measured object. Plastic strain, arising at the contact of a measured object and an undeformable contact tip of a measuring device, can be calculated by applying the Hertz plastic solution and the hypothesis of plastic strain. In a small area of contact between two bodies pressing against one another with force F, there appears the so-called contact stress. It can sometime reach very high values, exceeding the yield point, even when the contact pressure is relatively small. In the present work, the authors describe a theoretical solution to the problem of plastic strain between two bodies. The derived relationships enable to calculate force F during measurements of a deformable object by means of an instrument with an undeformable, spherical measuring tip. By applying the τmax hypothesis, a solution was obtained for the force F in an inexplicit form. The theoretical solution was verified with the digital simulation and experimental measurement. With the FEM method, the limit length gage was modeled in interaction with the measured shaft of a diameter d larger than the nominal one of Δl value.

  13. Plastic Deformations of Measured Object Surface in Contact with Undeformable Surface of Measuring Tool

    Science.gov (United States)

    Kowalik, Marek; Rucki, Mirosław; Paszta, Piotr; Gołębski, Rafał

    2016-10-01

    Measuring errors caused by deformation (flattening) of a measured object appear under the influence of pressure force and weight of the measured object. Plastic strain, arising at the contact of a measured object and an undeformable contact tip of a measuring device, can be calculated by applying the Hertz plastic solution and the hypothesis of plastic strain. In a small area of contact between two bodies pressing against one another with force F, there appears the so-called contact stress. It can sometime reach very high values, exceeding the yield point, even when the contact pressure is relatively small. In the present work, the authors describe a theoretical solution to the problem of plastic strain between two bodies. The derived relationships enable to calculate force F during measurements of a deformable object by means of an instrument with an undeformable, spherical measuring tip. By applying the τmax hypothesis, a solution was obtained for the force F in an inexplicit form. The theoretical solution was verified with the digital simulation and experimental measurement. With the FEM method, the limit length gage was modeled in interaction with the measured shaft of a diameter d larger than the nominal one of Δl value.

  14. An application of the ground laser scanning to recognise terrain surface deformation over a shallowly located underground excavation

    Science.gov (United States)

    Pilecka, Elżbieta; Szwarkowski, Dariusz

    2017-11-01

    In the Upper Silesian Coal Basin area, there are post-mining sites of shallow exploitation of metal ores and hard coal deposits that reveal discontinuous deformations. Most often, these areas are heavily urbanised and the appearing deformations may be dangerous to the existing building infrastructure. The work, described in this article, presents the results of the research, which aimed to rate the usefulness of laser scanning to recognize discontinuous deformations on surface areas located over shallow mining excavations. Two laser scanning measurements were taken over the course of a few months. The surface area images were compared to identify changes in its deformation, especially those areas located above mining excavations. The tests carried out by the laser scanning method showed that some of the identified discontinuous deformations could have been connected to the shallowly located mining excavations.

  15. Evolution of surface-based deformable image registration for adaptive radiotherapy of non-small cell lung cancer (NSCLC

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2009-12-01

    Full Text Available Abstract Background To evaluate the performance of surface-based deformable image registration (DR for adaptive radiotherapy of non-small cell lung cancer (NSCLC. Methods Based on 13 patients with locally advanced NSCLC, CT images acquired at treatment planning, midway and the end of the radio- (n = 1 or radiochemotherapy (n = 12 course were used for evaluation of DR. All CT images were manually [gross tumor volume (GTV] and automatically [organs-at-risk (OAR lung, spinal cord, vertebral spine, trachea, aorta, outline] segmented. Contours were transformed into 3D meshes using the Pinnacle treatment planning system and corresponding mesh points defined control points for DR with interpolation within the structures. Using these deformation maps, follow-up CT images were transformed into the planning images and compared with the original planning CT images. Results A progressive tumor shrinkage was observed with median GTV volumes of 170 cm3 (range 42 cm3 - 353 cm3, 124 cm3 (19 cm3 - 325 cm3 and 100 cm3 (10 cm3 - 270 cm3 at treatment planning, mid-way and at the end of treatment. Without DR, correlation coefficients (CC were 0.76 ± 0.11 and 0.74 ± 0.10 for comparison of the planning CT and the CT images acquired mid-way and at the end of treatment, respectively; DR significantly improved the CC to 0.88 ± 0.03 and 0.86 ± 0.05 (p = 0.001, respectively. With manual landmark registration as reference, DR reduced uncertainties on the GTV surface from 11.8 mm ± 5.1 mm to 2.9 mm ± 1.2 mm. Regarding the carina and intrapulmonary vessel bifurcations, DR reduced uncertainties by about 40% with residual errors of 4 mm to 6 mm on average. Severe deformation artefacts were observed in patients with resolving atelectasis and pleural effusion, in one patient, where the tumor was located around large bronchi and separate segmentation of the GTV and OARs was not possible, and in one patient, where no clear shrinkage but more a decay of the tumor was observed

  16. Contemporaneous ring fault activity and surface deformation at subsiding calderas studied using analogue experiments

    Science.gov (United States)

    Liu, Yuan-Kai; Ruch, Joël; Vasyura-Bathke, Hannes; Jónsson, Sigurjón

    2017-04-01

    Ground deformation analyses of several subsiding calderas have shown complex and overlapping deformation signals, with a broad deflation signal that affects the entire volcanic edifice and localized subsidence focused within the caldera. However, the relation between deep processes at subsiding calderas, including magmatic sources and faulting, and the observed surface deformation is still debated. Several recent examples of subsiding calderas in the Galápagos archipelago and at the Axial seamount in the Pacific Ocean indicate that ring fault activity plays an important role not only during caldera collapse, but also during initial stages of caldera subsidence. Nevertheless, ring fault activity has rarely been integrated into numerical models of subsiding calderas. Here we report on sandbox analogue experiments that we use to study the processes involved from an initial subsidence to a later collapse of calderas. The apparatus is composed of a subsiding half piston section connected to the bottom of a glass box and driven by a motor to control its subsidence. We analyze at the same time during the subsidence the 3D displacement at the model surface with a laser scanner and the 2D ring fault evolution on the side of the model (cross-section) with a side-view digital camera. We further use PIVLab, a time-resolved digital image correlation software tool, to extract strain and velocity fields at both the surface and in cross-section. This setup allows to track processes acting at depth and assess their relative importance as the collapse evolves. We further compare our results with the examples observed in nature as well as with numerical models that integrate ring faults.

  17. Enhanced interfacial deformation in a Marangoni flow: A measure of the dynamical surface tension

    Science.gov (United States)

    Leite Pinto, Rodrigo; Le Roux, Sébastien; Cantat, Isabelle; Saint-Jalmes, Arnaud

    2018-02-01

    We investigate the flows and deformations resulting from the deposition of a water soluble surfactant at a bare oil-water interface. Once the surfactant is deposited, we show that the oil-water interface is deformed with a water bump rising upward into the oil. For a given oil, the maximal deformation—located at the surfactant deposition point—decreases with the oil-layer thickness. We also observe a critical oil-layer thickness below which the deformation becomes as large as the oil layer, leading to the rupture of this layer and an oil-water dewetting. Experimentally, it is found that this critical thickness depends on the oil density and viscosity. We then provide an analytical modelization that explains quantitatively all these experimental features. In particular, our analysis allows us to derive an analytical relationship between the vertical profile of the oil-water interface and the in-plane surface tension profile. Therefore, we propose that the monitoring of the interface vertical shape can be used as a new spatially resolved tensiometry technique.

  18. Real-time GPU surface curvature estimation on deforming meshes and volumetric data sets.

    Science.gov (United States)

    Griffin, Wesley; Wang, Yu; Berrios, David; Olano, Marc

    2012-10-01

    Surface curvature is used in a number of areas in computer graphics, including texture synthesis and shape representation, mesh simplification, surface modeling, and nonphotorealistic line drawing. Most real-time applications must estimate curvature on a triangular mesh. This estimation has been limited to CPU algorithms, forcing object geometry to reside in main memory. However, as more computational work is done directly on the GPU, it is increasingly common for object geometry to exist only in GPU memory. Examples include vertex skinned animations and isosurfaces from GPU-based surface reconstruction algorithms. For static models, curvature can be precomputed and CPU algorithms are a reasonable choice. For deforming models where the geometry only resides on the GPU, transferring the deformed mesh back to the CPU limits performance. We introduce a GPU algorithm for estimating curvature in real time on arbitrary triangular meshes. We demonstrate our algorithm with curvature-based NPR feature lines and a curvature-based approximation for an ambient occlusion. We show curvature computation on volumetric data sets with a GPU isosurface extraction algorithm and vertex-skinned animations. We present a graphics pipeline and CUDA implementation. Our curvature estimation is up to ~18x faster than a multithreaded CPU benchmark.

  19. Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide

    Science.gov (United States)

    Delbridge, Brent G.; Burgmann, Roland; Fielding, Eric; Hensley, Scott; Schulz, William

    2016-01-01

    In order to provide surface geodetic measurements with “landslide-wide” spatial coverage, we develop and validate a method for the characterization of 3-D surface deformation using the unique capabilities of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne repeat-pass radar interferometry system. We apply our method at the well-studied Slumgullion Landslide, which is 3.9 km long and moves persistently at rates up to ∼2 cm/day. A comparison with concurrent GPS measurements validates this method and shows that it provides reliable and accurate 3-D surface deformation measurements. The UAVSAR-derived vector velocity field measurements accurately capture the sharp boundaries defining previously identified kinematic units and geomorphic domains within the landslide. We acquired data across the landslide during spring and summer and identify that the landslide moves more slowly during summer except at its head, presumably in response to spatiotemporal variations in snowmelt infiltration. In order to constrain the mechanics controlling landslide motion from surface velocity measurements, we present an inversion framework for the extraction of slide thickness and basal geometry from dense 3-D surface velocity fields. We find that the average depth of the Slumgullion Landslide is 7.5 m, several meters less than previous depth estimates. We show that by considering a viscoplastic rheology, we can derive tighter theoretical bounds on the rheological parameter relating mean horizontal flow rate to surface velocity. Using inclinometer data for slow-moving, clay-rich landslides across the globe, we find a consistent value for the rheological parameter of 0.85 ± 0.08.

  20. Some unusual electronic patterns on graphite surface

    Indian Academy of Sciences (India)

    two carbon fibers. We attribute this spatially varying super-lattice structure to the shear strain generated in the top layer due to the restraining fibers. We have also developed a model with the Moir`e rotation hypothesis that gives us a better insight into such large- scale spatially varying patterns. We have been able to model ...

  1. Some unusual electronic patterns on graphite surface

    Indian Academy of Sciences (India)

    gives rise to one-dimensional fringe-like pattern as seen with the STM. We are also reporting here observation of such large-scale linear fringes near defects. 2. Experimental details. Experiments were done with a home-built compact STM similar to the one de- scribed in [10]. This STM uses commercial electronics and ...

  2. Surface deformation associated with the November 23, 1977, Caucete, Argentina, earthquake sequence

    Science.gov (United States)

    Kadinsky-Cade, K.; Reilinger, R.; Isacks, B.

    1985-01-01

    The 1977 Caucete (San Juan) earthquake considered in the present paper occurred near the Sierra Pie de Palo in the Sierras Pampeanas tectonic province of western Argentina. In the study reported, coseismic surface deformation is combined with seismic observations (main shock and aftershocks, both teleseismic and local data) to place constraints on the geometry and slip of the main fault responsible for the 1977 earthquake. The implications of the 1977 event for long-term crustal shortening and earthquake recurrence rates in this region are also discussed. It is concluded that the 1977 Caucete earthquake was accompanied by more than 1 m of vertical uplift.

  3. Electrostatic Deformation of Liquid Surfaces by a Charged Rod and a Van de Graaff Generator

    OpenAIRE

    Slisko, Josip; García Molina, Rafael; Abril Sánchez, Isabel

    2014-01-01

    Authors of physics textbooks frequently use the deflection of a thin, vertically falling water jet by a charged balloon, 1–3 comb, 4–6 or rod 7–9 as a visually appealing and conceptually relevant example of electrostatic attraction. Nevertheless, no attempts are made to explore whether these charged bodies could cause visible deformation of a horizontal water surface. That being so, we were quite surprised when we discovered that a 19th-century French book 10 contained a drawing showing an ap...

  4. Numerical simulation of sloshing with large deforming free surface by MPS-LES method

    Science.gov (United States)

    Pan, Xu-jie; Zhang, Huai-xin; Sun, Xue-yao

    2012-12-01

    Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture

  5. Sequential combination of multi-source satellite observations for separation of surface deformation associated with serial seismic events

    Science.gov (United States)

    Chen, Qiang; Xu, Qian; Zhang, Yijun; Yang, Yinghui; Yong, Qi; Liu, Guoxiang; Liu, Xianwen

    2018-03-01

    Single satellite geodetic technique has weakness for mapping sequence of ground deformation associated with serial seismic events, like InSAR with long revisiting period readily leading to mixed complex deformation signals from multiple events. It challenges the observation capability of single satellite geodetic technique for accurate recognition of individual surface deformation and earthquake model. The rapidly increasing availability of various satellite observations provides good solution for overcoming the issue. In this study, we explore a sequential combination of multiple overlapping datasets from ALOS/PALSAR, ENVISAT/ASAR and GPS observations to separate surface deformation associated with the 2011 Mw 9.0 Tohoku-Oki major quake and two strong aftershocks including the Mw 6.6 Iwaki and Mw 5.8 Ibaraki events. We first estimate the fault slip model of major shock with ASAR interferometry and GPS displacements as constraints. Due to the used PALSAR interferogram spanning the period of all the events, we then remove the surface deformation of major shock through forward calculated prediction thus obtaining PALSAR InSAR deformation associated with the two strong aftershocks. The inversion for source parameters of Iwaki aftershock is conducted using the refined PALSAR deformation considering that the higher magnitude Iwaki quake has dominant deformation contribution than the Ibaraki event. After removal of deformation component of Iwaki event, we determine the fault slip distribution of Ibaraki shock using the remained PALSAR InSAR deformation. Finally, the complete source models for the serial seismic events are clearly identified from the sequential combination of multi-source satellite observations, which suggest that the major quake is a predominant mega-thrust rupture, whereas the two aftershocks are normal faulting motion. The estimated seismic moment magnitude for the Tohoku-Oki, Iwaki and Ibaraki evens are Mw 9.0, Mw 6.85 and Mw 6.11, respectively.

  6. Long-lived force patterns and deformation waves at repulsive epithelial boundaries

    Science.gov (United States)

    Rodríguez-Franco, Pilar; Brugués, Agustí; Marín-Llauradó, Ariadna; Conte, Vito; Solanas, Guiomar; Batlle, Eduard; Fredberg, Jeffrey J.; Roca-Cusachs, Pere; Sunyer, Raimon; Trepat, Xavier

    2017-10-01

    For an organism to develop and maintain homeostasis, cell types with distinct functions must often be separated by physical boundaries. The formation and maintenance of such boundaries are commonly attributed to mechanisms restricted to the cells lining the boundary. Here we show that, besides these local subcellular mechanisms, the formation and maintenance of tissue boundaries involves long-lived, long-ranged mechanical events. Following contact between two epithelial monolayers expressing, respectively, EphB2 and its ligand ephrinB1, both monolayers exhibit oscillatory patterns of traction forces and intercellular stresses that tend to pull cell-matrix adhesions away from the boundary. With time, monolayers jam, accompanied by the emergence of deformation waves that propagate away from the boundary. This phenomenon is not specific to EphB2/ephrinB1 repulsion but is also present during the formation of boundaries with an inert interface and during fusion of homotypic epithelial layers. Our findings thus unveil a global physical mechanism that sustains tissue separation independently of the biochemical and mechanical features of the local tissue boundary.

  7. An ontology design pattern for surface water features

    Science.gov (United States)

    Sinha, Gaurav; Mark, David; Kolas, Dave; Varanka, Dalia; Romero, Boleslo E.; Feng, Chen-Chieh; Usery, E. Lynn; Liebermann, Joshua; Sorokine, Alexandre

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities exist due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology for other more context-dependent ontologies. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex or specialized surface water ontologies. A fundamental distinction is made in this ontology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is implemented in OWL, but Description Logic axioms and a detailed explanation is provided in this paper. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. Also provided is a discussion of why there is a need to complement the pattern with other ontologies, especially the previously developed Surface Network pattern. Finally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through an annotated geospatial dataset and sample queries using the classes of the Surface Water pattern.

  8. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    Science.gov (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  9. Deformation and breakup behavior of a small droplet impinging upon a hot surface

    International Nuclear Information System (INIS)

    Senda, Jiro; Takeuchi, Kiichiro; Miki, Hideo; Yamada, Koji.

    1986-01-01

    The phenomenon of a small droplet impinging upon a hot surface is applied in various industries. Such applications are divided into those employing atomization by the impingement of the droplet and those employing the heat transfer from surface to the droplet. The purpose of this paper is to obtain fundamental information concerning the heat transfer process and breakup behavior characteristics of individual small droplets impinging upon a hot surface. A uniform sized water droplets array at room temperature under atmospheric pressure was produced by the vibratory method to impinge upon a heated flat copper surface. And then, the deformation and the breakup behavior owing to the impingement of the droplet in observed by means of a drum camera recording highspeed microscopic photographs. The transient change in the diameter of the radial film which is formed after the droplet impinges on a surface is adjusted with the Weber number, and it is revealed that contact resistance in solid-liquid interface varies with surface temperature. The breakup form of the impinged droplet is classified into 7 types : R, RB, B, N, H, V, and F. The changes in the Sauter mean diameter of breakup droplets and the volume distribution of breakup droplets are examined. (author)

  10. Monitoring of the Earth's surface deformation in the area of water dam Zarnowiec

    Science.gov (United States)

    Mojzes, Marcel; Wozniak, Marek; Habel, Branislav; Macak, Marek

    2017-04-01

    Mathematical and physical research directly motivates geodetic community which can provide very accurate measurements for testing of the proposed models Earth's surface motion near the water dams should be monitored due to the security of the area. This is a process which includes testing of existing models and their physical parameters. Change of the models can improve the practical results for analyzing the trends of motion in the area of upper reservoir of water dam Zarnowiec. Since 1998 Warsaw University of Technology realized a research focused on the horizontal displacements of the upper reservoir of water dam Zarnowiec. The 15 selected control points located on the upper reservoir crown of the water dam were monitored by classical distance measurements. It was found out that changes in the object's geometry occur due to the variation of the water level. The control measurements of the changes in the object's geometry occurring during the process of emptying and filling of the upper reservoir of water dam were compared with the deformations computed using improved Boussinesqués method programmed in the software MATLAB and ANSYS for elastic and isotropic half space as derivation of suitable potentials extended to the loaded region. The details and numerical results of this process are presented This presentation was prepared within the project "National Centre for Diagnostic of the Earth's Surface Deformations in the Area of Slovakia", ITMS code: 26220220108.

  11. Corrosion mechanism of a Ni-based alloy in supercritical water: Impact of surface plastic deformation

    International Nuclear Information System (INIS)

    Payet, Mickaël; Marchetti, Loïc; Tabarant, Michel; Chevalier, Jean-Pierre

    2015-01-01

    Highlights: • The dissolution of Ni and Fe cations occurs during corrosion of Ni-based alloys in SCW. • The nature of the oxide layer depends locally on the alloy microstructure. • The corrosion mechanism changes when cold-work increases leading to internal oxidation. - Abstract: Ni–Fe–Cr alloys are expected to be a candidate material for the generation IV nuclear reactors that use supercritical water at temperatures up to 600 °C and pressures of 25 MPa. The corrosion resistance of Alloy 690 in these extreme conditions was studied considering the surface finish of the alloy. The oxide scale could suffer from dissolution or from internal oxidation. The presence of a work-hardened zone reveals the competition between the selective oxidation of chromium with respect to the oxidation of nickel and iron. Finally, corrosion mechanisms for Ni based alloys are proposed considering the effects of plastically deformed surfaces and the dissolution.

  12. Surface deformation on the west portion of the Chapala lake basin: uncertainties and facts

    Directory of Open Access Journals (Sweden)

    M. Hernandez-Marin

    2015-11-01

    Full Text Available In this study we investigate different aspects of land subsidence and ground failures occurring in the west portion of Chapala lake basin. Currently, surface discontinuities seem to be associated with subsiding bowls. In an effort to understand some of the conditioning factors to surface deformation, two sounding cores from the upper sequence (11 m depth were extracted for analyzing physical and mechanical properties. The upper subsoil showed a predominant silty composition and several lenses of pumice pyroclastic sand. Despite the relative predominance of fine soil, the subsoil shows mechanical properties with low clay content, variable water content, low plasticity and variable compressibility index, amongst some others. Some of these properties seem to be influenced by the sandy pyroclastic lenses, therefore, a potential source of the ground failure could be heterogeneities in the upper soil.

  13. Surface micromachined MEMS deformable mirror based on hexagonal parallel-plate electrostatic actuator

    Science.gov (United States)

    Ma, Wenying; Ma, Changwei; Wang, Weimin

    2018-03-01

    Deformable mirrors (DM) based on microelectromechanical system (MEMS) technology are being applied in adaptive optics (AO) system for astronomical telescopes and human eyes more and more. In this paper a MEMS DM with hexagonal actuator is proposed and designed. The relationship between structural design and performance parameters, mainly actuator coupling, is analyzed carefully and calculated. The optimum value of actuator coupling is obtained. A 7-element DM prototype is fabricated using a commercial available standard three-layer polysilicon surface multi-user-MEMS-processes (PolyMUMPs). Some key performances, including surface figure and voltage-displacement curve, are measured through a 3D white light profiler. The measured performances are very consistent with the theoretical values. The proposed DM will benefit the miniaturization of AO systems and lower their cost.

  14. Documenting feedbacks between surface processes and structural deformation in East Timor using stream profile and drainage network analysis

    Science.gov (United States)

    Tate, G. W.; Willett, S.; McQuarrie, N.; Goren, L.; Fox, M.

    2013-12-01

    While river profile analyses have long been used to evaluate the development of landforms, recent advances in analyzing drainage networks have significantly improved the ability to positively link stream profiles with surface uplift. In one such method, Perron and Royden (2012) define the value chi, an integral quantity based on the steady-state stream power equation which aids in determining the conformity of rivers and drainage basins to steady-state behavior. East Timor is an ideal location to test new methods using chi, as it is an active and unglaciated orogen with independent constraints of the deformational history through thermochronology and structural geology. We utilize the calculation of chi in our analyses of the drainage network to provide new constraints on the most recent uplift history of the island of Timor. Discontinuities in chi across drainage divides imply different steady state baselevel for hillslopes and therefore active migration of the divide. We confirm this by noting visible landslides in satellite images and asymmetries in hillslope steepness. Analyses of chi and elevation reveal in some locations that tributaries within a single basin have experienced distinctly different histories, documenting instances where previous river capture has occurred. In other locations the relationships between chi and elevation along single rivers denote spatial changes in surface uplift rate. Many of these observations from the drainage network correspond well to patterns of recent exhumation identified from thermochronologic analyses as well as structural constraints from field mapping and balanced cross-sections. Much of the fastest exhumation on the island (as indicated by zircon (U-Th)/He ages of 1.5-3.8 Ma and modeled exhumation rates of 1-3 mm/yr) is in the hinterland slate belt, which also contains the most stream profile remnants of paleo-capture events. Many locations of active river capture correspond well to independently constrained

  15. DigiWarp: a method for deformable mouse atlas warping to surface topographic data

    International Nuclear Information System (INIS)

    Joshi, Anand A; Shattuck, David W; Toga, Arthur W; Chaudhari, Abhijit J; Li Changqing; Cherry, Simon R; Dutta, Joyita; Leahy, Richard M

    2010-01-01

    For pre-clinical bioluminescence or fluorescence optical tomography, the animal's surface topography and internal anatomy need to be estimated for improving the quantitative accuracy of reconstructed images. The animal's surface profile can be measured by all-optical systems, but estimation of the internal anatomy using optical techniques is non-trivial. A 3D anatomical mouse atlas may be warped to the estimated surface. However, fitting an atlas to surface topography data is challenging because of variations in the posture and morphology of imaged mice. In addition, acquisition of partial data (for example, from limited views or with limited sampling) can make the warping problem ill-conditioned. Here, we present a method for fitting a deformable mouse atlas to surface topographic range data acquired by an optical system. As an initialization procedure, we match the posture of the atlas to the posture of the mouse being imaged using landmark constraints. The asymmetric L 2 pseudo-distance between the atlas surface and the mouse surface is then minimized in order to register two data sets. A Laplacian prior is used to ensure smoothness of the surface warping field. Once the atlas surface is normalized to match the range data, the internal anatomy is transformed using elastic energy minimization. We present results from performance evaluation studies of our method where we have measured the volumetric overlap between the internal organs delineated directly from MRI or CT and those estimated by our proposed warping scheme. Computed Dice coefficients indicate excellent overlap in the brain and the heart, with fair agreement in the kidneys and the bladder.

  16. Crustal deformation pattern of the Morocco-Iberian area: constraints from 14 years of GPS measurements

    Science.gov (United States)

    Palano, Mimmo; González, Pablo; Fernandez, Josè

    2014-05-01

    We present an improved rendition of crustal motion field of the Morocco-Iberian area, based on an extensive GPS dataset covering about 14 years of observations from 1999.00 up to 2013.79 in order to provide a detailed spatial resolution of geodetic velocity and strain-rate fields. In particular, we included all available data from public continuous GPS stations, considering also data coming from networks developed mainly for mapping, engineering and cadastre purposes. In addition to continuous GPS sites, we included data from 31 episodic GPS sites located in Morocco with surveys spanning the 1999-2006 time interval, whose data are available through the UNAVCO archive (www.unavco.org). All GPS data were processed by using the GAMIT/GLOBK software, taking into account precise ephemerides from the IGS (International GNSS Service; http://igscb.jpl.nasa.gov) and Earth orientation parameters from the International Earth Rotation Service (http://www.iers.org). To improve the overall configuration of the network and tie the regional measurements to an external global reference frame, data coming from more than 25 continuously operating global tracking stations, largely from the IGS and EUREF permanent networks, were introduced in the processing. All stations were organized (and processed) into seven sub-networks of about 40-50 sites each, on average, sharing a few common sites to provide ties between them. Finally, by using the GLORG module of GLOBK, the GAMIT-solutions and their full covariance matrices were combined to estimated a consistent set of positions and velocities in the ITRF2008 reference frame by minimizing the horizontal velocity of the continuously operating global tracking stations mentioned above. To adequately investigate the crustal deformation pattern over the study area, we aligned our estimated GPS velocities to an Eurasian and a Nubian fixed reference frames. In addition, by taking into account the observed GPS horizontal velocity field and

  17. Induced surface deformation and seismicity during 2011-2012 at the Húsmúli reinjection site, Iceland

    Science.gov (United States)

    Juncu, Daniel; Árnadóttir, Thóra; Geirsson, Halldór; Guðmundsson, Gunnar; Gunnarsson, Gunnar; Hooper, Andy; Hreinsdóttir, Sigrún; Michalczewska, Karolina

    2017-04-01

    While induced seismicity related to fluid injection is a common occurrence, deformation due to injection is rarely observed. At the Hellisheidi power plant in SW Iceland we detect both induced seismicity and deformation during the initial phase of geothermal wastewater reinjection. The largest seismic events in the sequence were two earthquakes of M3.8 and M4.0 on 15 October 2011, after reinjection was started in September 2011 with a flow rate of around 550 l/s. After the intense induced seismicity started, a few GNSS sites in the area were operated semi-continuously, as there was no continuous station nearby. The GNSS data reveal a transient signal which indicates that most of the deformation occured in the first months after the injection started. Surface deformation is also evident in SAR interferograms in the time interval of June 2011 to May 2012. We use an inverse modeling approach and simulate the geodetic data (InSAR and GNSS) to find the most plausible source for the deformation signal. We test whether the deformation was caused by co-seismic motion on N-S right-lateral strike slip faults due to the largest events in October 2011. We also examine other source models that may explain the deformation. Finally, we estimate Coulomb stress changes in the area to test what processes could have activated slip on pre-existing faults to examine the causal relationship between the deformation and the induced seismicity.

  18. Printing-assisted surface modifications of patterned ultrafiltration membranes

    International Nuclear Information System (INIS)

    Wardrip, Nathaniel C.; Dsouza, Melissa; Urgun-Demirtas, Meltem; Snyder, Seth W.

    2016-01-01

    Understanding and restricting microbial surface attachment will enhance wastewater treatment with membranes. We report a maskless lithographic patterning technique for the generation of patterned polymer coatings on ultrafiltration membranes. Polyethylene glycol, zwitterionic, or negatively charged hydrophilic polymer compositions in parallel- or perpendicular-striped patterns with respect to feed flow were evaluated using wastewater. Membrane fouling was dependent on the orientation and chemical composition of the coatings. Modifications reduced alpha diversity in the attached microbial community (Shannon indices decreased from 2.63 to 1.89) which nevertheless increased with filtration time. Sphingomonas species, which condition membrane surfaces and facilitate cellular adhesion, were depleted in all modified membranes. Microbial community structure was significantly different between control, different patterns, and different chemistries. Lastly, this study broadens the tools for surface modification of membranes with polymer coatings and for understanding and optimization of antifouling surfaces.

  19. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional...... tensile straining, plane strain compression, and shear. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at various temperatures. Microstructural characterization of the as-deformed state and the nitrided case produced included X-ray diffraction analysis...

  20. Modeling of the anode surface deformation in high-current vacuum arcs with AMF contacts

    International Nuclear Information System (INIS)

    Huang, Xiaolong; Wang, Lijun; Deng, Jie; Jia, Shenli; Qin, Kang; Shi, Zongqian

    2016-01-01

    A high-current vacuum arc subjected to an axial magnetic field is maintained in a diffuse status. With an increase in arc current, the energy carried by the arc column to the anode becomes larger and finally leads to the anode temperature exceeding the melting point of the anode material. When the anode melting pool is formed, and the rotational plasma of the arc column delivers its momentum to the melting pool, the anode melting pool starts to rotate and also flow outwards along the radial direction, which has been photographed by some researchers using high-speed cameras. In this paper, the anode temperature and melting status is calculated using the melting and solidification model. The swirl flow of the anode melting pool and deformation of the anode is calculated using the magneto-hydrodynamic (MHD) model with the volume of fraction (VOF) method. All the models are transient 2D axial-rotational symmetric models. The influence of the impaction force of the arc plasma, electromagnetic force, viscosity force, and surface tension of the liquid metal are all considered in the model. The heat flux density injected into the anode and the arc pressure are obtained from the 3D numerical simulation of the high-current vacuum arc using the MHD model, which gives more realistic parameters for the anode simulation. Simulation results show that the depth of the anode melting pool increases with an increase in the arc current. Some droplets sputter out from the anode surface, which is caused by the inertial centrifugal force of the rotational melting pool and strong plasma pressure. Compared with the previous anode melting model without consideration of anode deformation, when the deformation and swirl flow of the anode melting pool are considered, the anode temperature is relatively lower, and just a little more than the melting point of Cu. This is because of liquid droplets sputtering out of the anode surface taking much of the energy away from the anode surface. The

  1. Automated analysis of art object surfaces using time-averaged digital speckle pattern interferometry

    Science.gov (United States)

    Lukomski, Michal; Krzemien, Leszek

    2013-05-01

    Technical development and practical evaluation of a laboratory built, out-of-plane digital speckle pattern interferometer (DSPI) are reported. The instrument was used for non-invasive, non-contact detection and characterization of early-stage damage, like fracturing and layer separation, of painted objects of art. A fully automated algorithm was developed for recording and analysis of vibrating objects utilizing continuous-wave laser light. The algorithm uses direct, numerical fitting or Hilbert transformation for an independent, quantitative evaluation of the Bessel function at every point of the investigated surface. The procedure does not require phase modulation and thus can be implemented within any, even the simplest, DSPI apparatus. The proposed deformation analysis is fast and computationally inexpensive. Diagnosis of physical state of the surface of a panel painting attributed to Nicolaus Haberschrack (a late-mediaeval painter active in Krakow) from the collection of the National Museum in Krakow is presented as an example of an in situ application of the developed methodology. It has allowed the effectiveness of the deformation analysis to be evaluated for the surface of a real painting (heterogeneous colour and texture) in a conservation studio where vibration level was considerably higher than in the laboratory. It has been established that the methodology, which offers automatic analysis of the interferometric fringe patterns, has a considerable potential to facilitate and render more precise the condition surveys of works of art.

  2. Reducing the Surface Performance Requirements of a Primary Mirror by Adding a Deformable Mirror in its Optical Path

    Science.gov (United States)

    2015-12-01

    REQUIREMENTS OF A PRIMARY MIRROR BY ADDING A DEFORMABLE MIRROR IN ITS OPTICAL PATH by Ernesto R. Villalba December 2015 Thesis Advisor: Brij...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING THE SURFACE PERFORMANCE REQUIREMENTS OF A PRIMARY MIRROR BY ADDING A...DEFORMABLE MIRROR IN ITS OPTICAL PATH 5. FUNDING NUMBERS 6. AUTHOR(S) Ernesto R. Villalba 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval

  3. Discrimination of surface tracking patterns of gamma irradiated ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. The purpose of this paper is to evaluate the radiation resistance of gamma irradiated ethylene propylene diene monomer (EPDM) and to identify the pattern discriminating abilities of the surface tracking patterns. Simple objects can be described by the ideal shape primitives such as cubes, cones and cylinders. But.

  4. Surface deformation induced by magmatic processes at Pacaya Volcano, Guatemala revealed by InSAR

    Science.gov (United States)

    Wnuk, K.; Wauthier, C.

    2017-09-01

    Pacaya Volcano, Guatemala is a continuously active, basaltic volcano with an unstable western flank. Despite continuous activity since 1961, a lack of high temporal resolution geodetic surveying has prevented detailed modeling of Pacaya's underlying magmatic plumbing system. A new, temporally dense dataset of Interferometric Synthetic Aperture Radar (InSAR) RADARSAT-2 images, spanning December 2012 to March 2014, show magmatic deformation before and during major eruptions in January and March 2014. Inversion of InSAR surface displacements using simple analytical forward models suggest that three magma bodies are responsible for the observed deformation: (1) a 4 km deep spherical reservoir located northwest of the summit, (2) a 0.4 km deep spherical source located directly west of the summit, and (3) a shallow dike below the summit. Periods of heightened volcanic activity are instigated by magma pulses at depth, resulting in rapid inflation of the edifice. We observe an intrusion cycle at Pacaya that consists of deflation of one or both magma reservoirs followed by dike intrusion. Intrusion volumes are proportional to reservoir volume loss and do not always result in an eruption. Periods of increased activity culminate with larger dike-fed eruptions. Large eruptions are followed by inter-eruptive periods marked by a decrease in crater explosions and a lack of detected deformation. Co-eruptive flank motion appears to have initiated a new stage of volcanic rifting at Pacaya defined by repeated NW-SE oriented dike intrusions. This creates a positive feedback relationship whereby magmatic forcing from eruptive dike intrusions induce flank motion.

  5. Microstructure and Texture in Surface Deformation Layer of Al-Zn-Mg-Cu Alloy Processed by Milling

    Directory of Open Access Journals (Sweden)

    CHEN Yanxia

    2017-12-01

    Full Text Available The microstructural and crystallographic features of the surface deformation layer in Al-Zn-Mg-Cu alloy induced by milling were investigated by means of transmission electron microscopy (TEM and precession electron diffraction (PED assisted nanoscale orientation mapping. The result shows that the surface deformation layer is composed by the top surface of equiaxed nanograins/ultrafine grains and the subsurface of lamellar nanograins/ultrafine grains surrounded by coarse grain boundary precipitates (GBPs. The recrystallized nanograins/ultrafine grains in the deformation layer show direct evidence that dynamic recrystallization plays an important role in grain refining process. The GBPs and grain interior precipitates (GIPs show a great difference in size and density with the matrix due to the thermally and mechanically induced precipitate redistribution. The crystallographic texture of the surface deformation layer is proved to be a mixture of approximate copper{112}, rotated cube{001} and F {111}. The severe shear deformation of the surface induced by milling is responsible for the texture evolution.

  6. Deformations on Hole and Projectile Surfaces Caused By High Velocity Friction During Ballistic Impact

    Science.gov (United States)

    Karamış, M. B.

    2018-01-01

    In this study, the deformations caused by the ballistic impact on the MM composites and on projectile surfaces are examined. The hole section and grain deformation of unreinforced targets are also examined after impact. The relatively high complexity of impact problems is caused by the large number of intervening parameters like relative velocity of projectile and target, shape of colliding objects, relative stiffness and masses, time-dependent surface of contact, geometry and boundary conditions and material characteristics. The material used in this investigation are 2024 and 7075 aluminum alloys as matrix reinforced with SiC and Al2O3 particles. The matrix materials are extensively used in defense applications due to its favorable ballistic properties, moderate strength, high corrosion resistance and super plastic potential. Two different composites were produced; one by casting and the other by lamination. The ballistic tests of the composite targets were carried out according to NIJ Standard-0101.04, Temperature 21 °C, RH=65% with 7.62 mm projectiles. The bullet weight was 9.6 g and their muzzle velocities were in the range of 770–800 m/s. The projectiles consisted of a steel core, copper jacket and lead material. The composite targets were positioned 15 m from the rifle. The interaction between projectiles and the target hole created after impact were examined by light microscopy and photography. Different damage and failure mechanisms such as petalling, cracking, spalling, dishing, etc., were observed on the target body. On the other hand, dramatic wear and damages on the projectile surface were also observed. The targets were supported with Al-5083 backing blocks having 40 mm thickness.

  7. Surface deformation of active volcanic areas retrieved with the SBAS-DInSAR technique: an overview

    Directory of Open Access Journals (Sweden)

    G. Zeni

    2008-06-01

    Full Text Available This paper presents a comprehensive overview of the surface deformation retrieval capability of the Differential Synthetic Aperture Radar Interferometry (DInSAR algorithm, referred to as Small BAseline Subset (SBAS technique, in the context of active volcanic areas. In particular, after a brief description of the algorithm some experiments relevant to three selected case-study areas are presented. First, we concentrate on the application of the SBAS algorithm to a single-orbit scenario, thus considering a set of SAR data composed by images acquired on descending orbits by the European Remote Sensing (ERS radar sensors and relevant to the Long Valley caldera (eastern California area. Subsequently, we address the capability of the SBAS technique in a multipleorbit context by referring to Mt. Etna volcano (southern Italy test site, with respect to which two different ERS data set, composed by images acquired both on ascending and descending orbits, are available. Finally, we take advantage of the capability of the algorithm to work in a multi-platform scenario by jointly exploiting two different sets of SAR images collected by the ERS and the Environment Satellite (ENVISAT radar sensors in the Campi Flegrei caldera (southern Italy area. The presented results demonstrate the effectiveness of the algorithm to investigate the deformation field in active volcanic areas and the potential of the DInSAR methodologies within routine surveillance scenario.

  8. Threshold voltages and optical retardation of deformed flexoelectric nematic layers with asymmetric surface anchoring

    Science.gov (United States)

    Derfel, G.; Buczkowska, M.

    2013-06-01

    Deformations of homeotropically aligned flexoelectric nematic layers induced by dc electric fields were simulated numerically. Two different anchoring strengths on the limiting surfaces were assumed. Nematic material was characterised by negative dielectric anisotropy. Both signs of the sum of flexoelectric coefficients were taken into account. The electric properties of the layer were described in terms of a weak electrolyte model. Mobility of cations was assumed to be one order of magnitude lower than that of anions. Quasi-blocking electrode contacts were assumed. The threshold voltages for deformations were determined by means of calculations of the phase difference Φ between ordinary and extraordinary light rays passing through a layer placed between crossed polarisers. The threshold values depended on the polarity of the bias voltage U. When the threshold value was exceeded, the phase difference increased with the voltage. Two different Φ(U/Uthreshold) dependencies for the two polarities of the voltage were found for each layer if the nematic possessed the flexoelectric properties. The possibility of using this effect to detect the flexoelectricity in the nematic was explored by simulated experiments. The effectiveness of the proposed method is discussed.

  9. Long-term monitoring of geodynamic surface deformation using SAR interferometry

    Science.gov (United States)

    Gong, Wenyu

    Synthetic Aperture Radar Interferometry (InSAR) is a powerful tool to measure surface deformation and is well suited for surveying active volcanoes using historical and existing satellites. However, the value and applicability of InSAR for geodynamic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations in the atmosphere, both of which reduce the sensitivity and accuracy of the technique. The aim of this PhD thesis research is: how to optimize the quantity and quality of deformation signals extracted from InSAR stacks that contain only a low number of images in order to facilitate volcano monitoring and the study of their geophysical signatures. In particular, the focus is on methods of mitigating atmospheric artifacts in interferograms by combining time-series InSAR techniques and external atmospheric delay maps derived by Numerical Weather Prediction (NWP) models. In the first chapter of the thesis, the potential of the NWP Weather Research & Forecasting (WRF) model for InSAR data correction has been studied extensively. Forecasted atmospheric delays derived from operational High Resolution Rapid Refresh for the Alaska region (HRRR-AK) products have been compared to radiosonding measurements in the first chapter. The result suggests that the HRRR-AK operational products are a good data source for correcting atmospheric delays in spaceborne geodetic radar observations, if the geophysical signal to be observed is larger than 20 mm. In the second chapter, an advanced method for integrating NWP products into the time series InSAR workflow is developed. The efficiency of the algorithm is tested via simulated data experiments, which demonstrate the method outperforms other more conventional methods. In Chapter 3, a geophysical case study is performed by applying the developed algorithm to the active volcanoes of Unimak Island Alaska (Westdahl, Fisher and Shishaldin) for long term volcano deformation

  10. Spatial features of dose-surface maps from deformably-registered plans correlate with late gastrointestinal complications

    Science.gov (United States)

    Moulton, Calyn R.; House, Michael J.; Lye, Victoria; Tang, Colin I.; Krawiec, Michele; Joseph, David J.; Denham, James W.; Ebert, Martin A.

    2017-05-01

    This study investigates the associations between spatial distribution of dose to the rectal surface and observed gastrointestinal toxicities after deformably registering each phase of a combined external beam radiotherapy (EBRT)/high-dose-rate brachytherapy (HDRBT) prostate cancer treatment. The study contains data for 118 patients where the HDRBT CT was deformably-registered to the EBRT CT. The EBRT and registered HDRBT TG43 dose distributions in a reference 2 Gy/fraction were 3D-summed. Rectum dose-surface maps (DSMs) were obtained by virtually unfolding the rectum surface slice-by-slice. Associations with late peak gastrointestinal toxicities were investigated using voxel-wise DSM analysis as well as parameterised spatial patterns. The latter were obtained by thresholding DSMs from 1-80 Gy (increment  =  1) and extracting inferior-superior extent, left-right extent, area, perimeter, compactness, circularity and ellipse fit parameters. Logistic regressions and Mann-Whitney U-tests were used to correlate features with toxicities. Rectal bleeding, stool frequency, diarrhoea and urgency/tenesmus were associated with greater lateral and/or longitudinal spread of the high doses near the anterior rectal surface. Rectal bleeding and stool frequency were also influenced by greater low-intermediate doses to the most inferior 20% of the rectum and greater low-intermediate-high doses to 40-80% of the rectum length respectively. Greater low-intermediate doses to the superior 20% and inferior 20% of the rectum length were associated with anorectal pain and urgency/tenesmus respectively. Diarrhoea, completeness of evacuation and proctitis were also related to greater low doses to the posterior side of the rectum. Spatial features for the intermediate-high dose regions such as area, perimeter, compactness, circularity, ellipse eccentricity and confinement to ellipse fits were strongly associated with toxicities other than anorectal pain. Consequently, toxicity is

  11. Facile stamp patterning method for superhydrophilic/superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Sungnam, E-mail: blueden@postech.ac.kr; Hwang, Woonbong, E-mail: whwang@postech.ac.kr [Department of Mechanical Engineering, POSTECH, Pohang 680-749 (Korea, Republic of)

    2015-11-16

    Patterning techniques are essential to many research fields such as chemistry, biology, medicine, and micro-electromechanical systems. In this letter, we report a simple, fast, and low-cost superhydrophobic patterning method using a superhydrophilic template. The technique is based on the contact stamping of the surface during hydrophobic dip coating. Surface characteristics were measured using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. The results showed that the hydrophilic template, which was contacted with the stamp, was not affected by the hydrophobic solution. The resolution study was conducted using a stripe shaped stamp. The patterned line was linearly proportional to the width of the stamp line with a constant narrowing effect. A surface with regions of four different types of wetting was fabricated to demonstrate the patterning performance.

  12. The Reliability of Pattern Classification in Bloodstain Pattern Analysis, Part 1: Bloodstain Patterns on Rigid Non-absorbent Surfaces.

    Science.gov (United States)

    Taylor, Michael C; Laber, Terry L; Kish, Paul E; Owens, Glynn; Osborne, Nikola K P

    2016-07-01

    This study was designed to produce the first baseline measure of reliability in bloodstain pattern classification. A panel of experienced bloodstain pattern analysts examined over 400 spatter patterns on three rigid non-absorbent surfaces. The patterns varied in spatter type and extent. A case summary accompanied each pattern that either contained neutral information, information to suggest the correct pattern (i.e., was positively biasing), or information to suggest an incorrect pattern (i.e., was negatively biasing). Across the variables under examination, 13% of classifications were erroneous. Generally speaking, where the pattern was more difficult to recognize (e.g., limited staining extent or a patterned substrate), analysts became more conservative in their judgment, opting to be inconclusive. Incorrect classifications increased as a function of the negatively biasing contextual information. The implications of the findings for practice are discussed. © 2016 American Academy of Forensic Sciences.

  13. Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane; Lavenant, Nicolas

    2015-12-01

    Fractured aquifers which bear valuable water resources are often difficult to characterize with classical hydrogeological tools due to their intrinsic heterogeneities. Here we implement ground surface deformation tools (tiltmetry and optical leveling) to monitor groundwater pressure changes induced by a classical hydraulic test at the Ploemeur observatory. By jointly analyzing complementary time constraining data (tilt) and spatially constraining data (vertical displacement), our results strongly suggest that the use of these surface deformation observations allows for estimating storativity and structural properties (dip, root depth, and lateral extension) of a large hydraulically active fracture, in good agreement with previous studies. Hence, we demonstrate that ground surface deformation is a useful addition to traditional hydrogeological techniques and opens possibilities for characterizing important large-scale properties of fractured aquifers with short-term well tests as a controlled forcing.

  14. Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise

    KAUST Repository

    Knospe, Steffen H G

    2010-04-01

    We study anisotropic spatial autocorrelation in differential synthetic aperture radar interferometric (dInSAR) measurements and its impact on geophysical parameter estimations. The dInSAR phase acquired by the satellite sensor is a superposition of different contributions, and when studying geophysical processes, we are usually only interested in the surface deformation part of the signal. Therefore, to obtain high-quality results, we would like to characterize and/or remove other phase components. A stochastic model has been found to be appropriate to describe atmospheric phase delay in dInSAR images. However, these phase delays are usually modeled as being isotropic, which is a simplification, because InSAR images often show directional atmospheric anomalies. Here, we analyze anisotropic structures and show validation results using both real and simulated data. We calculate experimental semivariograms of the dInSAR phase in several European Remote Sensing satellite-1/2 tandem interferograms. Based on the theory of random functions (RFs), we then fit anisotropic variogram models in the spatial domain, employing Matérn-and Bessel-family correlation functions in nested models to represent complex dInSAR covariance structures. The presented covariance function types, in the statistical framework of stationary RFs, are consistent with tropospheric delay models. We find that by using anisotropic data covariance information to weight dInSAR measurements, we can significantly improve both the precision and accuracy of geophysical parameter estimations. Furthermore, the improvement is dependent on how similar the deformation pattern is to the dominant structure of the anisotropic atmospheric signals. © 2009 IEEE.

  15. Investigation of graded strengthened hyper-deformed surfaces by impact treatment: micro-percussion testing

    Science.gov (United States)

    Tumbajoy-Spinel, David; Descartes, Sylvie; Bergheau, Jean-Michel; Al-Baida, Halim; Langlade, Cécile; Kermouche, Guillaume

    2017-05-01

    In the industry, mechanical surface treatments could improve the mechanical behaviour of materials by the means of local hyper-deformation and graded strengthening. Micro-percussion test represents an interesting case scenario to emulate these kinds of conventional treatments (shot-peening, SMAT, roller-burnishing, etc) and go further on microstructural and mechanical characterization at local and global scales. For this technique, every impact is made at the same position by a rigid conical indenter, controlling the number, angle and velocity of impacts. The main issue of this work is to establish a complete description of the transformed microstructures; to understand the mechanisms involved on the formation and growth of refined structures; to make a parametric sensitivity analysis of different impact conditions.

  16. Isolated, slowly evolving, and dynamical trapping horizons: Geometry and mechanics from surface deformations

    International Nuclear Information System (INIS)

    Booth, Ivan; Fairhurst, Stephen

    2007-01-01

    We study the geometry and dynamics of both isolated and dynamical trapping horizons by considering the allowed variations of their foliating two-surfaces. This provides a common framework that may be used to consider both their possible evolutions and their deformations as well as derive the well-known flux laws. Using this framework, we unify much of what is already known about these objects as well as derive some new results. In particular we characterize and study the ''almost isolated'' trapping horizons known as slowly evolving horizons. It is for these horizons that a dynamical first law holds and this is analogous and closely related to the Hawking-Hartle formula for event horizons

  17. The Surface Layer Mechanical Condition and Residual Stress Forming Model in Surface Plastic Deformation Process with the Hardened Body Effect Consideration

    Science.gov (United States)

    Mahalov, M. S.; Blumenstein, V. Yu

    2017-10-01

    The mechanical condition and residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The mechanical state and RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.

  18. Multicomponent Droplet Evaporation on Chemical Micro-Patterned Surfaces

    Science.gov (United States)

    He, Minghao; Liao, Dong; Qiu, Huihe

    2017-01-01

    The evaporation and dynamics of a multicomponent droplet on a heated chemical patterned surface were presented. Comparing to the evaporation process of a multicomponent droplet on a homogenous surface, it is found that the chemical patterned surface can not only enhance evaporation by elongating the contact line, but also change the evaporation process from three regimes for the homogenous surface including constant contact line (CCL) regime, constant contact angle (CCA) regime and mix mode (MM) to two regimes, i.e. constant contact line (CCL) and moving contact line (MCL) regimes. The mechanism of contact line stepwise movement in MCL regimes in the microscopic range is investigated in detail. In addition, an improved local force model on the contact line was employed for analyzing the critical receding contact angles on homogenous and patterned surfaces. The analysis results agree well for both surfaces, and confirm that the transition from CCL to MCL regimes indicated droplet composition changes from multicomponent to monocomponent, providing an important metric to predict and control the dynamic behavior and composition of a multicomponent droplet using a patterned surface. PMID:28157229

  19. Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany

    Science.gov (United States)

    Kübler, Simon; Friedrich, Anke M.; Gold, Ryan D.; Strecker, Manfred R.

    2018-03-01

    Intraplate earthquakes pose a significant seismic hazard in densely populated rift systems like the Lower Rhine Graben in Central Europe. While the locations of most faults in this region are well known, constraints on their seismogenic potential and earthquake recurrence are limited. In particular, the Holocene deformation history of active faults remains enigmatic. In an exposure excavated across the Schafberg fault in the southwestern Lower Rhine Graben, south of Untermaubach, in the epicentral region of the 1756 Düren earthquake ( M L 6.2), we mapped a complex deformation zone in Holocene fluvial sediments. We document evidence for at least one paleoearthquake that resulted in vertical surface displacement of 1.2 ± 0.2 m. The most recent earthquake is constrained to have occurred after 815 AD, and we have modeled three possible earthquake scenarios constraining the timing of the latest event. Coseismic deformation is characterized by vertical offset of sedimentary contacts distributed over a 10-m-wide central damage zone. Faults were identified where they fracture and offset pebbles in the vertically displaced gravel layers and fracture orientation is consistent with the orientation of the Schafberg fault. This study provides the first constraint on the most recent surface-rupturing earthquake on the Schafberg fault. We cannot rule out that this fault acted as the source of the 1756 Düren earthquake. Our study emphasizes the importance of, and the need for, paleoseismic studies in this and other intracontinental regions, in particular on faults with subtle geomorphic expression that would not typically be recognized as being potentially seismically active. Our study documents textural features in unconsolidated sediment that formed in response to coseismic rupturing of the underlying bedrock fault. We suggest that these features, e.g., abundant oriented transgranular fractures in their context, should be added to the list of criteria used to identify a fault

  20. Surface magnetization and the role of pattern defects in various types of ripple patterned films

    International Nuclear Information System (INIS)

    Colino, Jose M; Arranz, Miguel A; Barbero, Antonio J; Bollero, A; Camarero, J

    2016-01-01

    We present a detailed study of the magnetic properties of cobalt films with wide-area nanoscale ripple patterns, either on their surface only, or on both the film surface and substrate interface. Angular dependence vectorial-resolved magnetometry measurements and magnetic force microscopy with in situ magnetic field have been used to determine the magnetization reversal processes to correlate them to the different patterned nanostructures. All the samples show well-defined uniaxial magnetic anisotropy with the anisotropy axis lying along the ripple direction. Atomic force microscopy of the different types of pattern reveals various pattern defects: height corrugation and breaks of continuity along the ripple direction, and overlapping ripples and Y-shaped defects (pattern dislocation) across the pattern. In spite of the existence of such customary defects of erosive-regime patterns, the type of low-amplitude, surface-patterned films remarkably behave as a macrospin over almost the whole in-plane angular range (340°), with negligible spread of anisotropy axis or energy. In turn, it is found that high-amplitude surface-patterned films develop an angular distribution of anisotropy axes, probably related to the large distribution of amplitudes in a pattern of short ripples, and a significant distribution of anisotropy fields ΔH k /H k up to 15%. On the other hand, films grow on pre-patterned silicon with a significantly longer mean ripple length, and develop a larger anisotropy energy with H k up to 110 mT, probably because of the double interface effect. The switching fields close to the magnetization easy axis of all types of ripple pattern are not well reproduced by the macrospin approximation, but the observed pattern defects seem to be not responsible for the domain wall pinning that occurs with the field applied along the ripple direction. (paper)

  1. Influence of Plastic Deformation on Low-Temperature Surface Hardening of Austenitic Stainless Steel by Gaseous Nitriding

    Science.gov (United States)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas L.; Somers, Marcel A. J.

    2015-06-01

    This article addresses an investigation of the influence of plastic deformation on low-temperature surface hardening by gaseous nitriding of two commercial stainless steels: EN 1.4369 and AISI 304. The materials were plastically deformed to several levels of equivalent strain by conventional tensile straining, plane strain compression, and shear. Gaseous nitriding of the strained material was performed in ammonia gas at atmospheric pressure at various temperatures. Microstructural characterization of the as-deformed state and the nitrided case produced included X-ray diffraction analysis, reflected-light microscopy, and microhardness testing. The results demonstrate that a case of expanded austenite develops and that the presence of plastic deformation has a significant influence on the morphology of the nitrided case. The presence of strain-induced martensite favors the formation of CrN, while a high dislocation density in a fully austenitic structure does not lead to such premature nucleation of CrN.

  2. Mechanism of drag reduction for circular cylinders with patterned surface

    International Nuclear Information System (INIS)

    Butt, U.; Jehring, L.; Egbers, C.

    2014-01-01

    Highlights: • Reduced drag of patterned cylinders over a wide range of Re numbers. • Hexagonal patterns cannot be characterized as roughness structures. • Hexagonal bumps affect the flow like spherical dimples of smaller k/d ratio do. • Main separation is delayed caused by a partial separation. • Angle of a separation line is not constant over the length of cylinder. -- Abstract: In this paper, the flow over cylinders with a patterned surface (k/d = 1.98 × 10 −2 ) is investigated in a subsonic wind tunnel over Reynolds numbers ranging from 3.14 × 10 4 to 2.77 × 10 5 by measuring drag, flow visualization and measuring velocity profiles above the surface of the cylinders, to observe the effect of hexagonal patterns on the flow of air. These patterns can also be referred as hexagonal dimples or bumps depending on their configuration. The investigations revealed that a patterned cylinder with patterns pressed outwards has a drag coefficient of about 0.65 times of a smooth one. Flow visualization techniques including surface oil-film technique and velocity profile measurement were employed to elucidate this effect, and hence present the mechanism of drag reduction. The measurement of velocity profiles using hot-wire anemometry above the surface reveal that a hexagonal bump cause local separation generating large turbulence intensity along the separating shear layer. Due to this increased turbulence, the flow reattaches to the surface with higher momentum and become able to withstand the pressure gradient delaying the main separation significantly. Besides that, the separation does not appear to occur in a straight line along the length of the cylinder as in case of most passive drag control methods, but follow exactly the hexagonal patterns forming a wave with its crest at 115° and trough at 110°, in contrast to the laminar separation line at 85° for a smooth cylinder

  3. Chemical template directed iodine patterns on the octadecyltrichlorosilane surface.

    Science.gov (United States)

    Cai, Yuguang

    2008-01-01

    A carboxylic-terminated nanometer-scale chemical pattern on an octadecyltrichlorosilane (OTS) surface can guide the deposition and crystallization of iodine, forming an iodine pattern on the chemical pattern. The iodine in the pattern is gel-like when fabricated by the solution-deposit method. In contrast, a dendritic, snowflake-shaped polycrystalline iodine sheet is formed by the vapor-phase condensation method. The data demonstrate that iodine is a good tracing and visualizing agent for studying liquid behavior at the nano scale. The topography of the iodine stain reveals that the "coffee ring" effect can be suppressed by reducing the pattern size and increasing the evaporation rate. The chemical template-bound iodine pattern has an unusually low vapor pressure and it can withstand prolonged baking at elevated temperature, which differs significantly from bulk iodine crystals.

  4. Interseismic and coseismic surface deformation deduced from space geodetic observations : with inferences on seismic hazard, tectonic processes, earthquake complexity, and slip distribution

    NARCIS (Netherlands)

    Bos, A.G. (Annemarie Gerredina)

    2003-01-01

    In this thesis I am concerned with modeling the kinematics of surface deformation using space geodetic observations in order to advance insight in both interseismic and coseismic surface response. To model the surface deformation field I adopt the method of Spakman and Nyst (2002) which resolves the

  5. Stability and symmetry of ion-induced surface patterning

    Science.gov (United States)

    Matthes, Christopher S. R.; Ghoniem, Nasr M.; Walgraef, Daniel

    2017-12-01

    We present a continuum model of ion-induced surface patterning. The model incorporates the atomic processes of sputtering, re-deposition and surface diffusion, and is shown to display the generic features of the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear and non-linear stability analyses of the evolution equation give estimates of the emerging pattern wavelength and spatial symmetry. The analytical theory is confirmed by numerical simulations of the evolution equation with the Fast Fourier Transform method, where we show the influence of the incident ion angle, flux, and substrate surface temperature. It is shown that large local geometry variations resulting in quadratic non-linearities in the evolution equation dominate pattern selection and stability at long time scales.

  6. Microscale patterning of thermoplastic polymer surfaces by selective solvent swelling.

    Science.gov (United States)

    Rahmanian, Omid; Chen, Chien-Fu; DeVoe, Don L

    2012-09-04

    A new method for the fabrication of microscale features in thermoplastic substrates is presented. Unlike traditional thermoplastic microfabrication techniques, in which bulk polymer is displaced from the substrate by machining or embossing, a unique process termed orogenic microfabrication has been developed in which selected regions of a thermoplastic surface are raised from the substrate by an irreversible solvent swelling mechanism. The orogenic technique allows thermoplastic surfaces to be patterned using a variety of masking methods, resulting in three-dimensional features that would be difficult to achieve through traditional microfabrication methods. Using cyclic olefin copolymer as a model thermoplastic material, several variations of this process are described to realize growth heights ranging from several nanometers to tens of micrometers, with patterning techniques include direct photoresist masking, patterned UV/ozone surface passivation, elastomeric stamping, and noncontact spotting. Orogenic microfabrication is also demonstrated by direct inkjet printing as a facile photolithography-free masking method for rapid desktop thermoplastic microfabrication.

  7. Effect of surface pattern on the adhesive friction of elastomers.

    Science.gov (United States)

    Wu-Bavouzet, Fanny; Cayer-Barrioz, Juliette; Le Bot, Alain; Brochard-Wyart, Françoise; Buguin, Axel

    2010-09-01

    We present experimental results for the friction of a flat surface against a hexagonally patterned surface, both being made of PolyDiMethylSiloxane. We simultaneously measure forces of range 10 mN and observe the contact under sliding velocities of about 100 μm/s. We observe adhesive friction on three different pattern heights (80, 310, and 2100 nm). Two kinds of contacts have been observed: the flat surface is in close contact with the patterned one (called intimate contact, observed for 80 nm) or only suspended on the tops on the asperities (called laid contact, observed for 2100 nm). In the range of velocities used, the contact during friction is similar to the static one. Furthermore, our experimental system presents a contact transition during friction for h=310 nm.

  8. A review of the trunk surface metrics used as Scoliosis and other deformities evaluation indices

    Directory of Open Access Journals (Sweden)

    Aggouris Costas

    2010-06-01

    Full Text Available Abstract Background Although scoliosis is characterized by lateral deviation of the spine, a 3D deformation actually is responsible for geometric and morphologic changes in the trunk and rib cage. In a vast related medical literature, one can find quite a few scoliosis evaluation indices, which are based on back surface data and are generally measured along three planes. Regardless the large number of such indices, the literature is lacking a coherent presentation of the underlying metrics, the involved anatomic surface landmarks, the definition of planes and the definition of the related body axes. In addition, the long list of proposed scoliotic indices is rarely presented in cross-reference to each other. This creates a possibility of misunderstandings and sometimes irrational or even wrong use of these indices by the medical society. Materials and methods It is hoped that the current work contributes in clearing up the issue and gives rise to innovative ideas on how to assess the surface metrics in scoliosis. In particular, this paper presents a thorough study on the scoliosis evaluation indices, proposed by the medical society. Results More specifically, the referred indices are classified, according to the type of asymmetry they measure, according to the plane they refer to, according to the importance, and relevance or the level of scientific consensus they enjoy. Conclusions Surface metrics have very little correlation to Cobb angle measurements. Indices measured on different planes do not correlate to each other. Different indices exhibit quite diverging characteristics in terms of observer-induced errors, accuracy, sensitivity and specificity. Complicated positioning of the patient and ambiguous anatomical landmarks are the major error sources, which cause observer variations. Principles that should be followed when an index is proposed are presented.

  9. Calculation of rectal dose surface histograms in the presence of time varying deformations

    International Nuclear Information System (INIS)

    Roeske, John C.; Spelbring, Danny R.; Vijayakumar, S.; Forman, Jeffrey D.; Chen, George T.Y.

    1996-01-01

    Purpose: Dose volume (DVH) and dose surface histograms (DSH) of the bladder and rectum are usually calculated from a single treatment planning scan. These DVHs and DSHs will eventually be correlated with complications to determine parameters for normal tissue complication probabilities (NTCP). However, from day to day, the size and shape of the rectum and bladder may vary. The purpose of this study is to compare a more accurate estimate of the time integrated DVHs and DSHs of the rectum (in the presence of daily variations in rectal shape) to initial DVHs/DSHs. Methods: 10 patients were scanned once per week during the course of fractionated radiotherapy, typically accumulating a total of six scans. The rectum and bladder were contoured on each of the studies. The model used to assess effects of rectal contour deformation is as follows: the contour on a given axial slice (see figure) is boxed within a rectangle. A line drawn parallel to the AP axis through the rectangle equally partitions the box. Starting at the intersection of the vertical line and the rectal contour, points on the contour are marked off representing the same rectal dose point, even in the presence of distortion. Corresponding numbered points are used to sample the dose matrix and create a composite DSH. The model assumes uniform stretching of the rectal contour for any given axial cut, and no twist of the structure or vertical displacement. A similar model is developed for the bladder with spherical symmetry. Results: Normalized DSHs (nDSH) for each CT scan were calculated as well as the time averaged nDSH over all scans. These were compared with the nDSH from the initial planning scan. Individual nDSHs differed by 8% surface area irradiated at the 80% dose level, to as much as 20% surface area in the 70-100% dose range. DSH variations are due to position and shape changes in the rectum during different CT scans. The spatial distribution of dose is highly variable, and depends on the field

  10. Adhesion control between resist patterns and photomask blank surfaces

    Science.gov (United States)

    Kurihara, Masaaki; Hatakeyama, Sho; Yoshida, Kouji; Nagai, Takaharu; Totsukawa, Daisuke; Fukuda, Masaharu; Morikawa, Yasutaka; Mohri, Hiroshi; Hoga, Morihisa; Hayashi, Naoya; Ohtani, Hiroyuki; Fujihira, Masamichi

    2009-04-01

    Most problems in photomask fabrication such as pattern collapse, haze, and cleaning damage are related to the behavior of surfaces and interfaces of resists, opaque layers, and quartz substrates. Therefore, it is important to control the corresponding surface and interface energies in photomask fabrication processes. In particular, adhesion analysis in microscopic regions is strongly desirable to optimize material and process designs in photomask fabrication. We applied the direct peeling (DP) method with a scanning probe microscope (SPM) tip and measured the adhesion of resist patterns on Cr and quartz surfaces for photomask process optimization. We measured adhesion and frictional forces between the resulting collapsed resist pillar and the Cr or the quartz surface before and after the sliding. We also studied the effect of surface property of the Cr and quartz surfaces to resist adhesion. The adhesion could be controlled by surface modification using silanes and surface roughness on Cr blanks. We also discuss the relationship between the adhesion observed with the DP method and the properties of the modified surfaces including water contact angles and local adhesive forces measured from force-distance curves with an SPM.

  11. The African Surface (85-45 Ma): a Record of Mantle Deformations Since 35 Ma

    Science.gov (United States)

    Guillocheau, Francois; Simon, Brendan; Baby, Guillaume; Robin, Cécile

    2016-04-01

    Africa is characterized by a bimodal topography with long (x100 km) to very long (x1000 km) wavelength plateaus and domes. The 300-400 m topographic mode corresponds to the Sahara on which is superimposed swells (Hoggar, Tibesti..) and the Congo Interior Basin. The 900-1100 m mode corresponds to the Southern African (Kalahari) Plateau and the East African and Ethiopian Domes. The landforms responsible of the African topography are of three types (1) etchplains (mantled or stripped), (2) pediments and pediplains and (3) incised valleys. Those different landforms are stepped with mantled etchplains at higher elevation and pediments/stripped etchplains are lower elevation. Some of those landforms can be dated using either direct geochronological evidences on lateritic weathering profiles or geological evidences such as the relationship between landforms and dated magmatism or sediments. We used the stepping of successive pediments as a proxy of deformation, making sure that they record successive base level fall. We mapped at Africa-scale, a major widespread etchplain known as the African Surface (King, 1949; Burke & Gunnel, 2008). This surface was dated both by geochronology (e.g. Beauvais et al., 2008 in Burkina, Deller, 2012 in North Ethiopia) and on geological evidences (interfingering or reworking of laterites in sedimentary basins such as Iullemmeden Basin or the Tanzanian Margin). The paroxysm of weathering was during Early Eocene times (EOCM) but started earlier in Late Cretaceous with more or less younger ages according to its location in Africa. Geometrical restorations of pediments indicate that this surface was (1) at sea level in northern and central Africa with unknown upstream gradients and (2) superimposed on a Late Cretaceous plateau in southern Africa. The main period of very long wavelenghth deformation occurred around the Oligocene-Eocene boundary with the uplift of northern Africa or the beginning of the growth the East African dome. Some other

  12. Continuous monitoring of surface deformation at Long Valley Caldera, California, with GPS

    Science.gov (United States)

    Dixon, T.H.; Mao, A.; Bursik, M.; Heflin, M.; Langbein, J.; Stein, R.; Webb, F.

    1997-01-01

    Continuous Global Positioning System (GPS) measurements at Long Valley Caldera, an active volcanic region in east central California, have been made on the south side of the resurgent dome since early 1993. A site on the north side of the dome was added in late 1994. Special adaptations for autonomous operation in remote regions and enhanced vertical precision were made. The data record ongoing volcanic deformation consistent with uplift and expansion of the surface above a shallow magma chamber. Measurement precisions (1 standard error) for "absolute" position coordinates, i.e., relative to a global reference frame, are 3-4 mm (north), 5-6 mm (east), and 10-12 mm (vertical) using 24 hour solutions. Corresponding velocity uncertainties for a 12 month period are about 2 mm/yr in the horizontal components and 3-4 mm/yr in the vertical component. High precision can also be achieved for relative position coordinates on short (Comparison of baseline length changes across the resurgent dome between the two GPS sites and corresponding two-color electronic distance measurements indicates similar extension rates within error (???2 mm/yr) once we account for a random walk noise component in both systems that may reflect spurious monument motion. Both data sets suggest a pause in deformation for a 3.5 month period in mid-1995, when the extension rate across the dome decreased essentially to zero. Three dimensional positioning data from the two GPS stations suggest a depth (5.8??1.6 km) and location (west side of the resurgent dome) of a major inflation center, in agreement with other geodetic techniques, near the top of a magma chamber inferred from seismic data. GPS systems similar to those installed at Long Valley can provide a practical method for near real-time monitoring and hazard assessment on many active volcanoes.

  13. SBAS Analysis of Induced Ground Surface Deformation from Wastewater Injection in East Central Oklahoma, USA

    Directory of Open Access Journals (Sweden)

    Elizabeth Loesch

    2018-02-01

    Full Text Available The state of Oklahoma has experienced a dramatic increase in the amount of measurable seismic activities over the last decade. The needs of a petroleum-driven world have led to increased production utilizing various technologies to reach energy reserves locked in tight formations and stimulate end-of-life wells, creating significant amounts of undesirable wastewater ultimately injected underground for disposal. Using Phased Array L-band Synthetic Aperture Radar (PALSAR data, we performed a differential Synthetic Aperture Radar Interferometry (InSAR technique referred to as the Small BAseline Subset (SBAS-based analysis over east central Oklahoma to identify ground surface deformation with respect to the location of wastewater injection wells for the period of December 2006 to January 2011. Our results show broad spatial correlation between SBAS-derived deformation and the locations of injection wells. We also observed significant uplift over Cushing, Oklahoma, the largest above ground crude oil storage facility in the world, and a key hub of the Keystone Pipeline. This finding has significant implications for the oil and gas industry due to its close proximity to the zones of increased seismicity attributed to wastewater injection. Results southeast of Drumright, Oklahoma represent an excellent example of the potential of InSAR, identifying a fault bordered by an area of subduction to the west and uplift to the east. This differentiated movement along the fault may help explain the lack of any seismic activity in this area, despite the large number of wells and high volume of fluid injected.

  14. An Ontology Design Pattern for Surface Water Features

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Gaurav [Ohio University; Mark, David [University at Buffalo (SUNY); Kolas, Dave [Raytheon BBN Technologies; Varanka, Dalia [U.S. Geological Survey, Rolla, MO; Romero, Boleslo E [University of California, Santa Barbara; Feng, Chen-Chieh [National University of Singapore; Usery, Lynn [U.S. Geological Survey, Rolla, MO; Liebermann, Joshua [Tumbling Walls, LLC; Sorokine, Alexandre [ORNL

    2014-01-01

    Surface water is a primary concept of human experience but concepts are captured in cultures and languages in many different ways. Still, many commonalities can be found due to the physical basis of many of the properties and categories. An abstract ontology of surface water features based only on those physical properties of landscape features has the best potential for serving as a foundational domain ontology. It can then be used to systematically incor-porate concepts that are specific to a culture, language, or scientific domain. The Surface Water ontology design pattern was developed both for domain knowledge distillation and to serve as a conceptual building-block for more complex surface water ontologies. A fundamental distinction is made in this on-tology between landscape features that act as containers (e.g., stream channels, basins) and the bodies of water (e.g., rivers, lakes) that occupy those containers. Concave (container) landforms semantics are specified in a Dry module and the semantics of contained bodies of water in a Wet module. The pattern is imple-mented in OWL, but Description Logic axioms and a detailed explanation is provided. The OWL ontology will be an important contribution to Semantic Web vocabulary for annotating surface water feature datasets. A discussion about why there is a need to complement the pattern with other ontologies, es-pecially the previously developed Surface Network pattern is also provided. Fi-nally, the practical value of the pattern in semantic querying of surface water datasets is illustrated through a few queries and annotated geospatial datasets.

  15. Micro-Pattern Guided Adhesion of Osteoblasts on Diamond Surfaces

    Directory of Open Access Journals (Sweden)

    Marie Kalbacova

    2009-05-01

    Full Text Available Microscopic chemical patterning of diamond surfaces by hydrogen and oxygen surface atoms is used for self-assembly of human osteoblastic cells into micro-arrays. The cell adhesion and assembly is further controlled by concentration of cells (2,500-10,000 cells/cm2and fetal bovine serum (0-15%. The cells are characterized by fluorescence microscopy of actin fibers and nuclei. The serum protein adsorption is studied by atomic force microscopy (AFM. The cells are arranged selectively on O-terminated patterns into 30-200 μm wide arrays. Higher cell concentrations allow colonization of unfavorable H-terminated regions due to mutual cell communication. There is no cell selectivity without the proteins in the medium. Based on the AFM, the proteins are present on both H- and O-terminated surfaces. Pronounced differences in their thickness, surface roughness, morphology, and phase imagesindicate different conformation of the proteins and explain the cell selectivity.

  16. Surface deformation in areas of abandoned mining: a case study of InSAR applied in the Northumberland region of the UK

    Science.gov (United States)

    Mccormack, Harry; Bateson, Luke; Banton, Carl; Holley, Rachel; Lawrence, David; Cigna, Francesca; Watson, Ian; Burren, Richard

    2013-04-01

    The United Kingdom has a rich history of coal mining probably dating back to Roman times, and this was a driving force behind the industrial revolution. Although the amount of mining has decreased significantly in recent years, the effects of mining on ground stability are widespread, complex and under-monitored. The Coal Authority is responsible for protecting the public and environment in coal mining areas. Particularly they are responsible for administering coal mining subsidence damage claims and preventing problems due to rising groundwater in old mining areas. Drawing on the expertise of Fugro NPA (FNPA) and the British Geological Survey (BGS), the aim of this project was to show how a wide-area ground stability dataset with associated geological interpretation could help the Coal Authority better administer their subsidence claims and groundwater management. This work was performed within the Terrafirma project. The study area chosen was the Northumberland and Durham coalfield where the last active mine closed in 2005. More than 20 seams have been mined and as depths increased this led to the need to pump water to prevent the mines from flooding. As the mines shut down the pumping stopped, causing the water level to rise and recover. Using interferometric synthetic aperture radar (InSAR) techniques FNPA produced a surface deformation dataset which was interpreted by BGS to add value in the form of geological interpretation. The dataset covers two epochs; 1995-2000 and 2002-2008. During the earlier epoch eight to nine 'hotspots' of subsidence were identified, mainly in the south of the study area. All but one of the subsidence areas shows a strong spatial correlation with areas of past mining. However there is a discrepancy in the timing of InSAR deformations and the timing of subsidence that would be expected given the type of workings. It is suspected that the spatial and temporal pattern of deformation relates not only to material extraction but also to

  17. Surface deformation measured with interferometric synthetic aperture radar: Case studies of basin and range and Garlock-San Andreas fault

    Science.gov (United States)

    Greene, Fernando

    Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS) is widely used to detect ground deformation from varieties of geophysical origins. However, most studies lack the spatial and temporal resolutions to better characterize such observations. The purpose of this research is to use multi-track satellite radar imagery to generate time series to study and monitor vertical ground deformation over large regions such as the Nevada portion of the Basin and Range Province and the western end of the Mojave Desert. We developed an innovative method to remove horizontal movements from InSAR line-of-sight (LOS) observations using a GPS velocity field and subsequently combine the multi-track imagery resulting in one single high spatial resolution map of observed vertical crustal and surface movements. By implementing this technique we detect vertical deformation signals with short and intermediate wavelength signals associated to tectonic processes such as interseismic and postseismic deformation. In Central Nevada Seismic Belt we detect in three independent orbits a broad area of uplift that confirms results of previous studies that associate the origin of this signal to post-seimic deformation of the historic earthquakes at this region. In south-central Nevada we detect several valleys that show a gradual eastward tilt of the valley floors due to deep geodynamical processes. The valleys located at the eastern side of Ruby Mountains show a range decrease that could indicate uplift related to magma intrusion or post-seismic deformation due to older, unrecognized earthquakes. In the Big Bend segment in southern California we detect vertical uplift as expected by mechanical models of interseismic deformation. Additionaly all our velocity maps reveal small wavelength deformation signals of anthropogenic origin.

  18. Influence of Plastic Deformation on Low Temperature Surface Hardening of Austenitic and Precipitation Hardening Stainless Steels by Gaseous Nitriding

    DEFF Research Database (Denmark)

    Bottoli, Federico; Winther, Grethe; Christiansen, Thomas Lundin

    2015-01-01

    This article addresses an investigation of the influence of plastic deformation on low temperature surface hardening by gaseous nitriding of three commercial austenitic stainless steels: AISI 304, EN 1.4369 and Sandvik Nanoflex® with various degrees of austenite stability. The materials were...

  19. Control and dynamics study for the satellite power system. Volume 1: MPTS/SPS collector dynamic analysis and surface deformation

    Science.gov (United States)

    Wang, S. J.

    1980-01-01

    The basic dynamic properties and performance characteristics of the microwave power transmission satellite antenna were analyzed in an effort to develop criteria, requirements, and constraints for the control and structure design. The vibrational properties, the surface deformation, and the corresponding scan loss under the influence of disturbances are considered.

  20. Nearshore surface current patterns in the Tsitsikamma National Park ...

    African Journals Online (AJOL)

    The pattern of surface currents in the Tsitsikamma National Park, South Africa, was studied with holey-sock drogues released in batches of up to four at a time, from 1996 and 1998. Drogues were left to drift for either 6 or 24 h, while recording position and time. The majority of drogue movements were longshore, either ...

  1. Discrimination of surface tracking patterns of gamma irradiated ...

    Indian Academy of Sciences (India)

    Fractals have been very successfully used to address the problem of modeling and to provide a description of naturally occurring phenomena and shapes, wherein conventional and existing mathematical models were found to be inadequate. The geometrical patterns of dielectric breakdown like electrical trees, surface ...

  2. Information Pattern in Imaging of a Rough Surface

    Science.gov (United States)

    Abul’khanov, S. R.; Kazanskiy, N. L.

    2018-01-01

    In this paper, we have proposed a method of parametrization of a rough surface image based on its information pattern. We have determined that the image information pattern makes it possible to keep track of any variations in the number of pixels in the image of the controlled rough surface of at least 0.192 per cent of the total number of image pixels. The offered method permits to compensate a non-linear perception of the controlled surface by a human eye. We have determined a ratio of the number of these pixels to the total number of image pixels. Such ratios, was treated as a certain square area. We packed this squares without intercrossings in the square of 2. This type of squares packing was designated as an information pattern. Using the information pattern, the parameter value was obtained. We have determined that the parameter value can keep track of any variations of the number of pixels in the image of the rough surface from at least 0.192 percent.

  3. Assessment methods of injection moulded nano-patterned surfaces

    DEFF Research Database (Denmark)

    Menotti, S.; Bisacco, G.; Hansen, H. N.

    2014-01-01

    algorithm for feature recognition. To compare the methods, the mould insert and a number of replicated nano-patterned surfaces, injection moulded with an induction heating aid, were measured on nominally identical locations by means of an atomic force microscope mounted on a manual CMM....

  4. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting.

    Science.gov (United States)

    Yu, Zhenwei; Yun, Frank F; Wang, Yanqin; Yao, Li; Dou, Shixue; Liu, Kesong; Jiang, Lei; Wang, Xiaolin

    2017-09-01

    With the impacts of climate change and impending crisis of clean drinking water, designing functional materials for water harvesting from fog with large water capacity has received much attention in recent years. Nature has evolved different strategies for surviving dry, arid, and xeric conditions. Nature is a school for human beings. In this contribution, inspired by the Stenocara beetle, superhydrophilic/superhydrophobic patterned surfaces are fabricated on the silica poly(dimethylsiloxane) (PDMS)-coated superhydrophobic surfaces using a pulsed laser deposition approach with masks. The resultant samples with patterned wettability demonstrate water-harvesting efficiency in comparison with the silica PDMS-coated superhydrophobic surface and the Pt nanoparticles-coated superhydrophilic surface. The maximum water-harvesting efficiency can reach about 5.3 g cm -2 h -1 . Both the size and the percentage of the Pt-coated superhydrophilic square regions on the patterned surface affect the condensation and coalescence of the water droplet, as well as the final water-harvesting efficiency. The present water-harvesting strategy should provide an avenue to alleviate the water crisis facing mankind in certain arid regions of the world. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  6. Long-lasting solid lubrication by CNT-coated patterned surfaces

    Science.gov (United States)

    Reinert, L.; Lasserre, F.; Gachot, C.; Grützmacher, P.; MacLucas, T.; Souza, N.; Mücklich, F.; Suarez, S.

    2017-02-01

    The use of lubricants (solid or liquid) is a well-known and suitable approach to reduce friction and wear of moving machine components. Another possibility to influence the tribological behaviour is the formation of well-defined surface topographies such as dimples, bumps or lattice-like pattern geometries by laser surface texturing. However, both methods are limited in their effect: surface textures may be gradually destroyed by plastic deformation and lubricants may be removed from the contact area, therefore no longer properly protecting the contacting surfaces. The present study focuses on the combination of both methods as an integral solution, overcoming individual limitations of each method. Multiwall carbon nanotubes (MWCNT), a known solid lubricant, are deposited onto laser surface textured samples by electrophoretic deposition. The frictional behaviour is recorded by a tribometer and resulting wear tracks are analysed by scanning electron microscopy and Raman spectroscopy in order to reveal the acting tribological mechanisms. The combined approach shows an extended, minimum fivefold longevity of the lubrication and a significantly reduced degradation of the laser textures. Raman spectroscopy proves decelerated MWCNT degradation and oxide formation in the contact. Finally, a lubricant entrapping model based on surface texturing is proposed and demonstrated.

  7. Effect of friction-induced deformation and oxidation on the structure and microhardness of surface aluminum and silumin layers

    Science.gov (United States)

    Korshunov, L. G.; Chernenko, N. L.; Brodova, I. G.; Shirinkina, I. G.

    2017-11-01

    Metallography, electron microscopy, and X-ray diffraction have been used to investigate structural transformations that take place in a 10-μm-thick surface layer in aluminum and Al-17% Si alloy under conditions of sliding friction and subsequent oxidation at 100 and 200°C for 1 h. Friction-induced deformation has been carried out at room temperature in air and at-196°C in liquid nitrogen by reciprocating sliding of a cylindrical indenter made of cubic boron nitride at a rate of 0.014 m/s and a load of 98 N. It is shown that deformation under these conditions forms nanocrystalline structures in the surface layer in aluminum and Al-17% Si alloy and increases their microhardness by a factor of 1.8-3.5. A high contact deformation and a high affinity of oxygen to aluminum and silicon cause the formation of anomalously supersaturated solid solutions of oxygen in aluminum and silicon in the surface layer of the alloy during friction. Oxidation at 100°C (1 h) of the deformed Al-17% Si alloy increases its microhardness due to the decomposition of anomalously supersaturated solid solutions of oxygen in aluminum and silicon and the formation of their oxides.

  8. Fermi surface deformation in a simple iron-based superconductor, FeSe

    Science.gov (United States)

    Coldea, Amalia; Watson, Matthew; Kim, Timur; Haghighirad, Amir; McCollam, Alix; Hoesch, Moritz; Schofield, Andrew

    2015-03-01

    One of the outstanding problems in the field superconductivity is the identification of the normal state out of which superconductivity emerges. FeSe is one of the simplest and most intriguing iron-based superconductors, since in its bulk form it undergoes a structural transition before it becomes superconducting, whereas its single-layer form is believed to be a high-temperature superconductor. The nature of the structural transition, occurring in the absence of static magnetism, is rather unusual and how the electronic structure is stabilized by breaking of the rotational symmetry is the key to understand the superconductivity in bulk FeSe. Here we report angle-resolved photoemission spectroscopy measurements on FeSe that gives direct access to the band structure and orbital-dependent effects. We complement our studies on bulk FeSe with low-temperature angular-dependent quantum oscillation measurements using applied magnetic fields that are sufficiently strong to suppress superconductivity and reach the normal state. These studies reveal a strong deformation of Fermi surface through the structural transition driven by electronic correlations and orbital-dependent effects. . This work was supported by EPSRC, UK (EP/I004475/1), Diamond Light Source, UK and HFML, Nijmegen.

  9. A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Khoo Sze-Wei

    2016-09-01

    Full Text Available Among the full-field optical measurement methods, the Digital Image Correlation (DIC is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.

  10. 2011-2012 Campaign GPS Geodetic Monitoring of Surface Deformation, Dominica, Lesser Antilles

    Science.gov (United States)

    Miller, J. A.; Mattioli, G. S.; James, S. A.

    2012-12-01

    Over the last decade, ongoing campaign style geodetic surveys have been conducted on the volcanic island of Dominica in central portion of the Lesser Antilles island arc. An increase in shallow seismicity on the island, the first concentrated in the south from 1998-2000 and the second in the north in 2003, motivated initial measurements in 2001 at 9 sites distributed across Dominica. Subsequent GPS campaigns were conducted in 2003, 2004 and 2007, during which 18 new sites were added to the original network. In 2007, a total of 27 sites were occupied. The most recent data were collected from 13 sites in 2011 and 9 sites in 2012. Out of the 27 sites on the Island, 5 were not occupied during the 2011/2012 field seasons due to accessibility issues. All GPS data have been reprocessed using GIPSY-OASIS II (v. 6) with final, precise IGS08 orbits, clocks, and earth orientation parameters using an absolute point positioning strategy. The purpose of our study is to examine spatial and temporal changes in surface deformation, constrained by GPS, and to investigate the relationship between the recent seismic swarms and shallow volcanic processes.

  11. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses.

    Science.gov (United States)

    Style, Robert W; Boltyanskiy, Rostislav; Che, Yonglu; Wettlaufer, J S; Wilen, Larry A; Dufresne, Eric R

    2013-02-08

    Droplets deform soft substrates near their contact lines. Using confocal microscopy, we measure the deformation of silicone gel substrates due to glycerol and fluorinated-oil droplets for a range of droplet radii and substrate thicknesses. For all droplets, the substrate deformation takes a universal shape close to the contact line that depends on liquid composition, but is independent of droplet size and substrate thickness. This shape is determined by a balance of interfacial tensions at the contact line and provides a novel method for direct determination of the surface stresses of soft substrates. Moreover, we measure the change in contact angle with droplet radius and show that Young's law fails for small droplets when their radii approach an elastocapillary length scale. For larger droplets the macroscopic contact angle is constant, consistent with Young's law.

  12. Modelling of deformation process for the layer of elastoviscoplastic media under surface action of periodic force of arbitrary type

    Science.gov (United States)

    Mikheyev, V. V.; Saveliev, S. V.

    2018-01-01

    Description of deflected mode for different types of materials under action of external force plays special role for wide variety of applications - from construction mechanics to circuits engineering. This article con-siders the problem of plastic deformation of the layer of elastoviscolastic soil under surface periodic force. The problem was solved with use of the modified lumped parameters approach which takes into account close to real distribution of normal stress in the depth of the layer along with changes in local mechanical properties of the material taking place during plastic deformation. Special numeric algorithm was worked out for computer modeling of the process. As an example of application suggested algorithm was realized for the deformation of the layer of elasoviscoplastic material by the source of external lateral force with the parameters of real technological process of soil compaction.

  13. Magnetic Fluid-Based Squeeze Film Performance in Rotating Curved Porous Circular Plates: The Effect of Deformation and Surface Roughness

    Directory of Open Access Journals (Sweden)

    M.E. Shimpi

    2012-06-01

    Full Text Available This investigation aims at analyzing the behaviour of a magnetic fluid based squeeze film between two rotating transversely rough porous circular plates taking bearing deformation into consideration. The results presented in graphical form inform that the transverse surface roughness introduces an adverse effect on the performance characteristics while the magnetic fluid lubricant turn in an improved performance. It is found that the combined effect of rotation and deformation causes significantly reduced load carrying capacity. However, this investigation establishes that the adverse effect of porosity, deformation and standard deviation can be compensated up to some extent by the positive effect of magnetic fluid lubricant in the case of negatively skewed roughness by choosing curvature parameters. To compensate, the rotational inertia needs to have smaller values.

  14. Using PSInSAR to Investigate the Surface Deformation Induced by Ground Water Variation in Taipei Basin

    Science.gov (United States)

    Wu, P. C.; Hu, J. C.

    2016-12-01

    Soil liquefaction induced from shaking of earthquake is a crucial issue for seismic hazards in urban area. Since 1975, the water pumping was prohibited in Taipei basin due to severe land subsidence with ground water level of about 60-70 m below sea level, consequently the ground water level recover to a high level of about 5-10 m below sea level which high potential soil liquefaction area should happen in think sediments area of Taipei basin. However, the anthropogenic pumping ground water still happened for construction of Taipei Rapid Transit System since 1993. In this study, we use persistent scatterer interferometry (PSI) technique for processing 37 high resolution X-band synthetic aperture radar (SAR) images archived from COSMO-SkyMed (CSK) constellation to get precise deformation map in the period from May 2011 to April 2015. The surface deformation rate along line of sight (LOS) toward to the satellite will be constrained by 3-D deformation rate from continuous GPS projected to the LOS. In addition, the vertical deformation rate from precise levelling across the Taipei basin will be compared to the deformation trend of PSI. In average, a subsidence rate of 5 mm/yr near the Banqiao station. Moreover, the high correlation between LOS rate and ground water table in Wuku station. The previous study suggested that the transient deformation in LOS of PSInSAR in Taipei Basin is highly related to the confined aquifer deformation of Jingmei formation. The storativity is roughly constant across most of the aquifer with values between 0.8 x 10-4 and 1.3 x 10-3. Thus, the storativity can be calculated to specific storage and values of aquifer compressibility for water resources management in Taipei basin.

  15. Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.

    Science.gov (United States)

    Pang, Yonggang; Yang, Jing; Hui, Zhixin; Grottkau, Brian E

    2018-04-01

    Collective cell migration, in which cells migrate as a group, is fundamental in many biological and pathological processes. There is increasing interest in studying the collective cell migration in high throughput. Cell scratching, insertion blocker, and gel-dissolving techniques are some methodologies used previously. However, these methods have the drawbacks of cell damage, substrate surface alteration, limitation in medium exchange, and solvent interference. The superhydrophobic surface, on which the water contact angle is greater than 150 degrees, has been recently utilized to generate patterned arrays. Independent cell culture areas can be generated on a substrate that functions the same as a conventional multiple well plate. However, so far there has been no report on superhydrophobic patterning for the study of cell migration. In this study, we report on the successful development of a robotically patterned superhydrophobic array for studying collective cell migration in high throughput. The array was developed on a rectangular single-well cell culture plate consisting of hydrophilic flat microwells separated by the superhydrophobic surface. The manufacturing process is robotic and includes patterning discrete protective masks to the substrate using 3D printing, robotic spray coating of silica nanoparticles, robotic mask removal, robotic mini silicone blocker patterning, automatic cell seeding, and liquid handling. Compared with a standard 96-well plate, our system increases the throughput by 2.25-fold and generates a cell-free area in each well non-destructively. Our system also demonstrates higher efficiency than conventional way of liquid handling using microwell plates, and shorter processing time than manual operating in migration assays. The superhydrophobic surface had no negative impact on cell viability. Using our system, we studied the collective migration of human umbilical vein endothelial cells and cancer cells using assays of endpoint

  16. Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning

    NARCIS (Netherlands)

    Eppinga, M.B.; Ruiter, de P.C.; Wassen, M.J.; Rietkerk, M.

    2009-01-01

    Peatland surface patterning motivates studies that identify underlying structuring mechanisms. Theoretical studies so far suggest that different mechanisms may drive similar types of patterning. The long time span associated with peatland surface pattern formation, however, limits possibilities for

  17. Fiber-Laden Proppant Placement in a Deformable Fracture: Influence of Fracture-Surface Roughness

    Science.gov (United States)

    Medina, R.; Detwiler, R. L.; Prioul, R.; Xu, W.; Ortega, J. A.

    2016-12-01

    During the shut-in stage of hydraulic fracturing, aperture decreases and proppant is trapped between the fracture walls. The amount and distribution of the trapped proppant determines the fracture permeability after fracture closure. Conventional fluids used in hydraulic fracturing typically form a uniform distribution of proppant within the fracture, i.e. proppant pack, and the fracture permeability is that of the proppant pack. In recent experiments, the addition of fibers to proppant mixtures has been shown to result in the formation of proppant-fiber islands surrounded by solids-free regions. The formation of such proppant-fiber islands has the potential to increase fracture permeability, however, the behavior of these islands when subjected to an applied stress is unknown. We present preliminary results from a series of experiments of fiber-proppant settling inside a deformable fracture with both smooth and rough walls. The experimental system consists of a 15cm x 15cm fracture cell that allows the direct application of a normal stress to the fracture surfaces while the entire flow field is imaged using a high-resolution CCD camera. The proppant mixture was prepared by adding 17.7% v/v of quartz sand and 0.4% v/v of polymeric fibers to a highly shear-thinning viscous fluid (0.48% w/w guar-water). The proppant mixture was injected into the fracture and allowed to settle uninterrupted for two hours before we incrementally increased the normal stress applied to the fracture surfaces from 0 to 90 kPa. The results for both smooth- and rough-walled fractures demonstrate the development of isolated proppant-fiber islands with some interconnected proppant-free regions. In the smooth-walled fracture, the isolated proppant islands settled towards the bottom of the fracture that resulted in some consolidation of the proppant mixture in the lower portion of the fracture. The proppant islands in the rough-walled fracture show a reduced amount of settling, resulting in

  18. Development of Chinese reference man deformable surface phantom and its application to the influence of physique on electromagnetic dosimetry.

    Science.gov (United States)

    Yu, D; Wang, M; Liu, Q

    2015-09-07

    A reference man is a theoretical individual that represents the average anatomical structure and physiological and metabolic features of a specific group of people and has been widely used in radiation safety research. With the help of an advantage in deformation, the present work proposed a Chinese reference man adult-male polygon-mesh surface phantom based on the Visible Chinese Human segment image dataset by surface rendering and deforming. To investigate the influence of physique on electromagnetic dosimetry in humans, a series of human phantoms with 10th, 50th and 90th body mass index and body circumference percentile physiques for Chinese adult males were further constructed by deforming the Chinese reference man surface phantom. All the surface phantoms were then voxelized to perform electromagnetic field simulation in a frequency range of 20 MHz to 3 GHz using the finite-difference time-domain method and evaluate the whole-body average and organ average specific absorption rate and the ratios of absorbed energy in skin, fat and muscle to the whole body. The results indicate thinner physique leads to higher WBSAR and the volume of subcutaneous fat, the penetration depth of the electromagnetic field in tissues and standing-wave occurrence may be the influence factors of physique on electromagnetic dosimetry.

  19. Rayleigh-Bénard-Marangoni convection in a weakly non-Boussinesq fluid layer with a deformable surface

    Science.gov (United States)

    Lyubimov, D. V.; Lyubimova, T. P.; Lobov, N. I.; Alexander, J. I. D.

    2018-02-01

    The influence of surface deformations on the Rayleigh-Bénard-Marangoni instability of a uniform layer of a non-Boussinesq fluid heated from below is investigated. In particular, the stability of the conductive state of a horizontal fluid layer with a deformable surface, a flat isothermal rigid lower boundary, and a convective heat transfer condition at the upper free surface is considered. The fluid is assumed to be isothermally incompressible. In contrast to the Boussinesq approximation, density variations are accounted for in the continuity equation and in the buoyancy and inertial terms of the momentum equations. Two different types of temperature dependence of the density are considered: linear and exponential. The longwave instability is studied analytically, and instability to perturbations with finite wavenumber is examined numerically. It is found that there is a decrease in stability of the system with respect to the onset of longwave Marangoni convection. This result could not be obtained within the framework of the conventional Boussinesq approximation. It is also shown that at Ma = 0 the critical Rayleigh number increases with Ga (the ratio of gravity to viscous forces or Galileo number). At some value of Ga, the Rayleigh-Bénard instability vanishes. This stabilization occurs for each of the density equations of state. At small values of Ga and when deformation of the free surface is important, it is shown that there are significant differences in stability behavior as compared to results obtained using the Boussinesq approximation.

  20. A new method for patterning azopolymer thin film surfaces

    Science.gov (United States)

    Sorkhabi, Sh. Golghasemi; Barille, R.; Ahmadi-Kandjani, S.; Zielinska, S.; Ortyl, E.

    2017-04-01

    We present a simple bottom-up approach via an incoherent unpolarized illumination and the choice of a solvent-droplet-induced-dewetting method to photoinduce nano doughnuts on the surface of azopolymer thin films. We demonstrate that doughnut-shaped nanostructures can be formed and tailored with a wide range of typical sizes, thus providing a rich field of applications using surface photo-patterning. Furthermore, due to the presence of highly photoactive azobenzene derivative in the material, illumination of these nanostructures by a polarized laser light shows the possibility of a further growth and reshaping opening the way for fundamental studies of size-dependent scaling laws of optical properties and possible fabrication of nano-reactor or nano-trap patterns.

  1. An interaction network perspective on the relation between patterns of sea surface temperature variability and global mean surface temperature

    NARCIS (Netherlands)

    Tantet, A.J.J.; Dijkstra, H.A.

    2014-01-01

    On interannual- to multidecadal timescales variability in sea surface temperature appears to be organized in large-scale spatiotemporal patterns. In this paper, we investigate these patterns by studying the community structure of interaction networks constructed from sea surface temperature

  2. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  3. Argon ion beam induced surface pattern formation on Si

    Energy Technology Data Exchange (ETDEWEB)

    Hofsäss, H.; Bobes, O.; Zhang, K. [2nd Institute of Physics, Faculty of Physics, University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2016-01-21

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°. We confirm the absence of patterns at least for ion fluences up to 10{sup 18} ions/cm{sup 2}. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV.

  4. Longwall mining and surface deformation – lessons learned from dInSAR measurements

    CSIR Research Space (South Africa)

    Engelbrecht, Jeanine

    2016-08-01

    Full Text Available including 1) subsidence related to mining and groundwater abstraction, 2) deformation following earthquake events, 3) monitoring of landslides and slope stability, 4) monitoring the stability of infrastructure and large engineering works, and 5) monitoring...

  5. Myocardial motion and deformation patterns in an experimental swine model of acute LBBB/CRT and chronic infarct.

    Science.gov (United States)

    Duchateau, Nicolas; Sitges, Marta; Doltra, Adelina; Fernández-Armenta, Juan; Solanes, Nuria; Rigol, Montserrat; Gabrielli, Luigi; Silva, Etelvino; Barceló, Aina; Berruezo, Antonio; Mont, Lluís; Brugada, Josep; Bijnens, Bart

    2014-06-01

    In cardiac resynchronization therapy (CRT), specific changes in motion/deformation happen with left-bundle-branch-block (LBBB) and following treatment. However, they remain sub-optimally studied. We propose a two-fold improvement of their characterization. This includes controlling them through an experimental model and using more suitable quantification techniques. We used a swine model of acute LBBB and CRT with/without chronic infarct (pure-LBBB: N = 11; LBBB + left-anterior-descending infarct: N = 11). Myocardial displacement, velocity and strain were extracted from short-axis echocardiographic sequences using 2D speckle-tracking. The data was transformed to a single spatiotemporal system of coordinates to perform subject comparisons and quantify pattern changes at similar locations and instants. Pure-LBBB animals showed a specific intra-ventricular dyssynchrony pattern with LBBB (11/11 animals), and the recovery towards a normal pattern with CRT (10/11 animals). Pattern variability was low within the pure-LBBB population, as quantified by our method. This was not correctly assessed by more conventional measurements. Infarct presence affected the pattern distribution and CRT efficiency (improvements in 6/11 animals). Pattern changes correlated with global cardiac function (global circumferential strain) changes in all the animals (corrected: (pLBBBvsBaseline) < 0.001, (pCRTvsBaseline) = NS; non-corrected: (pLBBBvsBaseline) = NS, (pCRTvsBaseline) = 0.028). Our LBBB/CRT experimental model allowed controlling specific factors responsible for changes in mechanical dyssynchrony and therapy. We illustrated the importance of our quantification method to study these changes and their variability. Our findings confirm the importance of myocardial viability and of specific LBBB-related mechanical dyssynchrony patterns.

  6. Atom probe study on microstructure change in severely deformed pearlitic steels: application to rail surfaces and drawn wires

    Science.gov (United States)

    Takahashi, Jun

    2017-07-01

    Pearlitic steel is used as the material for high tensile steel wires, rails and wheels due to its high work hardening and wear resistance. These properties arise from a layered structure comprising deformable lamellar ferrite and hard lamellar cementite. This paper reviews the microstructural change in heavily drawn pearlitic steels wires and worn surfaces of pearlitic rails using atom probe tomography analysis. The cementite decomposition mechanism was elucidated for heavily drawn pearlitic steel wires. For pearlitic rail steels, atomic scale characterization of worn surfaces and of the white etching layer (WEL) were performed, and a mechanism for the formation of the WEL was proposed. The differences and similarities in microstructure and in the state of the cementite in these severely deformed pearlitic steels are discussed.

  7. Real-time 3D visualization of the thoraco-abdominal surface during breathing with body movement and deformation extraction

    International Nuclear Information System (INIS)

    Povšič, K; Jezeršek, M; Možina, J

    2015-01-01

    Real-time 3D visualization of the breathing displacements can be a useful diagnostic tool in order to immediately observe the most active regions on the thoraco-abdominal surface. The developed method is capable of separating non-relevant torso movement and deformations from the deformations that are solely related to breathing. This makes it possible to visualize only the breathing displacements. The system is based on the structured laser triangulation principle, with simultaneous spatial and color data acquisition of the thoraco-abdominal region. Based on the tracking of the attached passive markers, the torso movement and deformation is compensated using rigid and non-rigid transformation models on the three-dimensional (3D) data. The total time of 3D data processing together with visualization equals 20 ms per cycle.In vitro verification of the rigid movement extraction was performed using the iterative closest point algorithm as a reference. Furthermore, a volumetric evaluation on a live subject was performed to establish the accuracy of the rigid and non-rigid model. The root mean square deviation between the measured and the reference volumes shows an error of  ±0.08 dm 3 for rigid movement extraction. Similarly, the error was calculated to be  ±0.02 dm 3 for torsional deformation extraction and  ±0.11 dm 3 for lateral bending deformation extraction. The results confirm that during the torso movement and deformation, the proposed method is sufficiently accurate to visualize only the displacements related to breathing. The method can be used, for example, during the breathing exercise on an indoor bicycle or a treadmill. (paper)

  8. Oblique interaction of a laminar vortex ring with a non-deformable free surface: Vortex reconnection and breakdown

    International Nuclear Information System (INIS)

    Balakrishnan, S K; Thomas, T G; Coleman, G N

    2011-01-01

    Direct Numerical Simulation (DNS) is used to study the interaction of a laminar vortex ring with a non-deformable, free-slip surface at an oblique angle of incidence. The interaction leads to the well-known phenomenon of vortex reconnection. It was found that the reconnection process leads to rapid production of small-scale vortical structures. This phenomenon was found to be related to the kinematics of the reconection process.

  9. Analyzing the Potential for Unmanned Aerial Systems (UAS) Photogrammetry in Estimating Surface Deformations at a Geothermal Fiel

    Science.gov (United States)

    Pai, H.; Burnett, J.; Sladek, C.; Wing, M.; Feigl, K. L.; Selker, J. S.; Tyler, S.; Team, P.

    2016-12-01

    UAS systems equipped with a variety of spectral imaging devices are increasingly incorporated in spatial environmental assessments of continental surfaces (e.g., digital elevation maps, vegetative coverage classifications, surface temperatures). This presented work performed by the UAS team at the Center for Transformative Environmental Monitoring Programs (AirCTEMPS) examines the potential to measure small (sub-cm) deformation from a geothermal injection experiment at Brady's geothermal field in western Nevada (USA). Areal mapping of the 700 x 270 m area of interest was conducted with a nadir pointing Sony A5100 digital camera onboard an autopiloted quadcopter. A total of 16 ground control points were installed using a TopCon GR3 GPS receiver. Two such mapping campaigns were conducted with one before and one after an anticipated surface deformation event. A digital elevation map (DEM) for each time period was created from over 1500 images having 80% overlap/sidelap by using structure from motion (SfM) via Agisoft Photoscan software. The resulting DEM resolution was 8 mm/pixel with residual aerial triangulation errors was < 5 mm. We present preliminary results from an optimized workflow which achieved errors and average differential DEM heights between campaigns at the cm-scale which is broader than the maximum expected deformation. Despite the disconnect between error and deformation severity, this study presents a unique application of sub-cm UAS-based DEMs and further distinguishes itself by comparing results to concurrent Interferometric Synthetic Radar (InSAR). The intent of our study and presentation of results is to streamline, cross-validate, and share methods to encourage further adoption of UAS imagery into the standard toolkit for environmental surface sensing across spatial scales.

  10. Detection of hidden stationary deformations of vibrating surfaces by use of time-averaged digital holographic interferometry.

    Science.gov (United States)

    Demoli, Nazif; Vukicevic, Dalibor

    2004-10-15

    A method of detecting displacements of a surface from its steady-state position to its equilibrium position while it is vibrating has been developed by use of time-average digital holographic interferometry. This method permits extraction of such a hidden deformation by creating two separated systems of interferogram fringes: one corresponding to a time-varying resonantly oscillating optical phase, the other to the stationary phase modification. A mathematical description of the method and illustrative results of experimental verification are presented.

  11. Neon ion beam induced pattern formation on amorphous carbon surfaces

    Directory of Open Access Journals (Sweden)

    Omar Bobes

    2018-02-01

    Full Text Available We investigate the ripple pattern formation on amorphous carbon surfaces at room temperature during low energy Ne ion irradiation as a function of the ion incidence angle. Monte Carlo simulations of the curvature coefficients applied to the Bradley-Harper and Cater-Vishnyakov models, including the recent extensions by Harrison-Bradley and Hofsäss predict that pattern formation on amorphous carbon thin films should be possible for low energy Ne ions from 250 eV up to 1500 eV. Moreover, simulations are able to explain the absence of pattern formation in certain cases. Our experimental results are compared with prediction using current linear theoretical models and applying the crater function formalism, as well as Monte Carlo simulations to calculate curvature coefficients using the SDTrimSP program. Calculations indicate that no patterns should be generated up to 45° incidence angle if the dynamic behavior of the thickness of the ion irradiated layer introduced by Hofsäss is taken into account, while pattern formation most pronounced from 50° for ion energy between 250 eV and 1500 eV, which are in good agreement with our experimental data.

  12. Fingering patterns during droplet impact on heated surfaces.

    Science.gov (United States)

    Khavari, Mohammad; Sun, Chao; Lohse, Detlef; Tran, Tuan

    2015-05-07

    A droplet impinging on a sufficiently heated surface may be cushioned by its own vapor and never touch the surface. In previous work, the transition to this so-called Leidenfrost regime was only qualitatively described as an abrupt change between the "contact-boiling" regime, which is characterized by violent boiling behaviors, and the Leidenfrost state. We reveal that the wetted area can be used as a quantity that quantitatively characterizes this transition and it is a continuous function of surface temperature up to the Leidenfrost regime. The wetted area exhibits fingering patterns caused by vapor flow under the liquid. This underlines the crucial role of vapor transport in the Leidenfrost transition and unveils the physical mechanism of the transition to the Leidenfrost regime.

  13. Sub-Micrometer Surface-Patterned Ribbon Fibers and Textiles.

    Science.gov (United States)

    Khudiyev, Tural; Hou, Chong; Stolyarov, Alexander M; Fink, Yoel

    2017-06-01

    The worldwide annual production volume of textiles is nearly one hundred million metric tons. Most of these undergo treatments to achieve specific properties, such as color, hydrophobicity, antimicrobial, or UV protection, using chemicals that lead to collateral environmental consequences. There is great interest in developing alternative and sustainable strategies to achieve textile functionality that do not involve chemical treatment. Here we present a thermal drawing approach to achieve fiber surface gratings on a rectangular cross-section. We demonstrate directional wetting properties as well as structural coloration based on the gratings. Periods down to ≈ 600 nm were established on the surface of a fiber. Fabrics displaying higher-order diffraction peaks in the visible regime were produced from surface-patterned fibers using convetional weaving machinery. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Martian Dune Ripples as Indicators of Recent Surface Wind Patterns

    Science.gov (United States)

    Johnson, M.; Zimbelman, J. R.

    2015-12-01

    Sand dunes have been shown to preserve the most recent wind patterns in their ripple formations. This investigation continues the manual documentation of ripples on Martian dunes in order to assess surface wind flow. Study sites investigated must have clear HiRISE frames and be able to represent diverse locations across the surface, decided primarily by their spread of latitude and longitude values. Additionally, frames with stereo pairs are preferred because of their ability to create digital terrain models. This will assist in efforts to relate dune slopes and obstacles to ripple patterns. The search and analysis period resulted in 40 study sites with mapped ripples. Lines were drawn perpendicular to ripple crests across three adjacent ripples in order to document both ripple wavelength from line length and inferred wind direction from azimuth. It is not possible to infer a unique wind direction from ripple orientation alone and therefore these inferred directions have a 180 degree ambiguity. Initial results from all study sites support previous observations that the Martian surface has many dune types in areas with adequate sand supply. The complexity of ripple patterns varies greatly across sites as well as within individual sites. Some areas of uniform directionality for hundreds of kilometers suggest a unimodal wind regime while overlapping patterns suggest multiple dominant winds or seasonally varying winds. In most areas, form flow related to dune shape seems to have a large effect on orientation and must be considered along with the dune type. As long as the few steep slip faces on these small dunes are avoided, form flow can be considered the dominant cause of deviation from the regional wind direction. Regional results, wind roses, and comparisons to previous work will be presented for individual sites.

  15. Surface Plastic Deformation and Nanocrystallization Mechanism of Welded Joint of 16MnR Steel Treated by Ultrasonic Impact

    Directory of Open Access Journals (Sweden)

    Yingxia YU

    2015-11-01

    Full Text Available The welded joint surfaces of 16MnR steel were treated using an ultrasonic impact machine. The effects of ultrasonic impact treating (UIT on the plastic deformation and nanocrystallization mechanism of the welded joints of 16MnR steel were studied. The micro-structural features of the surface layer produced by UIT were observed by scanning electron microscopy (SEM and high resolution transmission electron microscopy (HRTEM, and micro-hardness measurements were performed. Experimental results showed that the thickness of the plastic deformation layer was approximately 80 μm. It was found that grains in the surfaces of the welded joints of 16MnR were greatly refined by UIT. Obvious grain refinement was observed, with resultant gain sizes less than 100nm. The micro-hardness of the treated surface layer of the welded joint was enhanced significantly compared to that of the un-treated sample. The micro-hardness on the treated surface of the welded joint was 62.3% higher than that of the un-treated surface.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9563

  16. Droplet impact behavior on heated micro-patterned surfaces

    Science.gov (United States)

    Zhang, Wenbin; Yu, Tongxu; Fan, Jing; Sun, Weijie; Cao, Zexian

    2016-03-01

    Impact behavior of droplets on a surface is an intriguing research topic, and its control should be very useful in diverse industrial applications. We investigated the impact behavior of water droplets on the textured and chemically treated surface of silicon and obtained the impact mode map on the parameter plane subtended by the Weber number (up to 85) and temperature (up to 320 °C). The patterns comprise of micropillars (14 μm in height) in square lattice with a lattice constant of 10 and 20 μm, and the surface was further made superhydrophobic by coating with graphene nanosheets. Six distinct impact modes are identified. It was found that the impact mode map can be dramatically altered by modifying the texture and chemistry of the surface, and the observations are well explained with regard to heat transfer, vapor/bubble generation and vapor flow beneath the droplet. Instability in the droplet arising from the mismatch between vapor generation rate and exhaust conditions is the dominant factor in determining the impact mode. Our results revealed more facts and features of the droplet impact phenomenon and can be very useful for target-oriented surface design towards precise control of droplet impact behavior on heated substrates.

  17. Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives.

    Science.gov (United States)

    Pengo, Paolo; Şologan, Maria; Pasquato, Lucia; Guida, Filomena; Pacor, Sabrina; Tossi, Alessandro; Stellacci, Francesco; Marson, Domenico; Boccardo, Silvia; Pricl, Sabrina; Posocco, Paola

    2017-12-01

    Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.

  18. Using wind-deformed conifers to measure wind patterns in alpine transition at GLEES

    Science.gov (United States)

    Robert C. Musselman; Gene L. Wooldridge; Douglas G. Fox; Bernadette H. Connell

    1990-01-01

    The Glacier Lakes Ecosystem Experiments Site (GLEES) is a high-elevation ecosystem in the Snowy Range west of Laramie, WY, that is perceived to be highly sensitive to changes in chemical and physical climate. Deposition of atmospheric chemicals to this ecosystem is, in part, governed by the wind pattern. The GLEES has numerous wind-swept areas where the coniferous...

  19. Simulated small-angle scattering patterns for a plastically deformed model composite material

    NARCIS (Netherlands)

    Shenoy, V.B.; Cleveringa, H.H.M.; Phillips, R.; Giessen, E. van der; Needleman, A.

    2000-01-01

    The small-angle scattering patterns predicted by discrete dislocation plasticity versus local and non-local continuum plasticity theory are compared in a model problem. The problem considered is a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to

  20. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size and composition. We find that Pt electronic states in the vicinity of the Fermi level combined with a modified electron distribution in the nanoparticle due to Pt-to-Au charge transfer are the origin of the outstanding catalytic properties. From our model we deduce the catalytically favorable surface patterns that induce ensemble and ligand effects. © The Royal Society of Chemistry 2013.

  1. Electrostatic Deformation of Liquid Surfaces by a Charged Rod and a Van De Graaff Generator

    Science.gov (United States)

    Slisko, Josip; García-Molina, Rafael; Abril, Isabel

    2014-01-01

    Authors of physics textbooks frequently use the deflection of a thin, vertically falling water jet by a charged balloon, comb, or rod as a visually appealing and conceptually relevant example of electrostatic attraction. Nevertheless, no attempts are made to explore whether these charged bodies could cause visible deformation of a horizontal water…

  2. Modeling viscoelastic deformation of the earth due to surface loading by commercial finite element package - ABAQUS

    Science.gov (United States)

    Kit Wong, Ching; Wu, Patrick

    2017-04-01

    Wu (2004) developed a transformation scheme to model viscoelatic deformation due to glacial loading by commercial finite element package - ABAQUS. Benchmark tests confirmed that this method works extremely well on incompressible earth model. Bangtsson & Lund (2008),however, showed that the transformation scheme would lead to incorrect results if compressible material parameters are used. Their study implies that Wu's method of stress transformation is inadequate to model the load induced deformation of a compressible earth under the framework of ABAQUS. In light of this, numerical experiments are carried out to find if there exist other methods that serve this purpose. All the tested methods are not satisfying as the results failed to converge through iterations, except at the elastic limit. Those tested methods will be outlined and the results will be presented. Possible reasons of failure will also be discussed. Bängtsson, E., & Lund, B. (2008). A comparison between two solution techniques to solve the equations of glacially induced deformation of an elastic Earth. International journal for numerical methods in engineering, 75(4), 479-502. Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2), 401-408.

  3. InSAR observations of ground surface deformation and lava flow emplacement at Pacaya volcano, Guatemala

    Science.gov (United States)

    Schaefer, L. N.; Lu, Z.; Oommen, T.

    2015-12-01

    Pacaya volcano is a persistently active basaltic cone complex located in the Central American Volcanic Arc in Guatemala. In May, 2010, violent VEI-3 eruptions caused significant topographic changes to the edifice, including the dispersion of ~20 cm of tephra and ash on the cone, the emplacement of a ~5.4 km long lava flow, and 3 m of co-eruptive movement of the southwest flank. For this study, Interferometric Synthetic Aperture Radar (InSAR) images (interferograms) processed from both spaceborne Advanced Land Observing Satellite (ALOS) and aerial Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data were used to measure post-eruptive deformation events. Interferograms suggest four distinct deformation processes after the May 2010 eruption: (1) magma intrusion near the vents of the 2010 lava flow; (2) subsidence of the 2010 lava flow; (3) slow deflation of an elongated magma source near the summit, and; (4) settlement of the material involved in the co-eruptive slope movement. Our results provide insights into Pacaya's complex magmatic plumbing system and the postemplacement behavior of lava flows. The detection of several different deformation events emphasizes the utility of measuring volcanic deformation using high-resolution remote sensing techniques with broad spatial coverage.

  4. First-principles approaches to intrinsic strength and deformation of materials: perfect crystals, nano-structures, surfaces and interfaces

    International Nuclear Information System (INIS)

    Ogata, Shigenobu; Umeno, Yoshitaka; Kohyama, Masanori

    2009-01-01

    First-principles studies on the intrinsic mechanical properties of various materials and systems through ab initio tensile and shear testing simulations based on density-functional theory are reviewed. For various materials, ideal tensile and shear strength and features of the deformation of bulk crystals without any defects have been examined, and the relation with the bonding nature has been analyzed. The surfaces or low-dimensional nano-structures reveal peculiar strength and deformation behavior due to local different bonding nature. For grain boundaries and metal/ceramic interfaces, tensile and shear behaviors depend on the interface bonding, which impacts on the research of real engineering materials. Remaining problems and future directions in this research field are discussed. (topical review)

  5. Experimental Study of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Aeroshell with Axisymmetric Surface Deflection Patterns

    Science.gov (United States)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2017-01-01

    A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.

  6. Tailoring Patterns of Surface-Attached Multiresponsive Polymer Networks.

    Science.gov (United States)

    Chollet, Benjamin; D'Eramo, Loïc; Martwong, Ekkachai; Li, Mengxing; Macron, Jennifer; Mai, Thuy Quyen; Tabeling, Patrick; Tran, Yvette

    2016-09-21

    A new strategy for the fabrication of micropatterns of surface-attached hydrogels with well-controlled chemistry is reported. The "grafting onto" approach is preferred to the "grafting from" approach. It consists of cross-linking and grafting preformed and functionalized polymer chains through thiol-ene click chemistry. The advantage is a very good control without adding initiators. A powerful consequence of thiol-ene click reaction by UV irradiation is the facile fabrication of micropatterned hydrogel thin films by photolithography. It is achieved either with photomasks using common UV lamp or without photomasks by direct drawing due to laser technology. Our versatile approach allows the fabrication of various chemical polymer networks on various solid substrates. It is demonstrated here with silicon wafers, glass and gold surfaces as substrates, and two responsive hydrogels, poly(N-isopropylacrylamide) for its responsiveness to temperature and poly(acrylic acid) for its pH-sensitivity. We also demonstrate the fabrication of stable hydrogel multilayers (or stacked layers) in which each elementary layer height can widely range from a few nanometers to several micrometers, providing an additional degree of freedom to the internal architecture of hydrogel patterns. This facile route for the synthesis of micrometer-resolute hydrogel patterns with tailored architecture and multiresponsive properties should have a strong impact.

  7. Topographic deformation patterns of knee cartilage after exercises with high knee flexion: an in vivo 3D MRI study using voxel-based analysis at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Horng, Annie; Stockinger, M.; Notohamiprodjo, M. [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); Raya, J.G. [New York University Langone Medical Center, Center for Biomedical Imaging, New York, NY (United States); Pietschmann, M. [Ludwig-Maximilians-University Hospital Munich, Department of Orthopedic Surgery, Munich (Germany); Hoehne-Hueckstaedt, U.; Glitsch, U.; Ellegast, R. [Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA), Sankt Augustin (Germany); Hering, K.G. [Miner' s Hospital, Department of Diagnostic Radiology, Dortmund (Germany); Glaser, C. [Ludwig-Maximilians-University Hospital Munich, Institute for Clinical Radiology, Munich (Germany); RZM Zentrum, Munich (Germany)

    2015-06-01

    To implement a novel voxel-based technique to identify statistically significant local cartilage deformation and analyze in-vivo topographic knee cartilage deformation patterns using a voxel-based thickness map approach for high-flexion postures. Sagittal 3T 3D-T1w-FLASH-WE-sequences of 10 healthy knees were acquired before and immediately after loading (kneeling/squatting/heel sitting/knee bends). After cartilage segmentation, 3D-reconstruction and 3D-registration, colour-coded deformation maps were generated by voxel-based subtraction of loaded from unloaded datasets to visualize cartilage thickness changes in all knee compartments. Compression areas were found bifocal at the peripheral medial/caudolateral patella, both posterior femoral condyles and both anterior/central tibiae. Local cartilage thickening were found adjacent to the compression areas. Significant local strain ranged from +13 to -15 %. Changes were most pronounced after squatting, least after knee bends. Shape and location of deformation areas varied slightly with the loading paradigm, but followed a similar pattern consistent between different individuals. Voxel-based deformation maps identify individual in-vivo load-specific and posture-associated strain distribution in the articular cartilage. The data facilitate understanding individual knee loading properties and contribute to improve biomechanical 3 models. They lay a base to investigate the relationship between cartilage degeneration patterns in common osteoarthritis and areas at risk of cartilage wear due to mechanical loading in work-related activities. (orig.)

  8. Compression strain-induced folding at intersecting deformation macrobands on the copper single crystals

    Science.gov (United States)

    Chumaevskii, A. V.; Lychagin, D. V.; Tarasov, S. Yu.

    2017-12-01

    Compression strain-induced surface pattern on copper single crystal faces was studied by means of optical, confocal laser and scanning electron microscopies. It was shown that apart from work-hardening effect of previously formed deformation macrobands there is a pure geometrical (size) effect which serves for changing the conditions for further deformation within the deformation macroband zones by folded structure formation.

  9. The Reliability of Pattern Classification in Bloodstain Pattern Analysis-PART 2: Bloodstain Patterns on Fabric Surfaces.

    Science.gov (United States)

    Taylor, Michael C; Laber, Terry L; Kish, Paul E; Owens, Glynn; Osborne, Nikola K P

    2016-11-01

    This study was designed to produce the first baseline measure of the reliability of bloodstain pattern classifications on fabric surfaces. Experienced bloodstain pattern analysts classified bloodstain patterns on pairs of trousers that represented three fabric substrates. Patterns also varied in type (impact, cast-off, expiration, satellite stains from dripped blood, and transfer) and extent. In addition, case summaries that accompanied each pattern contained contextual cues that either supported the correct answer (i.e., positive bias), were misleading toward an incorrect answer (i.e., negative bias), or contained no directional information (i.e., neutral). Overall, 23% percent of the resulting classifications were erroneous. The majority (51%) of errors resulted from analysts misclassifying satellite stains from dripped blood. Relative to the neutral information, the positive-bias information increased correct classifications and decreased erroneous classifications, and the negative-bias information decreased correct classifications and increased erroneous classifications. The implications of these findings for BPA are discussed. © 2016 American Academy of Forensic Sciences.

  10. TH-CD-207A-05: Lung Surface Deformation Vector Fields Prediction by Monitoring Respiratory Surrogate Signals

    International Nuclear Information System (INIS)

    Nasehi Tehrani, J; Wang, J; McEwan, A

    2016-01-01

    Purpose: In this study, we developed and evaluated a method for predicting lung surface deformation vector fields (SDVFs) based on surrogate signals such as chest and abdomen motion at selected locations and spirometry measurements. Methods: A Patient-specific 3D triangular surface mesh of the lung region at end-expiration (EE) phase was obtained by threshold-based segmentation method. For each patient, a spirometer recorded the flow volume changes of the lungs; and 192 selected points at a regular spacing of 2cm X 2cm matrix points over a total area of 34cm X 24cm on the surface of chest and abdomen was used to detect chest wall motions. Preprocessing techniques such as QR factorization with column pivoting (QRCP) were employed to remove redundant observations of the chest and abdominal area. To create a statistical model between the lung surface and the corresponding surrogate signals, we developed a predictive model based on canonical ridge regression (CRR). Two unique weighting vectors were selected for each vertex on the surface of the lung, and they were optimized during the training process using the all other phases of 4D-CT except the end-inspiration (EI) phase. These parameters were employed to predict the vertices locations of a testing data set, which was the EI phase of 4D-CT. Results: For ten lung cancer patients, the deformation vector field of each vertex of lung surface mesh was estimated from the external motion at selected positions on the chest wall surface plus spirometry measurements. The average estimation of 98th percentile of error was less than 1 mm (AP= 0.85, RL= 0.61, and SI= 0.82). Conclusion: The developed predictive model provides a non-invasive approach to derive lung boundary condition. Together with personalized biomechanical respiration modelling, the proposed model can be used to derive the lung tumor motion during radiation therapy accurately from non-invasive measurements.

  11. TH-CD-207A-05: Lung Surface Deformation Vector Fields Prediction by Monitoring Respiratory Surrogate Signals

    Energy Technology Data Exchange (ETDEWEB)

    Nasehi Tehrani, J; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); McEwan, A [The University of Sydney, Sydney, New South Wales (Australia)

    2016-06-15

    Purpose: In this study, we developed and evaluated a method for predicting lung surface deformation vector fields (SDVFs) based on surrogate signals such as chest and abdomen motion at selected locations and spirometry measurements. Methods: A Patient-specific 3D triangular surface mesh of the lung region at end-expiration (EE) phase was obtained by threshold-based segmentation method. For each patient, a spirometer recorded the flow volume changes of the lungs; and 192 selected points at a regular spacing of 2cm X 2cm matrix points over a total area of 34cm X 24cm on the surface of chest and abdomen was used to detect chest wall motions. Preprocessing techniques such as QR factorization with column pivoting (QRCP) were employed to remove redundant observations of the chest and abdominal area. To create a statistical model between the lung surface and the corresponding surrogate signals, we developed a predictive model based on canonical ridge regression (CRR). Two unique weighting vectors were selected for each vertex on the surface of the lung, and they were optimized during the training process using the all other phases of 4D-CT except the end-inspiration (EI) phase. These parameters were employed to predict the vertices locations of a testing data set, which was the EI phase of 4D-CT. Results: For ten lung cancer patients, the deformation vector field of each vertex of lung surface mesh was estimated from the external motion at selected positions on the chest wall surface plus spirometry measurements. The average estimation of 98th percentile of error was less than 1 mm (AP= 0.85, RL= 0.61, and SI= 0.82). Conclusion: The developed predictive model provides a non-invasive approach to derive lung boundary condition. Together with personalized biomechanical respiration modelling, the proposed model can be used to derive the lung tumor motion during radiation therapy accurately from non-invasive measurements.

  12. Low temperature surface hardening of stainless steel; the role of plastic deformation

    DEFF Research Database (Denmark)

    Bottoli, Federico; Jespersen, Freja Nygaard; Hattel, Jesper Henri

    2016-01-01

    Thermochemical surface engineering by nitriding of austenitic stainless steel transforms the surface zone into expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. As a consequence of the thermochemical surface engineering, huge re...

  13. Homeotic genes and the arthropod head: Expression patterns of the labial, proboscipedia, and Deformed genes in crustaceans and insects

    Science.gov (United States)

    Abzhanov, Arhat; Kaufman, Thomas C.

    1999-01-01

    cDNA fragments of the homologues of the Drosophila head homeotic genes labial (lab), proboscipedia (pb), and Deformed (Dfd) have been isolated from the crustacean Porcellio scaber. Because the accumulation domains of the head homeotic complex (Hox) genes had not been previously reported for crustaceans, we studied the expression patterns of these genes in P. scaber embryos by using in situ hybridization. The P. scaber lab homologue is expressed in the developing second antennal segment and its appendages. This expression domain in crustaceans and in the homologous intercalary segment of insects suggests that the lab gene specified this metamere in the last common ancestor of these two groups. The expression domain of the P. scaber pb gene is in the posterior part of the second antennal segment. This domain, in contrast to that in insects, is colinear with the domains of other head genes in P. scaber, and it differs from the insect pb gene expression domain in the posterior mouthparts, suggesting that the insect and crustacean patterns evolved independently from a broader ancestral domain similar to that found in modern chelicerates. P. scaber Dfd is expressed in the mandibular segment and paragnaths (a pair of ventral mouthpart structures associated with the stomodeum) and differs from insects, where expression is in the mandibular and maxillary segments. Thus, like pb, Dfd shows a divergent Hox gene deployment. We conclude that homologous structures of the mandibulate head display striking differences in their underlying developmental programs related to Hox gene expression. PMID:10468590

  14. Roughness parameters as the elements of surface condition and deformation assessment based on the results of TLS scanning

    Directory of Open Access Journals (Sweden)

    Kowalska Maria E.

    2017-03-01

    Full Text Available Roughness parameters as the elements of surface condition and deformation assessment based on the results of TLS scanning. Roughness is the attribute of a surface that can be defined as a collection of small surface unevennesses that can be identified optically or detected mechanically which do not result from the surface’s shape and their size depends on a material type as well as on undergone processing. The most often utilised roughness parameters are: Ra - mean distance value of the points on the observed profile from the average line on the sampling length, and Rz - difference between arithmetic mean height of the five highest peaks and arithmetic mean depth of the five deepest valleys regarding to the average line on the length of the measured fragment. In practice, roughness parameters are most often defined for surface elements that require relevant manufacturing or processing through grinding, founding or polishing in order to provide the expected surface roughness. To measure those parameters for the produced elements profilometers are used. In this paper the authors present an alternative approach of determining and utilising such parameters. Instead of the utilising methods based on sampling length measurement, roughness parameters are determined on the basis of point clouds, that represent a surface of rough concrete, obtained through terrestrial laser scanning. The authors suggest using the surface roughness parameter data acquired in this way as a supplementary data in the condition assessment (erosion rate of surfaces being a part of engineering constructions made of concrete.

  15. Coupling Mechanical Deformations and Planar Cell Polarity to Create Regular Patterns in the Zebrafish Retina

    Science.gov (United States)

    Salbreux, Guillaume; Barthel, Linda K.; Raymond, Pamela A.; Lubensky, David K.

    2012-01-01

    The orderly packing and precise arrangement of epithelial cells is essential to the functioning of many tissues, and refinement of this packing during development is a central theme in animal morphogenesis. The mechanisms that determine epithelial cell shape and position, however, remain incompletely understood. Here, we investigate these mechanisms in a striking example of planar order in a vertebrate epithelium: The periodic, almost crystalline distribution of cone photoreceptors in the adult teleost fish retina. Based on observations of the emergence of photoreceptor packing near the retinal margin, we propose a mathematical model in which ordered columns of cells form as a result of coupling between planar cell polarity (PCP) and anisotropic tissue-scale mechanical stresses. This model recapitulates many observed features of cone photoreceptor organization during retinal growth and regeneration. Consistent with the model's predictions, we report a planar-polarized distribution of Crumbs2a protein in cone photoreceptors in both unperturbed and regenerated tissue. We further show that the pattern perturbations predicted by the model to occur if the imposed stresses become isotropic closely resemble defects in the cone pattern in zebrafish lrp2 mutants, in which intraocular pressure is increased, resulting in altered mechanical stress and ocular enlargement. Evidence of interactions linking PCP, cell shape, and mechanical stresses has recently emerged in a number of systems, several of which show signs of columnar cell packing akin to that described here. Our results may hence have broader relevance for the organization of cells in epithelia. Whereas earlier models have allowed only for unidirectional influences between PCP and cell mechanics, the simple, phenomenological framework that we introduce here can encompass a broad range of bidirectional feedback interactions among planar polarity, shape, and stresses; our model thus represents a conceptual framework

  16. Influence of steel composition and plastic deformation on the surface properties induced by low temperature thermochemical processing

    DEFF Research Database (Denmark)

    Bottoli, Federico

    products. The activities carried out encompass the study and the characterization of the following aspects: ‐ Influence of plastic deformation prior to the low-temperature thermochemical process ‐ Influence of initial phase composition on the properties and morphology of thenitrided/nitrocarburized surface......Low-temperature thermochemical surface hardening by nitriding, carburizing and nitrocarburizing is used to improve the performance of stainless steels with respect to wear, fatigue and corrosion resistance.The dissolution of nitrogen and/or carbon atoms in the materials surface leads...... with the improvement of these properties, the corrosion resistance of the stainless steel is fully maintained or even enhanced. Despite low-temperature thermochemical processing of austenitic stainless steels has been widely studied in literature, other stainless steel classes and the influence of steel´s initial...

  17. Surface deformation and friction characteristic of nano scratch at ductile-removal regime for optical glass BK7.

    Science.gov (United States)

    Li, Chen; Zhang, Feihu; Ding, Ye; Liu, Lifei

    2016-08-20

    Nano scratch for optical glass BK7 based on the ductile-removal regime was carried out, and the influence rule of scratch parameters on surface deformation and friction characteristic was analyzed. Experimental results showed that, with increase of normal force, the deformation of burrs in the edge of the scratch was more obvious, and with increase of the scratch velocity, the deformation of micro-fracture and burrs in the edge of the scratch was more obvious similarly. The residual depth of the scratch was measured by atomic force microscope. The experimental results also showed that, with increase of normal force, the residual depth of the scratch increased linearly while the elastic recovery rate decreased. Furthermore, with increase of scratch velocity, the residual depth of the scratch decreased while the elastic recovery rate increased. The scratch process of the Berkovich indenter was divided into the cutting process of many large negative rake faces based on the improved cutting model, and the friction characteristic of the Berkovich indenter and the workpiece was analyzed. The analysis showed that the coefficient of friction increased and then tended to be stable with the increase of normal force. Meanwhile, the coefficient of friction decreased with the increase of scratch velocity, and the coefficients, k ln(v) and μ0, were introduced to improve the original formula of friction coefficient.

  18. Preliminary results of continuous GPS monitoring of surface deformation at the Aquistore underground CO2 storage site

    Science.gov (United States)

    Craymer, M. R.; Henton, J. A.; Piraszewski, M.; Silliker, J.; Samsonov, S. V.

    2013-12-01

    Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS monitoring of surface deformation. Five of the planned thirteen GPS monitoring stations were installed in November 2012 and results subsequently processed on a weekly basis. The first GPS results prior to CO2 injection have just been determined using both precise point positioning (PPP) and baseline processing with the Bernese GPS Software. The time series of the five sites are examined, compared and analysed with respect to monument stability, seasonal signals and estimates of expected regional ground motion. The individual weekly network solutions are combined together in a cumulative 4D network solution to provide a preliminary local velocity field in the immediately vicinity of the injection well. The results are compared to those from InSAR.

  19. The fundamental relationships between grain orientation, deformation-induced surface roughness and strain localization in an aluminum alloy

    International Nuclear Information System (INIS)

    Stoudt, M.R.; Levine, L.E.; Creuziger, A.; Hubbard, J.B.

    2011-01-01

    Highlights: ► AA6022 samples are characterized in situ during tensile deformation. ► Scanning laser confocal images and electron backscatter diffraction results are overlaid. ► Strain localization is correlated with Taylor factors, grain orientations, and grain sizes. - Abstract: Polycrystalline AA6022 tensile specimens were cut from sheet stock, mechanically polished, and uniaxially strained in situ under a scanning laser confocal microscope (SLCM) using a sub-sized universal testing apparatus. Prior to deformation, electron backscatter diffraction (EBSD) was performed on the gauge sections of one specimen in the rolling direction of the sheet and one in the transverse direction. Maps of the largest displacements in the surface morphology were constructed from the SLCM data and overlaid onto maps derived from the crystallographic orientation data to examine the strength of the influence that grain orientation effects have on critical strain localization. The roles of Taylor factors, grain boundary misorientation, largest Schmid factors, grain sizes, coincident site lattice orientations, and local grain breakup were considered. The largest surface displacements were observed to be concentrated at triple junctions where there is a large difference between the Taylor factors of the individual grains. The high degree of correlation between the density and location of these large surface displacements and the local plasticity conditions indicate that a critical localization event is most likely to initiate in grain boundary regions where unfavorable slip interactions produce the largest plastic strains.

  20. Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding

    Science.gov (United States)

    Liu, Lin; Wang, Xin-da; Li, Xiang; Qi, Xiao-tong; Qu, Xuan-hui

    2017-09-01

    The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.

  1. Transient Surface Deformation of Northern Taiwan, 2007-2011, Using Persistent Scattered InSAR with ALOS Data

    Science.gov (United States)

    Wang, C.; Chang, W.; Chang, C.

    2013-12-01

    The Taipei basin, triangular in shape and located in the northern Taiwan, is now developed into the most densely populated area and also the capital of politics and economics in Taiwan. North of the Taipei basin, the Tatun volcano group was proposed to be the cause of extensional collapse during the Pleistocene following the collision between the Luzon volcanic arc and the Eurasian continental margin at about 5 Ma. We investigated the contemporary surface deformation of the northern Taiwan using ALOS images that cover the Taipei basin and its surrounding mountainous area. The Differential Interferometric Synthetic Aperture Radar (DInSAR) technique has been widely used in the past ten years. However, the mountainous areas surrounding the basin are mostly covered with densely various vegetations that reduce signal-to-noise ratio in the interferograms. Therefore, the DInSAR technique is not effective for measuring the surface deformation in and around the Taipei basin, including the Tatun volcano area, and consequently the Persistent Scatterer (PS) and small baseline (SB) InSAR techniques have been employed to extract phase signals of the chosen PS points. In this study, we aim to measure the ground deformation of northern Taiwan by processing the spaceborne radar interferometry data of ALOS acquired from 2007 to 2011 using PSInSAR and SBInSAR techniques. Compared with the Envisat and ERS images used by previous studies, L-band PALSAR images can produce more PS points in the region covered by dense vegetation so that our results reveal a higher resolution of ground deformation. The mean Line of Sight (LOS) velocity field of up to 8 mm/yr in the central Tatun volcanic area, and up to 5 mm/yr in the Taipei basin with higher rate at the hanging wall of the Sanchiao fault than the footwall. (See the Figure.) While previous studies indicated that the Taipei basin had experienced ground uplift from 1993 to 2001 and subsidence from 2003 to 2008, our results show a return to

  2. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  3. Definition of criteria for estimating alternative technologies of increasing quality of rotor shaft neck by electroerosive alloying and surface plastic deformation methods

    Science.gov (United States)

    Martsynkovskyy, V.; Kirik, G.; Tarelnyk, V.; Zharkov, P.; Konoplianchenko, Ie; Dovzhyk, M.

    2017-08-01

    There are represented the results of influence of the surface plastic deformation (SPD) methods, namely, diamond smoothing (DS) and ball-rolling surface roughness generation (BSRG) ones on the qualitative parameters (residual stresses, fatigue strength and wear resistance values) of the steel substrate surface layers formed by the electroerosive alloying (EEA) method. There are proposed the most rational methods of deformation and also the composition for electroerosive coatings providing the presence of the favorable residual compressive stresses in the surface layer, increasing fatigue strength and wear resistance values. There are stated the criteria for estimating the alternative variants of the combined technologies and choosing the most rational ones thereof.

  4. Orthogonal chemical functionalization of patterned gold on silica surfaces.

    Science.gov (United States)

    Palazon, Francisco; Léonard, Didier; Le Mogne, Thierry; Zuttion, Francesca; Chevalier, Céline; Phaner-Goutorbe, Magali; Souteyrand, Éliane; Chevolot, Yann; Cloarec, Jean-Pierre

    2015-01-01

    Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF-SIMS) mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge.

  5. Orthogonal chemical functionalization of patterned gold on silica surfaces

    Directory of Open Access Journals (Sweden)

    Francisco Palazon

    2015-12-01

    Full Text Available Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica was demonstrated by X-ray photoelectron spectroscopy (XPS as well as time-of-flight secondary ion mass spectrometry (ToF–SIMS mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM. These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors is a major challenge.

  6. Patterning of gold nanoparticles on fluoropolymer films by using patterned surface grafting and layer-by-layer deposition techniques.

    Science.gov (United States)

    Jung, Chang-Hee; Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak; Kwon, Oh-Sun; Shin, Kwanwoo

    2013-09-11

    The patterning of gold nanoparticles (GNPs) on the surface of a fluoropolymer substrate by using patterned surface grafting and layer-by-layer deposition techniques is described. The surface of a poly(tetrafluoroethylene-co-perfluorovinyl ether) (PFA) substrate was selectively implanted with 150 keV proton ions. Peroxide groups were successfully formed on the implanted PFA surface, and their concentration depended on the fluence. Acrylic acid was graft polymerized onto the implanted regions of the PFA substrate, resulting in well-defined patterns of poly(acrylic acid) (PAA) on the PFA substrate. The surface properties of the PAA-patterned PFA surface, such as chemical compositions, wettability, and morphology, were investigated. The surface analysis results revealed that PAA was definitely present on the implanted regions of the PFA surface, and the degree of grafting was dependent on three factors: fluence, grafting time, and monomer concentration. Furthermore, GNP patterns were generated on the prepared PAA-patterned PFA surface by layer-by-layer deposition of GNPs and poly(diallyldimethyl ammonium chloride). The multilayers of GNPs were deposited only onto the PAA-grafted regions separated by bare PFA regions, and the resulting GNP patterns exhibited good electrical conductivity.

  7. Exotic high activity surface patterns in PtAu nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-05-09

    The structure and chemical ordering of PtAu nanoclusters of 79, 135, and 201 atoms are studied via a combination of a basin hopping atom-exchange technique (to locate the lowest energy homotops at fixed composition), a symmetry orbit technique (to find the high symmetry isomers), and density functional theory local reoptimization (for determining the most stable homotop). The interatomic interactions between Pt and Au are derived from the empirical Gupta potential. The lowest energy structures show a marked tendency toward PtcoreAushell chemical ordering by enrichment of the more cohesive Pt in the core region and of Au in the shell region. We observe a preferential segregation of Pt atoms to (111) facets and Au atoms to (100) facets of the truncated octahedron cluster motif. Exotic surface patterns are obtained particularly for Pt-rich compositions, where Pt atoms are being surrounded by Au atoms. These surface arrangements boost the catalytic activity by creating a large number of active sites. © 2013 American Chemical Society.

  8. Optics of short-pitch deformed-helix ferroelectric liquid crystals: Symmetries, exceptional points, and polarization-resolved angular patterns

    Science.gov (United States)

    Kiselev, Alexei D.; Chigrinov, Vladimir G.

    2014-10-01

    In order to explore electric-field-induced transformations of polarization singularities in the polarization-resolved angular (conoscopic) patterns emerging after deformed-helix ferroelectric liquid crystal (DHFLC) cells with subwavelength helix pitch, we combine the transfer matrix formalism with the results for the effective dielectric tensor of biaxial FLCs evaluated using an improved technique of averaging over distorted helical structures. Within the framework of the transfer matrix method, we deduce a number of symmetry relations and show that the symmetry axis of L lines (curves of linear polarization) is directed along the major in-plane optical axis which rotates under the action of the electric field. When the angle between this axis and the polarization plane of incident linearly polarized light is above its critical value, the C points (points of circular polarization) appear in the form of symmetrically arranged chains of densely packed star-monstar pairs. We also emphasize the role of phase singularities of a different kind and discuss the enhanced electro-optic response of DHFLCs near the exceptional point where the condition of zero-field isotropy is fulfilled.

  9. An automatic rat brain extraction method based on a deformable surface model.

    Science.gov (United States)

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Rotating Rig Development for Droplet Deformation/Breakup and Impact Induced by Aerodynamic Surfaces

    Science.gov (United States)

    Feo, A.; Vargas, M.; Sor, A.

    2012-01-01

    This work presents the development of a Rotating Rig Facility by the Instituto Nacional de Tecnica Aeroespacial (INTA) in cooperation with the NASA Glenn Research Center. The facility is located at the INTA installations near Madrid, Spain. It has been designed to study the deformation, breakup and impact of large droplets induced by aerodynamic bodies. The importance of these physical phenomena is related to the effects of Supercooled Large Droplets in icing clouds on the impinging efficiency of the droplets on the body, that may change should these phenomena not be taken into account. The important variables and the similarity parameters that enter in this problem are presented. The facility's components are described and some possible set-ups are explained. Application examples from past experiments are presented in order to indicate the capabilities of the new facility.

  11. Episodic inflation and complex surface deformation of Akutan volcano, Alaska revealed from GPS time-series

    Science.gov (United States)

    DeGrandpre, Kimberly; Wang, Teng; Lu, Zhong; Freymueller, Jeffrey T.

    2017-11-01

    Akutan is one of the most active volcanoes in the Aleutian island arc. Studies involving seismic, GPS, and InSAR data have observed activity and deformation on the island since 1996. In this study we inverted measurements of volcanic deformation, observed using three components of motions at 12 continuous GPS sites to define magma source parameters using Mogi point source, Okada dislocation, and Yang spheroid and ellipsoid models. In order to analyze the evolution of this magma source we split the GPS data into five consecutive time periods, and one period that incorporates all available data. These time periods were designed around two inflation events in 2008 and 2014, when a sudden and significant increase in vertical velocity was observed. Inversion of these time periods independently allowed us to create a magma volume time-series that is related to the physical migration of magma defined by the estimated source parameters. The best fit model parameters resulting from these inversions describes magma storage in the form of an oblate spheroid centered on the northeastern rim of the caldera of Akutan volcano, extending from a depth of 7 km to 8 km, with a length of 3.5 km, a strike of N165°E, and a dip of 63° from the horizontal to the southwest. Our model results were compared with seismic studies and found to support previous interpretations of episodic inflation beneath Akutan volcano with complicated magma storage at intermediate depths. The inflation event observed in 2008 was estimated to be the result of an injection of magma of 0.08 km3 that was followed in 2014 by an additional increase in volume of 0.06 km3. No periods of deflation were observed in the GPS data after these events, and we believe the total volume of magma accumulated in this region, 0.2 km3, remains in a shallow storage system beneath Akutan Volcano.

  12. Time-variable surface patterns as an indicator of the surface environments on Mars

    Science.gov (United States)

    Toyota, T.; Kawaguchi, K.; Kurita, K.

    2008-09-01

    Introduction On the planets having atmosphere such as Mars various types of interactions between the atmosphere and the ground surface cause observable change in the surface pattern. Polar caps and aeolian features are typical examples. With the accumulation of satellitebased exploratory data, time-variable surface patterns have been focused and investigated extensively [1,2], because they can be direct indicators of the changing surface environments. Here we report two types of time-variable surface patterns that have been unidentified until now. One is dark halo near the top of high altitude volcanoes in Tharsis region. The other is brightness of the Outer Lobe of Double Layered Ejecta crater at the northern lowlands. Both have almost no associated topography and they are only recognized in visible/IR images as albedo patterns. Dark halo near the top of high altitude volcanoes in the Tharsis region Fig. 1 shows MOC wide-angle image of Pavonis Mons (R1400388NRed). The large caldera can be seen at the top of the volcano. Surrounding the caldera there exists a dark halo. Fig. 1B is MOC wide-angle image which shows detailed structure of the dark halo in the SW part. The dark zone is not uniform and instead it is composed of many slender dark stripes aligned in radial direction from the top (caldera center). Each unit is spindle-shaped with length of 30- 50km and width at the middle part of 5km. Spindles seem to start from higher position because it is always clear and darker. The initiation point is quite narrow region, which can be considered as a point. In many cases, there exist no recognisable obstacles at the initiation point. This is a remarkable difference from the wind streaks, which is caused by erosion/sedimentation of wind by local turbulence behind topographical anomaly. This makes us to consider something is emanating from subsurface, blown off by the mountain winds and deposited in downwind part. Similar pattern is observed in high altitude large volume

  13. First Results of Continuous GPS Monitoring of Surface Deformation at the Aquistore Underground CO2 Storage Site

    Science.gov (United States)

    Craymer, M. R.; Ferland, R.; Piraszewski, M.; Samsonov, S. V.; Czarnogorska, M.

    2014-12-01

    Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS monitoring of surface deformation. Five GPS monitoring stations were installed in 2012 and another six in 2013, some collocated on top of InSAR retroreflectors. The GPS data from these stations have been processed on a weekly basis in both baseline processing mode using the Bernese GPS Software and precise point positioning mode using CSRS-PPP. Here we present the first complete results with 1-2 years of data at all sites prior to CO2 injection. The time series of these sites are examined, compared and analysed with respect to monument stability, seasonal signals and estimates of expected regional ground motion. The individual weekly network solutions have also been combined together in a cumulative 4D network solution to provide a preliminary local velocity field in the immediately vicinity of the injection well. These results are also compared to those obtained independently from InSAR, in particular the direct comparison of GPS and InSAR at the retroreflectors.

  14. Tongue-surface movement patterns during speech and swallowing

    Science.gov (United States)

    Green, Jordan R.; Wang, Yu-Tsai

    2003-05-01

    The tongue has been frequently characterized as being composed of several functionally independent articulators. The question of functional regionality within the tongue was examined by quantifying the strength of coupling among four different tongue locations across a large number of consonantal contexts and participants. Tongue behavior during swallowing was also described. Vertical displacements of pellets affixed to the tongue were extracted from the x-ray microbeam database. Forty-six participants recited 20 vowel-consonant-vowel (VCV) combinations and swallowed 10 ccs of water. Tongue-surface movement patterns were quantitatively described by computing the covariance between the vertical time-histories of all possible pellet pairs. Phonemic differentiation in vertical tongue motions was observed as coupling varied predictably across pellet pairs with place of articulation. Moreover, tongue displacements for speech and swallowing clustered into distinct groups based on their coupling profiles. Functional independence of anterior tongue regions was evidenced by a wide range of movement coupling relations between anterior tongue pellets. The strengths and weaknesses of the covariance-based analysis for characterizing tongue movement are considered.

  15. High resolution remote sensing of water surface patterns

    Science.gov (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  16. Surface deformation time-series analysis at Ischia Island (South Italy) carried out via multi-platform monitoring systems

    Science.gov (United States)

    Manzo, Mariarosaria; Del Gaudio, Carlo; De Martino, Prospero; Ricco, Ciro; Tammaro, Umberto; Castaldo, Raffaele; Tizzani, Pietro; Lanari, Riccardo

    2014-05-01

    Ischia Island, located at the North-Western corner of the Gulf of Napoli (South Italy), is a volcanic area, whose state of activity is testified from eruptions (the last one occurred in 1302), earthquakes (the most disastrous in 1881 and 1883), hydrothermal manifestations and ground deformation. In this work we present the state of the art of the Ischia Island ground deformation phenomena through the joint analysis of data collected via different monitoring methodologies (leveling, GPS, and Differential SAR Interferometry) during the last twenty years. In particular, our analysis benefits from the large amount of periodic and continuous geodetic measurements collected by the 257 leveling benchmarks and the 20 (17 campaign and 3 permanent) GPS stations deployed on the island. Moreover, it takes advantage from the large archives of C-band SAR data (about 300 ascending and descending ERS-1/2 and ENVISAT images) acquired over the island since 1992 and the development of the advanced Differential SAR Interferometry (DInSAR) technique referred to as Small BAseline Subset (SBAS). The latter, allows providing space-time information on the ground displacements measured along the radar line of sight (LOS), and thanks to the availability of multi-orbit SAR data, permits to discriminate the vertical and east-west components of the detected displacements. Our integrated analysis reveals a complex deformative scenario; in particular, it identifies a spatially extended subsidence pattern, which increases as we move to higher heights, with no evidence of any uplift phenomena. This broad effect involve the Northern, Eastern, Southern and South-Western sectors of the island where we measure velocity values not exceeding -6 mm/year; moreover, we identify a more localized phenomenon affecting the North-Western area in correspondence to the Fango zone, where velocity values up to -10 mm/year are retrieved. In addition, our study shows a migration of the Eastern sector of the island

  17. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors.

    Science.gov (United States)

    Sutter, John P; Alcock, Simon G; Kashyap, Yogesh; Nistea, Ioana; Wang, Hongchang; Sawhney, Kawal

    2016-11-01

    Beam shaping is becoming increasingly important for synchrotron X-ray applications. Although routine for visible light lasers, this is challenging for X-rays due to the limited source coherence and extreme optical tolerances required for the shaping mirrors. In deliberate defocusing, even surface errors mirrors of fixed curvature. Such optics are useful for providing a fixed size of X-ray beam, but do not provide the adaptability required by many experiments. In contrast, deformable piezo bimorph mirrors permit a continuous range of X-ray beam sizes and shapes. A new theory is developed for applying non-periodic modifications of alternating curvature to optical surfaces. The position and length of the segments may be freely chosen. For the first time, surface modifications of alternating curvature are applied to bimorph mirrors to generate non-Gaussian X-ray beam profiles of specified width. The new theory's freedom is exploited to choose the segments to match the polishing errors of medium wavelength (>10 mm) and the piezos' influence on the mirror's figure. Five- and seven-segment modifications of alternating curvature are calculated and verified by visible light and X-ray metrology. The latter yields beam profiles with less striation than those made by defocusing. Remaining beam striations are explained by applying geometrical optics to the deviations from the ideal surface modifications of alternating curvature.

  18. Surface chemical treatment of ultrafine-grained Ti–6Al–7Nb alloy processed by severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, D.P., E-mail: dpedreira@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, SP (Brazil); Prokofiev, E. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, SP (Brazil); Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx Str., Ufa 450000 (Russian Federation); Sanches, L.F.R. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, SP (Brazil); Polyakova, V. [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx Str., Ufa 450000 (Russian Federation); Valiev, R.Z., E-mail: rzvaliev@mail.rb.ru [Institute of Physics of Advanced Materials, Ufa State Aviation Technical University, 12 K. Marx Str., Ufa 450000 (Russian Federation); Botta, W.J.; Junior, A.M.J.; Bolfarini, C. [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos, Rod. Washington Luiz, km 235, São Carlos 13565-905, SP (Brazil)

    2015-09-15

    Highlights: • Ultrafine-grained titanium alloys is a good choice for biomedical applications. • Acid phosphoric treatment enhances bioactivity of Ti–6Al–7Nb alloy. • Apatite precipitation was increased in ultrafine-grained after surface modification. - Abstract: Ti–6Al–7Nb containing harmless for tissues niobium can be a good choice replacing Ti–6Al–4V for orthopedic implants application. Formation of ultrafine-grained (UFG) structure in metals and alloys by severe plastic deformation (SPD) techniques allows for achieving unique mechanical properties. Using equal channel angular pressing (ECAP) UFG structure in Ti–6Al–7Nb alloy with an average size of grains/subgrains of 200 nm was obtained. This UFG Ti–6Al–7Nb alloy has high mechanical (ultimate tensile strength 1470 MPa) and fatigue properties, suitable for practical application. Additionally, surface modifications of titanium alloys aim induce specific responses on osteoblastic cells after implantation. Chemical surface treatments are simple methods to obtain a bioactive for apatite precipitation surface. Phosphoric acid etching combined or not with alkaline treatment presented bioactivity after seven days soaked in simulated body fluid (SBF) solution.

  19. Characteristics of lateral electrical surface stimulation (LESS) and its effect on the degree of spinal deformity in idiopathic scoliosis

    Science.gov (United States)

    Kowalski, Ireneusz M.; Palko, Tadeusz; Pasniczek, Roman; Szarek, Jozef

    2009-01-01

    Clinical studies were carried out in the period of 2003-2006 at the Provincial Children's Rehabilitation Hospital in Ameryka near Olsztyn (Poland). The study involved a group of children and youth exhibiting spinal deformity progression in idiopathic scoliosis (IS) of more than 5° per year according to the Cobb scale. Four hundred and fifty patients between 4 and 15 years of age were divided into three groups (n = 150). Group I and group II received 2-hour and 9-hour lateral electrical surface stimulation (LESS), respectively, whereas group III (control) was treated only with corrective exercises for 30 minutes twice a day. LESS was performed with the use of a battery-operated SCOL-2 stimulator manufactured by Elmech, Warsaw, Poland. The effectiveness of this method was confirmed in the treatment of spinal IS in children and youth, especially when the initial spinal deformity did not exceed 20° according to the Cobb scale. A short-duration electrostimulation (2 hours daily) was found to produce results similar to those obtained after overnight (9 h) electrostimulation. Moreover, the analysis of the Harrington prognostic index F confirms the positive effect of LESS in both groups of patients (2 h and 9 h of LESS).

  20. Modeling surface deformation observed with synthetic aperture radar interferometry at Campi Flegrei caldera

    NARCIS (Netherlands)

    Lundgren, P.; Usai, S.; Sansosti, E.; Lanari, R.; Tesauro, M.; Fornaro, G.; Berardino, P.

    2001-01-01

    Satellite radar interferometry of Campi Flegrei caldera, Italy, reveals a pattern of subsidence during the period 1993–1998. Interferograms spanning the first half of the observation period (1993–1995) have a lower amplitude and average rate of subsidence than those spanning either the second half

  1. Nanoscale Fluid Flows in the Vicinity of Patterned Surfaces

    Science.gov (United States)

    Cieplak, Marek; Koplik, Joel; Banavar, Jayanth R.

    2006-03-01

    Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nanochannels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanoscale using chemical patterning.

  2. Deformation and instabilities at a free surface of liquid subject to a local rapid evaporation

    International Nuclear Information System (INIS)

    Marechal, Anne

    1993-01-01

    This research thesis first addresses theoretical aspects related to the study of stationary system (the deformation of the liquid-vapour interface) and to the study of the linear stability of this interface, and more particularly the study of the liquid-vapour interface of a fluid heated by electron bombardment in a vacuum enclosure. The author reports the analysis of Landau and Palmer systems, reports the study of the marginal stability of a simplified SILVA (isotopic separation by laser on atomic vapour) system which allows the identification of destabilizing mechanisms, and the comparison between a liquid system heated from underneath with liquid system heated from above. Results are then validated by experimental results. In the next part, the author sets the equations of a SILVA system closer to reality by addressing vapour in a more realistic way. Results of conventional kinetic theory are studied again by analysing sonic evaporation of a liquid. The author reports a study of the linear stability of this system, and reports an attempt to analyse the obtained results [fr

  3. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  4. Strain-induced phase transformation at the surface of an AISI-304 stainless steel irradiated to 4.4 dpa and deformed to 0.8% strain

    Science.gov (United States)

    Gussev, M. N.; Field, K. G.; Busby, J. T.

    2014-03-01

    Surface relief due to localized deformation in a 4.4-dpa neutron-irradiated AISI 304 stainless steel was investigated using scanning electron microscopy coupled with electron backscattering diffraction and scanning transmission electron microscopy. It was found a body-centered-cubic (BCC) phase (deformation-induced martensite) had formed at the surface of the deformed specimen along the steps generated from dislocation channels. Martensitic hill-like formations with widths of ˜1 μm and depths of several microns were observed at channels with heights greater than ˜150 nm above the original surface. Martensite at dislocation channels was observed in grains along the [0 0 1]-[1 1 1] orientation but not in those along the [1 0 1] orientation.

  5. PAF: A software tool to estimate free-geometry extended bodies of anomalous pressure from surface deformation data

    Science.gov (United States)

    Camacho, A. G.; Fernández, J.; Cannavò, F.

    2018-02-01

    We present a software package to carry out inversions of surface deformation data (any combination of InSAR, GPS, and terrestrial data, e.g., EDM, levelling) as produced by 3D free-geometry extended bodies with anomalous pressure changes. The anomalous structures are described as an aggregation of elementary cells (whose effects are estimated as coming from point sources) in an elastic half space. The linear inverse problem (considering some simple regularization conditions) is solved by means of an exploratory approach. This software represents the open implementation of a previously published methodology (Camacho et al., 2011). It can be freely used with large data sets (e.g. InSAR data sets) or with data coming from small control networks (e.g. GPS monitoring data), mainly in volcanic areas, to estimate the expected pressure bodies representing magmatic intrusions. Here, the software is applied to some real test cases.

  6. Modelling the deformations during the manufacturing of nanostructures on non-planar surfaces for injection moulding tool inserts

    DEFF Research Database (Denmark)

    Sonne, M. R.; Cech, J.; Pranov, H.

    2016-01-01

    This paper presents a new manufacturing process for transferring nanostructures from a glass wafer to a curved aluminium insert for polymer injection moulding. A nanostructure consisting of sinusoidal cross-gratings with a period of 426 nm is successfully transferred to hemispheres with different...... radii via an embossing process. The embossing is done into a glass-like resist called HSQ, using a 50 μm thick nickel foil, manufactured with electroforming. During the imprinting process the nickel foil is stretched due to the curved surface of the aluminium substrate and it is experimentally possible...... to characterize this stretch by counting the periods of the cross-gratings via SEM characterization. A numerical model for simulating the deformation of the nickel foil during nanoimprint is also developed, utilizing non-linear material and geometrical behaviour. Good agreement between measured and numerically...

  7. Time Series Surface Deformation using Multi-Temporal InSAR Technique at Mount Sinabung Eruption in North Sumatra, Indonesia

    Science.gov (United States)

    Hwang, Eui-Hong; Lee, ChangWook; Jo, Eunyoung; Lee, SeulKi; Kim, KiYeon

    2014-05-01

    Sinabung volcano in Indonesia is a part of the Pacific Ring of Fire, formed due to the subduction between the Eurasian and the Indo-Australian plate. After about 400-year dormancy, Sinabung volcano erupted on August 29, 2010 and January 4, 2014, recently. We study the surface deformation of Sinabung volcano using ALOS/PALSAR and RADARSAT-2 interferometric synthetic aperture radar (InSAR) images acquired from February 2007 to September 2013. Based on multi-temporal InSAR processing, we can generate the ground surface deformation map due to the 2010 eruption. During the 3 years before the 2010 eruption, the volcano inflated at an average rate ~1.7 cm/yr with marked higher rate of 6.6 cm/year during the 6 months prior to the 2010 eruption. The inflation is constrained to the top of the volcano. Since the 2010 eruption to January 2011, the volcano has subsided for about 3 cm (or about 6 cm/yr). The observed inflation and deflation are modeled with a Mogi and Prolate spheroid source. The source of inflation is located about 0.3 - 1.3 km below sea level directly underneath the crater. On the other hand, deflation source is modeled about 0.6-1.0 km with coeruption period. The average volumetric change was about from 1.9x10-6 to -2.7x10-5 km3/yr during the eruption event using ALOS/PALSAR images. Recently, RADARSAT-2 SAR data were applied to new eruption event from September 2013 to January 2014 for frequently eruption during short time period. We interpret the inflation was due to magma accumulation at a shallow reservoir beneath the Sinabung volcano. The deflation was due to the magma withdrawal from the shallow reservoir during the eruption as well as thermo-elastic compaction of erupted material.

  8. Effect of machining on the deformability of steel in surface-active medium at lower temperatures

    International Nuclear Information System (INIS)

    Gusti, E.Ya.; Babej, Yu.I.

    1977-01-01

    The effect of some machining methods of carbon steel, chromium steel, and chromium nickel steel, and that of low temperatures on the principle characteristics of formability during impact bending in air and a surface-active environment have been studied. The temperature decrease from the ambient to -80 deg is shown to reduce steel formability as evaluated by deflection (f) and to increase the forming force. The variation of these characteristics with lowering temperature, however, is greatly affected by machining process conditions. The FRHT (Friction-Hardening Treatment) on the white layer assures minimum ductility losses, and increases steel strength at low temperatures both in air and in the surface-active environment

  9. Subsurface deformation and the role of surface texture—A study with ...

    Indian Academy of Sciences (India)

    Moore M A, Richardson R C D, Attwood D G 1972 The limiting strength of worn metal surfaces. Metall. Trans. 3: 2485–2491. Petryk H 1987 Slip line field solutions for sliding contact. Proc. Inst. Mech. Eng. Int. Conf., Tribology. Friction, Lubrication and Wear 50 years on, vol II, London pp 987–994. Rice S L, Nowotny H, Wayne ...

  10. Nano-patterned superconducting surface for high quantum efficiency cathode

    Energy Technology Data Exchange (ETDEWEB)

    Hannon, Fay; Musumeci, Pietro

    2017-03-07

    A method for providing a superconducting surface on a laser-driven niobium cathode in order to increase the effective quantum efficiency. The enhanced surface increases the effective quantum efficiency by improving the laser absorption of the surface and enhancing the local electric field. The surface preparation method makes feasible the construction of superconducting radio frequency injectors with niobium as the photocathode. An array of nano-structures are provided on a flat surface of niobium. The nano-structures are dimensionally tailored to interact with a laser of specific wavelength to thereby increase the electron yield of the surface.

  11. A plateau–valley separation method for textured surfaces with a deterministic pattern

    DEFF Research Database (Denmark)

    Godi, Alessandro; Kühle, Anders; De Chiffre, Leonardo

    2014-01-01

    The effective characterization of textured surfaces presenting a deterministic pattern of lubricant reservoirs is an issue with which many researchers are nowadays struggling. Existing standards are not suitable for the characterization of such surfaces, providing at times values without physical...

  12. Phase change in subducted lithosphere, impulse, and quantizing Earth surface deformations

    Science.gov (United States)

    Bowin, C. O.; Yi, W.; Rosson, R. D.; Bolmer, S. T.

    2015-09-01

    conservation of angular momentum. Since mountain building we now know results from changes in momentum, we have calculated an experimental deformation index value (1-1000) based on a world topographic grid at 5 arcmin spacing and displayed those results for viewing.

  13. Surface pattern by nanoimprint for membrane fouling mitigation: Design, performance and mechanisms.

    Science.gov (United States)

    Xie, Ming; Luo, Wenhai; Gray, Stephen R

    2017-11-01

    Imparting water treatment membrane with surface pattern by nanoimprint offered a novel approach to fouling resistance. We employed nanoimprint to fabricate line-shape nanostructure on membrane distillation (MD) membrane surface. Patterned MD membrane exhibited strong antifouling property to Bovine Serum Albumin (BSA) protein during MD separation. Water flux decline and protein deposition were substantially minimized on the patterned MD membrane in comparison with the pristine one. Such lower fouling propensity on the patterned MD membrane was mainly driven by the weak hydrophobic interaction between BSA protein and patterned MD membrane surface. Weaker adhesion force mapping of the patterned MD membrane was quantified. Representative force-distance curve of pristine MD membrane showed a strong attractive depletion force comparing with that of patterned one. The simple, chemical-free, and scalable nanofabrication approach enables varying designs on membrane surface for special membrane properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Development of a High Slip-resistant Footwear Outsole Using a Hybrid Rubber Surface Pattern

    OpenAIRE

    YAMAGUCHI, Takeshi; HOKKIRIGAWA, Kazuo

    2014-01-01

    Abstract: The present study examined whether a new footwear outsole with tread blocks and a hybrid rubber surface pattern, composed of rough and smooth surfaces, could increase slip resistance and reduce the risk of fall while walking on a wet floor surface. A drag test was performed to measure static and dynamic coefficient of friction (SCOF and DCOF, respectively) values for the footwear with the hybrid rubber surface pattern outsole and two types of commercially available boots that are co...

  15. Removal of nanoparticles from plain and patterned surfaces using nanobubbles

    NARCIS (Netherlands)

    Yang, S.; Duisterwinkel, A.E.

    2011-01-01

    It is the aim of this paper to quantitatively characterize the capability of surface nanobubbles for surface cleaning, i.e., removal of nanodimensioned polystyrene particles from the surface. We adopt two types of substrates: plain and nanopatterned (trench/ridge) silicon wafer. The method used to

  16. Leidenfrost point reduction on micro-patterned metallic surface

    NARCIS (Netherlands)

    Arnaldo del Cerro, D.; Gomez Marin, Alvaro; Römer, Gerardus Richardus, Bernardus, Engelina; Pathiraj, B.; Lohse, Detlef; Huis in 't Veld, Bert

    2012-01-01

    Droplets are able to levitate when deposited over a hot surface exceeding a critical temperature. This is known as the Leidenfrost effect. This phenomenon occurs when the surface is heated above the so-called Leidenfrost point (LFP), above which the vapor film between the droplet and hot surface is

  17. Nanoscale Deformable Optics

    Science.gov (United States)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  18. Identification of tectonic deformations on the south polar surface of the moon

    Science.gov (United States)

    Mukherjee, Saumitra; Singh, Priyadarshini

    2015-07-01

    Recent extensional and contractional tectonic features present globally over the lunar surface have been studied to infer lunar crustal tectonism. Investigation of indicators of recent crustal tectonics, such as fault lines, thrust fault scarps, and dislocation of debris along the identified fault planes, primarily using data from the miniature-synthetic aperture radar (mini-SAR) aboard CHANDRAYAAN-1 mission and Narrow angle camera (NAC) images, are the focus of this study. Spatial orientation of these tectonic features helps to elucidate the change in the interior geological dynamics of any planetary body with time. The ability of microwave sensors to penetrate the lunar regolith, along with application of m-χ decomposition method on Mini-SAR data has been used to reveal unique features indicative of hidden tectonics. The m-χ decomposition derived radar images expose hidden lineaments and lobate scarps present within shadowed crater floors as well as over the illuminated regions of the lunar surface. The area around and within Cabeus B crater in the South Polar Region contains lobate scarps, hidden lineaments and debris avalanches (associated with the identified lineaments) indicative of relatively recent crustal tectonism.

  19. Determination of stamp deformation during imprinting on semi-spherical surfaces

    DEFF Research Database (Denmark)

    Kafka, Jan; Matschuk, Maria; Pranov, Henrik

    of sol-gel was applied onto spherical injection mold inserts and subsequently imprinted using a flexible stamp. A hard curing step transformed the sol-gel into a quartz-like and durable material. As an example, we present theory and results regarding the imprint of pillar nanostructures on semi......-spherical mold surfaces. Imprints were realized on three different radii of circumferenceof the spherical mold: R = 0.5 mm, R = 1.0 mm, and R = 2 mm. After hard-curing of theimprinted sol-gel, the inserts were used for cold-mold as well as vario-therm injection molding.The polymer replicas and the inserts were...

  20. Deformation patterns, magma supply, and magma storage at Karymsky Volcanic Center, Kamchatka, Russia, 2000-2010, revealed by InSAR

    Science.gov (United States)

    Ji, Lingyun; Izbekov, Pavel; Senyukov, Sergey; Lu, Zhong

    2018-02-01

    Under a complex geological region influenced by the subduction of the Pacific plate, Kamchatka Peninsula is one of the most active volcanic arcs in the Pacific Rim. Due to logistical difficulty in instrumentation, shallow magma plumbing systems beneath some of the Kamchatkan volcanoes are poorly understood. InSAR offers a safe and quick method for monitoring volcanic deformation with a high spatial resolution. In this study, a group of satellite radar interferograms that span the time interval from 2000 to 2010 shows eruptive and non-eruptive deformation at Karymsky Volcanic Center (KVC), Kamchatka, Russia. All the interferograms provide details of the activity around the KVC during 2000-2010, as follows: (1) from 2000 to 2004, the Karymsky-AN (Akademia Nauk) area deflated and the MS (Maly Semyachik) area inflated, (2) from 2004 to 2006, the Karymsky-AN area deflated with ongoing eruption, while the MS area subsided without eruption, (3) from 2006 to 2008, as with 2000-2004, the Karymsky-AN area deflated and the MS area inflated, (4) from 2008 to 2010, the Karymsky-AN area inflated up to 3 cm, and the MS area subsided. Point source models suggest that two magma reservoirs provide a good fit to the observed deformation. One source is located beneath the area between Karymsky and AN at a depth of approximately 7.0 km, and the other one is situated beneath MS at a depth of around 5.8 km. Synchronous deformation patterns suggest that two magma systems are fed from the same deep magma source and connected by a fracture zone. The InSAR results are consistent with GPS ground deformation measurements, seismic data, and petrological constraints.

  1. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement.

    Science.gov (United States)

    Li, Dong; Kofman, Jonathan

    2014-04-21

    In fringe-projection 3D surface-shape measurement, image saturation results in incorrect intensities in captured images of fringe patterns, leading to phase and measurement errors. An adaptive fringe-pattern projection (AFPP) method was developed to adapt the maximum input gray level in projected fringe patterns to the local reflectivity of an object surface being measured. The AFPP method demonstrated improved 3D measurement accuracy by avoiding image saturation in highly-reflective surface regions while maintaining high intensity modulation across the entire surface. The AFPP method can avoid image saturation and handle varying surface reflectivity, using only two prior rounds of fringe-pattern projection and image capture to generate the adapted fringe patterns.

  2. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    International Nuclear Information System (INIS)

    Bjoern Petersen, Steffen; Kold di Gennaro, Ane; Neves-Petersen, Maria Teresa; Skovsen, Esben; Parracino, Antonietta

    2010-01-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We demonstrate that, by shaping the pattern of the UV light used to induce molecular immobilization, one can control the pattern of immobilized molecules onto the surface. Using a single-aperture spatial mask, combined with the Fourier transforming property of a focusing lens, we show that submicrometer (0.7 μm) resolved patterns of immobilized prostate-specific antigen biomolecules can be created. If a dual-aperture spatial mask is used, the results differ from the expected Fourier transform pattern of the mask. It appears as a superposition of two diffraction patterns produced by the two apertures, with a fine structured interference pattern superimposed.

  3. A parametric study of laser interference surface patterning of dental zirconia: Effects of laser parameters on topography and surface quality.

    Science.gov (United States)

    Roitero, Erica; Lasserre, Federico; Anglada, Marc; Mücklich, Frank; Jiménez-Piqué, Emilio

    2017-01-01

    The aim of this work is to generate micrometric linear patterns with different topography on dental grade zirconia by means of UV laser interference and to assess the quality of the produced surface, both in term of the geometry produced and of the surface damage induced in the material. The third harmonic of a Q-switched Nd:YAG laser (355nm, pulse duration of 10ns and repetition rate of 1Hz) was employed to pattern the surface of 3Y-TZP with micrometric-spaced lines. The resulting topography was characterized with White Light Interferometry and Scanning electron microscopy: pattern depth (H), amplitude roughness parameters (S a , filtered-S a ), Fourier spatial analysis and collateral damages were related to laser fluence and number of pulses employed. With our experimental setup, line-patterning of zirconia surfaces can be achieved with periodicities comprised within 5 and 15μm. Tuning laser parameters allows varying independently pattern depth, overall roughness and surface finish. Increasing both fluence and number of pulses allows producing deeper patterns (maximum achievable depth of 1μm). However, increasing the number of pulses has a detrimental effect on the quality of the produced lines. Surface damage (intergranular cracking, open porosity and nano-droplets formation) can be generated, depending on laser parameters. This work provides a parametric analysis of surface patterning by laser interference on 3Y-TZP. Best conditions in terms of quality of the produced pattern and minimum material damage are obtained for low number of pulses with high laser fluence. With the employed method we can produce zirconia materials with controlled topography that are expected to enhance biological response and mechanical performance of dental components. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. The deformation pattern of high-pressure exhumation in the Adula Nappe (Switzerland) - Preliminary results from crystallographic preferred orientations of quartz

    Science.gov (United States)

    Keppler, Ruth; Stipp, Michael; Froitzheim, Niko

    2017-04-01

    The Adula Nappe in the central Alps forms the easternmost part of the Lepontine dome, which mainly consists of basement nappes and their Mesozoic cover. The Adula Nappe was originally part of the distal European continent and entered a south-dipping subduction zone experiencing high- to ultrahigh pressure peak conditions at about 38 Ma. The unit underwent several deformation phases after peak conditions including the Zapport phase, which accomplished the largest part of the exhumational deformation. Despite extensive research in the Adula Nappe, the internal deformation during exhumation is not completely understood. Especially the large pressure-temperature gradient from 12-17 kbar/500-600 C° in the north to 30 kbar/800-850 C° in the south is a topic of recent discussion. This phenomenon either originates from internal, heterogeneous deformation of the Adula Nappe during its exhumation, or it was caused by tectonic overpressure, which would indicate that the Adula Nappe was not as deeply subducted as previously assumed. In this study, we sampled quartzites, micaschists, para- and orthogneisses in a close-meshed net throughout the entire Adula Nappe. Only samples showing Zapport deformation without significant younger overprint were collected. Crystallographic preferred orientations (CPOs) of all mineral phases in the samples were measured with time-of-flight neutron diffraction using the SKAT diffractometer at JINR, Dubna, Russia. Quartz CPOs show great variability. Most of the c-axis patterns yield an asymmetry charateristic of a top-to-the-north sense of shear, although there are few top-to-the-south samples. Most c-axes exhibit peripheral maxima at an angle to the foliation normal pointing to dominant basal slip, especially in the northern Adula Nappe. The samples from the central Adula Nappe show also maxima between Z and Y of the c-axis pole figure indicative of rhomb-, π- and prism slip. These maxima are usually combined with asymmetric crossed or single

  5. Superficial deformations determination in silicon monocrystals by X-ray difraction

    International Nuclear Information System (INIS)

    Carvalho, C.A.M.

    1985-01-01

    We present a technique of determination of deformation distribution in monocrystal surfaces through the adjustement of Bragg reflection patterns obtained from the X-ray diffraction theory. (M.W.O.) [pt

  6. Surface temperature pattern of the Indian Ocean before summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Gopinathan, C.K.; Rao, D.P.

    The surface meteorological data collected during 1963 and 1964 indicate that the northward migration of the ITCZ is associated with a shift of the warm waters to the northern Indian Ocean. The warmer waters, found in the equatorial regions during...

  7. Nanoparticles dynamics on a surface: fractal pattern formation and fragmentation

    DEFF Research Database (Denmark)

    Dick, Veronika V.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2010-01-01

    In this paper we review our recent results on the formation and the post-growth relaxation processes of nanofractals on surface. For this study we developed a method which describes the internal dynamics of particles in a fractal and accounts for their diffusion and detachment. We demonstrate...... that these kinetic processes determine the final shape of the islands on surface after post-growth relaxation. We consider different scenarios of fractal relaxation and analyze the time evolution of the island's morphology....

  8. A TESSELLATION MODEL FOR CRACK PATTERNS ON SURFACES

    Directory of Open Access Journals (Sweden)

    Werner Nagel

    2011-05-01

    Full Text Available This paper presents a model of random tessellations that reflect several features of crack pattern. There are already several theoretical results derivedwhich indicate that thismodel can be an appropriate referencemodel. Some potential applications are presented in a tentative statistical study.

  9. Patterns of deformation, exhumation and uplift across the Island of Timor: insights into the processes that control the early stages of orogenesis (Invited)

    Science.gov (United States)

    McQuarrie, N.; Tate, G. W.; Van Hinsbergen, D. J.; Harris, R. A.

    2013-12-01

    On the island of Timor, arc-continent collision between the Banda volcanic arc and the Australian continent since the late Miocene has uplifted a mountain range containing both deeply exhumed metamorphic rocks and deepwater synorogenic basins. These varied lithologies are separated by a few tens of kilometers, and provide us with an opportunity to examine the spatial patterns of differential uplift and exhumation and its links to the geometry and magnitude of deformation in an orogen that is still in its infancy. New mapping in Timor has provided a detailed view of how the Australian continental slope and shelf rocks are being structurally repeated below overriding Banda Arc material. In East Timor, a window though the Banda terrane shows Permian and Triassic rocks that are repeated by four NNE-striking thrust faults with ~3 km spacing and 50-75 km along-strike extent. The strike of these faults is rotated 50-60 degrees compared to structures to the east and west of this main window. In addition, mapped fold axes are shown to cut across and warp fault traces. These map patterns indicate that the duplex has been both refolded and tilted since its initial formation. In West Timor, Permian through Triassic stratigraphy is faulted and folded into an antiformal stack with 5 exposed thrusts repeating an ~ 3 km thick section. Both south of and adjacent to these structural highs are 10-20 km wide piggyback basins of deepwater, synorogenic marine limestones and clays that coarsen upward into turbidites. Deposition of these units initiated at 5.5 Ma at lower bathyal depths. Synorogenic deposition directly over the Bobonaro mélange, which acts as the décollement between the overthrust Banda Arc rocks and the structurally repeated Australian margin rocks, requires the removal of both Banda arc material and the Cretaceous and younger Kolbano sequence before deposition. These basins record rapid surface uplift to upper bathyal depths from 3.5-3 Ma with continual uplift to

  10. Creation of wettability contrast patterns on metallic surfaces via pen drawn masks

    Science.gov (United States)

    Choi, Won Tae; Yang, Xiaolong; Breedveld, Victor; Hess, Dennis W.

    2017-12-01

    Micropatterned surfaces with wettability contrast have attracted considerable attention due to potential applications in 2D microfluidics, bioassays, and water harvesting. A simple method to develop wettability contrast patterns on metallic surfaces by using a commercial marker is described. A marker-drawn ink pattern on a copper surface displays chemical resistance to an aqueous solution of sodium bicarbonate and ammonium persulfate, thereby enabling selective nanowire growth in areas where ink is absent. Subsequent ink removal by an organic solvent followed by fluorocarbon film deposition yields a stable hydrophobic/super-hydrophobic patterned copper surface. Using this approach, hydrophobic dot and line patterns were constructed. The adhesion force of water droplets to the dots was controlled by adjusting pattern size, thus enabling controlled droplet transfer between two surfaces. Anisotropy of water droplet adhesion to line patterns can serve as a basis for directional control of water droplet motion. This general approach has also been employed to generate wettability contrast on aluminum surfaces, thereby demonstrating versatility. Due to its simplicity, low cost, and virtual independence of solid surface material, ink marker pens can be employed to create wettability patterns for a variety of applications, in fields as diverse as biomedicine and energy.

  11. A Constellation of CubeSat InSAR Sensors for Rapid-Revisit Surface Deformation Studies

    Science.gov (United States)

    Wye, L.; Lee, S.; Yun, S. H.; Zebker, H. A.; Stock, J. D.; Wicks, C. W., Jr.; Doe, R.

    2016-12-01

    The 2007 NRC Decadal Survey for Earth Sciences highlights three major Earth surface deformation themes: 1) solid-earth hazards and dynamics; 2) human health and security; and 3) land-use change, ecosystem dynamics and biodiversity. Space-based interferometric synthetic aperture radar (InSAR) is a key change detection tool for addressing these themes. Here, we describe the mission and radar payload design for a constellation of S-band InSAR sensors specifically designed to provide the global, high temporal resolution, sub-cm level deformation accuracy needed to address some of the major Earth system goals. InSAR observations with high temporal resolution are needed to properly monitor certain nonlinearly time-varying features (e.g., unstable volcanoes, active fault lines, and heavily-used groundwater or hydrocarbon reservoirs). Good temporal coverage is also needed to reduce atmospheric artifacts by allowing multiple acquisitions to be averaged together, since each individual SAR measurement is corrupted by up to several cm of atmospheric noise. A single InSAR platform is limited in how often it can observe a given scene without sacrificing global spatial coverage. Multiple InSAR platforms provide the spatial-temporal flexibility required to maximize the science return. However, building and launching multiple InSAR platforms is cost-prohibitive for traditional satellites. SRI International (SRI) and our collaborators are working to exploit developments in nanosatellite technology, in particular the emergence of the CubeSat standard, to provide high-cadence InSAR capabilities in an affordable package. The CubeSat Imaging Radar for Earth Science (CIRES) subsystem, a prototype SAR elec­tronics package developed by SRI with support from a 2014 NASA ESTO ACT award, is specifically scaled to be a drop-in radar solution for resource-limited delivery systems like CubeSats and small airborne vehicles. Here, we present our mission concept and flow-down requirements for a

  12. Reducing interior temperature resulting from solar energy using three-dimensional surface patterns

    Directory of Open Access Journals (Sweden)

    Shiang-Jiun Lin

    2015-05-01

    Full Text Available Excessive solar energy can significantly increase interior temperatures and yield great energy demands for air conditioning. Whereas reducing energy consumptions is very crucial today, this article employs patterned glass technology which incorporates linear patterns throughout the exterior surface of glass to attenuate the solar effect on the interior thermal field based on theoretical and experimental studies. By periodically imposing linearly three-dimensional patterns over the outer surface of window glass, the analytical results indicate that the interior solar heat is able to be reduced, as the surface patterns increase the incident angle and/or decrease the solar energy loading on the patterned glass material. Moreover, the interior solar heat can be strongly affected by the pattern design. According to thermally measured results, the trapezoidal patterned glass having 3-mm-top-edged patterned members yields lower temperature on the interior surface of glass comparing with that for the trapezoidal patterns having 6-mm-top edges. Therefore, making the least non-sloped feature or flat plane appearing on the patterned glass helps decrease the interior temperature resulting from solar energy.

  13. Self-assembly patterning of organic molecules on a surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  14. Patterns of congenital bony spinal deformity and associated neural anomalies on X-ray and magnetic resonance imaging

    OpenAIRE

    Trenga, Anthony P.; Singla, Anuj; Feger, Mark A.; Abel, Mark F.

    2016-01-01

    Purpose Congenital malformations of the bony vertebral column are often accompanied by spinal cord anomalies; these observations have been reinforced with the use of magnetic resonance imaging (MRI). We hypothesized that the incidence of cord anomalies will increase as the number and complexity of bony vertebral abnormalities increases. Methods All patients aged ?13 years (n?=?75) presenting to the pediatric spine clinic from 2003?2013 with congenital bony spinal deformity and both radiograph...

  15. Fingering patterns during droplet impact on heated surfaces

    NARCIS (Netherlands)

    Khavari, M.; Sun, Chao; Lohse, Detlef; Tran, Tuan

    2015-01-01

    A droplet impinging on a sufficiently heated surfacemay be cushioned by its own vapor and never touch the surface. In previous work, the transition to this so-called Leidenfrost regime was only qualitatively described as an abrupt change between the “contact-boiling” regime, which is characterized

  16. METHOD FOR FABRICATING NANOSCALE PATTERNS ON A SURFACE

    DEFF Research Database (Denmark)

    2000-01-01

    A novel method to fabricate nanoscale pits on Au(111) surfaces in contact with aqueous solution is claimed. The method uses in situ electrochemical scanning tunnelling microscopy with independent electrochemical substrate and tip potential control and very small bias voltages. This is significantly...

  17. Temporal and spatial patterning of sea surface temperature in the ...

    African Journals Online (AJOL)

    The physical dynamics of the northern Benguela upwelling system between July 1981 and August 1987 were investigated by applying standardized Principal Components Analysis to a time-series of 235 mean, weekly sea surface temperature satellite images of the region. The first three principal components accounted for ...

  18. Immobilization of biomolecules onto surfaces according to ultraviolet light diffraction patterns

    DEFF Research Database (Denmark)

    Petersen, Steffen B.; Gennaro, Ane Kold Di; Neves Petersen, Teresa

    2010-01-01

    We developed a method for immobilization of biomolecules onto thiol functionalized surfaces according to UV diffraction patterns. UV light-assisted molecular immobilization proceeds through the formation of free, reactive thiol groups that can bind covalently to thiol reactive surfaces. We...... demonstrate that, by shaping the pattern of the UV light used to induce molecular immobilization, one can control the pattern of immobilized molecules onto the surface. Using a single-aperture spatial mask, combined with the Fourier transforming property of a focusing lens, we show that submicrometer (0.7 mu...

  19. Frog tongue surface microstructures: functional and evolutionary patterns

    Science.gov (United States)

    Gorb, Stanislav N

    2016-01-01

    Summary Frogs (Lissamphibia: Anura) use adhesive tongues to capture fast moving, elusive prey. For this, the tongues are moved quickly and adhere instantaneously to various prey surfaces. Recently, the functional morphology of frog tongues was discussed in context of their adhesive performance. It was suggested that the interaction between the tongue surface and the mucus coating is important for generating strong pull-off forces. However, despite the general notions about its importance for a successful contact with the prey, little is known about the surface structure of frog tongues. Previous studies focused almost exclusively on species within the Ranidae and Bufonidae, neglecting the wide diversity of frogs. Here we examined the tongue surface in nine different frog species, comprising eight different taxa, i.e., the Alytidae, Bombinatoridae, Megophryidae, Hylidae, Ceratophryidae, Ranidae, Bufonidae, and Dendrobatidae. In all species examined herein, we found fungiform and filiform papillae on the tongue surface. Further, we observed a high degree of variation among tongues in different frogs. These differences can be seen in the size and shape of the papillae, in the fine-structures on the papillae, as well as in the three-dimensional organization of subsurface tissues. Notably, the fine-structures on the filiform papillae in frogs comprise hair-like protrusions (Megophryidae and Ranidae), microridges (Bufonidae and Dendrobatidae), or can be irregularly shaped or absent as observed in the remaining taxa examined herein. Some of this variation might be related to different degrees of adhesive performance and may point to differences in the spectra of prey items between frog taxa. PMID:27547606

  20. A new theory for the static contact between rough, unmated surfaces in non-elastically deforming rock and its implications for rock friction

    Science.gov (United States)

    Stesky, R. M.; Hannan, S. S.

    The closure behavior of fractures in marble and alabaster is markedly different from that in quartzite. The aperture decreases considerably more under normal stress and remains permanently reduced, for the same ratio of normal stress to unconfined compressive strength. Also, a larger permanent relative contact area develops between the surfaces of marble and alabaster than it does between surfaces of quartzite. The permanent contact area increases at an increasing rate with normal stress in marble and alabaster, unlike the nearly linear increase in quartzite. The failure of surface asperities of calcite and gypsum during closure accounts for these differences. We modeled this process by considering the surfaces to consist of paraboloids lying on a flat plane and having a range of initial heights. Closure occurs by pressing a plane rigid surface against the 'hills', flattening their peaks, keeping the base area of the hills constant. To allow for a changing resistance to deformation, the contact stress is assumed to vary linearly with the shortening strain, to a first approximation. This model was tested against measurements of fracture closure and contact area of rough surfaces of calcite marble with a known initial height distribution of surface peaks. The fit to the data is quite good. In all cases, the model shows that closure is accompanied by a decrease in contact strength of deforming asperities, suggested also by the cataclastic deformation observed petrographically. The number of contact spots and the total length of contact seen in profile are also reasonably well modeled. These results have important implications for our understanding of frictional strength of fractures. The overall resistance to shear along rough surfaces depends upon the product of the shear strength and true area of the contacts, both of which are affected by normal stress. Application of this model approach shows that the initial frictional resistance of some fractures in ductile

  1. Temporal deformation pattern in acute and late phases of ST-elevation myocardial infarction: incremental value of longitudinal post-systolic strain to assess myocardial viability.

    Science.gov (United States)

    Huttin, Olivier; Marie, Pierre-Yves; Benichou, Maxime; Bozec, Erwan; Lemoine, Simon; Mandry, Damien; Juillière, Yves; Sadoul, Nicolas; Micard, Emilien; Duarte, Kevin; Beaumont, Marine; Rossignol, Patrick; Girerd, Nicolas; Selton-Suty, Christine

    2016-10-01

    Identification of transmural extent and degree of non-viability after ST-segment elevation myocardial infarction (STEMI) is clinically important. The objective of the present study was to assess the regional mechanics and temporal deformation patterns using speckle tracking echocardiography (STE) in acute and later phases of STEMI to predict myocardial damage in these patients. Ninety-eight patients with first STEMI underwent both echocardiography and cardiac magnetic resonance imaging in acute phase and at 6 months follow-up with 2D STE-derived measurements of peak longitudinal strain (PLS), Pre-STretch index (PST) and post-systolic deformation index (PSI). For each segment, late gadolinium enhancement (LGE) was defined as transmural (LGE >66 %) or non-transmural (infarct size at both visits. A significantly lower value of segmental PLS and higher PSI and PST in necrotic segments were observed comparatively to control, adjacent and remote segments. The best parameters to predict transmural extent in acute phase were PSI with a cutoff value of 8 % (AUC: 0.84) and PLS with a cutoff value of -13 % (AUC: 0.86). PST showed high specificity, but poor sensitivity in predicting transmural extent. More importantly, the addition of PSI and PST to PLS in acute phase was associated with improved prediction of viability at 6 months (integrated discrimination improvement 2.5 % p < 0.01; net reclassification improvement 27 %; p < 0.01). All systolic deformation values separated transmural from non-transmural scarring. PLS combined with additional information relative to post-systolic deformation appears to be the most informative parameters to predict the transmural extent of MI in the early and late phases of MI. http://clinicaltrials.gov/show/NCT01109225 ; NCT01109225.

  2. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela

    2010-09-21

    Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape\\'s aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface - known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  3. Surface-layer lattices as patterning element for multimeric extremozymes.

    Science.gov (United States)

    Ferner-Ortner-Bleckmann, Judith; Gelbmann, Nicola; Tesarz, Manfred; Egelseer, Eva M; Sleytr, Uwe B

    2013-11-25

    A promising new approach for the production of biocatalysts comprises the use of surface-layer (S-layer) lattices that present functional multimeric enzymes on their surface, thereby guaranteeing most accurate spatial distribution and orientation, as well as maximal effectiveness and stability of these enzymes. For proof of concept, a tetrameric and a trimeric extremozyme are chosen for the construction of S-layer/extremozyme fusion proteins. By using a flexible peptide linker, either one monomer of the tetrameric xylose isomerase XylA from the thermophilic Thermoanaerobacterium strain JW/SL-YS 489 or, in another approach, one monomer of the trimeric carbonic anhydrase from the methanogenic archaeon Methanosarcina thermophila are genetically linked to one monomer of the S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177. After isolation and purification, the self-assembly properties of both S-layer fusion proteins as well as the specific activity of the fused enzymes are confirmed, thus indicating that the S-layer protein moiety does not influence the nature of the multimeric enzymes and vice versa. By recrystallization of the S-layer/extremozyme fusion proteins on solid supports, the active enzyme multimers are exposed on the surface of the square S-layer lattice with 13.1 nm spacing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The microscopic origin of self-organized nanostripe pattern formation on an electropolished aluminium surface

    International Nuclear Information System (INIS)

    Sarkar, Jaya; Basumallick, A; Khan, Gobinda Gopal

    2009-01-01

    By correlating the experimental evidence obtained from atomic force microscopy, conventional x-ray diffraction, and a surface sensitive modified x-ray diffraction technique with the results of density functional theory based computations, we demonstrate that self-organized nanostripe patterns formed on the electropolished surface of aluminium originate as a consequence of relaxation and reconstruction of the new surfaces exposed and textural changes at the surface caused by the dissolution during polishing.

  5. Style of the surface deformation by the 1999 Chichi earthquake at the central segment of Chelungpu fault, Taiwan, with special reference to the presence of the main and subsidiary faults and their progressive deformation in the Tsauton area

    Science.gov (United States)

    Ota, Y.; Watanabe, M.; Suzuki, Y.; Yanagida, M.; Miyawaki, A.; Sawa, H.

    2007-11-01

    We describe the style of surface deformation in the 1999 Chichi earthquake in the central segment of the Chelungpu Fault. The study covers the Kung-fu village, north of Han River, to the south of Tsauton area. A characteristic style of the surface deformation is a convex scarp in profile and sinuous plan view, due to the low angle thrust fault. Two subparallel faults, including the west facing Tsauton West fault, and the east facing Tsauton East fault, limit the western and eastern margin of the Tsauton terraced area. The Tsauton West fault is the continuation of the main Chelungpu fault and the Tsauton East fault is located about 2 km apart. Both faults record larger amounts of vertical displacement on the older terraces. The 1999 surface rupture occurred exactly on a pre-existing fault scarp of the Tsauton West and East faults. Thus, repeated activities of these two faults during the Holocene, possibly since the late Quaternary, are confirmed. The amount of vertical offset of the Tsauton East fault is smaller, and about 40-50% of that of the Tsauton West fault for the pre-existing fault. This indicates that the Tsauton East fault is a subsidiary fault and moved together with the main fault, but accommodated less amount.

  6. Accurate relief of the die surface of the wax pattern prior to casting.

    Science.gov (United States)

    Wirth, C G

    1977-06-01

    A quick, simple technique has been described to mark, identify, and remove interferences from the inner surface of a wax pattern. Problems in the seating of simple and complex castings are virtually eliminated.

  7. Deformation of the free surface of a conducting fluid in the magnetic field of current-carrying linear conductors

    Energy Technology Data Exchange (ETDEWEB)

    Zubarev, N.M. [Institute of Electrophysics, UB RAS, Ekaterinburg (Russian Federation); P.N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Zubareva, O.V., E-mail: olga@iep.uran.ru [Institute of Electrophysics, UB RAS, Ekaterinburg (Russian Federation)

    2017-06-01

    The magnetic shaping problem is studied for the situation where a cylindrical column of a perfectly conducting fluid is deformed by the magnetic field of a system of linear current-carrying conductors. Equilibrium is achieved due to the balance of capillary and magnetic pressures. Two two-parametric families of exact solutions of the problem are obtained with the help of conformal mapping technique. In accordance with them, the column essentially deforms in the cross section up to its disintegration.

  8. Investigating the relationship between seismicity and fluid injection in the Barnett Shale, Texas using coupled poroelastic model and surface deformation data

    Science.gov (United States)

    Zhai, G.; Shirzaei, M.

    2017-12-01

    Across the Barnett Shale, Texas a noticeable increase in seismic activity was observed during 2007 and 2015, which was accompanied by high volume injection at several nearby disposal wells. Many studies focused on the positive correlation between injection rate at individual wells and the adjacent seismicity, suggesting that seismicity is triggered or induced due to increased pore fluid pressure associated with fluid injection in hydraulically connected geological units. However, investigating temporal evolution of total volume of injected fluid and concurrent earthquakes in a larger area indicates more complex patterns, requiring a more comprehensive analysis of the spatiotemporal evolution of coupled poroelastic stress and pore fluid pressure. In this study, we created a coupled poroelastic model to simulate large scale spatiotemporal evolution of pore pressure, poroelastic stresses, and Coulomb failure stress in the Barnett Shale using injection time series of 96 high-volume injection wells spanning from 2007 to 2015. We additionally account for a layered poroelastic medium, where its parameters are set up using geological maps and seismic tomographic data sets. Fault orientations and relevant frictional properties are also extracted from published literatures. We further integrate observation of surface deformation obtained from interferometric processing of 16 ALOS L-Band SAR images to optimize rock hydraulic diffusivity and constrain the extent to which fluid may migrate. The preliminary modeling result shows that poroelastic stress is only 10% of pore pressure. However, the superimposition of these two effects is spatially and temporally responsible for the occurrence of earthquakes in the Barnett Shale. Also, not all area with increased Coulomb failure stress experiences elevated seismicity, suggesting possible heterogeneous background tectonic stresses, lacking pre-existing faults, and/or heterogeneous fault orientations.

  9. Influence of Near-Surface Severe Plastic Deformation of Mild Steel on the Inhibition Performance of Sodium Molybdate and 1H-Benzotriazole in Artificial Sea Water

    Science.gov (United States)

    Sabet Bokati, Kazem; Dehghanian, Changiz; Babaei, Mahdi

    2018-02-01

    The effects of near-surface severe plastic deformation (NS-SPD) on the inhibition performance of sodium molybdate (SM) and 1H-benzotriazole (BTA) for mild steel were investigated using weight loss, polarization and electrochemical impedance spectroscopy measurements. The crystal grain size of NS-SPD-processed surface was analyzed by x-ray diffractometry and field emission scanning electron microscopy. A deformed layer with thickness of 20 ± 5 µm was produced on mild steel surface after NS-SPD process due to accumulated strains. The NS-SPD process caused more effective adsorption of corrosion inhibitors due to the fabrication of a surface with a high density of preferential adsorption sites. However, the stability of protective layer was predominantly influenced by the effect of NS-SPD process on inhibition efficiency. The fairly good persistence of protective layer formed on the surface by SM-containing solution and also positive effect of NS-SPD process on adsorption of molybdate ions caused higher inhibition performance for sodium molybdate. However, NS-SPD process encouraged deterioration of protective layer formed on steel surface in the presence of BTA inhibitor. It was ascribed to partial coverage of surface, low stability of adsorbed layer and thus more adsorption of aggressive ions on unprotected area which was uncovered during immersion time.

  10. Complex surface deformation monitoring and mechanism inversion over Qingxu-Jiaocheng, China with multi-sensor SAR images

    Science.gov (United States)

    Liu, Yuanyuan; Zhao, Chaoying; Zhang, Qin; Yang, Chengsheng

    2018-02-01

    Qingxu-Jiaocheng, China has been suffering severe land subsidence along with the development of ground fissure, which are controlled by local fault and triggered by groundwater withdrawal. With multi-sensor SAR images, we study the spatiotemporal evolution of ground deformation over Qingxu-Jiaocheng with an IPTA InSAR technique and assess the role of groundwater withdrawal to the observed deformation. Discrete GPS measurements are applied to verify the InSAR results. The RMSE of the differences between InSAR and GPS, i.e. ALOS and GPS and Envisat and GPS, are 5.7 mm and 6.3 mm in the LOS direction, respectively. The east-west and vertical components of the observed deformation from 2007 to 2010 are decomposed by using descending-track Envisat and ascending-track ALOS interferograms, indicating that the east-west component cannot be neglected when the deformation is large or the ground fissure is active. Four phases of land subsidence in the study region are successfully retrieved, and its spatiotemporal evolution is quantitatively analyzed. Lastly, a flat lying sill model with distributed contractions is implemented to model the InSAR deformation over Qingxu-Jiaocheng, which manifests that the ground deformation is mainly caused by groundwater withdrawal. This research provides new insights into the land subsidence monitoring and its mechanism inversion over Qingxu-Jiaocheng region.

  11. Surface potential effects in low-energy current image diffraction patterns observed on the Al(001) surface

    International Nuclear Information System (INIS)

    Fine structure observed in high-resolution low-energy electron diffraction (LEED) measurements near the energy threshold for emergence of new beams has been attributed to surface barrier effects. Recently, the surface barrier has been suggested as the source of the fine structure observed in current image diffraction (CID) patterns obtained by rastering the primary beam across an Al(001) crystal surface at a constant energy. This suggestion was based on kinematic arguments which correlated the emergence angle for a new electron beam with the observed structure in the CID pattern. In this work, the angular dependence of the elastic component of the total crystal reflectivity is calculated at constant energy. The calculations are based on full dynamical theories such as used in LEED but incorporating different surface barrier models to account for the saturating image potential. The results are compared with the experimental CID results

  12. Bilayer self-assembly on a hydrophilic, deterministically nano-patterned surface

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gregory Scott [ORNL; Jung, Seung-Yong [ORNL; Browning, Jim [ORNL; Keum, Jong Kahk [ORNL; Lavrik, Nickolay V [ORNL; Alemseghed, Mussie G [ORNL; Collier, Pat [ORNL

    2013-01-01

    We present measurements of the in-situ, microscopic architecture of a self-assembled bilayer at the interface between a regularly nano-patterned surface and an aqueous sub-phase using neutron reflectometry. The substrate is patterned with a rectangular array of nano-scaled holes. Because of the high quality of the pattern, using neutron reflectometry, we are able to map the surface-normal density distribution of the patterned silicon, the penetration of water into the pattern, and the distribution of a deposited film inside and outside of the etched holes. In this study, 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) single bilayers were deposited on the hydrophilic patterned surface. For bilayers deposited either by vesicle fusion (VF) or by the Langmuir Schaefer (L-S) technique, the most consistent model found to fit the data shows that the lipids form bilayer coatings on top of the substrate as well as the bottoms of the holes in an essentially conformal fashion. However, while there is a single bilayer on the unetched silicon surface, the lipids coating the bottoms of the holes form a complex bimodal structure consistent with a rough surface produced by the etching process. This study provides insight into film transfer both outside and inside regular nano-patterned features.

  13. Revealing the surface pattern of medieval pattern welded iron objects - etching tests conducted on reconstructed composites

    Czech Academy of Sciences Publication Activity Database

    Thiele, Á.; Hošek, Jiří; Haramza, M.; Török, B.

    2014-01-01

    Roč. 25, č. 1 (2014), s. 18-24 ISSN 1805-7241 R&D Projects: GA ČR GAP405/12/2289 Institutional support: RVO:67985912 Keywords : etching * pattern welding * phosphoric iron * archaeometallurgy Subject RIV: AC - Archeology, Anthropology, Ethnology

  14. Surface-immobilized hydrogel patterns on length scales from micrometer to nanometer

    Science.gov (United States)

    Zeira, Assaf

    The present work concentrates on the study of pattern generation and transfer processes of monolayer covered surfaces, deriving from the basic working concept of Constructive Lithography. As an advancement of constructive lithography, we developed a direct, one-step printing (contact electrochemical printing, CEP) and replication (contact electrochemical replication, CER) of hydrophilic organic monolayer patterns surrounded by a hydrophobic monolayer background. In addition, we present a process of transfer of metal between two contacting solid surfaces to predefined monolayer template pattern sites (contact electrochemical transfer, CET). This thesis shows that CEP, CER, and CET may be implemented under a variety of different experimental conditions, regardless of whether the initial "master" pattern was created by a parallel (fast) or serial (slow) patterning process. CEP and CER also posses the unique attractive property that each replica may equally function as master stamp in the fabrication of additional replicas. Moreover, due to a mechanism of selfcorrection patterned surfaces produced these process are often free of defects that the initial "master" stamp may had. We finally show that the electrochemical patterning of OTS monolayers on silicon can be further extended to flexible polymeric substrate materials as well as to a variety of chemical manipulations, allowing the fabrication of tridimensional (3D) composite structures made on the basis of readily available OTS compound. The results obtained suggest that such contact electrochemical processes could be used to rapidly generate multiple copies of surface patterns spanning variable length scales, this basic approach being applicable to rigid as well as flexible substrate materials.

  15. Surface circulation and upwelling patterns around Sri Lanka

    Science.gov (United States)

    de Vos, A.; Pattiaratchi, C. B.; Wijeratne, E. M. S.

    2014-10-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean, with the Arabian Sea on its western side and the Bay of Bengal on its eastern side, and experiences bi-annually reversing monsoon winds. Aggregations of blue whale (Balaenoptera musculus) have been observed along the southern coast of Sri Lanka during the northeast (NE) monsoon, when satellite imagery indicates lower productivity in the surface waters. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and numerical simulations using the Regional Ocean Modelling System (ROMS). The model was run for 3 years to examine the seasonal and shorter-term (~10 days) variability. The results reproduced correctly the reversing current system, between the Equator and Sri Lanka, in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the southwest (SW) monsoon transporting 11.5 Sv (mean over 2010-2012) and the westward flowing Northeast Monsoon Current (NMC) transporting 9.6 Sv during the NE monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the southern coast. During the SW monsoon, the island deflects the eastward flowing SMC southward, whilst along the eastern coast, the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the southern coast, resulting from southward flow converging along the southern coast and subsequent divergence associated with the offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the

  16. Patterns of congenital bony spinal deformity and associated neural anomalies on X-ray and magnetic resonance imaging.

    Science.gov (United States)

    Trenga, Anthony P; Singla, Anuj; Feger, Mark A; Abel, Mark F

    2016-08-01

    Congenital malformations of the bony vertebral column are often accompanied by spinal cord anomalies; these observations have been reinforced with the use of magnetic resonance imaging (MRI). We hypothesized that the incidence of cord anomalies will increase as the number and complexity of bony vertebral abnormalities increases. All patients aged ≤13 years (n = 75) presenting to the pediatric spine clinic from 2003-2013 with congenital bony spinal deformity and both radiographs and MRI were analyzed retrospectively for bone and neural pathology. Chi-squared analysis was used to compare groups for categorical dependent variables. Independent t tests were used for continuous dependent variables. Significance was set at p formation had a higher incidence of cord anomalies (73 %) than failures of formation (50 %) or segmentation (45 %) alone (p = 0.065). Deformities in the sacrococcygeal area had the highest rate of spinal cord anomalies (13 of 15 patients, 87 %). In 35 cases (47 %), MRI revealed additional bony anomalies that were not seen on the radiographs. As the number of bony malformations increased, we found a higher incidence of cord anomalies. Clinicians should have increased suspicion of spinal cord pathology in the presence of mixed failures of segmentation and formation.

  17. Biofunctionalization of silicone rubber with microgroove-patterned surface and carbon-ion implantation to enhance biocompatibility and reduce capsule formation.

    Science.gov (United States)

    Lei, Ze-Yuan; Liu, Ting; Li, Wei-Juan; Shi, Xiao-Hua; Fan, Dong-Li

    Silicone rubber implants have been widely used to repair soft tissue defects and deformities. However, poor biocompatibility can elicit capsule formation, usually resulting in prosthesis contracture and displacement in long-term usage. To overcome this problem, this study investigated the properties of silicone rubber materials with or without a microgroove-patterned surface and with or without carbon (C)-ion implantation. Atomic force microscopy, X-ray photoelectron spectroscopy, and a water contact angle test were used to characterize surface morphology and physicochemical properties. Cytocompatibility was investigated by a cell adhesion experiment, immunofluorescence staining, a Cell Counting Kit-8 assay, and scanning electron microscopy in vitro. Histocompatibility was evaluated by studying the inflammatory response and fiber capsule formation that developed after subcutaneous implantation in rats for 7 days, 15 days, and 30 days in vivo. Parallel microgrooves were found on the surfaces of patterned silicone rubber (P-SR) and patterned C-ion-implanted silicone rubber (PC-SR). Irregular larger peaks and deeper valleys were present on the surface of silicone rubber implanted with C ions (C-SR). The silicone rubber surfaces with microgroove patterns had stable physical and chemical properties and exhibited moderate hydrophobicity. PC-SR exhibited moderately increased dermal fibroblast cell adhesion and growth, and its surface microstructure promoted orderly cell growth. Histocompatibility experiments on animals showed that both the anti-inflammatory and antifibrosis properties of PC-SR were slightly better than those of the other materials, and there was also a lower capsular contracture rate and less collagen deposition around implants made from PC-SR. Although the surface chemical properties, dermal fibroblast cell growth, and cell adhesion were not changed by microgroove pattern modification, a more orderly cell arrangement was obtained, leading to enhanced

  18. Programmable Active Matter: Dynamics of active filaments on patterned surfaces

    Science.gov (United States)

    Yadav, Vikrant; Todd, Daniel; Milas, Peker; Ruijgrok, Paul; Bryant, Zev; Ross, Jennifer

    Interfaces are ubiquitous in biology. For a sub-cellular component moving inside the cell, any change in its local environment across an interface whether chemical concentration, density, or any other physical variables can produce novel dynamics. Recent advances in bioengineering allow us to control motor proteins' velocities when prompted by an optical trigger. Using an optical diaphragm and a gear-shifting myosin XI construct containing a photoactive LOV domain, we can spatially pattern light to create interfaces across which speed of a gliding actin filament can differ by as much as a factor of two. We observe that when a gliding actin filament crosses an interface that has a discontinuous velocity jump, it buckles and changes its angle of orientation due to the velocity mismatch. Our preliminary data suggests that for small angels of incidence, the angle of emergence increases linearly. If we increase the angle of incidence further we observe that the angle of emergence saturates. For some actin filaments approaching the interface near-tangentially we observe total internal reflection as they fail to crossover the boundary. We have modeled our system using Cytosim software package and find excellent agreement with experimental data.

  19. Surface Roughness and Elastic Deformation Effects on the Behaviour of the Magnetic Fluid Based Squeeze Film Between Rotating Porous Circular Plates with Concentric Circular Pockets

    Directory of Open Access Journals (Sweden)

    M. E. Shimpi

    2010-06-01

    Full Text Available An attempt has been made to study and analyze the performance of a magnetic fluid based squeeze film between rotating porous transversely rough circular plates with concentric circular pockets. The porous housing is considered to be elastically negligibly deformable with its contact surface transversely rough. The stochastic film thickness characterizing the random roughness is assumed to be asymmetric with non zero mean and variance. The pressure distribution is obtained by solving the associated stochastically averaged Reynolds equation with appropriate boundary conditions. This results in the calculation of the load carrying capacity. All the results in graphical form establish that the transverse roughness in conjunction with the deformation has a strong negative effect on the performance of the bearing system. The bearing suffers on account of transverse surface roughness in general which probably is due to the fact that the roughness of the bearing surfaces tends to retard the motion of the lubricant resulting in decreased load carrying capacity. However, this negative effect of roughness, porosity and deformation can be minimized by the positive effect of the magnetization parameter in the case of negatively skewed roughness by choosing a suitable combination of pocket radius and rotational inertia. Lastly, the effect of radii ratio is noted to be quite significant.

  20. Earth surface deformation in the North China Plain detected by joint analysis of GRACE and GPS data.

    Science.gov (United States)

    Liu, Renli; Li, Jiancheng; Fok, Hok Sum; Shum, C K; Li, Zhao

    2014-10-22

    Mass redistribution of the Earth causes variable loading that deforms the solid Earth. While most recent studies using geodetic techniques focus on regions (such as the Amazon basin and the Nepal Himalayas) with large seasonal deformation amplitudes on the order of 1-4 cm due to hydrologic loading, few such studies have been conducted on the regions where the seasonal deformation amplitude is half as large. Here, we use joint GPS and GRACE data to investigate the vertical deformation due to hydrologic loading in the North China Plain, where significant groundwater depletion has been reported. We found that the GPS- and GRACE-derived secular trends and seasonal signals are in good agreement, with an uplift magnitude of 1-2 mm/year and a correlation of 85.0%-98.5%, respectively. This uplift rate is consistent with groundwater depletion rate estimated from GRACE data and in-situ groundwater measurements from earlier report studies; whereas the seasonal hydrologic variation reflects human behavior of groundwater pumping for agriculture irrigation in spring, leading to less water storage in summer than that in the winter season. However, less than 20% of weighted root-mean-squared (WRMS) reductions were detected for all the selected GPS stations when GRACE-derived seasonal deformations were removed from detrended GPS height time series. This discrepancy is probably because the GRACE-derived seasonal signals are large-scale, while the GPS-derived signals are local point measurements.

  1. Effective Medium Theory for Drag Reducing Micro-patterned Surfaces in Turbulent Flows

    Science.gov (United States)

    Battiato, I.

    2013-12-01

    Inspired by the lotus effect, many studies in the last decade have focused on micro- and nano-patterned surfaces. They revealed that patterns at the micro-scale combined with high contact angles can significantly reduce skin drag. However, the mechanisms and parameters that control drag reduction, e.g. Reynolds number and pattern geometry, are still unclear. We propose an effective medium representation of the micro-features, that treats the latter as a porous medium, and provides a framework to model flow over patterned surfaces in both Cassie and Wenzel states. Our key result is a closed-form expression for the skin friction coefficient in terms of frictional Reynolds (or Karman) number in turbulent regime, the viscosity ratio between the fluid in and above the features, and their geometrical properties. We apply the proposed model to turbulent flows over superhydrophobic ridged surfaces. The model predictions agree with laboratory experiments for Reynolds numbers ranging from 3000 to 10000.

  2. Microscopic observation of pattern attack by aggressive ions on finished surface of aluminium alloy sacrificial anode

    International Nuclear Information System (INIS)

    Zaifol Samsu; Muhammad Daud; Siti Radiah Mohd Kamarudin; Nur Ubaidah Saidin; Azali Muhammad; Mohd Shaari Ripin; Rusni Rejab; Mohd Shariff Sattar

    2010-01-01

    This paper presents the results of a microscopic observation on submerged finished surface of aluminium alloy sacrificial anode. Experimental tests were carried out on polished surface aluminium anode exposed to seawater containing aggressive ions in order to observe of pattern corrosion attack on corroding surface of anode. Results have shown, at least under the present testing condition, that surface of sacrificial anode were attack by an aggressive ion such as chloride along grain boundaries. In addition, results of microanalysis showed that the corrosion products on surface of aluminium alloy have Al, Zn and O element for all sample and within the pit was consists of Al, Zn, O and Cl element. (author)

  3. Surface deformation induced by ground water pumping in Taipei Basin: A case study in rban underground construction of Taipei metro station

    Science.gov (United States)

    Wu, Pei-Chin; Hu, Jyr-Ching

    2017-04-01

    Since 1955, the rapid development of population has requested for large amount of water usage in Taipei city. Thus, the overuse of ground water leads to the land subsidence rate up to 5 cm/yr. In 1989, the government stated to put restrictions on water pumping. Consequently, ground water recovered and resulted in the a wideapred uplift in Taipei basin. Due to the underground transportation and wiring, ground water were massively pumped for the safety of construction sites. In this study, persistent scatterer interferometry technique is used for processing 37 high resolution X-band radar images to characterize deformation map in the period from May 2011 to April 2015. From the ground table records of 30 wells in Taipei basin, the results indicated that the main factor to the surface deformation of Taipei basin is the elevation change of water table. In the case of Wuku groundwater well, the elevation change of the ground water table is about 15 m during September 2011 to April 2015. In the same period of the time, the change of surface deformation within 100 m of Wuku groundwater well is consistent to the elevation change of ground water table, and is more than 5 cm along line of sight. The storability is roughly constant across most of the aquifer with values between 0.8 x 10-4 and 1.3 x 10-3. Moreover, in the case of Taipei metro construction, according to the analytical results of radar image and the 380 vertical control points of Taipei, the high water pumping before the underground construction project will inflict surface deformation. It is noticeable that, the Jingmei Formation and the Wuku Formation are composed of the sediments with high porosity. Thus, the actual land subsidence caused by water pumping would be five times than the underground construction areas.

  4. Synthesis of freeform refractive surfaces forming various radiation patterns using interpolation

    Science.gov (United States)

    Voznesenskaya, Anna; Mazur, Iana; Krizskiy, Pavel

    2017-09-01

    Optical freeform surfaces are very popular today in such fields as lighting systems, sensors, photovoltaic concentrators, and others. The application of such surfaces allows to obtain systems with a new quality with a reduced number of optical components to ensure high consumer characteristics: small size, weight, high optical transmittance. This article presents the methods of synthesis of refractive surface for a given source and the radiation pattern of various shapes using a computer simulation cubic spline interpolation.

  5. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  6. Polymeric Shape-Memory Micro-Patterned Surface for Switching Wettability with Temperature

    Directory of Open Access Journals (Sweden)

    Nuria García-Huete

    2015-09-01

    Full Text Available An innovative method to switch the wettability of a micropatterned polymeric surface by thermally induced shape memory effect is presented. For this purpose, first polycyclooctene (PCO is crosslinked with dycumil peroxide (DCP and its melting temperature, which corresponds with the switching transition temperature (Ttrans, is measured by Dynamic Mechanical Thermal Analysis (DMTA in tension mode. Later, the shape memory behavior of the bulk material is analyzed under different experimental conditions employing a cyclic thermomechanical analysis (TMA. Finally, after creating shape memory micropillars by laser ablation of crosslinked thermo-active polycyclooctene (PCO, shape memory response and associated effect on water contact angle is analyzed. Thus, deformed micropillars cause lower contact angle on the surface from reduced roughness, but the original hydrophobicity is restored by thermally induced recovery of the original surface structure.

  7. Resolving spatial heterogeneities in exhumation and surface uplift in Timor-Leste: Constraints on deformation processes in young orogens

    Science.gov (United States)

    Tate, Garrett W.; McQuarrie, Nadine; van Hinsbergen, Douwe J. J.; Bakker, Richard R.; Harris, Ron; Willett, Sean; Reiners, Peter W.; Fellin, Maria Giuditta; Ganerød, Morgan; Zachariasse, Willem Jan

    2014-06-01

    Although exhumation and surface uplift are important parameters in understanding orogenesis, the opportunity to measure both in close proximity is rare. In Timor-Leste (East Timor), deeply exhumed metamorphic rocks and piggyback deepwater synorogenic basins are only tens of kilometers apart, permitting direct relation of uplift and exhumation by comparing micropaleontology to thermochronology interpreted through one-dimensional thermal modeling. Foraminifera in two deepwater synorogenic basins suggest basin uplift from depths of 1-2 km to depths of 350-1000 m between 3.35 and 1.88 Ma. Thermochronologic sampling was conducted in the central mountain belt between these basins. Of four muscovite 40Ar/39Ar samples, one provides a reset age of 7.13 ± 0.25 Ma in the Aileu high-grade belt that suggests 9-16 km of exhumation since that time. Eighteen zircon (U-Th)/He samples contain a group of reset ages in the Aileu Complex ranging from 4.4 to 1.5 Ma, which suggest exhumation rates of 1.0-3.1 mm/yr with 2.7-7.8 km of exhumation since these ages. Thirteen apatite (U-Th)/He ages in the Gondwana Sequence range from 5.5 to 1.4 Ma, suggesting 1-2 km of exhumation and defining a pattern of exhumation rates (ranging from 0.2 to 1.3 mm/yr) that positively correlates with average annual rainfall. Seven apatite fission track samples display varying degrees of partial resetting, with greatest resetting where apatite (U-Th)/He ages are youngest. Together, these data demonstrate extreme variability in surface uplift and exhumation over small spatial scales. We propose ongoing subsurface duplexing driven by subduction and underplating of Australian continental crust as the predominant driver for surface uplift and uplift-induced exhumation.

  8. The role of thermo-rheological properties of the crust beneath Ischia Island (Southern Italy) in the modulation of the ground deformation pattern

    Science.gov (United States)

    Castaldo, R.; Gola, G.; Santilano, A.; De Novellis, V.; Pepe, S.; Manzo, M.; Manzella, A.; Tizzani, P.

    2017-09-01

    In this paper we develop a model of the ground deformation behaviour occurred at Ischia Island (Southern Italy) in the 1992-2010 time period. The model is employed to investigate the forces and physical parameters of the crust controlling the subsidence of the Island. To this aim, we integrate and homogenize in a Finite Element (FE) environment a large amount of data derived from several and different observation techniques (i.e., geological, geophysical and remote sensing). In detail, the main steps of the multiphysics model are: (i) the generation of a 3D geological model of the crust beneath the Island by merging the available geological and geophysical information; (ii) the optimization of a 3D thermal model by exploiting the thermal measurements available in literature; (iii) the definition of the 3D Brittle/Ductile transition by using the temperature distribution of the crust and the physical information of the rocks; (iv) the optimization of the ground deformation velocity model (that takes into account the rheological stratification) by considering the spatial and temporal information detected via satellite multi-orbit C-Band SAR (Synthetic Aperture Radar) measurements acquired during the 1992-2010 time period. The achieved results allow investigating the physical process responsible for the observed ground deformation pattern. In particular, they reveal how the rheology modulates the spatial and temporal evolution of the long-term subsidence phenomenon, highlighting a coupling effect of the viscosities of the rocks and the gravitational loading of the volcano edifice. Moreover, the achieved results provide a very detailed and realistic velocity field image of the subsurface crust of the Ischia Island Volcano.

  9. Pattern recognition of concrete surface cracks and defects using integrated image processing algorithms

    Science.gov (United States)

    Balbin, Jessie R.; Hortinela, Carlos C.; Garcia, Ramon G.; Baylon, Sunnycille; Ignacio, Alexander Joshua; Rivera, Marco Antonio; Sebastian, Jaimie

    2017-06-01

    Pattern recognition of concrete surface crack defects is very important in determining stability of structure like building, roads or bridges. Surface crack is one of the subjects in inspection, diagnosis, and maintenance as well as life prediction for the safety of the structures. Traditionally determining defects and cracks on concrete surfaces are done manually by inspection. Moreover, any internal defects on the concrete would require destructive testing for detection. The researchers created an automated surface crack detection for concrete using image processing techniques including Hough transform, LoG weighted, Dilation, Grayscale, Canny Edge Detection and Haar Wavelet Transform. An automatic surface crack detection robot is designed to capture the concrete surface by sectoring method. Surface crack classification was done with the use of Haar trained cascade object detector that uses both positive samples and negative samples which proved that it is possible to effectively identify the surface crack defects.

  10. Pressure sources versus surface loads : Analyzing volcano deformation signal composition with an application to Hekla volcano, Iceland

    NARCIS (Netherlands)

    Grapenthin, R.; Ófeigsson, B.G.; Sigmundsson, F.; Sturkell, E.; Hooper, A.J.

    2010-01-01

    The load of lava emplaced over periods of decades to centuries induces a gradual viscous response of the Earth resulting in measurable deformation. This effect should be considered in source model inversions for volcanic areas with large lava production and flow emplacement in small centralized

  11. Controlled Wrinkling as a Novel Method for the Fabrication of Patterned Surfaces

    Science.gov (United States)

    Schweikart, Alexandra; Horn, Anne; Böker, Alexander; Fery, Andreas

    This contribution reviews recent findings on nonlithographic approaches for topographical structuring of polymeric surfaces and application of the resulting surfaces for creating hierarchical structures. External mechanical fields are used to induce a so-called buckling instability, which causes the formation of wrinkles with well-defined wavelength. We introduce the theoretical foundations of the phenomenon. The universality of the principle and the range of wavelengths between fractions of a micrometer and hundreds of microns that can be achieved are discussed. In the following we focus on the application of these surfaces as templates for the deposition of colloidal particles such as artificial particles (polystyrene beads, gold-nanoparticles or polymeric core-shell particles) and bionanoparticles (tobacco mosaic virus). We demonstrate how patterns can be transferred from the supporting wrinkled surfaces onto a broad variety of flat surfaces like glass or silicon wafers by stamping, where the complex colloidal patterns are accessible for studying their optical, electronic or other physical properties.

  12. Faraday instability in deformable domains

    International Nuclear Information System (INIS)

    Pucci, G.

    2013-01-01

    Hydrodynamical instabilities are usually studied either in bounded regions or free to grow in space. In this article we review the experimental results of an intermediate situation, in which an instability develops in deformable domains. The Faraday instability, which consists in the formation of surface waves on a liquid experiencing a vertical forcing, is triggered in floating liquid lenses playing the role of deformable domains. Faraday waves deform the lenses from the initial circular shape and the mutual adaptation of instability patterns with the lens boundary is observed. Two archetypes of behaviour have been found. In the first archetype a stable elongated shape is reached, the wave vector being parallel to the direction of elongation. In the second archetype the waves exceed the response of the lens border and no equilibrium shape is reached. The lens stretches and eventually breaks into fragments that have a complex dynamics. The difference between the two archetypes is explained by the competition between the radiation pressure the waves exert on the lens border and its response due to surface tension.

  13. Patterns of locoregional failure following post-operative intensity-modulated radiotherapy to oral cavity cancer: quantitative spatial and dosimetric analysis using a deformable image registration workflow.

    Science.gov (United States)

    Mohamed, Abdallah S R; Wong, Andrew J; Fuller, Clifton D; Kamal, Mona; Gunn, Gary B; Phan, Jack; Morrison, William H; Beadle, Beth M; Skinner, Heath; Lai, Stephen Y; Quinlan-Davidson, Sean R; Belal, Abdelaziz M; El-Gowily, Ahmed G; Frank, Steven J; Rosenthal, David I; Garden, Adam S

    2017-08-15

    We sought to identify spatial/dosimetric patterns of failure for oral cavity cancer patients receiving post-operative IMRT (PO-IMRT). Two hundred eighty-nine OCC patients receiving PO-IMRT were retrospectively reviewed from 2000 to 2012. Diagnostic CT documenting recurrence (rCT) was co-registered with planning CT (pCT) using a validated deformable image registration software. Manually segmented recurrent gross disease (rGTV) was deformed to co-registered pCTs. Mapped rGTVs were compared dosimetrically to planned dose and spatially to planning target volumes using centroid-based approaches. Failures types were classified using combined spatial/dosimetric criteria: A (central high-dose), B (peripheral high-dose), C (central intermediate/low-dose), D (peripheral intermediate/low-dose), and E (extraneous-dose). Fifty-four patients with recurrence were analyzed; 26 local recurrence, 19 regional recurrence, and 9 both local and regional recurrence. Median time to recurrence was 4 months (range 0-71). Median rGTVs volume was 3.7 cm 3 (IQR 1.4-10.6). For spatial and dosimetric analysis of the patterns of failure, 30 patients (55.5%) were classified as type A (central high-dose). Non-central high dose failures were distributed as follows: 2 (3.7%) type B, 10 (18.5%) type C, 1 (1.8%) type D, and 9 (16.7%) type E. Non-IMRT failure in the matching low-neck field was seen in two patients. No failures were noted at the IMRT-supraclavicular field match-line. Approximately half of patients with local/regional failure had non-central high dose recurrence. Peripheral high dose misses were uncommon reflecting adequate delineation and dose delivery. Future strategies are needed to reduce types C and E failures.

  14. An atmospheric turbulence power factor to improve the estimation of surface deformation and atmosphere phase screen using SAR interferometry

    Science.gov (United States)

    Mulder, G.; van Leijen, F. J.; Barkmeijer, J.; Haan, de, S.; Hanssen, R. F.

    2017-12-01

    Differential atmospheric delays in (time series) InSAR data are still a main cause for uncertainties and errors in deformation estimates. Particularly when deformation signals cannot be parameterized with steady-state models, it is hard to distinguish spatial anomalies due to deformation or atmosphere, often occurring at the same spatial scales. Most approaches for atmospheric mitigation are based on the assumption that the atmospheric signal can be `averaged out' by using tens of SAR acquisitions. Implicitly, this also assumes that the magnitude of the atmospheric signal is rather constant over time. The analysis of the atmospheric phase screen related to a wide range of weather events has shown that the atmospheric signal due to turbulent mixing always follows a distinct multi-scale power-law behavior, where a single power factor can be used to differentiate various weather types. In this study we estimate and use this power factor to optimally weight the InSAR observations in a time-series based on atmospheric turbulence. Our method uses the phase variation in interferograms on different length scales to characterize the turbulence with one turbulence power factor, following Kolmogorov turbulence theory. This is done by fitting a -5/3 to -8/3 power function through the power spectrum of our data, which gives an indication of the total turbulence strength in the whole image. The strength of this method is that the power factor metric is robust for most wide- and small-scale deformations and can be summarized with a single number for each interferogram. We show how the application of power law scaling is beneficial both for optimal deformation signal estimation as well as atmospheric phase screen estimation to operationally assimilate InSAR atmospheric data in weather models.

  15. Development of a high slip-resistant footwear outsole using a hybrid rubber surface pattern.

    Science.gov (United States)

    Yamaguchi, Takeshi; Hokkirigawa, Kazuo

    2014-01-01

    The present study examined whether a new footwear outsole with tread blocks and a hybrid rubber surface pattern, composed of rough and smooth surfaces, could increase slip resistance and reduce the risk of fall while walking on a wet floor surface. A drag test was performed to measure static and dynamic coefficient of friction (SCOF and DCOF, respectively) values for the footwear with the hybrid rubber surface pattern outsole and two types of commercially available boots that are conventionally used in food factories and restaurant kitchens with respect to a stainless steel floor covered with glycerol solution. Gait trials were conducted with 14 participants who wore the footwear on the wet stainless steel floor. The drag test results indicated that the hybrid rubber surface pattern sole exhibited higher SCOF (≥0.44) and DCOF (≥0.39) values than the soles of the comparative footwear (prubber surface pattern outsole were significantly lower than those for the comparative footwear, which resulted in no falls during trials.

  16. Spatial validation of large scale land surface models against monthly land surface temperature patterns using innovative performance metrics.

    Science.gov (United States)

    Koch, Julian; Siemann, Amanda; Stisen, Simon; Sheffield, Justin

    2016-04-01

    Land surface models (LSMs) are a key tool to enhance process understanding and to provide predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration (aET), at each grid cell. LST observations are widely available through satellite remote sensing platforms that enable comprehensive spatial validations of LSMs. In spite of the availability of LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true spatial pattern information. This study features two innovative spatial performance metrics, namely EOF- and connectivity-analysis, to validate predicted LST patterns by three LSMs (Mosaic, Noah, VIC) over the contiguous USA. The LST validation dataset is derived from global High-Resolution-Infrared-Radiometric-Sounder (HIRS) retrievals for a 30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality, and attests better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further, more than 75% of the LST variability can be captured by a single pattern that is strongly driven by air temperature. The connectivity analysis assesses the homogeneity and smoothness of patterns. The LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the coupling between aET and LST is investigated at flux tower sites and compared against LSMs to explain the identified LST shortcomings.

  17. Fabrication of multifaceted, micropatterned surfaces and image-guided patterning using laser scanning lithography.

    Science.gov (United States)

    Slater, John H; West, Jennifer L

    2014-01-01

    This protocol describes the implementation of laser scanning lithography (LSL) for the fabrication of multifaceted, patterned surfaces and for image-guided patterning. This photothermal-based patterning technique allows for selective removal of desired regions of an alkanethiol self-assembled monolayer on a metal film through raster scanning a focused 532 nm laser using a commercially available laser scanning confocal microscope. Unlike traditional photolithography methods, this technique does not require the use of a physical master and instead utilizes digital "virtual masks" that can be modified "on the fly" allowing for quick pattern modifications. The process to create multifaceted, micropatterned surfaces, surfaces that display pattern arrays of multiple biomolecules with each molecule confined to its own array, is described in detail. The generation of pattern configurations from user-chosen images, image-guided LSL is also described. This protocol outlines LSL in four basic sections. The first section details substrate preparation and includes cleaning of glass coverslips, metal deposition, and alkanethiol functionalization. The second section describes two ways to define pattern configurations, the first through manual input of pattern coordinates and dimensions using Zeiss AIM software and the second via image-guided pattern generation using a custom-written MATLAB script. The third section describes the details of the patterning procedure and postpatterning functionalization with an alkanethiol, protein, and both, and the fourth section covers cell seeding and culture. We end with a general discussion concerning the pitfalls of LSL and present potential improvements that can be made to the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Attenuation of glazing energy using linear patterns on the glass surface

    Directory of Open Access Journals (Sweden)

    Shiang-Jiun Lin

    2015-12-01

    Full Text Available Glazing energy resulting from solar radiation can be the main source to vary the thermal field inside of a building. As the glass material is loaded by intensive solar radiation, the glazing energy, greatly induced, will result in the drastic increase in interior temperatures and yield the energy demand for air conditioning loads. Reducing energy consumption is imperative; therefore, this article presents the patterned glass technology which incorporates linearly and uniaxially symmetric patterns throughout the exterior surface of glass to attenuate the solar energy entering indoors. By imposing the patterns over the glass surface, the glazing energy can be reduced due to the increase in the incident angle and the decrease in the solar energy loading on the glass. The thermal performance of the linearly patterned glass is evaluated by computational fluid dynamics technique. Based on computational fluid dynamics–evaluated results, as the patterned glass is applied on the window opening, the interior solar heat is able to be decreased. Moreover, the glazing energy can be strongly associated with the pattern design. Increasing the patterned angle and decreasing the patterned space help reduce solar effect on the interior temperatures.

  19. Anomalous Arctic surface wind patterns and their impacts on September sea ice minima and trend

    Directory of Open Access Journals (Sweden)

    Bingyi Wu

    2012-05-01

    Full Text Available We used monthly mean surface wind data from the National Centers for Environmental Prediction/National Centers for Atmospheric Research (NCEP/NCAR reanalysis dataset during the period 1979–2010 to describe the first two patterns of Arctic surface wind variability by means of the complex vector empirical orthogonal function (CVEOF analysis. The first two patterns respectively account for 31 and 16% of its total anomalous kinetic energy. The leading pattern consists of the two subpatterns: the northern Laptev Sea (NLS pattern and the Arctic dipole (AD pattern. The second pattern contains the northern Kara Sea (NKS pattern and the central Arctic (CA pattern. Over the past two decades, the combined dynamical forcing of the first two patterns has contributed to Arctic September sea ice extent (SIE minima and its declining trend. September SIE minima are mainly associated with the negative phase of the AD pattern and the positive phase of the CA pattern during the summer (July to September season, and both phases coherently show an anomalous anticyclone over the Arctic Ocean. Wind patterns affect September SIE through their frequency and intensity. The negative trend in September SIE over the past two decades is associated with increased frequency and enhanced intensity of the CA pattern during the melting season from April to September. Thus, it cannot be simply attributed to the AD anomaly characterised by the second empirical orthogonal function mode of sea level pressure north of 70°N. The CA pattern exhibited interdecadal variability in the late 1990s, and an anomalous cyclone prevailed before 1997 and was then replaced by an anomalous anticyclone over the Arctic Ocean that is consistent with the rapid decline trend in September SIE. This paper provides an alternative way to identify the dominant patterns of climate variability and investigate their associated Arctic sea ice variability from a dynamical perspective. Indeed, this study

  20. Finite element analysis of transient viscous flow with free surface using filling pattern technique

    International Nuclear Information System (INIS)

    Kim, Ki Don; Yang, Dong Yol; Jeong, Jun Ho

    2001-01-01

    The filling pattern technique based on the finite element method and Eulerian mesh advancement approach has been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The penalty and predictor-corrector methods are used effectively for finite element formulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. Using the proposed numerical technique, the collapse of a dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions versus time have been compared with the reported experimental result

  1. The influence of the circulation on surface temperature and precipitation patterns over Europe

    Directory of Open Access Journals (Sweden)

    P. D. Jones

    2009-06-01

    Full Text Available The atmospheric circulation clearly has an important influence on variations in surface temperature and precipitation. In this study we illustrate the spatial patterns of variation that occur for the principal circulation patterns across Europe in the standard four seasons. We use an existing classification scheme of surface pressure patterns, with the aim of considering whether the patterns of influence of specific weather types have changed over the course of the 20th century. We consider whether the long-term warming across Europe is associated with more favourable weather types or related to warming within some of the weather types. The results indicate that the latter is occurring, but not all circulation types show warming. The study also illustrates that certain circulation types can lead to marked differences in temperature and/or precipitation for relatively closely positioned sites when the sites are located in areas of high relief or near coasts.

  2. AFM-assisted fabrication of thiol SAM pattern with alternating quantified surface potential

    Directory of Open Access Journals (Sweden)

    Simons Janet

    2011-01-01

    Full Text Available Abstract Thiol self-assembled monolayers (SAMs are widely used in many nano- and bio-technology applications. We report a new approach to create and characterize a thiol SAMs micropattern with alternating charges on a flat gold-coated substrate using atomic force microscopy (AFM and Kelvin probe force microscopy (KPFM. We produced SAMs-patterns made of alternating positively charged, negatively charged, and hydrophobic-terminated thiols by an automated AFM-assisted manipulation, or nanografting. We show that these thiol patterns possess only small topographical differences as revealed by AFM, and distinguished differences in surface potential (20-50 mV, revealed by KPFM. The pattern can be helpful in the development of biosensor technologies, specifically for selective binding of biomolecules based on charge and hydrophobicity, and serve as a model for creating surfaces with quantified alternating surface potential distribution.

  3. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  4. How to guide lubricants - Tailored laser surface patterns on stainless steel

    Science.gov (United States)

    Grützmacher, Philipp G.; Rosenkranz, Andreas; Gachot, Carsten

    2016-05-01

    In this experimental study, periodic line-like structures with different periodicities (5, 10, 19, and 300 μm) and structural depths (approximately 1 and 4 μm) were fabricated on stainless steel samples (AISI-304) by short-pulse laser interference and ultrashort-pulse laser patterning. A detailed characterization of the resulting surface topography was performed by white light interferometry and scanning electron microscopy. The spreading dynamics of additive-free synthetic polyalphaolefine oil on a polished reference sample are compared to laser patterned surfaces. These studies are conducted using a newly developed test rig, which allowed for controlled temperature gradients and a precise recording of the spreading dynamics of lubricants on sample surfaces. It could be demonstrated that the spreading velocity parallel to the surface pattern is higher for all samples which can be explained by increased capillary forces and liquid pinning induced by the surface patterning. Furthermore, a decline of the spreading velocity over time for all samples and orientations is clearly visible which can be traced back to a viscosity increase induced by the temperature gradient and a reduced droplet volume. For parallel orientation, the experimental findings are in good agreement with the Lucas-Washburn equation and established models.

  5. Efficacy of a rubber outsole with a hybrid surface pattern for preventing slips on icy surfaces.

    Science.gov (United States)

    Yamaguchi, Takeshi; Hsu, Jennifer; Li, Yue; Maki, Brian E

    2015-11-01

    Conventional winter-safety footwear devices, such as crampons, can be effective in preventing slips on icy surfaces but the protruding studs can lead to other problems such as trips. A new hybrid (rough and smooth) rubber outsole was designed to provide high slip resistance without use of protruding studs or asperities. In the present study, we examined the slip resistance of the hybrid rubber outsole on both dry (-10 °C) and wet (0 °C) icy surfaces, in comparison to three conventional strap-on winter anti-slip devices: 1) metal coils ("Yaktrax Walker"), 2) gritted (sandpaper-like) straps ("Rough Grip"), and 3) crampons ("Altagrips-Lite"). Drag tests were performed to measure static (SCOF) and dynamic (DCOF) coefficients of friction, and gait trials were conducted on both level and sloped ice surfaces (16 participants). The drag-test results showed relatively high SCOF (≧0.37) and DCOF (≧0.31) values for the hybrid rubber sole, at both temperatures. The other three footwear types exhibited lower DCOF values (0.06-0.20) when compared with the hybrid rubber sole at 0 °C (p footwear types, when descending a slope at -10 °C (6% of trials vs 0%; p footwear-related differences in slip frequency, distance or velocity. These results indicate that the slip-resistance of the hybrid rubber sole on icy surfaces was comparable to conventional anti-slip footwear devices. Given the likely advantages of the hybrid rubber sole (less susceptibility to tripping, better slip resistance on non-icy surfaces), this type of sole should contribute to a decrease in fall accidents; however, further research is needed to confirm its effectiveness under a wider range of test conditions. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Twist deformation in anticlinic antiferroelectric structure in smectic B.sub.2./sub. imposed by the surface anchoring

    Czech Academy of Sciences Publication Activity Database

    Lejček, Lubor; Novotná, Vladimíra; Glogarová, Milada

    2008-01-01

    Roč. 35, č. 1 (2008), s. 11-19 ISSN 0267-8292 R&D Projects: GA ČR GA202/05/0431 Institutional research plan: CEZ:AV0Z10100520 Keywords : smectic liquid crystals * bent-shaped molecules * anticlinic antiferroelectric structure * ferroelectric structure * twist deformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.132, year: 2008

  7. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran

    2018-03-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  8. Hollow hexagonal pattern with surface discharges in a dielectric barrier discharge

    Science.gov (United States)

    Feng, Jianyu; Dong, Lifang; Li, Caixia; Liu, Ying; Du, Tian; Hao, Fang

    2017-05-01

    The hollow hexagonal pattern involved in surface discharges is firstly investigated in a dielectric barrier discharge system. The spatiotemporal structures of the pattern are studied using an intensified charge-coupled device and photomultiplier. Instantaneous images taken by an intensified charge-coupled device and optical correlation measurements show that the surface discharges are induced by volume discharges. The optical signals indicate that the discharge filaments constituting the hexagonal frame discharge randomly at the first current pulse or the second pulse, once or twice. There is no interleaving of several sub-lattices, which indicates that the ‘memory’ effect is no longer in force due to surface discharges. By using the emission spectrum method, both the molecule vibration temperature and electron density of the surface discharges are larger than that of the volume discharges.

  9. Quantifying the short- and long-term controls exerted by the basal and lateral boundaries of the Slumgullion Landslide from creepmeters and 3-D surface deformation

    Science.gov (United States)

    Delbridge, B. G.; Bilham, R. G.; Wang, T.; Fielding, E. J.; Burgmann, R.

    2017-12-01

    The Slumgullion landslide is 3.9 km long, moves persistently with peak rates of up to 2 cm/day, and exhibits daily, seasonal, and decadal accelerations. In this study, we provide geodetic observations needed to test whether the short- and long-term variations are governed by the same physical mechanisms. Specific focus is placed on disentangling the roles played by the lateral and basal landslide surfaces. In order to provide surface geodetic measurements with dense spatial resolution (pixel spacing parallel to- (azimuth) the along-track direction of flight. To examine deformation rates spanning minutes to days we have installed a surface creepmeter, similar to those currently monitoring actively creeping faults such as the Hayward Fault. A tensioned flexible wire is fastened obliquely across the lateral bounding fault and wrapped around a 100 mm wheel wheel whose angular position is monitored by a Hall effect sensor, resulting in resolution of 8 microns and with a 5 m range.

  10. Controlled mud-crack patterning and self-organized cracking of polydimethylsiloxane elastomer surfaces

    Science.gov (United States)

    Seghir, Rian; Arscott, Steve

    2015-10-01

    Exploiting pattern formation - such as that observed in nature - in the context of micro/nanotechnology could have great benefits if coupled with the traditional top-down lithographic approach. Here, we demonstrate an original and simple method to produce unique, localized and controllable self-organised patterns on elastomeric films. A thin, brittle silica-like crust is formed on the surface of polydimethylsiloxane (PDMS) using oxygen plasma. This crust is subsequently cracked via the deposition of a thin metal film - having residual tensile stress. The density of the mud-crack patterns depends on the plasma dose and on the metal thickness. The mud-crack patterning can be controlled depending on the thickness and shape of the metallization - ultimately leading to regularly spaced cracks and/or metal mesa structures. Such patterning of the cracks indicates a level of self-organization in the structuring and layout of the features - arrived at simply by imposing metallization boundaries in proximity to each other, separated by a distance of the order of the critical dimension of the pattern size apparent in the large surface mud-crack patterns.

  11. Coccolith distribution patterns in South Atlantic and Southern Ocean surface sediments in relation to environmental gradients

    DEFF Research Database (Denmark)

    Boeckel, B.; Baumann, K.-H.; Henrich, R.

    2006-01-01

    In this study, the coccolith compositions of 213 surface sediment samples from the South Atlantic and Southern Ocean were analysed with respect to the environmental parameters of the overlying surface waters. From this data set, the abundance patterns of the main species and their ecological...... seems to be associated with high temperatures and salinities under low-nutrient conditions. Based on the relative abundances of Calcidiscus leptoporus, F. profunda, Gladiolithus flabellatus, Helicosphaera spp., Umbilicosphaera foliosa, Umbilicosphaera sibogae and a group of subordinate subtropical...

  12. First-Principles Surface Stress Calculations and Multiscale Deformation Analysis of a Self-Assembled Monolayer Adsorbed on a Micro-Cantilever

    Directory of Open Access Journals (Sweden)

    Yu-Ching Shih

    2014-04-01

    Full Text Available Micro-cantilever sensors are widely used to detect biomolecules, chemical gases, and ionic species. However, the theoretical descriptions and predictive modeling of these devices are not well developed, and lag behind advances in fabrication and applications. In this paper, we present a novel multiscale simulation framework for nanomechanical sensors. This framework, combining density functional theory (DFT calculations and finite element method (FEM analysis, is capable of analyzing molecular adsorption-induced deformation and stress fields in the sensors from the molecular scale to the device scale. Adsorption of alkanethiolate self-assembled monolayer (SAM on the Au(111 surface of the micro-cantilever sensor is studied in detail to demonstrate the applicability of this framework. DFT calculations are employed to investigate the molecular adsorption-induced surface stress upon the gold surface. The 3D shell elements with initial stresses obtained from the DFT calculations serve as SAM domains in the adsorption layer, while FEM is employed to analyze the deformation and stress of the sensor devices. We find that the micro-cantilever tip deflection has a linear relationship with the coverage of the SAM domains. With full coverage, the tip deflection decreases as the molecular chain length increases. The multiscale simulation framework provides a quantitative analysis of the displacement and stress fields, and can be used to predict the response of nanomechanical sensors subjected to complex molecular adsorption.

  13. First-principles surface stress calculations and multiscale deformation analysis of a self-assembled monolayer adsorbed on a micro-cantilever.

    Science.gov (United States)

    Shih, Yu-Ching; Chen, Chuin-Shan; Wu, Kuang-Chong

    2014-04-23

    Micro-cantilever sensors are widely used to detect biomolecules, chemical gases, and ionic species. However, the theoretical descriptions and predictive modeling of these devices are not well developed, and lag behind advances in fabrication and applications. In this paper, we present a novel multiscale simulation framework for nanomechanical sensors. This framework, combining density functional theory (DFT) calculations and finite element method (FEM) analysis, is capable of analyzing molecular adsorption-induced deformation and stress fields in the sensors from the molecular scale to the device scale. Adsorption of alkanethiolate self-assembled monolayer (SAM) on the Au(111) surface of the micro-cantilever sensor is studied in detail to demonstrate the applicability of this framework. DFT calculations are employed to investigate the molecular adsorption-induced surface stress upon the gold surface. The 3D shell elements with initial stresses obtained from the DFT calculations serve as SAM domains in the adsorption layer, while FEM is employed to analyze the deformation and stress of the sensor devices. We find that the micro-cantilever tip deflection has a linear relationship with the coverage of the SAM domains. With full coverage, the tip deflection decreases as the molecular chain length increases. The multiscale simulation framework provides a quantitative analysis of the displacement and stress fields, and can be used to predict the response of nanomechanical sensors subjected to complex molecular adsorption.

  14. Laws of evolution of slip trace pattern and its parameters with deformation in [1.8.12] – single crystals of Ni{sub 3}Fe alloy

    Energy Technology Data Exchange (ETDEWEB)

    Teplyakova, Ludmila, E-mail: lat168@mail.ru; Koneva, Nina, E-mail: koneva@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya sq., 634003, Tomsk (Russian Federation); Kunitsyna, Tatyana, E-mail: kma11061990@mail.ru [Tomsk State University of Architecture and Building, 2, Solyanaya sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation)

    2016-01-15

    The slip trace pattern of Ni{sub 3}Fe alloy single crystals with the short range order oriented for a single slip were investigated on replica at different stages of deformation using the transmission diffraction electron microscopy method. The connection of staging with the formation of slip trace pattern and the change of its parameters were established. The number of local areas where two or more slip systems work is increased with the change of stages. In these conditions the character of slip localization in the primary slip system is changed from the packets to the homogeneous distribution. The distributions of the distances between slip traces and the shear power in slip traces were plotted. The correlation between the average value of the shear power in the primary slip traces and the average distance between them was revealed in this work. It was established that the rates of the average value growth of the relative local shear and the shear power in the slip traces reach the largest values at the transition stage.

  15. Geometric study of transparent superhydrophobic surfaces of molded and grid patterned polydimethylsiloxane (PDMS)

    Science.gov (United States)

    Davaasuren, Gaasuren; Ngo, Chi-Vinh; Oh, Hyun-Seok; Chun, Doo-Man

    2014-09-01

    Herein we describe an economical method to fabricate a transparent superhydrophobic surface that uses grid patterning, and we report on the effects of grid geometry in determining the wettability and transparency of the fabricated surfaces. A polymer casting method was utilized because of its applicability to economical manufacturing and mass production; the material polydimethylsiloxane (PDMS) was selected because of its moldability and transparency. PDMS was replicated from a laser textured mold fabricated by a UV nanosecond pulsed laser. Sapphire wafer was used for the mold because it has very low surface roughness (Ra ≤0.3 nm) and adequate mechanical properties. To study geometric effects, grid patterns of a series of step sizes were fabricated. The maximum water droplet contact angle (WDCA) observed was 171°. WDCAs depended on the wetting area and the wetting state. The experimental results of WDCA were analyzed with Wenzel and Cassie-Baxter equations. The designed grid pattern was suitably transparent and structurally stable. Transmittance of the optimal transparent superhydrophobic surface was measured by using a spectrophotometer. Transmittance loss due to the presence of the grid was around 2-4% over the wavelength region measured (300-1000 nm); the minimum transmittance observed was 83.1% at 300 nm. This study also demonstrates the possibility of using a nanosecond pulsed laser for the surface texturing of a superhydrophobic surface.

  16. Large-area electromagnetic enhancement by a resonant excitation of surface waves on a metallic surface with periodic subwavelength patterns.

    Science.gov (United States)

    Zhang, Xin; Liu, Haitao; Zhong, Ying

    2013-10-07

    We theoretically investigate the electromagnetic enhancement on a metallic surface patterned with periodic subwavelength structures. Fully-vectorial calculations show a large-area electromagnetic enhancement (LAEE) on the surface, which strongly contrasts with the previously reported "hot spots" that occur in specific tiny regions and which relieves the rigorous requirement of the nano-scale location of sample molecules. The LAEE allows for designing more practicable substrates for many enhanced-spectra applications. By building up microscopic models, the LAEE is shown due to a resonant excitation of surface waves that include both the surface plasmon polariton (SPP) and a quasi-cylindrical wave (QCW). The surface waves propagate on the substrate over a long distance and thus greatly enlarge the area of electromagnetic enhancement compared to the nano-sized hot spots caused by localized modes. Gain medium is introduced to further strengthen the large-area surface-wave resonance, with which an enhancement factor (EF) of electric-field intensity up to a few thousands is achieved.

  17. The transtensional offshore portion of the northern San Andreas fault: Fault zone geometry, late Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth

    Science.gov (United States)

    Beeson, Jeffrey W.; Johnson, Samuel Y.; Goldfinger, Chris

    2017-01-01

    We mapped an ~120 km offshore portion of the northern San Andreas fault (SAF) between Point Arena and Point Delgada using closely spaced seismic reflection profiles (1605 km), high-resolution multibeam bathymetry (~1600 km2), and marine magnetic data. This new data set documents SAF location and continuity, associated tectonic geomorphology, shallow stratigraphy, and deformation. Variable deformation patterns in the generally narrow (∼1 km wide) fault zone are largely associated with fault trend and with transtensional and transpressional fault bends.We divide this unique transtensional portion of the offshore SAF into six sections along and adjacent to the SAF based on fault trend, deformation styles, seismic stratigraphy, and seafloor bathymetry. In the southern region of the study area, the SAF includes a 10-km-long zone characterized by two active parallel fault strands. Slip transfer and long-term straightening of the fault trace in this zone are likely leading to transfer of a slice of the Pacific plate to the North American plate. The SAF in the northern region of the survey area passes through two sharp fault bends (∼9°, right stepping, and ∼8°, left stepping), resulting in both an asymmetric lazy Z–shape sedimentary basin (Noyo basin) and an uplifted rocky shoal (Tolo Bank). Seismic stratigraphic sequences and unconformities within the Noyo basin correlate with the previous 4 major Quaternary sea-level lowstands and record basin tilting of ∼0.6°/100 k.y. Migration of the basin depocenter indicates a lateral slip rate on the SAF of 10–19 mm/yr for the past 350 k.y.Data collected west of the SAF on the south flank of Cape Mendocino are inconsistent with the presence of an offshore fault strand that connects the SAF with the Mendocino Triple Junction. Instead, we suggest that the SAF previously mapped onshore at Point Delgada continues onshore northward and transitions to the King Range thrust.

  18. Rapid Fabrication of Periodic Patterns on Poly(styrene-co-acrylonitrile Surfaces Using Direct Laser Interference Patterning

    Directory of Open Access Journals (Sweden)

    Martin F. Broglia

    2015-01-01

    Full Text Available Periodic microstructures in styrene-acrylonitrile (SAN copolymers are fabricated by two-beam direct laser interference patterning using a nanosecond pulsed laser operating at a wavelength of 266 nm. The SAN copolymers are synthesized using different molar ratios (styrene to acrylonitrile by a free radical polymerization process. The chemical composition of the copolymers and their properties are determined using Fourier transformed infrared spectroscopy (FTIR and differential scanning calorimetry (DSC. Depending on the composition of the irradiated copolymer films, with weight ratios ranging from 58 to 96.5% of styrene to acrylonitrile, different ablation behaviors are observed. The laser fluence necessary to locally ablate the copolymer is found to be dependent on the copolymer composition. Unlike other dielectric polymers, the laser irradiation produced both direct ablation of the irradiated material and collapse of the surface. It is shown that, by varying the laser fluence and the copolymer composition, the surface structure can be changed from a periodic pattern with a swelled topography to an ablated-like structure. The number of holes does not depend monotonically on the amount of PS or PAN units but shows a more complex behavior which depends on the copolymer composition and the laser fluence.

  19. Biomolecular patterning of glass surfaces via strain-promoted cycloaddition of azides and cyclooctynes

    NARCIS (Netherlands)

    Wijdeven, M.A.; Nicosia, Carlo; Borrmann, A.; Huskens, Jurriaan; van Delft, F.L.

    2014-01-01

    Metal-free, strain-promoted alkyne–azide cycloaddition (SPAAC) is employed as a versatile technology for the modification of glass with biomolecules. Patterning is executed by stamping of a fluorogenic azidocoumarin or a cyclooctyne to the glass surface, to obtain a unique anchor point for

  20. The pattern of anthropogenic signal emergence in Greenland Ice Sheet surface mass balance

    NARCIS (Netherlands)

    Fyke, J.G.; Vizcaino, M.; Lipscomb, W.H.

    2014-01-01

    Surface mass balance (SMB) trends influence observed Greenland Ice Sheet (GrIS) mass loss, but the component of these trends related to anthropogenic forcing is unclear. Here we study the simulated spatial pattern of emergence of an anthropogenically derived GrIS SMB signal between 1850 and 2100

  1. Partial discharge patterns and surface deterioration in voids in filled and unfilled epoxy

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens

    1992-01-01

    /height analyses were performed over a period of 2400 h and showed very characteristic discharge patterns for each material combination. A unique behavior with regard to changes of pulse repetition rate and maximum apparent charge was observed for PD in alumina- and silica-filled epoxy. The void surfaces were...

  2. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order...

  3. Novel, highly selective gold nanoparticle patterning on surfaces using pure water

    NARCIS (Netherlands)

    Raza, M.A.; Raza, Muhammad Akram; Kooij, Ernst S.; van Silfhout, Arend; Zandvliet, Henricus J.W.; Poelsema, Bene

    2011-01-01

    We present a simple, novel procedure to selectively deposit gold nanoparticles using pure water. It enables patterning of nanoparticle monolayers with a remarkably high degree of selectivity on flat as well as microstructured oxide surfaces. We demonstrate that water molecules form a thin “capping”

  4. Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.

    Science.gov (United States)

    Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei

    2017-04-10

    In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.

  5. Pattern and surface prevalence of dental caries on posterior teeth of ...

    African Journals Online (AJOL)

    Pattern and surface prevalence of dental caries on posterior teeth of children in a Nigerian teaching hospital. ... high occurrence of occlusal caries in permanent dentition showed the need to design preventive clinical procedures such as the placement of fissure sealants on first molars so as to prevent occurrence of occlusal ...

  6. Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Kwapiszewski, Radoslaw; Jensen, Thomas Glasdam

    2013-01-01

    ! 17 SH nm"2. Biotin alkyne was patterned directly inside thiol–ene microchannels prior to conjugation with fluorescently labelled streptavidin. The surface bound conjugates were detected by evanescent waveinduced fluorescence (EWIF), demonstrating the success of the grafting procedure and its...

  7. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-01-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  8. Partial discharge patterns related to surface deterioration in voids in epoxy

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens

    1990-01-01

    Results are presented from an investigation of the relationship between changes in partial discharge patterns and the surface deterioration process taking place in small naturally formed spherical voids in epoxy plastic. The voids were exposed to a moderate electric stress above inception level...

  9. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces

    KAUST Repository

    Zhong, Hua

    2016-09-26

    We study numerically the three-dimensional droplets spreading on physically flat chemically patterned surfaces with periodic squares separated by channels. Our model consists of the Navier-Stokes-Cahn-Hilliard equations with the generalized Navier boundary conditions. Stick-slip behavior and con-tact angle hysteresis are observed. Moreover, we also study the relationship between the effective advancing/receding angle and the two intrinsic angles of the surface patterns. By increasing the volume of droplet gradually, we find that the advancing contact line tends gradually to an equiangular octagon with the length ratio of the two adjacent sides equal to a fixed value that depends on the geometry of the pattern.

  10. Contemporary Surface Seasonal Oscillation and Vertical Deformation in Tibetan Plateau and Nepal Derived from the GPS, Leveling and GRACE Data

    Science.gov (United States)

    Shen, W.; Pan, Y.; Hwang, C.; Ding, H.

    2015-12-01

    We use 168 Continuous Global Positioning System (CGPS) stations distributed in the Tibetan Plateau (TP) and Nepal from lengths of 2.5 to 14 years to estimate the present-day velocity field in this area, including the horizontal and vertical deformations under the frame ITRF2008. We estimate and remove common mode errors in regional GPS time series using the principal component analysis (PCA), obtaining a time series with high signal to noise ratio. Following the maximum estimation analysis, a power law plus white noise stochastic model are adopted to estimate the velocity field. The highlight of Tibetan region is the crust vertical deformation. GPS vertical time series present seasonal oscillations caused by temporal mass loads, hence GRACE data from CSR are used to study the mass loads change. After removing the mass load deformations from GPS vertical rates, the results are improved. Leveling data about 48 years in this region are also used to estimate the rates of vertical movements. Our study suggests that the boundary of south Nepal is still sinking due to the fact that the India plate is crashing into the Eurasian plate. The uplift rates from south to north of TP reduce gradually. Himalayas region and north Nepal uplift around 6 mm/yr in average. The uplift rate along East TP in Qinhai is around 2.7 mm/yr in average. In contrast, the southeast of Tibetan Plateau, south Yunnan and Tarim in Xinjiang sink with different magnitudes. Our observation results suggest complicated mechanism of the mass migration in TP. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).

  11. Virus-based surface patterning of biological molecules, probes, and inorganic materials.

    Science.gov (United States)

    Ahn, Suji; Jeon, Seongho; Kwak, Eun-A; Kim, Jong-Man; Jaworski, Justyn

    2014-10-01

    An essential requirement for continued technological advancement in many areas of biology, physics, chemistry, and materials science is the growing need to generate custom patterned materials. Building from recent achievements in the site-specific modification of virus for covalent surface tethering, we show in this work that stable 2D virus patterns can be generated in custom geometries over large area glass surfaces to yield templates of biological, biochemical, and inorganic materials in high density. As a nanomaterial building block, filamentous viruses have been extensively used in recent years to produce materials with interesting properties, owing to their ease of genetic and chemical modification. By utilizing un-natural amino acids generated at specific locations on the filamentous fd bacteriophage protein coat, surface immobilization is carried out on APTES patterned glass resulting in precise geometries of covalently linked virus material. This technique facilitated the surface display of a high density of virus that were labeled with biomolecules, fluorescent probes, and gold nanoparticles, thereby opening the possibility of integrating virus as functional components for surface engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Surface-induced patterns from evaporating droplets of aqueous carbon nanotube dispersions

    KAUST Repository

    Zeng, Hongbo

    2011-06-07

    Evaporation of aqueous droplets of carbon nanotubes (CNTs) coated with a physisorbed layer of humic acid (HA) on a partially hydrophilic substrate induces the formation of a film of CNTs. Here, we investigate the role that the global geometry of the substrate surfaces has on the structure of the CNT film. On a flat mica or silica surface, the evaporation of a convex droplet of the CNT dispersion induces the well-known "coffee ring", while evaporation of a concave droplet (capillary meniscus) of the CNT dispersion in a wedge of two planar mica sheets or between two crossed-cylinder sheets induces a large area (>mm 2) of textured or patterned films characterized by different short- and long-range orientational and positional ordering of the CNTs. The resulting patterns appear to be determined by two competing or cooperative sedimentation mechanisms: (1) capillary forces between CNTs giving micrometer-sized filaments parallel to the boundary line of the evaporating droplet and (2) fingering instability at the boundary line of the evaporating droplet and subsequent pinning of CNTs on the surface giving micrometer-sized filaments of CNTs perpendicular to this boundary line. The interplay between substrate surface geometry and sedimentation mechanisms gives an extra control parameter for manipulating patterns of self-assembling nanoparticles at substrate surfaces. © 2011 American Chemical Society.

  13. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Science.gov (United States)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  14. High-resolution surface chemical analysis of a trifunctional pattern made by sequential colloidal shadowing.

    Science.gov (United States)

    Ogaki, Ryosuke; Lyckegaard, Folmer; Kingshott, Peter

    2010-12-03

    We present a new method for creating surface chemical patterns where three chemistries can be periodically arranged at alternate positions on a single substrate without the use of top-down approaches. High-resolution chemical imaging by time-of-flight secondary ion mass spectrometry (ToF-SIMS), with nanometer spatial resolution, is used to prove the success of the patterning and subsequent chemical modification steps. We use a combination of colloidal self-assembly, plasma etching, self-assembled monolayers (SAMs) and physical vapour deposition (PVD). The method utilizes a double colloid assembly process in which a first layer of close-packed colloids is created, followed by plasma etching, coating with gold and deposition of a first SAM layer. A second particle layer is deposited on top of the first layer masking the interstitial spaces containing the first SAM. A second gold layer is deposited followed by a second SAM. After particle removal the surface consists of the pattern containing two different SAMs and a SiO(2) layer that can be readily functionalized with silanes. The possibility in the replacement of the two different thiols is investigated by X-ray photoelectron spectroscopy (XPS) and it was found that no replacement is taking place. ToF-SIMS imaging is used to show the periodicity of the chemical patterns by tracking unique fragment ions from the different surface regions. The patterning method is adaptable to create smaller or larger chemical patterns by appropriate choice of particle sizes. The patterns are useful for immobilizing biomolecules for cell studies or as multiplexed biosensors.

  15. Preliminary study on the effect of heated surfaces upon bloodstain pattern analysis.

    Science.gov (United States)

    Larkin, Bethany A J; Banks, Craig E

    2013-09-01

    Bloodstain pattern analysis (BPA) involves the interpretation of distinct blood patterns found at crime scenes following a violent act. In this paper, we explored for the first time the effects of surface temperatures upon blood impacting a horizontal surface (steel) with its implications in BPA explored. Specific surface temperatures were explored over the range 24-250°C which relate to the four major boiling regimes of liquid media; natural convection, nucleate boiling, transition boiling, and film boiling, where a series of blood drops tests were performed at varying impact velocities. Blood was found to separate into its components at temperatures of 50°C+, displayed as temperature induced blood rings, where a single secondary and a series of further inner rings are exhibited. This consequently led to the development of a new constant Cd heated expressing the decrease in spread factor (D(s)/D(o)) at the secondary ring. © 2013 American Academy of Forensic Sciences.

  16. Large area nanoscale patterning of silicon surfaces by parallel local oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Losilla, N S; Martinez, J; Garcia, R [Instituto de Microelectronica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain)

    2009-11-25

    The homogeneity and the reproducibility of parallel local oxidation have been improved by introducing a thin film of polymethylmethacrylate (PMMA) between the stamp and the silicon surface. The flexibility of the polymer film enables a homogeneous contact of the stamp with the silicon surface to be achieved. The oxides obtained yield better aspect ratios compared with the ones created with no PMMA layer. The pattern is formed when a bias voltage is applied between the stamp and the silicon surface for 1 min. The patterning can be done by a step and repeat technique and is reproducible across a centimetre length scale. Once the oxide nanostructures have been created, the polymer is removed by etching in acetone. Finally, parallel local oxidation is applied to fabricate silicon nanostructures and templates for the growth of organic molecules.

  17. Mechanism of metal nanostructure self-ordering during oblique deposition on pre-patterned surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi; Heinig, Karl-Heinz [Forschungszentrum Dresden-Rossendorf, Dresden (Germany)

    2010-07-01

    During oblique metal vapor deposition perpendicular to ripples of pre-patterned surfaces, a chain-like formation of metal nanoclusters along the ripples has been observed. The metal nanoclusters are located on the slopes which point towards the evaporation source. The self-ordering of metal nanoclusters has not been observed for normal deposition and for low-angle deposition parallel to the ripple direction. The features of the metal nanostructure depend strongly on the evaporation angle. Here, by means of 3D lattice kinetic Monte Carlo simulations, we studied the process of silver deposition on pre-patterned, oxidized Si surfaces. The experimentally observed Ag nanostructures could be reproduced. It was shown that the extremely low sticking probability of deposited Ag together with a slope-dependent deposition rate leads to a strongly selective Ag nanocluster nucleation on the surface because the nucleation rate depends on the square of the adatom concentration.

  18. Designer hydrophilic regions regulate droplet shape for controlled surface patterning and 3D microgel synthesis.

    Science.gov (United States)

    Hancock, Matthew J; Yanagawa, Fumiki; Jang, Yun-Ho; He, Jiankang; Kachouie, Nezamoddin N; Kaji, Hirokazu; Khademhosseini, Ali

    2012-02-06

    A simple technique is presented for controlling the shapes of micro- and nanodrops by patterning surfaces with special hydrophilic regions surrounded by hydrophobic boundaries. Finite element method simulations link the shape of the hydrophilic regions to that of the droplets. Shaped droplets are used to controllably pattern planar surfaces and microwell arrays with microparticles and cells at the micro- and macroscales. Droplets containing suspended sedimenting particles, initially at uniform concentration, deposit more particles under deeper regions than under shallow regions. The resulting surface concentration is thus proportional to the local fluid depth and agrees well with the measured and simulated droplet profiles. A second application is also highlighted in which shaped droplets of prepolymer solution are crosslinked to synthesize microgels with tailored 3D geometry. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Tip-force induced surface deformation in the layered commensurate tellurides NbA xTe 2 (A = Si, Ge) during atomic force microscopy measurements

    Science.gov (United States)

    Bengel, H.; Cantow, H.-J.; Magonov, S. N.; Monconduit, L.; Evain, M.; Whangbo, M.-H.

    1994-12-01

    The Te-atom surfaces of commensurate layered tellurides NbA xTe 2 ( A = Si, x = {1}/{2}; A = Ge, x = {1}/{3}, {2}/{5}, {3}/{7}) were examined by atomic force microscopy (AFM) at different applied forces. Although the bulk crystal structures show a negligible height corrugation in the surface Te-atom sheets, the AFM images exhibit dark linear patterns that become strongly pronounced at high applied forces (several hundreds nN). This feature comes about because the tip-sample force interactions induce a surface corrugation according to the local hardness variation of the surface.

  20. Producing a gradient-composition nanocrystalline structure on nitrided surfaces of invar-type Fe-Ni alloys using megaplastic deformation

    Science.gov (United States)

    Shabashov, V. A.; Borisov, S. V.; Litvinov, A. V.; Kataeva, N. V.; Afanas'ev, S. V.; Titova, S. G.

    2014-09-01

    A nanocrystalline Fe-Ni matrix strengthened by dispersed CrN and TiN nitrides has been produced on the ion-plasma-nitrided surfaces of the austenitic Fe-Ni38-Cr15 and Fe-Ni36-Ti4 alloys using cyclic "nitride dissolution-nitride precipitation" phase transformations induced by megaplastic deformation. The high-pressure torsion of the nitrided alloys has led to the dissolution of the CrN nitrides and Ni3Ti intermetallic compounds, which appeared in the matrix, in the surface layer and to the mechanical alloying of the nitrided subsurface layer and the unnitriderd bulk of the specimens. Subsequent annealing has resulted in the formation of secondary nitrides, which propagated to a depth substantially exceeding the thickness of the original nitrided layer.

  1. Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions

    Science.gov (United States)

    Bradbury, Kelly K.; Davis, Colter R.; Shervais, John W.; Janecke, Susanne U.; Evans, James P.

    2015-05-01

    We examine the fine-scale variations in mineralogical composition, geochemical alteration, and texture of the fault-related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Observatory at Depth (SAFOD) borehole near Parkfield, California. This work provides insight into the physical and chemical properties, structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. Exhumed outcrops within the SAF system comprised of serpentinite-bearing protolith are examined for comparison at San Simeon, Goat Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple juxtaposed lenses of sheared, foliated siltstone and shale with block-in-matrix fabric, black cataclasite to ultracataclasite, and sheared serpentinite-bearing, finely foliated fault gouge. Meters-wide zones of sheared rock and fault gouge correlate to the sites of active borehole casing deformation and are characterized by scaly clay fabric with multiple discrete slip surfaces or anastomosing shear zones that surround conglobulated or rounded clasts of compacted clay and/or serpentinite. The fine gouge matrix is composed of Mg-rich clays and serpentine minerals (saponite ± palygorskite, and lizardite ± chrysotile). Whole-rock geochemistry data show increases in Fe-, Mg-, Ni-, and Cr-oxides and hydroxides, Fe-sulfides, and C-rich material, with a total organic content of >1 % locally in the fault-related rocks. The faults sampled in the field are composed of meters-thick zones of cohesive to non-cohesive, serpentinite-bearing foliated clay gouge and black fine-grained fault rock derived from sheared Franciscan Formation or serpentinized Coast Range Ophiolite. X-ray diffraction of outcrop samples shows that the foliated clay gouge is composed primarily of saponite and serpentinite, with localized

  2. Transparent self-cleaning lubricant-infused surfaces made with large-area breath figure patterns

    Science.gov (United States)

    Zhang, Pengfei; Chen, Huawei; Zhang, Liwen; Ran, Tong; Zhang, Deyuan

    2015-11-01

    Nepenthes pitcher inspired slippery lubricant-infused porous surfaces greatly impact the understanding of liquid-repellent surfaces construction and have attracted extensive attention in recent years due to their potential applications in self-cleaning, anti-fouling, anti-icing, etc. In this work, we have successfully fabricated transparent slippery lubricant-infused surfaces based on breath figure patterns (BFPs). Large-area BFPs with interconnected pores were initially formed on the glass substrate and then a suitable lubricant was added onto the surfaces. The interconnected pores in BFPs were able to hold the lubricant liquid in place and form a stable liquid/solid composite surface capable of repelling a variety of liquids. The liquid-repellent surfaces show extremely low critical sliding angles for various liquids, thus providing the surfaces with efficient self-cleaning property. It was also found that the liquid droplets' sliding behaviors on the surfaces were significantly influenced by the tilting angle of the substrate, liquid volume, liquid chemical properties, and pore sizes of the surfaces.

  3. Site-selective biofunctionalization of aluminum nitride surfaces using patterned organosilane self-assembled monolayers.

    Science.gov (United States)

    Chiu, Chi-Shun; Lee, Hong-Mao; Gwo, Shangjr

    2010-02-16

    Surface biochemical functionalization of group-III nitride semiconductors has recently attracted much interest because of their biocompatibility, nontoxicity, and long-term chemical stability under demanding physiochemical conditions for chemical and biological sensing. Among III-nitrides, aluminum nitride (AlN) and aluminum gallium nitride (AlGaN) are particularly important because they are often used as the sensing surfaces for sensors based on field-effect transistor or surface acoustic wave (SAW) sensor structures. To demonstrate the possibility of site-selective biofunctionalization on AlN surfaces, we have fabricated two-dimensional antibody micropatterns on AlN surfaces by using patterned self-assembled monolayer (SAM) templates. Patterned SAM templates are composed of two types of organosilane molecules terminated with different functional groups (amino and methyl), which were fabricated on AlN/sapphire substrates by combining photolithography, lift-off process, and self-assembly technique. Because the patterned SAM templates have different surface properties on the same surface, clear imaging contrast of SAM micropatterns can be observed by field-emission scanning electron microscopy (FE-SEM) operating at a low accelerating voltage in the range of 0.5-1.5 kV. Furthermore, the contrast in surface potential of the binary SAM microstructures was confirmed by selective adsorption of negatively charged colloidal gold nanoparticles (AuNPs). The immobilization of AuNPs was limited on the positively charged amino-terminated regions, while they were scarcely found on the surface regions terminated by methyl groups. In this work, selective immobilization of green fluorescent protein (GFP) antibodies was demonstrated by the specific protein binding of enhanced GFP (EGFP) labeling. The observed strong fluorescent signal from antibody functionalized regions on the SAM-patterned AlN surface indicates the retained biological activity of specific molecular recognition

  4. Interspecific scaling patterns of talar articular surfaces within primates and their closest living relatives

    Science.gov (United States)

    Yapuncich, Gabriel S; Boyer, Doug M

    2014-01-01

    The articular facets of interosseous joints must transmit forces while maintaining relatively low stresses. To prevent overloading, joints that transmit higher forces should therefore have larger facet areas. The relative contributions of body mass and muscle-induced forces to joint stress are unclear, but generate opposing hypotheses. If mass-induced forces dominate, facet area should scale with positive allometry to body mass. Alternatively, muscle-induced forces should cause facets to scale isometrically with body mass. Within primates, both scaling patterns have been reported for articular surfaces of the femoral and humeral heads, but more distal elements are less well studied. Additionally, examination of complex articular surfaces has largely been limited to linear measurements, so that ‘true area' remains poorly assessed. To re-assess these scaling relationships, we examine the relationship between body size and articular surface areas of the talus. Area measurements were taken from microCT scan-generated surfaces of all talar facets from a comprehensive sample of extant euarchontan taxa (primates, treeshrews, and colugos). Log-transformed data were regressed on literature-derived log-body mass using reduced major axis and phylogenetic least squares regressions. We examine the scaling patterns of muscle mass and physiological cross-sectional area (PCSA) to body mass, as these relationships may complicate each model. Finally, we examine the scaling pattern of hindlimb muscle PCSA to talar articular surface area, a direct test of the effect of mass-induced forces on joint surfaces. Among most groups, there is an overall trend toward positive allometry for articular surfaces. The ectal (= posterior calcaneal) facet scales with positive allometry among all groups except ‘sundatherians', strepsirrhines, galagids, and lorisids. The medial tibial facet scales isometrically among all groups except lemuroids. Scaling coefficients are not correlated with sample

  5. On the limits of uniaxial magnetic anisotropy tuning by a ripple surface pattern

    Energy Technology Data Exchange (ETDEWEB)

    Arranz, Miguel A. [Facultad de Ciencias Químicas, Universidad de Castilla-La Mancha, Avda. Camilo J. Cela 10, 13071 Ciudad Real (Spain); Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Instituto de Nanociencia, Nanotecnología y Materiales Moleculares, Universidad de Castilla-La Mancha, Campus de la Fábrica de Armas, 45071 Toledo (Spain); Palomares, Francisco J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, c/ Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain)

    2014-05-14

    Ion beam patterning of a nanoscale ripple surface has emerged as a versatile method of imprinting uniaxial magnetic anisotropy (UMA) on a desired in-plane direction in magnetic films. In the case of ripple patterned thick films, dipolar interactions around the top and/or bottom interfaces are generally assumed to drive this effect following Schlömann's calculations for demagnetizing fields of an ideally sinusoidal surface [E. Schlömann, J. Appl. Phys. 41, 1617 (1970)]. We have explored the validity of his predictions and the limits of ion beam sputtering to induce UMA in a ferromagnetic system where other relevant sources of magnetic anisotropy are neglected: ripple films not displaying any evidence of volume uniaxial anisotropy and where magnetocrystalline contributions average out in a fine grain polycrystal structure. To this purpose, the surface of 100 nm cobalt films grown on flat substrates has been irradiated at fixed ion energy, fixed ion fluency but different ion densities to make the ripple pattern at the top surface with wavelength Λ and selected, large amplitudes (ω) up to 20 nm so that stray dipolar fields are enhanced, while the residual film thickness t = 35–50 nm is sufficiently large to preserve the continuous morphology in most cases. The film-substrate interface has been studied with X-ray photoemission spectroscopy depth profiles and is found that there is a graded silicon-rich cobalt silicide, presumably formed during the film growth. This graded interface is of uncertain small thickness but the range of compositions clearly makes it a magnetically dead layer. On the other hand, the ripple surface rules both the magnetic coercivity and the uniaxial anisotropy as these are found to correlate with the pattern dimensions. Remarkably, the saturation fields in the hard axis of uniaxial continuous films are measured up to values as high as 0.80 kG and obey a linear dependence on the parameter ω{sup 2}/Λ/t in quantitative

  6. Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China.

    Science.gov (United States)

    Yang, Qiquan; Huang, Xin; Li, Jiayi

    2017-08-24

    The urban heat island (UHI) effect exerts a great influence on the Earth's environment and human health and has been the subject of considerable attention. Landscape patterns are among the most important factors relevant to surface UHIs (SUHIs); however, the relationship between SUHIs and landscape patterns is poorly understood over large areas. In this study, the surface UHI intensity (SUHII) is defined as the temperature difference between urban and suburban areas, and the landscape patterns are quantified by the urban-suburban differences in several typical landscape metrics (ΔLMs). Temperature and land-cover classification datasets based on satellite observations were applied to analyze the relationship between SUHII and ΔLMs in 332 cities/city agglomerations distributed in different climatic zones of China. The results indicate that SUHII and its correlations with ΔLMs are profoundly influenced by seasonal, diurnal, and climatic factors. The impacts of different land-cover types on SUHIs are different, and the landscape patterns of the built-up and vegetation (including forest, grassland, and cultivated land) classes have the most significant effects on SUHIs. The results of this study will help us to gain a deeper understanding of the relationship between the SUHI effect and landscape patterns.

  7. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer.

    Science.gov (United States)

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills.

  8. Mapping Precipitation Patterns from the Stable Isotopic Composition of Surface Waters: Olympic Peninsula, Washington State

    Science.gov (United States)

    Anders, A. M.; Brandon, M. T.

    2008-12-01

    Available data indicate that large and persistent precipitation gradients are tied to topography at scales down to a few kilometers, but precipitation patterns in the majority of mountain ranges are poorly constrained at scales less than tens of kilometers. A lack of knowledge of precipitation patterns hampers efforts to understand the processes of orographic precipitation and identify the relationships between geomorphic evolution and climate. A new method for mapping precipitation using the stable isotopic composition of surface waters is tested in the Olympic Mountains of Washington State. Measured δD and δ18O of 97 samples of surface water are linearly related and nearly inseparable from the global meteoric water line. A linear orographic precipitation model extended to include in effects of isotopic fractionation via Rayleigh distillation predicts precipitation patterns and isotopic composition of surface water. Seven parameters relating to the climate and isotopic composition of source water are used. A constrained random search identifies the best-fitting parameter set. Confidence intervals for parameter values are defined and precipitation patterns are determined. Average errors for the best-fitting model are 4.8 permil in δD. The difference between the best fitting model and other models within the 95% confidence interval was less than 20%. An independent high-resolution precipitation climatology documents precipitation gradients similar in shape and magnitude to the model derived from surface water isotopic composition. This technique could be extended to other mountain ranges, providing an economical and fast assessment of precipitation patterns requiring minimal field work.

  9. Biomimetic patterned surfaces for controllable friction in micro- and nanoscale devices

    Science.gov (United States)

    Singh, Arvind; Suh, Kahp-Yang

    2013-12-01

    Biomimetics is the study and simulation of biological systems for desired functional properties. It involves the transformation of underlying principles discovered in nature into man-made technologies. In this context, natural surfaces have significantly inspired and motivated new solutions for micro- and nano-scale devices (e.g., Micro/Nano-Electro-Mechanical Systems, MEMS/NEMS) towards controllable friction, during their operation. As a generic solution to reduce friction at small scale, various thin films/coatings have been employed in the last few decades. In recent years, inspiration from `Lotus Effect' has initiated a new research direction for controllable friction with biomimetic patterned surfaces. By exploiting the intrinsic hydrophobicity and ability to reduce contact area, such micro- or nano-patterned surfaces have demonstrated great strength and potential for applications in MEMS/NEMS devices. This review highlights recent advancements on the design, development and performance of these biomimetic patterned surfaces. Also, we present some hybrid approaches to tackle current challenges in biomimetic tribological applications for MEMS/NEMS devices.

  10. Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering.

    Science.gov (United States)

    Muñoz-García, Javier; Castro, Mario; Cuerno, Rodolfo

    2006-03-03

    Erosion by ion-beam sputtering (IBS) of amorphous targets at off-normal incidence frequently produces a (nanometric) rippled surface pattern, strongly resembling macroscopic ripples on aeolian sand dunes. A suitable generalization of continuum descriptions of the latter allows us to describe theoretically for the first time the main nonlinear features of ripple dynamics by IBS, namely, wavelength coarsening and nonuniform translation velocity, that agree with similar results in experiments and discrete models. These properties are seen to be the anisotropic counterparts of in-plane ordering and (interrupted) pattern coarsening in IBS experiments on rotating substrates and at normal incidence.

  11. Surface tension determination using data of the evolution of thermocapillary deformations in a locally heated liquid layer

    Directory of Open Access Journals (Sweden)

    Barakhovskaia Ella

    2017-01-01

    Full Text Available Identifying liquids in chemical technologies and in the oil industry is an actual problem. Such identifications can be made using individual characteristics of thermocapillary flows and deformations in the horizontal layers of the investigated liquids. Numerical algorithms and calculating code have been developed for solving inverse problems for identifying properties of liquid. As additional information for inverse problem a function of thermocapillary response is used. The algorithm for solving inverse problem is based on solving problem of minimizing the residual function. The minimum is obtained numerically by the Newton’s method. Numerical calculations have been made for silicone oil. Thermocapillary responses have been calculated for different values of the coefficients. The developed algorithms have been tested on synthetic data, which have been obtained from the solution of direct problems. The developed algorithms have shown a good convergence and efficiency.

  12. Ocean tidal loading affecting precise geodetic observations on Greenland: Error account of surface deformations by tidal gravity measurements

    DEFF Research Database (Denmark)

    Jentzsch, G.; Knudsen, Per; Ramatschi, M.

    2000-01-01

    Air-borne and satellite based altimetry are used to monitor the Greenland ice-cap. Since these measurements are related to fiducial sites at the coast, the robustness of the height differences depends on the stability of these reference points. To benefit from the accuracy of these methods...... on the centimeter level, station corrections regarding the Earth tides and the ocean tidal loading have to be applied. Models for global corrections esp. for the body tides are available and sufficient, but local corrections regarding the effect of the adjacent shelf area still have to be inferred from additional...... observations. Near the coast ocean tidal loading causes additional vertical deformations in the order of 1 to 10 cm Therefore, tidal gravity measurements were carried out at four fiducial sites around Greenland in order to provide corrections for the kinematic part of the coordinates of these sites. Starting...

  13. Thermal management of metallic surfaces: evaporation of sessile water droplets on polished and patterned stainless steel

    Science.gov (United States)

    Czerwiec, T.; Tsareva, S.; Andrieux, A.; Bortolini, G. A.; Bolzan, P. H.; Castanet, G.; Gradeck, M.; Marcos, G.

    2017-10-01

    This communication focus on the evaporation of sessile water droplets on different states of austenitic stainless steel surfaces: mirror polished, mirror polished and aged and patterned by sputtering. The evolution of the contact angle and of the droplet diameter is presented as a function of time at room temperature. For all the surface states, a constant diameter regime (CCR) is observed. An important aging effect on the contact angle is measured on polished surfaces due to atmospheric contamination. The experimental observations are compared to a quasi-static evaporation model assuming spherical caps. The evolution of the droplet volume as a function of time is almost linear with the evaporation time for all the observed surfaces. This is in accordance with the model prediction for the CCR mode for small initial contact angles. In our experiments, the evaporation time is found to be linearly dependent on the initial contact angle. This dependence is not correctly described by the evaporation model

  14. Measuring floodplain spatial patterns using continuous surface metrics at multiple scales

    Science.gov (United States)

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Interactions between fluvial processes and floodplain ecosystems occur upon a floodplain surface that is often physically complex. Spatial patterns in floodplain topography have only recently been quantified over multiple scales, and discrepancies exist in how floodplain surfaces are perceived to be spatially organised. We measured spatial patterns in floodplain topography for pool 9 of the Upper Mississippi River, USA, using moving window analyses of eight surface metrics applied to a 1 × 1 m2 DEM over multiple scales. The metrics used were Range, SD, Skewness, Kurtosis, CV, SDCURV,Rugosity, and Vol:Area, and window sizes ranged from 10 to 1000 m in radius. Surface metric values were highly variable across the floodplain and revealed a high degree of spatial organisation in floodplain topography. Moran's I correlograms fit to the landscape of each metric at each window size revealed that patchiness existed at nearly all window sizes, but the strength and scale of patchiness changed within window size, suggesting that multiple scales of patchiness and patch structure exist in the topography of this floodplain. Scale thresholds in the spatial patterns were observed, particularly between the 50 and 100 m window sizes for all surface metrics and between the 500 and 750 m window sizes for most metrics. These threshold scales are ~ 15–20% and 150% of the main channel width (1–2% and 10–15% of the floodplain width), respectively. These thresholds may be related to structuring processes operating across distinct scale ranges. By coupling surface metrics, multi-scale analyses, and correlograms, quantifying floodplain topographic complexity is possible in ways that should assist in clarifying how floodplain ecosystems are structured.

  15. Surface Patterning: Controlling Fluid Flow Through Dolphin and Shark Skin Biomimicry

    Science.gov (United States)

    Gamble, Lawren; Lang, Amy; Bradshaw, Michael; McVay, Eric

    2013-11-01

    Dolphin skin is characterized by circumferential ridges, perpendicular to fluid flow, present from the crest of the head until the tail fluke. When observing a cross section of skin, the ridges have a sinusoidal pattern. Sinusoidal grooves have been proven to induce vortices in the cavities that can help control flow separation which can reduce pressure drag. Shark skin, however, is patterned with flexible scales that bristle up to 50 degrees with reversed flow. Both dolphin ridges and shark scales are thought to help control fluid flow and increase swimming efficiency by delaying the separation of the boundary layer. This study investigates how flow characteristics can be altered with bio-inspired surface patterning. A NACA 4412 hydrofoil was entirely patterned with transverse sinusoidal grooves, inspired by dolphin skin but scaled so the cavities on the model have the same Reynolds number as the cavities on a swimming shark. Static tests were conducted at a Reynolds number of approximately 100,000 and at varying angles of attack. The results were compared to the smooth hydrofoil case. The flow data was quantified using Digital Particle Image Velocimetry (DPIV). The results of this study demonstrated that the patterned hydrofoil experienced greater separation than the smooth hydrofoil. It is hypothesize that this could be remediated if the pattern was placed only after the maximum thickness of the hydrofoil. Funding through NSF REU grant 1062611 is gratefully acknowledged.

  16. Reconstruction of Laser-Induced Surface Topography from Electron Backscatter Diffraction Patterns.

    Science.gov (United States)

    Callahan, Patrick G; Echlin, McLean P; Pollock, Tresa M; De Graef, Marc

    2017-08-01

    We demonstrate that the surface topography of a sample can be reconstructed from electron backscatter diffraction (EBSD) patterns collected with a commercial EBSD system. This technique combines the location of the maximum background intensity with a correction from Monte Carlo simulations to determine the local surface normals at each point in an EBSD scan. A surface height map is then reconstructed from the local surface normals. In this study, a Ni sample was machined with a femtosecond laser, which causes the formation of a laser-induced periodic surface structure (LIPSS). The topography of the LIPSS was analyzed using atomic force microscopy (AFM) and reconstructions from EBSD patterns collected at 5 and 20 kV. The LIPSS consisted of a combination of low frequency waviness due to curtaining and high frequency ridges. The morphology of the reconstructed low frequency waviness and high frequency ridges matched the AFM data. The reconstruction technique does not require any modification to existing EBSD systems and so can be particularly useful for measuring topography and its evolution during in situ experiments.

  17. Mimicking the stenocara beetle--dewetting of drops from a patterned superhydrophobic surface.

    Science.gov (United States)

    Dorrer, Christian; Rühe, Jürgen

    2008-06-17

    This paper describes the preparation of superhydrophobic surfaces that have been selectively patterned with circular hydrophilic domains. These materials mimicked the back of the stenocara beetle and collected drops of water if exposed to mist or fog. Under the effect of gravity, the drops dewetted from the hydrophilic regions once a critical volume had been reached. The surface energy in the hydrophilic regions was carefully controlled and assumed various values, allowing us to study the behavior of drops as a function of the superhydrophobic/hydrophilic contrast. We have investigated the development of drops and quantitatively analyzed the critical volumes as a function of several parameters.

  18. Copper circuit patterning on polymer using selective surface modification and electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Jin [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Ko, Tae-Jun [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Yoon, Juil [Department of Mechanical Systems Engineering, Hansung University, Seoul 136-792 (Korea, Republic of); Moon, Myoung-Woon [Institute for Multidisciplinary Convergence of Materials, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Oh, Kyu Hwan [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Han, Jun Hyun, E-mail: jhhan@cnu.ac.kr [Department of Materials Science and Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2017-02-28

    Highlights: • A new simple two step method for the pattering of Cu circuits on PET substrate was proposed. • The simple patterning of the high adhesive Cu circuits was achieved by plasma treatment using a patterned mask coated with a catalyst material. • The high adhesive strength of Cu circuits was due to the nanostructure formed by oxygen plasma treatment. - Abstract: We have examined a potential new and simple method for patterning a copper circuit on PET substrate by copper electroless plating, without the pretreatment steps (i.e., sensitization and activation) for electroless plating as well as the etching processes of conventional circuit patterning. A patterned mask coated with a catalyst material, Ag, for the reduction of Cu ions, is placed on a PET substrate. Subsequent oxygen plasma treatment of the PET substrate covered with the mask promotes the selective generation of anisotropic pillar- or hair-like nanostructures coated with co-deposited nanoparticles of the catalyst material on PET. After oxygen plasma treatment, a Cu circuit is well formed just by dipping the plasma-treated PET into a Cu electroless plating solution. By increasing the oxygen gas pressure in the chamber, the height of the nanostructures increases and the Ag catalyst particles are coated on not only the top but also the side surfaces of the nanostructures. Strong mechanical interlocking between the Cu circuit and PET substrate is produced by the large surface area of the nanostructures, and enhances peel strength. Results indicate this new simple two step (plasma surface modification and pretreatment-free electroless plating) method can be used to produce a flexible Cu circuit with good adhesion.

  19. Analysis of Surface Patterns over Cobb Seamount Using Synthetic-Aperture Radar Imagery.

    Science.gov (United States)

    1986-05-27

    McCandless and Mrazek, 1982). The alteration of surface wave patterns in the vicinity of deep water features has been reported by Robinson (1985), but the...getting lost in the large array of data and options: Jerome Williams and Samuel McCandless . Finally, I would also like to thank the person who has...Radar. JPL Publication 81-120. 1982. Garrett, Christopher , and Walter Munk. "Internal Waves in the Ocean". Annual Review of Fluid Mechanics. 1979

  20. Analysis of surface protein expression reveals the growth pattern of the gram-negative outer membrane.

    Directory of Open Access Journals (Sweden)

    Tristan S Ursell

    Full Text Available The outer membrane (OM of Gram-negative bacteria is a complex bilayer composed of proteins, phospholipids, lipoproteins, and lipopolysaccharides. Despite recent advances revealing the molecular pathways underlying protein and lipopolysaccharide incorporation into the OM, the spatial distribution and dynamic regulation of these processes remain poorly understood. Here, we used sequence-specific fluorescent labeling to map the incorporation patterns of an OM-porin protein, LamB, by labeling proteins only after epitope exposure on the cell surface. Newly synthesized LamB appeared in discrete puncta, rather than evenly distributed over the cell surface. Further growth of bacteria after labeling resulted in divergence of labeled LamB puncta, consistent with a spatial pattern of OM growth in which new, unlabeled material was also inserted in patches. At the poles, puncta remained relatively stationary through several rounds of division, a salient characteristic of the OM protein population as a whole. We propose a biophysical model of growth in which patches of new OM material are added in discrete bursts that evolve in time according to Stokes flow and are randomly distributed over the cell surface. Simulations based on this model demonstrate that our experimental observations are consistent with a bursty insertion pattern without spatial bias across the cylindrical cell surface, with approximately one burst of ≈ 10(-2 µm(2 of OM material per two minutes per µm(2. Growth by insertion of discrete patches suggests that stochasticity plays a major role in patterning and material organization in the OM.

  1. Creating "living" polymer surfaces to pattern biomolecules and cells on common plastics.

    Science.gov (United States)

    Li, Chunyan; Glidle, Andrew; Yuan, Xiaofei; Hu, Zhixiong; Pulleine, Ellie; Cooper, Jon; Yang, Wantai; Yin, Huabing

    2013-05-13

    Creating patterns of biomolecules and cells has been applied widely in many fields associated with the life sciences, including diagnostics. In these applications it has become increasingly apparent that the spatiotemporal arrangement of biological molecules in vitro is important for the investigation of the cellular functions found in vivo. However, the cell patterning techniques often used are limited to creating 2D functional surfaces on glass and silicon. In addition, in general, these procedures are not easy to implement in conventional biological laboratories. Here, we show the formation of a living poly(ethylene glycol) (PEG) layer that can be patterned with visible light on plastic surfaces. This new and simple method can be expanded to pattern multiple types of biomolecule on either a previously formed PEG layer or a plastic substrate. Using common plastic wares (i.e., polyethylene films and polystyrene cell culture Petri-dishes), we demonstrate that these PEG-modified surfaces have a high resistance to protein adsorption and cell adhesion, while at the same time, being capable of undergoing further molecular grafting with bioactive motifs. With a photomask and a fluid delivery system, we illustrate a flexible way to immobilize biological functions with a high degree of 2D and 3D spatial control. We anticipate that our method can be easily implemented in a typical life science laboratory (without the need for specialized lithography equipment) offering the prospect of imparting desirable properties to plastic products, for example, the creation of functional microenvironments in biological studies or reducing biological adhesion to surfaces.

  2. Nanoscale patterns produced by self-sputtering of solid surfaces: The effect of ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R. Mark [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); Hofsäss, Hans [II. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2016-08-21

    A theory of the effect that ion implantation has on the patterns produced by ion bombardment of solid surfaces is introduced. For simplicity, the case of self-sputtering of an elemental material is studied. We find that implantation of self-ions has a destabilizing effect along the projected beam direction for angles of incidence θ that exceed a critical value. In the transverse direction, ion implantation has a stabilizing influence for all θ.

  3. Quantitative analysis of surface deformation and ductile flow in complex analogue geodynamic models based on PIV method.

    Science.gov (United States)

    Krýza, Ondřej; Lexa, Ondrej; Závada, Prokop; Schulmann, Karel; Gapais, Denis; Cosgrove, John

    2017-04-01

    Recently, a PIV (particle image velocimetry) analysis method is optical method abundantly used in many technical branches where material flow visualization and quantification is important. Typical examples are studies of liquid flow through complex channel system, gas spreading or combustion problematics. In our current research we used this method for investigation of two types of complex analogue geodynamic and tectonic experiments. First class of experiments is aimed to model large-scale oroclinal buckling as an analogue of late Paleozoic to early Mesozoic evolution of Central Asian Orogenic Belt (CAOB) resulting from nortward drift of the North-China craton towards the Siberian craton. Here we studied relationship between lower crustal and lithospheric mantle flows and upper crustal deformation respectively. A second class of experiments is focused to more general study of a lower crustal flow in indentation systems that represent a major component of some large hot orogens (e.g. Bohemian massif). The most of simulations in both cases shows a strong dependency of a brittle structures shape, that are situated in upper crust, on folding style of a middle and lower ductile layers which is influenced by rheological, geometrical and thermal conditions of different parts across shortened domain. The purpose of PIV application is to quantify material redistribution in critical domains of the model. The derivation of flow direction and calculation of strain-rate and total displacement field in analogue experiments is generally difficult and time-expensive or often performed only on a base of visual evaluations. PIV method operates with set of images, where small tracer particles are seeded within modeled domain and are assumed to faithfully follow the material flow. On base of pixel coordinates estimation the material displacement field, velocity field, strain-rate, vorticity, tortuosity etc. are calculated. In our experiments we used velocity field divergence to

  4. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer

    Directory of Open Access Journals (Sweden)

    Tatsuya eKitamura

    2015-11-01

    Full Text Available This paper presents a method of measuring the vibration patterns onfacial surfaces by using a scanning laser Doppler vibrometer(LDV. The surfaces of the face, neck, and body vibrate duringphonation and, according to Titze (2001, these vibrations occur whenaerodynamic energy is efficiently converted into acoustic energy atthe glottis. A vocalist's vibration velocity patterns may thereforeindicate his or her phonatory status or singing skills. LDVs enablelaser-based non-contact measurement of the vibration velocity anddisplacement of a certain point on a vibrating object, and scanningLDVs permit multipoint measurements. The benefits of scanning LDVsoriginate from the facts that they do not affect the vibrations ofmeasured objects and that they can rapidly measure the vibrationpatterns across planes. A case study is presented herein todemonstrate the method of measuring vibration velocity patterns with ascanning LDV. The objective of the experiment was to measure thevibration velocity differences between the modal and falsettoregisters while three professional soprano singers sang sustainedvowels at four pitch frequencies. The results suggest that there is apossibility that pitch frequency are correlated with vibrationvelocity. However, further investigations are necessary to clarify therelationships between vibration velocity patterns and phonation statusand singing skills.

  5. Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface.

    Science.gov (United States)

    Kim, Hun; Lim, Hee-Chang

    2015-06-04

    The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.

  6. Settlement patterns of the coral Acropora millepora on sediment-laden surfaces.

    Science.gov (United States)

    Ricardo, Gerard F; Jones, Ross J; Nordborg, Mikaela; Negri, Andrew P

    2017-12-31

    Successful recruitment in corals is important for the sustenance of coral reefs, and is considered a demographic bottleneck in the recovery of reef populations following disturbance events. Yet several factors influence larval settlement behaviour, and here we quantified thresholds associated with light attenuation and accumulated sediments on settlement substrates. Sediments deposited on calcareous red algae (CRA) directly and indirectly impacted coral settlement patterns. Although not avoiding direct contact, Acropora millepora larvae were very reluctant to settle on surfaces layered with sediments, progressively shifting their settlement preference from upward to downward facing (sediment-free) surfaces under increasing levels of deposited sediment. When only upward-facing surfaces were presented, 10% of settlement was inhibited at thresholds from 0.9 to 16mgcm -2 (EC 10 ), regardless of sediment type (carbonate and siliciclastic) or particle size (fine and coarse silt). These levels equate to a very thin (<150μm) veneer of sediment that occurs within background levels on reefs. Grooves within settlement surfaces slightly improved options for settlement on sediment-coated surfaces (EC 10 : 29mgcm -2 ), but were quickly infilled at higher deposited sediment levels. CRA that was temporarily smothered by sediment for 6d became bleached (53% surface area), and inhibited settlement at ~7mgcm -2 (EC 10 ). A minor decrease in settlement was observed at high and very low light intensities when using suboptimal concentrations of a settlement inducer (CRA extract); however, no inhibition was observed when natural CRA surfaces along with more realistic diel-light patterns were applied. The low deposited sediment thresholds indicate that even a thin veneer of sediment can have consequences for larval settlement due to a reduction of optimal substrate. And while grooves and overhangs provide more settlement options in high deposition areas, recruits settling at these

  7. Analysis of Wetting and Contact Angle Hysteresis on Chemically Patterned Surfaces

    KAUST Repository

    Xu, Xianmin

    2011-01-01

    Wetting and contact angle hysteresis on chemically patterned surfaces in two dimensionsare analyzed from a stationary phase-field model for immiscible two phase fluids. We first study the sharp-interface limit of the model by the method of matched asymptotic expansions. We then justify the results rigorously by the γ-convergence theory for the related variational problem and study the properties of the limiting minimizers. The results also provide a clear geometric picture of the equilibrium configuration of the interface. This enables us to explicitly calculate the total surface energy for the two phase systems on chemically patterned surfaces with simple geometries, namely the two phase flow in a channel and the drop spreading. By considering the quasi-staticmotion of the interface described by the change of volume (or volume fraction), we can follow the change-of-energy landscape which also reveals the mechanism for the stick-slip motion of the interface and contact angle hysteresis on the chemically patterned surfaces. As the interface passes throughpatterned surfaces, we observe not only stick-slip of the interface and switching of the contact angles but also the hysteresis of contact point and contact angle. Furthermore, as the size of the patternde creases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle (when the interface ismoving in the opposite direction) without the switching in between. © 2011 Society for Industrial and Applied Mathematics.

  8. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau

    2017-01-19

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a deformable pattern. Thin electrode layers and semiconductor nanowire layers can be attached to the substrate, creating the optoelectronic device. The devices can be highly deformable, e.g. capable of undergoing strains of 500% or more, bending angles of 25° or more, and/or twist angles of 270° or more. Methods of making the deformable optoelectronic devices and methods of using, e.g. as a photodetector, are also provided.

  9. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...

  10. The August 24th 2016 Accumoli earthquake: surface faulting and Deep-Seated Gravitational Slope Deformation (DSGSD in the Monte Vettore area

    Directory of Open Access Journals (Sweden)

    Domenico Aringoli

    2016-11-01

    Full Text Available On August 24th 2016 a Mw=6.0 earthquake hit central Italy, with the epicenter located at the boundaries between Lazio, Marche, Abruzzi and Umbria regions, near the village of Accumoli (Rieti, Lazio. Immediately after the mainshock, this geological survey has been focused on the earthquake environmental effects related to the tectonic reactivation of the previously mapped active fault (i.e. primary, as well as secondary effects mostly related to the seismic shaking (e.g. landslides and fracturing in soil and rock.This paper brings data on superficial effects and some preliminary considerations about the interaction and possible relationship between surface faulting and the occurrence of Deep-Seated Gravitational Slope Deformation (DSGSD along the southern and western slope of Monte Vettore.

  11. A new procedure for characterizing textured surfaces with a deterministic pattern of valley features

    DEFF Research Database (Denmark)

    Godi, Alessandro; Kühle, A; De Chiffre, Leonardo

    2013-01-01

    In recent years there has been the development of a high number of manufacturing methods for creating textured surfaces which often present deterministic patterns of valley features. Unfortunately, suitable methodologies for characterizing them are lacking. Existing standards cannot in fact...... properly characterize such surfaces, providing at times unreasonable values. In this paper, a new procedure for characterizing such surfaces is proposed, relying on advanced filtering and feature recognition and separation. Existing advanced filtering methods do not always eliminate all distortions......, therefore some modifications are investigated. In particular the robust Gaussian regression filter has been modified providing an envelope first-guess in order to always fit the mean line through the plateau region. Starting from a filtered and aligned profile, the feature thresholds recognition...

  12. Ion beam induced surface pattern formation and stable travelling wave solutions.

    Science.gov (United States)

    Numazawa, Satoshi; Smith, Roger

    2013-03-06

    The formation of ripple structures on ion bombarded semiconductor surfaces is examined theoretically. Previous models are discussed and a new nonlinear model is formulated, based on the infinitesimal local atomic relocation induced by elastic nuclear collisions in the early stages of collision cascades and an associated density change in the near surface region. Within this framework ripple structures are shown to form without the necessity to invoke surface diffusion or large sputtering as important mechanisms. The model can also be extended to the case where sputtering is important, and it is shown that in this case certain 'magic' angles can occur at which the ripple patterns are most clearly defined. The results are in very good agreement with experimental observations.

  13. Delayed frost formation on hybrid nanostructured surfaces with patterned high wetting contrast

    Science.gov (United States)

    Hou, Youmin; Zhou, Peng; Yao, Shuhuai

    2014-11-01

    Engineering icephobic surfaces that can retard the frost formation and accumulation are important to vehicles, wind turbines, power lines, and HVAC systems. For condensation frosting, superhydrophobic surfaces promote self-removal of condensed droplets before freezing and consequently delay the frost growth. However, a small thermal fluctuation may lead to a Cassie-to-Wenzel transition, and thus dramatically enhance the frost formation and adhesion. In this work, we investigated the heterogeneous ice nucleation on hybrid nanostructured surfaces with patterned high wetting contrast. By judiciously introducing hydrophilic micro-patches into superhydrophobic nanostructured surface, we demonstrated that such a novel hybrid structure can efficiently defer the ice nucleation as compared to a superhydrophobic surface with nanostructures only. We observed efficient droplet jumping and higher coverage of droplets with diameter smaller than 10 μm, both of which suppress frost formation. The hybrid surface avoids the formation of liquid-bridges for Cassie-to-Wenzel transition, therefore eliminating the `bottom-up' droplet freezing from the cold substrate. These findings provide new insights to improve anti-frosting and anti-icing by using heterogeneous wettability in multiscale structures.

  14. Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

    Directory of Open Access Journals (Sweden)

    Nina J. Blumenstein

    2015-08-01

    Full Text Available We present a promising first example towards controlling the properties of a self-assembling mineral film by means of the functionality and polarity of a substrate template. In the presented case, a zinc oxide film is deposited by chemical bath deposition on a nearly topography-free template structure composed of a pattern of two self-assembled monolayers with different chemical functionality. We demonstrate the template-modulated morphological properties of the growing film, as the surface functionality dictates the granularity of the growing film. This, in turn, is a key property influencing other film properties such as conductivity, piezoelectric activity and the mechanical properties. A very pronounced contrast is observed between areas with an underlying fluorinated, low energy template surface, showing a much more (almost two orders of magnitude coarse-grained film with a typical agglomerate size of around 75 nm. In contrast, amino-functionalized surface areas induce the growth of a very smooth, fine-grained surface with a roughness of around 1 nm. The observed influence of the template on the resulting clear contrast in morphology of the growing film could be explained by a contrast in surface adhesion energies and surface diffusion rates of the nanoparticles, which nucleate in solution and subsequently deposit on the functionalized substrate.

  15. Joint surface reconstruction and 4D deformation estimation from sparse data and prior knowledge for marker-less Respiratory motion tracking.

    Science.gov (United States)

    Berkels, Benjamin; Bauer, Sebastian; Ettl, Svenja; Arold, Oliver; Hornegger, Joachim; Rumpf, Martin

    2013-09-01

    The intraprocedural tracking of respiratory motion has the potential to substantially improve image-guided diagnosis and interventions. The authors have developed a sparse-to-dense registration approach that is capable of recovering the patient's external 3D body surface and estimating a 4D (3D + time) surface motion field from sparse sampling data and patient-specific prior shape knowledge. The system utilizes an emerging marker-less and laser-based active triangulation (AT) sensor that delivers sparse but highly accurate 3D measurements in real-time. These sparse position measurements are registered with a dense reference surface extracted from planning data. Thereby a dense displacement field is recovered, which describes the spatio-temporal 4D deformation of the complete patient body surface, depending on the type and state of respiration. It yields both a reconstruction of the instantaneous patient shape and a high-dimensional respiratory surrogate for respiratory motion tracking. The method is validated on a 4D CT respiration phantom and evaluated on both real data from an AT prototype and synthetic data sampled from dense surface scans acquired with a structured-light scanner. In the experiments, the authors estimated surface motion fields with the proposed algorithm on 256 datasets from 16 subjects and in different respiration states, achieving a mean surface reconstruction accuracy of ± 0.23 mm with respect to ground truth data-down from a mean initial surface mismatch of 5.66 mm. The 95th percentile of the local residual mesh-to-mesh distance after registration did not exceed 1.17 mm for any subject. On average, the total runtime of our proof of concept CPU implementation is 2.3 s per frame, outperforming related work substantially. In external beam radiation therapy, the approach holds potential for patient monitoring during treatment using the reconstructed surface, and for motion-compensated dose delivery using the estimated 4D surface motion field in

  16. Tumor Tracking Method Based on a Deformable 4D CT Breathing Motion Model Driven by an External Surface Surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Fassi, Aurora, E-mail: aurora.fassi@mail.polimi.it [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Schaerer, Joël; Fernandes, Mathieu [CREATIS, CNRS UMR 5220, INSERM U1044, Université Lyon 1, INSA-Lyon, Villeurbanne (France); Department of Radiotherapy, Centre Léon Bérard, Lyon (France); Riboldi, Marco [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit, CNAO Foundation, Pavia (Italy); Sarrut, David [CREATIS, CNRS UMR 5220, INSERM U1044, Université Lyon 1, INSA-Lyon, Villeurbanne (France); Department of Radiotherapy, Centre Léon Bérard, Lyon (France); Baroni, Guido [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano (Italy); Bioengineering Unit, CNAO Foundation, Pavia (Italy)

    2014-01-01

    Purpose: To develop a tumor tracking method based on a surrogate-driven motion model, which provides noninvasive dynamic localization of extracranial targets for the compensation of respiration-induced intrafraction motion in high-precision radiation therapy. Methods and Materials: The proposed approach is based on a patient-specific breathing motion model, derived a priori from 4-dimensional planning computed tomography (CT) images. Model parameters (respiratory baseline, amplitude, and phase) are retrieved and updated at each treatment fraction according to in-room radiography acquisition and optical surface imaging. The baseline parameter is adapted to the interfraction variations obtained from the daily cone beam (CB) CT scan. The respiratory amplitude and phase are extracted from an external breathing surrogate, estimated from the displacement of the patient thoracoabdominal surface, acquired with a noninvasive surface imaging device. The developed method was tested on a database of 7 lung cancer patients, including the synchronized information on internal and external respiratory motion during a CBCT scan. Results: About 30 seconds of simultaneous acquisition of CBCT and optical surface images were analyzed for each patient. The tumor trajectories identified in CBCT projections were used as reference and compared with the target trajectories estimated from surface displacement with the a priori motion model. The resulting absolute differences between the reference and estimated tumor motion along the 2 image dimensions ranged between 0.7 and 2.4 mm; the measured phase shifts did not exceed 7% of the breathing cycle length. Conclusions: We investigated a tumor tracking method that integrates breathing motion information provided by the 4-dimensional planning CT with surface imaging at the time of treatment, representing an alternative approach to point-based external–internal correlation models. Although an in-room radiograph-based assessment of the

  17. Source model for the Copahue volcano magma plumbing system constrained by InSAR surface deformation observations

    Science.gov (United States)

    Lundgren, Paul; Nikkhoo, Mehdi; Samsonov, Sergey V.; Milillo, Pietro; Gil-Cruz, Fernando; Lazo, Jonathan

    2017-07-01

    Copahue volcano straddling the edge of the Agrio-Caviahue caldera along the Chile-Argentina border in the southern Andes has been in unrest since inflation began in late 2011. We constrain Copahue's source models with satellite and airborne interferometric synthetic aperture radar (InSAR) deformation observations. InSAR time series from descending track RADARSAT-2 and COSMO-SkyMed data span the entire inflation period from 2011 to 2016, with their initially high rates of 12 and 15 cm/yr, respectively, slowing only slightly despite ongoing small eruptions through 2016. InSAR ascending and descending track time series for the 2013-2016 time period constrain a two-source compound dislocation model, with a rate of volume increase of 13 × 106 m3/yr. They consist of a shallow, near-vertical, elongated source centered at 2.5 km beneath the summit and a deeper, shallowly plunging source centered at 7 km depth connecting the shallow source to the deeper caldera. The deeper source is located directly beneath the volcano tectonic seismicity with the lower bounds of the seismicity parallel to the plunge of the deep source. InSAR time series also show normal fault offsets on the NE flank Copahue faults. Coulomb stress change calculations for right-lateral strike slip (RLSS), thrust, and normal receiver faults show positive values in the north caldera for both RLSS and normal faults, suggesting that northward trending seismicity and Copahue fault motion within the caldera are caused by the modeled sources. Together, the InSAR-constrained source model and the seismicity suggest a deep conduit or transfer zone where magma moves from the central caldera to Copahue's upper edifice.

  18. Evolution of patterned and unpatterned surfaces during high temperature annealing and plasma etching

    Science.gov (United States)

    Kwon, Taesoon

    In this thesis we describe experiments designed to probe spontaneous and directed surface evolution during annealing and plasma etching of three materials of high technological interest: silicon, nanoporous silica and photoresist. Vicinal Si(111) surfaces provide a source of steps whose configuration we control via the introduction of a topographic pattern; this is done using combination of photolithography and reactive ion etching. We study the length scale dependence of self-organization of step bunches during annealing at ˜1273°C in ultrahigh vacuum (UHV), resulting from sublimation and diffusion, and the competition between effects due to the intrinsic stiffness of steps and their mutual interactions. We also show the results of numerical simulations on these surfaces based upon a simple model of step motion, which we compare with our experimental observations. Nanoporous silica (NPS) is a heterogeneous material which is of potential use in micro/nanoelectronic applications requiring an insulator with a small dielectric constant. We investigate the stability of the NPS-plasma interface during etching, comparing the tendency for spontaneous pattern formation with the persistence of patterned perturbations. We study samples with various porosity (0˜50 vol.%) under low pressure C4F8/90%Ar plasma etching conditions. Our AFM characterization of unpatterned surfaces shows a monotonic increase in RMS roughness with etching time. Annealing etched NPS surfaces at temperatures over the range from 300˜900°C in UHV as well as in non-oxidizing environment produces no significant relaxation of etching-induced surface roughness. Statistical analysis using a height-height correlation function reveals that NPS surfaces do not show a simple scaling behavior during the technologically-relevant transient time regime. Etching of patterned surfaces reveals a persistent period of approximately 400 nm, which is ˜4 times that which spontaneously appears during etching of

  19. Resolving spatial heterogeneities in exhumation and surface uplift in Timor-Leste : Constraints on deformation processes in young orogens

    NARCIS (Netherlands)

    Tate, Garrett W.; McQuarrie, Nadine; van Hinsbergen, D.J.J.|info:eu-repo/dai/nl/269263624; Bakker, Richard R.; Harris, Ron; Willett, Sean; Reiners, Peter W.; Fellin, Maria Giuditta; Ganerød, Morgan; Zachariasse, Willem Jan|info:eu-repo/dai/nl/413577368

    Although exhumation and surface uplift are important parameters in understanding orogenesis, the opportunity to measure both in close proximity is rare. In Timor-Leste (East Timor), deeply exhumed metamorphic rocks and piggyback deepwater synorogenic basins are only tens of kilometers apart,

  20. Fraktalnist deformational relief polycrystalline aluminum

    Directory of Open Access Journals (Sweden)

    М.В. Карускевич

    2006-02-01

    Full Text Available  The possibility of the fractal geometry method application for the analisys of surface deformation structures under cyclic loading is presented.It is shown, that deformation relief of the alclad aluminium alloyes meets the criteria of the fractality. For the fractal demention estimation the method of  “box-counting”can be applied.

  1. Deformation mechanisms in experimentally deformed Boom Clay

    Science.gov (United States)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  2. Comparison of surface and intramuscular EMG pattern recognition for simultaneous wrist/hand motion classification.

    Science.gov (United States)

    Smith, Lauren H; Hargrove, Levi J

    2013-01-01

    The simultaneous control of multiple degrees of freedom (DOFs) is important for the intuitive, life-like control of artificial limbs. The objective of this study was to determine whether the use of intramuscular electromyogram (EMG) improved pattern classification of simultaneous wrist/hand movements compared to surface EMG. Two pattern classification methods were used in this analysis, and were trained to predict 1-DOF and 2-DOF movements involving wrist rotation, wrist flexion/extension, and hand open/close. The classification methods used were (1) a single pattern classifier discriminating between 1-DOF and 2-DOF motion classes, and (2) a parallel set of three classifiers to predict the activity of each of the 3 DOFs. We demonstrate that in this combined wrist/hand classification task, the use of intramuscular EMG significantly decreases classification error compared to surface EMG for the parallel configuration (p<0.01), but not for the single classifier. We also show that the use of intramuscular EMG mitigates the increase in errors produced when the parallel classifier method is trained without 2-DOF motion class data.

  3. The weight of a storm: what observations of Earth surface deformation can tell us about Hurricane Harvey

    Science.gov (United States)

    Borsa, A. A.; Mencin, D.; van Dam, T. M.

    2017-12-01

    Hurricane Harvey was the first major hurricane to impact the USA in over a decade, making landfall southwest of Houston, TX on August 26, 2017. Although Harvey was downgraded to a tropical storm shortly after landfall, it dropped a record amount of rain and was responsible for epic flooding across much of southeast Texas. While precipitation from a large storm like Harvey can be estimated from in-situ rain gages and Doppler radar, the accompanying surface water changes that lead to flooding are imperfectly observed due to the limited coverage of existing stream and lake level gages and because floodwaters inundate areas that are typically unmonitored. Earth's response to changes in surface loading provides an opportunity to observe the local hydrological response to Hurricane Harvey, specifically the dramatic changes in water storage coincident with and following the storm. Continuous GPS stations in southeastern Texas observed an average drop in land surface elevations of 1.8 cm following Harvey's landfall, followed by a gradual recovery to pre-storm levels over the following month. We interpret this surface motion as Earth's elastic response to the weight of cumulative rainfall during the storm, followed by rebound as that weight was removed by runoff and evapotranspiration (ET). Using observations of surface displacements from GPS stations in the HoustonNET and Plate Boundary Observatory networks, we model the daily water storage changes across Texas and Louisiana associated with Harvey. Because Harvey's barometric pressure low caused surface uplift at the cm level which temporarily obscured the subsidence signal due to precipitation, we model and remove the effect of atmospheric loading from the GPS data prior to our analysis. We also consider the effect on GPS position time series of non-tidal ocean loading due to the hurricane storm surge, which at the coast was an order of magnitude larger than loads due to precipitation alone. Finally, we use our results to

  4. A facile strategy for the fabrication of a bioinspired hydrophilic-superhydrophobic patterned surface for highly efficient fog-harvesting

    KAUST Repository

    Wang, Yuchao

    2015-08-10

    Fog water collection represents a meaningful effort in the places where regular water sources, including surface water and ground water, are scarce. Inspired by the amazing fog water collection capability of Stenocara beetles in the Namib Desert and based on the recent work in biomimetic water collection, this work reported a facile, easy-to-operate, and low-cost method for the fabrication of hydrophilic-superhydrophobic patterned hybrid surface toward highly efficient fog water collection. The essence of the method is incorporating a (super)hydrophobically modified metal-based gauze onto the surface of a hydrophilic polystyrene (PS) flat sheet by a simple lab oven-based thermal pressing procedure. The produced hybrid patterned surfaces consisted of PS patches sitting within the holes of the metal gauzes. The method allows for an easy control over the pattern dimension (e.g., patch size) by varying gauze mesh size and thermal pressing temperature, which is then translated to an easy optimization of the ultimate fog water collection efficiency. Given the low-cost and wide availability of both PS and metal gauze, this method has a great potential for scaling-up. The results showed that the hydrophilic-superhydrophobic patterned hybrid surfaces with a similar pattern size to Stenocara beetles’s back pattern produced significantly higher fog collection efficiency than the uniformly (super)hydrophilic or (super)hydrophobic surfaces. This work contributes to general effort in fabricating wettability patterned surfaces and to atmospheric water collection for direct portal use.

  5. The effects of subduction termination on the continental lithosphere: Linking volcanism, deformation, surface uplift, and slab tearing in central Anatolia

    Science.gov (United States)

    Delph, Jonathan R.; Abgarmi, Bijan; Ward, Kevin M.; Beck, Susan L.; Arda Ozacar, A.; Zandt, George; Sandvol, Eric; Turkelli, Niyazi; Kalafat, Dogan

    2017-04-01

    The lithospheric evolution of Anatolia is largely defined by processes associated with the terminal stages of subduction along its southern margin. Central Anatolia represents the transition from the subduction of oceanic lithosphere at the Aegean trench in the west to the Arabian - Eurasian continental collision in the east. In the overriding plate, this complicated transition is contemporaneous with uplift along the southern margin of central Anatolia (2 km in 6 Myr), voluminous felsic-intermediate ignimbrite eruptions (>1000 km3), extension, and tectonic deformation reflected by abundant low-magnitude seismic activity. The addition of 72 seismic stations as part of the Continental Dynamics - Central Anatolian Tectonics project, along with development of a new approach to the joint inversion of receiver functions and dispersion data, enables us obtain a high-resolution 3D shear wave velocity model of central Anatolia down to 150 km. This new velocity model has important implications for the complex interactions between the downgoing, segmenting African lithosphere and the overriding Anatolian Plate. These results reveal that the lithosphere of central Anatolia and the northern Arabian Plate is thin (4.5 km/s), indicating the presence of the Cyprean slab beneath central Anatolia. Thus, uplift of the Central Taurus Mountains may be due to slab rebound after the detachment of the oceanic portion of the Cyprean slab beneath Anatolia rather than the presence of shallow asthenospheric material. These fast velocities extend to the northern margin of the Central Taurus Mountains, giving way to a NE-SW trend of very slow upper mantle shear wave velocities (interpreted to be shallow, warm asthenosphere in which melt is present. The combination of a shallow asthenosphere and lithospheric-scale weaknesses associated with relict tectonic structures formed during the assembly of Anatolia are responsible for the spatial distribution of volcanism in the Central Anatolian

  6. Wetting behavior of patterned micro-pillar array predicted by an equivalent surface tension model

    International Nuclear Information System (INIS)

    Chen, Qiang; Huang, Yonghua

    2016-01-01

    Micro-pillar array is widely applied to manipulate the wettability of surfaces. Cases where liquid has infiltrated such pillar arrays completely are drawing increased attention in miniaturized systems. An equivalent surface tension model is proposed to characterize the driving force of liquid evolution in patterned micro-pillar arrays after the Young-Laplace equation and surface energy analysis are applied on both the pillar unit and bulk liquid levels. The effects of local menisci induced from the wetting of pillars are bounded and treated as 'equivalent liquid-vapor surface tension', through which the bulk liquid profile is then obtained based on the principle of minimal surface energy. The model is found to be computationally efficient and can be easily obtained through numerical methods. A typical sample case is presented to demonstrate its advantages and simplicity. The bulk profile that considers the effects of pillar array is compared with the result without pillars. The influencing effects, including apparent tilt angle, pillar spacing, and pillar shape, are addressed.

  7. Energy-separated sequential irradiation for ripple pattern tailoring on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Tanuj [Department of Physics, Central University of Haryana, Jant-Pali, Mahendergarh 1123029 (India); Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, Manish, E-mail: manishbharadwaj@gmail.com [Department of Physics, Central University of Rajasthan, Kishangarh 305801 (India); Panchal, Vandana [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Sahoo, P.K. [School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar 751005 (India); Kanjilal, D. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-12-01

    Highlights: • A new process for controlling the near-surface amorphization of ripples on Si surfaces. • Ripples generation by 100 KeV Ar{sup +} and amorphization control by 60 KeV Ar{sup +} irradiation. • Advantage of energy-separated irradiation demonstrated by detailed RBS and AFM studies. • Relevant mechanism is presented on the basis of DAMAGE and SIMNRA simulations. • Key role of solid flow towards the amorphous/crystalline interface is demonstrated. - Abstract: Nanoscale ripples on semiconductor surfaces have potential application in biosensing and optoelectronics, but suffer from uncontrolled surface-amorphization when prepared by conventional ion-irradiation methods. A two-step, energy-separated sequential-irradiation enables simultaneous control of surface-amorphization and ripple-dimensions on Si(1 0 0). The evolution of ripples using 100 keV Ar{sup +} bombardment and further tuning of the patterns using a sequential-irradiation by 60 keV Ar{sup +} at different fluences are demonstrated. The advantage of this approach as opposed to increased fluence at the same energy is clarified by atomic force microscopy and Rutherford backscattering spectroscopy investigations. The explanation of our findings is presented through DAMAGE simulation.

  8. Stick-Slip Motion of Moving Contact Line on Chemically Patterned Surfaces

    KAUST Repository

    Wu, Congmin

    2009-01-01

    Based on our continuum hydrodynamic model for immiscible two-phase flows at solid surfaces, the stick-slip motion has been predicted for moving contact line at chemically patterned surfaces [Wang et al., J. Fluid Mech., 605 (2008), pp. 59-78]. In this paper we show that the continuum predictions can be quantitatively verified by molecular dynamics (MD) simulations. Our MD simulations are carried out for two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille flow geometry. In particular, one solid surface is chemically patterned with alternating stripes. For comparison, the continuum model is numerically solved using material parameters directly measured in MD simulations. From oscillatory fluid-fluid interface to intermittent stick-slip motion of moving contact line, we have quantitative agreement between the continuum and MD results. This agreement is attributed to the accurate description down to molecular scale by the generalized Navier boundary condition in our continuum model. Numerical results are also presented for the relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis based on the Onsager principle of minimum energy dissipation. © 2010 Global-Science Press.

  9. Existence of quasi-stationary neutron and x-ray states near the surface of a deformed single crystal

    CERN Document Server

    Iolin, E

    1999-01-01

    The problem of x-ray or neutron multiply internally reflected inside a bent single crystal plate (Bragg geometry) is considered. It is found that such multiple reflections lead to the existence of quasi-stationary (QS) states. QS states are discrete and correspond to the resonance of motion of the tie point between the front surface and a 'turning place' inside a single crystal. (author)

  10. Optical 3D Deformation Measurement Utilizing Non-planar Surface for the Development of an “Intelligent Tire”

    Science.gov (United States)

    Matsuzaki, Ryosuke; Hiraoka, Naoki; Todoroki, Akira; Mizutani, Yoshihiro

    Intelligent tires, also known as smart tires, are equipped with sensors to monitor the strain of the interior surface and the rolling radius of tire, and are expected to improve the reliability of tires and tire control systems such as anti-lock braking systems (ABS). However, the high stiffness of an attached sensor like a strain gauge causes sensors to debond from the tire rubber. In the present study, a novel optical method is used for the concurrent monitoring of in-plane strain and out-of-plane displacement (rolling radius) utilizing the non-planar surface of the monitoring object. The optical method enables noncontact measurement of strain distribution. The in-plane strain and out-of-plane displacement are calculated by using image processing with an image of the interior surface of a tire that is taken with a single CCD camera fixed on the wheel rim. This new monitoring system is applied to an aluminum beam and a commercially available radial tire. As a result, the monitoring system provides concurrent measurement of in-plane strain, out-of-plane displacement and tire pressure, and is shown to be an effective monitoring system for intelligent tires.

  11. Influence of pre-tectonic carbonate facies architecture on deformation patterns of syntectonic turbidites, an example from the central Mexican fold-thrust belt

    Science.gov (United States)

    Vásquez Serrano, Alberto; Tolson, Gustavo; Fitz Diaz, Elisa; Chávez Cabello, Gabriel

    2018-04-01

    The Mexican fold-thrust belt in central México excellently exposes relatively well preserved syntectonic deposits that overlay rocks with lateral lithostratigraphic changes across the belt. We consider the deformational effects of these changes by investigating the geometry, kinematics and strain distribution within syntectonic turbidites, which are deposited on top of Albian-Cenomanian shallow and deep water carbonate layers. Field observations and detailed structural analysis at different stratigraphic and structural levels of the Late Cretaceous syntectonic formation are compared with the deformation as a function of lithological and structural variations in the underlying carbonate units, to better understand the effect of these lithostratigraphic variations on deformation, kinematics, strain distribution and propagation of deformation. From our kinematic analyses, we conclude that the syntectonic strata are pervasively affected by folding in all areas and that deformation partitioning localized shear zones at the boundaries of this unit, particularly along the contact with massive carbonates. At the boundaries with massive platformal carbonates, the turbidites are strongly deformed by isoclinal folding with a pervasive sub-horizontal axial plane cleavage and 70-60% shortening. In contrast, contacts with thinly-bedded carbonate layers (basinal facies), do not show strain localization, and have horizontal shortening of 50-40% that is accommodated by buckle folds with a less pervasive, steeply dipping cleavage. The mechanical properties variations in the underlying pre-tectonic units as a function of changes in lithostratigraphy fundamentally control the deformation in the overlying syntectonic strata, which is an effect that could be expected to occur in any deformed sedimentary sequence with such variations.

  12. Crustal deformation of Iwojima volcano in Japan detected by SAR interferometry

    Science.gov (United States)

    Yarai, H.; Ozawa, T.; Murakami, M.; Tobita, M.; Nakagawa, H.; Fujiwara, S.

    2002-12-01

    Iwojima volcano is one of the most active volcanoes in Japan. Large-scale crustal deformation is ongoing in the island. It is suggested that the island was uplifted about 40m during the recent 200 years (Kaizuka et al., 1985). The crustal deformations are believed to be of volcanic origin and are outstanding in terms of the magnitude and the complexity. It is important to understand the 3-dimensional evolution of the deformation field with time to understand the behavior of the volcanic sources. Although there are 2 permanent GPS sites in the island, they are not sufficient to monitor the extremely complex spatial and temporal patterns of the deformation. We here use JERS-1 SAR data to map the detailed surface displacement field associated with volcanic activity of the island. We processed up to 20 different pairs spanning 1992 to 1998. It is revealed that the rate of surface deformation was not constant but episodic. We also find that the displacements seem to consist of three different subsets of deformation pattern; i.e., Motoyama (north east of Iwojima), Chidorigahara (near an old crater), and Suribachi-yama mountain (south of Iwojima). The spatial pattern of the first subset is simpler than the others and explainable as an inflation and deflation of a spherical point-source. Source depth inferred from the pattern is smaller than 2 km. However, the rate of volume change is not constant and sometimes even changes the polarity, which suggests the complexity of the volcanic source structure and mechanism.

  13. Extracting Extensor Digitorum Communis Activation Patterns using High-Density Surface Electromyography

    Directory of Open Access Journals (Sweden)

    Xiaogang eHu

    2015-10-01

    Full Text Available The extensor digitorum communis muscle plays an important role in hand dexterity during object manipulations. This multi-tendinous muscle is believed to be controlled through separate motoneuron pools, thereby forming different compartments that control individual digits. However, due to the complex anatomical variations across individuals and the flexibility of neural control strategies, the spatial activation patterns of the extensor digitorum communis compartments during individual finger extension have not been fully tracked under different task conditions.The objective of this study was to quantify the global spatial activation patterns of the extensor digitorum communis using high-density (7×9 surface electromyogram (EMG recordings. The muscle activation map (based on the root mean square of the EMG was constructed when subjects performed individual four finger extensions at the metacarpophalangeal joint, at different effort levels and under different finger constraints (static and dynamic. Our results revealed distinct activation patterns during individual finger extensions, especially between index and middle finger extensions, although the activation between ring and little finger extensions showed strong covariance. The activation map was relatively consistent at different muscle contraction levels and for different finger constraint conditions. We also found that distinct activation patterns were more discernible in the proximal-distal direction than in the radial-ulnar direction. The global spatial activation map utilizing surface grid EMG of the extensor digitorum communis muscle provides information for localizing individual compartments of the extensor muscle during finger extensions. This is of potential value for identifying more selective control input for assistive devices. Such information can also provide a basis for understanding hand impairment in individuals with neural disorders.

  14. Nanolaminate deformable mirrors

    Science.gov (United States)

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  15. Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface

    DEFF Research Database (Denmark)

    Kleissl, K.; Georgakis, C.T.

    2012-01-01

    In this paper, the aerodynamics of bridge cables with helical fillets and a pattern-indented surface are examined. To this end, an extensive wind-tunnel test campaign was undertaken to measure the static force coefficients about the critical Reynolds number region, with varying relative cable...... cable was found to have a much slower flow transition for near normal flow and relatively large lift force components for the yawed positions. Flow visualizations confirmed the existence of specific flow structures which are often associated with the presence of lower drag or large lift forces...

  16. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, Antonio, E-mail: antonio.hurtado@strath.ac.uk [Institute of Photonics, SUPA Department of Physics, University of Strathclyde, TIC Centre, 99 George Street, Glasgow G1 1RD (United Kingdom); Javaloyes, Julien [Departament de Fisica, Universitat de les Illes Balears, c/Valldemossa km 7.5, 07122 Mallorca (Spain)

    2015-12-14

    Multiple controllable spiking patterns are achieved in a 1310 nm Vertical-Cavity Surface Emitting Laser (VCSEL) in response to induced perturbations and for two different cases of polarized optical injection, namely, parallel and orthogonal. Furthermore, reproducible spiking responses are demonstrated experimentally at sub-nanosecond speed resolution and with a controlled number of spikes fired. This work opens therefore exciting research avenues for the use of VCSELs in ultrafast neuromorphic photonic systems for non-traditional computing applications, such as all-optical binary-to-spiking format conversion and spiking information encoding.

  17. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...... obtained by means of a single short and intensive carbon plasma deposition pulse. The deposited DLC coating was characterized by micro-Raman spectroscopy measurements. The DLC coating process gave rise to wide potential possibilities in micro-devices manufacturing productions....

  18. Mimicking a Stenocara beetle's back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces.

    Science.gov (United States)

    Garrod, R P; Harris, L G; Schofield, W C E; McGettrick, J; Ward, L J; Teare, D O H; Badyal, J P S

    2007-01-16

    A simple two-step plasmachemical methodology is outlined for the fabrication of microcondensor surfaces. This comprises the creation of a superhydrophobic background followed by pulsed plasma deposition of a hydrophilic polymer array. Microcondensation efficiency has been explored in terms of the chemical nature of the hydrophilic pixels and their dimensions. These results are compared to the hydrophilic-hydrophobic pattern present on the Stenocara beetle's back, which is used by the insect to collect water in the desert. Potential applications include fog harvesting, microfluidics, and biomolecule immobilization.

  19. HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.

    Science.gov (United States)

    Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B

    2017-07-01

    This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract

  20. Influence of synthesis methods on tungsten dispersion, structural deformation, and surface acidity in binary WO3-ZrO2 system.

    Science.gov (United States)

    Cortés-Jácome, M A; Toledo, J A; Angeles-Chavez, C; Aguilar, M; Wang, J A

    2005-12-08

    WO3-ZrO2 catalysts were synthesized by precipitating the aqueous solutions of zirconium oxynitrate and ammonium metatungstate with ammonium hydroxide. The white slurry precipitate was treated under three different conditions. In the as-made materials, the amorphous phase was formed in the aged and refluxed samples, while well-crystallized tetragonal and monoclinic phases were obtained in the hydrothermally treated sample. The real amount of tungsten loaded in the samples was similar for the three samples, independently of the treatments; however, the tungsten surface atomic density in the annealed WO3-ZrO2 samples varied between 6 and 9 W atoms/nm2. Two different contrast types of aggregates were determined by scanning electron microscopy, the white particles which are rich in W, and the gray ones which are rich in zirconium; both of them were formed in the calcined solids prepared under aging or reflux condition. A very high dispersion of tungsten species on the zirconia surface was achieved in the hydrothermally treated sample. The degree of the interaction between WO(x) and ZrO2 surface strongly modified the Zr-O bond lengths and bond angles in the structure of tetragonal zirconia as proved by X-ray diffraction analysis and the Rietveld refinement. The catalyst obtained under hydrothermal condition exhibited the highest dispersion of tungsten species in the zirconia, which in turn causes strong structural deformation of the tetragonal ZrO2 phase responsible of the strongest surface acidity and, consequently, the optimum catalytic activity for n-hexane isomerization.

  1. GBIS (Geodetic Bayesian Inversion Software): Rapid Inversion of InSAR and GNSS Data to Estimate Surface Deformation Source Parameters and Uncertainties

    Science.gov (United States)

    Bagnardi, M.; Hooper, A. J.

    2017-12-01

    Inversions of geodetic observational data, such as Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS) measurements, are often performed to obtain information about the source of surface displacements. Inverse problem theory has been applied to study magmatic processes, the earthquake cycle, and other phenomena that cause deformation of the Earth's interior and of its surface. Together with increasing improvements in data resolution, both spatial and temporal, new satellite missions (e.g., European Commission's Sentinel-1 satellites) are providing the unprecedented opportunity to access space-geodetic data within hours from their acquisition. To truly take advantage of these opportunities we must become able to interpret geodetic data in a rapid and robust manner. Here we present the open-source Geodetic Bayesian Inversion Software (GBIS; available for download at http://comet.nerc.ac.uk/gbis). GBIS is written in Matlab and offers a series of user-friendly and interactive pre- and post-processing tools. For example, an interactive function has been developed to estimate the characteristics of noise in InSAR data by calculating the experimental semi-variogram. The inversion software uses a Markov-chain Monte Carlo algorithm, incorporating the Metropolis-Hastings algorithm with adaptive step size, to efficiently sample the posterior probability distribution of the different source parameters. The probabilistic Bayesian approach allows the user to retrieve estimates of the optimal (best-fitting) deformation source parameters together with the associated uncertainties produced by errors in the data (and by scaling, errors in the model). The current version of GBIS (V1.0) includes fast analytical forward models for magmatic sources of different geometry (e.g., point source, finite spherical source, prolate spheroid source, penny-shaped sill-like source, and dipping-dike with uniform opening) and for dipping faults with uniform

  2. Micromechanisms of deformation in shales

    Science.gov (United States)

    Bonnelye, A.; Gharbi, H.; Hallais, S.; Dimanov, A.; Bornert, M.; Picard, D.; Mezni, M.; Conil, N.

    2017-12-01

    One of the envisaged solutions for nuclear wastes disposal is underground repository in shales. For this purpose, the Callovo Oxfordian (Cox) argillaceous formation is extensively studied. The hydro-mechanical behavior of the argillaceous rock is complex, like the multiphase and multi-scale structured material itself. The argilaceous matrix is composed of interstratified illite-smectite particles, it contains detritic quartz and calcite, accessory pyrite, and the rock porosity ranges from micrometre to nanometre scales. Besides the bedding anisotropy, structural variabilities exist at all scales, from the decametric-metric scales of the geological formation to the respectively millimetric and micrometric scales of the aggregates of particles and clay particles Our study aims at understanding the complex mechanisms which are activated at the micro-scale and are involved in the macroscopic inelastic deformation of such a complex material. Two sets of experiments were performed, at two scales on three bedding orientations (90°, 45° and 0°). The first set was dedicated to uniaxial deformation followed with an optical set-up with a pixel resolution of 0.55µm. These experiments allowed us to see the fracture propagation with different patterns depending on the bedding orientation. For the second set of experiments, an experimental protocol was developed in order to perform uniaxial deformation experiment at controlled displacement rate, inside an environmental scanning electron microscope (ESEM), under controlled relative humidity, in order to preserve as much as possible the natural state of saturation of shales. We aimed at characterizing the mechanical anisotropy and the mechanisms involved in the deformation, with an image resolution below the micormeter. The observed sample surfaces were polished by broad ion beam in order to reveal the fine microstructures of the argillaceous matrix. In both cases, digital images were acquired at different loading stages during

  3. The oriented and patterned growth of fluorescent metal–organic frameworks onto functionalized surfaces

    Directory of Open Access Journals (Sweden)

    Jinliang Zhuang

    2012-08-01

    Full Text Available A metal–organic framework (MOF material, [Zn2(adc2(dabco] (adc = anthracene-9,10-dicarboxylate, dabco = 1,4-diazabicyclo[2.2.2]­octane, the fluorescence of which depends on the loading of its nanopores, was synthesized in two forms: as free-flowing nanocrystals with different shapes and as surface-attached MOFs (SURMOFs. For the latter, we used self-assembled monolayers (SAMs bearing functional groups, such as carboxylate and pyridyl groups, capable of coordinating to the constituents of the MOF. It could be demonstrated that this directed coordination also orients the nanocrystals deposited at the surface. Using two different patterning methods, i.e., microcontact printing and electron-beam lithography, the lateral distribution of the functional groups could be determined in such a way that the highly localized deposition of the SURMOF films became possible.

  4. Axisymmetric flow in a cylindrical tank over a rotating bottom. Part II. Deformation of the water surface and experimental verification of the theory

    Science.gov (United States)

    Iga, Keita; Yokota, Sho; Watanabe, Shunichi; Ikeda, Takashi; Niino, Hiroshi; Misawa, Nobuhiko

    2017-12-01

    The theory of axisymmetric flow in a cylindrical container with a rotating bottom, as described in Part I, is validated against the results of previous and our own laboratory experiments. First, deformation of the water surface is derived using the velocity distribution of the axisymmetric flow obtained by the theory. The form of the water surface is classified into three regimes, and the rotation rates of the transitions between these regimes are determined. The parameters predicted from this theory are compared with the results measured in laboratory experiments and also with data from previous experimental studies. The theory predicts the experimental data well, but a slight difference was found in the narrow region close to the side wall. Corrections estimated by considering the fluid behavior around the side wall boundary layer successfully explain most of the discrepancies. This theory appears to predict the results of the laboratory experiments very well, much better than a theory using an assumption of quadratic drag as a model of turbulent boundary layers.

  5. SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs.

    Directory of Open Access Journals (Sweden)

    Jian Xin Shi

    2011-05-01

    regulation of organ surface patterning and the broader control of flower development and biological functions.

  6. SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs.

    Science.gov (United States)

    Shi, Jian Xin; Malitsky, Sergey; De Oliveira, Sheron; Branigan, Caroline; Franke, Rochus B; Schreiber, Lukas; Aharoni, Asaph

    2011-05-01

    surface patterning and the broader control of flower development and biological functions.

  7. Satellite-based measurements of surface deformation reveal fluid flow associated with the geological storage of carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Vasco, D.W.; Rucci, A.; Ferretti, A.; Novali, F.; Bissell, R.; Ringrose, P.; Mathieson, A.; Wright, I.

    2009-10-15

    Interferometric Synthetic Aperture Radar (InSAR), gathered over the In Salah CO{sub 2} storage project in Algeria, provides an early indication that satellite-based geodetic methods can be effective in monitoring the geological storage of carbon dioxide. An injected volume of 3 million tons of carbon dioxide, from one of the first large-scale carbon sequestration efforts, produces a measurable surface displacement of approximately 5 mm/year. Using geophysical inverse techniques we are able to infer flow within the reservoir layer and within a seismically detected fracture/ fault zone intersecting the reservoir. We find that, if we use the best available elastic Earth model, the fluid flow need only occur in the vicinity of the reservoir layer. However, flow associated with the injection of the carbon dioxide does appear to extend several kilometers laterally within the reservoir, following the fracture/fault zone.

  8. Heart deformation analysis for automated quantification of cardiac function and regional myocardial motion patterns: A proof of concept study in patients with cardiomyopathy and healthy subjects

    International Nuclear Information System (INIS)

    Lin, Kai; Collins, Jeremy D.; Chowdhary, Varun; Markl, Michael; Carr, James C.

    2016-01-01

    Highlights: • Heart deformation analysis (HDA) can quantify global and regional cardiac function. • HDA works based on cine CMR images without the needs of operator interaction. • HDA-derived cardiac motion indices are reproducible. - Abstract: Objective: To test the performance of HDA in characterizing left ventricular (LV) function and regional myocardial motion patterns in the context of cardiomyopathy based on cine cardiovascular magnetic resonance (CMR). Materials and methods: Following the approval of the institutional review board (IRB), standard cine images of 45 subjects, including 15 healthy volunteers, 15 patients with hypertrophic cardiomyopathy (HCM) and 15 patients with dilated cardiomyopathy (DCM) were retrospectively analyzed using HDA. The variations of LV ejection fraction (LVEF), LV mass (LVM), and regional myocardial motion indices, including radial (Drr), circumferential (Dcc) displacement, radial (Vrr) and circumferential (Vcc) velocity, radial (Err), circumferential (Ecc) and shear (Ess) strain and radial (SRr) and circumferential (SRc) strain rate, were calculated and compared among subject groups. Inter-study reproducibility of HDA-derived myocardial motion indices were tested on 15 volunteers by using intra-class correlation coefficient (ICC) and coefficient of variation (CoV). Results: HDA identified significant differences in cardiac function and motion indices between subject groups. DCM patients had significantly lower LVEF (33.5 ± 9.65%), LVM (105.88 ± 21.93 g), peak Drr (0.29 ± 0.11 cm), Vrr-sys (2.14 ± 0.72 cm/s), Err (0.17 ± 0.08), Ecc (−0.08 ± 0.03), SRr-sys (0.91 ± 0.44s −1 ) and SRc-sys (−0.64 ± 0.27s −1 ) compared to the other two groups. HCM patients demonstrated increased LVM (171.69 ± 34.19) and lower peak Vcc-dia (0.78 ± 0.30 cm/s) than other subjects. Good inter-study reproducibility was found for all HDA-derived myocardial indices in healthy volunteers (ICC = 0.664–0.942, CoV = 15.1%–37

  9. Heart deformation analysis for automated quantification of cardiac function and regional myocardial motion patterns: A proof of concept study in patients with cardiomyopathy and healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kai, E-mail: kai-lin@northwestern.edu; Collins, Jeremy D.; Chowdhary, Varun; Markl, Michael; Carr, James C.

    2016-10-15

    Highlights: • Heart deformation analysis (HDA) can quantify global and regional cardiac function. • HDA works based on cine CMR images without the needs of operator interaction. • HDA-derived cardiac motion indices are reproducible. - Abstract: Objective: To test the performance of HDA in characterizing left ventricular (LV) function and regional myocardial motion patterns in the context of cardiomyopathy based on cine cardiovascular magnetic resonance (CMR). Materials and methods: Following the approval of the institutional review board (IRB), standard cine images of 45 subjects, including 15 healthy volunteers, 15 patients with hypertrophic cardiomyopathy (HCM) and 15 patients with dilated cardiomyopathy (DCM) were retrospectively analyzed using HDA. The variations of LV ejection fraction (LVEF), LV mass (LVM), and regional myocardial motion indices, including radial (Drr), circumferential (Dcc) displacement, radial (Vrr) and circumferential (Vcc) velocity, radial (Err), circumferential (Ecc) and shear (Ess) strain and radial (SRr) and circumferential (SRc) strain rate, were calculated and compared among subject groups. Inter-study reproducibility of HDA-derived myocardial motion indices were tested on 15 volunteers by using intra-class correlation coefficient (ICC) and coefficient of variation (CoV). Results: HDA identified significant differences in cardiac function and motion indices between subject groups. DCM patients had significantly lower LVEF (33.5 ± 9.65%), LVM (105.88 ± 21.93 g), peak Drr (0.29 ± 0.11 cm), Vrr-sys (2.14 ± 0.72 cm/s), Err (0.17 ± 0.08), Ecc (−0.08 ± 0.03), SRr-sys (0.91 ± 0.44s{sup −1}) and SRc-sys (−0.64 ± 0.27s{sup −1}) compared to the other two groups. HCM patients demonstrated increased LVM (171.69 ± 34.19) and lower peak Vcc-dia (0.78 ± 0.30 cm/s) than other subjects. Good inter-study reproducibility was found for all HDA-derived myocardial indices in healthy volunteers (ICC = 0.664–0.942, CoV = 15.1%–37

  10. Influence of Soft Drinks with Low pH on Different Ni-Ti Orthodontic Archwire Surface Patterns

    Science.gov (United States)

    Abalos, C.; Paul, A.; Mendoza, A.; Solano, E.; Palazon, C.; Gil, F. J.

    2013-03-01

    The aim of this study was to determine the influence of soft drinks on the surface of Ni-Ti archwires and their corrosion behavior. Archwires with different patterns (smooth, scratch, dimple, and crack) were selected and characterized by scanning electron microscopy and laser confocal microscopy. Immersion tests were performed in artificial saliva (pH 6.7) with a soft drink with a pH of 2.5 for 28 days. The results showed an increase in the surface defects and/or roughness of the dimple, crack and scratch patterns with the immersion times, and a decrease in corrosion resistance. A relationship between the surface pattern and the extent of the corrosion in Ni-Ti archwires with soft drinks at low pH has been demonstrated. Pattern should be taken into account in future studies, and manufacturing processes that produce surface defects (especially cracks) should be avoided.

  11. Superhydrophilic-Superhydrophobic Patterned Surfaces as High-Density Cell Microarrays: Optimization of Reverse Transfection.

    Science.gov (United States)

    Ueda, Erica; Feng, Wenqian; Levkin, Pavel A

    2016-10-01

    High-density microarrays can screen thousands of genetic and chemical probes at once in a miniaturized and parallelized manner, and thus are a cost-effective alternative to microwell plates. Here, high-density cell microarrays are fabricated by creating superhydrophilic-superhydrophobic micropatterns in thin, nanoporous polymer substrates such that the superhydrophobic barriers confine both aqueous solutions and adherent cells within each superhydrophilic microspot. The superhydrophobic barriers confine and prevent the mixing of larger droplet volumes, and also control the spreading of droplets independent of the volume, minimizing the variability that arises due to different liquid and surface properties. Using a novel liposomal transfection reagent, ScreenFect A, the method of reverse cell transfection is optimized on the patterned substrates and several factors that affect transfection efficiency and cytotoxicity are identified. Higher levels of transfection are achieved on HOOC- versus NH 2 -functionalized superhydrophilic spots, as well as when gelatin and fibronectin are added to the transfection mixture, while minimizing the amount of transfection reagent improves cell viability. Almost no diffusion of the printed transfection mixtures to the neighboring microspots is detected. Thus, superhydrophilic-superhydrophobic patterned surfaces can be used as cell microarrays and for optimizing reverse cell transfection conditions before performing further cell screenings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Picosecond laser ultrasonic measurements of surface waves on patterned layered nanostructures

    Science.gov (United States)

    Gartenstein, Sam; James, Molly; Mahat, Sushant; Szwed, Erik; Daly, Brian; Cui, Weili; Antonelli, George

    We report ultrafast optical pump-probe measurements of 5 - 25 GHz surface acoustic waves (SAWs) on patterned layered nanostructures. These very high frequency SAWs were generated and detected on the following patterned film stack: 25 nm physically vapor deposited Al / 60-110 nm thermally grown a-SiO2 / Si (100) substrate. The Al was etched to form lines of rectangular cross section with pitches ranging from 1000 nm down to 140 nm and the lines were oriented parallel to the [110] direction on the wafer surface. The absorption of ultrafast pulses from a Ti:sapphire oscillator operating at 800 nm generated SAWs that were detected by time-delayed probe pulses from the same oscillator via a reflectivity change (ΔR). The SAW frequency increased with decreasing pitch in a non-linear fashion due to dispersion of the wave caused by the presence of the oxide layer. We also experimentally demonstrate the traveling of the SAW's by separating the focused pump and probe laser spots by several microns. We compare the results to coarse-grained molecular dynamics simulations and simplified calculations using isotropic elasticity theory. This work was supported by NSF Award DMR1206681.

  13. Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces.

    Science.gov (United States)

    Kalpathy, Sreeram K; Shreyes, Amrita Ravi

    2017-06-07

    The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other.

  14. History Matching and Parameter Estimation of Surface Deformation Data for a CO2 Sequestration Field Project Using Ensemble-Based Algorithms

    Science.gov (United States)

    Tavakoli, Reza; Srinivasan, Sanjay; Wheeler, Mary

    2015-04-01

    The application of ensemble-based algorithms for history matching reservoir models has been steadily increasing over the past decade. However, the majority of implementations in the reservoir engineering have dealt only with production history matching. During geologic sequestration, the injection of large quantities of CO2 into the subsurface may alter the stress/strain field which in turn can lead to surface uplift or subsidence. Therefore, it is essential to couple multiphase flow and geomechanical response in order to predict and quantify the uncertainty of CO2 plume movement for long-term, large-scale CO2 sequestration projects. In this work, we simulate and estimate the properties of a reservoir that is being used to store CO2 as part of the In Salah Capture and Storage project in Algeria. The CO2 is separated from produced natural gas and is re-injected into downdip aquifer portion of the field from three long horizontal wells. The field observation data includes ground surface deformations (uplift) measured using satellite-based radar (InSAR), injection well locations and CO2 injection rate histories provided by the operators. We implement variations of ensemble Kalman filter and ensemble smoother algorithms for assimilating both injection rate data as well as geomechanical observations (surface uplift) into reservoir model. The preliminary estimation results of horizontal permeability and material properties such as Young Modulus and Poisson Ratio are consistent with available measurements and previous studies in this field. Moreover, the existence of high-permeability channels (fractures) within the reservoir; especially in the regions around the injection wells are confirmed. This estimation results can be used to accurately and efficiently predict and quantify the uncertainty in the movement of CO2 plume.

  15. History matching and parameter estimation of surface deformation data for a CO2 sequestration field project using ensemble-based algorithm

    Science.gov (United States)

    Ping, J.; Tavakoli, R.; Min, B.; Srinivasan, S.; Wheeler, M. F.

    2015-12-01

    Optimal management of subsurface processes requires the characterization of the uncertainty in reservoir description and reservoir performance prediction. The application of ensemble-based algorithms for history matching reservoir models has been steadily increasing over the past decade. However, the majority of implementations in the reservoir engineering have dealt only with production history matching. During geologic sequestration, the injection of large quantities of CO2 into the subsurface may alter the stress/strain field which in turn can lead to surface uplift or subsidence. Therefore, it is essential to couple multiphase flow and geomechanical response in order to predict and quantify the uncertainty of CO2 plume movement for long-term, large-scale CO2 sequestration projects. In this work, we simulate and estimate the properties of a reservoir that is being used to store CO2 as part of the In Salah Capture and Storage project in Algeria. The CO2 is separated from produced natural gas and is re-injected into downdip aquifer portion of the field from three long horizontal wells. The field observation data includes ground surface deformations (uplift) measured using satellite-based radar (InSAR), injection well locations and CO2 injection rate histories provided by the operators. We implement ensemble-based algorithms for assimilating both injection rate data as well as geomechanical observations (surface uplift) into reservoir model. The preliminary estimation results of horizontal permeability and material properties such as Young Modulus and Poisson Ratio are consistent with available measurements and previous studies in this field. Moreover, the existence of high-permeability channels/fractures within the reservoir; especially in the regions around the injection wells are confirmed. This estimation results can be used to accurately and efficiently predict and monitor the movement of CO2 plume.

  16. Surface modeling method for aircraft engine blades by using speckle patterns based on the virtual stereo vision system

    Science.gov (United States)

    Yu, Zhijing; Ma, Kai; Wang, Zhijun; Wu, Jun; Wang, Tao; Zhuge, Jingchang

    2018-03-01

    A blade is one of the most important components of an aircraft engine. Due to its high manufacturing costs, it is indispensable to come up with methods for repairing damaged blades. In order to obtain a surface model of the blades, this paper proposes a modeling method by using speckle patterns based on the virtual stereo vision system. Firstly, blades are sprayed evenly creating random speckle patterns and point clouds from blade surfaces can be calculated by using speckle patterns based on the virtual stereo vision system. Secondly, boundary points are obtained in the way of varied step lengths according to curvature and are fitted to get a blade surface envelope with a cubic B-spline curve. Finally, the surface model of blades is established with the envelope curves and the point clouds. Experimental results show that the surface model of aircraft engine blades is fair and accurate.

  17. Self-organized pattern formation of biomolecules at silicon surfaces: Intended application of a dislocation network

    Energy Technology Data Exchange (ETDEWEB)

    Kittler, M. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)]. E-mail: kittler@ihp-microelectronics.com; Yu, X. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Vyvenko, O.F. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Birkholz, M. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Seifert, W. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Reiche, M. [MPI fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Wilhelm, T. [MPI fuer Mikrostrukturphysik, Weinberg 2, 06120 Halle (Germany); Arguirov, T. [BTU Cottbus, Experimental-Physik II, Konrad-Wachsmann-Allee 1, 03046 Cottbus (Germany); Wolff, A. [IPHT, Albert-Einstein-Str. 9, 07745 Jena (Germany); Fritzsche, W. [IPHT, Albert-Einstein-Str. 9, 07745 Jena (Germany); Seibt, M. [IV. Physikalisches Institut, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2006-07-15

    Defined placement of biomolecules at Si surfaces is a precondition for a successful combination of Si electronics with biological applications. We aim to realize this by Coulomb interaction of biomolecules with dislocations in Si. The dislocations form charged lines and they will be surrounded with a space charge region being connected with an electric field. The electric stray field in a solution of biomolecules, caused by dislocations located close to the Si surface, was estimated to yield values up to few kVcm{sup -1}. A regular dislocation network can be formed by wafer direct bonding at the interface between the bonded wafers in case of misorientation. The adjustment of misorientation allows the variation of the distance between dislocations in a range from 10 nm to a few {mu}m. This is appropriate for nanobiotechnology dealing with protein or DNA molecules with sizes in the nm and lower {mu}m range. Actually, we achieved a distance between the dislocations of 10-20 nm. Also the existence of a distinct electric field formed by the dislocation network was demonstrated by the technique of the electron-beam-induced current (EBIC). Because of the relatively short range of the field, the dislocations have to be placed close to the surface. We positioned the dislocation network in an interface being 200 nm parallel to the Si surface by layer transfer techniques using hydrogen implantation and bonding. Based on EBIC and luminescence data we postulate a barrier of the dislocations at the as bonded interface < 100 meV. We plan to dope the dislocations with metal atoms to increase the electric field. We demonstrated that regular periodic dislocation networks close to the Si surface formed by bonding are realistic candidates for self-organized placing of biomolecules. Experiments are underway to test whether biomolecules decorate the pattern of the dislocation lines.

  18. Surface self-potential patterns related to transmissive fracture trends during a water injection test

    Science.gov (United States)

    DesRoches, A. J.; Butler, K. E.; MacQuarrie, K. TB

    2018-03-01

    Variations in self-potential (SP) signals were recorded over an electrode array during a constant head injection test in a fractured bedrock aquifer. Water was injected into a 2.2 m interval isolated between two inflatable packers at 44 m depth in a vertical well. Negative SP responses were recorded on surface corresponding to the start of the injection period with strongest magnitudes recorded in electrodes nearest the well. SP response decreased in magnitude at electrodes further from the well. Deflation of the packer system resulted in a strong reversal in the SP signal. Anomalous SP patterns observed at surface at steady state were found to be aligned with dominant fracture strike orientations found within the test interval. Numerical modelling of fluid and current flow within a simplified fracture network showed that azimuthal patterns in SP are mainly controlled by transmissive fracture orientations. The strongest SP gradients occur parallel to hydraulic gradients associated with water flowing out of the transmissive fractures into the tighter matrix and other less permeable cross-cutting fractures. Sensitivity studies indicate that increasing fracture frequency near the well increases the SP magnitude and enhances the SP anomaly parallel to the transmissive set. Decreasing the length of the transmissive fractures leads to more fluid flow into the matrix and into cross-cutting fractures proximal to the well, resulting in a more circular and higher magnitude SP anomaly. Results from the field experiment and modelling provide evidence that surface-based SP monitoring during constant head injection tests has the ability to identify groundwater flow pathways within a fractured bedrock aquifer.

  19. Investigating the Physical Basis of Amorphous Precursor Transformation to Calcite Using Patterned Alkanethiol Surfaces

    Science.gov (United States)

    Wang, D.; Wallace, A.; Han, T. Y.; Lee, J. R.; Hailey, P. D.; de Yoreo, J. J.; Dove, P. M.

    2007-12-01

    Increasing evidence from X-ray Absorption Spectroscopy and Environmental Scanning Electron Microscopy (ESEM) studies of biominerals extracted from calcifying organisms show that amorphous calcium carbonate (ACC) plays a key role in the initial formation of carbonate minerals and in shaping them into complex morphologies. Echinoderms and possibly a wide variety of other organisms, use ACC as a precursor phase. The ACC is first formed within spatial and temporally controlled environments such as vesicles, followed by a subsequent onset of mineralization that transforms the precursor into a fully crystalline material. Recent studies on sea urchin embryos have shown that during this transformation, ACC develops short-range order that resembles calcite before fully crystallizing. While this "non-traditional" process is recognized, the mechanisms and factors that govern this transformation remain poorly understood. Of particular interest are the roles of water, and the functional group chemistry of surfaces and macromolecules within mineralization environments. To investigate these questions, we have developed an experimental approach using ESEM that allows us to control impurity concentration, surface functionality and water content through the degree of water condensation. Patterned self-assembled monolayers (SAM) of hydrophilic moieties with domains of approximately 25 microns in diameter are used to form an array of micro-reactors. ACC particles with known composition are then deposited on the patterns. Condensing water in the ESEM initializes the transformation of ACC to calcite. Our results show that in saturated water vapor, ACC swells, but no obvious faceting of the material occurs. It is only in bulk water, via dissolution/crystallization, where the calcite grown on carboxyl-terminated surfaces is found with the often-observed \\{013\\} nucleation face. We use this insight to understand the role of the different chemical moieties on ACC to calcite transformation

  20. Fabrication of Si surface pattern by Ar beam irradiation and annealing method

    International Nuclear Information System (INIS)

    Zhang, J.; Momota, S.; Maeda, K.; Terauchi, H.; Furuta, M.; Kawaharamura, T.; Nitta, N.; Wang, D.

    2012-01-01

    The fabrication process of crater structures on Si crystal has been studied by an irradiation of Ar beam and a thermal annealing at 600 °C. The fabricated surface was measured by field emission scanning electron microscope and atomic force microscope. The results have shown the controllability of specifications of crater formation such as density, diameter and depth by changing two irradiation parameters, fluence and energy of Ar ions. By changing the fluence over a range of 1 ∼ 10 × 10 16 /cm 2 , we could control a density of crater 0 ∼ 39 counts/100μm 2 . By changing the energy over a range of 90 ∼ 270 keV, we could control a diameter and a depth of crater in 0.8 ∼ 4.1μm and 99 ∼ 229nm, respectively. The present result is consistent with the previously proposed model that the crater structure would be arising from an exfoliated surface layer of silicon. The present result has indicated the possibility of the crater production phenomena as a hopeful method to fabricate the surface pattern on a micro-nano meter scale.

  1. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    Science.gov (United States)

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  2. Geographic patterns of fishes and jellyfish in Puget Sound surface waters

    Science.gov (United States)

    Rice, Casimir A.; Duda, Jeffrey J.; Greene, Correigh M.; Karr, James R.

    2012-01-01

    We explored patterns of small pelagic fish assemblages and biomass of gelatinous zooplankton (jellyfish) in surface waters across four oceanographic subbasins of greater Puget Sound. Our study is the first to collect data documenting biomass of small pelagic fishes and jellyfish throughout Puget Sound; sampling was conducted opportunistically as part of a juvenile salmon survey of daytime monthly surface trawls at 52 sites during May–August 2003. Biomass composition differed spatially and temporally, but spatial differences were more distinct. Fish dominated in the two northern basins of Puget Sound, whereas jellyfish dominated in the two southern basins. Absolute and relative abundance of jellyfish, hatchery Chinook salmon Oncorhynchus tshawytscha, and chum salmon O. keta decreased with increasing latitude, whereas the absolute and relative abundance of most fish species and the average fish species richness increased with latitude. The abiotic factors with the strongest relationship to biomass composition were latitude, water clarity, and sampling date. Further study is needed to understand the spatial and temporal heterogeneity in the taxonomic composition we observed in Puget Sound surface waters, especially as they relate to natural and anthropogenic influences.

  3. Satellite observations of surface temperature patterns induced by synoptic circulation over the Eastern Mediterranean

    Science.gov (United States)

    Lensky, Itamar; Dayan, Uri

    2013-04-01

    Land Surface Temperature (LST) controls most physical and biological processes on Earth. Knowledge of the LST at high spatial resolution enables representation of different climate regimes. The main factors controlling LST are the seasonal and diurnal cycles, land cover, cloud cover, and atmospheric processes at several scales. Lensky and Dayan analyzed atmospheric processes at the topoclimatic scale, and the mesoscale (Lensky and Dayan 2011, 2012). Here we will demonstrate an analysis of the spatial distribution of LST anomaly as affected by typical synoptic circulation patterns over the Eastern Mediterranean (EM). LST anomaly is defined as the difference between daily and climatological LST. Using LST anomaly reduces the effects of land cover and the seasonal and diurnal cycles, enabling a better detection of surface temperature patterns induced by synoptic circulation. In this study we used all available 2000-2012 NASA daily MODIS LST data over the EM, together with NCEP/NCAR Reanalysis data of SLP, surface winds and Omega (at 700hPa). We will present two frequent synoptic circulation patterns as classified by Levy and Dayan (2008) to demonstrate the LST patterns induced by synoptic circulation over the EM. The first is the "Red Sea Trough" (RST) with eastern axis, which is an extension of a low surface pressure from a tropical depression toward the Red Sea, penetrating up north as far as Turkey. It migrates from south to north and mostly frequent during the autumn. The axis of the RST separates distinctively between regions of positive (warm) anomalies over Turkey and regions of negative anomalies (cold) over Egypt induced by the wind flow from both sides of the axis. The second synoptic circulation pattern is "shallow Cyprus low to the north", which is a disturbance of the polar front extending southward. This synoptic system some times migrates over the Mediterranean eastward toward the EM during the winter season. The strong northwesterly flow featuring the

  4. Hillslope surface deformation on chalky landscape under the influence of Quaternary tectonics coupled with periglacial processes, Picardy (NW France)

    Science.gov (United States)

    Duperret, Anne; Vandycke, Sara; Colbeaux, Jean-Pierre; Raimbault, Celine; Duguet, Timothée; Van vliet-lanoe, Brigitte

    2017-04-01

    Chalky hillslopes observed in Picardy region (NW Paris basin, France) evidence specific surficial ridges and steps, of several meters high and several ten-meters length, roughly parallel oriented to slopes on some dry valleys. They are locally named "rideaux" or strip-lynchets. Their origin is still discussed among the communities of geology, geography, archeology and pedology. Detailed observations of the Picardy coastal chalk cliffs using high resolution low-lying aerial LiDAR and field works allow us to precisely describe and understand ridges and steps formation. At Bois de Cise, a rectangular depression with ridges and steps was observed in 3D on the ground, due to its natural overlap by the cliff face. This structure proves to be a graben, controlled by conjugate normal faults, at the top of which the ridges and steps are developed. The set forms a "step-graben" composed of a system of faults in relay and ramps, involved in the superficial covering of quaternary loess. Steps formation will be discussed in relation with the tectonic context (paleo-constraint fields), the continental water circulation within the karst, the presence of break-up structures on the fault planes, the role of cryogenic processes during the last glacial epochs and the remobilization of loess surface deposits. Caves and temporary springs of fresh water along faults evidence a karstic behavior in the chalk and suggests step-graben structures as geological guides for hydrogeological circulation in the chalk of Picardy. In this context, chalky surficial step-structures appears as tectonically controlled and as the witness of a recent active tectonics in the NW european chalk basin. In addition, the field of steps developed on a coastal fossil cliff tends to prove the occurrence of a fractured system, developed according to a paleo-field of NW-SE extensive stresses. Data from the CROCOLIT-Leg1 (Duperret, 2013) campaign carried out on the offshore subtidal platform (shallow bathymetry, THR

  5. Similarities in the Spatial Pattern of the Surface Flux Response to Present-Day Greenhouse Gases and Aerosols

    Science.gov (United States)

    Persad, G.; Ming, Y.; Ramaswamy, V.

    2014-12-01

    Recent studies suggest that present