WorldWideScience

Sample records for surface dangling bond

  1. Removal of dangling bonds and surface states on silicon (001) with a monolayer of selenium

    International Nuclear Information System (INIS)

    Tao Meng; Udeshi, Darshak; Basit, Nasir; Maldonado, Eduardo; Kirk, Wiley P.

    2003-01-01

    Dangling bonds and surface states are inherent to semiconductor surfaces. By passivating dangling bonds on the silicon (001) surface with a monolayer of selenium, surface states are removed from the band gap. Magnesium contacts on selenium-passivated silicon (001) behave ohmically, as expected from the work function of magnesium and the electron affinity of silicon. After rapid thermal annealing and hot-plate annealing, magnesium contacts on selenium-passivated silicon (001) show better thermal stability than on hydrogen-passivated silicon (001), which is attributed to the suppression of silicide formation by selenium passivation

  2. Search for a metallic dangling-bond wire on n-doped H-passivated semiconductor surfaces

    DEFF Research Database (Denmark)

    Engelund, Mads; Papior, Nick Rübner; Brandimarte, Pedro

    2016-01-01

    We have theoretically investigated the electronic properties of neutral and n-doped dangling bond (DB) quasi-one-dimensional structures (lines) in the Si(001):H and Ge(001):H substrates with the aim of identifying atomic-scale interconnects exhibiting metallic conduction for use in on-surface cir...

  3. Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping

    KAUST Repository

    Mantega, M.; Rungger, I.; Naydenov, B.; Boland, J. J.; Sanvito, S.

    2012-01-01

    We investigate the charging state of an isolated single dangling bond formed on an unpassivated Si(100) surface with c(4×2) reconstruction, by comparing scanning tunneling microscopy and spectroscopy analysis with density functional theory calculations. The dangling bond is created by placing a single hydrogen atom on the bare surface with the tip of a scanning tunneling microscope. The H atom passivates one of the dimer dangling bonds responsible for the surface one-dimensional electronic structure. This leaves a second dangling at the reacted surface dimer which breaks the surface periodicity. We consider two possible H adsorption configurations for both the neutral and the doped situation (n- and p-type). In the case of n-doping we find that the single dangling bond state is doubly occupied and the most stable configuration is that with H bonded to the bottom Si atom of the surface dimer. In the case of p-doping the dangling bond is instead empty and the configuration with the H attached to the top atom of the dimer is the most stable. Importantly the two configurations have different scattering properties and phase shift fingerprints. This might open up interesting perspectives for fabricating a switching device by tuning the doping level or by locally charging the single dangling bond state. © 2012 American Physical Society.

  4. Spectroscopic characterization of a single dangling bond on a bare Si(100)- c ( 4 × 2 ) surface for n - and p -type doping

    KAUST Repository

    Mantega, M.

    2012-07-19

    We investigate the charging state of an isolated single dangling bond formed on an unpassivated Si(100) surface with c(4×2) reconstruction, by comparing scanning tunneling microscopy and spectroscopy analysis with density functional theory calculations. The dangling bond is created by placing a single hydrogen atom on the bare surface with the tip of a scanning tunneling microscope. The H atom passivates one of the dimer dangling bonds responsible for the surface one-dimensional electronic structure. This leaves a second dangling at the reacted surface dimer which breaks the surface periodicity. We consider two possible H adsorption configurations for both the neutral and the doped situation (n- and p-type). In the case of n-doping we find that the single dangling bond state is doubly occupied and the most stable configuration is that with H bonded to the bottom Si atom of the surface dimer. In the case of p-doping the dangling bond is instead empty and the configuration with the H attached to the top atom of the dimer is the most stable. Importantly the two configurations have different scattering properties and phase shift fingerprints. This might open up interesting perspectives for fabricating a switching device by tuning the doping level or by locally charging the single dangling bond state. © 2012 American Physical Society.

  5. Ab initio characterization of coupling strength for all types of dangling-bond pairs on the hydrogen-terminated Si(100)-2 × 1 surface

    Science.gov (United States)

    Shaterzadeh-Yazdi, Zahra; Sanders, Barry C.; DiLabio, Gino A.

    2018-04-01

    Recent work has suggested that coupled silicon dangling bonds sharing an excess electron may serve as building blocks for quantum-cellular-automata cells and quantum computing schemes when constructed on hydrogen-terminated silicon surfaces. In this work, we employ ab initio density-functional theory to examine the details associated with the coupling between two dangling bonds sharing one excess electron and arranged in various configurations on models of phosphorous-doped hydrogen-terminated silicon (100) surfaces. Our results show that the coupling strength depends strongly on the relative orientation of the dangling bonds on the surface and on the separation between them. The orientation of dangling bonds is determined by the anisotropy of the silicon (100) surface, so this feature of the surface is a significant contributing factor to variations in the strength of coupling between dangling bonds. The results demonstrate that simple models for approximating tunneling, such as the Wentzel-Kramer-Brillouin method, which do not incorporate the details of surface structure, are incapable of providing reasonable estimates of tunneling rates between dangling bonds. The results provide guidance to efforts related to the development of dangling-bond based computing elements.

  6. Dangling bonds and crystalline inclusions in amorphous materials

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, L [Ferrara Univ. (Italy). Ist. di Matematica; Russo, G [Bologna Univ. (Italy). Ist. di Fisica

    1981-02-07

    It is suggested that on the surface of crystalline inclusions dangling bond formation is favoured due to unbalanced local stresses. The energy for bond tearings is probably originated from the exothermic process leading to the crystalline inclusion configuration which is more stable than the original amorphous one. A thermodynamical calculation is performed giving the ratio nsub(k) of crystalline inclusions having k dangling bonds on their surface.

  7. Inhibition of quantum size effects from surface dangling bonds: The first principles study on different morphology SiC nanowires

    Science.gov (United States)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Fang, Xiao-Yong; Jia, Ya-Hui; Cao, Mao-Sheng

    2018-06-01

    In recent years, we investigated the structure and photoelectric properties of Silicon carbide nanowires (SiCNWs) with different morphologies and sizes by using the first-principle in density functional theory, and found a phenomenon that is opposite to quantum size effect, namely, the band gap of nanowires increases with the increase of the diameter. To reveal the nature of this phenomenon, we further carry out the passivation of SiCNWs. The results show that the hydrogenated SiCNWs are direct band gap semiconductors, and the band gap decreases with the diameter increasing, which indicates the dangling bonds of the SiCNWs suppress its quantum size effect. The optical properties of SiCNWs with different diameters before and after hydrogenated are compared, we found that these surface dangling bonds lead to spectral shift which is different with quantum size effect of SiCNWs. These results have potential scientific value to deepen the understanding of the photoelectric properties of SiCNWs and to promote the development of optoelectronic devices.

  8. Enhanced surface modification engineering (H, F, Cl, Br, and NO{sub 2}) of CdS nanowires with and without surface dangling bonds

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yijie; Xing, Huaizhong, E-mail: xinghz@dhu.edu.cn; Lu, Aijiang; Wang, Chunrui; Xu, Xiaofeng [Department of Applied Physics and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Ren Min Road 2999, Songjiang District, Shanghai 201620 (China); Huang, Yan; Chen, Xiaoshuang, E-mail: jqwang@ee.ecnu.edu.cn, E-mail: xschen@mail.sitp.ac.cn [National Lab. of Infrared Physics, Shanghai Institute for Technical Physics, Chinese Academy of Science, 500 Yu Tian Road, Shanghai 200083 (China); Wang, Jiqing, E-mail: jqwang@ee.ecnu.edu.cn, E-mail: xschen@mail.sitp.ac.cn [Key Laboratory of Polarized Materials and Devices, East China Normal University, Shanghai 200062 (China)

    2015-08-07

    Semiconductor nanowires (NWs) can be applied in gas sensing and cell detection, but the sensing mechanism is not clearly understood. In this study, surface modification effect on the electronic properties of CdS NWs for different diameters with several species (H, F, Cl, Br, and NO{sub 2}) is investigated by first principles calculations. The surface dangling bonds and halogen elements are chosen to represent the environment of the surface. Halogen passivation drastically changes the band gaps due to the strong electronegativity and the energy level of halogen atoms. Density of states analysis indicates that valence band maximum (VBM) of halogen-passivated NWs is formed by the p states of halogen atoms, while VBM of H-passivated NWs is originated from Cd 4d and S 3p orbitals. To illustrate that surface modification can be applied in gas sensing, NO{sub 2}-absorbed NWs with different coverage are calculated. Low coverage of NO{sub 2} introduces a deep p-type dopant-like level, while high coverage introduces a shallow n-type dopant-like level into the band structure. The transformation is due to that at low coverage the adsorption is chemical while at high coverage is physical. These findings might promote the understanding of surface modification effect and the sensing mechanism of NWs as gas sensors.

  9. Interaction between dangling bonds in vacancy-defects in silicon

    International Nuclear Information System (INIS)

    Caldas, M.J.; Fazzio, A.

    1983-01-01

    The 'defect-molecule' model in the simplest scheme (without configuration interaction) is reviewed and the concept of 'delocalized dangling-bonds' is explorated in the study of the interaction between the unsaturated hybrids of the mono and divacancy in silicon. The 'defect-molecule' hamiltonian is written in parametric form, and the parameters are extracted from full self-consistent calculations for both systems carried out through the MS-Xα molecular cluster model. (Author) [pt

  10. Single-Molecule Rotational Switch on a Dangling Bond Dimer Bearing.

    Science.gov (United States)

    Godlewski, Szymon; Kawai, Hiroyo; Kolmer, Marek; Zuzak, Rafał; Echavarren, Antonio M; Joachim, Christian; Szymonski, Marek; Saeys, Mark

    2016-09-27

    One of the key challenges in the construction of atomic-scale circuits and molecular machines is to design molecular rotors and switches by controlling the linear or rotational movement of a molecule while preserving its intrinsic electronic properties. Here, we demonstrate both the continuous rotational switching and the controlled step-by-step single switching of a trinaphthylene molecule adsorbed on a dangling bond dimer created on a hydrogen-passivated Ge(001):H surface. The molecular switch is on-surface assembled when the covalent bonds between the molecule and the dangling bond dimer are controllably broken, and the molecule is attached to the dimer by long-range van der Waals interactions. In this configuration, the molecule retains its intrinsic electronic properties, as confirmed by combined scanning tunneling microscopy/spectroscopy (STM/STS) measurements, density functional theory calculations, and advanced STM image calculations. Continuous switching of the molecule is initiated by vibronic excitations when the electrons are tunneling through the lowest unoccupied molecular orbital state of the molecule. The switching path is a combination of a sliding and rotation motion over the dangling bond dimer pivot. By carefully selecting the STM conditions, control over discrete single switching events is also achieved. Combined with the ability to create dangling bond dimers with atomic precision, the controlled rotational molecular switch is expected to be a crucial building block for more complex surface atomic-scale devices.

  11. Ultrathin silicon oxynitride layer on GaN for dangling-bond-free GaN/insulator interface.

    Science.gov (United States)

    Nishio, Kengo; Yayama, Tomoe; Miyazaki, Takehide; Taoka, Noriyuki; Shimizu, Mitsuaki

    2018-01-23

    Despite the scientific and technological importance of removing interface dangling bonds, even an ideal model of a dangling-bond-free interface between GaN and an insulator has not been known. The formation of an atomically thin ordered buffer layer between crystalline GaN and amorphous SiO 2 would be a key to synthesize a dangling-bond-free GaN/SiO 2 interface. Here, we predict that a silicon oxynitride (Si 4 O 5 N 3 ) layer can epitaxially grow on a GaN(0001) surface without creating dangling bonds at the interface. Our ab initio calculations show that the GaN/Si 4 O 5 N 3 structure is more stable than silicon-oxide-terminated GaN(0001) surfaces. The electronic properties of the GaN/Si 4 O 5 N 3 structure can be tuned by modifying the chemical components near the interface. We also propose a possible approach to experimentally synthesize the GaN/Si 4 O 5 N 3 structure.

  12. Tuning the electronic and magnetic properties of the Si nanoribbons through dangling bond

    International Nuclear Information System (INIS)

    Song Yuling; Zhang Yan; Zhang Jianmin; Lu Daobang; Xu Kewei

    2011-01-01

    Combined with three spin configurations, the effects of the dangling bonds on the electronic and magnetic properties of both zigzag edge and armchair edge Si nanoribbions (ZSiNR and ASiNR) have been investigated systematically by the first-principles calculations in the local spin-density function theory. The dangling bonds at one edge or both edges make ZSiNR to transform from ferromagnetic state of the perfect ZSiNR to antiferromagnetic state. However, the dangling bonds at one edge and both edges make ASiNR to transform from nonmagnetic semiconductor of the perfect ASiNR to ferromagnetic and antiferromagnetic metals, respectively. Furthermore, the magnetic moment of the ferromagnetic state increases for the perfect bare one edge and bare both edges successively for either ZSiNR or ASiNR. -- Research Highlights: →Dangling bonds at one or both edges transfer FM ZSiNR to AFM state. →Dangling bonds at one (both edges) transfer nonmagnetic ASiNR to FM (AFM) state. →Magnetic moment of FM SiNRs increases for perfect, bare one and both edges successively.

  13. Spin transport in dangling-bond wires on doped H-passivated Si(100)

    International Nuclear Information System (INIS)

    Kepenekian, Mikaël; Robles, Roberto; Lorente, Nicolás; Rurali, Riccardo

    2014-01-01

    New advances in single-atom manipulation are leading to the creation of atomic structures on H-passivated Si surfaces with functionalities important for the development of atomic and molecular based technologies. We perform total-energy and electron-transport calculations to reveal the properties and understand the features of atomic wires crafted by H removal from the surface. The presence of dopants radically change the wire properties. Our calculations show that dopants have a tendency to approach the dangling-bond wires, and in these conditions, transport is enhanced and spin selective. These results have important implications in the development of atomic-scale spintronics showing that boron, and to a lesser extent phosphorous, convert the wires in high-quality spin filters. (paper)

  14. Influence of silicon dangling bonds on germanium thermal diffusion within SiO{sub 2} glass

    Energy Technology Data Exchange (ETDEWEB)

    Barba, D.; Martin, F.; Ross, G. G. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Cai, R. S.; Wang, Y. Q. [The Cultivation Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Demarche, J.; Terwagne, G. [LARN, Centre de Recherche en Physique de la Matière et du Rayonnement (PMR), University of Namur (FUNDP), B-5000 Namur (Belgium); Rosei, F. [INRS Centre for Energy, Materials and Telecommunications, 1650 Boul. Lionel-Boulet, Varennes, Québec J3X 1S2 (Canada); Center for Self-Assembled Chemical Structures, McGill University, Montreal, Quebec H3A 2K6 (Canada)

    2014-03-17

    We study the influence of silicon dangling bonds on germanium thermal diffusion within silicon oxide and fused silica substrates heated to high temperatures. By using scanning electron microscopy and Rutherford backscattering spectroscopy, we determine that the lower mobility of Ge found within SiO{sub 2}/Si films can be associated with the presence of unsaturated SiO{sub x} chemical bonds. Comparative measurements obtained by x-ray photoelectron spectroscopy show that 10% of silicon dangling bonds can reduce Ge desorption by 80%. Thus, the decrease of the silicon oxidation state yields a greater thermal stability of Ge inside SiO{sub 2} glass, which could enable to considerably extend the performance of Ge-based devices above 1300 K.

  15. Effect of Dangling Bonds on De-Poling Time for Polymeric Electric Field Optical Sensors

    Directory of Open Access Journals (Sweden)

    Amir R. Ali

    2018-01-01

    Full Text Available This paper investigates the possible chemical changes in polydimethylsiloxane (PDMS caused by two different techniques of fabrication for ultra-sensitive electric field optical sensors. The sensing element is a micro-sphere made from 60:1 PDMS (60 parts base silicon elastomer to one part polymer curing agent by volume. The measurement principle is based on the morphology dependent resonances (MDR shifts of the micro-sphere. We present the effects of curing and poling of polymer micro-spheres used as optical sensors. The degree of curing leads to changes in the de-poling time which results from dangling bonds in the polymeric chains. Consequently, the longevity of the sensitivity of the sensor can extended by two orders of magnitude. An analysis is carried out along with preliminary experiments to investigate that behavior.

  16. Anisotropic electrical conduction and reduction in dangling-bond density for polycrystalline Si films prepared by catalytic chemical vapor deposition

    Science.gov (United States)

    Niikura, Chisato; Masuda, Atsushi; Matsumura, Hideki

    1999-07-01

    Polycrystalline Si (poly-Si) films with high crystalline fraction and low dangling-bond density were prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD. Directional anisotropy in electrical conduction, probably due to structural anisotropy, was observed for Cat-CVD poly-Si films. A novel method to separately characterize both crystalline and amorphous phases in poly-Si films using anisotropic electrical conduction was proposed. On the basis of results obtained by the proposed method and electron spin resonance measurements, reduction in dangling-bond density for Cat-CVD poly-Si films was achieved using the condition to make the quality of the included amorphous phase high. The properties of Cat-CVD poly-Si films are found to be promising in solar-cell applications.

  17. Adsorption of gas molecules on armchair AlN nanoribbons with a dangling bond defect by using density functional theory

    International Nuclear Information System (INIS)

    Sun, Guodong; Zhao, Peng; Zhang, Wenxue; Li, Hui; He, Cheng

    2017-01-01

    In this paper, the adsorption of gas molecules (CO, NO, O_2, CO_2, and NO_2) on armchair aluminum nitride nanoribbons (AAlNNRs) with a dangling bond defect has been investigated by density functional theory. For all the studied systems, the adsorption geometries, adsorption energies, charge transfer, and electronic structures are discussed. The adsorption energies of O_2, NO_2, and CO_2 are -1.53, -2.24, and -2.88 eV, respectively, corresponding to strong chemisorption. While for CO and NO, the adsorptions are between weak chemisorption and strong physisorption. Moreover, the magnetic property of defective AAlNNR are sensitive to the adsorption of NO_2. Therefore, based on the obtained results, AAlNNRs with a dangling bond defect is promising for using in gas sensor devices to detect NO_2. - Highlights: • The adsorption properties of gas molecules on defective AAlNNRs are performed by DFT. • The adsorption of O_2, NO_2, and CO_2 on defective AAlNNRs are strong chemisorption. • The magnetic property of defective AAlNNRs are sensitive to the adsorption of NO_2. • The defective AAlNNRs is promising in gas sensor devices to detect and capture NO_2.

  18. Anisotropic chemical etching of semipolar {101-bar 1-bar}/{101-bar +1} ZnO crystallographic planes: polarity versus dangling bonds

    International Nuclear Information System (INIS)

    Palacios-Lidon, E; Perez-GarcIa, B; Colchero, J; Vennegues, P; Zuniga-Perez, J; Munoz-Sanjose, V

    2009-01-01

    ZnO thin films grown by metal-organic vapor phase epitaxy along the nonpolar [112-bar] direction and exhibiting semipolar {101-bar 1-bar}/{101-bar +1} facets have been chemically etched with HCl. In order to get an insight into the influence of the ZnO wurtzite structure in the chemical reactivity of the material, Kelvin probe microscopy and convergent beam electron diffraction have been employed to unambiguously determine the absolute polarity of the facets, showing that {101-bar +1} facets are unstable upon etching in an HCl solution and transform into (000+1)/{101-bar 1-bar} planes. In contrast, {101-bar 1-bar} undergo homogeneous chemical etching perpendicular to the initial crystallographic plane. The observed etching behavior has been explained in terms of surface oxygen dangling bond density, suggesting that the macroscopic polarity plays a secondary role in the etching process.

  19. Dangling-bond defect in a-Si:H : Characterization of network and strain effects by first-principles calculation of the EPR parameters

    NARCIS (Netherlands)

    Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Inam, F.; Drabold, D.; Jarolimek, K.; Zeman, M.

    2013-01-01

    The performance of hydrogenated amorphous silicon (a-Si:H) solar cells is severely affected by the light-induced formation of metastable defects in the material (Staebler-Wronski effect). The common notion is that the dangling-bond (db) defect, a threefold coordinated silicon atom, plays a key role

  20. Electrically detected magnetic resonance of carbon dangling bonds at the Si-face 4H-SiC/SiO2 interface

    Science.gov (United States)

    Gruber, G.; Cottom, J.; Meszaros, R.; Koch, M.; Pobegen, G.; Aichinger, T.; Peters, D.; Hadley, P.

    2018-04-01

    SiC based metal-oxide-semiconductor field-effect transistors (MOSFETs) have gained a significant importance in power electronics applications. However, electrically active defects at the SiC/SiO2 interface degrade the ideal behavior of the devices. The relevant microscopic defects can be identified by electron paramagnetic resonance (EPR) or electrically detected magnetic resonance (EDMR). This helps to decide which changes to the fabrication process will likely lead to further increases of device performance and reliability. EDMR measurements have shown very similar dominant hyperfine (HF) spectra in differently processed MOSFETs although some discrepancies were observed in the measured g-factors. Here, the HF spectra measured of different SiC MOSFETs are compared, and it is argued that the same dominant defect is present in all devices. A comparison of the data with simulated spectra of the C dangling bond (PbC) center and the silicon vacancy (VSi) demonstrates that the PbC center is a more suitable candidate to explain the observed HF spectra.

  1. Electrically detected magnetic resonance study of the Ge dangling bonds at the Ge(1 1 1)/GeO2 interface after capping with Al2O3 layer

    International Nuclear Information System (INIS)

    Paleari, S.; Molle, A.; Accetta, F.; Lamperti, A.; Cianci, E.; Fanciulli, M.

    2014-01-01

    The electrical activity of Ge dangling bonds is investigated at the interface between GeO 2 -passivated Ge(1 1 1) substrate and Al 2 O 3 grown by atomic layer deposition, by means of electrically detected magnetic resonance spectroscopy (EDMR). The Al 2 O 3 /GeO 2 /Ge stacked structure is promising as a mobility booster for the post-Si future electronic devices. EDMR proved to be useful in characterizing interface defects, even at the very low concentrations of state-of-the-art devices ( 10 cm −2 ). In particular, it is shown that capping the GeO 2 -passivated Ge(1 1 1) with Al 2 O 3 has no impact on the microstructure of the Ge dangling bond.

  2. Electrically detected magnetic resonance study of the Ge dangling bonds at the Ge(1 1 1)/GeO{sub 2} interface after capping with Al{sub 2}O{sub 3} layer

    Energy Technology Data Exchange (ETDEWEB)

    Paleari, S., E-mail: s.paleari6@campus.unimib.it [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via Cozzi 53, I-20125 Milan (Italy); Molle, A. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Accetta, F. [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via Cozzi 53, I-20125 Milan (Italy); Lamperti, A.; Cianci, E. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy); Fanciulli, M., E-mail: marco.fanciulli@unimib.it [Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, via Cozzi 53, I-20125 Milan (Italy); Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, I-20864 Agrate Brianza, MB (Italy)

    2014-02-01

    The electrical activity of Ge dangling bonds is investigated at the interface between GeO{sub 2}-passivated Ge(1 1 1) substrate and Al{sub 2}O{sub 3} grown by atomic layer deposition, by means of electrically detected magnetic resonance spectroscopy (EDMR). The Al{sub 2}O{sub 3}/GeO{sub 2}/Ge stacked structure is promising as a mobility booster for the post-Si future electronic devices. EDMR proved to be useful in characterizing interface defects, even at the very low concentrations of state-of-the-art devices (<10{sup 10} cm{sup −2}). In particular, it is shown that capping the GeO{sub 2}-passivated Ge(1 1 1) with Al{sub 2}O{sub 3} has no impact on the microstructure of the Ge dangling bond.

  3. Discrete impurity band from surface danging bonds in nitrogen and phosphorus doped SiC nanowires

    Science.gov (United States)

    Li, Yan-Jing; Li, Shu-Long; Gong, Pei; Li, Ya-Lin; Cao, Mao-Sheng; Fang, Xiao-Yong

    2018-04-01

    The electronic structure and optical properties of the nitrogen and phosphorus doped silicon carbide nanowires (SiCNWs) are investigated using first-principle calculations based on density functional theory. The results show doping can change the type of the band gap and improve the conductivity. However, the doped SiCNWs form a discrete impurity levels at the Fermi energy, and the dispersion degree decreases with the diameter increasing. In order to reveal the root of this phenomenon, we hydrogenated the doped SiCNWs, found that the surface dangling bonds were saturated, and the discrete impurity levels are degeneracy, which indicates that the discrete impurity band of the doped SiCNWs is derived from the dangling bonds. The surface passivation can degenerate the impurity levels. Therefore, both doping and surface passivation can better improve the photoelectric properties of the SiCNWs. The result can provide additional candidates in producing nano-optoelectronic devices.

  4. Hydrogen interaction kinetics of Ge dangling bonds at the Si0.25Ge0.75/SiO2 interface

    International Nuclear Information System (INIS)

    Stesmans, A.; Nguyen Hoang, T.; Afanas'ev, V. V.

    2014-01-01

    The hydrogen interaction kinetics of the GeP b1 defect, previously identified by electron spin resonance (ESR) as an interfacial Ge dangling bond (DB) defect occurring in densities ∼7 × 10 12  cm −2 at the SiGe/SiO 2 interfaces of condensation grown (100)Si/a-SiO 2 /Ge 0.75 Si 0.25 /a-SiO 2 structures, has been studied as function of temperature. This has been carried out, both in the isothermal and isochronal mode, through defect monitoring by capacitance-voltage measurements in conjunction with ESR probing, where it has previously been demonstrated the defects to operate as negative charge traps. The work entails a full interaction cycle study, comprised of analysis of both defect passivation (pictured as GeP b1 -H formation) in molecular hydrogen (∼1 atm) and reactivation (GeP b1 -H dissociation) in vacuum. It is found that both processes can be suitably described separately by the generalized simple thermal (GST) model, embodying a first order interaction kinetics description based on the basic chemical reactions GeP b1  + H 2  → GeP b1 H + H and GeP b1 H → GeP b1  + H, which are found to be characterized by the average activation energies E f  = 1.44 ± 0.04 eV and E d  = 2.23 ± 0.04 eV, and attendant, assumedly Gaussian, spreads σE f  = 0.20 ± 0.02 eV and σE d  = 0.15 ± 0.02 eV, respectively. The substantial spreads refer to enhanced interfacial disorder. Combination of the separately inferred kinetic parameters for passivation and dissociation results in the unified realistic GST description that incorporates the simultaneous competing action of passivation and dissociation, and which is found to excellently account for the full cycle data. For process times t a  ∼ 35 min, it is found that even for the optimum treatment temperature ∼380 °C, only ∼60% of the GeP b1 system can be electrically silenced, still far remote from device grade level. This

  5. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  6. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...

  7. Bone bonding at natural and biomaterial surfaces.

    Science.gov (United States)

    Davies, John E

    2007-12-01

    Bone bonding is occurring in each of us and all other terrestrial vertebrates throughout life at bony remodeling sites. The surface created by the bone-resorbing osteoclast provides a three-dimensionally complex surface with which the cement line, the first matrix elaborated during de novo bone formation, interdigitates and is interlocked. The structure and composition of this interfacial bony matrix has been conserved during evolution across species; and we have known for over a decade that this interfacial matrix can be recapitulated at a biomaterial surface implanted in bone, given appropriate healing conditions. No evidence has emerged to suggest that bone bonding to artificial materials is any different from this natural biological process. Given this understanding it is now possible to explain why bone-bonding biomaterials are not restricted to the calcium-phosphate-based bioactive materials as was once thought. Indeed, in the absence of surface porosity, calcium phosphate biomaterials are not bone bonding. On the contrary, non-bonding materials can be rendered bone bonding by modifying their surface topography. This paper argues that the driving force for bone bonding is bone formation by contact osteogenesis, but that this has to occur on a sufficiently stable recipient surface which has micron-scale surface topography with undercuts in the sub-micron scale-range.

  8. Tensile bond strength of metal bracket bonding to glazed ceramic surfaces with different surface conditionings.

    Science.gov (United States)

    Akhoundi, Ms Ahmad; Kamel, M Rahmati; Hashemi, Sh Mahmood; Imani, M

    2011-01-01

    The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments. Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA). Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primer and adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively. The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (Ptensile bond strength.

  9. Tensile Bond Strength of Metal Bracket Bonding to Glazed Ceramic Surfaces With Different Surface Conditionings

    Directory of Open Access Journals (Sweden)

    M. Imani

    2011-12-01

    Full Text Available Objective: The objective of this study was to compare the tensile bond strength of metal brackets bonding to glazed ceramic surfaces using three various surface treatments.Materials and Methods: Forty two glazed ceramic disks were assigned to three groups. In the first and second groups the specimens were etched with 9.5% hydrofluoric acid (HFA. Subsequently in first group, ceramic primer and adhesive were applied, but in second group a bonding agent alone was used. In third group, specimens were treated with 35% phosphoric acid followed by ceramic primerand adhesive application. Brackets were bonded with light cure composites. The specimens were stored in distilled water in the room temperature for 24 hours and thermocycled 500 times between 5°C and 55°C. The universal testing machine was used to test the tensile bond strength and the adhesive remenant index scores between three groups was evaluated. The data were subjected to one-way ANOVA, Tukey and Kruskal-Wallis tests respectively.Results: The tensile bond strength was 3.69±0.52 MPa forfirst group, 2.69±0.91 MPa for second group and 3.60±0.41 MPa for third group. Group II specimens showed tensile strength values significantly different from other groups (P<0.01.Conclusion: In spite of limitations in laboratory studies it may be concluded that in application of Scotch bond multipurpose plus adhesive, phosphoric acid can be used instead of HFA for bonding brackets to the glazed ceramic restorations with enough tensile bond strength.

  10. Hydrogen-Bonding Surfaces for Ice Mitigation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  11. Room temperature Cu-Cu direct bonding using surface activated bonding method

    International Nuclear Information System (INIS)

    Kim, T.H.; Howlader, M.M.R.; Itoh, T.; Suga, T.

    2003-01-01

    Thin copper (Cu) films of 80 nm thickness deposited on a diffusion barrier layered 8 in. silicon wafers were directly bonded at room temperature using the surface activated bonding method. A low energy Ar ion beam of 40-100 eV was used to activate the Cu surface prior to bonding. Contacting two surface-activated wafers enables successful Cu-Cu direct bonding. The bonding process was carried out under an ultrahigh vacuum condition. No thermal annealing was required to increase the bonding strength since the bonded interface was strong enough at room temperature. The chemical constitution of the Cu surface was examined by Auger electron spectroscope. It was observed that carbon-based contaminations and native oxides on copper surface were effectively removed by Ar ion beam irradiation for 60 s without any wet cleaning processes. An atomic force microscope study shows that the Ar ion beam process causes no surface roughness degradation. Tensile test results show that high bonding strength equivalent to bulk material is achieved at room temperature. The cross-sectional transmission electron microscope observations reveal the presence of void-free bonding interface without intermediate layer at the bonded Cu surfaces

  12. Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers

    Science.gov (United States)

    Miki, N.; Spearing, S. M.

    2003-11-01

    Direct wafer bonding of silicon wafers is a promising technology for manufacturing three-dimensional complex microelectromechanical systems as well as silicon-on-insulator substrates. Previous work has reported that the bond quality declines with increasing surface roughness, however, this relationship has not been quantified. This article explicitly correlates the bond quality, which is quantified by the apparent bonding energy, and the surface morphology via the bearing ratio, which describes the area of surface lying above a given depth. The apparent bonding energy is considered to be proportional to the real area of contact. The effective area of contact is defined as the area sufficiently close to contribute to the attractive force between the two bonding wafers. Experiments were conducted with silicon wafers whose surfaces were roughened by a buffered oxide etch solution (BOE, HF:NH4F=1:7) and/or a potassium hydroxide solution. The surface roughness was measured by atomic force microscopy. The wafers were direct bonded to polished "monitor" wafers following a standard RCA cleaning and the resulting bonding energy was measured by the crack-opening method. The experimental results revealed a clear correlation between the bonding energy and the bearing ratio. A bearing depth of ˜1.4 nm was found to be appropriate for the characterization of direct-bonded silicon at room temperature, which is consistent with the thickness of the water layer at the interface responsible for the hydrogen bonds that link the mating wafers.

  13. Cleaning of diffusion bonding surface by argon ion bombardment treatment

    International Nuclear Information System (INIS)

    Wang, Airu; Ohashi, Osamu; Yamaguchi, Norio; Aoki, Masanori; Higashi, Yasuo; Hitomi, Nobuteru

    2003-01-01

    The specimens of oxygen-free high conductivity copper, SUS304L stainless steel and pure iron were treated by argon ion bombardment and then were bonded by diffusion bonding method. The effects of argon ion bombardment treatment on faying surface morphology, tensile strength of bonding joints and inclusions at the fracture surface were investigated. The results showed that argon ion bombardment treatment was effective to remove the oxide film and contamination at the faying surface and improve the quality of joints. The tensile strength of the bonded joints was improved, and minimum bonding temperature to make the metallic bonding at the interface was lowered by argon ion bombardment treatment. At the joints with argon ion bombardment treatment, ductile fractured surface was seen and the amount of inclusions was obviously decreased

  14. Structure of adsorbed monolayers. The surface chemical bond

    International Nuclear Information System (INIS)

    Somorjai, G.A.; Bent, B.E.

    1984-06-01

    This paper attempts to provide a summary of what has been learned about the structure of adsorbed monolayers and about the surface chemical bond from molecular surface science. While the surface chemical bond is less well understood than bonding of molecules in the gas phase or in the solid state, our knowledge of its properties is rapidly accumulating. The information obtained also has great impact on many surface science based technologies, including heterogeneous catalysis and electronic devices. It is hoped that much of the information obtained from studies at solid-gas interfaces can be correlated with molecular behavior at solid-liquid interfaces. 31 references, 42 figures, 1 table

  15. Repair Bond Strength of Aged Resin Composite after Different Surface and Bonding Treatments

    Directory of Open Access Journals (Sweden)

    Michael Wendler

    2016-07-01

    Full Text Available The aim of this study was to compare the effect of different mechanical surface treatments and chemical bonding protocols on the tensile bond strength (TBS of aged composite. Bar specimens were produced using a nanohybrid resin composite and aged in distilled water for 30 days. Different surface treatments (diamond bur, phosphoric acid, silane, and sandblasting with Al2O3 or CoJet Sand, as well as bonding protocols (Primer/Adhesive were used prior to application of the repair composite. TBS of the specimens was measured and the results were analyzed using analysis of variance (ANOVA and the Student–Newman–Keuls test (α = 0.05. Mechanically treated surfaces were characterized under SEM and by profilometry. The effect of water aging on the degree of conversion was measured by means of FTIR-ATR spectroscopy. An important increase in the degree of conversion was observed after aging. No significant differences in TBS were observed among the mechanical surface treatments, despite variations in surface roughness profiles. Phosphoric acid etching significantly improved repair bond strength values. The cohesive TBS of the material was only reached using resin bonding agents. Application of an intermediate bonding system plays a key role in achieving reliable repair bond strengths, whereas the kind of mechanical surface treatment appears to play a secondary role.

  16. Bonding of radioactive contamination. IV. Effect of surface finish

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1983-01-01

    The mechanisms by which radioactive contamination would be bonded to a DWPF canister are being investigated. Previous investigations in this series have examined the effects of temperature, oxidation before contamination, and atmosphere composition control on the bonding of contamination. This memorandum describes the results of tests to determine the effect of special surface finishes on the bonding of contamination to waste glass canisters. Surface pretreatments which produce smoother canister surfaces actually cause radioactive contamination to be more tightly bonded to the metal surface than on an untreated surface. Based on the results of these tests it is recommended that the canister surface finish be specified as having a bright cold rolled mill finish equivalent to ASTM No. 2B. 7 references, 3 figures, 3 tables

  17. The influence of adherent surface preparation on bond durability

    International Nuclear Information System (INIS)

    Rider, A.N.; Arnott, D.R.; Olsson-Jacques, C.L.

    1999-01-01

    Full text: One of the major factors limiting the use of adhesive bonding is the problem associated with the production of adhesive joints that can maintain their initial strength over long periods of time in hostile environments. It is well known that the adherent surface preparation method is critical to the formation of a durable adhesive bond. Work presented in this paper focuses on the critical aspects of the surface preparation of aluminium employed for the manufacture of aluminium-epoxy joints. The surface preparation procedure examined is currently employed by the RAAF for repairs requiring metal to adhesive bonding. The influence of each step in the surface preparation on the ultimate bond durability performance of the adhesive joint is examined by a combination of methods. Double cantilever wedge style adhesive joints are loaded in mode 1 opening and then exposed to a humid environment. X-ray photoelectron spectroscopy (XPS) and contact angle measurements of the aluminium adherent before bonding provides information about the adherent surface chemistry. XPS is also employed to analyse the surfaces of the bonded specimens post failure to establish the locus of fracture. This approach provides important information regarding the properties influencing bond durability as well as the bond failure mechanisms. A two step bond degradation model was developed to qualitatively describe the observed bond durability performance and fracture data. The first step involves controlled moisture ingress by stress induced microporosity of the adhesive in the interfacial region. The second step determines the locus of fracture through the relative dominance of one of three competitive processes, viz: oxide degradation, polymer desorption, or polymer degradation. A key element of the model is the control exercised over the interfacial microporosity by the combined interaction of stress and the relative densities of strong and weak linkages at the metal to adhesive interface

  18. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    Science.gov (United States)

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P Empress 2 and In-Ceram groups.

  19. Valence bond model potential energy surface for H4

    International Nuclear Information System (INIS)

    Silver, D.M.; Brown, N.J.

    1980-01-01

    Potential energy surfaces for the H 4 system are derived using the valence bond procedure. An ab initio evaluation of the valence bond energy expression is described and some of its numerical properties are given. Next, four semiempirical evaluations of the valence bond energy are defined and parametrized to yield reasonable agreement with various ab initio calculations of H 4 energies. Characteristics of these four H 4 surfaces are described by means of tabulated energy minima and equipotential contour maps for selected geometrical arrangements of the four nuclei

  20. Effect of surface silanol groups on the deposition of apatite onto silica surfaces: a computer simulation study

    CSIR Research Space (South Africa)

    Mkhonto, D

    2008-01-01

    Full Text Available the surface silicon and oxygen species rearrange to form O–Si–O links. Any dangling silicon and oxygen bonds at the silica surfaces are saturated by coordination to oxygen and calcium atoms in the apatite layer, but the extra reactivity afforded by these under...

  1. Mechanism of bonding and debonding using surface activated bonding method with Si intermediate layer

    Science.gov (United States)

    Takeuchi, Kai; Fujino, Masahisa; Matsumoto, Yoshiie; Suga, Tadatomo

    2018-04-01

    Techniques of handling thin and fragile substrates in a high-temperature process are highly required for the fabrication of semiconductor devices including thin film transistors (TFTs). In our previous study, we proposed applying the surface activated bonding (SAB) method using Si intermediate layers to the bonding and debonding of glass substrates. The SAB method has successfully bonded glass substrates at room temperature, and the substrates have been debonded after heating at 450 °C, in which TFTs are fabricated on thin glass substrates for LC display devices. In this study, we conducted the bonding and debonding of Si and glass in order to understand the mechanism in the proposed process. Si substrates are also successfully bonded to glass substrates at room temperature and debonded after heating at 450 °C using the proposed bonding process. By the composition analysis of bonding interfaces, it is clarified that the absorbed water on the glass forms interfacial voids and cause the decrease in bond strength.

  2. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yongling [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Bo, Maolin [Yangtze Normal University, College of Mechanical and Electrical Engineering, Chongqing 408100 (China); Wang, Yan [School of Information and Electronic Engineering, Hunan University of Science and Technology, Hunan 411201 (China); Liu, Yonghui [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Sun, Chang Q. [NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies (Ministry of Education), Hunan Provincial Key Laboratory of Thin Film Materials and Devices, Faculty of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China)

    2017-02-28

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O{sup 2−} lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta{sup +} electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta{sup +}; the sp{sup 3}-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent

  3. Tantalum surface oxidation: Bond relaxation, energy entrapment, and electron polarization

    International Nuclear Information System (INIS)

    Guo, Yongling; Bo, Maolin; Wang, Yan; Liu, Yonghui; Sun, Chang Q.; Huang, Yongli

    2017-01-01

    Graphical abstract: The bond, electron and energy relaxation result in core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Highlights: • Increasing the oxygen coverage lowers the adsorption energy associated with lattice reconstruction. • Electrons transfer from Ta surface atoms to sp-hydrated oxygen, creating dipole moment that decreases the work function. • Oxygen chemisorption modified valence density-of-state (DOS) for Ta with four excessive DOS features: O−Ta bonding, O"2"− lone pairs, Ta+ electron holes, and the lone-pair polarized Ta dipoles. • The bond, electron and energy relaxation between surface undercoordinated atoms are responsible for core level energy shift, local densification, quantum entrapment and electron polarization of bonding electrons. - Abstract: A combination of photoelectron spectrometric analysis and density functional theory calculations has enabled reconciliation of the bond-energy-electron relaxation for the Ta(100, 110, 111) surfaces chemisorbed with oxygen at different coverages. Results show that increasing oxygen coverage lowers the adsorption energy associated with lattice reconstruction. Valence electrons transfer from Ta surface atoms to oxygen to create four excessive DOS features in terms of O−Ta bonding, lone pairs of oxygen, Ta"+ electron holes, and polarized Ta dipoles. Oxidation proceeds in the following dynamics: oxygen gets electrons from two neighboring Ta atoms left behind Ta"+; the sp"3-orbital hybridization takes place with additional two electron lone pairs, the lone pairs polarize the other two Ta neighbors becoming dipoles. X-ray photoelectron spectral analysis results in the 4f binding energy of an isolated Ta atom and its shift upon bond formation and oxidation. Exercises provide not only a promising numerical approach for the quantitative information about the bond and electronic behavior but also consistent insight into the

  4. Enhancement of surface magnetism due to bulk bond dilution

    International Nuclear Information System (INIS)

    Tsallis, C.; Sarmento, E.F.; Albuquerque, E.L. de

    1985-01-01

    Within a renormalization group scheme, the phase diagram of a semi-infinite simple cubic Ising ferromagnet is discussed, with arbitrary surface and bulk coupling constants, and including possible dilution of the bulk bonds. It is obtained that dilution makes easier the appearance of surface magnetism in the absence of bulk magnetism. (Author) [pt

  5. Fracture surface analysis in composite and titanium bonding: Part 1: Titanium bonding

    Science.gov (United States)

    Sanderson, K. A.; Wightman, J. P.

    1985-01-01

    Fractured lap shear Ti 6-4 adherends bonded with polyphenyquinoxaline (PPQ) and polysulfone were analyzed. The effects of adherend pretreatment, stress level, thermal aging, anodizing voltage, and modified adhesive of Ti 6-4 adherend bonded with PPQ on lap shear strength were studied. The effect of adherend pretreatment on lap shear strength was investigated for PS samples. Results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) used to study the surface topography and surface composition are also discussed.

  6. Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors

    DEFF Research Database (Denmark)

    Vojvodic, Aleksandra; Ruberto, C.; Lundqvist, Bengt

    2010-01-01

    ) surfaces. The spatial extent and the dangling bond nature of these SRs are supported by real-space analyses of the calculated Kohn-Sham wavefunctions. Then, atomic and molecular adsorption energies, geometries, and charge transfers are presented. An analysis of the adsorbate-induced changes in surface DOSs...

  7. Analysis of surface bond lengths reported for chemisorption on metal surfaces

    Science.gov (United States)

    Mitchell, K. A. R.

    1985-01-01

    A review is given of bond length information available from the techniques of surface crystallography (particularly with LEED, SEXAFS and photoelectron diffraction) for chemisorption on well-defined surfaces of metals (M). For adsorbed main-group atoms (X), measured X-M interatomic distances for 38 combinations of X and M have been assessed with a bond order-bond length relation in combination with the Schomaker-Stevenson approach for determining single-bond lengths. When the surface bond orders are fixed primarily by the valency of X, this approach appears to provide a simple framework for predicing X-M surface bond lengths. Further, in cases where agreement has been reached from different surface crystallographic techniques, this framework has the potential for assessing refinements to the surface bonding model (e.g. in determining the roles of the effective surface valency of M, and of coordinate bonding and supplementary π bonding between X and M). Preliminary comparisons of structural data are also given for molecular adsorption (CO and ethylidyne) and for the chemisorption of other metal atoms.

  8. The cellular environment of cancerous human tissue. Interfacial and dangling water as a "hydration fingerprint".

    Science.gov (United States)

    Abramczyk, Halina; Brozek-Pluska, Beata; Krzesniak, Marta; Kopec, Monika; Morawiec-Sztandera, Alina

    2014-08-14

    Despite a large number of publications, the role of water in the cellular environment of biological tissue has not been clarified. Characterizing the biological interface is a key challenge in understanding the interactions of water in the tissue. Although we often assume that the properties of the bulk water can be translated to the crowded biological environment, this approach must be considerably revised when considering the biological interface. To our knowledge, few studies have directly monitored the interactions and accumulation of water in the restricted environments of the biological tissue upon realistic crowding conditions. The present study focuses on a molecular picture of water molecules at the biological interface, or specifically, water molecules adjacent to the hydrophobic and hydrophilic surfaces of normal and cancerous tissues. We recorded and analyzed the IR and Raman spectra of the νs(OH) stretching modes of water at the biological interfaces of the human breast and neck tissues. The results revealed dramatic changes in the water content in the tissue and are potentially relevant to both the fundamental problems of interfacial water modeling and the molecular diagnostics of cancer as a 'hydration fingerprint'. Herein, we will discuss the origin of the vibrational substructures observed for the νs(OH) stretching modes of water, showing that the interfacial water interacting via H-bond with other water molecules and biomolecules at the biological surface and free OH vibration of the dangling water are sensitive indicators of the pathology between the normal (noncancerous) and cancerous tissue and cancer types. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Shear bond strength of two bonding systems on dentin surfaces prepared with Er:YAG laser

    International Nuclear Information System (INIS)

    Dall'Magro, Eduardo

    2001-01-01

    The purpose of this study was to examine the shear bond strength of two bonding dentin systems, one 'one step' (Single Bond - 3M) and one 'self-etching' (Prompt-L-ESPE), when applied on dentin surfaces prepared with Er:YAG laser (2,94μm) that underwent ar not, acid etched. Forty one human molars just extracted were selected and after the cut with diamond disc and included in acrylic resin, resulting in 81 specimens (hemi crowns). After, the specimens were divided in one group treated with sand paper and another two groups treated with Er:YAG laser with 200 mJ and 250 mJ of energy and 2 Hz of frequency. Next, the prepared surfaces received three treatments with following application: 1) acid + Single Bond + Z 250 resin, 2) prompt-L-Pop + Z 250 resin, and 3) acid without, Single Bond + Z 250 resin. The Z 250 resin was applied and photopolymerized in increments on a Teflon matrix that belonged to an apparatus called 'Assembly Apparatus' machine producing cylinders of 3,5 mm of diameter and 5 mm of height. After these specimens were submitted to thermo cycling during 1 minute the 55 deg C and during 1 minute with 5 deg C with a total of 500 cycles for specimen, and the measures of shear bond strength were abstained using EMIC model DL 2000 rehearsed machine, with speed of 0,5 mm/min, measuring the final rupture tension (Mpa). The results showed an statistic superiority of 5% of probability level in dentin flattened with sandpaper and with laser using 200 mJ of energy with aspect to the ones flattened with laser using 250 mJ of energy. It was observed that using 'Single Bond' bonding dentin system the marks were statistically superior at 5% of probability with reference to the use of the Prompt-L-Pop adhesive system. So, it was concluded that Er:YAG Laser with 200 mJ of energy produced similar dentin cavity prepare than sandpaper and Single Bond seemed the best bonding agent system between restorative material and dentin. (author)

  10. Relationship between surface area for adhesion and tensile bond strength--evaluation of a micro-tensile bond test.

    Science.gov (United States)

    Sano, H; Shono, T; Sonoda, H; Takatsu, T; Ciucchi, B; Carvalho, R; Pashley, D H

    1994-07-01

    The purpose of this study was to test the null hypothesis that there is no relationship between the bonded surface area of dentin and the tensile strength of adhesive materials. The enamel was removed from the occlusal surface of extracted human third molars, and the entire flat surface was covered with resin composite bonded to the dentin to form a flat resin composite crown. Twenty-four hours later, the bonded specimens were sectioned parallel to the long axis of the tooth into 10-20 thin sections whose upper part was composed of resin composite with the lower half being dentin. These small sections were trimmed using a high speed diamond bur into an hourglass shape with the narrowest portion at the bonded interface. Surface area was varied by altering the specimen thickness and width. Tensile bond strength was measured using custom-made grips in a universal testing machine. Tensile bond strength was inversely related to bonded surface area. At surface areas below 0.4 mm2, the tensile bond strengths were about 55 MPa for Clearfil Liner Bond 2 (Kuraray Co., Ltd.), 38 MPa for Scotchbond MP (3M Dental Products), and 20 MPa for Vitremer (3M Dental Products). At these small surface areas all of the bond failures were adhesive in nature. This new method permits measurement of high bond strengths without cohesive failure of dentin. It also permits multiple measurements to be made within a single tooth.

  11. Excellent bonding behaviour of novel surface-tailored fibre ...

    Indian Academy of Sciences (India)

    Administrator

    tured completely before pull-out, leading to full utilization of its tensile strength, and ... Composite rods; surface tailoring; cementitious matrix; pull-out test; bonding characteristics. 1. ... machine (Lloyd LR50K) at a speed of 0∙5 mm/min with a.

  12. EFFECT OF SURFACE CONDTIONINGON BOND STRENGTH TO ENAMEL AND DENTIN

    Directory of Open Access Journals (Sweden)

    M MOUSAVINASAB

    2002-09-01

    Full Text Available Introduction. Compoglass is a trade mark of dental compomers and because of its partially resinus structure, surface conditioning of dental surfaces is needed for a better bonding process. In this study, the effect of enamel and dentin conditioning procedure on shear bond strength (SBS of compoglass to tooth surfaces was studied. Methods. four groups each one including 11 sound premolars were chosen and their surfaces were prepared as following groups: group1, unconitioned dentin; group 2, dentin conditioning with phosphoric acid 35%; group 3, dentin conditioning with polyacrylic acid 20% group 4, unconditioning enamel; group 5, enamel conditioning with phosphoric acid 35%; and group 6, enamel conditioning with polyacrylic acid 20%. Compoglass was bonded to prepared surfaces and after fixation of the samples in acrylic molds, all samples were tested under shear force of instron testing machine at a rate of 1 mm/min speed. Results. The mean SBS obtained in these 6 groups were 6.207, 8.057, 10.146, 25.939 and 11.827 mpa. the mode of fracture also studied using a streomicroscope. Statistical analysis of the results showed that the maximum SBS obtained in group 5 and the lowest SBS about 6.207 mpa obtained in group 1. Despite increase in SBS group 2 and 3, there was no statistical differncies between group 1, 2 and 3. Discussion. Based on results of this study, conditioning of enamel and dentin surface due to improve SBS is recommeneded.

  13. Surface modification for bonding between amalgam and orthodontic brackets.

    Science.gov (United States)

    Wongsamut, Wittawat; Satrawaha, Sirichom; Wayakanon, Kornchanok

    2017-01-01

    Testing of methods to enhance the shear bond strength (SBS) between orthodontic metal brackets and amalgam by sandblasting and different primers. Three hundred samples of amalgam restorations (KerrAlloy ® ) were prepared in self-cured acrylic blocks, polished, and divided into two groups: nonsandblasted and sandblasted. Each group was divided into five subgroups with different primers used in surface treatment methods, with a control group of bonded brackets on human mandibular incisors. Following the surface treatments, mandibular incisor brackets (Unitek ® ) were bonded on the amalgam with adhesive resin (Transbond XT ® ). The SBS of the samples was tested. The adhesive remnant index (ARI) and failure modes were then determined under a stereo-microscope. Two-way analysis of variance, Chi-square, and Kruskal-Wallis tests were performed to calculate the correlations between and among the SBS and ARI values, the failure modes, and surface roughness results. There were statistically significant differences of SBS among the different adhesive primers and sandblasting methods ( P 0.05). Using adhesive primers with sandblasting together effectively enhances the SBS between orthodontic metal brackets and amalgam. The two primers with the ingredient methacryloxydecyl dihydrogen phosphate (MDP) monomer, Alloy Primer ® and Assure Plus ® , were the most effective. Including sandblasting in the treatment is essential to achieve the bonding strength required.

  14. Tensile bond strength of hydroxyethyl methacrylate dentin bonding agent on dentin surface at various drying techniques

    Directory of Open Access Journals (Sweden)

    Kun Ismiyatin

    2010-06-01

    Full Text Available Background: There are several dentin surface drying techniques to provide a perfect resin penetration on dentin. There are two techniques which will be compared in this study. The first technique was by rubbing dentin surface gently using cotton pellet twice, this technique is called blot dry technique. The second technique is by air blowing dentin surface for one second and continued by rubbing dentin surface gently using moist cotton. Purpose: This experiment was aimed to examine the best dentin surface drying techniques after 37% phosphoric acid etching to obtain the optimum tensile bond strength between hydroxyethyl methacrylate (HEMA and dentin surface. Method: Bovine teeth was prepared flat to obtain the dentin surface and than was etched using 37% phosphoric acid for 15 seconds. After etching the dentin was cleaned using 20 cc plain water and dried with blot dry techniques (group I, or dried with air blow for one second (group II, or dried with air blow for one second, and continued with rubbing gently using moist cotton pellet (group III, and without any drying as control group (group IV. After these drying, the dentin surfaces were applied with resin dentin bonding agent and put into plunger facing the composite mould. The antagonist plunger was filled with composite resin. After 24 hours, therefore bond strength was measured using Autograph. Result: Data obtained was analyzed using One-Way ANOVA with 95% confidence level and continued with LSD test on p≤0.05. The result showed that the highest tensile bond strength was on group I, while the lowest on group IV. Group II and IV, III and IV, II and III did not show signigicant difference (p>0.05. Conclusion: Dentin surface drying techniques through gentle rubbing using cotton pellet twice (blot dry technique gave the greatest tensile bond strength.Latar belakang masalah: Tehnik pengeringan permukaan dentin agar resin dapat penetrasi dengan sempurna adalah dengan cara pengusapan secara

  15. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  16. Bond-selective control of a gas-surface reaction

    Science.gov (United States)

    Killelea, Daniel R.

    The prospect of using light to selectively control chemical reactions has tantalized chemists since the development of the laser. Unfortunately, the realization of laser-directed chemistry is frequently thwarted by the randomization of energy within the molecule through intramolecular vibrational energy distribution (IVR). However, recent results showing vibrational mode-specific reactivity on metal surfaces suggest that IVR may not always be complete for gas-surface reactions. Here, we combine molecular beam techniques and direct laser excitation to characterize the bond-specific reactivity of trideuteromethane on a Ni(111) surface. Our results reveal important details about how vibrational energy is distributed in the reactive molecule. We use a molecular beam to direct state-selected trideuteromethane (CHD 3) molecules onto a nickel single crystal sample and use the results we obtain to describe the flow of vibrational energy in the methane-surface reaction complex. We show that CHD3 molecules initially excited to v=1, J=2, K=0 of the v 1 symmetric C-H stretching mode will dissociate exclusively via C-H cleavage on Ni(111). This result highlights the localization of vibrational energy in the reaction complex, despite the presence of many energy exchange channels with the high state-density surface. We demonstrate, for the first time, highly parallel bond-selective control of a heterogeneously catalyzed reaction. We place our results in the context of recent experiments investigating IVR for molecules in both the gas phase and liquid solutions. If IVR is fast on the reaction timescale, vibrational energy would be randomly distributed throughout the nascent methane-surface reaction complex and vibrational mode-specific behavior would not occur. The short timescale of a direct gas-surface collision may explain how the exchange of energy via IVR is limited to only a small subset of the energetic configurations available to the reaction complex. This framework

  17. A simple surface treatment and characterization of AA 6061 aluminum alloy surface for adhesive bonding applications

    International Nuclear Information System (INIS)

    Saleema, N.; Sarkar, D.K.; Paynter, R.W.; Gallant, D.; Eskandarian, M.

    2012-01-01

    Highlights: ► A very simple surface treatment method to achieve excellent and durable aluminum adhesive bonding. ► Our method involves simple immersion of aluminum in very dilute NaOH solution at room temperature with no involvement of strong acids or multiple procedures. ► Surface analysis via various surface characterization techniques showed morphological and chemical modifications favorable for obtaining highly durable bond strengths on the treated surface. ► Safe, economical, reproducible and simple method, easily applicable in industries. - Abstract: Structural adhesive bonding of aluminum is widely used in aircraft and automotive industries. It has been widely noted that surface preparation of aluminum surfaces prior to adhesive bonding plays a significant role in improving the strength of the adhesive bond. Surface cleanliness, surface roughness, surface wettability and surface chemistry are controlled primarily by proper surface treatment methods. In this study, we have employed a very simple technique influencing all these criteria by simply immersing aluminum substrates in a very dilute solution of sodium hydroxide (NaOH) and we have studied the effect of varying the treatment period on the adhesive bonding characteristics. A bi-component epoxy adhesive was used to join the treated surfaces and the bond strengths were evaluated via single lap shear (SLS) tests in pristine as well as degraded conditions. Surface morphology, chemistry, crystalline nature and wettability of the NaOH treated surfaces were characterized using various surface analytical tools such as scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), optical profilometry, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and contact angle goniometry. Excellent adhesion characteristics with complete cohesive failure of the adhesive were encountered on the NaOH treated surfaces that are comparable to the benchmark

  18. A density functional theory study of the TMG adsorption on the GaN surface

    Energy Technology Data Exchange (ETDEWEB)

    Ptasinska, Maria; Soltys, Jakub; Piechota, Jacek [Interdisciplinary Centre for Materials Modelling, University of Warsaw, ul. Pawinskiego 5a, 02-106 Warszawa (Poland); Krukowski, Stanislaw [Interdisciplinary Centre for Materials Modelling, University of Warsaw, ul. Pawinskiego 5a, 02-106 Warszawa (Poland); Institute of High Pressure Physics, Polish Academy of Sciences, ul. Sokolowska 29/37, 01-142 Warsaw (Poland)

    2011-07-01

    TMG (trimetylogallium) and NH{sub 3} (ammonia) are widely used reactants in the metal organic chemical vapor deposition (MOCVD) technique used in the growth of the GaN thin films. We have recently examined theoretically, with the help of the density functional theory (DFT), TMG adsorption on the GaN(0001) surface in order to study formation of bonds between Ga and N. Dangling bonds on the GaN(0001) surface were saturated with the hydrogen atoms. The slab polarization, which is due to the dangling bonds present on the GaN(0001) surface, and energy of the system in the vicinity of TMG was computed for different distances between the surface atoms and TMG. We also studied TMG diffusion on the GaN surface. As a result, the energy path for diffusion from Top N to Hollow was obtained.

  19. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth.The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests.The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony defect.Our findings suggested a new bioactive

  20. Elementary structural building blocks encountered in silicon surface reconstructions

    International Nuclear Information System (INIS)

    Battaglia, Corsin; Monney, Claude; Didiot, Clement; Schwier, Eike Fabian; Garnier, Michael Gunnar; Aebi, Philipp; Gaal-Nagy, Katalin; Onida, Giovanni

    2009-01-01

    Driven by the reduction of dangling bonds and the minimization of surface stress, reconstruction of silicon surfaces leads to a striking diversity of outcomes. Despite this variety even very elaborate structures are generally comprised of a small number of structural building blocks. We here identify important elementary building blocks and discuss their integration into the structural models as well as their impact on the electronic structure of the surface. (topical review)

  1. Developments of a bonding technique for optical materials by a surface activation method

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Oda, Tomohiro; Abe, Tomoyuki; Kusunoki, Isao

    2005-01-01

    We started developing the laser crystal bounding by the surface activation method which can splice crystals together without using hydrogen bonding. For the surface activation, neutral argon beams were used for irradiation of specimens. In the bonding trials with sapphire crystals, we recognized possibility of the bonding method for optical elements. (author)

  2. Theoretical study of the localization of excess electrons at the surface of ice

    International Nuclear Information System (INIS)

    Hermann, A; Schwerdtfeger, P; Schmidt, W G

    2008-01-01

    The localization of excess electrons at the basal plane surface of hexagonal ice Ih is investigated theoretically, combining density functional theory (DFT) with a partial self-interaction correction (SIC) scheme, to account for spurious self-interaction effects that artificially delocalize the excess electrons. Starting from energetically favored surface geometries, we find strong localization of excess electrons at surface dangling bonds, in particular for surface adsorbed water monomers and dimers

  3. Evaluation of Surface Characteristics and Shear Bond Strength of Metal Brackets Bonded to Two Different Porcelain Systems (Feldspathic/IPS-Empress-2 treated with Different Surface Conditioning Methods

    Directory of Open Access Journals (Sweden)

    Amal S Nair

    2012-01-01

    Conclusion: Surface conditioning with Co-Jet sand which produced silicatization resulted in a favorable bond strength in both feldspathic and IPS-Empress-2 ceramic surfaces. It was shown that it produced the least surface roughness among all the other surface conditioning groups.

  4. Immediate repair bond strengths of microhybrid, nanohybrid and nanofilled composites after different surface treatments

    NARCIS (Netherlands)

    Rinastiti, Margareta; Siswomihardjo, Widowati; Busscher, Henk J.; Ozcan, Mutlu

    Objectives: To evaluate immediate repair bond strengths and failure types of resin composites with and without surface conditioning and characterize the interacting composite surfaces by their surface composition and roughness. Methods: Microhybrid, nanohybrid and nanofilled resin composites were

  5. Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties

    International Nuclear Information System (INIS)

    Sumant, A. V.; Grierson, D. S.; Carpick, R. W.; Gerbi, J. E.; Carlisle, J. A.; Auciello, O.

    2007-01-01

    We present a comprehensive study of surface composition and nanotribology for ultrananocrystalline diamond (UNCD) surfaces, including the influence of film nucleation on these properties. We describe a methodology to characterize the underside of the films as revealed by sacrificial etching of the underlying substrate. This enables the study of the morphology and composition resulting from the nucleation and initial growth of the films, as well as the characterization of nanotribological properties which are relevant for applications including micro-/nanoelectromechanical systems. We study the surface chemistry, bonding configuration, and nanotribological properties of both the topside and the underside of the film with synchrotron-based x-ray absorption near-edge structure spectroscopy to identify the bonding state of the carbon atoms, x-ray photoelectron spectroscopy to determine the surface chemical composition, Auger electron spectroscopy to further verify the composition and bonding configuration, and quantitative atomic force microscopy to study the nanoscale topography and nanotribological properties. The films were grown on SiO 2 after mechanically polishing the surface with detonation synthesized nanodiamond powder, followed by ultrasonication in a methanol solution containing additional nanodiamond powder. The sp 2 fraction, morphology, and chemistry of the as-etched underside are distinct from the topside, exhibiting a higher sp 2 fraction, some oxidized carbon, and a smoother morphology. The nanoscale single-asperity work of adhesion between a diamond nanotip and the as-etched UNCD underside is far lower than for a silicon-silicon interface (59.2±2 vs 826±186 mJ/m 2 , respectively). Exposure to atomic hydrogen dramatically reduces nanoscale adhesion to 10.2±0.4 mJ/m 2 , at the level of van der Waals' interactions and consistent with recent ab initio calculations. Friction is substantially reduced as well, demonstrating a direct link between the

  6. Real-Time Observation of Surface Bond Breaking with an X-ray Laser

    DEFF Research Database (Denmark)

    Dell'Angela, M.; Anniyev, T.; Beye, M.

    2013-01-01

    molecules interact weakly with the surface but translate along it and exchange energy without forming localized surface bonds. Dell'Angela et al. (p. 1302) found evidence for such a state in changes in x-ray absorption and emission spectra of CO molecules adsorbed on a ruthenium surface after optical...... and that are bonded less strongly than the chemisorbed state....

  7. Effects of surface treatment of provisional crowns on the shear bond strength of brackets

    Directory of Open Access Journals (Sweden)

    Josiane Xavier de Almeida

    2013-08-01

    Full Text Available OBJECTIVE: To assess the adhesive resistance of metallic brackets bonded to temporary crowns made of acrylic resin after different surface treatments. METHODS: 180 specimens were made of Duralay and randomly divided into 6 groups (n = 30 according to surface treatment and bonding material: G1 - surface roughening with Soflex and bonding with Duralay; G2 - roughening with aluminum oxide blasting and bonding with Duralay; G3 - application of monomer and bonding with Duralay; G4 - roughening with Soflex and bonding with Transbond XT; G5 - roughening with aluminum oxide blasting and bonding with Transbond XT and G6: application of monomer and bonding with Transbond. The results were statistically assessed by ANOVA/Games-Howell. RESULTS: The means (MPa were: G1= 18.04, G2= 22.64, G3= 22.4, G4= 9.71, G5= 11.23, G6= 9.67. The Adhesive Remnant Index (ARI ranged between 2 and 3 on G1, G2 and G3 whereas in G4, G5 and G6 it ranged from 0 to 1, showing that only the material affects the pattern of adhesive flaw. CONCLUSION: The surface treatment and the material influenced adhesive resistance of brackets bonded to temporary crowns. Roughening by aluminum blasting increased bond strength when compared to Soflex, in the group bonded with Duralay. The bond strength of Duralay acrylic resin was superior to that of Transbond XT composite resin.

  8. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive.

    Science.gov (United States)

    Lee, Ji-Yeon; Ahn, Jaechan; An, Sang In; Park, Jeong-Won

    2018-02-01

    The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al 2 O 3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test ( p = 0.05). Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 ( p < 0.05). Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

  9. Influence of various surface-conditioning methods on the bond strength of metal brackets to ceramic surfaces

    NARCIS (Netherlands)

    Schmage, P; Nergiz, [No Value; Herrmann, W; Ozcan, M; Nergiz, Ibrahim; �zcan, Mutlu

    With the increase in adult orthodontic treatment comes the need to find a reliable method for bonding orthodontic brackets onto metal or ceramic crowns and fixed partial dentures. In this study, shear bond strength and surface roughness tests were used to examine the effect of 4 different surface

  10. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    Directory of Open Access Journals (Sweden)

    Akkuş Emek

    2015-07-01

    Full Text Available Objectives: To compare the effects of airborne-particle abrasion (APA and tribochemical silica coating (TSC surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  11. Control of chemical bonding of the ZnO surface grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ogata, K.; Komuro, T.; Hama, K.; Koike, K.; Sasa, S.; Inoue, M.; Yano, M.

    2004-01-01

    Toward the fabrication of enzyme modified field effect transistors (EnFETs) as one of organic/inorganic hybridized structures, surface bonding of the ZnO grown by molecular beam epitaxy was controlled by ex situ treatments. Angle resolved X-ray photoelectron spectroscopy (XPS) measurement revealed that O-H bonds exist at the surface of ZnO. It was found that the number of O-H bond could be changed with reversibility using plasma and thermal treatments

  12. Innovative Approaches To Improving The Bond Between Concrete and Steel Surfaces

    National Research Council Canada - National Science Library

    Day, Donna C; Carrasquillo, Mariangelica; Weiss, Jr., Charles A; Sykes, Melvin C; Baugher, Jr., Earl H; Malone, Philip G

    2006-01-01

    A reactive silicate layer fused onto the surface of reinforcing steel provides a coupling layer that allows a very strong bond to develop between hydrating Portland cement paste and the surface of the steel...

  13. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel.

    Science.gov (United States)

    Sekhri, Sahil; Mittal, Sanjeev; Garg, Sandeep

    2016-01-01

    In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non-significant (p > 0.05). Surface treatment of enamel increases the bond strength of self adhesive resin cement.

  14. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    Science.gov (United States)

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  15. [Effects of surface treatment and adhesive application on shear bond strength between zirconia and enamel].

    Science.gov (United States)

    Li, Yinghui; Wu, Buling; Sun, Fengyang

    2013-03-01

    To evaluate the effects of sandblasting and different orthodontic adhesives on shear bond strength between zirconia and enamel. Zirconia ceramic samples were designed and manufactured for 40 extracted human maxillary first premolars with CAD/CAM system. The samples were randomized into 4 groups for surface treatment with sandblasting and non-treated with adhesives of 3M Transbond XT or Jingjin dental enamel bonding resin. After 24 h of bonded fixation, the shear bond strengths were measured by universal mechanical testing machine and analyzed with factorial variance analysis. The shear bond strength was significantly higher in sandblasting group than in untreated group (Padhesives of Transbond XT and dental enamel bonding resin (P>0.05). The shear bond strength between zirconia and enamel is sufficient after sandblasting regardless of the application of either adhesive.

  16. Relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives.

    Science.gov (United States)

    Nagura, Yuko; Tsujimoto, Akimasa; Barkmeier, Wayne W; Watanabe, Hidehiko; Johnson, William W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2018-04-01

    The relationship between enamel bond fatigue durability and surface free-energy characteristics with universal adhesives was investigated. The initial shear bond strengths and shear fatigue strengths of five universal adhesives to enamel were determined with and without phosphoric acid pre-etching. The surface free-energy characteristics of adhesive-treated enamel with and without pre-etching were also determined. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were higher than those to ground enamel. The initial shear bond strength and shear fatigue strength of universal adhesive to pre-etched enamel were material dependent, unlike those to ground enamel. The surface free-energy of the solid (γ S ) and the hydrogen-bonding force (γSh) of universal adhesive-treated enamel were different depending on the adhesive, regardless of the presence or absence of pre-etching. The bond fatigue durability of universal adhesives was higher to pre-etched enamel than to ground enamel. In addition, the bond fatigue durability to pre-etched enamel was material dependent, unlike that to ground enamel. The surface free-energy characteristics of universal adhesive-treated enamel were influenced by the adhesive type, regardless of the presence or absence of pre-etching. The surface free-energy characteristics of universal adhesive-treated enamel were related to the results of the bond fatigue durability. © 2018 Eur J Oral Sci.

  17. Effect of a New Surface Treatment Solution on the Bond Strength of Composite to Enamel

    Science.gov (United States)

    2016-06-01

    Bond Strength of Composite to Enamel " is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner...Solution on the Bond Strength of Composite to Enamel ABSTRACT Clean & Boost (Apex Dental Materials) is a novel surface treatment solution...designed to be used in place of phosphoric acid to increase the bond strength of self-etch adhesives to enamel and more effectively remove contaminants

  18. Effect of Pd Surface Roughness on the Bonding Process and High Temperature Reliability of Au Ball Bonds

    Science.gov (United States)

    Huang, Y.; Kim, H. J.; McCracken, M.; Viswanathan, G.; Pon, F.; Mayer, M.; Zhou, Y. N.

    2011-06-01

    A 0.3- μm-thick electrolytic Pd layer was plated on 1 μm of electroless Ni on 1 mm-thick polished and roughened Cu substrates with roughness values ( R a) of 0.08 μm and 0.5 μm, respectively. The rough substrates were produced with sand-blasting. Au wire bonding on the Ni/Pd surface was optimized, and the electrical reliability was investigated under a high temperature storage test (HTST) during 800 h at 250°C by measuring the ball bond contact resistance, R c. The average value of R c of optimized ball bonds on the rough substrate was 1.96 mΩ which was about 40.0% higher than that on the smooth substrate. The initial bondability increased for the rougher surface, so that only half of the original ultrasonic level was required, but the reliability was not affected by surface roughness. For both substrate types, HTST caused bond healing, reducing the average R c by about 21% and 27%, respectively. Au diffusion into the Pd layer was observed in scanning transmission electron microscopy/ energy dispersive spectroscopy (STEM-EDS) line-scan analysis after HTST. It is considered that diffusion of Au or interdiffusion between Au and Pd can provide chemically strong bonding during HTST. This is supported by the R c decrease measured as the aging time increased. Cu migration was indicated in the STEM-EDS analysis, but its effect on reliability can be ignored. Au and Pd tend to form a complete solid solution at the interface and can provide reliable interconnection for high temperature (250°C) applications.

  19. Theoretical study of ZnO adsorption and bonding on Al2O3 (0001) surface

    Institute of Scientific and Technical Information of China (English)

    LI Yanrong; YANG Chun; XUE Weidong; LI Jinshan; LIU Yonghua

    2004-01-01

    ZnO adsorption on sapphire (0001) surface is theoretically calculated by using a plane wave ultrasoft pseudo-potential method based on ab initio molecular dynamics. The results reveal that the surface relaxation in the first layer Al-O is reduced, even eliminated after the surface adsorption of ZnO, and the chemical bonding energy is 434.3(±38.6) kJ·mol-1. The chemical bond of ZnO (0.185 ± 0.01 nm) has a 30° angle away from the adjacent Al-O bond, and the stable chemical adsorption position of the Zn is deflected from the surface O-hexagonal symmetry with an angle of about 30°. The analysis of the atomic populations, density of state and bonding electronic density before and after the adsorption indicates that the chemical bond formed by the O2- of the ZnO and the surface Al3+ has a strong ionic bonding characteristic, while the chemical bond formed by the Zn2+ and the surface O2- has an obvious covalent characteristic, which comes mainly from the hybridization of the Zn 4s and the O 2p and partially from that of the Zn 3d and the O 2p.

  20. Ultraclean Si/Si interface formation by surface preparation and direct bonding in ultrahigh vacuum

    DEFF Research Database (Denmark)

    Hermansson, Karin; Grey, Francois; Bengtsson, Stefan

    1998-01-01

    Silicon surfaces have been cleaned and bonded in ultrahigh vacuum, at a pressure in the 10(-10) Torr range. The bonded interfaces show extremely low contamination levels as measured by secondary ion mass spectroscopy. Nevertheless, a potential barrier could be detected at the interface by spreading...

  1. Influence of surface treatments on the shear bond strength of orthodontic brackets to porcelain

    Science.gov (United States)

    Wang, Cong; Zeng, Jishan; Wang, Shaoan; Yang, Zheng; Huang, Qian; Chen, Pixiu; Zhou, Shujuan; Liu, Xiaoqing

    2008-11-01

    The purpose of this study was to investigate the effect of various surface treatments after different storage time and thermocycling on the shear bond strength of orthodontic brackets to the feldspathic porcelain surfaces. 128 disc-shaped porcelain specimens were randomly assigned to the following surface treatments: 9.6% HFA, 9.6% HFA combined with silane, 50 μ aluminum trioxide sandblasting followed by silane and application of silane after 37% phosphoric acid. Metal or ceramic brackets were bonded onto each treated porcelain facet with light cured resin. The samples were stored in 37 °C water 1 day or 7 days, thermocycled 500 times from 5 to 55 °C. The shear bond strengths were measured (1 mm/min), and statistically analyzed. The bond failure sites were classified according to ARI system. The surface of the glazed, sandblasted, hydrofluoric and phosphoric acid etched porcelain were examined with SEM. All groups achieved reasonable bond strengths to withstand the application of orthodontic forces. Water storage for 7 days caused lower shear bond strength than that of 1 day. But there is no statistically significant difference between the two groups. The mean shear bond strength provided by ceramic bracket with mechanical retention had no statistical difference with that of metal bracket. Therefore, the optimal treatment for orthodontic brackets bonding to feldspathic porcelain was to apply phosphoric acid combined with silane.

  2. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or...... reconstruction from oxidation in air, Contact bonding opens the way to novel applications of reconstructed semiconductor surfaces, by preserving their atomic structure intact outside of a UHV chamber. (C) 1997 American Institute of Physics.......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  3. Bond strengths of brackets bonded to enamel surfaces conditioned with femtosecond and Er:YAG laser systems.

    Science.gov (United States)

    Aglarci, Cahide; Demir, Necla; Aksakalli, Sertac; Dilber, Erhan; Sozer, Ozlem Akinci; Kilic, Hamdi Sukur

    2016-08-01

    The aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 °C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 ± 3.3 MPa) and acid etching groups (7.3 ± 2.7 MPa; p enamel interface.

  4. Environmentally Benign Sol-Gel Surface Treatment for Aluminum Bonding Applications

    National Research Council Canada - National Science Library

    Osborne, Joseph

    1996-01-01

    A surface treatment process for aluminum using sol-gel chemistry has been developed that produces strong adhesive bonds without the rinse water requirements of traditional anodizing or etching processes...

  5. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Hu, A.; Rybachuk, M.; Lu, Q.-B.; Duley, W. W.

    2007-01-01

    Microscopic phase transformation from graphite to sp-bonded carbon chains (carbyne) and nanodiamond has been induced by femtosecond laser pulses on graphite surface. UV/surface enhanced Raman scattering spectra and x-ray photoelectron spectra displayed the local synthesis of carbyne in the melt zone while nanocrystalline diamond and trans-polyacetylene chains form in the edge area of gentle ablation. These results evidence possible direct 'writing' of variable chemical bonded carbons by femtosecond laser pulses for carbon-based applications

  6. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  7. Improvement of silicon direct bonding using surfaces activated by hydrogen plasma treatment

    CERN Document Server

    Choi, W B; Lee Jae Sik; Sung, M Y

    2000-01-01

    The plasma surface treatment, using hydrogen gas, of silicon wafers was studied as a pretreatment for silicon direct bonding. Chemical reactions of the hydrogen plasma with the surfaces were used for both surface activation and removal of surface contaminants. Exposure of the silicon wafers to the plasma formed an active oxide layer on the surface. This layer was hydrophilic. The surface roughness and morphology were examined as functions of the plasma exposure time and power. The surface became smoother with shorter plasma exposure time and lower power. In addition, the plasma surface treatment was very efficient in removing the carbon contaminants on the silicon surface. The value of the initial surface energy, as estimated by using the crack propagation method, was 506 mJ/M sup 2 , which was up to about three times higher than the value for the conventional direct bonding method using wet chemical treatments.

  8. Effect of surface treatments on the bond strengths of facing composite resins to zirconia copings.

    Science.gov (United States)

    Tsumita, M; Kokubo, Y; Kano, T

    2012-09-01

    The present study evaluated and compared the bond strength between zirconia and facing composite resin using different surface conditioning methods before and after thermocycling. Four primers, three opaque resins, and two facing composite resins were used, and 10 surface treatment procedures were conducted. The bond strength was measured before and after 4,000 cycles of thermocycling. The mean values of each group were statistically analyzed using one-way analysis of variance (ANOVA). The bond strengths of facing composite resins to zirconia after various treatments varied depending on the primers, opaque resins, body resins, and thermocycling. The application of primers and opaque resins to the zirconia surface after sandblasting is expected to yield strong bond strength of the facing composite resin (Estenia CG&B) even after thermocycling.

  9. Low-temperature wafer direct bonding of silicon and quartz glass by a two-step wet chemical surface cleaning

    Science.gov (United States)

    Wang, Chenxi; Xu, Jikai; Zeng, Xiaorun; Tian, Yanhong; Wang, Chunqing; Suga, Tadatomo

    2018-02-01

    We demonstrate a facile bonding process for combining silicon and quartz glass wafers by a two-step wet chemical surface cleaning. After a post-annealing at 200 °C, strong bonding interfaces with no defects or microcracks were obtained. On the basis of the detailed surface and bonding interface characterizations, the bonding mechanism was explored and discussed. The amino groups terminated on the cleaned surfaces might contribute to the bonding strength enhancement during the annealing. This cost-effective bonding process has great potentials for silicon- and glass-based heterogeneous integrations without requiring a vacuum system.

  10. Effect of Enamel and Dentin Surface Treatment on the Self-Adhesive Resin Cement Bond Strength.

    Science.gov (United States)

    Mushashe, Amanda Mahmmad; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Moro, Alexandre; Correr, Gisele Maria

    2016-01-01

    The aim of this study was to evaluate the effect of enamel and dentin surface treatment on the micro-shear bond strength of self-adhesive cement. Seventy-two extracted third molars had their crowns embedded in acrylic resin and worn to obtain a flat enamel or dentin surface. The enamel and dentin specimens were randomly assigned to 8 groups (n=12) that were based on surface treatment (11.5% polyacrylic acid solution or no treatment), substrate condition (wet or dry) and storage period (1 day or 90 days), and treated accordingly. Cylinders (1 × 1 mm) were fabricated using self-adhesive resin cement (RelyX U200) following the manufacturer's instructions. The specimens were stored in distilled water at 37 °C for either 1 day or 90 days and subjected to micro-shear bond strength test (EMIC DL 2000 at 0.5 mm/min). After this, the failure type of the specimens was determined. Data were subjected to statistical analysis (a=0.05). According to the results, the 11.5% polyacrylic acid application decreased the bond strength in both enamel and dentin samples. The moist groups showed higher bond strength than the dry ones, regardless of the substrate and surface treatment. Storage period did not influence bond strength. In conclusion, surface treatment with 11.5% polyacrylic acid and absence of moisture decreased the bond strength of the resin-cement (RelyU200), regardless of the storage period.

  11. Toward accurate prediction of potential energy surfaces and the spectral density of hydrogen bonded systems

    International Nuclear Information System (INIS)

    Rekik, Najeh

    2014-01-01

    Despite the considerable progress made in quantum theory and computational methods, detailed descriptions of the potential energy surfaces of hydrogen-bonded systems have not yet been achieved. In addition, the hydrogen bond (H-bond) itself is still so poorly understood at the fundamental level that it remains unclear exactly what geometry constitutes a “real” H-bond. Therefore, in order to investigate features essential for hydrogen bonded complexes, a simple, efficient, and general method for calculating matrix elements of vibrational operators capable of describing the stretching modes and the H-bond bridges of hydrogen-bonded systems is proposed. The derived matrix elements are simple and computationally easy to evaluate, which makes the method suitable for vibrational studies of multiple-well potentials. The method is illustrated by obtaining potential energy surfaces for a number of two-dimensional systems with repulsive potentials chosen to be in Gaussian form for the stretching mode and of the Morse-type for the H-bond bridge dynamics. The forms of potential energy surfaces of weak and strong hydrogen bonds are analyzed by varying the asymmetry of the Gaussian potential. Moreover, the choice and applicability of the selected potential for the stretching mode and comparison with other potentials used in the area of hydrogen bond research are discussed. The approach for the determination of spectral density has been constructed in the framework of the linear response theory for which spectral density is obtained by Fourier transform of the autocorrelation function of the dipole moment operator of the fast mode. The approach involves anharmonic coupling between the high frequency stretching vibration (double well potential) and low-frequency donor-acceptor stretching mode (Morse potential) as well as the electrical anharmonicity of the dipole moment operator of the fast mode. A direct relaxation mechanism is incorporated through a time decaying exponential

  12. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Moradabadi, Ashkan [Department of Electrochemistry, Universität Ulm, Ulm (Germany); Roudsari, Sareh Esmaeily Sabet [Department of Optoelectonics, Universität Ulm, Ulm (Germany); Yekta, Bijan Eftekhari [School of Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Rahbar, Nima, E-mail: nrahbar@wpi.edu [Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30 × magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. - Highlights: • Understanding the dominant mechanism of bonding

  13. Impact of recess etching and surface treatments on ohmic contacts regrown by molecular-beam epitaxy for AlGaN/GaN high electron mobility transistors

    Energy Technology Data Exchange (ETDEWEB)

    Joglekar, S.; Azize, M.; Palacios, T. [Microsystems Technology Laboratories, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Beeler, M.; Monroy, E. [Université Grenoble-Alpes, 38000 Grenoble (France); CEA Grenoble, INAC-PHELIQS, 38000 Grenoble (France)

    2016-07-25

    Ohmic contacts fabricated by regrowth of n{sup +} GaN are favorable alternatives to metal-stack-based alloyed contacts in GaN-based high electron mobility transistors. In this paper, the influence of reactive ion dry etching prior to regrowth on the contact resistance in AlGaN/GaN devices is discussed. We demonstrate that the dry etch conditions modify the surface band bending, dangling bond density, and the sidewall depletion width, which influences the contact resistance of regrown contacts. The impact of chemical surface treatments performed prior to regrowth is also investigated. The sensitivity of the contact resistance to the surface treatments is found to depend upon the dangling bond density of the sidewall facets exposed after dry etching. A theoretical model has been developed in order to explain the observed trends.

  14. 30 CFR 942.800 - Bond and insurance requirements for surface coal mining and reclamation operations.

    Science.gov (United States)

    2010-07-01

    ... required for postmining water treatment must remain bonded. However, the trust fund or annuity may serve as... coal mining and reclamation operations. 942.800 Section 942.800 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING...

  15. Effect of alloy type and surface conditioning on roughness and bond strength of metal brackets

    NARCIS (Netherlands)

    Nergiz, I.; Schmage, P.; Herrmann, W.; Ozcan, M.; Nergiz, [No Value

    2004-01-01

    The effect of 5 different surface conditioning methods on bonding of metal brackets to cast dental alloys was examined. The surface conditioning methods were fine (30-µm) or rough (125-µm) diamond bur, sandblasting (50-µm or 110-µm aluminum oxide [Al2O3]), and silica coating (30-µm silica). Fifty

  16. Nanoscale Bonding between Human Bone and Titanium Surfaces: Osseohybridization

    Directory of Open Access Journals (Sweden)

    Jun-Sik Kim

    2015-01-01

    Full Text Available Until now, the chemical bonding between titanium and bone has been examined only through a few mechanical detachment tests. Therefore, in this study, a sandblasted and acid-etched titanium mini-implant was removed from a human patient after 2 months of placement in order to identify the chemical integration mechanism for nanoscale osseointegration of titanium implants. To prepare a transmission electron microscopy (TEM specimen, the natural state was preserved as much as possible by cryofixation and scanning electron microscope/focused ion beam (SEM-FIB milling without any chemical treatment. High-resolution TEM (HRTEM, energy dispersive X-ray spectroscopy (EDS, and scanning TEM (STEM/electron energy loss spectroscopic analysis (EELS were used to investigate the chemical composition and structure at the interface between the titanium and bone tissue. HRTEM and EDS data showed evidence of crystalline hydroxyapatite and intermixing of bone with the oxide layer of the implant. The STEM/EELS experiment provided particularly interesting results: carbon existed in polysaccharides, calcium and phosphorus existed as tricalcium phosphate (TCP, and titanium existed as oxidized titanium. In addition, the oxygen energy loss near edge structures (ELNESs showed a possibility of the presence of CaTiO3. These STEM/EELS results can be explained by structures either with or without a chemical reaction layer. The possible existence of the osseohybridization area and the form of the carbon suggest that reconsideration of the standard definition of osseointegration is necessary.

  17. Covalent-Bond Formation via On-Surface Chemistry.

    Science.gov (United States)

    Held, Philipp Alexander; Fuchs, Harald; Studer, Armido

    2017-05-02

    In this Review article pioneering work and recent achievements in the emerging research area of on-surface chemistry is discussed. On-surface chemistry, sometimes also called two-dimensional chemistry, shows great potential for bottom-up preparation of defined nanostructures. In contrast to traditional organic synthesis, where reactions are generally conducted in well-defined reaction flasks in solution, on-surface chemistry is performed in the cavity of a scanning probe microscope on a metal crystal under ultrahigh vacuum conditions. The metal first acts as a platform for self-assembly of the organic building blocks and in many cases it also acts as a catalyst for the given chemical transformation. Products and hence success of the reaction are directly analyzed by scanning probe microscopy. This Review provides a general overview of this chemistry highlighting advantages and disadvantages as compared to traditional reaction setups. The second part of the Review then focuses on reactions that have been successfully conducted as on-surface processes. On-surface Ullmann and Glaser couplings are addressed. In addition, cyclodehydrogenation reactions and cycloadditions are discussed and reactions involving the carbonyl functionality are highlighted. Finally, the first examples of sequential on-surface chemistry are considered in which two different functionalities are chemoselectively addressed. The Review gives an overview for experts working in the area but also offers a starting point to non-experts to enter into this exciting new interdisciplinary research field. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. THE EFFECT OF BONDING AND SURFACE SEALANT APPLICATION ON POSTOPERATIVE SENSITIVITY FROM POSTERIOR COMPOSITES

    Directory of Open Access Journals (Sweden)

    Neslihan TEKÇE

    2015-10-01

    Full Text Available Purpose: The purpose of the study was to evaluate the postoperative sensitivity of posterior Class I composite restoration at short-term, restorated with two different all-in-one self-etch adhesives with or without surface sealant application. Materials and Methods: 44 restorations were inserted in 11 patients who required Class I restorations in their molars. Each patient received 4 restorations, thus four groups were formed; (1 G-Aenial Bond (GC, Japan; (2 Clearfil S3 Bond (Kuraray, Japan; (3 G-Aenial Bond+Fortify Plus (Bisco, USA, (4 Clearfil S3 Bond+Fortify Plus. Sensitivity was evaluated at 24h, 7, 15, and 30 days using cold air, ice, and pressure stimuli using a visual analog scale. Comparisons of continuous variables between the sensitivity evaluations were performed using the Friedman’s One-Way Analysis of Variance with repeated measures test (p0.05. The use of Clearfil S3 Bond resulted in almost the same level of postoperative sensitivity as did the use of G-Aenial Bond. The highest sensitivity scores were observed for the surface sealant applied teeth without any statistical significance (p>0.05. Conclusions: Self etch adhesives displayed postoperative sensitivity. The sensitivity scores slightly decreased at the end of 30 days (p>0.05. Surface sealant application did not result in a decrease in sensitivity scores for either dentin adhesives.

  19. Detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural components

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Laboratoire de Mecanique des Contacts et des Structures (LaMCoS), INSA Lyon, 20 Avenue des Sciences, F-69621 Villeurbanne Cedex (France); Li, H. [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Li, M.Q., E-mail: zc9997242256@126.com [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China)

    2016-05-15

    Graphical abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in diffusion bonding of steel hollow structural component. A special surface with regular patterns was processed to be joined so as to observe the extent of surface asperity deformation under different applied bonding pressures. Fracture surface characteristic combined with surface roughness profiles distinctly revealed the enhanced surface asperity deformation as the applied pressure increases. The influence of surface asperity deformation mechanism on joint formation was analyzed: (a) surface asperity deformation not only directly expanded the interfacial contact areas, but also released deformation heat and caused defects, indirectly accelerating atomic diffusion, then benefits to void shrinkage; (b) surface asperity deformation readily introduced stored energy difference between two opposite sides of interface grain boundary, resulting in strain induced interface grain boundary migration. In addition, the influence of void on interface grain boundary migration was analyzed in detail. - Highlights: • A high quality hollow structural component has been fabricated by diffusion bonding. • Surface asperity deformation not only expands the interfacial contact areas, but also causes deformation heat and defects to improve the atomic diffusion. • Surface asperity deformation introduces the stored energy difference between the two opposite sides of interface grain boundary, leading to strain induced interface grain boundary migration. • The void exerts a dragging force on the interface grain boundary to retard or stop interface grain boundary migration. - Abstract: This study focused on the detailed analysis of surface asperity deformation mechanism in similar diffusion bonding as well as on the fabrication of high quality martensitic stainless steel hollow structural components. A special surface with regular patterns was processed to be joined so as to

  20. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  1. Structural and electronic properties of low-index stoichiometric BiOI surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wen-Wu; Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn

    2017-06-01

    As promising photocatalyst driven by visible-light, BiOI has attracted more and more attention in the past years. However, the surface structure and properties of BiOI that is the most important place for the photocatalytic have not been investigated in details. To this end, density functional theory was performed to calculate the structural and electronic properties of four low-index stoichiometric surfaces of BiOI. It is found that the relaxation of the low-index BiOI surfaces are relatively small, especially the (001) surface. Thus, the surface energies of BiOI are very relatively small. Moreover, there are a few surface states below the bottom of conduction band in the first layer except the (001) surface, which maybe capture the photo-excited carriers. In all of the most stable terminated planes, all the dangling bonds are cleaved from the broken Bi-O bonds. In the case of (001) surface, the dangling bond density of Bi atoms for the (001) surface is zero per square nano. Therefore, the (001) surface is thermodynamically lowest-energy surface of BiOI, and it is the predominant surface (51.4%). As a final remark, the dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. Finally, the equilibrium morphology of BiOI was also proposed and provided, which is determined through the Wulff construction. These results will help us to better understand the underlying photocatalytic mechanism that is related to BiOI surfaces, and provide theoretical support for some experimental studies about BiOI-based photocatalyst in future. - Highlights: • Four low-index BiOI surfaces have been calculated by DFT method. • The relaxations of the low-index BiOI surfaces are relatively small. • There are a few surface states below the bottom of conduction band in the first layer. • The dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. • The thermodynamic

  2. Effects of silane application on the shear bond strength of ceramic orthodontic brackets to enamel surface

    Directory of Open Access Journals (Sweden)

    Pinandi Sri Pudyani

    2016-12-01

    Full Text Available Background: Fixed orthodontic appliances with ceramic brackets are used frequently to fulfill the aesthetic demand of patient through orthodontic treatment. Ceramic brackets have some weaknesses such as bond strength and enamel surface damage. In high bond strength the risk of damage in enamel surfaces increases after debonding. Purpose: This study aimed to determine the effect of silane on base of bracket and adhesive to shear bond strength and enamel structure of ceramic bracket. Method: Sixteen extracted upper premolars were randomly divided into four groups based on silane or no silane on the bracket base and on the adhesive surface. Design of the base on ceramic bracket in this research was microcrystalline to manage the influence of mechanical interlocking. Samples were tested in shear mode on a universal testing machine after attachment. Following it, adhesive remnant index (ARI scores were used to assess bond failure site. Statistical analysis was performed using a two-way Anova and the Mann-Whitney test. A scanning electron microscope (SEM with a magnification of 2000x was used to observe enamel structure after debonding. Result: Shear bond strength was increased between group without silane and group with silane on the base of bracket (p<0,05. There was no significance different between group without silane and group with silane on adhesive (p<0,05. Conclusion: Application of silane on base of bracket increases shear bond strength, however, application of silane on adhesive site does not increase shear bond strength of ceramic bracket. Most bonding failure occurred at the enamel adhesive interface and damage occurred on enamel structure in group contains silane of ceramic bracket.

  3. A peculiar bonding of sulphur at the Nb(001) surface

    Czech Academy of Sciences Publication Activity Database

    Huger, E.; Zelený, Martin; Káňa, Tomáš; Osuch, K.; Šob, Mojmír

    2008-01-01

    Roč. 83, č. 2 (2008), 26001/1-26001/6 ISSN 0295-5075 R&D Projects: GA MŠk OC 147; GA AV ČR IAA1041302; GA ČR GD106/05/H008 Institutional research plan: CEZ:AV0Z20410507 Keywords : Electron spectroscopy * Chemisorption/physisorption * Surface electronic density of states Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.203, year: 2008

  4. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  5. Surface topography and bond strengths of feldspathic porcelain prepared using various sandblasting pressures.

    Science.gov (United States)

    Moravej-Salehi, Elham; Moravej-Salehi, Elahe; Valian, Azam

    2016-11-01

    The purpose of this study was to determine the bond strength of composite resin to feldspathic porcelain and its surface topography after sandblasting at different pressures. In this in vitro study, 68 porcelain disks were fabricated and randomly divided into four groups of 17. The porcelain surface in group 1 was etched with hydrofluoric acid. Groups 2, 3, and 4 were sandblasted at 2, 3 and 4 bars pressure, respectively. Surface topography of seven samples in each of the four groups was examined by a scanning electron microscope (SEM). The remaining 40 samples received the same silane agent, bonding agent, and composite resin and they were then subjected to 5000 thermal cycles and evaluated for shear bond strength. Data were analyzed using one-way anova. The mode of failure was determined using stereomicroscope and SEM. The highest shear bond strength was seen in group 4. however, statistically significant differences were not seen between the groups (P = 0.780). The most common mode of failure was cohesive in porcelain. The SEM showed different patterns of hydrofluoric acid etching and sandblasting. Increasing the sandblasting pressure increased the surface roughness of feldspathic porcelain but no difference in bond strength occurred. © 2015 Wiley Publishing Asia Pty Ltd.

  6. Developments of a bonding technique for optical materials by a surface activation method

    International Nuclear Information System (INIS)

    Sugiyama, Akira; Oda, Tomohiro; Abe, Tomoyuki; Kusunoki, Isao

    2007-01-01

    We have been developing a pair of sample holder used for optics in the surface activation bonding equipment. The holder can adjust the relative position of samples in the order of sub mm. To study the degree of dislocation appearing crystal surface activated by a fast atomic beam, irradiated sapphire crystals were examined by RBS, XPS, and AFM analysis. The heat treatment recovered the surface roughness of irradiated sapphire when the heating temperature reached at 1573 K. (author)

  7. Repair bond strength of composite resin to sandblasted and laser irradiated Y-TZP ceramic surfaces.

    Science.gov (United States)

    Kirmali, Omer; Barutcigil, Çağatay; Ozarslan, Mehmet Mustafa; Barutcigil, Kubilay; Harorlı, Osman Tolga

    2015-01-01

    This study investigated the effects of different surface treatments on the repair bond strength of yttrium-stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP) zirconia to a composite resin. Sixty Y-TZP zirconia specimens were prepared and randomly divided into six groups (n = 10) as follows: Group 1, surface grinding with Cimara grinding bur (control); Group 2, sandblasted with 30 µm silica-coated alumina particles; Group 3, Nd:YAG laser irradiation; Group 4, Er,Cr:YSGG laser irradiation; Group 5, sandblasted + Nd:YAG laser irradiation; and Group 6, sandblasted + Er,Cr:YSGG laser irradiation. After surface treatments, the Cimara(®) System was selected for the repair method and applied to all specimens. A composite resin was built-up on each zirconia surface using a cylindrical mold (5 × 3 mm) and incrementally filled. The repair bond strength was measured with a universal test machine. Data were analyzed using a one-way ANOVA and a Tukey HSD test (p = 0.05). Surface topography after treatments were evaluated by a scanning electron microscope (SEM). Shear bond strength mean values ranged from 15.896 to 18.875 MPa. There was a statistically significant difference between group 3 and the control group (p < 0.05). Also, a significant increase in bond strength values was noted in group 6 (p < 0.05). All surface treatment methods enhanced the repair bond strength of the composite to zirconia; however, there were no significant differences between treatment methods. The results revealed that Nd:YAG laser irradiation along with the combination of sandblasting and Er,Cr:YSGG laser irradiation provided a significant increase in bond strength between the zirconia and composite resin. © Wiley Periodicals, Inc.

  8. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    Science.gov (United States)

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  9. Bonding of Metal Orthodontic Attachments to Sandblasted Porcelain and Zirconia Surfaces

    Directory of Open Access Journals (Sweden)

    Amitoj S. Mehta

    2016-01-01

    Full Text Available This study evaluates tensile bond strength (TBS of metal orthodontic attachments to sandblasted feldspathic porcelain and zirconia with various bonding protocols. Thirty-six (36 feldspathic and 36 zirconia disc samples were prepared, glazed, embedded in acrylic blocks and sandblasted, and divided into three groups according to one or more of the following treatments: hydrofluoric acid 4% (HF, Porcelain Conditioner silane primer, Reliance Assure® primer, Reliance Assure plus® primer, and Z Prime™ plus zirconia primer. A round traction hook was bonded to each sample. Static tensile bond strength tests were performed in a universal testing machine and adhesive remnant index (ARI scoring was done using a digital camera. One-way ANOVA and Pearson chi-square tests were used to analyze TBS (MPa and ARI scores. No statistically significant mean differences were found in TBS among the different bonding protocols for feldspathic and zirconia, p values = 0.369 and 0.944, respectively. No statistically significant distribution of ARI scores was found among the levels of feldspathic, p value = 0.569. However, statistically significant distribution of ARI scores was found among the levels of zirconia, p value = 0.026. The study concluded that silanization following sandblasting resulted in tensile bond strengths comparable to other bonding protocols for feldspathic and zirconia surface.

  10. A numerical study of the quantum oscillations in multiple dangling rings

    International Nuclear Information System (INIS)

    Gu, B.Y.; Basu, C.

    1994-12-01

    We present the quantum mechanical calculations on magnetoconductance of the quantum waveguide topology containing multiply connected dangling mesoscopic rings with the transfer matrix approach. The profiles of the conductance as functions of the Fermi wave number of electrons and of the magnetic flux depend on the number of rings as also on the geometric configuration of the system. The conductance spectrum of this system for disordered lengths in the ring circumferences, dangling links, ballistic leads connecting consecutive dangling rings and disordered magnetic flux is examined in details. We find that there exist two kinds of mini-bands, one originating from the eigenstates of the rings, i.e. the intrinsic mini-bands, and the extra mini-bands. Some of these extra minibands are associated with the dangling links connecting the rings to the main quantum wire, while others are from the standing wave modes associated with the ballistic leads connecting adjacent dangling rings. These different kinds of mini-bands have completely different properties and responds differently to the geometric parameter fluctuations. Unlike the system of potential scatterers, this system of geometric scatterers shows complete band formations at all energies even for finite number of scatterers present. There is a preferential decay of the energy states, depending upon the type of disorder introduced. By controlling the geometric parameters, the conductance band structure of such a model can be artificially tailored and thus may guide the design of better mesoscopic switching devices. (author). 19 refs, 7 figs

  11. The effect of dentine surface preparation and reduced application time of adhesive on bonding strength.

    Science.gov (United States)

    Saikaew, Pipop; Chowdhury, A F M Almas; Fukuyama, Mai; Kakuda, Shinichi; Carvalho, Ricardo M; Sano, Hidehiko

    2016-04-01

    This study evaluated the effects of surface preparation and the application time of adhesives on the resin-dentine bond strengths with universal adhesives. Sixty molars were cut to exposed mid-coronal dentine and divided into 12 groups (n=5) based on three factors; (1) adhesive: G-Premio Bond (GP, GC Corp., Tokyo, Japan), Clearfil Universal Bond (CU, Kuraray Noritake Dental Inc., Okayama, Japan) and Scotchbond Universal Adhesive (SB, 3M ESPE, St. Paul, MN, USA); (2) smear layer preparation: SiC paper ground dentine or bur-cut dentine; (3) application time: shortened time or as manufacturer's instruction. Fifteen resin-dentine sticks per group were processed for microtensile bond strength test (μTBS) according to non-trimming technique (1mm(2)) after storage in distilled water (37 °C) for 24h. Data were analyzed by three-way ANOVA and Dunnett T3 tests (α=0.05). Fractured surfaces were observed under scanning electron microscope (SEM). Another 12 teeth were prepared and cut into slices for SEM examination of bonded interfaces. μTBS were higher when bonded to SiC-ground dentine according to manufacturer's instruction. Bonding to bur-cut dentine resulted in significantly lower μTBS (padhesive resin interface. This was more pronounced when adhesives were bonded with a reduced application time and on bur cut dentine. The performance of universal adhesives can be compromised on bur cut dentine and when applied with a reduced application time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dimensional accuracy and surface property of titanium casting using gypsum-bonded alumina investment.

    Science.gov (United States)

    Yan, Min; Takahashi, Hidekazu; Nishimura, Fumio

    2004-12-01

    The aim of the present study was to evaluate the dimensional accuracy and surface property of titanium casting obtained using a gypsum-bonded alumina investment. The experimental gypsum-bonded alumina investment with 20 mass% gypsum content mixed with 2 mass% potassium sulfate was used for five cp titanium castings and three Cu-Zn alloy castings. The accuracy, surface roughness (Ra), and reaction layer thickness of these castings were investigated. The accuracy of the castings obtained from the experimental investment ranged from -0.04 to 0.23%, while surface roughness (Ra) ranged from 7.6 to 10.3microm. A reaction layer of about 150 microm thickness under the titanium casting surface was observed. These results suggested that the titanium casting obtained using the experimental investment was acceptable. Although the reaction layer was thin, surface roughness should be improved.

  13. Water's Interfacial Hydrogen Bonding Structure Reveals the Effective Strength of Surface-Water Interactions.

    Science.gov (United States)

    Shin, Sucheol; Willard, Adam P

    2018-06-05

    We combine all-atom molecular dynamics simulations with a mean field model of interfacial hydrogen bonding to analyze the effect of surface-water interactions on the structural and energetic properties of the liquid water interface. We show that the molecular structure of water at a weakly interacting ( i.e., hydrophobic) surface is resistant to change unless the strength of surface-water interactions are above a certain threshold. We find that below this threshold water's interfacial structure is homogeneous and insensitive to the details of the disordered surface, however, above this threshold water's interfacial structure is heterogeneous. Despite this heterogeneity, we demonstrate that the equilibrium distribution of molecular orientations can be used to quantify the energetic component of the surface-water interactions that contribute specifically to modifying the interfacial hydrogen bonding network. We identify this specific energetic component as a new measure of hydrophilicity, which we refer to as the intrinsic hydropathy.

  14. Porcelain surface alterations and refinishing after use of two orthodontic bonding methods.

    Science.gov (United States)

    Herion, Drew T; Ferracane, Jack L; Covell, David A

    2010-01-01

    To compare porcelain surfaces at debonding after use of two surface preparation methods and to evaluate a method for restoring the surface. Lava Ceram feldspathic porcelain discs (n = 40) underwent one of two surface treatments prior to bonding orthodontic brackets. Half the discs had sandblasting, hydrofluoric acid, and silane (SB + HF + S), and the other half, phosphoric acid and silane (PA + S). Brackets were debonded using bracket removing pliers, and resin was removed with a 12-fluted carbide bur. The surface was refinished using a porcelain polishing kit, followed by diamond polishing paste. Measurements for surface roughness (Ra), gloss, and color were made before bonding (baseline), after debonding, and after each step of refinishing. Surfaces were also examined by scanning electron microscopy (SEM). Data was analyzed with 2-way ANOVA followed by Tukey HSD tests (alpha = 0.05). The SB + HF + S bonding method increased Ra (0.160 to 1.121 microm), decreased gloss (41.3 to 3.7) and altered color (DeltaE = 4.37; P gloss (41.7 to 38.0) and color (DeltaE = 0.50). The measurements and SEM observations showed that changes were fully restored to baseline with refinishing. The PA + S method caused significantly less damage to porcelain than the SB + HF + S method. The refinishing protocol fully restored the porcelain surfaces.

  15. First principles calculations for the cleaved and annealed Ge(111) surfaces

    International Nuclear Information System (INIS)

    Takeuchi, N.; Tosatti, E.; Selloni, A.

    1992-11-01

    We use ab initio Molecular Dynamics to study the structural and electronic properties of cleaved and annealed Ge(111) surfaces. New features emerge for both structures. For the (2x1) it is found that even though the stable state has a π-bonded chain structure, there are two isomers with the tilt angle of the chain in opposite directions. For the c(2x8) we find an asymmetry in the surface unit cell, in agreement with LEED experiments that show weak quarter-order spots. This inequivalence also produces a splitting of the rest atom and adatom dangling bond, which explains recent STM experiments. (author). 15 refs, 3 figs

  16. Shear-bond-strength of orthodontic brackets to aged nano-hybrid composite-resin surfaces using different surface preparation.

    Science.gov (United States)

    Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-01-01

    The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (porthodontic metal brackets to nano-hybrid composite resin surfaces.

  17. Influence of surface treatment on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Ione Helena Vieira Portella Brunharo

    2013-06-01

    Full Text Available INTRODUCTION: The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. METHODS: Two hundred and eighty test samples were divided into 28 groups (n = 10, where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. RESULTS: Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27±2.78; burs 9.26±3.01; stone 7.95±3.67; aluminum oxide blasting 7.04±3.21; phosphoric acid 5.82±1.90; hydrofluoric acid 4.54±2.87, and without treatment 2.75±1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83, burs (0.98 and stone drilling (0.46. CONCLUSION: The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  18. Influence of surface treatment on shear bond strength of orthodontic brackets.

    Science.gov (United States)

    Brunharo, Ione Helena Vieira Portella; Fernandes, Daniel Jogaib; de Miranda, Mauro Sayão; Artese, Flavia

    2013-01-01

    The shear bond strength of orthodontic brackets bonded to micro-hybrid and micro-particulate resins under different surface treatment methods was assessed. Two hundred and eighty test samples were divided into 28 groups (n = 10), where 140 specimens were filled with Durafill micro-particulate resin and 140 with Charisma composite. In 140 samples, a coupling agent (silane) was applied. The surface treatment methods were: Phosphoric and hydrofluoric acid etching, sodium bicarbonate and aluminum oxide blasting, stone and burs. A Universal Instron Machine was used to apply an occlusal shear force directly to the resin composite bracket surface at a speed of 0.5 mm/min. The means were compared using analysis of variance and multivariate regression to assess the interaction between composites and surface treatment methods. Means and standard deviations for the groups were: Sodium bicarbonate jet 11.27 ± 2.78; burs 9.26 ± 3.01; stone 7.95 ± 3.67; aluminum oxide blasting 7.04 ± 3.21; phosphoric acid 5.82 ± 1.90; hydrofluoric acid 4.54 ± 2.87, and without treatment 2.75 ± 1.49. An increase of 1.94 MPa in shear bond strength was seen in Charisma groups. Silane agent application reduced the Charisma shear bond strength by 0.68 Mpa, but increased Durafill means for bicarbonate blasting (0.83), burs (0.98) and stone drilling (0.46). The sodium bicarbonate blasting, burs and stone drilling methods produced adequate shear bond strength and may be suitable for clinical use. The Charisma micro hybrid resin composite showed higher shear bond means than Durafill micro particle composite.

  19. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-01-01

    of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser

  20. Effect of surface treatment of titanium posts on the tensile bond strength

    NARCIS (Netherlands)

    Schmage, P; Sohn, J; Ozcan, M; Nergiz, [No Value

    Objectives. Retention of composite resins to metal can be improved when metal surfaces are conditioned. The purpose of this investigation was to investigate the effect of two conditioning treatments on the tensile bond strength of four resin-based luting cements and zinc phosphate cement to titanium

  1. Bond strength of resin-resin interfaces contaminated with saliva and submitted to different surface treatments

    DEFF Research Database (Denmark)

    Furuse, Adilson Yoshio; da Cunha, Leonardo Fernandes; Benetti, Ana Raquel

    2007-01-01

    of silane and adhesive system. Resin cylinders were placed over the treated surfaces. The specimens were stored in water or ethanol. Shear bond strength tests were performed and the mode of failure was evaluated. Data were submitted to two-way ANOVA and Dunnett T3 test. Contamination of resin...

  2. Influence of different surface treatments on push‑out bond strengths ...

    African Journals Online (AJOL)

    2015-06-26

    Jun 26, 2015 ... perpendicularly along the long axis of the post using a saw. Two disks ... Arslan, et al.: Effect of laser on bond ... Untreated fiber posts have a comparatively smooth surface area that .... Soares CJ, Valdivia AD, da Silva GR, Santana FR, Menezes Mde S. Longitudinal ... Dent Mater 2006;22:752‑8. 7. Ferrari M ...

  3. UV created weak and dangling bonds in aryl-substituted polysilylenes

    Czech Academy of Sciences Publication Activity Database

    Schauer, F.; Kuřitka, I.; Sáha, P.; Nešpůrek, Stanislav; Lipson, S.

    2006-01-01

    Roč. 352, 9-20 (2006), s. 1679-1682 ISSN 0022-3093. [International Conference on Amorphous and Nanocrystalline Semiconductors /21./. Lisbon, 4.9.2005-9.9.2005] Grant - others:GA MŠk(CZ) 1P05ME734; GA MŠk(CZ) 1P05ME729 Program:1P Institutional research plan: CEZ:AV0Z40500505 Keywords : polymers and organics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.362, year: 2006

  4. Spectroscopic features of dimer and dangling bond E' centres in amorphous silica

    International Nuclear Information System (INIS)

    Mukhopadhyay, Sanghamitra; Sushko, Peter V; Mashkov, Vladimir A; Shluger, Alexander L

    2005-01-01

    We performed first-principle embedded cluster calculations of the hyperfine parameters, g-tensors and optical excitation energies for the dimer and back-projected configurations of the E' centre in amorphous silica. The optical transition energies of these defects are calculated for the first time. We predict a strong optical transition at about 6.3 eV for the dimer configuration and a relatively weak transition at 5.6 eV for the back-projected configuration of the E' centre. These predictions could be used for further experimental identification of these centres. Our results support the dimer model of the E' δ centre, and for the first time provide a full range of spectroscopic parameters for the back-projected configuration of the E' centre in amorphous silica

  5. Exchange coupled pairs of dangling bond spins as a new type of paramagnetic defects in nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Osipov, V. Yu., E-mail: osipov@mail.ioffe.r [Ioffe Physico-Technical Institute, Polytechnicheskaya 26, 194021 St. Petersburg (Russian Federation); Faculty of Electronics, St. Petersburg State Electrotechnical University (LETI), 197376 (Russian Federation); Shames, A.I. [Department of Physics, Ben-Gurion University of the Negev, 84105 Be' er-Sheva (Israel); Vul' , A. Ya. [Ioffe Physico-Technical Institute, Polytechnicheskaya 26, 194021 St. Petersburg (Russian Federation)

    2009-12-15

    EPR in detonation nanodiamonds (DND) reveals two different signals associated with intrinsic carbon inherited paramagnetic defects. Main carbon inherited EPR signal is narrow intensive Lorentzian-like singlet with g=2.0028 and spin concentration N{sub s}=(6-7)x10{sup 19} spin/g that yields on average 13-15 spins per each DND particle. Additional chemical treatment of DND powder allows practically complete removal of trace amounts of transition metal impurities that reveals a new doublet EPR signal consisting of two relatively narrow lines within the half-field region (gapprox4) separated by a distance of 10.4 mT. The intensity of the doublet signal is five orders of magnitude lower than that of the main singlet signal. The former signal has been observed in a wide variety of DND samples disregarding of the impurity level reached and thus may be attributed to some intrinsic defects in DND particles. Such half-field EPR signals correspond to 'forbidden' DELTAM{sub s}=2 transitions within thermally populated triplet (S=1) levels observed in polycrystalline samples containing exchange dimers-antiferromagnetically coupled spin pairs. Estimates suggest that the concentration of such defects is about one dimer per hundreds DND particles.

  6. On analogy between surface fracture energy and activaiton energy of bonding in solid phase

    International Nuclear Information System (INIS)

    Shatinsky, V.F.; Kopylov, V.I.

    1976-01-01

    This article makes an attempt on the basis of experimental data to compare the processes of failure and formation of a bond by comparing the energy consumptions going in one case or another into initial plastic deformation of a certain volume and the further interatomic interaction at the boundary (separation, formation of the bond). Two values characterizing the different processes - the unit failure energy γ and the activation energy for the formation of a bond Q - are compared. It has been established that the energy consumed for plastic deformation and adhesion interaction of atoms on the surface of microprojections and providing the formation of a bond in the solid-phase condition is close to the specific failure energy. The equality of energies consumed for the formation of a bond and failure allows to make use of any of those characteristics to calculate parameters of processes of the formation of a bond and failure. It seems to be convenient in the analysis of the failure process at a temperature when the ductility is high and methodically, the crack propagation is hard to investigate, in particular to estimate the volume of the preliminary failure zone. Having determined γ from the contact interaction data, the strength characteristics can be evaluated. (author)

  7. Surface Defect Passivation and Reaction of c-Si in H2S.

    Science.gov (United States)

    Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W

    2017-12-26

    A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.

  8. Efficient detection of dangling pointer error for C/C++ programs

    Science.gov (United States)

    Zhang, Wenzhe

    2017-08-01

    Dangling pointer error is pervasive in C/C++ programs and it is very hard to detect. This paper introduces an efficient detector to detect dangling pointer error in C/C++ programs. By selectively leave some memory accesses unmonitored, our method could reduce the memory monitoring overhead and thus achieves better performance over previous methods. Experiments show that our method could achieve an average speed up of 9% over previous compiler instrumentation based method and more than 50% over previous page protection based method.

  9. The Effect of Nylon and Polyester Peel Ply Surface Preparation on the Bond Quality of Composite Laminates

    Science.gov (United States)

    Moench, Molly K.

    The preparation of the surfaces to be bonded is critical to the success of composite bonds. Peel ply surface preparation is attractive from a manufacturing and quality assurance standpoint, but is a well known example of the extremely system-specific nature of composite bonds. This study examined the role of the surface energy, morphology, and chemistry left by peel ply removal in resulting bond quality. It also evaluated the use of contact angle surface energy measurement techniques for predicting the resulting bond quality of a prepared surface. The surfaces created by preparing three aerospace fiber-reinforced composite prepregs were compared when prepared with a nylon vs a polyester peel ply. The prepared surfaces were characterized with contact angle measurements with multiple fluids, scanning electron microscopy (SEM), and x-ray electron spectroscopy. The laminates were bonded with aerospace grade film adhesives. Bond quality was assessed via double cantilever beam testing followed by optical and scanning electron microscopy of the fracture surfaces.The division was clear between strong bonds (GIC of 600- 1000J/m2 and failure in cohesion) and weak bonds (GIC of 80-400J/m2 and failure in adhesion). All prepared laminates showed the imprint of the peel ply texture and evidence of peel ply remnants after fabric removal, either through SEM or XPS. Within an adhesive system, large amounts of SEM-visible peel ply material transfer correlated with poor bond quality and cleaner surfaces with higher bond quality. The both sides of failed weak bonds showed evidence of peel ply remnants under XPS, showing that at least some failure is occurring through the remnants. The choice of adhesive was found to be significant. AF 555 adhesive was more tolerant of peel ply contamination than MB 1515-3. Although the bond quality results varied substantially between tested combinations, the total surface energies of all prepared surfaces were very similar. Single fluid contact angle

  10. A study of laser surface treatment in bonded repair of composite aircraft structures.

    Science.gov (United States)

    Li, Shaolong; Sun, Ting; Liu, Chang; Yang, Wenfeng; Tang, Qingru

    2018-03-01

    Surface pre-treatment is one of the key processes in bonded repair of aircraft carbon fibre reinforced polymer composites. This paper investigates the surface modification of physical and chemical properties by laser ablation and conventional polish treatment techniques. Surface morphology analysed by laser scanning confocal microscopy and scanning electron microscopy showed that a laser-treated surface displayed higher roughness than that of a polish-treated specimen. The laser-treated laminate exhibited more functional groups in the form of O 1 s/C 1 s atomic ratio of 30.89% for laser-treated and 20.14% for polish-treated as evidenced by X-ray photoelectron spectroscopy observation. Contact angle goniometry demonstrated that laser treatment can provide increased surface free energy and wettability. In the light of mechanical interlocking, molecular bonding and thermodynamics theories on adhesion, laser etching process displayed enhanced bonding performance relative to the polishing surface treatment. These properties resulted in an increased single lap shear strength and a cohesive failure mode for laser etching while an adhesive failure mode occurred in polish-treated specimen.

  11. Bond strength of resin-resin interfaces contaminated with saliva and submitted to different surface treatments

    Directory of Open Access Journals (Sweden)

    Adilson Yoshio Furuse

    2007-12-01

    Full Text Available The purpose of this study was to investigate the effect of different surface treatments on shear bond strength of saliva-contaminated resin-resin interfaces. Flat resin surfaces were fabricated. In the control group, no contamination or surface treatment was performed. The resin surfaces of the experimental groups were contaminated with saliva and air-dried, and then submitted to: (G1 rinsing with water and drying; (G2 application of an adhesive system; (G3 rinsing and drying, abrasion with finishing disks, etching and application of adhesive system; (G4 rinsing and drying, etching, application of silane and adhesive system. Resin cylinders were placed over the treated surfaces. The specimens were stored in water or ethanol. Shear bond strength tests were performed and the mode of failure was evaluated. Data were submitted to two-way ANOVA and Dunnett T3 test. Contamination of resin-resin interfaces with saliva significantly reduced shear strength, especially after prolonged storage (p<0.05. Similar values to the original bond strength were obtained after abrasion and application of adhesive (G3 or etching and application of silane and adhesive (G4. If contamination occurs, a surface treatment is required to guarantee an adequate interaction between the resin increments.

  12. Effect of surface treatment of prefabricated posts on bonding of resin cement

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeld, Anne; Asmussen, Erik

    2004-01-01

    This in vitro study evaluated the effect of various surface treatments of prefabricated posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White) and zirconia (Cerapost) on the bonding of two resin cements: ParaPost Cement and Panavia F by a diametral tensile strength (DTS) test...... the start of mixing the resin cement, the specimen was freed from the mold and stored in water at 37 degrees C for seven days. Following water storage, the specimen was wet-ground to a final length of approximately 3 mm. The DTS of specimens was determined in a Universal Testing Machine. The bonding...

  13. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    Science.gov (United States)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.

  14. Bonding of the Polymer Polyetheretherketone (PEEK) to Human Dentin: Effect of Surface Treatments.

    Science.gov (United States)

    Rocha, Regina Furbino Villefort; Anami, Lilian Costa; Campos, Tiago Moreira Bastos; Melo, Renata Marques de; Souza, Rodrigo Othávio de Assunção E; Bottino, Marco Antonio

    2016-01-01

    Polyetheretherketone (PEEK) is a material suitable for frameworks of fixed dental prostheses. The effect of different surface treatments on the bond strength of PEEK bonded to human dentin was evaluated. One hundred PEEK cylinders (3 mm×3 mm) were divided into five groups according to surface treatment: silica coating, sandblasting with 45 μm Al2O3 particles, etching with 98% sulfuric acid for 5, 30 and for 60 s. These cylinders were luted with resin cement onto 50 human molars. First, each tooth was embedded in epoxy resin and the buccal dentin surface was exposed. Then, two delimited dentin areas (Æ:3 mm) per tooth were etched with 35% phosphoric acid and bonded with a two-step self-priming adhesive system. After the luting procedure the specimens were stored in water (24 h/37 °C). Shear bond strength (SBS) was tested using a universal testing machine (crosshead speed 0.5 mm/min; load cell 50 kgf) and failure types were assessed. Stress data (MPa) were analyzed using the Kruskal-Wallis test. Comparison of the proportions of different failure types was performed using the Bonferroni method (pPEEK, resin cement and dentin.

  15. Effect of surface treatment of FRC-Post on bonding strength to resin cements

    Directory of Open Access Journals (Sweden)

    Chan-Hyun Park,

    2011-03-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of surface treatment of FRC-Post on bonding strength to resin cements. Materials and Methods Pre-surface treated LuxaPost (DMG, Rely-X Fiber Post (3M ESPE and self adhesive resin cement Rely-X Unicem (3M ESPE, conventional resin cement Rely-X ARC (3M ESPE, and Rely-X Ceramic Primer (3M ESPE were used. After completing the surface treatments of the posts, posts and resin cement were placed in clear molds and photo-activation was performed. The specimens were sectioned perpendicular to the FRC-Post into 2 mm-thick segments, and push-out strength were measured. The results of bond strength value were statistically analyzed using independent samples t-test and one-way ANOVA with multiple comparisons using Scheffe's test. Results Silanization of posts affect to the bond strength in LuxaPost, and did not affect in Rely-X Fiber Post. Rely-X ARC showed higher value than Rely-X Unicem. Conclusions Silanization is needed to enhance the bond strength between LuxaPost and resin cements.

  16. The effect of different surface treatments of stainless steel crown and different bonding agents on shear bond strength of direct composite resin veneer

    Directory of Open Access Journals (Sweden)

    Ajami B

    2007-01-01

    Full Text Available Background and Aim: Stainless steel crown (SSC is the most durable and reliable restoration for primary teeth with extensive caries but its metalic appearance has always been a matter of concern. With advances in restorative materials and metal bonding processes, composite veneer has enhanced esthetics of these crowns in clinic. The aim of this study was to evaluate the shear bond strength of SSC to composite resin using different surface treatments and adhesives. Materials and Methods: In this experimental study, 90 stainless steel crowns were selected. They were mounted in molds and divided into 3 groups of 30 each (S, E and F. In group S (sandblast, buccal surfaces were sandblasted for 5 seconds. In group E (etch acidic gel was applied for 5 minutes and in group F (fissure bur surface roughness was created by fissure diamond bur. Each group was divided into 3 subgroups (SB, AB, P based on different adhesives: Single Bond, All Bond2 and Panavia F. Composite was then bonded to specimens. Cases were incubated in 100% humidity at 37°C for 24 hours. Shear bond strength was measured by Zwick machine with crosshead speed of 0.5 mm/min. Data were analyzed by ANOVA test with p0.05 so the two variables were studied separately. No significant difference was observed in mean shear bond strength of composite among the three kinds of adhesives (P>0.05. Similar results were obtained regarding surface treatments (P>0.05. Conclusion: Based on the results of this study, treating the SSC surface with bur and using single bond adhesive and composite can be used successfully to obtain esthetic results in pediatric restorative treatments.

  17. Polaron-Driven Surface Reconstructions

    Directory of Open Access Journals (Sweden)

    Michele Reticcioli

    2017-09-01

    Full Text Available Geometric and electronic surface reconstructions determine the physical and chemical properties of surfaces and, consequently, their functionality in applications. The reconstruction of a surface minimizes its surface free energy in otherwise thermodynamically unstable situations, typically caused by dangling bonds, lattice stress, or a divergent surface potential, and it is achieved by a cooperative modification of the atomic and electronic structure. Here, we combined first-principles calculations and surface techniques (scanning tunneling microscopy, non-contact atomic force microscopy, scanning tunneling spectroscopy to report that the repulsion between negatively charged polaronic quasiparticles, formed by the interaction between excess electrons and the lattice phonon field, plays a key role in surface reconstructions. As a paradigmatic example, we explain the (1×1 to (1×2 transition in rutile TiO_{2}(110.

  18. Effect of Four Methods of Surface Treatment on Shear Bond Strength of Orthodontic Brackets to Zirconium

    Directory of Open Access Journals (Sweden)

    Soghra Yassaei

    2015-10-01

    Full Text Available Objectives: Providing reliable attachment between bracket base and zirconia surface is a prerequisite for exertion of orthodontic force. The purpose of the present study was to eval- uate the effect of four zirconium surface treatment methods on shear bond strength (SBS of orthodontic brackets.Materials and Methods: One block of zirconium was trimmed into four zirconium sur- faces, which served as our four study groups and each had 18 metal brackets bonded to them. Once the glazed layer was removed, the first group was etched with 9.6% hydrofluoric acid (HF, and the other three groups were prepared by means of sandblasting and 1 W, and 2 W Er: YAG laser, respectively. After application of silane, central incisor brackets were bonded to the zirconium surfaces. The SBS values were measured by a Dartec testing ma- chine with a crosshead speed of 1 mm/min.Results: The highest SBS was achieved in the sandblasted group (7.81±1.02 MPa followed in a descending order by 2 W laser group (6.95±0.87 MPa, 1 W laser group (6.87±0.92MPa and HF acid etched group (5.84±0.78 MPa. The differences between the study groups, were statistically significant except between the laser groups (P < 0.05. Conclusion: In terms of higher bond strength and safety, sandblasting and Er: YAG laser irradiation with power output of 1 W and 2 W can be considered more appropriate alterna- tives to HF acid etching for zirconium surface treatment prior to bracket bonding.

  19. Novel alternating polymer adsorption/surface activation self-assembled film based on hydrogen bond

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yongjun; Yang Shuguang; Guan Ying; Miao Xiaopeng; Cao Weixiao; Xu Jian

    2003-08-01

    By combining hydrogen bonding layer-by-layer self-assembly and the stepwise chemisorption method, a new alternating polymer adsorption/surface activation self-assembly method was developed. First a layer of diphenylamine-4-diazonium-formaldehyde resin (diazo resin or DR) is deposited on a substrate. In the following surface activation step, the diazonium groups on the surface couple with resorcin in the outside solution. The deposition of another layer of DR is feasible due to the formation of hydrogen bond between the diazonium group of DR and the hydroxy group of the resorcin moieties. The resulting film is photosensitive. After UV irradiation, the film becomes very stable towards polar organic solvents.

  20. Influencing the bonding and assembly of a multiterminal molecule on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, Maya; Doessel, Kerrin; Fink, Karin; Fuhr, Olaf [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); Schramm, Alexandrina; Stroh, Christophe [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); Mayor, Marcel [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); University of Basel, Department of Chemistry, CH-4056 Basel (Switzerland); Loehneysen, Hilbert von [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, D-76021 Karlsruhe (Germany); DFG Center of Functional Nanostructures (CFN), D-76049 Karlsruhe (Germany); Karlsruhe Institute of Technology (KIT), Physics Institute and Institute for Solid State Physics, D-76049 Karlsruhe (Germany)

    2011-07-01

    The bond of a molecule to a metallic electrode is known to have a crucial influence on the molecular conductance. As electronic functionalities are integrated into molecules or several subunits are connected to a three-dimensional multiterminal molecule, it is not obvious that a ''well-known'' chemical linker group will lead to the bonding configuration known from simpler molecules. We investigated a series of tripodal molecules on metal surfaces by STM. The chemical linker groups and the complex connecting the three wire-units are varied. We find that the position of molecules on the surface is governed by a subtle balance of intermolecular and molecule-surface interactions, partly in strong contrast to expectations. This emphasizes the need to characterize the nature of molecule-electrode contacts along with the investigation of the electronic conductance.

  1. Influence of ultraviolet irradiation treatment on porcelain bond strength of titanium surfaces.

    Science.gov (United States)

    Kumasaka, Tomonari; Ohno, Akinori; Hori, Norio; Hoshi, Noriyuki; Maruo, Katsuichiro; Kuwabara, Atsushi; Seimiya, Kazuhide; Toyoda, Minoru; Kimoto, Katsuhiko

    2018-01-26

    To determine the effect of titanium (Ti) surface modification by ultraviolet irradiation (UVI) on the bond strength between Ti and porcelain. Grade 2 Ti plates were allotted to five groups: sandblasted (SA), 15 min UVI (UV), SA+5 min UVI (SA+UV5), SA+10 min UVI (SA+UV10), and SA+15 min UVI (SA+UV15). After surface treatment, porcelain was added. A precious metal (MC) was used for comparison with Ti. The effects of 24-h storage at room temperature versus thermal cycling only at 5 and 55°C in water were evaluated. Subsequently, the tensile strength of each sample was tested. Data were analyzed using one-way analysis of variance and the Tukey test. In both the room temperature and thermal cycling groups, the MC and SA+15 min UVI samples showed significantly greater bond strengths than the other samples (pbond strength between porcelain and the Ti surface.

  2. Surface/subsurface observation and removal mechanisms of ground reaction bonded silicon carbide

    Science.gov (United States)

    Yao, Wang; Zhang, Yu-Min; Han, Jie-cai; Zhang, Yun-long; Zhang, Jian-han; Zhou, Yu-feng; Han, Yuan-yuan

    2006-01-01

    Reaction Bonded Silicon Carbide (RBSiC) has long been recognized as a promising material for optical applications because of its unique combination of favorable properties and low-cost fabrication. Grinding of silicon carbide is difficult because of its high hardness and brittleness. Grinding often induces surface and subsurface damage, residual stress and other types of damage, which have great influence on the ceramic components for optical application. In this paper, surface integrity, subsurface damage and material removal mechanisms of RBSiC ground using diamond grinding wheel on creep-feed surface grinding machine are investigated. The surface and subsurface are studied with scanning electron microscopy (SEM) and optical microscopy. The effects of grinding conditions on surface and subsurface damage are discussed. This research links the surface roughness, surface and subsurface cracks to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grind induced damage on grinding conditions.

  3. Development of a classical force field for the oxidized Si surface: application to hydrophilic wafer bonding.

    Science.gov (United States)

    Cole, Daniel J; Payne, Mike C; Csányi, Gábor; Spearing, S Mark; Colombi Ciacchi, Lucio

    2007-11-28

    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidized Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO(2) polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress, and interactions with single water molecules of a natively oxidized Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidized and amorphous silica surfaces of 97 and 90 mJm(2), respectively, at a water adsorption coverage of approximately 1 ML. The difference arises from the stronger interaction of the natively oxidized surface with liquid water, resulting in a higher heat of immersion (203 vs 166 mJm(2)), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller densities with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account.

  4. Excuse me, your participle's dangling how to use grammar to make your writing powers soar

    CERN Document Server

    DePino, Catherine

    2013-01-01

    Excuse Me, Your Participle's Dangling will give you all the bare essentials of grammar that you need to write like a pro. If you're a businessperson, college student, or ESL student seeking a user-friendly grammar book that aims to make you a better writer, this book is for you!

  5. Bonding of Si wafers by surface activation method for the development of high efficiency high counting rate radiation detectors

    International Nuclear Information System (INIS)

    Kanno, Ikuo; Yamashita, Makoto; Onabe, Hideaki

    2006-01-01

    Si wafers with two different resistivities ranging over two orders of magnitude were bonded by the surface activation method. The resistivities of bonded Si wafers were measured as a function of annealing temperature. Using calculations based on a model, the interface resistivities of bonded Si wafers were estimated as a function of the measured resistivities of bonded Si wafers. With thermal treatment from 500degC to 900degC, all interfaces showed high resistivity, with behavior that was close to that of an insulator. Annealing at 1000degC decreased the interface resistivity and showed close to ideal bonding after thermal treatment at 1100degC. (author)

  6. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    Directory of Open Access Journals (Sweden)

    Fabio Lupo

    2014-11-01

    Full Text Available Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100 and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm−1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process.

  7. [Effects of different surface treatments on the zirconia-resin cement bond strength].

    Science.gov (United States)

    Liao, Y; Liu, X Q; Chen, L; Zhou, J F; Tan, J G

    2018-02-18

    To evaluate the effects of different surface treatments on the shear bond strength between zirconia and resin cement. Forty zirconia discs were randomly divided into four groups (10 discs in each group) for different surface treatments: control, no surface treatment; sandblast, applied air abrasion with aluminum oxide particles; ultraviolet (UV), the zirconia sample was placed in the UV sterilizer at the bottom of the UV lamp at 10 mm, and irradiated for 48 h; cold plasma, the discs were put in the cold plasma cabinet with the cold plasma generated from the gas of He for 30 s. Specimens of all the groups were surface treated prior to cementation with Panavia F 2.0 cement. The surface morphology and contact angle of water were measured. The shear bond strengths were tested and the failure modes were examined with a stereomicroscope. Surface morphology showed no difference between the UV/cold plasma group and the control group. Sandblasted zirconia displayed an overall heterogeneous distribution of micropores. The contact angle of the control group was 64.1°±2.0°. After sandblasting, UV irradiation and cold plasma exposure, the values significantly decreased to 48.8°±2.6°, 27.1°±3.6° and 32.0°±3.3°. The values of shear bond strength of the specimens with sandblasted (14.82±2.01) MPa were higher than those with no treatment (9.41±1.07) MPa with statistically significant difference (Pbond strength of the specimens with UV irradiation (10.02±0.64) MPa were higher than those with no treatment (9.41±1.07) MPa, but without statistically significant difference (P>0.05). The values of cold plasma group (18.34±3.05) MPa were significantly higher than those of control group (9.41±1.07) MPa, even more than those with sandblast(14.82±2.01) MPa (PUV and cold plasma treatment. The surface C/O ratio also decreased after UV and cold plasma treatment. Zirconia specimens treated with UV and cold plasma could significantly improve the hydrophilicity. The surface

  8. New Concept of C–H and C–C Bond Activation via Surface Organometallic Chemistry

    KAUST Repository

    Samantaray, Manoja

    2015-08-18

    In this chapter we describe the recent applications of well-defined oxidesupported metal alkyls/alkylidenes/alkylidynes and hydrides of group IV, V, and VI transition metals in the field of C–H and C–C bond activation. The activation of ubiquitous C–H and C–C bonds of paraffin is a long-standing challenge because of intrinsic low reactivity. There are many concepts derived from surface organometallic chemistry (SOMC): surface organometallic fragments are always intermediates in heterogeneous catalysis. The study of their synthesis and reactivity is a way to rationalize mechanism of heterogeneous catalysis and to achieve structure activity relationship. By surface organometallic chemistry one can enter any catalytic center by a reaction intermediate leading in fine to single site catalysts. With surface organometallic chemistry one can coordinate to the metal which can play a role in different elementary steps leading for example to C–H activation and Olefin metathesis. Because of the development of SOMC there is a lot of space for the improvement of homogeneous catalysis. After the 1997 discovery of alkane metathesis using silica-supported tantalum hydride by Basset et al. at low temperature (150ºC) the focus in this area was shifted to the discovery of more and more challenging surface complexes active in the application of C–H and C–C bond activation. Here we describe the evolution of well-defined metathesis catalyst with time as well as the effect of support on catalysis. We also describe here which metal–ligand combinations are responsible for a variety of C–H and C–C bond activation.

  9. Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

    KAUST Repository

    Diaz, Edwin Hernandez

    2015-06-01

    Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.

  10. Microwave plasma induced surface modification of diamond-like carbon films

    Science.gov (United States)

    Rao Polaki, Shyamala; Kumar, Niranjan; Gopala Krishna, Nanda; Madapu, Kishore; Kamruddin, Mohamed; Dash, Sitaram; Tyagi, Ashok Kumar

    2017-12-01

    Tailoring the surface of diamond-like carbon (DLC) film is technically relevant for altering the physical and chemical properties, desirable for useful applications. A physically smooth and sp3 dominated DLC film with tetrahedral coordination was prepared by plasma-enhanced chemical vapor deposition technique. The surface of the DLC film was exposed to hydrogen, oxygen and nitrogen plasma for physical and chemical modifications. The surface modification was based on the concept of adsorption-desorption of plasma species and surface entities of films. Energetic chemical species of microwave plasma are adsorbed, leading to desorbtion of the surface carbon atoms due to energy and momentum exchange. The interaction of such reactive species with DLC films enhanced the roughness, surface defects and dangling bonds of carbon atoms. Adsorbed hydrogen, oxygen and nitrogen formed a covalent network while saturating the dangling carbon bonds around the tetrahedral sp3 valency. The modified surface chemical affinity depends upon the charge carriers and electron covalency of the adsorbed atoms. The contact angle of chemically reconstructed surface increases when a water droplet interacts either through hydrogen or van dear Waals bonding. These weak interactions influenced the wetting property of the DLC surface to a great extent.

  11. Surface Reconstruction-Induced Coincidence Lattice Formation Between Two-Dimensionally Bonded Materials and a Three-Dimensionally Bonded Substrate

    NARCIS (Netherlands)

    Boschker, Jos E.; Momand, Jamo; Bragaglia, Valeria; Wang, Ruining; Perumal, Karthick; Giussani, Alessandro; Kooi, Bart J.; Riechert, Henning; Calarco, Raffaella

    Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry

  12. Surface bond contraction and its effect on the nanometric sized lead zirconate titanate

    International Nuclear Information System (INIS)

    Haitao Huang; Sun, Chang Q.; Hing, Peter

    2000-01-01

    The grain size effect of lead zirconate titanate PbZr 1-x Ti x O 3 (PZT, x≥0.6) caused by surface bond contraction has been investigated by using the Landau-Ginsburg-Devonshire (LGD) phenomenological theory. It has been shown that, due to the surface bond contraction, both the Curie temperature and the spontaneous polarization of tetragonal PZT decrease with decreasing grain size. These effects become more significant when the grain size is in the nanometre range. A dielectric anomaly appears with decreasing grain size, which corresponds to a size dependent phase transformation. The ferroelectric critical size below which a loss of ferroelectricity will happen is estimated from the results obtained. (author). Letter-to-the-editor

  13. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  14. Strength and failure analysis of composite-to-composite adhesive bonds with different surface treatments

    Science.gov (United States)

    Paranjpe, Nikhil; Alamir, Mohammed; Alonayni, Abdullah; Asmatulu, Eylem; Rahman, Muhammad M.; Asmatulu, Ramazan

    2018-03-01

    Adhesives are widely utilized materials in aviation, automotive, energy, defense, and marine industries. Adhesive joints are gradually supplanting mechanical fasteners because they are lightweight structures, thus making the assembly lighter and easier. They also act as a sealant to prevent a structural joint from galvanic corrosion and leakages. Adhesive bonds provide high joint strength because of the fact that the load is distributed uniformly on the joint surface, while in mechanical joints, the load is concentrated at one point, thus leading to stress at that point and in turn causing joint failures. This research concentrated on the analysis of bond strength and failure loads in adhesive joint of composite-to-composite surfaces. Different durations of plasma along with the detergent cleaning were conducted on the composite surfaces prior to the adhesive applications and curing processes. The joint strength of the composites increased about 34% when the surface was plasma treated for 12 minutes. It is concluded that the combination of different surface preparations, rather than only one type of surface treatment, provides an ideal joint quality for the composites.

  15. Influence of Pre-Sintered Zirconia Surface Conditioning on Shear Bond Strength to Resin Cement

    Directory of Open Access Journals (Sweden)

    Tomofumi Sawada

    2016-06-01

    Full Text Available This study analyzed the shear bond strength (SBS of resin composite on zirconia surface to which a specific conditioner was applied before sintering. After sintering of either conditioner-coated or uncoated specimens, both groups were divided into three subgroups by their respective surface modifications (n = 10 per group: no further treatment; etched with hydrofluoric acid; and sandblasted with 50 µm Al2O3 particles. Surfaces were characterized by measuring different surface roughness parameters (e.g., Ra and Rmax and water contact angles. Half of the specimens underwent thermocycling (10,000 cycles, 5–55 °C after self-adhesive resin cement build-up. The SBSs were measured using a universal testing machine, and the failure modes were analyzed by microscopy. Data were analyzed by nonparametric and parametric tests followed by post-hoc comparisons (α = 0.05. Conditioner-coated specimens increased both surface roughness and hydrophilicity (p < 0.01. In the non-thermocycled condition, sandblasted surfaces showed higher SBSs than other modifications, irrespective of conditioner application (p < 0.05. Adhesive fractures were commonly observed in the specimens. Thermocycling favored debonding and decreased SBSs. However, conditioner-coated specimens upon sandblasting showed the highest SBS (p < 0.05 and mixed fractures were partially observed. The combination of conditioner application before sintering and sandblasting after sintering showed the highest shear bond strength and indicated improvements concerning the failure mode.

  16. Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments

    Science.gov (United States)

    Zhang, Hui; Chen, Yiqing; Luo, Alan A.

    2014-12-01

    "Overcasting" technique is used to produce bimetallic magnesium/aluminum (Mg/Al) structures where lightweight Mg can be cast onto solid Al substrates. An inherent difficulty in creating strong Mg/Al interfacial bonding is the natural oxide film on the solid Al surfaces, which reduces the wettability between molten Mg and Al substrates during the casting process. In the paper, an "electropolishing + anodizing" surface treatment has been developed to disrupt the oxide film on a dilute Al-0.08 wt pct Ga alloy, improving the metallurgical bonding between molten Mg and Al substrates in the bimetallic experiments carried out in a high-vacuum test apparatus. The test results provided valuable information of the interfacial phenomena of the Mg/Al bimetallic samples. The results show significantly improved metallurgical bonding in the bimetallic samples with "electropolishing + anodizing" surface treatment and Ga alloying. It is recommended to adjust the pre-heating temperature and time of the Al substrates and the Mg melt temperature to control the interfacial reactions for optimum interfacial properties in the actual overcasting processes.

  17. Effect of different surface treatments on the shear bond strength of nanofilled composite repairs

    Directory of Open Access Journals (Sweden)

    Ghazaleh Ahmadizenouz

    2016-03-01

    Full Text Available Background. Repairing aged composite resin is a challenging process. Many surface treatment options have been proposed to this end. This study evaluated the effect of different surface treatments on the shear bond strength (SBS of nano-filled composite resin repairs. Methods. Seventy-five cylindrical specimens of a Filtek Z350XT composite resin were fabricated and stored in 37°C distilled water for 24 hours. After thermocycling, the specimens were divided into 5 groups according to the following surface treatments: no treatment (group 1; air abrasion with 50-μm aluminum oxide particles (group 2; irradiation with Er:YAG laser beams (group 3; roughening with coarse-grit diamond bur + 35% phosphoric acid (group 4; and etching with 9% hydrofluoric acid for 120 s (group 5. Another group of Filtek Z350XT composite resin samples (4×6 mm was fabricated for the measurement of cohesive strength (group 6. A silane coupling agent and an adhesive system were applied after each surface treatment. The specimens were restored with the same composite resin and thermocycled again. A shearing force was applied to the interface in a universal testing machine. Data were analyzed using one-way ANOVA and post hoc Tukey tests (P < 0.05. Results. One-way ANOVA indicated significant differences between the groups (P < 0.05. SBS of controls was significantly lower than the other groups; differences between groups 2, 3, 4, 5 and 6 were not significant. Surface treatment with diamond bur + 35% phosphoric acid resulted in the highest bond strength. Conclusion. All the surface treatments used in this study improved the shear bond strength of nanofilled composite resin used.

  18. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets

    OpenAIRE

    Cumerlato, Marina; Lima, Eduardo Martinelli de; Osorio, Leandro Berni; Mota, Eduardo Gonçalves; Menezes, Luciane Macedo de; Rizzatto, Susana Maria Deon

    2017-01-01

    ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3,...

  19. Effects of moisture conditions of dental enamel surface on bond strength of brackets bonded with moisture-insensitive primer adhesive system.

    Science.gov (United States)

    Endo, Toshiya; Ozoe, Rieko; Sanpei, Sugako; Shinkai, Koichi; Katoh, Yoshiroh; Shimooka, Shohachi

    2008-07-01

    The purposes of this study were to evaluate the effects of different degrees of water contamination on the shear bond strength of orthodontic brackets bonded to dental enamel with a moisture-insensitive primer (MIP) adhesive system and to compare the modes of bracket/adhesive failure. A total of 68 human premolars were divided into four groups by primers and enamel surface conditions (desiccated, blot dry, and overwet). In group I, the hydrophobic Transbond XT primer adhesive system was used under desiccated conditions for bonding the brackets; in group II, the hydrophilic Transbond MIP adhesive system was used under desiccated conditions; in group III, the hydrophilic Transbond MIP adhesive system was used under blot dry conditions; and in group IV, the hydrophilic Transbond MIP adhesive system was used under overwet conditions. Shear bond strength was measured with a universal testing machine, and the mode of bracket/adhesive failure was determined according to the adhesive remnant index. The mean shear bond strengths were not significantly different among groups I, II, and III, and were higher than the clinically required range of 6 to 8 MPa. The mean shear bond strength achieved in group IV was significantly lower than that achieved in groups I, II, and III, and also lower than the clinically required values. Bond failure occurred at the enamel-adhesive interface more frequently in group IV than in groups I and III. To achieve clinically sufficient bond strengths with the hydrophilic MIP adhesive system, excess water should be blotted from the water-contaminated enamel surface.

  20. Effect of Surface Treatment, Silane, and Universal Adhesive on Microshear Bond Strength of Nanofilled Composite Repairs.

    Science.gov (United States)

    Fornazari, I A; Wille, I; Meda, E M; Brum, R T; Souza, E M

     The aim of this study was to evaluate the effect of surface treatment and universal adhesive on the microshear bond strength of nanoparticle composite repairs.  One hundred and forty-four specimens were built with a nanofilled composite (Filtek Supreme Ultra, 3M ESPE). The surfaces of all the specimens were polished with SiC paper and stored in distilled water at 37°C for 14 days. Half of the specimens were then air abraded with Al 2 O 3 particles and cleaned with phosphoric acid. Polished specimens (P) and polished and air-abraded specimens (A), respectively, were randomly divided into two sets of six groups (n=12) according to the following treatments: hydrophobic adhesive only (PH and AH, respectively), silane and hydrophobic adhesive (PCH, ACH), methacryloyloxydecyl dihydrogen phosphate (MDP)-containing silane and hydrophobic adhesive (PMH, AMH), universal adhesive only (PU, AU), silane and universal adhesive (PCU, ACU), and MDP-containing silane and universal adhesive (PMU, AMU). A cylinder with the same composite resin (1.1-mm diameter) was bonded to the treated surfaces to simulate the repair. After 48 hours, the specimens were subjected to microshear testing in a universal testing machine. The failure area was analyzed under an optical microscope at 50× magnification to identify the failure type, and the data were analyzed by three-way analysis of variance and the Games-Howell test (α=0.05).  The variables "surface treatment" and "adhesive" showed statistically significant differences for p<0.05. The highest mean shear bond strength was found in the ACU group but was not statistically different from the means for the other air-abraded groups except AH. All the polished groups except PU showed statistically significant differences compared with the air-abraded groups. The PU group had the highest mean among the polished groups. Cohesive failure was the most frequent failure mode in the air-abraded specimens, while mixed failure was the most common

  1. Effect of Ti:sapphire laser on shear bond strength of orthodontic brackets to ceramic surfaces.

    Science.gov (United States)

    Erdur, Emire Aybuke; Basciftci, Faruk Ayhan

    2015-08-01

    With increasing demand for orthodontic treatments in adults, orthodontists continue to debate the optimal way to prepare ceramic surfaces for bonding. This study evaluated the effects of a Ti:sapphire laser on the shear bond strength (SBS) of orthodontic brackets bonded to two ceramic surfaces (feldspathic and IPS Empress e-Max) and the results were compared with those using two other lasers (Er:YAG and Nd:YAG) and 'conventional' techniques, i.e., sandblasting (50 µm) and hydrofluoric (HF) acid. In total, 150 ceramic discs were prepared and divided into two groups. In each group, the following five subgroups were prepared: Ti:sapphire laser, Nd:YAG laser, Er:YAG laser, sandblasting, and HF acid. Mandibular incisor brackets were bonded using a light-cured adhesive. The samples were stored in distilled water for 24 hours at 37°C and then thermocycled. Extra samples were prepared and examined using scanning electron microscopy (SEM). SBS testing was performed and failure modes were classified. ANOVA and Tukey's HSD tests were used to compare SBS among the five subgroups (P < 0.05). Feldspathic and IPS Empress e-Max ceramics had similar SBS values. The Ti:sapphire femtosecond laser (16.76 ± 1.37 MPa) produced the highest mean bond strength, followed by sandblasting (12.79 ± 1.42 MPa) and HF acid (11.28 ± 1.26 MPa). The Er:YAG (5.43 ± 1.21 MPa) and Nd:YAG laser (5.36 ± 1.04 MPa) groups were similar and had the lowest SBS values. More homogeneous and regular surfaces were observed in the ablation pattern with the Ti:sapphire laser than with the other treatments by SEM analysis. Within the limitations of this in vitro study, Ti:sapphire laser- treated surfaces had the highest SBS values. Therefore, this technique may be useful for the pretreatment of ceramic surfaces as an alternative to 'conventional' techniques. © 2015 Wiley Periodicals, Inc.

  2. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets.

    Science.gov (United States)

    Cumerlato, Marina; Lima, Eduardo Martinelli de; Osorio, Leandro Berni; Mota, Eduardo Gonçalves; Menezes, Luciane Macedo de; Rizzatto, Susana Maria Deon

    2017-01-01

    The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey's test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn's test. Surface treatments on PfT enhanced SBS of brackets (pgrinding) (pgrinding. There was a positive correlation between SBS and ARI.

  3. Examining the free radical bonding mechanism of benzoquinone– and hydroquinone–methanol passivation of silicon surfaces

    International Nuclear Information System (INIS)

    Kotulak, Nicole A.; Chen, Meixi; Schreiber, Nikolas; Jones, Kevin; Opila, Robert L.

    2015-01-01

    Highlights: • Photons are required for high levels of c-Si passivation by both BQ/ME and HQ/ME solutions. • Protons are required for high levels of c-Si passivation by both BQ/ME and HQ/ME solutions. • The free radical QH· is the likely passivating species for c-Si surfaces from BQ/ME and HQ/ME solutions. - Abstract: The surface passivation of p-benzoquinone (BQ) and hydroquinone (HQ) when dissolved in methanol (ME) has been examined through effective lifetime testing of crystalline silicon (c-Si) wafers treated with the aforementioned solutions. Changes in the availability of both photons and protons in the solutions were demonstrated to affect the level of passivation achieved. The requirement of both excess protons and ambient light exposure to maintain high effective lifetimes supports the presence of a free radical species that drives the surface passivation. Surface analysis suggests a 1:1 ratio of HQ-like bonds to methoxy bonds on the c-Si surface after treatment with a BQ/ME solution.

  4. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    Science.gov (United States)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  5. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran

    2018-03-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  6. Laser-based surface patterning of composite plates for improved secondary adhesive bonding

    KAUST Repository

    Tao, Ran; Alfano, Marco; Lubineau, Gilles

    2018-01-01

    The effects of laser irradiation surface pretreatments on the mode I fracture toughness of adhesively bonded composite joints were evaluated. First, pulsed CO2 laser irradiation was uniformly deployed on carbon fiber reinforced polymer (CFRP) substrates. Next, double cantilever beam (DCB) tests were performed to assess the effects of surface pretreatments on the mode I fracture toughness of the adhesive joints. Then, a thoughtful combination of the proposed surface pretreatments was deployed to fabricate DCB specimens with patterned interfaces. A wide range of techniques, including X-ray photoelectron spectroscopy (XPS), contact profilometry, and optical and scanning electron microscopy (SEM) were used to ascertain the effects of all investigated surface pretreatments. It is shown that patterning promoted damage mechanisms that were not observed in the uniformly treated interfaces, resulting in an effective fracture toughness well above that predicted by a classical rule of mixture.

  7. Nano-motion dynamics are determined by surface-tethered selectin mechanokinetics and bond formation.

    Directory of Open Access Journals (Sweden)

    Brian J Schmidt

    2009-12-01

    Full Text Available The interaction of proteins at cellular interfaces is critical for many biological processes, from intercellular signaling to cell adhesion. For example, the selectin family of adhesion receptors plays a critical role in trafficking during inflammation and immunosurveillance. Quantitative measurements of binding rates between surface-constrained proteins elicit insight into how molecular structural details and post-translational modifications contribute to function. However, nano-scale transport effects can obfuscate measurements in experimental assays. We constructed a biophysical simulation of the motion of a rigid microsphere coated with biomolecular adhesion receptors in shearing flow undergoing thermal motion. The simulation enabled in silico investigation of the effects of kinetic force dependence, molecular deformation, grouping adhesion receptors into clusters, surface-constrained bond formation, and nano-scale vertical transport on outputs that directly map to observable motions. Simulations recreated the jerky, discrete stop-and-go motions observed in P-selectin/PSGL-1 microbead assays with physiologic ligand densities. Motion statistics tied detailed simulated motion data to experimentally reported quantities. New deductions about biomolecular function for P-selectin/PSGL-1 interactions were made. Distributing adhesive forces among P-selectin/PSGL-1 molecules closely grouped in clusters was necessary to achieve bond lifetimes observed in microbead assays. Initial, capturing bond formation effectively occurred across the entire molecular contour length. However, subsequent rebinding events were enhanced by the reduced separation distance following the initial capture. The result demonstrates that vertical transport can contribute to an enhancement in the apparent bond formation rate. A detailed analysis of in silico motions prompted the proposition of wobble autocorrelation as an indicator of two-dimensional function. Insight into two

  8. An in vitro comparison of shear bond strength of zirconia to enamel using different surface treatments.

    Science.gov (United States)

    Zandparsa, Roya; Talua, Nayrouz A; Finkelman, Matthew D; Schaus, Scott E

    2014-02-01

    The purpose of this in vitro study was to compare the shear bond strength of an airborne-particle abraded zirconia, an acid-etched zirconia (Piranha solution), an Alloy Primer treated zirconia, and a silaned zirconia to enamel, all bonded with a phosphate-methacrylate resin luting agent. Seventy extracted intact human molars were collected, cleaned, and mounted in autopolymerizing acrylic resin, with the experimental surface of the teeth exposed. The specimens were randomly divided into seven groups of zirconia specimens (4 mm diameter, 2 mm thick). Group 1: Airborne-particle abrasion; group 2: Airborne-particle abrasion and Z-PRIME Plus; group 3: Airborne-particle abrasion and alloy primer; group 4: Piranha solution 7:1; group 5: Piranha solution 7:1 and Z-PRIME Plus; group 6: Piranha solution 7:1 and Alloy primer; group 7: CoJet and silane. All specimens were luted with a phosphate-methacrylate resin luting agent (Panavia F2.0) and stored in distilled water for 1 day, then thermocycled (5°C and 55°C) for 500 cycles and tested for shear bond strength (SBS), measured in MPa, with a universal testing machine at a 0.55 mm/min crosshead speed. All specimens were inspected under a scanning electron microscope to determine mode of failure. The mean values and standard deviations of all specimens were calculated for each group. A one-way ANOVA was performed, and multiple pairwise comparisons were then completed with post hoc Tukey test (alpha = 0.05). The airborne-particle abrasion and Z-PRIME Plus group resulted in a significantly higher SBS than the other groups (21.11 ± 6.32 MPa) (p enamel surfaces; however, groups 4, 5, and 6 showed mostly adhesive failures, which left the zirconia surface free of the adhesive materials. No cohesive failures of the substrates (ceramic, resin, or enamel) were observed. Airborne-particle abrasion followed by the application of a zirconia primer produced the highest bond strength to enamel. Therefore, it can be recommended as a

  9. Bonding and vibrational dynamics of a large π-conjugated molecule on a metal surface

    International Nuclear Information System (INIS)

    Temirov, R; Soubatch, S; Lassise, A; Tautz, F S

    2008-01-01

    The interplay between the substrate bonding of a large π-conjugated semiconductor molecule and the dynamical properties of the metal-organic interface is studied, employing the prototypical PTCDA/Ag(111) monolayer as an example. Both the coupling of molecular vibrations to the electron-hole-pair continuum of the metal surface and the inelastic scattering of tunnelling electrons by the molecular vibrations on their passage through the molecule are considered. The results of both types of experiment are consistent with the findings of measurements which probe the geometric and electronic structure of the adsorbate-substrate complex directly; generally speaking, they can be understood in the framework of standard theories for the electron-vibron coupling. While the experiments reported here in fact provide additional qualitative insights into the substrate bonding of our π-conjugated model molecule, their detailed quantitative understanding would require a full calculation of the dynamical interface properties, which is currently not available

  10. Effect of artificial aging and surface treatment on bond strengths to dental zirconia.

    Science.gov (United States)

    Perdigão, J; Fernandes, S D; Pinto, A M; Oliveira, F A

    2013-01-01

    The objective of this project was to study the influence of artificial aging and surface treatment on the microtensile bond strengths (μTBS) between zirconia and a phosphate monomer-based self-adhesive cement. Thirty zirconia disks (IPS e.max ZirCAD, Ivoclar Vivadent) were randomly assigned to two aging regimens: AR, used as received, which served as a control, and AG, artificial aging to simulate low-temperature degradation. Subsequently, the disks of each aging regimen were assigned to three surface treatments: NT, no surface treatment; CO, surface silicatization with CoJet sand (3M ESPE); and ZP, zirconia surface treated with Z-Prime Plus (Bisco Inc). Thirty discs were made of Filtek Z250 (3M ESPE) composite resin and luted to the zirconia discs using RelyX Unicem (3M ESPE). The specimens were sectioned with a diamond blade in X and Y directions to obtain bonded beams with a cross-section of 1.0 ± 0.2 mm. The beams were tested in tensile mode in a universal testing machine at a speed of 0.5 mm/min to measure μTBS. Selected beams were selected for fractographic analysis under the SEM. Statistical analysis was carried out with two-way analysis of variance and Dunnett T3 post hoc test at a significance level of 95%. The mean μTBS for the three AR subgroups (AR-NT, AR-CO, and AR-ZP) were significantly higher than those of the corresponding AG groups (p<0.0001). Both AR-CO and AR-ZP resulted in statistically significant higher mean bond strengths than the group AR-NT (p<0.006 and p<0.0001, respectively). Both AG-CO and AG-ZP resulted in statistically significant higher mean bond strengths than the group AG-NT (both at p<0.0001). Overall, AG decreased mean μTBS. Under the SEM, mixed failures showed residual cement attached to the zirconia side of the beams. CO resulted in a characteristic roughness of the zirconia surface. AR-ZP was the only group for which the amount of residual cement occupied at least 50% of the interface in mixed failures.

  11. Certified Absence of Dangling Pointers in a Language with Explicit Deallocation

    Science.gov (United States)

    de Dios, Javier; Montenegro, Manuel; Peña, Ricardo

    Safe is a first-order eager functional language with facilities for programmer controlled destruction of data structures. It provides also regions, i.e. disjoint parts of the heap, where the program allocates data structures, so that the runtime system does not need a garbage collector. A region is a collection of cells, each one big enough to allocate a data constructor. Deallocating cells or regions may create dangling pointers. The language is aimed at inferring and certifying memory safety properties in a Proof Carrying Code like environment. Some of its analyses have been presented elsewhere. The one relevant to this paper is a type system and a type inference algorithm guaranteeing that well-typed programs will be free of dangling pointers at runtime.

  12. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  13. A parametric study of surface roughness and bonding mechanisms of aluminum alloys with epoxies: a molecular dynamics simulation

    Science.gov (United States)

    Timilsina, Rajendra; Termaath, Stephanie

    The marine environment is highly aggressive towards most materials. However, aluminium-magnesium alloys (Al-Mg, specifically, 5xxx series) have exceptionally long service life in such aggressive marine environments. For instance, an Al-Mg alloy, AA5083, is extensively used in naval structures because of its good mechanical strength, formability, seawater corrosion resistance and weldability. However, bonding mechanisms of these alloys with epoxies in a rough surface environment are not fully understood yet. It requires a rigorous investigation at molecular or atomic levels. We performed a molecular dynamics simulation to study an adherend surface preparation and surface bonding mechanisms of Al-Mg alloy (AA5083) with different epoxies by developing several computer models. Various distributions of surface roughness are introduced in the models and performed molecular dynamics simulations. Formation of a beta phase (Al3Mg2) , microstructures, bonding energies at the interface, bonding strengths and durability are investigated. Office of Naval Research.

  14. Effects of surface treatment and artificial aging on the shear bond strength of orthodontic brackets bonded to four different provisional restorations.

    Science.gov (United States)

    Al Jabbari, Youssef S; Al Taweel, Sara M; Al Rifaiy, Mohammed; Alqahtani, Mohammed Q; Koutsoukis, Theodoros; Zinelis, Spiros

    2014-07-01

    To evaluate the combined effects of material type, surface treatment, and thermocycling on the bond strength of orthodontic brackets to materials used for the fabrication of provisional crowns. Four materials were included in this study (ProTemp, Trim Plus, Trim II, and Superpont C+B). Sixty cylindrical specimens (1 × 3 cm) were prepared from each material and equally divided into three groups. The first group was ground with silica carbide paper, the second was polished with pumice, and the last group was sandblasted with 50-µm aluminum oxide particles. Stainless-steel maxillary central incisor brackets (Victory Series, 3M) were bonded to the provisional material specimens with Transbond XT light-cured composite resin, and half of the specimens from each group were thermocycled 500 times in 5°C and 55°C water baths. Then the brackets were debonded with shear testing, and the results were statistically analyzed by three-way analysis of variance and Tukey's multiple-comparison tests at α  =  0.05. Adhesive Remnant Index (ARI) was also identified. Before and after thermocycling, ProTemp materials showed the highest shear bond strength with orthodontic brackets (10.3 and 13.1 MPa, respectively). The statistical analysis indicated an interaction among the three independent variables (P < .05) and statistically significant differences in bond strength among provisional materials (P < .001), surface treatments (P < .001), and thermocycling (P < .05). According to the ARI, most groups demonstrated adhesive failure. The provisional material type, surface treatment, and artificial aging have a significant effect on bond strength. Sandblasting treatment exerts a beneficial effect on shear bond strength.

  15. Enhanced NMR signal detection of imino protons in RNA molecules containing 3' dangling nucleotides

    International Nuclear Information System (INIS)

    Amborski, Andrew N.; Johnson, Philip E.

    2008-01-01

    We present a method for improving the quality of nuclear magnetic resonance (NMR) spectra involving exchangeable protons near the base of the stem of RNA hairpin molecules. NMR spectra of five different RNA hairpins were compared. These hairpins consisted of a native RNA structure and four molecules each having different unpaired, or dangling, nucleotides at the 3' end. NMR experiments were acquired in water for each construct and the quality of the imino proton spectral regions were examined. The imino resonances near the base of the stem of the wild type RNA structure were not observed due to breathing motions. However, a significant increase in spectral quality for molecules with dangling 3' adenosine or guanosine nucleotides was observed, with imino protons detected in these constructs that were not observed in the wild type construct. A modest improvement in spectral quality was seen for the construct with a 3' unpaired uridine, whereas no significant improvement was observed for a 3' unpaired cytidine. This improvement in NMR spectral quality mirrors the increased thermodynamic stability observed for 3' unpaired nucleotides which is dependant on the stacking interactions of these nucleotides against the base of the stem. The use of a dangling 3' adenosine nucleotide represents an easy method to significantly improve the quality of NMR spectra of RNA molecules

  16. Structural And Energetic Changes of Si (100 Surface With Fluorine in Presence of Water – A Density Functional Study

    Directory of Open Access Journals (Sweden)

    Takeo Ebina

    2001-05-01

    Full Text Available Abstract: We report density functional electronic structure calculations to monitor the change in the surface characteristics of the Si (100-2x1 surface after fluorination followed by interaction with water. Embedded finite silicon clusters are used to model an extended Si (100-2x1 surface. Two high symmetry pathways and subsequent adsorption sites were examined: (i adsorption of an fluorine atom directing onto a silicon dangling bond to form a monocoordinated fluorine atom (ii adsorption of a fluorine atom directing on top of silicon dimer to form a bridging dicoordinated fluorine atom. However, in the later case we find that no barrier exists for the bridging fluorine atom to slide towards silicon dimer dangling bond to form more stable mono coordinated Si-F bond. We calculated activation barriers and equilibrium surface configuration as a function of fluorine coverage upto 2.0 ML. We compared the stability of the fluorinated surface. The results were compared with existing experimental and theoretical results. The reaction of water with HF treated Si surface is monitored. It produces, as a first step, the exchange of Si-F with water to form Si-OH groups reducing the concentration of the fluorine on the surface, followed by a rapture of Si-Si bonds and finally the Si-O-Si bridge formation in the lattice.

  17. Influence of Electrolytical Oxidising of Silumine Surfaces on the Quality of Bonding with Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-09-01

    Full Text Available The article presents the preparation process of AC-AlSi12 aluminum alloy surface by application of anodic oxidation method. The method enables the formation of a porous oxide layer (Al2O3 which generates the substrate of durable adhesive bond with an epoxy resin. It also presents the influence of the form of silicon precipitates in the modified alloy upon anodizing process, uniform structure and thickness of the oxide layer as well as the topography of its surface which is expected to improve adhesion of the resin and silumin. The paper describes how the position of oxidized surface against the negative electrode influences the coating structure. The studied silumins are intended to form the material for casting of 3 dimensional objects whose parts will change the distribution of electric field strength that may cause non-uniform structure of the coating.

  18. Effects of hardness of abrasive grains on surface roughness of work piece in PVA bonded grinding wheel

    International Nuclear Information System (INIS)

    Nitta, S.; Takata, A.; Ishizaki, K.

    2000-01-01

    The purpose of this study is to clarify relation between hardness of abrasive grains and surface roughness of work piece in the case of PVA (Polyvinyl alcohol) bonded grinding wheels. Two PVA bonded grinding wheels; with diamond or silicon carbide as abrasive grains and grinding of glass and aluminum alloy was performed. The PVA bonded grinding wheels The PVA bonded grinding wheel with silicon carbide could not grind the glass. Because insufficiency in hardness, the PVA bonded grinding wheel with the diamond abrasive grains caused deep scratch on the aluminum alloy. It was found that the final surface roughness of the work piece was not proportional to the hardness of abrasive grains. The suitable hardness of abrasive grains will be obtained by the hardness of work piece. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  19. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength.

    Science.gov (United States)

    Dos Santos, Angélica Feltrin; Sandes de Lucena, Fernanda; Sanches Borges, Ana Flávia; Lisboa-Filho, Paulo Noronha; Furuse, Adilson Yoshio

    2018-04-05

    Despite numerous advantages such as high strength, the bond of yttria-stabilized zirconia polycrystal (Y-TZP) to tooth structure requires improvement. The purpose of this in vitro study was to evaluate the incorporation of TiO 2 nanotubes into zirconia surfaces and the bond strength of resin cement to the modified ceramic. TiO 2 nanotubes were produced by alkaline synthesis, mixed with isopropyl alcohol (50 wt%) and applied on presintered zirconia disks. The ceramics were sintered, and the surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) analysis. For bond strength, the following 6 groups (n=16) were evaluated: without TiO 2 and Single Bond Universal; with TiO 2 nanotubes and Single Bond Universal; without TiO 2 nanotubes and Z-prime; with TiO 2 nanotubes and Z-prime; without TiO 2 and Signum Zirconia Bond; with TiO 2 and Signum Zirconia Bond. After sintering, resin cement cylinders, diameter of 1.40 mm and 1 mm in height, were prepared and polymerized for 20 seconds. Specimens were stored in water at 37°C for 30 days and submitted to a shear test. Data were analyzed by 2-way ANOVA and Tukey honest significant difference (α=.05) tests. EDS analysis confirmed that nanoagglomerates were composed of TiO 2 . The shear bond strength showed statistically significant differences among bonding agents (P<.001). No significant differences were found with the application of nanotubes, regardless of the group analyzed (P=.682). The interaction among the bonding agent factors and addition of nanotubes was significant (P=.025). Nanotubes can be incorporated into zirconia surfaces. However, this incorporation did not improve bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets

    Directory of Open Access Journals (Sweden)

    Marina Cumerlato

    Full Text Available ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT on the shear bond strength (SBS of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI. Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48: Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01, result not observed with ageing (p= 0.45. Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05. SBS was greater in the groups 3 and 4 (drilling, sandblasting than in the Group 2 (grinding (p< 0.05. SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05. Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI.

  1. Effect of surface treatment of prefabricated teeth on shear bond strength of orthodontic brackets

    Science.gov (United States)

    Cumerlato, Marina; de Lima, Eduardo Martinelli; Osorio, Leandro Berni; Mota, Eduardo Gonçalves; de Menezes, Luciane Macedo; Rizzatto, Susana Maria Deon

    2017-01-01

    ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01), result not observed with ageing (p= 0.45). Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05). SBS was greater in the groups 3 and 4 (drilling, sandblasting) than in the Group 2 (grinding) (p< 0.05). SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05). Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI. PMID:28902249

  2. 29-Silicon NMR evidence for the improved chromatographic siloxane bond stability of bulky alkylsilane ligands on a silica surface

    NARCIS (Netherlands)

    Scholten, A.B.; Haan, de J.W.; Claessens, H.A.; Ven, van de L.J.M.; Cramers, C.A.

    1994-01-01

    A stable bond stationary phase for reversed-phase HPLC, with a diisobutyl-n-octadecylsilane derivatized surface, was studied using 29Si CPMAS NMR. Fumed silica surfaces (Aerosil), trimethylsilylated to different extents, were used to illustrate the effect of ligand surface loading on the hydrogen

  3. Carbon monoxide protonation in condensed phases and bonding to surface superacidic Brønsted centers.

    Science.gov (United States)

    Stoyanov, Evgenii S; Malykhin, Sergei E

    2016-02-14

    Using infrared (IR) spectroscopy and density functional theory (DFT) calculations, interaction of CO with the strongest known pure Brønsted carborane superacids, H(CHB11Hal11) (Hal = F, Cl), was studied. CO readily interacted at room temperature with H(CHB11F11) acid, forming a mixture of bulk salts of formyl and isoformyl cations, which were in equilibrium An(-)H(+)CO COH(+)An(-). The bonding of CO to the surface Brønsted centers of the weaker acid, H(CHB11Cl11), resulted in breaking of the bridged H-bonds of the acid polymers without proton transfer (PT) to CO. The binding occurred via the C atom (blue shift ΔνCO up to +155-167 cm(-1), without PT) or via O atom (red shift ΔνCO up to -110 cm(-1), without PT) always simultaneously, regardless of whether H(+) is transferred to CO. IR spectra of all species were interpreted by B3LYP/cc-pVQZ calculations of the simple models, which adequately mimic the ability of carborane acids to form LH(+)CO, LH(+)CO, COH(+)L, and COH(+)L compounds (L = bases). The CO bond in all compounds was triple. Acidic strength of the Brønsted centers of commonly used acid catalysts, even so-called superacidic catalysts, is not sufficient for the formation of the compounds studied.

  4. Bonding two surfaces by exposing to actinic radiation an epoxide liquid composition

    International Nuclear Information System (INIS)

    Green, G.E.

    1981-01-01

    A method for preparing a film adhesive from an epoxide resin is described. A liquid containing an epoxide resin and a photopolymerizable compound is polymerized to form a solid continuous film by exposure to actinide radiation. A catalyst can be used but no thermal crosslinking should be allowed to occur. The film so obtained is used to bond surfaces together by the application of heat and pressure. The period of heating can be very short, as there need be no solvent to evaporate and the films need not be thick, typically 20 to 250 μm. (O.T.)

  5. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic.

    Science.gov (United States)

    Baratto, Samantha Schaffer Pugsley; Spina, Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Baratto Filho, Flares; Correr, Gisele Maria

    2015-10-01

    The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.

  6. Influence of air-powder polishing on bond strength and surface-free energy of universal adhesive systems.

    Science.gov (United States)

    Tamura, Yukie; Takamizawa, Toshiki; Shimamura, Yutaka; Akiba, Shunsuke; Yabuki, Chiaki; Imai, Arisa; Tsujimoto, Akimasa; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2017-11-29

    The influences of air-powder polishing with glycine or sodium bicarbonate powders on shear bond strengths (SBS) and surface-free energies of universal adhesives were examined. Scotchbond Universal Adhesive (SU, 3M ESPE), G-Premio Bond (GP, GC), Adhese Universal (AU, Ivoclar Vivadent), and All-Bond Universal (AB, Bisco) were used in this study. Bovine dentin surfaces were air polished with glycine or sodium bicarbonate powders prior to the bonding procedure, and resin pastes were bonded to the dentin surface using universal adhesives. SBSs were determined after 24-h storage in distilled water at 37°C. Surface-free energy was then determined by measuring contact angles using three test liquids on dentin surfaces. Significantly lower SBSs were observed for dentin that was air-powder polished and surface-free energies were concomitantly lowered. This study indicated that air-powder polishing influences SBSs and surface-free energies. However, glycine powder produced smaller changes in these surface parameters than sodium bicarbonate.

  7. Verification of the effect of surface preparation on Hot Isostatic Pressing diffusion bonding joints of CLAM steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanyun [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, Chunjing, E-mail: chunjing.li@fds.org.cn [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Bo; Liu, Shaojun [Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huang, Qunying [University of Science and Technology of China, Hefei, Anhui 230027 (China); Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-12-15

    Hot Isostatic Pressing (HIP) diffusion bonding with CLAM steel is the primary candidate fabrication technique for the first wall (FW) of DFLL-TBM. Surface state is one of the key factors for the joints quality. The effect of surface state prepared with grinder and miller on HIP diffusion bonding joints of CLAM steel was investigated. HIP diffusion bonding was performed at 140 MPa and 1373 K within 3 h. The mechanical properties of the joints were investigated with instrumented Charpy V-notch impact tests and the microstructures of the joints were analyzed with scanning electron microscopy (SEM). The results showed that the milled samples with fine surface roughness were more suitable for CLAM steel HIP diffusion bonding.

  8. Surface analysis applied to metal-ceramic and bioceramic interfacial bonding

    International Nuclear Information System (INIS)

    Smart, R.St.C.; Arora, P.S.; Steveson, M.; Kawashima, N.; Cavallaro, G.P.; Ming, H.; Skinner, W.M.

    1999-01-01

    Full text: Low temperature plasma reactions, combined with sol-gel coatings, have been used to produce a variety of ceramic surface layers on metal substrates and interfacial layers between metals and oxides or other ceramics. These layers can be designed to be compositionally and functionally graded from the metal to bulk ceramic material, eg. silica, alumina, hydroxyapatite. The graded layers are generally <50nm thick, continuous, fully bonded to the substrate and deformable without disbonding. The objectives in design of these layers have been to produce: metal surfaces protected from oxidation, corrosion and acid attack; improved metal-ceramic bonding; and bioceramic titanium-based interfaces to bioactive hydroxyapatite for improved dental and medical implants. Modified Auger parameter studies for Si in XPS spectra show that the structure on the metal surfaces grades from amorphous, dehydroxylated silica on the outer surface through layer silicates, chain silicates, pyrosilicates to orthosilicates close to the metal interface. At the metal interface, detached grains of the metal are imaged with interpenetration of the oxide and silicate species linking the layer to the oxidised metal surface. The ∼30nm layer has a substantially increased frictional load compared with the untreated oxidised metal, i.e. behaviour consistent with either stronger adhesion of the coating to the substrate or a harder surface. The composition, structure and thickness of these layers can be controlled by the duration of each plasma reaction and the choice of the final reagent. The mechanisms of reaction in each process step have been elucidated with a combination of XPS, TOF-SIMS, TEM, SEM and FTIR. Similar, graded titanium/oxide/silicate/silica ceramic surface layers have been shown to form using the low temperature plasma reactions on titanium alloys used in medical and dental implants. Thicker (i.e. μm) overlayers of ceramic materials can be added to the graded surface layers

  9. Tailoring the surface chemical bond states of the NbN films by doping Ag: Achieving hard hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Ping; Zhang, Kan; Du, Suxuan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Meng, Qingnan [College of Construction Engineering, Jilin University, Changchun, 130026 (China); He, Xin [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Wang, Shuo [Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Wen, Mao, E-mail: wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun, 130012 (China)

    2017-06-15

    Highlights: • Intrinsically hydrophilic NbN films can transfer to hydrophobic Nb-Ag-N films by doping Ag atoms into NbN sublattice. • Solute Ag can promote that the hydrophobic Ag{sub 2}O groups formed on the Nb-Ag-N film surface through self-oxidation. • The present work may provide a straightforward approach for the production of robust hydrophobic ceramic surfaces. - Abstract: Robust hydrophobic surfaces based on ceramics capable of withstanding harsh conditions such as abrasion, erosion and high temperature, are required in a broad range of applications. The metal cations with coordinative saturation or low electronegativity are commonly chosen to achieve the intrinsically hydrophobic ceramic by reducing Lewis acidity, and thus the ceramic systems are limited. In this work, we present a different picture that robust hydrophobic surface with high hardness (≥20 GPa) can be fabricated through doping Ag atoms into intrinsically hydrophilic ceramic film NbN by reactive co-sputtering. The transition of wettability from hydrophilic to hydrophobic of Nb-Ag-N films induced by Ag doping results from the appearance of Ag{sub 2}O groups on the films surfaces through self-oxidation, because Ag cations (Ag{sup +}) in Ag{sub 2}O are the filled-shell (4d{sup 10}5S{sup 0}) electronic structure with coordinative saturation that have no tendency to interact with water. The results show that surface Ag{sub 2}O benefited for hydrophobicity comes from the solute Ag atoms rather than precipitate metal Ag, in which the more Ag atoms incorporated into Nb-sublattice are able to further improve the hydrophobicity, whereas the precipitation of Ag nanoclusters would worsen it. The present work opens a window for fabricating robust hydrophobic surface through tailoring surface chemical bond states by doping Ag into transition metal nitrides.

  10. Effect of Surface Treatment on Shear Bond Strength between Resin Cement and Ce-TZP/Al2O3

    Directory of Open Access Journals (Sweden)

    Jong-Eun Kim

    2016-01-01

    Full Text Available Purpose. Although several studies evaluating the mechanical properties of Ce-TZP/Al2O3 have been published, to date, no study has been published investigating the bonding protocol between Ce-TZP/Al2O3 and resin cement. The aim of this study was to evaluate the shear bond strength to air-abraded Ce-TZP/Al2O3 when primers and two different cement types were used. Materials and Methods. Two types of zirconia (Y-TZP and Ce-TZP/Al2O3 specimens were further divided into four subgroups according to primer application and the cement used. Shear bond strength was measured after water storage for 3 days or 5,000 times thermocycling for artificial aging. Results. The Y-TZP block showed significantly higher shear bond strength than the Ce-TZP/Al2O3 block generally. Primer application promoted high bond strength and less effect on bond strength reduction after thermocycling, regardless of the type of cement, zirconia block, or aging time. Conclusions. Depending on the type of the primer or resin cement used after air-abrasion, different wettability of the zirconia surface can be observed. Application of primer affected the values of shear bond strength after the thermocycling procedure. In the case of using the same bonding protocol, Y-TZP could obtain significantly higher bond strength compared with Ce-TZP/Al2O3.

  11. The effect of different surface treatments on the shear bond strength of luting cements to titanium.

    Science.gov (United States)

    Abi-Rached, Filipe de Oliveira; Fonseca, Renata Garcia; Haneda, Isabella Gagliardi; de Almeida-Júnior, Antonio Alves; Adabo, Gelson Luis

    2012-12-01

    Although titanium presents attractive physical and mechanical properties, there is a need for improving the bond at the titanium/luting cement interface for the longevity of metal ceramic restorations. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength (SBS) of resin-modified glass ionomer and resin cements to commercially pure titanium (CP Ti). Two hundred and forty CP Ti cast disks (9.0 × 3.0 mm) were divided into 8 surface treatment groups (n=30): 1) 50 µm Al(2)O(3) particles; 2) 120 µm Al(2)O(3) particles; 3) 250 µm Al(2)O(3) particles; 4) 50 µm Al(2)O(3) particles + silane (RelyX Ceramic Primer); 5) 120 µm Al(2)O(3) particles + silane; 6) 250 µm Al(2)O(3) particles + silane; 7) 30 µm silica-modified Al(2)O(3) particles (Cojet Sand) + silane; and 8) 120 µm Al(2)O(3) particles, followed by 110 µm silica-modified Al(2)O(3) particles (Rocatec). The luting cements 1) RelyX Luting 2; 2) RelyX ARC; or 3) RelyX U100 were applied to the treated CP Ti surfaces (n=10). Shear bond strength (SBS) was tested after thermal cycling (5000 cycles, 5°C to 55°C). Data were analyzed by 2-way analysis of variance (ANOVA) and the Tukey HSD post hoc test (α=.05). Failure mode was determined with a stereomicroscope (×20). The surface treatments, cements, and their interaction significantly affected the SBS (Pbehavior for all surface treatments. For both cements, only the group abraded with 50 μm Al(2)O(3) particles had lower SBS than the other groups (P<.05). For RelyX ARC, regardless of silane application, abrasion with 50 μm Al(2)O(3) particles resulted in significantly lower SBS than abrasion with 120 μm and 250 μm particles, which exhibited statistically similar SBS values to each other. Rocatec + silane promoted the highest SBS for RelyX ARC. RelyX U100 presented the highest SBS mean values (P<.001). All groups showed a predominance of adhesive failure mode. The adhesive capability of RelyX Luting 2 and RelyX U

  12. Far-UV photochemical bond cleavage of n-amyl nitrite: bypassing a repulsive surface.

    Science.gov (United States)

    Minitti, Michael P; Zhang, Yao; Rosenberg, Martin; Brogaard, Rasmus Y; Deb, Sanghamitra; Sølling, Theis I; Weber, Peter M

    2012-01-19

    We have investigated the deep-UV photoinduced, homolytic bond cleavage of amyl nitrite to form NO and pentoxy radicals. One-color multiphoton ionization with ultrashort laser pulses through the S(2) state resonance gives rise to photoelectron spectra that reflect ionization from the S(1) state. Time-resolved pump-probe photoionization measurements show that upon excitation at 207 nm, the generation of NO in the v = 2 state is delayed, with a rise time of 283 (16) fs. The time-resolved mass spectrum shows the NO to be expelled with a kinetic energy of 1.0 eV, which is consistent with dissociation on the S(1) state potential energy surface. Combined, these observations show that the first step of the dissociation reaction involves an internal conversion from the S(2) to the S(1) state, which is followed by the ejection of the NO radical on the predissociative S(1) state potential energy surface.

  13. Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin.

    Science.gov (United States)

    Hallmann, Lubica; Ulmer, Peter; Lehmann, Frank; Wille, Sebastian; Polonskyi, Oleksander; Johannes, Martina; Köbel, Stefan; Trottenberg, Thomas; Bornholdt, Sven; Haase, Fabian; Kersten, Holger; Kern, Matthias

    2016-05-01

    Purpose of this in vitro study was to evaluate the effect of surface modifications on the tensile bond strength between zirconia ceramic and resin. Zirconia ceramic surfaces were treated with 150-μm abrasive alumina particles, 150-μm abrasive zirconia particles, argon-ion bombardment, gas plasma, and piranha solution (H2SO4:H2O2=3:1). In addition, slip casting surfaces were examined. Untreated surfaces were used as the control group. Tensile bond strengths (TBS) were measured after water storage for 3 days or 150 days with additional 37,500 thermal cycling for artificial aging. Statistical analyses were performed with 1-way and 3-way ANOVA, followed by comparison of means with the Tukey HSD test. After storage in distilled water for three days at 37 °C, the highest mean tensile bond strengths (TBS) were observed for zirconia ceramic surfaces abraded with 150-μm abrasive alumina particles (TBS(AAP)=37.3 MPa, TBS(CAAP)=40.4 MPa), and 150-μm abrasive zirconia particles (TBS(AZP)=34.8 MPa, TBS(CAZP)=35.8 MPa). Also a high TBS was observed for specimens treated with argon-ion bombardment (TBS(BAI)=37.8 MPa). After 150 days of storage, specimens abraded with 150-μm abrasive alumina particles and 150-μm abrasive zirconia particles revealed high TBS (TBS(AAP)=37.6 MPa, TBS(CAAP)=33.0 MPa, TBS(AZP)=22.1 MPa and TBS(CAZP)=22.8 MPa). A high TBS was observed also for specimens prepared with slip casting (TBS(SC)=30.0 MPa). A decrease of TBS was observed for control specimens (TBS(UNT)=12.5 MPa, TBS(CUNT)=9.0 MPa), specimens treated with argon-ion bombardment (TBS(BAI)=10.3 MPa) and gas plasma (TBS(GP)=11.0 MPa). A decrease of TBS was observed also for specimens treated with piranha solution (TBS(PS)=3.9 MPa, TBS(CPS)=4.1 MPa). A significant difference in TBS after three days storage was observed for specimens treated with different methods (p0.05), CAAP(p>0.05) and SC(p>0.05). However, the failure patterns of debonded specimens prepared with 150-μm abrasive zirconia

  14. Influence of temporary cement contamination on the surface free energy and dentine bond strength of self-adhesive cements.

    Science.gov (United States)

    Takimoto, Masayuki; Ishii, Ryo; Iino, Masayoshi; Shimizu, Yusuke; Tsujimoto, Akimasa; Takamizawa, Toshiki; Ando, Susumu; Miyazaki, Masashi

    2012-02-01

    The surface free energy and dentine bond strength of self-adhesive cements were examined after the removal of temporary cements. The labial dentine surfaces of bovine mandibular incisors were wet ground with #600-grit SiC paper. Acrylic resin blocks were luted to the prepared dentine surfaces using HY Bond Temporary Cement Hard (HY), IP Temp Cement (IP), Fuji TEMP (FT) or Freegenol Temporary Cement (TC), and stored for 1 week. After removal of the temporary cements with an ultrasonic tip, the contact angle values of five specimens per test group were determined for the three test liquids, and the surface-energy parameters of the dentine surfaces were calculated. The dentine bond strengths of the self-adhesive cements were measured after removal of the temporary cements in a shear mode at a crosshead speed of 1.0mm/min. The data were subjected to one-way analysis of variance (ANOVA) followed by Tukey's HSD test. For all surfaces, the value of the estimated surface tension component γ(S)(d) (dispersion) was relatively constant at 41.7-43.3 mJm(-2). After removal of the temporary cements, the value of the γ(S)(h) (hydrogen-bonding) component decreased, particularly with FT and TC. The dentine bond strength of the self-adhesive cements was significantly higher for those without temporary cement contamination (8.2-10.6 MPa) than for those with temporary cement contamination (4.3-7.1 MPa). The γ(S) values decreased due to the decrease of γ(S)(h) values for the temporary cement-contaminated dentine. Contamination with temporary cements led to lower dentine bond strength. The presence of temporary cement interferes with the bonding performance of self-adhesive cements to dentine. Care should be taken in the methods of removal of temporary cement when using self-adhesive cements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Another way of looking at bonding on bimetallic surfaces: the role of spin polarization of surface metal d states

    International Nuclear Information System (INIS)

    Escano, M C; Nguyen, T Q; Nakanishi, H; Kasai, H

    2009-01-01

    The nature of electronic and chemical properties of an unstrained Pt monolayer on a 3d transition metal substrate, M (M = Cr, Mn, Fe), is studied using spin-polarized density functional theory calculations. High spin polarization of Pt d states is noted, verifying the magnetization induced on Pt, which is observed to be responsible for redirecting the analysis of bond formation on a metal surface towards a different perspective. While the shift in the Pt d band center (the average energy of the Pt d band, commonly used to predict the reactivity of surfaces) does give the expected trend in adsorbate (oxygen) chemisorption energy across the bimetallic surfaces in this work, our results show that for spin-polarized Pt d states, the variation in strength of adsorption with respect to the Fermi level density of states is more predictive of Pt chemisorption properties. Hence, this study introduces a scheme for analyzing trends in reactivity of bimetallic surfaces where adsorption energies are used as reactivity parameters and where spin polarization effects cannot be neglected. (fast track communication)

  16. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R. [Institute of Plastics Processing (IKV), RWTH Aachen University, Pontstrasse 49, 52062 Aachen (Germany)

    2015-05-22

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10{sup 17} m{sup −3} is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with

  17. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    International Nuclear Information System (INIS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R.

    2015-01-01

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10 17 m −3 is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with sufficient bond

  18. Investigation of Surface Pre-Treatment Methods for Wafer-Level Cu-Cu Thermo-Compression Bonding

    Directory of Open Access Journals (Sweden)

    Koki Tanaka

    2016-12-01

    Full Text Available To increase the yield of the wafer-level Cu-Cu thermo-compression bonding method, certain surface pre-treatment methods for Cu are studied which can be exposed to the atmosphere before bonding. To inhibit re-oxidation under atmospheric conditions, the reduced pure Cu surface is treated by H2/Ar plasma, NH3 plasma and thiol solution, respectively, and is covered by Cu hydride, Cu nitride and a self-assembled monolayer (SAM accordingly. A pair of the treated wafers is then bonded by the thermo-compression bonding method, and evaluated by the tensile test. Results show that the bond strengths of the wafers treated by NH3 plasma and SAM are not sufficient due to the remaining surface protection layers such as Cu nitride and SAMs resulting from the pre-treatment. In contrast, the H2/Ar plasma–treated wafer showed the same strength as the one with formic acid vapor treatment, even when exposed to the atmosphere for 30 min. In the thermal desorption spectroscopy (TDS measurement of the H2/Ar plasma–treated Cu sample, the total number of the detected H2 was 3.1 times more than the citric acid–treated one. Results of the TDS measurement indicate that the modified Cu surface is terminated by chemisorbed hydrogen atoms, which leads to high bonding strength.

  19. Effect of Different Surface Treatments on the Bond Strength of Repaired Resin Restorations

    International Nuclear Information System (INIS)

    Engy Fahmy Ismaiel Fekry Abaza

    2010-01-01

    In the last decade, growing demands by patients for mercury-free esthetic restorations had markedly increased the use of resin composites in restorative dentistry. However, despite the continuing development of resin composites with improved properties, several factors, such as discoloration, color mismatch, wear; chipping or bulk fracture might present clinical problems (Mjor and Gordan. 2002, Vichi et al. 2004 and Kolbeck et al. 2006). As a result, the clinician should decide whether to replace or simply repair these restorations. Total replacement of the restoration might be regarded as over-treatment since in most cases, large portions of the restorations might be clinically and radio graphically considered free of failure. Moreover, complete removal of the restoration inevitably resulted in weakening of the tooth, unnecessary removal of intact dental tissues, more money and time consuming. For these reasons, the repair of the restoration instead of its removal would be a favorable procedure (Lucena-Martin et al. 2001, Frankenberger et al. 2003 a and Oztas et al. 2003). The key element in the determination of successful repair procedures was the adequate bond strength between the existing resin composite and the new one. Various methods have been suggested to improve the bond strength of the repaired resin restorations (Tezvergil et al. 2003 and Bonstein et al. 2005). Mechanical and/or chemical treatments had been investigated for preparation of the aged resin restorations to be repaired (Tezvergil et al. 2003, Ozcan et al. 2005 and Hannig et al. 2006). These treatments were introduced to counteract the problems of aged resin restorations which were limited amount of residual free radicals available for reaction with the repair material, contaminated surface, and highly cross-linked resin matrix ( Dall Oca et al. 2006 and Papacchini et al. 2007 a) Previous studies emphasized that mechanical treatments are the most important factor in obtaining optimal repair

  20. Approximate critical surface of the bond-mixed square-lattice Ising model

    International Nuclear Information System (INIS)

    Levy, S.V.F.; Tsallis, C.; Curado, E.M.F.

    1979-09-01

    The critical surface of the quenched bond-mixed square-lattice spin-1/2 first-neighbour-interaction ferromagnetic Ising model (with exchange interactions J 1 and J 2 ) has been investigated. Through renormalization group and heuristical procedures, a very accurate (error inferior to 3x10 -4 in the variables t sub(i) = th (J sub(i)/k sub(b)T)) approximate numerical proposal for all points of this surface is presented. This proposal simultaneously satisfies all the available exact results concerning the surface, namely P sub(c) = 1/2, t sub(c) = √2 - 1, both limiting slopes in these points, and t 2 = (1-t 1 )/(1+t 1 ) for p = 1/2. Furthemore an analytic approximation (namely (1 - p) 1n(1 + t 1 ) + p 1n(1 + t 2 ) =(1/2)1n 2) is also proposed. In what concerns the available exact results, it only fails in reproducing one of the two limiting slopes, where there is an error of 1% in the derivative: these facts result in an estimated error less than 10 -3 (in the t-variables) for any points in the surface. (Author) [pt

  1. Bond strength of three luting agents to zirconia ceramic - influence of surface treatment and thermocycling

    Directory of Open Access Journals (Sweden)

    Ahmed Attia

    2011-08-01

    Full Text Available OBJECTIVE: This in vitro study aimed to evaluate the influence of different surface treatments, 3 luting agents and thermocycling on microtensile bond strength (µTBS to zirconia ceramic. Material and METHODS: A total of 18 blocks (5x5x4 mm were fabricated from zirconia ceramic (ICE Zirkonia and duplicated into composite blocks (Alphadent. Ceramic blocks were divided into 3 groups (n=6 according to the following surface treatments: airborne-particle abrasion (AA, silica-coating, (SC (CoJet and silica coating followed by silane application (SCSI (ESPE Sil. Each group was divided into 3 subgroups (n=2 according to the 3 luting agents used. Resin-modified glass-ionomer cement (RMGIC, Ketac Cem Plus, self-adhesive resin cement (UN, RelyX Unicem and adhesive resin cement (ML, MultiLink Automix were used for bonding composite and zirconia blocks. Each bonding assembly was cut into microbars (10 mm long and 1±0.1 mm². Seven specimens of each subgroup were stored in water bath at 37ºC for 1 week. The other 7 specimens were stored in water bath at 37ºC for 30 days then thermocycled (TC for 7,500 cycles. µTBS values were recorded for each specimen using a universal testing machine. Statistical analyses were performed using a 3-way ANOVA model followed by serial 1-way ANOVAs. Comparison of means was performed with Tukey's HSD test at (α=0.05. RESULTS: µTBS ranged from 16.8 to 31.8 MPa after 1 week and from 7.3 to 16.4 MPa after 30 days of storage in water and thermocycling. Artificial aging significantly decreased µTBS (p<0.05. Considering surface treatment, SCSI significantly increased µTBS (p<0.05 compared to SC and AA. Resin cements (UN and ML demonstrated significantly higher µTBS (p<0.05 compared to RMGIC cement. CONCLUSIONS: Silica coating followed by silane application together with adhesive resin cements significantly increased µTBS, while thermocycling significantly decreased µTBS.

  2. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement

    OpenAIRE

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Objective: Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. Materials and Methods: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) wer...

  3. In Vitro Evaluation of Various Surface Treatments of Fiber Posts on the Bond Strength to Composite Core

    Directory of Open Access Journals (Sweden)

    Sareh Nadalizadeh

    Full Text Available Introduction: The reliable bond at the root-post-core interface is critical for the clinical success of post-retained restorations. To decrease the risk of fracture, it is important to optimize the adhesion. Therefore, various post surface treatments have been proposed. The purpose of this study was to investigate the influence of various surface treatments of fiber posts on the bond strength to composite core. Materials & Methods: In this study, 40 fiber reinforced posts were used. After preparing and sectioning them, resulting specimens were divided into four groups (N=28. The posts received different surface treatments such as no surface treatment (control group, preparing with hydrogen peroxide 10%, preparing with silane, preparing with HF and silane. Then, posts were tested in micro tensile testing machine. The results were analyzed by One-Way ANOVA and Dunnett T3 test. Results: The greatest bond strength observed was in treatment with hydrogen peroxide 10% (19.84±8.95 MPa, and the lowest strength was related to the control group (12.44±3.40 MPa. The comparison of the groups with Dunnett T3 test showed that the differences between the groups was statistically significant (α=0.05.Conclusion: Based on the results of this study, preparing with H2O2 -10 % and silane increases the bond strength of FRC posts to the composite core more than the other methods. Generally, the bond strength of posts to the composite core increases by surface treatment.

  4. Lamb wave tuning curve calibration for surface-bonded piezoelectric transducers

    International Nuclear Information System (INIS)

    Sohn, Hoon; Lee, Sang Jun

    2010-01-01

    Surface-bonded lead zirconate titanate (PZT) transducers have been widely used for guided wave generation and measurement. For selective actuation and sensing of Lamb wave modes, the sizes of the transducers and the driving frequency of the input waveform should be tuned. For this purpose, a theoretical Lamb wave tuning curve (LWTC) of a specific transducer size is generally obtained. Here, the LWTC plots each Lamb wave mode' amplitude as a function of the driving frequency. However, a discrepancy between experimental and existing theoretical LWTCs has been observed due to little consideration of the bonding layer and the energy distribution between Lamb wave modes. In this study, calibration techniques for theoretical LWTCs are proposed. First, a theoretical LWTC is developed when circular PZT transducers are used for both Lamb wave excitation and sensing. Then, the LWTC is calibrated by estimating the effective PZT size with PZT admittance measurement. Finally, the energy distributions among symmetric and antisymmetric modes are taken into account for better prediction of the relative amplitudes between Lamb wave modes. The effectiveness of the proposed calibration techniques is examined through numerical simulations and experimental estimation of the LWTC using the circular PZT transducers instrumented on an aluminum plate

  5. Empirical valence bond models for reactive potential energy surfaces: a parallel multilevel genetic program approach.

    Science.gov (United States)

    Bellucci, Michael A; Coker, David F

    2011-07-28

    We describe a new method for constructing empirical valence bond potential energy surfaces using a parallel multilevel genetic program (PMLGP). Genetic programs can be used to perform an efficient search through function space and parameter space to find the best functions and sets of parameters that fit energies obtained by ab initio electronic structure calculations. Building on the traditional genetic program approach, the PMLGP utilizes a hierarchy of genetic programming on two different levels. The lower level genetic programs are used to optimize coevolving populations in parallel while the higher level genetic program (HLGP) is used to optimize the genetic operator probabilities of the lower level genetic programs. The HLGP allows the algorithm to dynamically learn the mutation or combination of mutations that most effectively increase the fitness of the populations, causing a significant increase in the algorithm's accuracy and efficiency. The algorithm's accuracy and efficiency is tested against a standard parallel genetic program with a variety of one-dimensional test cases. Subsequently, the PMLGP is utilized to obtain an accurate empirical valence bond model for proton transfer in 3-hydroxy-gamma-pyrone in gas phase and protic solvent. © 2011 American Institute of Physics

  6. Further Investigation Into the Use of Laser Surface Preparation of Ti-6Al-4V Alloy for Adhesive Bonding

    Science.gov (United States)

    Palmieri, Frank L.; Crow, Allison; Zetterberg, Anna; Hopkins, John; Wohl, Christopher J.; Connell, John W.; Belcher, Tony; Blohowiak, Kay Y.

    2014-01-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires robust materials and processing methodologies before it can be incorporated in primary structures for aerospace applications. Surface preparation is widely recognized as one of the key steps to producing robust and predictable bonds. This report documents an ongoing investigation of a surface preparation technique based on Nd:YAG laser ablation as a replacement for the chemical etch and/or abrasive processes currently applied to Ti-6Al-4V alloys. Laser ablation imparts both topographical and chemical changes to a surface that can lead to increased bond durability. A laser based process provides an alternative to chemical-immersion, manual abrasion, and grit blast process steps which are expensive, hazardous, environmentally unfriendly, and less precise. In addition, laser ablation is amenable to process automation, which can improve reproducibility to meet quality standards for surface preparation. An update on work involving adhesive property testing, surface characterization, surface stability, and the effect of laser surface treatment on fatigue behavior is presented. Based on the tests conducted, laser surface treatment is a viable replacement for the immersion chemical surface treatment processes. Testing also showed that the fatigue behavior of the Ti-6Al-4V alloy is comparable for surfaces treated with either laser ablation or chemical surface treatment.

  7. Influence of application method on surface free-energy and bond strength of universal adhesive systems to enamel.

    Science.gov (United States)

    Imai, Arisa; Takamizawa, Toshiki; Sai, Keiichi; Tsujimoto, Akimasa; Nojiri, Kie; Endo, Hajime; Barkmeier, Wayne W; Latta, Mark A; Miyazaki, Masashi

    2017-10-01

    The aim of the present study was to determine the influence of different adhesive application methods and etching modes on enamel bond effectiveness of universal adhesives using shear bond strength (SBS) testing and surface free-energy (SFE) measurements. The adhesives Scotchbond Universal, All-Bond Universal, Adhese Universal, and G-Premio Bond were used. Prepared bovine enamel specimens were divided into four groups, based on type of adhesive, and subjected to the following surface treatments: (i) total-etch mode with active application; (ii) total-etch mode with inactive application; (iii) self-etch mode with active application; and (iv) self-etch mode with inactive application. Bonded specimens were subjected to SBS testing. The SFE of the enamel surfaces with adhesive was measured after rinsing with acetone and water. The SBS values in total-etch mode were significantly higher than those in self-etch mode. In total-etch mode, significantly lower SBS values were observed with active application compared with inactive application; in contrast, in self-etch mode there were no significant differences in SBS between active and inactive applications. A reduction in total SFE was observed for active application compared with inactive application. The interaction between etching mode and application method was statistically significant, and the application method significantly affected enamel bond strength in total-etch mode. © 2017 Eur J Oral Sci.

  8. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia.

    Science.gov (United States)

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (pbrackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.

  9. Pre-sintered Y-TZP sandblasting: effect on surface roughness, phase transformation, and Y-TZP/veneer bond strength

    Directory of Open Access Journals (Sweden)

    Carla Müller Ramos-Tonello

    Full Text Available Abstract Sandblasting is a common method to try to improve the Y-TZP/veneer bond strength of dental prostheses, however, it may put stress on zirconia surfaces and could accelerate the t→m phase transformation. Y-TZP sandblasting before sintering could be an alternative to improve surface roughness and bonding strength of veneering ceramic. Objectives. The aim of this study was to analyze the effect of Y-TZP pre-sintering sandblasting on surface roughness, phase transformation, and the Y-TZP/veneer shear bond strength. Material and Methods. The Y-TZP specimen surface underwent sandblasting with aluminum oxide (50 μm pre-sintering (Z-PRE and post-sintering (Z-POS. Z-CTR was not subjected to surface treatment. After ceramic veneer application, the specimens were subjected to shear bond testing. Surface roughness was analyzed by confocal microscopy. Y-TZP monoclinic and tetragonal phases were evaluated by micro-Raman spectroscopy. Shear bond strength and surface roughness data were analyzed by One-way ANOVA and Tukey tests (α=0.05. Differences in the wave numbers and the broadening bands of the Raman spectra were compared among groups. Results. Z-POS (9.73±5.36 MPa and Z-PRE (7.94±2.52 MPa showed the highest bond strength, significantly higher than that of Z-CTR (5.54±2.14 MPa. The Ra of Z-PRE (1.59±0.23 µm was much greater and significantly different from that of Z-CTR (0.29±0.05 µm and Z-POS (0.77±0.13 µm. All groups showed bands typical of the tetragonal (T and monoclinic (M phases. Y-TZP sandblasting before sintering resulted in rougher surfaces but did not increase the shear bond strength compared to post-sintering and increased surface defects. Conclusions. Surface treatment with Al3O2, regardless of the moment and application, improves the results of Y-TZP/veneer bonding and is not a specific cause of t→m transformation.

  10. Formation of porous surface layers in reaction bonded silicon nitride during processing

    Science.gov (United States)

    Shaw, N. J.; Glasgow, T. K.

    1979-01-01

    Microstructural examination of reaction bonded silicon nitride (RBSN) has shown that there is often a region adjacent to the as-nitrided surfaces that is even more porous than the interior of this already quite porous material. Because this layer of large porosity is considered detrimental to both the strength and oxidation resistance of RBSN, a study was undertaken to determine if its formation could be prevented during processing. All test bars studied were made from a single batch of Si powder which was milled for 4 hours in heptane in a vibratory mill using high density alumina cylinders as the grinding media. After air drying the powder, bars were compacted in a single acting die and hydropressed.

  11. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    Directory of Open Access Journals (Sweden)

    Mohammad Joulaei

    2012-11-01

    Full Text Available Background and aims. Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS of silica- (Spectrum TPH and zirconia-filled (Filtek Z250 composite resins. Materials and methods. Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05. Results. Analysis of data showed that the effect of composite resin type was not significant (p > 0.05, but the effects of the type of surface treatment (p = 0.01 and the type of adhesive system (p = 0.01 were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05. However, the cumulative effects of the adhesive system-surface treatment (p = 0.03 and the composite type-the adhesive system-surface treatments (p = 0.002 were significant. Conclusion. Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently.

  12. Effect of Different Surface Treatments on Repair Micro-shear Bond Strength of Silica- and Zirconia-filled Composite Resins

    Science.gov (United States)

    Joulaei, Mohammad; Bahari, Mahmoud; Ahmadi, Anahid; Savadi Oskoee, Siavash

    2012-01-01

    Background and aims Effect of surface treatments on repair bond strength of aged composite resins might be different due to their dissimilar fillers. The aim was to evaluate the effect of different surface treatments on repair micro-shear bond strength (µSBS) of silica- (Spectrum TPH) and zirconia-filled (Filtek Z250) composite resins. Materials and methods Twenty-seven composite resin blocks were made from each type of composite resin: Z250 and Spectrum TPH. After aging, blocks of each type were randomly divided into three groups according to surface treatments: alloy primer, silane, and only surface roughening. Subsequently, each group was further subdivided into 3 subgroups based on the adhesive system used: Single Bond, Clearfil SE Bond, and Margin Bond. Four composite resin columns were added on each block. After thermocycling, µSBStest were done at cross head speed of 0.5 mm/min. Data was analysed using multifactor ANOVA, one-way ANOVA and a post-hoc Bonferroni tests (α = 0.05). Results Analysis of data showed that the effect of composite resin type was not significant (p > 0.05), but the effects of the type of surface treatment (p = 0.01) and the type of adhesive system (p = 0.01) were significant on repair µSBS. In addition, the cumulative effect of the composite type-surface treatment and the composite type with the type of adhesive system were not statistically significant (p > 0.05). However, the cumulative effects of the adhesive system-surface treatment (p = 0.03) and the composite type-the adhesive system-surface treatments (p = 0.002) were significant. Conclusion Although repair µSBS values of both silica- and zirconia-filled composite resins were similar, use of different combinations of surface treatments and adhesive systems affected their repair µSBS differently. PMID:23277859

  13. Effect of Various Treatment Modalities on Surface Characteristics and Shear Bond Strengths of Polyetheretherketone-Based Core Materials.

    Science.gov (United States)

    Çulhaoğlu, Ahmet Kürşat; Özkır, Serhat Emre; Şahin, Volkan; Yılmaz, Burak; Kılıçarslan, Mehmet Ali

    2017-11-13

    To investigate the effect of different surface treatments on the surface roughness (Ra), wettability, and shear bond strength of polyetheretherketone (PEEK) to composite resin. One hundred ninety eight PEEK specimens were divided into six groups (n = 33). Specimen surfaces were treated with the following surface treatment modalities: silicoating (CoJet), acetone treatment, acid etching (H 2 SO 4 ), airborne particle abrasion (Al 2 O 3 ), laser irradiation (Yb:PL laser), and the nontreated surface serving as the control. Surface roughness was measured with an profilometer (n = 11) and a goniometer was used to measure the surface wettability through contact angle (θ)(n = 11). PEEK surfaces were veneered with a composite resin (n = 11). The specimens were then thermocycled for 10,000 cycles at 5 to 55°C. Shear bond strengths between the PEEK and composite resin were measured with an universal test machine. One-way ANOVA was used to analyze the data. Tukey's post-hoc test was used to determine significant differences between groups (α = 0.05). Surface roughness and wettability of PEEK surfaces along with shear bond strength of PEEK to composite resin were influenced by the surface treatments. (p PEEK surfaces treated by laser irradiation (2.85 ± 0.2 µm) followed by airborne particle abrasion (2.26 ± 0.33 µm), whereas other surface treatment modalities provided similar Ra values, with the acid-etched PEEK surfaces having the lowest mean Ra values (0.35 ± 0.14 µm). Silicoating provided the most wettable PEEK surfaces (48.04 ± 6.28º), followed by either acetone treatment (70.19 ± 4.49º) or acid treatment (76.07 ± 6.61º). Decreased wettability was observed for airborne particle abraded (84.83 ± 4.56º) and laser-treated PEEK surfaces (103.06 ± 4.88º). The highest mean shear bond strength values were observed for acid-etched PEEK surfaces (15.82 ± 4.23 MPa) followed by laser irradiated (11.46 ± 1.97 MPa), airborne particle abraded (10.81 ± 3.06 MPa

  14. Adhesive bonding of resin composite to various titanium surfaces using different metal conditioners and a surface modification system

    Directory of Open Access Journals (Sweden)

    Hercules Jorge ALMILHATTI

    2013-12-01

    Full Text Available Objective: This study evaluated the effect of three metal conditioners on the shear bond strength (SBS of a prosthetic composite material to cpTi grade I having three surface treatments. Material and Methods: One hundred sixty eight rivet-shaped specimens (8.0x2.0 mm were cast and subjected to polishing (P or sandblasting with either 50 mm (50SB or 250 mm (250SB Al2O3. The metal conditioners Metal Photo Primer (MPP, Cesead II Opaque Primer (OP, Targis Link (TL, and one surface modification system Siloc (S, were applied to the specimen surfaces, which were covered with four 1-mm thick layers of resin composite. The resin layers were exposed to curing light for 90 s separately. Seven specimens from each experimental group were stored in water at 37ºC for 24 h while the other 7 specimens were subjected to 5,000 thermal cycles consisting of water baths at 4ºC and 60ºC (n=7. All specimens were subjected to SBS test (0.5 mm/min until failure occurred, and further 28 specimens were analyzed using scanning electron microscope (SEM and X-ray energy-dispersive spectroscopy (EDS. Data were analyzed by 3-way ANOVA followed by post-hoc Tukey's test (α=0.05. Results: On 50SB surfaces, OP groups showed higher SBS means than MPP (P<0.05, while no significant difference was found among OP, S, and TL groups. On 250SB surfaces, OP and TL groups exhibited higher SBS than MPP and S (P<0.05. No significant difference in SBS was found between OP and TL groups nor between MPP and S groups. The use of conditioners on 250SB surfaces resulted in higher SBS means than the use of the same products on 50SB surfaces (P<0.05. Conclusion: Sandblasting associated with the use of metal conditioners improves SBS of resin composites to cpTi.

  15. Assessment of Bond Strength between Metal Brackets and Non-Glazed Ceramic in Different Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    I. Harririan

    2010-06-01

    Full Text Available Objective: The aim of this study was to evaluate the bond strength between metal brackets and non-glazed ceramic with three different surface treatment methods.Materials and Methods: Forty-two non-glazed ceramic disks were assigned into three groups. Group I and II specimens were etched with 9.5% hydrofluoric acid. Subsequently in group I, silane and adhesive were applied and in group II, bonding agent was used only.In group III, specimens were treated with 35% phosphoric acid and then silane and adhesive were applied. Brackets were bonded with light-cured composites. The specimens were stored in water in room temperature for 24 hours and then thermocycled 500 times between 5°C and 55°C.Results: The difference of tensile bond strength between groups I and III was not significant(P=0.999. However, the tensile bond strength of group II was significantly lower than groups I, and III (P<0.001. The adhesive remnant index scores between the threegroups had statistically significant differences (P<0.001.Conclusion: With the application of scotch bond multi-purpose plus adhesive, we can use phosphoric acid instead of hydrofluoric acid for bonding brackets to non-glazed ceramic restorations.

  16. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength. © 2013 Eur J Oral Sci.

  17. The interplay between surface-water and hydrogen bonding in a water adlayer on Pt(111) and Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Delle Site, Luigi [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, D-55128 Mainz (Germany); Ghiringhelli, Luca M [Max-Planck-Institut fuer Polymerforschung, Ackermannweg 10, D-55128 Mainz (Germany); Andreussi, Oliviero [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa (Italy); Donadio, Davide [Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI-Campus, via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Parrinello, Michele [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa (Italy)

    2007-06-20

    The structure of a water adlayer on a Pt(111) surface is investigated by means of extensive first-principles calculations. Allowing for proton disorder, the ground state energy for the {radical}3 x {radical}3R30{sup o} structure can be found. This results from an interplay between water/metal chemical bonding and the hydrogen bonding of the water network. This picture is supported by substituting Pt(111) with Ag(111): the almost inert surface allows for the reconstruction of the hydrogen network. (fast track communication)

  18. The interplay between surface-water and hydrogen bonding in a water adlayer on Pt(111) and Ag(111)

    International Nuclear Information System (INIS)

    Delle Site, Luigi; Ghiringhelli, Luca M; Andreussi, Oliviero; Donadio, Davide; Parrinello, Michele

    2007-01-01

    The structure of a water adlayer on a Pt(111) surface is investigated by means of extensive first-principles calculations. Allowing for proton disorder, the ground state energy for the √3 x √3R30 o structure can be found. This results from an interplay between water/metal chemical bonding and the hydrogen bonding of the water network. This picture is supported by substituting Pt(111) with Ag(111): the almost inert surface allows for the reconstruction of the hydrogen network. (fast track communication)

  19. [Effect of hydrofluoric acid concentration on the surface morphology and bonding effectiveness of lithium disilicate glass ceramics to resin composites].

    Science.gov (United States)

    Hailan, Qian; Lingyan, Ren; Rongrong, Nie; Xiangfeng, Meng

    2017-12-01

    This study aimed at determining the influence of hydrofluoric acid (HF) in varied concentrations on the surface morphology of lithium disilicate glass ceramics and bond durability between resin composites and post-treated lithium disilicate glass ceramics. After being sintered, ground, and washed, 72 as-prepared specimens of lithium disilicate glass ceramics with dimensions of 11 mm×13 mm×2 mm were randomly divided into three groups. Each group was treated with acid solution [32% phosphoric acid (PA) or 4% or 9.5% HF] for 20 s. Then, four acidified specimens from each group were randomly selected. One of the specimens was used to observe the surface morphology using scanning electron microscopy, and the others were used to observe the surface roughness using a surface roughness meter (including Ra, Rz, and Rmax). After treatment with different acid solutions in each group, 20 samples were further treated with silane coupling agent/resin adhesive/resin cement (Monobond S/Multilink Primer A&B/Multilink N), followed by bonding to a composite resin column (Filtek™ Z350) with a diameter of 3 mm. A total of 20 specimens in each group were randomly divided into two subgroups, which were used for measuring the microshear bond strength, with one of them subjected to cool-thermal cycle for 20 000 times. The surface roughness (Ra, Rz, and Rmax) of lithium disilicate glass ceramics treated with 4% or 9.5% HF was significantly higher than that of the ceramic treated with PA (Pglass ceramics treated with 9.5% HF also demonstrated better surface roughness (Rz and Rmax) than that of the ceramics treated with 4% HF. Cool-thermal cycle treatment reduced the bond strength of lithium disilicate glass ceramics in all groups (Pglass ceramics treated with HF had higher bond strength than that of the ceramics treated with PA. The lithium disilicate glass ceramics treated with 4% HF had higher bond strength than that of the ceramics treated with 9.5% HF (Pglass ceramics treated with 4

  20. Effects of surface treatments on bond strength of dental Ti-20Cr and Ti-10Zr alloys to porcelain

    International Nuclear Information System (INIS)

    Lin, Hsi-Chen; Wu, Shih-Ching; Ho, Wen-Fu; Huang, Ling-Hsiu; Hsu, Hsueh-Chuan

    2010-01-01

    The purpose of this study was to investigate the effect of surface treatments, including sandblasting and grinding, on the bond strength between a low-fusing porcelain and c.p. Ti, Ti-20Cr and Ti-10Zr alloys. The surface treatments were divided into 2 groups. Grinding surface treatment was applied to the first group, which served as the control, and sandblasting was applied to the second group. After treatment, low-fusing porcelain (Titankeramik) was fired onto the surface of the specimens. A universal testing machine was used to perform a 3-point bending test. The metal-ceramic interfaces were subjected to scanning electron microscopic analysis. Of the sandblasted samples, the debonding test showed that Ti-20Cr alloy had the strongest (31.50 MPa) titanium-ceramic bond (p < 005), followed by c.p. Ti (29.4 MPa) and Ti-10Zr (24.3 MPa). Of the grinded samples, Ti-20Cr alloy showed 27.3 MPa titanium-ceramic bond (p < 005), followed by c.p. Ti (14.3 MPa) and Ti-10Zr (failure). The SEM micrographs of the metal surface after debonding showed residual porcelain retained on all samples. On the whole, sandblasting surface treatment appears to have had a more beneficial effect on the Ti-ceramic bond strength than grinding surface treatment. Furthermore, surface treatment of Ti-20Cr with either grinding or sandblasting resulted in adequate bond strength, which exceeded the lower limit value in the ISO 9693 standard (25 MPa).

  1. Dynamics of Dangling Od-Stretch at the Air/water Interface by Heterodyne-Detected Sfg Spectroscopy

    Science.gov (United States)

    Stiopkin, I. V.; Weeraman, C.; Shalhout, F.; Benderskii, A. V.

    2009-06-01

    SFG spectra of dangling OD-stretch at the air/water interface contain information on vibrational dephasing dynamics, ultrafast reorientational molecular motion, and vibrational energy transfer. To better separate these processes we conducted heterodyne-detected SFG experiments to measure real and imaginary contributions of the SFG spectrum of the dangling OD-stretch at the air/D_2O interface for SSP, PPP, and SPS polarizations. Variations in the temporal profiles of the SFG signals for these three polarizations will be also discussed.

  2. Effect of surface treatments on the bond strength of soft denture lining materials to an acrylic resin denture base.

    Science.gov (United States)

    Gundogdu, Mustafa; Yesil Duymus, Zeynep; Alkurt, Murat

    2014-10-01

    Adhesive failure between acrylic resin and resilient liner material is commonly encountered in clinical practice. The purpose of this study was to evaluate the effect of different surface treatments on the bond strength of 2 different resilient lining materials to an acrylic resin denture base. Ninety-six dumbbell-shaped specimens were fabricated from heat-polymerized acrylic resin, and 3 mm of the material was cut from the thin midsection. The specimens were divided into 6 groups according to their surface treatments: no surface treatment (control group), 36% phosphoric acid etching (acid group), erbium:yttrium-aluminum-garnet (Er:YAG) laser (laser group), airborne-particle abrasion with 50-μm Al2O3 particles (abrasion group), an acid+laser group, and an abrasion+laser group. The specimens in each group were divided into 2 subgroups according to the resilient lining material used: heat-polymerized silicone based resilient liner (Molloplast B) and autopolymerized silicone-based resilient liner (Ufi Gel P). After all of the specimens had been polymerized, they were stored in distilled water at 37°C for 1 week. A tensile bond strength test was then performed. Data were analyzed with a 2-way ANOVA, and the Sidak multiple comparison test was used to identify significant differences (α=.05). The effects of the surface treatments and resilient lining materials on the surface of the denture base resin were examined with scanning electron microscopy. The tensile bond strength was significantly different between Molloplast B and Ufi Gel P (P<.001). The specimens of the acid group had the highest tensile bond strength, whereas those of the abrasion group had the lowest tensile bond strength. The scanning electron microscopy observations showed that the application of surface treatments modified the surface of the denture base resin. Molloplast B exhibited significantly higher bond strength than Ufi Gel P. Altering the surface of the acrylic resin denture base with 36

  3. One-step surface modification for irreversible bonding of various plastics with a poly(dimethylsiloxane) elastomer at room temperature.

    Science.gov (United States)

    Wu, Jing; Lee, Nae Yoon

    2014-05-07

    Here, we introduce a simple and facile method for bonding poly(dimethylsiloxane) (PDMS) to various plastics irreversibly via a one-step chemical treatment at room temperature. This was mediated by poly[dimethylsiloxane-co-(3-aminopropyl)methylsiloxane] (amine-PDMS linker), a chemical composed of a PDMS backbone incorporating an amine side group. Room temperature anchoring of the linker was achieved via a reaction between the amine functionality of the linker and the carbon backbone of the plastics, thereby producing urethane bonds. This resulted in the PDMS functionality being exposed on the plastic surface, mimicking the surface properties of bulk PDMS. Following corona treatment of the PDMS-modified plastic and a sheet of PDMS, the two surfaces were placed in contact with each other and heated at 80 °C for 1 h. This resulted in permanent bonding between PDMS and the plastic. To examine the effectiveness of the amine-PDMS linker coating procedure, the surfaces were characterized by measuring water contact angles and by employing X-ray photoelectron spectroscopy (XPS). Polycarbonate (PC), poly(ethylene terephthalate) (PET), poly(vinylchloride) (PVC), and polyimide (PI) were bonded successfully to PDMS using this method, with bond strengths of PC, PET, and PVC with PDMS measured to be approximately 428.5 ± 17.9, 361.7 ± 31.2, and 430.0 ± 14.9 kPa, respectively. The bond strength of a PC-PC homogeneous assembly, also realized using the proposed method, was measured to be approximately 343.9 ± 7.4 kPa. Delamination tests revealed that the PC-PC assembly was able to withstand intense introduction of a liquid whose per-minute injection volume was approximately 278 times greater than the total internal volume of the microchannel fabricated in PC. This demonstrated the robustness of the seal formed using the proposed technique.

  4. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  5. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  6. Critical surface of the quenched bond-diluted cubic model in self-dual lattice: renormalisation group approach

    International Nuclear Information System (INIS)

    Silva, E.P. da; Tsallis, C.

    1991-01-01

    We propose a quite simple real space renormalisation group which enables us to calculate (for the first time as far as we know, and presumably with high precision) the critical surface of the quenched bond-diluted discrete N-vector ferromagnet. (author)

  7. Effects of surface conditioning on repair bond strengths of non-aged and aged microhybrid, nanohybrid, and nanofilled composite resins

    NARCIS (Netherlands)

    Rinastiti, Margareta; Siswomihardjo, Widowati; Busscher, Henk J.; Ozcan, Mutlu

    2011-01-01

    This study evaluates effects of aging on repair bond strengths of microhybrid, nanohybrid, and nanofilled composite resins and characterizes the interacting surfaces after aging. Disk-shaped composite specimens were assigned to one of three aging conditions: (1) thermocycling (5,000x, 5-55 degrees

  8. Development of Statistical Process Control Methodology for an Environmentally Compliant Surface Cleaning Process in a Bonding Laboratory

    Science.gov (United States)

    Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.

    1997-01-01

    Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor

  9. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brymora, Katarzyna; Fouineau, Jonathan; Eddarir, Asma; Chau, François; Yaacoub, Nader; Grenèche, Jean-Marc; Pinson, Jean; Ammar, Souad; Calvayrac, Florent

    2015-01-01

    Combining ab initio modeling and 57 Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces

  10. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Science.gov (United States)

    Brymora, Katarzyna; Fouineau, Jonathan; Eddarir, Asma; Chau, François; Yaacoub, Nader; Grenèche, Jean-Marc; Pinson, Jean; Ammar, Souad; Calvayrac, Florent

    2015-11-01

    Combining ab initio modeling and 57Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal-oxygen-carbon bonding and not a metal-carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  11. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Brymora, Katarzyna [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Fouineau, Jonathan; Eddarir, Asma; Chau, François [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Yaacoub, Nader; Grenèche, Jean-Marc [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France); Pinson, Jean; Ammar, Souad [Université Paris Diderot, Sorbonne Paris Cité, ITODYS CNRS UMR 7086 (France); Calvayrac, Florent, E-mail: florent.calvayrac@univ-lemans.fr [LUNAM Université du Maine, IMMM UMR CNRS 6283 (France)

    2015-11-15

    Combining ab initio modeling and {sup 57}Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal–oxygen–carbon bonding and not a metal–carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  12. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    Science.gov (United States)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  13. A comparative effect of various surface chemical treatments on the resin composite-composite repair bond strength

    Directory of Open Access Journals (Sweden)

    Shaloo Gupta

    2015-01-01

    Full Text Available Aim: The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin. Materials and Methods: Forty acrylic blocks were prepared in a cuboidal mould. In each block, a well of 5 mm diameter and 5 mm depth was prepared to retain the composite resin (Filtek™ Z350, 3M/ESPE. Aging of the composite discs was achieved by storing them in water at 37°C for 1 week, and after that were divided into 5 groups (n = 8 according to surface treatment: Group I- 37% phosphoric acid, Group II-10% hydrofluoric acid, Group III-30% citric acid, Group IV-7% maleic acid and Group V- Adhesive (no etchant. The etched surfaces were rinsed and dried followed by application of bonding agent (Adper™ Single Bond 2. 3M/ESPE. The repair composite was placed on aged composite, light-cured for 40 seconds and stored in water at 37°C for 1 week. Shear bond strength between the aged and the new composite resin was determined with a universal testing machine (crosshead speed of 0.5 mm/min. Statistical Analysis: The compressive shear strengths were compared for differences using ANOVA test followed by Tamhane′s T2 post hoc analysis. Results: The surface treatment with 10% hydrofluoric acid showed the maximum bond strength followed by 30% citric acid, 7% maleic acid and 37% phosphoric acid in decreasing order. Conclusion: The use of 10% hydrofluoric acid can be a good alternative for surface treatment in repair of composite resin restoration as compared to commonly used 37% orthophosphoric acid.

  14. Effect of surface treatment and type of cement on push-out bond strength of zirconium oxide posts.

    Science.gov (United States)

    Almufleh, Balqees S; Aleisa, Khalil I; Morgano, Steven M

    2014-10-01

    The effect of the surface treatment of zirconium oxide posts on their push-out bond strength is controversial. The purpose of this study was to compare the effects of 2 surface treatments on the bond strength of zirconium oxide posts cemented with different cements and to assess the failure mode. Seventy extracted human teeth were divided into 7 groups (n=10). Custom zirconium oxide posts (Cercon; Degudent) were fabricated for 6 groups. Posts in 3 groups were airborne-particle abraded (A). Posts in the other 3 groups were tribochemical silica coated (T). Three cements were used. Zinc phosphate cement was used to cement the zirconium oxide posts in groups AZ and TZ, RelyX ARC cement was used in groups ARA and TRA, and RelyX Unicem cement was used in groups ARU and TRU. Group C contained custom metal posts cemented with zinc phosphate cement. Specimens were horizontally sectioned into 3 sections and subjected to a push-out test. A mixed model analysis of variance, 1-way ANOVA, and the Tukey multiple comparison tests were used for statistical analysis. The highest push-out bond strength was recorded for Group ARU (21.03 MPa), and the lowest was recorded for Group ARA (7.57 MPa). No significant difference in push-out bond strength was found among the different surface treatments and root regions (P>.05). The type of cement had a significant effect on the push-out bond strength of zirconium oxide posts (P=.049). RelyX Unicem cement recorded (19.57 ±8.83 MPa) significantly higher push-out bond strength compared with zinc phosphate (9.95 ±6.31 MPa) and RelyX ARC cements (9.39 ±5.45 MPa). Adhesive failure at the post-cement interface was recorded for 75% of the posts cemented with zinc phosphate and RelyX ARC cements, while mixed failure was recorded for 75% of the posts cemented with RelyX Unicem cement. The type of cement used resulted in a statistically significant difference in the push-out bond strength of zirconium oxide posts, while both the surface treatment

  15. Surface Characterization of Some Novel Bonded Phase Packing Materials for HPLC Columns Using MAS-NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jude Abia

    2015-03-01

    Full Text Available Information on the surface properties of three novel chemically bonded phase packing materials for High performance liquid chromatography (HPLC were obtained using spectra obtained by solid state cross-polarization (CP magic-angle spinning (MAS nuclear magnetic resonance (NMR spectroscopic experiments for the 29Si, and 13C nuclei. These packing materials were: Cogent bidentate C18 bonded to type-C silica, hybrid packing materials XTerra MS C18, and XBridge Prep. C18. The spectra obtained using cross-polarization magic angle spinning (CP-MAS on the Cogent bidentate C18 bonded to type-C silica show the surface to be densely populated with hydride groups (Si-H, with a relative surface coverage exceeding 80%. The hybrid packing materials XTerra and XBridge gave spectra that reveal the silicon atoms to be bonded to organic moieties embedded in the molecular structure of these materials with over 90% of the alkyl silicon atoms found within the completely condensed silicon environments. The hydrolytic stability of these materials were investigated in acidic aqueous solutions at pHs of 7.0 and 3.0, and it was found that while the samples of XTerra and XBridge were not affected by hydrolysis at this pH range, the sample of Cogent lost a significant proportion of its Si-H groups after five days of treatment in acidic aqueous solution.

  16. New sol–gel refractory coatings on chemically-bonded sand cores for foundry applications to improve casting surface quality

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Poulsen, T.; Stage, R.K.

    2011-01-01

    Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined. The coa......Foundry refractory coatings protect bonded sand cores and moulds from producing defective castings during the casting process by providing a barrier between the core and the liquid metal. In this study, new sol–gel refractory coating on phenolic urethane cold box (PUCB) core was examined......–gel coated cores have better surface quality than those from uncoated cores and comparable surface quality with the commercial coatings. Therefore, the new sol–gel coating has a potential application in the foundry industry for improving the surface finish of castings thereby reducing the cost of fettling...

  17. Influence of surface conditions and silane agent on the bond of resin to IPS Empress 2 ceramic.

    Science.gov (United States)

    Spohr, Ana Maria; Sobrinho, Lourenço Correr; Consani, Simonides; Sinhoreti, Mario Alexandre Coelho; Knowles, Jonathan C

    2003-01-01

    The aim of this study was to evaluate the effect of different ceramic surface treatments on the tensile bond strength between IPS Empress 2 ceramic framework and Rely X adhesive resin cement, with or without the application of a silane coupling agent. One hundred twenty disks were made, embedded in resin, and randomly divided into six groups: group 1 = sandblasting (100 microm), no silanation; group 2 = sandblasting (100 microm), silane treatment; group 3 = sandblasting (50 microm), no silanation; group 4 = sandblasting (50 microm), silane treatment; group 5 = hydrofluoric acid etching, no silanation; and group 6 = hydrofluoric acid etching, silane treatment. The disks were bonded into pairs with adhesive resin cement. All samples were stored in distilled water at 37 degrees C for 24 hours and then thermocycled. The samples were submitted to tensile testing. The use of silane improved the bond strength in relation to the groups in which silane was not applied (P Empress 2 ceramic framework and resin agent.

  18. Bond strength of resin cement to dentin and to surface-treated posts of titanium alloy, glass fiber, and zirconia

    DEFF Research Database (Denmark)

    Sahafi, Alireza; Peutzfeldt, Anne; Asmussen, Erik

    2003-01-01

    PURPOSE: To determine the effect of surface treatments on bond strength of two resin cements (ParaPost Cement and Panavia F) to posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White), and zirconia (Cerapost), and to dentin. MATERIALS AND METHODS: After embedding, planar surfaces...... of posts (n = 9 to 14) and human dentin (n = 10) were obtained by grinding. The posts received one of three surface treatments: 1. roughening (sandblasting, hydrofluoric acid etching), 2. application of primer (Alloy Primer, Metalprimer II, silane), or 3. roughening followed by application of primer...

  19. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society...

  20. Study of the adsorption, electronic structure and bonding of C2H4 on the FeNi(1 1 1) surface

    International Nuclear Information System (INIS)

    Simonetti, S.; Brizuela, G.; Juan, A.

    2010-01-01

    The adsorption of C 2 H 4 on the FeNi(1 1 1) alloy surface has been studied by ASED-MO tight binding calculations. The C 2 H 4 molecule presents its most stable geometry with the C=C bond axis parallel to the surface along the [1, -1, 0] direction, bonded on top Fe atom and bonded along a Fe-Fe bridge site. As a consequence, the strength of the local Fe-Fe bond decreases between 37 and 62% of its original bulk value. This bond weakening is mainly due to the new C-Fe interactions however no Fe 3 C carbide formation is evidenced on surface. The Fe-Ni and Ni-Ni superficial bonds are only slightly modified.

  1. Determination of Optimal Parameters for Diffusion Bonding of Semi-Solid Casting Aluminium Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kaewploy Somsak

    2015-01-01

    Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa

  2. Comparative evaluation of tensile bond strength of silicone-based denture liners after thermocycling and surface treatment.

    Science.gov (United States)

    Kaur, Harsimran; Datta, Kusum

    2015-01-01

    To examine, evaluate, and compare the tensile bond strength of two silicone-based liners; one autopolymerizing and one heat cured, when treated with different chemical etchants to improve their adhesion with denture base resin. Hundred and sixty test specimens of heat-cured polymethyl methacrylate (PMMA) were fabricated; out of which 80 specimens were tested for tensile bond strength after bonding it to autopolymerizing resilient liner (Ufigel P) and rest 80 to heat-cured resilient liner (Molloplast B). Each main group was further divided into four subgroups of 20 specimens each, one to act as a control and three were subjected to surface treatment with different chemical etchants namely dichloromethane, MMA monomer, and chloroform. The two silicone-based denture liners were processed between 2 PMMA specimens (10 mm × 10 mm × 40 mm) in the space provided by a spacer of 3 mm, thermocycled (5-55°C) for 500 cycles, and then their tensile strength measurements were done in the universal testing machine. One-way ANOVA technique showed a highly significant difference in the mean tensile bond strength values for all the groups. The Student's t-test computed values of statistics for the compared groups were greater than the critical values both at 5% and at 1% levels. Surface treatment of denture base resin with chemical etchants prior to the application of silicone-based liner (Ufigel P and Molloplast-B) increased the tensile bond strength. The increase was the highest with specimens subjected to 180 s of MMA surface treatment and the lowest with control group specimens.

  3. Comparative evaluation of tensile bond strength of silicone-based denture liners after thermocycling and surface treatment

    Directory of Open Access Journals (Sweden)

    Harsimran Kaur

    2015-01-01

    Full Text Available Purpose: To examine, evaluate, and compare the tensile bond strength of two silicone-based liners; one autopolymerizing and one heat cured, when treated with different chemical etchants to improve their adhesion with denture base resin. Materials and Methods: Hundred and sixty test specimens of heat-cured polymethyl methacrylate (PMMA were fabricated; out of which 80 specimens were tested for tensile bond strength after bonding it to autopolymerizing resilient liner (Ufigel P and rest 80 to heat-cured resilient liner (Molloplast B. Each main group was further divided into four subgroups of 20 specimens each, one to act as a control and three were subjected to surface treatment with different chemical etchants namely dichloromethane, MMA monomer, and chloroform. The two silicone-based denture liners were processed between 2 PMMA specimens (10 mm × 10 mm × 40 mm in the space provided by a spacer of 3 mm, thermocycled (5-55°C for 500 cycles, and then their tensile strength measurements were done in the universal testing machine. Results: One-way ANOVA technique showed a highly significant difference in the mean tensile bond strength values for all the groups. The Student′s t-test computed values of statistics for the compared groups were greater than the critical values both at 5% and at 1% levels. Conclusion: Surface treatment of denture base resin with chemical etchants prior to the application of silicone-based liner (Ufigel P and Molloplast-B increased the tensile bond strength. The increase was the highest with specimens subjected to 180 s of MMA surface treatment and the lowest with control group specimens.

  4. Influence of an oxygen-inhibited layer on enamel bonding of dental adhesive systems: surface free-energy perspectives.

    Science.gov (United States)

    Ueta, Hirofumi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Oouchi, Hajime; Sai, Keiichi; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-02-01

    The influence of an oxygen-inhibited layer (OIL) on the shear bond strength (SBS) to enamel and surface free-energy (SFE) of adhesive systems was investigated. The adhesive systems tested were Scotchbond Multipurpose (SM), Clearfil SE Bond (CS), and Scotchbond Universal (SU). Resin composite was bonded to bovine enamel surfaces to determine the SBS, with and without an OIL, of adhesives. The SFE of cured adhesives with and without an OIL were determined by measuring the contact angles of three test liquids. There were no significant differences in the mean SBS of SM and CS specimens with or without an OIL; however, the mean SBS of SU specimens with an OIL was significantly higher than that of SU specimens without an OIL. For all three systems, the mean total SFE (γS), polarity force (γSp), and hydrogen bonding force (γSh) values of cured adhesives with an OIL were significantly higher than those of cured adhesives without an OIL. The results of this study indicate that the presence of an OIL promotes higher SBS of a single-step self-etch adhesive system, but not of a three-step or a two-step self-etch primer system. The SFE values of cured adhesives with an OIL were significantly higher than those without an OIL. The SFE characteristics of the OIL of adhesives differed depending on the type of adhesive. © 2015 Eur J Oral Sci.

  5. Hydrogenation of graphene nanoflakes and C-H bond dissociation of hydrogenated graphene nanoflakes: a density functional theory study

    Institute of Scientific and Technical Information of China (English)

    Sheng Tao; Hui-Ting Liu; Liu-Ming Yan; Bao-Hua Yue; Ai-Jun Li

    2017-01-01

    The Gibbs free energy change for the hydrogenation of graphene nanoflakes Cn (n =24,28,30 and 32) and the C-H bond dissociation energy of hydrogenated graphene nanoflakes CnHm (n =24,28,30 and 32;and m =1,2 and 3) are evaluated using density functional theory calculations.It is concluded that the graphene nanoflakes and hydrogenated graphene nanoflakes accept the ortharyne structure with peripheral carbon atoms bonded via the most triple bonds and leaving the least unpaired dangling electrons.Five-membered rings are formed at the deep bay sites attributing to the stabilization effect from the pairing of dangling electrons.The hydrogenation reactions which eliminate one unpaired dangling electron and thus decrease the overall multiplicity of the graphene nanoflakes or hydrogenated graphene nanoflakes are spontaneous with negative or near zero Gibbs free energy change.And the resulting C-H bonds are stable with bond dissociation energy in the same range as those of aromatic compounds.The other C-H bonds are not as stable attributing to the excessive unpaired dangling electrons being filled into the C-H anti-bond orbital.

  6. Peierls instability as the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers

    Science.gov (United States)

    Kang, Myung Ho; Kwon, Se Gab; Jung, Sung Chul

    2018-03-01

    Density functional theory (DFT) calculations are used to investigate the insulating origin of the Na/Si(111)-(3 × 1) surface with a Na coverage of 2/3 monolayers. In the coverage definition, one monolayer refers to one Na atom per surface Si atom, so this surface contains an odd number of electrons (i.e., three Si dangling-bond electrons plus two Na electrons) per 3 × 1 unit cell. Interestingly, this odd-electron surface has been ascribed to a Mott-Hubbard insulator to account for the measured insulating band structure with a gap of about 0.8 eV. Here, we instead propose a Peierls instability as the origin of the experimental band gap. The concept of Peierls instability is fundamental in one-dimensional metal systems but has not been taken into account in previous studies of this surface. Our DFT calculations demonstrate that the linear chain structure of Si dangling bonds in this surface is energetically unstable with respect to a × 2 buckling modulation, and the buckling-induced band gap of 0.79 eV explains well the measured insulating nature.

  7. Effects of silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets

    Directory of Open Access Journals (Sweden)

    Saadet Atsü

    2011-06-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the effects of tribochemical silica coating and silane surface conditioning on the bond strength of rebonded metal and ceramic brackets. MATERIAL AND METHODS: Twenty debonded metal and 20 debonded ceramic brackets were randomly assigned to receive one of the following surface treatments (n=10 for each group: (1 sandblasting (control; (2 tribochemical silica coating combined with silane. Brackets were rebonded to the enamel surface on the labial and lingual sides of premolars with a light-polymerized resin composite. All specimens were stored in distilled water for 1 week and then thermocycled (5,000 cycles between 5-55ºC. Shear bond strength values were measured using a universal testing machine. Student's t-test was used to compare the data (α=0.05. Failure mode was assessed using a stereomicroscope, and the treated and non-treated bracket surfaces were observed by scanning electron microscopy. RESULTS: Rebonded ceramic brackets treated with silica coating followed by silanization had significantly greater bond strength values (17.7±4.4 MPa than the sandblasting group (2.4±0.8 MPa, P<0.001. No significant difference was observed between the rebonded metal brackets treated with silica coating with silanization (15±3.9 MPa and the sandblasted brackets (13.6±3.9 MPa. Treated rebonded ceramic specimens primarily exhibited cohesive failure in resin and adhesive failure at the enamel-adhesive interface. CONCLUSIONS: In comparison to sandblasting, silica coating with aluminum trioxide particles followed by silanization resulted in higher bond strengths of rebonded ceramic brackets.

  8. Oxygen inhibition layer of composite resins: effects of layer thickness and surface layer treatment on the interlayer bond strength.

    Science.gov (United States)

    Bijelic-Donova, Jasmina; Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2015-02-01

    An oxygen inhibition layer develops on surfaces exposed to air during polymerization of particulate filling composite. This study assessed the thickness of the oxygen inhibition layer of short-fiber-reinforced composite in comparison with conventional particulate filling composites. The effect of an oxygen inhibition layer on the shear bond strength of incrementally placed particulate filling composite layers was also evaluated. Four different restorative composites were selected: everX Posterior (a short-fiber-reinforced composite), Z250, SupremeXT, and Silorane. All composites were evaluated regarding the thickness of the oxygen inhibition layer and for shear bond strength. An equal amount of each composite was polymerized in air between two glass plates and the thickness of the oxygen inhibition layer was measured using a stereomicroscope. Cylindrical-shaped specimens were prepared for measurement of shear bond strength by placing incrementally two layers of the same composite material. Before applying the second composite layer, the first increment's bonding site was treated as follows: grinding with 1,000-grit silicon-carbide (SiC) abrasive paper, or treatment with ethanol or with water-spray. The inhibition depth was lowest (11.6 μm) for water-sprayed Silorane and greatest (22.9 μm) for the water-sprayed short-fiber-reinforced composite. The shear bond strength ranged from 5.8 MPa (ground Silorane) to 36.4 MPa (water-sprayed SupremeXT). The presence of an oxygen inhibition layer enhanced the interlayer shear bond strength of all investigated materials, but its absence resulted in cohesive and mixed failures only with the short-fiber-reinforced composite. Thus, more durable adhesion with short-fiber-reinforced composite is expected. © 2014 Eur J Oral Sci.

  9. A study on poly (N-vinyl-2-pyrrolidone covalently bonded NiTi surface for inhibiting protein adsorption

    Directory of Open Access Journals (Sweden)

    Hongyan Yu

    2016-12-01

    Full Text Available Near equiatomic NiTi alloys have been extensively applied as biomaterials owing to its unique shape memory effect, superelasticity and biocompatibility. It has been demonstrated that surfaces capable of preventing plasma protein adsorption could reduce the reactivity of biomaterials with human blood. This motivated a lot of researches on the surface modification of NiTi alloy. In the present work, following heat and alkaline treatment and silanization by trichlorovinylsilane (TCVS, coating of poly (N-vinyl-2-pyrrolidone (PVP was produced on the NiTi alloy by gamma ray induced chemical bonding. The structures and properties of modified NiTi were characterized and in vitro biocompatibility of plasma protein adsorption was investigated. The results indicated that heat treatment at 823 K for 1 h could result in the formation of a protective TiO2 layer with “Ni-free” zone on NiTi surface. It was found that PVP was covalently bonded on NiTi surface to create a hydrophilic layer for inhibiting protein adsorption on the surface. The present work offers a green approach to introduce a bioorganic surface on metal and other polymeric or inorganic substrates by gamma irradiation.

  10. Surface properties and bond strength measurements of N-vinylcaprolactam (NVC)-containing glass-ionomer cements.

    Science.gov (United States)

    Moshaverinia, Alireza; Chee, Winston W; Brantley, William A; Schricker, Scott R

    2011-03-01

    N-vinylcaprolactam (NVC)-containing glass ionomers are promising dental restorative materials with improved mechanical properties; however, little information is available on other physical characteristics of these types of modified glass ionomers, especially their surface properties. Understanding the surface characteristics and behavior of glass ionomers is important for understanding their clinical behavior and predictability as dental restorative materials. The purpose of this study was to investigate the effect of NVC-containing terpolymers on the surface properties and bond strength to dentin of GIC (glass-ionomer cement), and to evaluate the effect of NVC-containing terpolymer as a dentin conditioner. The terpolymer of acrylic acid (AA)-itaconic acid (IA)-N-vinylcaprolactam (NVC) with a molar ratio of 8:1:1 (AA:IA:NVC) was synthesized by free radical polymerization and characterized using nuclear magnetic resonance ((1)H-NMR) and Fourier transform infrared spectroscopy (FTIR). The synthesized terpolymer was used in glass-ionomer cement formulations (Fuji IX GP). Ten disc-shaped specimens (12 × 1 mm) were mixed and fabricated at room temperature. Surface properties (wettability) of modified cements were studied by contact angle measurements as a function of time. Work of adhesion values of different surfaces were also determined. The effect of NVC-modified polyacid on the bond strength of glass-ionomer cement to dentin was investigated. The mean data obtained from contact angle and bonding strength measurements were subjected to t test and 2-way ANOVA (α=.05). NVC-modified glass-ionomer cements showed significantly (Pcement also showed significantly higher values for shear bond strength to dentin (8.7 ±0.15 MPa after 1 month) when compared to the control group (8.4 ±0.13 MPa after 1 month). NVC-containing terpolymers may enhance the surface properties of GICs and increase their bond strength to the dentin. Furthermore, NVC-containing polyelectrolytes are

  11. Nanofabrication on a Si surface by slow highly charged ion impact

    International Nuclear Information System (INIS)

    Tona, Masahide; Watanabe, Hirofumi; Takahashi, Satoshi; Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Sakurai, Makoto; Terui, Toshifumi; Mashiko, Shinro; Yamada, Chikashi; Ohtani, Shunsuke

    2007-01-01

    We have observed surface chemical reactions which occur at the impact sites on a Si(1 1 1)-(7 x 7) surface and a highly oriented pyrolytic graphite (HOPG) surface bombarded by highly charged ions (HCIs) by using a scanning tunneling microscope (STM). Crater structures are formed on the Si(1 1 1)-(7 x 7) surface by single I 50+ -impacts. STM-observation for the early step of oxidation on the surface suggests that the impact site is so active that dangling bonds created by HCI impacts are immediately quenched by reaction with residual gas molecules. We show also the selective adsorption of organic molecules at a HCI-induced impact site on the HOPG surface

  12. Light Makes a Surface Banana-Bond Split: Photodesorption of Molecular Hydrogen from RuO 2 (110)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Michael A.; Mu, Rentao; Dahal, Arjun; Lyubinetsky, Igor; Dohnálek, Zdenek; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2016-07-20

    The coordination of H2 to a metal center via polarization of its bond electron density, known as a Kubas complex, is the means by which H2 chemisorbs at Ru4+ sites on the rutile RuO2(110) surface. This distortion of electron density off an interatomic axis is often described as a ‘banana-bond.’ We show that the Ru-H2 banana-bond can be destabilized, and split, using visible light. Photodesorption of H2 (or D2) is evident by mass spectrometry and scanning tunneling microscopy. From time-dependent density functional theory, the key optical excitation splitting the Ru-H2 banana-bond involves an interband transition in RuO2 which effectively diminishes its Lewis acidity, and thereby weakening the Kubas complex. Such excitations are not expected to affect adsorbates on RuO2 given its metallic properties. Therefore, this common thermal co-catalyst employed in promoting water splitting is, itself, photo-active in the visible.

  13. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2016-06-01

    Bonding strength of thermal spray coatings depends on the interfacial adhesion between bond coat and substrate material. In this paper, NiCrAlY (Ni-164/211 Ni22 %Cr10 %Al1.0 %Y) coatings were developed on laser modified H13 tool steel surface using atmospheric plasma spray (APS). Different laser peak power, P p, and duty cycle, DC, were investigated in order to improve the mechanical properties of H13 tool steel surface. The APS spraying parameters setting for coatings were set constant. The coating microstructure near the interface was analyzed using IM7000 inverted optical microscope. Interface bonding of NiCrAlY was investigated by interfacial indentation test (IIT) method using MMT-X7 Matsuzawa Hardness Tester Machine with Vickers indenter. Diffusion of atoms along NiCrAlY coating, laser modified and substrate layers was investigated by energy-dispersive X-ray spectroscopy (EDXS) using Hitachi Tabletop Microscope TM3030 Plus. Based on IIT method results, average interfacial toughness, K avg, for reference sample was 2.15 MPa m1/2 compared to sample L1 range of K avg from 6.02 to 6.96 MPa m1/2 and sample L2 range of K avg from 2.47 to 3.46 MPa m1/2. Hence, according to K avg, sample L1 has the highest interface bonding and is being laser modified at lower laser peak power, P p, and higher duty cycle, DC, prior to coating. The EDXS analysis indicated the presence of Fe in the NiCrAlY coating layer and increased Ni and Cr composition in the laser modified layer. Atomic diffusion occurred in both coating and laser modified layers involved in Fe, Ni and Cr elements. These findings introduce enhancement of coating system by substrate surface modification to allow atomic diffusion.

  14. A Raman spectroscopy study on the effects of intermolecular hydrogen bonding on water molecules absorbed by borosilicate glass surface

    Science.gov (United States)

    Li, Fabing; Li, Zhanlong; Wang, Ying; Wang, Shenghan; Wang, Xiaojun; Sun, Chenglin; Men, Zhiwei

    2018-05-01

    The structural forms of water/deuterated water molecules located on the surface of borosilicate capillaries have been first investigated in this study on the basis of the Raman spectral data obtained at different temperatures and under atmospheric pressure for molecules in bulk and also for molecules absorbed by borosilicate glass surface. The strongest two fundamental bands locating at 3063 cm-1 (2438 cm-1) in the recorded Raman spectra are assigned here to the Osbnd H (Osbnd D) bond stretching vibrations and they are compared with the corresponding bands observed at 3124 cm-1 (2325 cm-1) in the Raman spectrum of ice Ih. Our spectroscopic observations have indicated that the structure of water and deuterated water molecules on borosilicate surface is similar to that of ice Ih (hexagonal phase of ice). These observations have also indicated that water molecules locate on the borosilicate surface so as to construct a bilayer structure and that strong and weak intermolecular hydrogen bonds are formed between water/deuterated molecules and silanol groups on borosilicate surface. In accordance with these findings, water and deuterated water molecules at the interface of capillary have a higher melting temperature.

  15. Effect of water storage and surface treatments on the tensile bond strength of IPS Empress 2 ceramic.

    Science.gov (United States)

    Salvio, Luciana A; Correr-Sobrinho, Lourenço; Consani, Simonides; Sinhoreti, Mário A C; de Goes, Mario F; Knowles, Jonathan C

    2007-01-01

    The aim of this study was to evaluate the effect of water storage (24 hours and 1 year) on the tensile bond strength between the IPS Empress 2 ceramic and Variolink II resin cement under different superficial treatments. One hundred and eighty disks with diameters of 5.3 mm at the top and 7.0 mm at the bottom, and a thickness of 2.5 mm were made, embedded in resin, and randomly divided into six groups: Groups 1 and 4 = 10% hydrofluoric acid for 20 seconds; Groups 2 and 5 = sandblasting for 5 seconds with 50 microm aluminum oxide; and Groups 3 and 6 = sandblasting for 5 seconds with 100 microm aluminum oxide. Silane was applied on the treated ceramic surfaces, and the disks were bonded into pairs with adhesive resin cement. The samples of Groups 1 to 3 were stored in distilled water at 37 degrees C for 24 hours, and Groups 4 to 6 were stored for 1 year. The samples were subjected to a tensile strength test in an Instron universal testing machine at a crosshead speed of 1.0 mm/min, until failure. The data were submitted to analysis of variance and Tukey's test (5%). The means of the tensile bond strength of Groups 1, 2, and 3 (15.54 +/- 4.53, 10.60 +/- 3.32, and 7.87 +/- 2.26 MPa) for 24-hour storage time were significantly higher than those observed for the 1-year storage (Groups 4, 5, and 6: 10.10 +/- 3.17, 6.34 +/- 1.06, and 2.60 +/- 0.41 MPa). The surface treatments with 10% hydrofluoric acid (15.54 +/- 4.53 and 10.10 +/- 3.17 MPa) showed statistically higher tensile bond strengths compared with sandblasting with 50 microm(10.60 +/- 3.32 and 6.34 +/- 1.06 MPa) and 100 microm (7.87 +/- 2.26 and 2.60 +/- 0.41 MPa) aluminum oxide for the storage time 24 hours and 1 year. Storage time significantly decreased the tensile bond strength for both ceramic surface treatments. The application of 10% hydrofluoric acid resulted in stronger tensile bond strength values than those achieved with aluminum oxide.

  16. Heterogeneous Amyloid β-Sheet Polymorphs Identified on Hydrogen Bond Promoting Surfaces Using 2D SFG Spectroscopy.

    Science.gov (United States)

    Ho, Jia-Jung; Ghosh, Ayanjeet; Zhang, Tianqi O; Zanni, Martin T

    2018-02-08

    Two-dimensional sum-frequency generation spectroscopy (2D SFG) is used to study the structures of the pentapeptide FGAIL on hydrogen bond promoting surfaces. FGAIL is the most amyloidogenic portion of the human islet amyloid polypeptide (hIAPP or amylin). In the presence of a pure gold surface, FGAIL does not form ordered structures. When the gold is coated with a self-assembled monolayer of mercaptobenzoic acid (MBA), 2D SFG spectra reveal features associated with β-sheets. Also observed are cross peaks between the FGAIL peptides and the carboxylic acid groups of the MBA monolayer, indicating that the peptides are in close contact with the surface headgroups. In the second set of samples, FGAIL peptides chemically ligated to the MBA monolayer also exhibited β-sheet features but with a much simpler spectrum. From simulations of the experiments, we conclude that the hydrogen bond promoting surface catalyzes the formation of both parallel and antiparallel β-sheet structures with several different orientations. When ligated, parallel sheets with only a single orientation are the primary structure. Thus, this hydrogen bond promoting surface creates a heterogeneous distribution of polymorph structures, consistent with a concentration effect that allows nucleation of many different amyloid seeding structures. A single well-defined seed favors one polymorph over the others, showing that the concentrating influence of a membrane can be counterbalanced by factors that favor directed fiber growth. These experiments lay the foundation for the measurement and interpretation of β-sheet structures with heterodyne-detected 2D SFG spectroscopy. The results of this model system suggest that a heterogeneous distribution of polymorphs found in nature are an indication of nonselective amyloid aggregation whereas a narrow distribution of polymorph structures is consistent with a specific protein or lipid interaction that directs fiber growth.

  17. Structure determination of the Si(001)-(2 x 1)-H reconstruction by surface X-ray diffraction: Weakening of the dimer bond by the addition of hydrogen

    DEFF Research Database (Denmark)

    Lauridsen, E.M.; Baker, J.; Nielsen, M.

    2000-01-01

    The atomic structure of the monohydride Si(001)-(2 x 1)-H reconstruction has been investigated by surface X-ray diffraction. Atomic relaxations down to the eighth layer have been determined. The bond length of the hydrogenated silicon dimers was found to be 2.47 +/- 0.02 Angstrom. which is longer...... than the dimer bond of the clean (2 x 1)-reconstructed Si(001) surface and also 5% longer than the bulk bond length of 2.35 Angstrom. The differences to the (2 x 1) structure of the clean surface are discussed in terms of the elimination of the weak pi-bond character of the dimer bond by the addition...

  18. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.

    Science.gov (United States)

    Shankar, Akshaya; Jagota, Anand; Mittal, Jeetain

    2012-10-11

    Single- and double-stranded DNA are increasingly being paired with surfaces and nanoparticles for numerous applications, such as sensing, imaging, and drug delivery. Unlike the majority of DNA structures in bulk that are stabilized by canonical Watson-Crick pairing between Ade-Thy and Gua-Cyt, those adsorbed on surfaces are often stabilized by noncanonical base pairing, quartet formation, and base-surface stacking. Not much is known about these kinds of interactions. To build an understanding of the role of non-Watson-Crick pairing on DNA behavior near surfaces, one requires basic information on DNA base pair stacking and hydrogen-bonding interactions. All-atom molecular simulations of DNA bases in two cases--in bulk water and strongly adsorbed on a graphite surface--are conducted to study the relative strengths of stacking and hydrogen bond interactions for each of the 10 possible combinations of base pairs. The key information obtained from these simulations is the free energy as a function of distance between two bases in a pair. We find that stacking interactions exert the dominant influence on the stability of DNA base pairs in bulk water as expected. The strength of stability for these stacking interactions is found to decrease in the order Gua-Gua > Ade-Gua > Ade-Ade > Gua-Thy > Gua-Cyt > Ade-Thy > Ade-Cyt > Thy-Thy > Cyt-Thy > Cyt-Cyt. On the other hand, mutual interactions of surface-adsorbed base pairs are stabilized mostly by hydrogen-bonding interactions in the order Gua-Cyt > Ade-Gua > Ade-Thy > Ade-Ade > Cyt-Thy > Gua-Gua > Cyt-Cyt > Ade-Cyt > Thy-Thy > Gua-Thy. Interestingly, several non-Watson-Crick base pairings, which are commonly ignored, have similar stabilization free energies due to interbase hydrogen bonding as Watson-Crick pairs. This clearly highlights the importance of non-Watson-Crick base pairing in the development of secondary structures of oligonucleotides near surfaces.

  19. Bond expectations for milled surfaces and typical tack coat materials used in Virginia.

    Science.gov (United States)

    2009-01-01

    The ultimate purpose of the program of research of which this study was a part is to identify a test method and acceptance criteria for bonding of HMA layers. In this study, three tasks were performed to help achieve that purpose: a laboratory compar...

  20. Performance of thin bonded epoxy overlays on asphalt and concrete bridge deck surfaces.

    Science.gov (United States)

    2014-06-01

    This study is the evaluation of two thin bonded epoxy overlays: SafeLane (marketed by Cargill), and Flexogrid : (developed by PolyCarb). SafeLane is advertised as an anti-skid/anti-icing overlay that stores deicing chemicals for : release during wint...

  1. New Concept of C–H and C–C Bond Activation via Surface Organometallic Chemistry

    KAUST Repository

    Samantaray, Manoja; Dey, Raju; Kavitake, Santosh Giridhar; Basset, Jean-Marie

    2015-01-01

    In this chapter we describe the recent applications of well-defined oxidesupported metal alkyls/alkylidenes/alkylidynes and hydrides of group IV, V, and VI transition metals in the field of C–H and C–C bond activation. The activation of ubiquitous C

  2. Chemial Bond and Stability of Adsorption of[Au(AsS3)]2- on the Surface of Kaolinite

    Institute of Scientific and Technical Information of China (English)

    MIN Xin-min; CHEN Yun; HONG Han-lie

    2004-01-01

    Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au(AsS3 ) ]2- on the surface of kaolinite. The correlation among structure, chemical bond and stability was discussed. Several models were selected with [ Au( AsS3 ) ]2- in different directions and sites. The resultsshow that the models with gold on the edge of kaolinite basal layer contain pincerlike bond among gold and severaloxygen atoms and form strong Au - O covalent bond, so these models are more stable than those with gold aboveor under the layer. The models with gold near to [ AlO2(OH)4 ] octahedra are more stable than those with goldnear to the vacancy without aluminium. These two stable tendencies in kaolinite- [ Au( AsS3 ) ]2- are stronger thanthat in kaolinite-Au systems. The interaction between [ Au( AsS3 ) ]2- and kaolinite is stronger than that betweengold and kaolinite, and this interaction is strong enough to form the surface complexes.

  3. Evaluation of Bond Strength between Grooved Titanium Alloy Implant Abutments and Provisional Veneering Materials after Surface Treatment of the Abutments: An In vitro Study.

    Science.gov (United States)

    Venkat, Gowtham; Krishnan, Murugesan; Srinivasan, Suganya; Balasubramanian, Muthukumar

    2017-01-01

    Titanium has become the material of choice with greater applications in dental implants. The success of the dental implant does not only depend on the integration of the implant to the bone but also on the function and longevity of the superstructure. The clinical condition that demands long-term interim prosthesis is challenging owing to the decreased bond between the abutment and the veneering material. Hence, various surface treatments are done on the abutments to increase the bond strength. This study aimed to evaluate the bond strength between the abutment and the provisional veneering materials by surface treatments such as acid etching, laser etching, and sand blasting of the abutment. Forty titanium alloy abutments of 3 mm diameter and 11 mm height were grouped into four groups with ten samples. Groups A, B, C, and D are untreated abutments, sand blasted with 110 μm aluminum particles, etched with 1% hydrofluoric acid and 30% nitric acid, and laser etched with Nd: YAG laser, respectively. Provisional crowns were fabricated with bis-acrylic resin and cemented with noneugenol temporary luting cement. The shear bond strength was measured in universal testing machine using modified Shell-Nielsen shear test after the cemented samples were stored in water at 25°C for 24 h. Load was applied at a constant cross head speed of 5 mm/min until a sudden decrease in resistance indicative of bond failure was observed. The corresponding force values were recorded, and statistical analysis was done using one-way ANOVA and Newman-Keuls post hoc test. The laser-etched samples showed higher bond strength. Among the three surface treatments, laser etching showed the highest bond strength between titanium alloy implant abutment and provisional restorations. The sand-blasted surfaces demonstrated a significant difference in bond strength compared to laser-etched surfaces. The results of this study confirmed that a combination of surface treatments and bond agents enhances the

  4. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin

    Energy Technology Data Exchange (ETDEWEB)

    Vechiato-Filho, Aljomar José, E-mail: aljomarvechiatoflo@gmail.com [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Silva Vieira Marques, Isabella da [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Santos, Daniela Micheline dos [Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Univ. Estadual Paulista — UNESP, Aracatuba, Sao Paulo (Brazil); Oliveira Matos, Adaias [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil); Rangel, Elidiane Cipriano; Cruz, Nilson Cristino da [Laboratory of Technological Plasmas (LaPTec), Engineering College, Univ. Estadual Paulista — UNESP, Sorocaba, Sao Paulo (Brazil); Barão, Valentim Adelino Ricardo [Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sao Paulo (Brazil)

    2016-03-01

    The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n = 24): Po (no surface treatment), SB (sandblasting), Po + NTP and SB + NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P < .001). SEM–EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB + NTP group showed the highest bond strength values (6.76 ± 0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P < .05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials. - Highlights: • We tested the bond strength between two widely used materials in dentistry (acrylic and titanium). • We performed an innovative surface treatment with nonthermal plasma. • Increasing adhesion will avoid complications of full-arch implant-retained prostheses.

  5. Effects of Surface Treatment Processes of SiC Ceramic on Interfacial Bonding Property of SiC-AFRP

    Directory of Open Access Journals (Sweden)

    WEI Ru-bin

    2016-12-01

    Full Text Available To improve the interfacial bonding properties of SiC-aramid fiber reinforced polymer matrix composites (SiC-AFRP, the influences of etching process of SiC ceramic, coupling treatment process, and the adhesives types on the interfacial peel strength of SiC-AFRP were studied. The results show that the surface etching process and coupling treatment process of silicon carbide ceramic can effectively enhance interfacial bonding property of the SiC-AFRP. After soaked the ceramic in K3Fe(CN6 and KOH mixed etching solution for 2 hours, and coupled with vinyl triethoxy silane coupling agent, the interfacial peel strength of the SiC-AFRP significantly increases from 0.45kN/m to 2.20kN/m. EVA hot melt film with mass fraction of 15%VA is ideal for interface adhesive.

  6. The influence of ceramic surface treatments on the micro-shear bond strength of composite resin to IPS Empress 2.

    Science.gov (United States)

    Panah, Faride Gerami; Rezai, Sosan Mir Mohammad; Ahmadian, Leila

    2008-07-01

    An increasing demand for esthetic restorations has resulted in the development of new ceramic systems, but fracture of veneering ceramics still remains the primary cause of failure. Porcelain repair frequently involves replacement with composite resin, but the bond strength between composite resin and all-ceramic coping materials has not been studied extensively. The purpose of this study was to evaluate the influence of different ceramic surface treatments on the micro-shear bond strength of composite resin to IPS Empress 2 coping material. Sixteen 7 x 7 x 1 mm(3) lithia disilicate-based core ceramic plates were fabricated using the lost wax technique. The plates were divided into eight groups, and eight different surface treatments were performed: (1) no treatment (NT); (2) airborne-particle abrasion with 50-mum alumina particles (Al); (3) acid etching with 9.6% hydrofluoric acid for 1 min (HF); (4) silane coating (S); (5) AlHF; (6) AlS; (7) HFS; and (8) AlHFS. Then, ten composite resin cylinders (0.8-mm diameter x 0.5-mm height) were light-polymerized onto the ceramic plates in each group. Each specimen was subjected to a shear load at a crosshead speed of 0.5 mm/min until fracture occurred. The fracture sites were examined with scanning electron microscopy (SEM) to determine the location of failure during debonding and to examine the surface treatment effects. One-way analysis of variance (ANOVA) and multiple comparison (Dunnet T3) tests were used for statistical analysis of data. The mean micro-shear bond strength values (SD) in MPa were--NT: 4.10 (3.06), Al: 7.56 (4.11), HF: 14.04 (2.60), S: 14.58 (2.14), AlHF: 15.56 (3.36), AlS: 23.02 (4.17), HFS: 24.7 (4.43), AlHFS: 26.0 (3.71). ANOVA indicated the influence of surface treatment was significant (p Empress 2 was significantly different depending on the surface treatment method. Among the investigated methods, silane coating after airborne-particle abrasion and etching was the most effective surface treatment

  7. Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics

    Science.gov (United States)

    Wang, Z. F.; Liu, Feng

    2015-07-01

    Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1 /3 monolayer halogen coverage. The s p3 dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (˜106 m /s ) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.

  8. Single OR molecule and OR atomic circuit logic gates interconnected on a Si(100)H surface

    International Nuclear Information System (INIS)

    Ample, F; Joachim, C; Duchemin, I; Hliwa, M

    2011-01-01

    Electron transport calculations were carried out for three terminal OR logic gates constructed either with a single molecule or with a surface dangling bond circuit interconnected on a Si(100)H surface. The corresponding multi-electrode multi-channel scattering matrix (where the central three terminal junction OR gate is the scattering center) was calculated, taking into account the electronic structure of the supporting Si(100)H surface, the metallic interconnection nano-pads, the surface atomic wires and the molecule. Well interconnected, an optimized OR molecule can only run at a maximum of 10 nA output current intensity for a 0.5 V bias voltage. For the same voltage and with no molecule in the circuit, the output current of an OR surface atomic scale circuit can reach 4 μA.

  9. Evolution of the structure and hydrogen bonding configuration in annealed hydrogenated a-Si/a-Ge multilayers and layers

    International Nuclear Information System (INIS)

    Frigeri, C.; Nasi, L.; Serenyi, M.; Khanh, N.Q.; Csik, A.; Szekrenyes, Zs.; Kamaras, K.

    2012-01-01

    Complete text of publication follows. Among the present available renewable energy sources, energy harvesting from sunlight by means of photovoltaic cells is the most attractive one. In order to win over the traditional energy resources both efficiency and cost effectiveness of photovoltaic conversion must be optimized as far as possible. Efficiency is basically improved by the use of multijunction cells containing semiconductors with different band-gap. In this respect, the III-V compounds guarantee the highest efficiency, up to 41.6 %, but they are quite expensive. The latter drawback also affects other compounds like CdTe and CuIn 1-x Ga x Se 2 (CIGS). Si based solar devices have lower efficiency but are much more cost effective. They can use either crystalline or amorphous Si thin layers or Si nanoparticles. As to the thin films, amorphous Si (a-Si) is preferred to crystalline Si as it has a wider band-gap (1.7 instead of 1.1 eV) thus harvesting a larger portion of solar energy. A tandem cell is formed by using a-SiGe which has a smaller band-gap tunable between 1.1 and 1.7 eV depending on the Ge content. The best value should be 1.4 eV since the material properties seem to degrade below this value whilst the photo-conductivity drops after light soaking if the band gap exceeds 1.4 eV. A key issue of amorphous Si, Ge and SiGe is the high density of defects in the band-gap mostly due to dangling bonds whose density is particularly high (even up to 5 x10 19 cm -3 ) since the lattice is significantly disordered with distorted bond angles and lengths. This increases the probability of rupture of the Si-Si (Ge-Ge) bonds, i.e., formation of dangling bonds. Owing to the fact that hydrogen with its single electron structure can close the dangling bonds, their density can be reduced even by 4 orders of magnitude by doping with hydrogen. However, H is unstable in the host lattice. In fact, several findings showed its evolution from the thin layer upon annealing and that

  10. Special Advanced Studies for Pollution Prevention. Delivery Order 0017: Sol-Gel Surface Preparation for Carbon Steel and Stainless Steel Bonding

    National Research Council Canada - National Science Library

    Zheng, Haixing

    1997-01-01

    The objective of this program is to study the feasibility of using sol-gel active alumina coatings for the surface preparation of carbon steel and stainless steel for adhesive bonding, and to optimize...

  11. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  12. To evaluate and compare the effect of different Post Surface treatments on the Tensile Bond Strength between Fiber Posts and Composite Resin.

    OpenAIRE

    Shori, Deepa; Pandey, Swapnil; Kubde, Rajesh; Rathod, Yogesh; Atara, Rahul; Rathi, Shravan

    2013-01-01

    Background: Fiber posts are widely used for restoration of mutilated teeth that lack adequate coronal tooth structure to retain a core for definitive restoration, bond between the fiber post and composite material depends upon the chemical reaction between the post surface and the resin material used for building up the core. In attempt to maximize the resin bonding with fiber post, different post surface conditioning is advocated. Therefore the purpose of the study is to examine the interfac...

  13. Effects of different surface treatments and accelerated artificial aging on the bond strength of composite resin repairs.

    Science.gov (United States)

    Melo, Marco Aurélio Veiga de; Moysés, Marcos Ribeiro; Santos, Saulo Galvão dos; Alcântara, Carlos Eduardo Pinto; Ribeiro, José Carlos Rabelo

    2011-01-01

    The purpose of the present study was to assess the bond strength of composite resin repairs subjected to different surface treatments and accelerated artificial aging. 192 cylindrical samples (CSs) were prepared and divided into 24 groups (n = 8). Half of the CSs were stored in water for 24 h, and the other half were subjected to C-UV accelerated aging for non-metallic specimens. The treatments were phosphoric acid + silane + adhesive (PSA); phosphoric acid + adhesive (PA); diamond bur + phosphoric acid + silane + adhesive (DPSA); diamond bur + phosphoric acid + adhesive (DPA); air abrasion + phosphoric acid + silane + adhesive (APSA); and air abrasion + phosphoric acid + adhesive (APA). The repair was performed and the specimens were again aged as described above. A control group (n = 8) was established and did not receive any type of aging or surface treatment. The specimens were loaded to failure in shear mode with a crosshead speed of 0.5 mm/min until fracture. Data were analyzed by one-way ANOVA/Tukey's test (p aged PSA and PA achieved low bonding values and were statistically different from the control group, whereas the non-aged PSA and PA presented no statistically significant difference from the control group. Repairs with the proposed surface treatments were viable on both recent and aged restorations; however, phosphoric acid + adhesive alone were effective only on recent restorations.

  14. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics.

    Science.gov (United States)

    Yenisey, Murat; Dede, Doğu Ömür; Rona, Nergiz

    2016-01-01

    This study investigated the effects of surface treatments on bond strength between resin cement and differently sintered zirconium-oxide ceramics. 220 zirconium-oxide ceramic (Ceramill ZI) specimens were prepared, sintered in two different period (Short=Ss, Long=Ls) and divided into ten treatment groups as: GC, no treatment; GSil, silanized (ESPE-Sil); GSilPen, silane flame treatment (Silano-Pen); GSb, sandblasted; GSbSil, sandblasted+silanized; GSbCoSil, sandblasted+silica coated (CoJet)+silanized; GSbRoSil, sandblasted+silica coated (Rocatech-Plus)+silanized; GSbDSil, sandblasted+diamond particle abraded (Micron MDA)+silanized; GSbSilPen, sandblasted+silane flame treatment+silanized; GSbLSil, sandblasted+Er:Yag (Asclepion-MCL30) laser treated+silanized. The composite resin (Filtek Z-250) cylinders were cemented to the treated ceramic surfaces with a resin cement (Panavia F2.0). Shear bond strength test was performed after specimens were stored in water for 24h and thermo-cycled for 6000 cycles (5-55 °C). Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tamhane's multiple comparison test (α=0.05). According to the ANOVA, sintering time, surface treatments and their interaction were statistically significant (pzirconium-oxide ceramics. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  15. Effects of different surface treatments and accelerated artificial aging on the bond strength of composite resin repairs

    Directory of Open Access Journals (Sweden)

    Marco Aurélio Veiga de Melo

    2011-12-01

    Full Text Available The purpose of the present study was to assess the bond strength of composite resin repairs subjected to different surface treatments and accelerated artificial aging. 192 cylindrical samples (CSs were prepared and divided into 24 groups (n = 8. Half of the CSs were stored in water for 24 h, and the other half were subjected to C-UV accelerated aging for non-metallic specimens. The treatments were phosphoric acid + silane + adhesive (PSA; phosphoric acid + adhesive (PA; diamond bur + phosphoric acid + silane + adhesive (DPSA; diamond bur + phosphoric acid + adhesive (DPA; air abrasion + phosphoric acid + silane + adhesive (APSA; and air abrasion + phosphoric acid + adhesive (APA. The repair was performed and the specimens were again aged as described above. A control group (n = 8 was established and did not receive any type of aging or surface treatment. The specimens were loaded to failure in shear mode with a crosshead speed of 0.5 mm/min until fracture. Data were analyzed by one-way ANOVA/Tukey's test (p < 0.05. No statistically significant differences were found among DPSA, DPA, APSA, APA, and the control group. The aged PSA and PA achieved low bonding values and were statistically different from the control group, whereas the non-aged PSA and PA presented no statistically significant difference from the control group. Repairs with the proposed surface treatments were viable on both recent and aged restorations; however, phosphoric acid + adhesive alone were effective only on recent restorations.

  16. Energetic and Spatial Bonding Properties from Angular Distributions of Ultraviolet Photoelectrons: Application to the GaAs(110) Surface

    International Nuclear Information System (INIS)

    Fadley, C.S.; Fadley, C.S.; Van Hove, M.A.

    1997-01-01

    Angle-resolved ultraviolet photoemission spectra are interpreted by combining the energetics and spatial properties of the contributing states. One-step calculations are in excellent agreement with new azimuthal experimental data for GaAs(110). Strong variations caused by the dispersion of the surface bands permit an accurate mapping of the electronic structure. The delocalization of the valence states is discussed analogous to photoelectron diffraction. The spatial origin of the electrons is determined, and found to be strongly energy dependent, with uv excitation probing the bonding region. copyright 1997 The American Physical Society

  17. Bond-Strengthening in Staphylococcal Adhesion to Hydrophilic and Hydrophobic Surfaces Using Atomic Force Microscopy

    NARCIS (Netherlands)

    Boks, N.P.; Busscher, H.J.; Mei, van der H.C.; Norde, W.

    2008-01-01

    Time-dependent bacterial adhesion forces of four strains of Staphylococcus epidermidis to hydrophobic and hydrophilic surfaces were investigated. Initial adhesion forces differed significantly between the two surfaces and hovered around -0.4 nN. No unambiguous effect of substratum surface

  18. Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers.

    Science.gov (United States)

    Zhu, Guifen; Gao, Xia; Wang, Xiaolong; Wang, Jianji; Fan, Jing

    2018-01-12

    To illuminate the influence mechanism of anionic structure of ionic liquids (ILs) on the adsorption performance of surface molecularly imprinted polymers (MIPs), in this work, six newly designed MIPs were prepared on the surface of amino-poly(styrene-divinylbenzene) particles by using imidazolium ILs with the same cation [C 4 mim] + but different anions (Cl, CH 3 SO 3 , PF 6 , BF 4 , C 4 F 7 O 2 , C 4 F 9 SO 3 ) as template molecules, methacrylic acid as functional monomer, and ethylene dimethacrylate as cross-linker. The resulting MIP materials were characterized by IR and SEM, and the influence of hydrogen bond accepting ability of anions on the adsorption performance of the MIPs for the ILs was investigated in acetonitrile. It was found that adsorption capacity of the MIPs towards the ILs decreased in the order MIP [C4mim][Cl]  > MIP [C4mim][C4F7O2]  ≥ MIP [C4mim][BF4] and MIP [C4mim][CH3SO3]  > MIP [C4mim][C4F9SO3]  > MIP [C4mim][PF6] , which is in good agreement with the ability of anions of the ILs to form hydrogen bonds. Ultraviolet, 1 H-NMR and 35 Cl-NMR spectroscopy was then used to study the interactions of anions of the ILs with the functional monomer. It was found that the hydrogen bond interaction between anions of the ILs and acidic proton of the functional monomer was the main driving force for the high adsorption selectivity of the imprinted polymers, and the stronger hydrogen bond interaction indicates higher binding capacity and higher selectivity of the polymers towards the ILs. It was also verified that the ILs with stronger hydrogen bond accepting ability of anions could be selectively extracted by the corresponding IL-MIPs. These results may provide new insight into the recognition mechanism of MIPs for ILs, and are also useful for the rational design of this new class of imprinting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Heat treatment following surface silanization in rebonded tribochemical silica-coated ceramic brackets: shear bond strength analysis

    Directory of Open Access Journals (Sweden)

    Emilia Adriane Silva

    2013-07-01

    Full Text Available OBJECTIVE: This study aimed to evaluate the effects of heat treatment on the tribochemical silica coating and silane surface conditioning and the bond strength of rebonded alumina monocrystalline brackets. MATERIAL AND METHODS: Sixty alumina monocrystalline brackets were randomly divided according to adhesive base surface treatments (n=20: Gc, no treatment (control; Gt, tribochemical silica coating + silane application; Gh, as per Gt + post-heat treatment (air flux at 100ºC for 60 s. Brackets were bonded to the enamel premolars surface with a light-polymerized resin and stored in distilled water at 37ºC for 100 days. Additionally, half the specimens of each group were thermocycled (6,000 cycles between 5-55ºC (TC. The specimens were submitted to the shear bond strength (SBS test using a universal testing machine (1 mm/min. Failure mode was assessed using optical and scanning electron microscopy (SEM, together with the surface roughness (Ra of the resin cement in the bracket using interference microscopy (IM. 2-way ANOVA and the Tukey test were used to compare the data (p>0.05. RESULTS: The strategies used to treat the bracket surface had an effect on the SBS results (p=0.0, but thermocycling did not (p=0.6974. Considering the SBS results (MPa, Gh-TC and Gc showed the highest values (27.59±6.4 and 27.18±2.9 and Gt-TC showed the lowest (8.45±6.7. For the Ra parameter, ANOVA revealed that the aging method had an effect (p=0.0157 but the surface treatments did not (p=0.458. For the thermocycled and non-thermocycled groups, Ra (µm was 0.69±0.16 and 1.12±0.52, respectively. The most frequent failure mode exhibited was mixed failure involving the enamel-resin-bracket interfaces. CONCLUSION: Regardless of the aging method, Gh promoted similar SBS results to Gc, suggesting that rebonded ceramic brackets are a more effective strategy.

  20. Peptide bond formation of alanine on silica and alumina surfaces as a catalyst

    Science.gov (United States)

    Sánchez Arenillas, M.; Mateo-Martí, E.

    2012-09-01

    Polymerization of amino acids has been important for the origin of life because the peptides may have been the first self-replicating systems. The amino acid concentrations in the oceans may have been too diluted in the early phases of the Earth. The formation of the biopolymers could have been due to the catalytic action of various minerals (such as silica or alumina). Our work is based on the comparison between alumina and silica minerals with and without prior activation of their silanol groups for the formation of peptide bonds using alanina like amino acid which it is the simplest quiral amino acid.

  1. Evaluation of Alternative Peel Ply Surface Preparation Methods of SC-15 Epoxy / Fiberglass Composite Surfaces for Secondary Bonding

    Science.gov (United States)

    2014-01-01

    prepared composite surfaces. Examination of the surface compositions will show differences in makeup and identify any transfer of contaminants...by carefully brushing the specimen with a lint-free cloth followed by a high-pressure nitrogen gas stream. 3.2 X-ray Photospectroscopy (XPS

  2. In vitro evaluation of repair bond strength of composite: Effect of surface treatments with bur and laser and application of universal adhesive.

    Science.gov (United States)

    Kiomarsi, Nazanin; Espahbodi, Melika; Chiniforush, Nasim; Karazifard, Mohammad Javd; Kamangar, Sedighe Sadat Hashemi

    2017-09-30

    This study aimed to assess the effect of surface treatment by bur and laser and application of universal adhesive on repair bond strength of composite resin. A total of 120 composite blocks measuring 6×4×4 mm were fabricated of Filtek Z250 composite. All samples were subjected to 5,000 thermal cycles and divided into two groups for surface preparation by bur and by Er,Cr:YSGG laser (n = 60). The surfaces were then etched with orthophosphoric acid, rinsed with water and divided into three groups (silane, silane plus Single Bond and silane plus Single Bond Universal). Repair composite was then bonded to aged composite. Half of the samples in each group were stored in distilled water at 37°C for 24 hours and the other half underwent 5000 thermal cycles. All samples were then subjected to shear bond strength testing using a universal testing machine at a crosshead speed of 1 mm/minute. The data were analyzed using one-way ANOVA and Tukey's HSD test. Mode of failure was determined using a stereomicroscope. Bur preparation plus universal adhesive yielded the highest bond strength (30.16 µ 2.26 MPa). Laser plus silane yielded the lowest bond strength (5.63 µ 2.43 MPa). Bur preparation yielded significantly higher bond strength than laser (P composite by bur and application of universal adhesive can improve the repair bond strength of composite. Application of silane (without adhesive) in the process of repair cannot provide adequately high repair bond strength.

  3. Novel fabrication method for 3D microstructures using surface-activated bonding and its application to micro-mechanical parts

    Science.gov (United States)

    Yamada, Takayuki; Takahashi, Mutsuya; Ozawa, Takashi; Tawara, Satoshi; Goto, Takayuki

    2002-11-01

    The purpose of this work is to demonstrate that a novel fabrication method for 3-D microstructures (FORMULA) is applicable to fabrication of micro mechanical parts with a large flexibility. This method is a kind of layer manufacturing method of thin films for metallic or dielectric microstructures using surface-activated bonding (SAB). The bonding interfaces of thin films are investigated by transmission electron microscope (TEM). Voids were observed at the interfaces of both pure aluminum films and Al-Cu alloy films. The ratio of void on the Al-Cu/Al-Cu interface is much larger than that of Al/Al interface, although the films have the same surface roughness of 3nm in Ra (average roughness). And approximately 10nm-thick amorphous intermediate layers were found at the interfaces. Furthermore, we have fabricated a micro gear of 900μm in diameter and 200μm in height, which is about ten times as large as our previous test pieces. Overhung structures such as a bridge structure and a cantilever were also fabricated without supporting layers beneath them.

  4. Adsorption of cobalt (II) octaethylporphyrin and 2H-octaethylporphyrin on Ag(111): new insight into the surface coordinative bond

    International Nuclear Information System (INIS)

    Bai Yun; Buchner, Florian; Kellner, Ina; Schmid, Martin; Vollnhals, Florian; Steinrueck, Hans-Peter; Marbach, Hubertus; Michael Gottfried, J

    2009-01-01

    The adsorption of cobalt (II) octaethylporphyrin (CoOEP) and 2H-octaethylporphyrin (2HOEP) on Ag(111) was investigated with scanning tunneling microscopy (STM) and photoelectron spectroscopy (XPS/UPS), in order to achieve a detailed mechanistic understanding of the surface chemical bond of coordinated metal ions. Previous studies of related systems, especially cobalt (II) tetraphenylporphyrin (CoTPP) on Ag(111), have revealed adsorption-induced changes of the oxidation state of the Co ion and the appearance of a new valence state. These effects were attributed to a covalent interaction of the Co ion with the silver substrate. However, recent studies show that the porphyrin ligand of adsorbed CoTPP undergoes a pronounced saddle-shape distortion, which could alter the electronic structure and thus provide an alternative explanation for the new valence state previously attributed to the formation of a surface coordinative bond. With the octaethylporphyrins investigated here, which were found to adsorb in a flat, undistorted conformation on Ag(111), the effects of geometric distortion can be separated from those of the electronic interaction with the substrate. The CoOEP monolayer gives rise to an adsorption-induced shift of the Co 2p signal (-1.9 eV relative to the multilayer), a new valence state at 0.6 eV below the Fermi energy, and a work-function shift of -0.84 eV (2HOEP: -0.44 eV) relative to the clean surface. Comparison with data for the distorted CoTPP confirms the existence of a covalent ion-surface interaction that is insensitive to the conformation of the ligand.

  5. Subsurface hydrogen bonds at the polar Zn-terminated ZnO(0001) surface

    DEFF Research Database (Denmark)

    Hellström, Matti; Beinik, Igor; Broqvist, Peter

    2016-01-01

    techniques, we find that the polar Zn-terminated ZnO(0001) surface becomes excessively Zn deficient during high-temperature annealing (780 K) in ultrahigh vacuum (UHV). The Zn vacancies align themselves into rows parallel to the [10-10] direction, and the remaining surface Zn ions alternately occupy wurtzite...

  6. Methods for surface treating metals, ceramics, and plastics before adhesive bonding

    International Nuclear Information System (INIS)

    Althouse, L.P.

    1976-01-01

    Methods for pretreating the surfaces of metals, ceramics, and plastics before they are coated with adhesive and used in assembly are described. The treatments recommended have been used successfully in the laboratory at LLL. Many are used in the assembly of nuclear devices. However, an unusual alloy or complex configuration may require trials before a specific surface treatment is chosen

  7. Bonding xenon and krypton on the surface of uranium dioxide single crystal

    Directory of Open Access Journals (Sweden)

    Dąbrowski Ludwik

    2014-08-01

    Full Text Available We present density functional theory (DFT calculation results of krypton and xenon atoms interaction on the surface of uranium dioxide single crystal. A pseudo-potential approach in the generalised gradient approximation (GGA was applied using the ABINIT program package. To compute the unit cell parameters, the 25 atom super-cell was chosen. It has been revealed that close to the surface of a potential well is formed for xenon and krypton atom due to its interaction with the atoms of oxygen and uranium. Depth and shape of the well is the subject of ab initio calculations in adiabatic approximation. The calculations were performed both for the case of oxygenic and metallic surfaces. It has been shown that the potential well for the oxygenic surface is deeper than for the metallic surface. The thermal stability of immobilising the atoms of krypton and xenon in the potential wells were evaluated. The results are shown in graphs.

  8. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Holly J. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, MS 39762 (United States)], E-mail: hjp2@msstate.edu; Schulz, Kirk H. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, MS 39762 (United States); Bumgardner, Joel D. [Department of Biomedical Engineering, Herff College of Engineering, University of Memphis, 330 Engineering Technology Building, Memphis, TN 38152 (United States); Walters, Keisha B. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Mississippi State University, Box 9595, Mississippi State, MS 39762 (United States)

    2008-05-30

    A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the

  9. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan

    International Nuclear Information System (INIS)

    Martin, Holly J.; Schulz, Kirk H.; Bumgardner, Joel D.; Walters, Keisha B.

    2008-01-01

    A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the

  10. Development of ELID mirror surface grinding by cast iron bond grinding wheel. Ohkochi memorial technology prize; Chutetsu bond toishi ni yoru denkai inpurosesu doresshingu (ELID) kyomen kensakuho no kaihatsu. Okochi kinen gijutsusho jusho ni yosete

    Energy Technology Data Exchange (ETDEWEB)

    Omori, H.; Takahashi, I. [Institute of Physical and Chemical Research, Tokyo (Japan); Nakagawa, T. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science; Hagiuda, Y.; Karikome, K. [Tokyo Metropolitan College of Aeronautical Engineering, Tokyo (Japan)

    1997-08-01

    Development was accomplished on the electrolytic in-process dressing (ELID) mirror surface grinding process using a cast iron bonded grinding wheel. This paper describes the history of the development, which may be summarized as follows: a study was begun on powder forging of cutting chips in 1970; a research was started on powder forging of decarburized cast iron powder; developments were made on powder metallurgy of cast irons and cast iron bonded lapping tools in 1980, and cast iron bonded diamond grinding wheels were put on the market; a high-efficiency grinding process using MC and cast iron fiber-bonded grinding wheels were developed in 1985 and the grinding wheels made therefrom were put on the market; and a study was begun on the ELID grinding in 1987, and marketing was started on power supply, grinding liquid and tools for the ELID grinding process in 1990. Discussions on converting raw materials for the powder forging into cutting chips have triggered developing the cast iron bonded grinding wheel. The cast iron bonded diamond grinding wheel improves dressability and sharpness of conventional grinding wheels. The grinding wheel is fabricated by mixing carbonyl iron powder, diamond grinding grains and cast iron powder, pressing the mixture in a die, sintering it at 1140 degC, and assembling and dressing the sinter. The grinding stone can grind high-tech materials. 4 figs.

  11. The Effect of Phosphoric Acid Pre-etching Times on Bonding Performance and Surface Free Energy with Single-step Self-etch Adhesives.

    Science.gov (United States)

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M

    2016-01-01

    The purpose of this study was to evaluate the effect of phosphoric acid pre-etching times on shear bond strength (SBS) and surface free energy (SFE) with single-step self-etch adhesives. The three single-step self-etch adhesives used were: 1) Scotchbond Universal Adhesive (3M ESPE), 2) Clearfil tri-S Bond (Kuraray Noritake Dental), and 3) G-Bond Plus (GC). Two no pre-etching groups, 1) untreated enamel and 2) enamel surfaces after ultrasonic cleaning with distilled water for 30 seconds to remove the smear layer, were prepared. There were four pre-etching groups: 1) enamel surfaces were pre-etched with phosphoric acid (Etchant, 3M ESPE) for 3 seconds, 2) enamel surfaces were pre-etched for 5 seconds, 3) enamel surfaces were pre-etched for 10 seconds, and 4) enamel surfaces were pre-etched for 15 seconds. Resin composite was bonded to the treated enamel surface to determine SBS. The SFEs of treated enamel surfaces were determined by measuring the contact angles of three test liquids. Scanning electron microscopy was used to examine the enamel surfaces and enamel-adhesive interface. The specimens with phosphoric acid pre-etching showed significantly higher SBS and SFEs than the specimens without phosphoric acid pre-etching regardless of the adhesive system used. SBS and SFEs did not increase for phosphoric acid pre-etching times over 3 seconds. There were no significant differences in SBS and SFEs between the specimens with and without a smear layer. The data suggest that phosphoric acid pre-etching of ground enamel improves the bonding performance of single-step self-etch adhesives, but these bonding properties do not increase for phosphoric acid pre-etching times over 3 seconds.

  12. Discrete lattice plane broken bond interfacial energy calculations and the use of the dividing surface concept

    International Nuclear Information System (INIS)

    Ramanujan, R.V.

    2003-01-01

    The concept of the dividing surface has been extensively used to define the relationships between thermodynamic quantities at the interface between two phases; it is also useful in calculations of interfacial energy (γ). However, in the original formulation, the two phases are continuum phases, the atomistic nature of the interface was not considered. It is, therefore, useful to examine the use of the dividing surface in the context of atomistic interfacial energy calculations. The case of a planar fcc:hcp interface is considered and the dividing surface positions which are useful in atomistic interfacial energy calculations are stated, one position equates γ to the excess internal energy, the other position allows us to use the Gibbs adsorption equation. An example of a calculation using the convenient dividing surface positions is presented

  13. Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding

    International Nuclear Information System (INIS)

    Kim, Young-Jong; Taniguchi, Yoshinao; Murase, Kuniaki; Taguchi, Yoshihiro; Sugimura, Hiroyuki

    2009-01-01

    The surface of cyclo-olefin polymer (COP) was treated with vacuum ultraviolet (VUV) light at 172 nm wavelength to improve the wettability and adhesion properties. Through VUV treatment in air, the terminal groups of the COP surface were oxidized into oxygen functional groups, containing C-O, C=O, and COO components, making the COP surface hydrophilic. The extent of oxygenation was evaluated by XPS and FTIR-ATR spectra, and it was shown that the surface properties, hydrophilicity, and functionalization were dependent on both VUV irradiation distance and irradiation time, which have an effect on the concentration of oxygen functional groups. VUV-light treatment with a short irradiation distance was more effective in introducing oxygen functional groups.

  14. Chemical bonding of water to metal surfaces studied with core-level spectroscopies

    DEFF Research Database (Denmark)

    Schiros, T.; Andersson, Klas Jerker; Pettersson, L.G.M.

    2010-01-01

    The nature of the contact layer of water on surfaces is of relevance for many practical fields, including corrosion, electrochemistry, environmental science and heterogeneous catalysis. Here we focus on the geometric and electronic structure of the water contact layer on transition metal surfaces......-specific information on the partial local density of states, local atomic structure, geometrical parameters and molecular orientation, allowing general principles for water-metal interaction to be derived....

  15. Shear bond strength of two bonding systems on dentin surfaces prepared with Er:YAG laser; Resistencia de uniao ao cisalhamento de dois sistemas adesivos em superficies dentinarias preparadas com laser de Er:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Dall' Magro, Eduardo

    2001-07-01

    The purpose of this study was to examine the shear bond strength of two bonding dentin systems, one 'one step' (Single Bond - 3M) and one 'self-etching' (Prompt-L-ESPE), when applied on dentin surfaces prepared with Er:YAG laser (2,94{mu}m) that underwent ar not, acid etched. Forty one human molars just extracted were selected and after the cut with diamond disc and included in acrylic resin, resulting in 81 specimens (hemi crowns). After, the specimens were divided in one group treated with sand paper and another two groups treated with Er:YAG laser with 200 mJ and 250 mJ of energy and 2 Hz of frequency. Next, the prepared surfaces received three treatments with following application: 1) acid + Single Bond + Z 250 resin, 2) prompt-L-Pop + Z 250 resin, and 3) acid without, Single Bond + Z 250 resin. The Z 250 resin was applied and photopolymerized in increments on a Teflon matrix that belonged to an apparatus called 'Assembly Apparatus' machine producing cylinders of 3,5 mm of diameter and 5 mm of height. After these specimens were submitted to thermo cycling during 1 minute the 55 deg C and during 1 minute with 5 deg C with a total of 500 cycles for specimen, and the measures of shear bond strength were abstained using EMIC model DL 2000 rehearsed machine, with speed of 0,5 mm/min, measuring the final rupture tension (Mpa). The results showed an statistic superiority of 5% of probability level in dentin flattened with sandpaper and with laser using 200 mJ of energy with aspect to the ones flattened with laser using 250 mJ of energy. It was observed that using 'Single Bond' bonding dentin system the marks were statistically superior at 5% of probability with reference to the use of the Prompt-L-Pop adhesive system. So, it was concluded that Er:YAG Laser with 200 mJ of energy produced similar dentin cavity prepare than sandpaper and Single Bond seemed the best bonding agent system between restorative material and dentin

  16. Influence of different surface treatments on bond strength of novel CAD/CAM restorative materials to resin cement.

    Science.gov (United States)

    Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin; Tulga, Ayça

    2017-12-01

    To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) ( P CAD/CAM restorative materials was modified after treatments. The surface treatment of sandblasting or HF acid etching in combination with a universal adhesive containing MDP can be suggested for the adhesive cementation of the novel CAD/CAM restorative materials.

  17. Effects of different surface-treatment methods on the bond strengths of resin cements to full-ceramic systems

    Directory of Open Access Journals (Sweden)

    Gülay Kansu

    2011-09-01

    Conclusions: The in vitro findings from this study indicate that surface-treatment procedures applied to the IPS Empress and the IPS Empress 2 full-ceramic systems are important when cement types are considered. In contrast, cement types and surface-treatment methods had no effect on changing the bond strength of the In-Ceram ceramic system.

  18. In vitro Assessment of Influence of Various Bleaching Protocols on the Strength of Ceramic Orthodontic Brackets bonded to Bleached Tooth Surface: A Comparative Study.

    Science.gov (United States)

    Iska, Divya; Devanna, Raghu; Singh, Madhvi; Chitumalla, Rajkiran; Balasubramanian, Sai C Bala; Goutam, Manish

    2017-12-01

    Esthetics is one of the common issues because of which patients consult dental orthodontic treatment. Two ways of tooth bleaching are available these days, which includes in-office bleach and home bleach. Various bleaching protocols are available these days for treating the tooth surfaces. Hence, we planned the present study for investigating the impact of various intracoronal bleaching protocols on shear bond strength of ceramic brackets bonded to tooth surface after bleaching. The present study included assessment of 100 extracted maxillary central incisors with the integrated buccal surface. A resin block was made and individual teeth were embedded in each block. Root canal therapy procedure was performed in all the teeth, after which 2 mm short of tooth apex up to the level of cementoenamel junction, removal of the root canal filling was done. All the samples were broadly divided into four study groups with 25 samples in each group. Bleaching procedure was carried in all the samples intracoronally followed by testing of shear bond strength using universal force testing machine. Following the modified adhesive remnant index (AI), assessment of remaining adhesive on the brackets was done. All the results were compiled and analyzed by Statistical Package for the Social Sciences (SPSS) software version 17.0. In the control group, mean shear bond strength was found to be 17.9 MPa. While comparing the carbamide peroxide (CP) group with sodium perborate study group, we observed a statistically significant difference. Nonsignificant results were obtained while comparing the shear bond strength in between sodium perborate group and hydrogen peroxide (HP) group. Intracoronal bleaching does affect the shear bond strength of ceramic brackets. Sodium perborate bleaching influences shear bond strength more strongly than other bleaching agents such as CP and HP. In patients undergoing orthodontic treatment, HP is a preferred agent where bleaching has to be followed by

  19. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti-O-P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion.

    Science.gov (United States)

    Córdoba, Alba; Hierro-Oliva, Margarita; Pacha-Olivenza, Miguel Ángel; Fernández-Calderón, María Coronada; Perelló, Joan; Isern, Bernat; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M

    2016-05-11

    Myo-inositol hexaphosphate, also called phytic acid or phytate (IP6), is a natural molecule abundant in vegetable seeds and legumes. Among other functions, IP6 inhibits bone resorption. It is adsorbed on the surface of hydroxyapatite, inhibiting its dissolution and decreasing the progressive loss of bone mass. We present here a method to directly functionalize Ti surfaces covalently with IP6, without using a cross-linker molecule, through the reaction of the phosphate groups of IP6 with the TiO2 layer of Ti substrates. The grafting reaction consisted of an immersion in an IP6 solution to allow the physisorption of the molecules onto the substrate, followed by a heating step to obtain its chemisorption, in an adaptation of the T-Bag method. The reaction was highly dependent on the IP6 solution pH, only achieving a covalent Ti-O-P bond at pH 0. We evaluated two acidic pretreatments of the Ti surface, to increase its hydroxylic content, HNO3 30% and HF 0.2%. The structure of the coated surfaces was characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and ellipsometry. The stability of the IP6 coating after three months of storage and after sterilization with γ-irradiation was also determined. Then, we evaluated the biological effect of Ti-IP6 surfaces in vitro on MC3T3-E1 osteoblastic cells, showing an osteogenic effect. Finally, the effect of the surfaces on the adhesion and biofilm viability of oral microorganisms S. mutans and S. sanguinis was also studied, and we found that Ti-IP6 surfaces decreased the adhesion of S. sanguinis. A surface that actively improves osseointegration while decreasing the bacterial adhesion could be suitable for use in bone implants.

  20. Atomic structure of diamond {111} surfaces etched in oxygen water vapor

    International Nuclear Information System (INIS)

    Theije, F.K. de; Reedijk, M.F.; Arsic, J.; Enckevort, W.J.P. van; Vlieg, E.

    2001-01-01

    The atomic structure of the {111} diamond face after oxygen-water-vapor etching is determined using x-ray scattering. We find that a single dangling bond diamond {111} surface model, terminated by a full monolayer of -OH fits our data best. To explain the measurements it is necessary to add an ordered water layer on top of the -OH terminated surface. The vertical contraction of the surface cell and the distance between the oxygen atoms are generally in agreement with model calculations and results on similar systems. The OH termination is likely to be present during etching as well. This model experimentally confirms the atomic-scale mechanism we proposed previously for this etching system

  1. Evaluation of bond strength between grooved titanium alloy implant abutments and provisional veneering materials after surface treatment of the abutments: An in vitro study

    Directory of Open Access Journals (Sweden)

    Gowtham Venkat

    2017-01-01

    Full Text Available Introduction: Titanium has become the material of choice with greater applications in dental implants. The success of the dental implant does not only depend on the integration of the implant to the bone but also on the function and longevity of the superstructure. The clinical condition that demands long-term interim prosthesis is challenging owing to the decreased bond between the abutment and the veneering material. Hence, various surface treatments are done on the abutments to increase the bond strength. Aim: This study aimed to evaluate the bond strength between the abutment and the provisional veneering materials by surface treatments such as acid etching, laser etching, and sand blasting of the abutment. Materials and Methods: Forty titanium alloy abutments of 3 mm diameter and 11 mm height were grouped into four groups with ten samples. Groups A, B, C, and D are untreated abutments, sand blasted with 110 μm aluminum particles, etched with 1% hydrofluoric acid and 30% nitric acid, and laser etched with Nd: YAG laser, respectively. Provisional crowns were fabricated with bis-acrylic resin and cemented with noneugenol temporary luting cement. The shear bond strength was measured in universal testing machine using modified Shell–Nielsen shear test after the cemented samples were stored in water at 25°C for 24 h. Load was applied at a constant cross head speed of 5 mm/min until a sudden decrease in resistance indicative of bond failure was observed. The corresponding force values were recorded, and statistical analysis was done using one-way ANOVA and Newman–Keuls post hoc test. Results: The laser-etched samples showed higher bond strength. Conclusion: Among the three surface treatments, laser etching showed the highest bond strength between titanium alloy implant abutment and provisional restorations. The sand-blasted surfaces demonstrated a significant difference in bond strength compared to laser-etched surfaces. The results of this

  2. Tunable Complex Stability in Surface Molecular Recognition Mediated by Self-Complementary Quadruple Hydrogen Bonds

    NARCIS (Netherlands)

    Zou, S(han); Zhang, Zhihong; Forch, Renate; Knoll, Wolfgang; Schönherr, Holger; Vancso, Gyula J.

    2003-01-01

    We show that surfaces modified with asymmetric 2-ureido-4[1H]-pyrimidinone-hydroxyalkane disulfide adsorbates exhibit efficient and controllable self-complementary molecular recognition of the pyrimidinone moieties. Two novel asymmetric 2-ureido-4[1H]-pyrimidinone-hydroxyalkane disulfide adsorbates,

  3. Control of reactivity and regioselectivity for on-surface dehydrogenative aryl-aryl bond formation

    Czech Academy of Sciences Publication Activity Database

    Kocić, N.; Liu, X.; Chen, S.; Decurtins, S.; Krejčí, Ondřej; Jelínek, Pavel; Repp, J.; Liu, S.

    2016-01-01

    Roč. 138, č. 17 (2016), s. 5585-5593 ISSN 0002-7863 R&D Projects: GA ČR(CZ) GC14-16963J Institutional support: RVO:68378271 Keywords : on-surface reaction * AFM * DFT * metal-organic coordination Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.858, year: 2016

  4. Effects of different surface treatments on bond strength of an indirect composite to bovine dentin

    Directory of Open Access Journals (Sweden)

    Laiza Tatiana Poskus

    2015-01-01

    Conclusions: Sandblasting was a safe surface treatment for the indirect composite, increasing the BS values. Hydrofluoric acid applied after sandblasting damaged the BS values and should not be recommended while ethanol and H2O2, when applied after sandblasting, were effective in increasing BS values.

  5. c-C5H5 on a Ni(1 1 1) surface: Theoretical study of the adsorption, electronic structure and bonding

    International Nuclear Information System (INIS)

    German, E.; Simonetti, S.; Pronsato, E.; Juan, A.; Brizuela, G.

    2008-01-01

    In the present work the ASED-MO method is applied to study the adsorption of cyclopentadienyl anion on a Ni(1 1 1) surface. The adsorption with the centre of the aromatic ring placed above the hollow position has been identified to be energetically the most favourable. The aromatic ring remains almost flat, the H atoms are tilted 17 deg. away from the metal surface. We modelled the metal surface by a two-dimensional slab of finite thickness, with an overlayer of c-C 5 H 5 - , one c-C 5 H 5 - per nine surface Ni atoms. The c-C 5 H 5 - molecule is attached to the surface with its five C atoms bonding mainly with three Ni atoms. The Ni-Ni bond in the underlying surface and the C-C bonds of c-C 5 H 5 - are weakened upon adsorption. We found that the band of Ni 5d z 2 orbitals plays an important role in the bonding between c-C 5 H 5 - and the surface, as do the Ni 6s and 6p z bands

  6. Density functional theory based-study of 5-fluorouracil adsorption on β-cristobalite (1 1 1) hydroxylated surface: The importance of H-bonding interactions

    Energy Technology Data Exchange (ETDEWEB)

    Simonetti, S., E-mail: ssimonet@uns.edu.ar [Universidad Nacional del Sur (UNS)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca (Argentina); Universidad Tecnológica Nacional (UTN), Bahía Blanca (Argentina); Compañy, A. Díaz [Comisión de Investigaciones Científicas (CIC), Buenos Aires (Argentina); Pronsato, E.; Juan, A.; Brizuela, G. [Universidad Nacional del Sur (UNS)—Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca (Argentina); Lam, A. [Instituto de Ciencia y Tecnología de Materiales (IMRE), Universidad de La Habana (Cuba)

    2015-12-30

    Graphical abstract: - Highlights: • Favorable energies results in optimum four adsorption geometries. • Silanols are partially weakening and establish H-bonds with polar groups of 5-FU drug. • Dispersion forces approach the 5-FU molecule toward the surface. • Electron exchange is presented after adsorption. • H-bonds stabilize the molecule playing significant role in the adsorption mechanism. - Abstract: Silica-based mesoporous materials have been recently proposed as an efficient support for the controlled release of a popular anticancer drug, 5-fluorouracil (5-FU). Although the relevance of this topic, the atomistic details about the specific surface-drug interactions and the energy of adsorption are almost unknown. In this work, theoretical calculations using the Vienna Ab-initio Simulation Package (VASP) applying Grimme's—D2 correction were performed to elucidate the drug–silica interactions and the host properties that control 5-FU drug adsorption on β-cristobalite (1 1 1) hydroxylated surface. This study shows that hydrogen bonding, electron exchange, and dispersion forces are mainly involved to perform the 5-FU adsorption onto silica. This phenomenon, revealed by favorable energies, results in optimum four adsorption geometries that can be adopted for 5-FU on the hydroxylated silica surface. Silanols are weakening in response to the molecule approach and establish H-bonds with polar groups of 5-FU drug. The final geometry of 5-FU adopted on hydroxylated silica surface is the results of H-bonding interactions which stabilize and fix the molecule to the surface and dispersion forces which approach it toward silica (1 1 1) plane. The level of hydroxylation of the SiO{sub 2} (1 1 1) surface is reflected by the elevated number of hydrogen bonds that play a significant role in the adsorption mechanisms.

  7. The Hirshfeld surface of three new isonicotinylhydrazine co-crystals: Comparison of hydrogen bonds and crystal structures

    Science.gov (United States)

    Cunha, Mariana S.; Ribeiro, Carlos Eduardo P.; Corrêa, Charlane C.; Diniz, Renata

    2017-12-01

    The influence of the change of aromatic acids ligand in the interactions with isonicotinylhydrazine (ISO) molecule in three new co-crystals has been investigated as well as a study of the hydrogen bonds formed between the ligands through Hirshfeld surface analysis and fingerprint plots. These analyses are extremely sensitive to the chemical environment of the molecule and are unique to a particular molecule so they can identify the differences between the crystal packing in the solid state. Although the conformation of ISO molecule being practically identical in all three compounds and the interactions mainly involve the Nsbnd H⋯O and Osbnd H⋯N type, the fingerprint plots only for ISO molecule in the three compounds are different and exhibit the influence in this molecule due to the modification of the functional groups of ligands.

  8. Influence of different surface treatments on bond strength of novel CAD/CAM restorative materials to resin cement

    Science.gov (United States)

    Kömürcüoğlu, Meltem Bektaş; Sağırkaya, Elçin

    2017-01-01

    PURPOSE To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. MATERIALS AND METHODS The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens (4×1.2×12 mm) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. RESULTS The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) (Pcementation of the novel CAD/CAM restorative materials. PMID:29279763

  9. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1997-08-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H{endash}Si bond on the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C{endash}Si bond length of 1.85{plus_minus}0.05{Angstrom}. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. {copyright} {ital 1997 American Institute of Physics.}

  10. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    International Nuclear Information System (INIS)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1997-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H endash Si bond on the H endash Si(111) surface, and (ii) replacement of Cl on the Cl endash Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C endash Si bond length of 1.85±0.05 Angstrom. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. copyright 1997 American Institute of Physics

  11. The effect of different surface treatments on the bond strength of a gingiva-colored indirect composite veneering material to three implant framework materials.

    Science.gov (United States)

    Koizuka, Mai; Komine, Futoshi; Blatz, Markus B; Fushiki, Ryosuke; Taguchi, Kohei; Matsumura, Hideo

    2013-09-01

    To evaluate and compare the shear-bond strength of a gingiva-colored indirect composite material to three different implant framework materials (zirconia ceramics, gold alloy, and titanium), and to investigate the effect of surface pretreatment by air-particle abrasion and four priming agents. A gingiva-colored indirect composite (Ceramage) was bonded to three framework materials (n = 80): commercially pure titanium (CP- Ti ), ADA (American Dental Association)-type 4 casting gold alloy (Type IV), and zirconia ceramics (Zirconia) with or without airborne-particle abrasion. Before bonding, the surface of the specimens was treated using no (control) or one of four priming agents: Alloy Primer (ALP), Estenia Opaque Primer (EOP), Metal Link Primer (MLP), and V-Primer (VPR). Shear-bond strength was determined after 24-h wet storage. Data were analyzed using Steel-Dwass for multiple comparisons, and Mann-Whitney U-test (P = 0.05). For both CP- Ti and Zirconia substrates, three groups, ALP, EOP, and MLP, showed significantly higher bond strengths (P composite material to commercially pure titanium and zirconia frameworks. Combined use of a thione monomer with a phosphoric monomer enhances the bond strengths to airborne-particle abraded type IV gold alloy. © 2012 John Wiley & Sons A/S.

  12. A classical trajectory study of the adatom -surface bond dissociation in the collision reaction between an adsorbed H atom and an N2 molecule

    International Nuclear Information System (INIS)

    Bayhan, U.

    2005-01-01

    The collisionnal dissociation of the Adatom-Surface bond in the diatomic molecule N2(gas)/H(ads) collision taking place on a W(100) bcc-structure surface have been studied by classical trajectory method over the collision energy ranges (0.1-2.0 eV ) and the attractive well depth (0.19-4.0 eV). of the N2 molecule (gas)/H(ads) interactions. When the energy accumulate into the adatom bond, thus leading to a a large dissociation probability

  13. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    Science.gov (United States)

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Assessment of Tensile Bond Strength of Fiber-Reinforced Composite Resin to Enamel Using Two Types of Resin Cements and Three Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    Tahereh Ghaffari

    2015-10-01

    Full Text Available Background: Resin-bonded bridgework with a metal framework is one of the most conservative ways to replace a tooth with intact abutments. Visibility of metal substructure and debonding are the complications of these bridgeworks. Today, with the introduction of fiber-reinforced composite resins, it is possible to overcome these complications. The aim of this study was to evaluate the bond strength of fiber-reinforced composite resin materials (FRC to enamel. Methods: Seventy-two labial cross-sections were prepared from intact extracted teeth. Seventy-two rectangular samples of cured Vectris were prepared and their thickness was increased by adding Targis. The samples were divided into 3 groups for three different surface treatments: sandblasting, etching with 9% hydrofluoric acid, and roughening with a round tapered diamond bur. Each group was then divided into two subgroups for bonding to etched enamel by Enforce and Variolink II resin cements. Instron universal testing machine was used to apply a tensile force. The fracture force was recorded and the mode of failure was identified under a reflective microscope. Results: There were no significant differences in bond strength between the three surface treatment groups (P=0.53. The mean bond strength of Variolink II cement was greater than that of Enforce (P=0.04. There was no relationship between the failure modes (cohesive and adhesive and the two cement types. There was some association between surface treatment and failure mode. There were adhesive failures in sandblasted and diamond-roughened groups and the cohesive failure was dominant in the etched group. Conclusion: It is recommended that restorations made of fiber-reinforced composite resin be cemented with VariolinkII and surface-treated by hydrofluoric acid.   Keywords: Tensile bond strength; surface treatment methods; fiber-reinforced composite resin

  15. The pressure bonding ability of uranium dioxide powders in relation to the evolution of their surface properties

    International Nuclear Information System (INIS)

    Danroc, J.

    1982-09-01

    The long term storage of sinterable uranium dioxide powders generally improves their pressure bonding ability and the strength of the resulting green pellets. Evidence of the gradual evolution of the surface texture and composition of these powders during storage at room temperature and pressure has been provided by infrared spectroscopy, X-ray diffraction and thermogravimetric and microcalorimetric methods. These techniques demonstrated the existence of a thin adherent surface layer of UO 3 2H 2 0. Such a natural evolutionary process can be reproduced and substantially amplified by subjecting the powder to thermal treatments at temperatures up to 90 0 C in a moist air environment. It was shown that powder treated in this manner could be more readily compacted into strong green pellets than could raw material. The tensile strength, commonly regarded as a quality test for such pellets and measured by the brazilian method, was found to be at least twice that of normal pellets. The high density and geometric integrity of these sintered products ensures the extrapolation of these preparation techniques to the mass production of nuclear reactor fuel pellets [fr

  16. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Li, Xinpei; Yang, Mingming; Chai, Weihong; Wang, Kai; zhang, Yingfeng

    2016-04-01

    In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and essence of binders on the HA crystallographic planes for 3DP fabrication bone scaffolds. The cohesive energy densities of binders and the binding energies, PCFs g(r), mechanical properties of binder/HA interaction models were analyzed through the MD simulation. Additionally, we prepared the HA bone scaffold specimens with different glues by 3DP additive manufacturing, and tested their mechanical properties by the electronic universal testing machine. The simulation results revealed that the relationship of the binding energies between binders and HA surface is consistent with the cohesive energy densities of binders, which is PAM/HA>PVA/HA>PVP/HA. The PCFs g(r) indicated that their interfacial interactions mainly attribute to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA. The results of mechanical experiments verified the relationship of Young׳s modulus for three interaction models in simulation, which is PVA/HA>PAM/HA>PVP/HA. But the trend of compressive strength is PAM/HA>PVA/HA>PVP/HA, this is consistent with the binding energies of simulation. Therefore, the Young׳s modulus of bone scaffolds are limited by the Young׳s modulus of binders, and the compressive strength is mainly decided by the viscosity of binder. Finally, the major reasons for differences in mechanical properties between simulation and experiment were found, the space among HA pellets and the incomplete infiltration of glue were the main reasons influencing the mechanical properties of 3DP fabrication HA bone scaffolds. These results provide useful information in choosing binder for 3DP fabrication

  17. Atomic and electronic structure of the CdTe(111)B–(2√3 × 4) orthogonal surface

    Energy Technology Data Exchange (ETDEWEB)

    Bekenev, V. L., E-mail: bekenev@ipms.kiev.ua; Zubkova, S. M. [National Academy of Sciences of Ukraine, Frantsevych Institute for Problems of Materials Science (Ukraine)

    2017-01-15

    The atomic and electronic structure of four variants of Te-terminated CdTe(111)B–(2√3 × 4) orthogonal polar surface (ideal, relaxed, reconstructed, and reconstructed with subsequent relaxation) are calculated ab initio for the first time. The surface is modeled by a film composed of 12 atomic layers with a vacuum gap of ~16 Å in the layered superlattice approximation. To close Cd dangling bonds on the opposite side of the film, 24 fictitious hydrogen atoms with a charge of 1.5 electrons each are added. Ab initio calculations are performed using the Quantum Espresso program based on density functional theory. It is demonstrated that relaxation leads to splitting of the four upper layers. The band energy structures and total and layer-by-layer densities of electronic states for the four surface variants are calculated and analyzed.

  18. The Dangling model in the construction of compound sentences with regard to verb tenses

    Directory of Open Access Journals (Sweden)

    Mahmoud Mehravaran

    2016-02-01

    syntactic role as for the subordinate clause. 6 In compound sentences there are dependent connectives sentences, such as until, however, if, that. 7 The sign of dependence or being subordinate clauses is the existence of connectives. 8 Phrases or clauses in the compound sentences have no authority or independence and there is a pause at the end of the sentence. Therefore, a compound sentences consist of two or more dependent clauses and conveys one similar meaning or message. Compound sentences are so wide and various in Persian. What we mean by wide is their multiplicity and what is meant by various is that there are too many variants construction of different verbs. That’s why they are called dangling. Contrary to the construction model of simple sentences that is few than 30. Construction models of compound sentences are too many. This paper has investigated the constructions of modern Persia sentences and some sentences from ancient text that’s are similar to todays’ sentences. 193 models for the construction of compound sentences are extracted and introduced. They has been called floating because of their multiplicity and variety of the construction of models and verb tense use. The results indicate that there are different kinds of verb in the construction of compound sentences and the construction model for compound sentences is so fluid and flouting. These construction can be used according to purpose, use, message, semantic value variety and the tonality. In some compound sentences and the variety in the construction of such sentences indicated that Persian language enjoys great. Capacity and capability in the construction sentences. Such sentences are indicative of the flexibility, volatility, and wide amenity of Persian language in sentences construction.

  19. The Dangling model in the construction of compound sentences with regard to verb tenses

    Directory of Open Access Journals (Sweden)

    Mahmoud Mehravaran

    2016-01-01

    syntactic role as for the subordinate clause. 6 In compound sentences there are dependent connectives sentences, such as until, however, if, that. 7 The sign of dependence or being subordinate clauses is the existence of connectives. 8 Phrases or clauses in the compound sentences have no authority or independence and there is a pause at the end of the sentence. Therefore, a compound sentences consist of two or more dependent clauses and conveys one similar meaning or message. Compound sentences are so wide and various in Persian. What we mean by wide is their multiplicity and what is meant by various is that there are too many variants construction of different verbs. That’s why they are called dangling. Contrary to the construction model of simple sentences that is few than 30. Construction models of compound sentences are too many. This paper has investigated the constructions of modern Persia sentences and some sentences from ancient text that’s are similar to todays’ sentences. 193 models for the construction of compound sentences are extracted and introduced. They has been called floating because of their multiplicity and variety of the construction of models and verb tense use. The results indicate that there are different kinds of verb in the construction of compound sentences and the construction model for compound sentences is so fluid and flouting. These construction can be used according to purpose, use, message, semantic value variety and the tonality. In some compound sentences and the variety in the construction of such sentences indicated that Persian language enjoys great. Capacity and capability in the construction sentences. Such sentences are indicative of the flexibility, volatility, and wide amenity of Persian language in sentences construction.

  20. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography--a review.

    Science.gov (United States)

    Pino, Verónica; Afonso, Ana M

    2012-02-10

    Ionic liquids (ILs) are a class of ionic, nonmolecular solvents which remain in liquid state at temperatures below 100°C. ILs possess a variety of properties including low to negligible vapor pressure, high thermal stability, miscibility with water or a variety of organic solvents, and variable viscosity. IL-modified silica as novel high-performance liquid chromatography (HPLC) stationary phases have attracted considerable attention for their differential behavior and low free-silanol activity. Indeed, around 21 surface-confined ionic liquids (SCIL) stationary phases have been developed in the last six years. Their chromatographic behavior has been studied, and, despite the presence of a positive charge on the stationary phase, they showed considerable promise for the separation of neutral solutes (not only basic analytes), when operated in reversed phase mode. This aspect points to the potential for truly multimodal stationary phases. This review attempts to summarize the state-of-the-art about SCIL phases including their preparation, chromatographic behavior, and analytical performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. The effects of surface bond relaxation on electronic structure of Sb{sub 2}Te{sub 3} nano-films by first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, C., E-mail: canli1983@gmail.com; Zhao, Y. F.; Fu, C. X.; Gong, Y. Y. [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University (China); Chi, B. Q. [College of Modem Science and Technology, Jiliang University, Hangzhou, 310018 (China); Sun, C. Q. [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University (China); School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore)

    2014-10-15

    The effects of vertical compressive stress on Sb{sub 2}Te{sub 3} nano-films have been investigated by the first principles calculation, including stability, electronic structure, crystal structure, and bond order. It is found that the band gap of nano-film is sensitive to the stress in Sb{sub 2}Te{sub 3} nano-film and the critical thickness increases under compressive stress. The band gap and band order of Sb{sub 2}Te{sub 3} film has been affected collectively by the surface and internal crystal structures, the contraction ratio between surface bond length of nano-film and the corresponding bond length of bulk decides the band order of Sb{sub 2}Te{sub 3} film.

  2. Integration of Multiplexed Microfluidic Electrokinetic Concentrators with a Morpholino Microarray via Reversible Surface Bonding for Enhanced DNA Hybridization.

    Science.gov (United States)

    Martins, Diogo; Wei, Xi; Levicky, Rastislav; Song, Yong-Ak

    2016-04-05

    We describe a microfluidic concentration device to accelerate the surface hybridization reaction between DNA and morpholinos (MOs) for enhanced detection. The microfluidic concentrator comprises a single polydimethylsiloxane (PDMS) microchannel onto which an ion-selective layer of conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PSS) was directly printed and then reversibly surface bonded onto a morpholino microarray for hybridization. Using this electrokinetic trapping concentrator, we could achieve a maximum concentration factor of ∼800 for DNA and a limit of detection of 10 nM within 15 min. In terms of the detection speed, it enabled faster hybridization by around 10-fold when compared to conventional diffusion-based hybridization. A significant advantage of our approach is that the fabrication of the microfluidic concentrator is completely decoupled from the microarray; by eliminating the need to deposit an ion-selective layer on the microarray surface prior to device integration, interfacing between both modules, the PDMS chip for electrokinetic concentration and the substrate for DNA sensing are easier and applicable to any microarray platform. Furthermore, this fabrication strategy facilitates a multiplexing of concentrators. We have demonstrated the proof-of-concept for multiplexing by building a device with 5 parallel concentrators connected to a single inlet/outlet and applying it to parallel concentration and hybridization. Such device yielded similar concentration and hybridization efficiency compared to that of a single-channel device without adding any complexity to the fabrication and setup. These results demonstrate that our concentrator concept can be applied to the development of a highly multiplexed concentrator-enhanced microarray detection system for either genetic analysis or other diagnostic assays.

  3. Surface-Passivated AlGaN Nanowires for Enhanced Luminescence of Ultraviolet Light Emitting Diodes

    KAUST Repository

    Sun, Haiding

    2017-12-19

    Spontaneously-grown, self-aligned AlGaN nanowire ultraviolet light emitting diodes still suffer from low efficiency partially because of the strong surface recombination caused by surface states, i.e., oxidized surface and high density surface states. Several surface passivation methods have been introduced to reduce surface non-radiative recombination by using complex and toxic chemicals. Here, we present an effective method to suppress such undesirable surface recombination of the AlGaN nanowires via diluted potassium hydroxide (KOH) solution; a commonly used chemical process in semiconductor fabrication which is barely used as surface passivation solution in self-assembled nitride-based nanowires. The transmission electron microscopy investigation on the samples reveals almost intact nanowire structures after the passivation process. We demonstrated an approximately 49.7% enhancement in the ultraviolet light output power after 30-s KOH treatment on AlGaN nanowires grown on titanium-coated silicon substrates. We attribute such a remarkable enhancement to the removal of the surface dangling bonds and oxidized nitrides (Ga-O or Al-O bonds) at the surface as we observe the change of the carrier lifetime before and after the passivation. Thus, our results highlight the possibility of employing this process for the realization of high performance nanowire UV emitters.

  4. Pre-treatments applied to oxidized aluminum surfaces to modify the interfacial bonding with bis-1,2-(triethoxysilyl)ethane (BTSE)

    Energy Technology Data Exchange (ETDEWEB)

    Teo, M. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Kim, J. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, P.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, K.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Mitchell, K.A.R. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada)]. E-mail: karm@chem.ubc.ca

    2005-12-15

    A remote microwave-generated H{sub 2} plasma and heating to 250 deg. C were separately used to modify high-purity oxidized aluminum surfaces and to assess whether these treatments can help enhance adhesion with bis-1,2-(triethoxysilyl)ethane (BTSE) coatings. Different initial oxide surfaces were considered, corresponding to the native oxide and to surfaces formed by the Forest Products Laboratory (FPL) treatment applied for either 15 or 60 min. BTSE is applied from solution at pH 4, and competing processes of etching, protonation (to form OH groups) and coupling (to form Al-O-Si interfacial bonds) occur at the solid-liquid interface. Scanning electron microscopy (SEM) was used to determine how the topographies of the modified Al surfaces changed with the different pre-treatments and with exposure to a buffer solution of pH 4. Secondary-ion mass spectrometry (SIMS) was used to determine the direct amount of Al-O-Si interfacial bonds by measuring the ratio of peak intensities 71-70 amu, while X-ray photoelectron spectroscopy (XPS) was used to determine the overall strength of the silane coating adhesion by measuring the Si 2p signals before and after application of an ultrasonic rinse to the coated sample. Measured Al 2p and O 1s spectra helped assess how the different pre-treatments modified the various Al oxidized surfaces prior to BTSE coating. Pre-treated samples that showed increased Al-O-Si bonding after BTSE coating corresponded to surfaces, which did not show evidence of significant etching after exposure to a pH 4 environment. This suggests that such surfaces are more receptive to the coupling reaction during exposure to the BTSE coating solution. These surfaces include all H{sub 2} plasma-treated samples, the heated native oxide and the sample that only received the 15 min FPL treatment. In contrast, other surfaces that show evidence of etching in pH 4 environments are samples that received lower amounts of Al-O-Si interfacial bonding. Overall, heating

  5. N-Heterocyclic carbenes on close-packed coinage metal surfaces: bis-carbene metal adatom bonding scheme of monolayer films on Au, Ag and Cu.

    Science.gov (United States)

    Jiang, Li; Zhang, Bodong; Médard, Guillaume; Seitsonen, Ari Paavo; Haag, Felix; Allegretti, Francesco; Reichert, Joachim; Kuster, Bernhard; Barth, Johannes V; Papageorgiou, Anthoula C

    2017-12-01

    By means of scanning tunnelling microscopy (STM), complementary density functional theory (DFT) and X-ray photoelectron spectroscopy (XPS) we investigate the binding and self-assembly of a saturated molecular layer of model N -heterocyclic carbene (NHC) on Cu(111), Ag(111) and Au(111) surfaces under ultra-high vacuum (UHV) conditions. XPS reveals that at room temperature, coverages up to a monolayer exist, with the molecules engaged in metal carbene bonds. On all three surfaces, we resolve similar arrangements, which can be interpreted only in terms of mononuclear M(NHC) 2 (M = Cu, Ag, Au) complexes, reminiscent of the paired bonding of thiols to surface gold adatoms. Theoretical investigations for the case of Au unravel the charge distribution of a Au(111) surface covered by Au(NHC) 2 and reveal that this is the energetically preferential adsorption configuration.

  6. Free surface flow under gravity and surface tension due to an applied pressure distribution: i Bond number greater than one-third

    Energy Technology Data Exchange (ETDEWEB)

    Maleewong, Montri; Asavanant, Jack [Chulalongkorn University, Department of Mathematics and Advanced Virtual Intelligence Computing Center, Bangkok (Thailand); Grimshaw, Roger [Loughborough University, Department of Mathematical Sciences, Loughborough (United Kingdom)

    2005-08-01

    We consider steady free surface two-dimensional flow due to a localized applied pressure distribution under the effects of both gravity and surface tension in water of constant depth, and in the presence of a uniform stream. The fluid is assumed to be inviscid and incompressible, and the flow is irrotational. The behavior of the forced nonlinear waves is characterized by three parameters: the Froude number, F, the Bond number, {tau}>1/3, and the magnitude and sign of the pressure forcing parameter {epsilon}. The fully nonlinear wave problem is solved numerically by using a boundary integral method. For small amplitude waves and F<1 but not too close to 1, linear theory gives a good prediction for the numerical solution of the nonlinear problem in the case of bifurcation from the uniform flow. As F approaches 1, the nonlinear terms need to be taken account of. In this case the forced Korteweg-de Vries equation is found to be an appropriate model to describe bifurcations from an unforced solitary wave. In general, it is found that for given values of F<1 and {tau}>1/3, there exists both elevation and depression waves. In some cases, a limiting configuration in the form of a trapped bubble occurs in the depression wave solutions. (orig.)

  7. Thermal and UV Hydrosilylation of Alcohol-Based Bifunctional Alkynes on Si (111) surfaces: How surface radicals influence surface bond formation.

    Science.gov (United States)

    Khung, Y L; Ngalim, S H; Scaccabarozi, A; Narducci, D

    2015-06-12

    Using two different hydrosilylation methods, low temperature thermal and UV initiation, silicon (111) hydrogenated surfaces were functionalized in presence of an OH-terminated alkyne, a CF3-terminated alkyne and a mixed equimolar ratio of the two alkynes. XPS studies revealed that in the absence of premeditated surface radical through low temperature hydrosilylation, the surface grafting proceeded to form a Si-O-C linkage via nucleophilic reaction through the OH group of the alkyne. This led to a small increase in surface roughness as well as an increase in hydrophobicity and this effect was attributed to the surficial etching of silicon to form nanosize pores (~1-3 nm) by residual water/oxygen as a result of changes to surface polarity from the grafting. Furthermore in the radical-free thermal environment, a mix in equimolar of these two short alkynes can achieve a high contact angle of ~102°, comparable to long alkyl chains grafting reported in literature although surface roughness was relatively mild (rms = ~1 nm). On the other hand, UV initiation on silicon totally reversed the chemical linkages to predominantly Si-C without further compromising the surface roughness, highlighting the importance of surface radicals determining the reactivity of the silicon surface to the selected alkynes.

  8. The Effect of Artificial Aging on The Bond Strength of Heat-activated Acrylic Resin to Surface-treated Nickel-chromium-beryllium Alloy.

    Science.gov (United States)

    Al Jabbari, Youssef S; Zinelis, Spiros; Al Taweel, Sara M; Nagy, William W

    2016-01-01

    The debonding load of heat-activated polymethylmethacrylate (PMMA) denture base resin material to a nickel-chromium-beryllium (Ni-Cr-Be) alloy conditioned by three different surface treatments and utilizing two different commercial bonding systems was investigated. Denture resin (Lucitone-199) was bonded to Ni-Cr-Be alloy specimens treated with Metal Primer II, the Rocatec system with opaquer and the Rocatec system without opaquer. Denture base resin specimens bonded to non-treated sandblasted Ni-Cr-Be alloy were used as controls. Twenty samples for each treatment condition (80 specimens) were tested. The 80 specimens were divided into two categories, thermocycled and non-thermocycled, containing four groups of ten specimens each. The non-thermocycled specimens were tested after 48 hours' storage in room temperature water. The thermocycled specimens were tested after 2,000 cycles in 4°C and 55°C water baths. The debonding load was calculated in Newtons (N), and collected data were subjected by non parametric test Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn's post hoc test at the α = 0.05. The Metal Primer II and Rocatec system without opaquer groups produced significantly higher bond strengths (119.9 and 67.6 N), respectively, than did the sandblasted and Rocatec system with opaquer groups, where the bond strengths were 2.6 N and 0 N, respectively. The Metal Primer II was significantly different from all other groups (P<0.05). The bond strengths of all groups were significantly decreased (P<0.05) after thermocycling. Although thermocycling had a detrimental effect on the debonding load of all surface treatments tested, the Metal Primer II system provided higher values among all bonding systems tested, before and after thermocycling.

  9. The effects of various surface treatments on the shear bond strengths of stainless steel brackets to artificially-aged composite restorations.

    Science.gov (United States)

    Eslamian, Ladan; Borzabadi-Farahani, Ali; Mousavi, Nasim; Ghasemi, Amir

    2011-05-01

    To compare the shear bond strengths (SBS) of stainless steel brackets bonded to artificially-aged composite restorations after different surface treatments. Forty-five premolar teeth were restored with a nano-hybrid composite (Tetric EvoCeram), stored in deionised water for one week and randomly divided into three equal groups: Group I, he restorations were exposed to 5 per cent hydrofluoric acid for 60 seconds; Group II, the restorations were abraded with a micro-etcher (50 Iim alumina particles); Group III, the restorations were roughened with a coarse diamond bur. Similar premolar brackets were bonded to each restoration using the same resin adhesive and the specimens were then cycled in deionised water between 5 degrees C and 55 degrees C (500 cycles). The shear bond strengths were determined with a universal testing machine at a crosshead speed of 1 mm/min. The teeth and brackets were examined under a stereomicroscope and the adhesive remnants on the teeth scored with the adhesive remnant index (ARI). Specimens treated with the diamond bur had a significantly higher SBS (Mean: 18.45 +/- 3.82 MPa) than the group treated with hydrofluoric acid (Mean: 12.85 +/- 5.20 MPa). The mean SBS difference between the air-abrasion (Mean: 15.36 +/- 4.92 MPa) and hydrofluoric acid groups was not significant. High ARI scores occurred following abrasion with a diamond bur (100 per cent) and micro-etcher (80 per cent). In approximately two thirds of the teeth no adhesive was left on the restoration after surface treatment with hydofluoric acid. Surface treatment with a diamond bur resulted in a high bond strength between stainless steel brackets and artificially-aged composite restorations and was considered to be a safe and effective method of surface treatment. Most of the adhesive remained on the tooth following surface treatment with either the micro-etcher or the diamond bur.

  10. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    Science.gov (United States)

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. An algorithm to locate optimal bond breaking points on a potential energy surface for applications in mechanochemistry and catalysis.

    Science.gov (United States)

    Bofill, Josep Maria; Ribas-Ariño, Jordi; García, Sergio Pablo; Quapp, Wolfgang

    2017-10-21

    The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ-function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.

  12. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s. © 2016 Eur J Oral Sci.

  13. A comparative study of shear bond strength between metal and ceramic brackets and artificially aged composite restorations using different surface treatments.

    Science.gov (United States)

    Eslamian, Ladan; Borzabadi-Farahani, Ali; Mousavi, Nasim; Ghasemi, Amir

    2012-10-01

    This in vitro study evaluated the shear bond strength (SBS) between ceramic brackets (CBs) and resin composite restorations (RCRs) prepared using different surface treatments. The findings were also compared with a similar study that used stainless steel brackets (SSBs). Forty-five premolars were restored with a nano-hybrid composite resin (Tetric EvoCeram) and randomly assigned to three surface treatment groups: group 1, 5 per cent hydrofluoric acid (HF); group 2, air abrasion (50 μm alumina particles); and group 3, diamond bur. Specimens were bonded with CBs (Fascination) and exposed to thermo-cycling (500 cycles). The shear force at a crosshead speed of 1 mm/minute was transmitted to brackets. The adhesive remnant index (ARIs) scores were recorded after bracket failure. The analysis of SBS variance (P 0.05) and bond failure occurred mainly in adhesive-bracket base and resin-adhesive interfaces. The diamond bur surface treatment is recommended as a safe and cost-effective method of bonding CBs to RCRs.

  14. Influence of Er,Cr:YSGG Laser Surface Treatments on Micro Push-Out Bond Strength of Fiber Posts to Composite Resin Core Materials

    Directory of Open Access Journals (Sweden)

    Mehrsima Ghavami-Lahiji

    2018-03-01

    Full Text Available Statement of problem: The bonding of fiber post to resin core or root dentin is challenged by limited penetration of resin material to the polymeric matrix of fiber posts. Objectives: The purpose of this study was to investigate the effect of Er,Cr:YSGG on micro push-out bond strength of glass fiber posts to resin core material. Materials and Methods: We used 2 commercially available fiber posts, Exacto (Angelus and White Post DC (FGM, which had similar coronal diameters. Specimens of each fiber post (n=36 were randomly divided into three subgroups (n=12 posts per group according to different surface treatment methods: control (no surface treatment, irradiation by 1W Er,Cr:YSGG, and irradiation by 1.5W Er,Cr:YSGG. A cylindrical plastic tube was placed around the post. Resin core material was filled into the tube and cured. Coronal portions of the posts were sectioned into 1-mm-thick slices. Then, the specimens were subjected to a thermocyling device for 3000 cycles. The micro push-out test was carried out using a Universal Testing Machine. Data were analyzed using one-way ANOVA followed by Tukey’s HSD post hoc test to investigate the effect of different surface treatments on each type of fiber post. Results: The 1.5W Er,Cr:YSGG laser statistically reduced micro push-out bond strength values in the Exacto groups (P0.05. Mode of failure analysis showed that mixed failure was the predominant failure type for all surface treatment groups. Conclusions: The beneficial effect of Er,Cr:YSGG laser application could not be confirmed based on the results of this in vitro study. Er,Cr:YSGG laser could not significantly enhance the bond strength values. However, the 1.5W laser statistically decreased micro push-out bond strength in the Exacto fiber posts.

  15. Magnetic signature of surface defects at nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Vollmers, Nora Jenny; Gerstmann, Uwe; Schmidt, Wolf Gero [Theoretische Physik, Universitaet Paderborn (Germany)

    2011-07-01

    The n-type doping of diamond has been a long-standing issue, which recently gained attention in the context of nanodiamonds. Attempts of doping with nitrogen failed to result in the Electron paramagnetic Resonance (EPR) fingerprints expected from bulk material. Instead, the nanodiamond signals show a much larger deviation from the free-electron g-value and are believed to be related to intrinsic, carbon inherited defects. However, the absence of the bulk-like EPR spectra does not mean that nitrogen is not incorporated at all. The N atoms could be built in predominantly at or at least close to the surfaces yielding EPR spectra, very different from those measured in the bulk. In this work, we elucidate the situation by investigating the magnetic signature of paramagnetic defects in the nanodiamonds. We use the gauge-including projector augmented plane wave (GI-PAW) approach to calculate the hyperfine splittings and the elements of the electronic g-tensor. Taking the C(100) surface as a first model system, a possible contribution of nitrogen is discussed by comparing EPR parameters for different N incorporation depths: Incorporated directly at the surface, N gives rise to surface states similar to intrinsic carbon dangling bond-like states. Otherwise N is able to introduce surface conductivity as demonstrated by calculated effective mass tensors.

  16. Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces: theory and experimental evidence

    International Nuclear Information System (INIS)

    Falicov, L.M.; Somorjai, G.A.

    1985-01-01

    Correlation between catalytic activity and low-energy local electronic fluctuation in transition metals is proposed. A theory and calculations are presented which indicate that maximum electronic fluctuants take place at high-coordination metal sites. Either (i) atomically rough surfaces that expose to the reactant molecules atoms with large numbers of nonmagnetic or weakly magnetic neighbors in the first or second layer at the surface or (ii) stepped and kinked surfaces are the most active in carrying out structure-sensitive catalytic reactions. The synthesis of ammonia from N 2 and H 2 over iron and rhenium surfaces, 1 H 2 / 2 H 2 exchange over stepped platinum crystal surfaces at low pressures, and the hydrogenolysis (C - C bond breaking) of isobutane at kinked platinum crystal surfaces are presented as experimental evidence in support of the theory

  17. Evaluating the effect of dentin surface pretreatment on the static contact angle of a drop of a bonding agent: an in vitro study

    Directory of Open Access Journals (Sweden)

    Mehrdad Barekatain

    2016-03-01

    Full Text Available Introduction: The aim of this study was to investigate the effect of dentinal pretreatment on the static contact angle of a bonding agent as a measure of dentin surface wettability. Materials &Methods: Twenty mid-coronal dentin surfaces were prepared and randomly allocated to four groups (n=5 according to the priming solutions. All segments were etched with 35% phosphoric acid gel for 15 s, rinsed for 30 s and dried. Each group was rehydrated with 10 µL of distilled water, 0.2 % chlorhexidine, 70% ethanol and 5.25% Sodium Hypochlorite respectively and the excess solution was removed after 60 sec using an absorbent paper. Using a micro syringe, a droplet of the Adper Single Bond 2 was placed on each prepared surface. Then the profile and the static contact angle of the droplet were analyzed with a video-based optical contact angle measuring system. The statistical analysis was performed using One-way ANOVA and Dunnett’s t tests (p<0.05. Results: There was a statistically significant difference between the water and sodium hypochlorite groups which indicates the negative effect sodium hypochlorite may have on dentinal surface energy. (p=0.013. The differences between the water and ethanol groups (p=0.168 and between the water and chlorhexidine groups (p=0.665 were not significant. Conclusion: The use of 5.25% sodium hypochlorite as a priming solution in bonding procedure is not recommended. There is no improvement in dentinal surface wettability by using 70% ethanol or 0.2% chlorhexidine instead of water and the recommendation for use of any of the two should be based on other long-term or short-term effects they may have on the bonding procedure.

  18. Calculation of the surface energy of hcp-metals with the empirical electron theory

    International Nuclear Information System (INIS)

    Fu Baoqin; Liu Wei; Li Zhilin

    2009-01-01

    A brief introduction of the surface model based on the empirical electron theory (EET) and the dangling bond analysis method (DBAM) is presented in this paper. The anisotropy of spatial distribution of covalent bonds of hexagonal close-packed (hcp) metals such as Be, Mg, Sc, Ti, Co, Zn, Y, Zr, Tc, Cd, Hf, and Re, has been analyzed. And under the first-order approximation, the calculated surface energy values for low index surfaces of these hcp-metals are in agreement with experimental and other theoretical values. Correlated analysis showed that the anisotropy of surface energy of hcp-metals was related with the ratio of lattice constants (c/a). The calculation method for the research of surface energy provides a good basis for models of surface science phenomena, and the model may be extended to the surface energy estimation of more metals, alloys, ceramics, and so on, since abundant information about the valence electronic structure (VES) is generated from EET.

  19. BONDING ALUMINUM METALS

    Science.gov (United States)

    Noland, R.A.; Walker, D.E.

    1961-06-13

    A process is given for bonding aluminum to aluminum. Silicon powder is applied to at least one of the two surfaces of the two elements to be bonded, the two elements are assembled and rubbed against each other at room temperature whereby any oxide film is ruptured by the silicon crystals in the interface; thereafter heat and pressure are applied whereby an aluminum-silicon alloy is formed, squeezed out from the interface together with any oxide film, and the elements are bonded.

  20. Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission.

    Science.gov (United States)

    Kim, Sumin

    2009-01-01

    The objective of this research was to develop environment-friendly adhesives for face fancy veneer bonding of engineered flooring using the natural tannin form bark in the wood. The natural wattle tannin adhesive were used to replace UF resin in the formaldehyde-based resin system in order to reduce formaldehyde and volatile organic compound (VOC) emissions from the adhesives used between plywoods and fancy veneers. PVAc was added to the natural tannin adhesive to increase viscosity of tannin adhesive for surface bonding. For tannin/PVAc hybrid adhesives, 5%, 10%, 20% and 30% of PVAc to the natural tannin adhesives were added. tannin/PVAc hybrid adhesives showed better bonding than the commercial natural tannin adhesive with a higher level of wood penetration. The initial adhesion strength was sufficient to be maintained within the optimum initial tack range. The standard formaldehyde emission test (desiccator method), field and laboratory emission cell (FLEC) and VOC analyzer were used to determine the formaldehyde and VOC emissions from engineered flooring bonded with commercial the natural tannin adhesive and tannin/PVAc hybrid adhesives. By desiccator method and FLEC, the formaldehyde emission level of each adhesive showed the similar tendency. All adhesives satisfied the E(1) grade (below 1.5 mg/L) and E(0) grade (below 0.5 mg/L) with UV coating. VOC emission results by FLEC and VOC analyzer were different with the formaldehyde emission results. TVOC emission was slightly increased as adding PVAc.

  1. Isopeptide bonds of the major pilin protein BcpA influence pilus structure and bundle formation on the surface of Bacillus cereus

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, Antoni P.A.; Poor, Catherine B.; Jureller, Justin E.; Budzik, Jonathan M.; He, Chuan; Schneewind, Olaf (UC)

    2012-09-05

    Bacillus cereus strains elaborate pili on their surface using a mechanism of sortase-mediated cross-linking of major and minor pilus components. Here we used a combination of electron microscopy and atomic force microscopy to visualize these structures. Pili occur as single, double or higher order assemblies of filaments formed from monomers of the major pilin, BcpA, capped by the minor pilin, BcpB. Previous studies demonstrated that within assembled pili, four domains of BcpA -- CNA{sub 1}, CNA{sub 2}, XNA and CNA{sub 3} -- each acquire intramolecular lysine-asparagine isopeptide bonds formed via catalytic glutamic acid or aspartic acid residues. Here we showed that mutants unable to form the intramolecular isopeptide bonds in the CNA2 or CNA3 domains retain the ability to form pilus bundles. A mutant lacking the CNA{sub 1} isopeptide bond assembled deformed pilin subunits that failed to associate as bundles. X-ray crystallography revealed that the BcpA variant Asp{sup 312}Ala, lacking an aspartyl catalyst, did not generate the isopeptide bond within the jelly-roll structure of XNA. The Asp{sup 312}Ala mutant was also unable to form bundles and promoted the assembly of deformed pili. Thus, structural integrity of the CNA{sub 1} and XNA domains are determinants for the association of pili into higher order bundle structures and determine native pilus structure.

  2. Work function and surface stability of tungsten-based thermionic electron emission cathodes

    Science.gov (United States)

    Jacobs, Ryan; Morgan, Dane; Booske, John

    2017-11-01

    Materials that exhibit a low work function and therefore easily emit electrons into vacuum form the basis of electronic devices used in applications ranging from satellite communications to thermionic energy conversion. W-Ba-O is the canonical materials system that functions as the thermionic electron emitter commercially used in a range of high-power electron devices. However, the work functions, surface stability, and kinetic characteristics of a polycrystalline W emitter surface are still not well understood or characterized. In this study, we examined the work function and surface stability of the eight lowest index surfaces of the W-Ba-O system using density functional theory methods. We found that under the typical thermionic cathode operating conditions of high temperature and low oxygen partial pressure, the most stable surface adsorbates are Ba-O species with compositions in the range of Ba0.125O-Ba0.25O per surface W atom, with O passivating all dangling W bonds and Ba creating work function-lowering surface dipoles. Wulff construction analysis reveals that the presence of O and Ba significantly alters the surface energetics and changes the proportions of surface facets present under equilibrium conditions. Analysis of previously published data on W sintering kinetics suggests that fine W particles in the size range of 100-500 nm may be at or near equilibrium during cathode synthesis and thus may exhibit surface orientation fractions well described by the calculated Wulff construction.

  3. Research on Lessening of Bonding Effects Between the Metallic and Non-Metallic Surfaces Through the Graphite Films Deposited with Pulsed Electrical Discharges Process

    Science.gov (United States)

    Marin, L.; Topala, P.

    2017-06-01

    The paper presents the results of experimental research on the physics of natural graphite film formation, the establishment of chemical composition and functional properties of the graphite films, formed on metal surfaces, as a result of the action of plasma in the air environment, at a normal pressure, under the electrical discharge in impulse conditions (EDI). The researchings were performed in the frame of doctoral thesis “Research on lessening of the bonding effects between the metallic and nonmetallic surfaces through the graphite films” and aimed to identify the phenomena that occur at the interface metal/ film of graphite, and to identify also the technological applications that it may have the surface treatment for submitting the films of graphite on metallic surfaces achieved through an innovative process of electrical pulsed discharges. After the research works from the PhD theme above mentioned, a number of interesting properties of graphite pellicle have been identified ie reducing of metal surface polarity. This led to drastic decreases for the values of adhesion when bonding of metal surfaces was performed using a structural polyurethane adhesive designed by ICECHIM. Following the thermo-gravimetric analysis, performed of the graphite film obtained by process of electrical pulsed discharges, have been also discovered other interesting properties for this, ie reversible mass additions at specific values of the working temperature Chemical and scanning electron microscopy analysis have revealed that on the metallic surface subjected to electrical pulsed discharges process, outside the graphite film, it is also obtained a series of spatial formation composed of carbon atoms fullerenes type which are responsible for the phenomenon of addition of mass.

  4. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Science.gov (United States)

    Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan

    2008-11-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  5. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    International Nuclear Information System (INIS)

    Han Xianglong; Liu Xiaolin; Bai Ding; Meng Yao; Huang Lan

    2008-01-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure

  6. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Energy Technology Data Exchange (ETDEWEB)

    Han Xianglong [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Liu Xiaolin [Department of Orthodontics, Stomatology Hospital, Dalian University, Dalian 116021 (China); Bai Ding [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)], E-mail: baiding88@hotmail.com; Meng Yao; Huang Lan [Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  7. Amalgam shear bond strength to dentin using different bonding agents.

    Science.gov (United States)

    Vargas, M A; Denehy, G E; Ratananakin, T

    1994-01-01

    This study evaluated the shear bond strength of amalgam to dentin using five different bonding agents: Amalgambond Plus, Optibond, Imperva Dual, All-Bond 2, and Clearfil Liner Bond. Flat dentin surfaces obtained by grinding the occlusal portion of 50 human third molars were used for this study. To contain the amalgam on the tooth surface, cylindrical plastic molds were placed on the dentin and secured with sticky wax. The bonding agents were then applied according to the manufacturers' instructions or light activated and Tytin amalgam was condensed into the plastic molds. The samples were thermocycled and shear bond strengths were determined using an Instron Universal Testing Machine. Analysis by one-way ANOVA indicated significant difference between the five groups (P < 0.05). The bond strength of amalgam to dentin was significantly higher with Amalgambond Plus using the High-Performance Additive than with the other four bonding agents.

  8. Surface Passivation in Empirical Tight Binding

    OpenAIRE

    He, Yu; Tan, Yaohua; Jiang, Zhengping; Povolotskyi, Michael; Klimeck, Gerhard; Kubis, Tillmann

    2015-01-01

    Empirical Tight Binding (TB) methods are widely used in atomistic device simulations. Existing TB methods to passivate dangling bonds fall into two categories: 1) Method that explicitly includes passivation atoms is limited to passivation with atoms and small molecules only. 2) Method that implicitly incorporates passivation does not distinguish passivation atom types. This work introduces an implicit passivation method that is applicable to any passivation scenario with appropriate parameter...

  9. Bond Issues.

    Science.gov (United States)

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  10. The influence of flushing time on the bonding quality of liquid white cast iron on the solid surface of similar material

    Science.gov (United States)

    Bandanadjaja, Beny; Purwadi, Wiwik; Idamayanti, Dewi; Lilansa, Noval; Hanaldi, Kus; Nurzaenal, Friya Kurnia

    2018-05-01

    Hard metal castings are widely used in the coal mill pulverizer as construction material for coal crushers. During its operation crushers and mills experience degradation caused by abrasion load. This research dealed with the surface overlaying of similiar material on the surface of white cast iron by mean of gravity casting. The die blank casting was preheated prior to the casting process of outer layer made of Ni-Hard white cast iron to guarantee bonding processes and avoid any crack. The preheating temperature of die blankin ther range of 500C up to 850C was set up to reach the interface temperature in the range of 887°C -1198°C and the flushing time was varied between 10-20 seconds. Studies carried on the microstructure of sample material revealed a formation of metallurgical bonding at the preheating temperature above 625 °C by pouring temperature ranging from 1438 °C to 1468 °C. Metallographical and chemical composition by mean of EDS examination were performed to observed the resut. This research concludes that the casting of Ni-Hard 1 overlay by applying gravity casting method can be done by preheating the surface of casting to 625 °C, interface temperature of 1150 °C, flushing time of 7 seconds and pouring temperature of 1430 °C. Excellent metallurgical bonding at the contact area between dieblank and overlay material has been achieved in which there is no parting line at the interface area to be observed.

  11. Tensile bond strength of resin composite repair in vitro using different surface preparation conditionings to an aged CAD/CAM resin nanoceramic.

    Science.gov (United States)

    Stawarczyk, Bogna; Krawczuk, Andreas; Ilie, Nicoleta

    2015-03-01

    This study was conducted in order to assess the pretreatment method (air abrasion, both wet and dry, and Al2O3 grinder), the conditioning method (comprised of different adhesive systems), the repair resin composite (low and high modulus of elasticity), the contamination of CoJet air-abraded surfaces with water, and the effect phosphoric acid on the macrotensile bond strength (TBS) to aged CAD/CAM resin nanoceramic (RNC). Aged RNC substrates (LAVA Ultimate, 3M ESPE; N = 900; 10,000 cycles, 5 °C/55 °C) were air-abraded (CoJet 3M ESPE) with and without water contamination or treated with an Al2O3 grinder (Cimara, Voco). Immediately after pretreatment, half of the specimens were additionally cleaned with phosphoric acid, while the rest were only rinsed with water. Four intermediate agents (Futurabond U/VOCO, Scotchbond Universal/3M ESPE, One Coat Bond/Coltène Whaledent, visio.link/bredent) were selected for conditioning the surface, while no conditioned specimens acted as control groups. Specimens were thereafter repaired using two direct resin composites (Arabesk Top and GrandioSo, VOCO), stored for 24 h at 37 °C in H2O, and thermally aged for 10,000 cycles (5 °C/55 °C; n = 15/subgroup). TBS and failure types were determined and evaluated with four- and one-way ANOVA and χ (2) test (p universal adhesives proved to be effective intermediate agents for repairing aged CAD/CAM RNC, while visio.link and Scotchbond Universal performed slightly better than Futurabond U. Phosphoric acid or water contamination of the air-abraded surface does not affect the repair bond strength.

  12. Comparison between alkali heat treatment and sprayed hydroxyapatite coating on thermally-sprayed rough Ti surface in rabbit model: Effects on bone-bonding ability and osteoconductivity.

    Science.gov (United States)

    Kawai, Toshiyuki; Takemoto, Mitsuru; Fujibayashi, Shunsuke; Tanaka, Masashi; Akiyama, Haruhiko; Nakamura, Takashi; Matsuda, Shuichi

    2015-07-01

    In this study, we investigated the effect of different surface treatments (hydroxyapatite (HA) coating, alkali heat treatment, and no treatment) on the ability of bone to bond to a rough arc-sprayed Ti metal surface, using rabbit models. The bone-to-implant contacts for untreated, HA-coated, and alkali heat-treated implants were 21.2%, 72.1%, and 33.8% at 4 weeks, 21.8%, 70.9%, and 30.0% at 8 weeks, and 16.3%, 70.2%, and 29.9% at 16 weeks, respectively (n = 8). HA -coated implants showed significantly higher bone-to-implant contacts than the untreated and alkali heat-treated implants at all the time point, whereas alkali heat-treated implants showed significantly higher bone-to-implant contacts than untreated implants at 4 and 16 weeks. The failure loads in a mechanical test for untreated, HA coated, alkali heat-treated plates were 65.4 N, 70.7 N, and 90.8 N at 4 weeks, 76.1 N, 64.7 N, and 104.8 N at 8 weeks and 88.7 N, 92.6 N, and 118.5 N at 16 weeks, respectively (n = 8). The alkali heat-treated plates showed significantly higher failure loads than HA-coated plates at 8 and 16 weeks. The difference between HA-coated plates and untreated plates were not statistically significant at any time point. Thus HA coating, although it enables high bone-to-implant contact, may not enhance the bone-bonding properties of thermally-sprayed rough Ti metal surfaces. In contrast, alkali heat treatment can be successfully applied to thermally-sprayed Ti metal to enhance both bone-to-implant contact and bone-bonding strength. © 2014 Wiley Periodicals, Inc.

  13. Research on the Effects of Process Parameters on Surface Roughness in Wet-Activated Silicon Direct Bonding Base on Orthogonal Experiments

    Directory of Open Access Journals (Sweden)

    Lei NIE

    2015-11-01

    Full Text Available Surface roughness is a very important index in silicon direct bonding and it is affected by processing parameters in the wet-activated process. These parameters include the concentration of activation solution, holding time and treatment temperature. The effects of these parameters were investigated by means of orthogonal experiments. In order to analyze the wafer roughness more accurately, the bear ratio of the surface was used as the evaluation index. From the results of the experiments, it could be concluded that the concentration of the activation solution affected the roughness directly and the higher the concentration, the lower the roughness. Holding time did not affect the roughness as acutely as that of the concentration, but a reduced activation time decreased the roughness perceptibly. It was also discovered that the treatment temperature had a weak correlation with the surface roughness. Based on these conclusions, the parameters of concentration, temperature and holding time were optimized respectively as NH4OH:H2O2=1:1 (without water, 70 °C and 5 min. The results of bonding experiments proved the validity of the conclusions of orthogonal experiments.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9711

  14. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Sun, Zhen-Qi; Huang, Ming-Hui; Hu, Guo-Huai

    2012-01-01

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  15. The Influence of Abutment Surface Treatment and the Type of Luting Cement on Shear Bond Strength between Titanium/Cement/Zirconia

    Directory of Open Access Journals (Sweden)

    Beata Śmielak

    2015-01-01

    Full Text Available Objectives. The objectives of this study were to evaluate the shear bond strength of zirconia cylinders on a modified titanium surface using different luting cement types. Material and Methods. Eighty titanium disks were divided into two groups (n=40, which were treated with either grinding or a combination of sandblasting and grinding. Then, each group was subdivided into 4 groups (n=10 and the disks were bonded to disks of sintered zirconia using one of four cement types (permanent: composite cement; temporary: polycarboxylate cement, zinc-oxide-eugenol cement, and resin cement. Shear bond strength (SBS was measured in a universal testing machine. Fracture pattern and site characteristic were recorded. A fractographic analysis was performed with SEM. The chemical analysis of the composition of the fractures was performed using energy-dispersive X-ray spectroscopy (EDS. The results of the experiment were analyzed with two-way analysis of variance and Tukey post hoc test. Results. The highest mean values of SBS were achieved when grinding was combined with sandblasting and when composite cement was used (18.18 MPa. In the temporary cement group, the highest mean values of SBS were for polycarboxylate cement after grinding (3.57 MPa. Conclusion. The choice of cement has a crucial influence on the titanium-cement-zirconia interface quality.

  16. Pre-treatments applied to oxidized aluminum surfaces to modify the interfacial bonding with bis-1,2-(triethoxysilyl)ethane (BTSE)

    International Nuclear Information System (INIS)

    Kim, J.; Teo, M.; Wong, P.C.; Wong, K.C.; Mitchell, K.A.R.

    2005-01-01

    The methods of X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS), and scanning electron microscopy (SEM) have been used to investigate aspects of the bonding of bis-1,2-(triethoxysilyl)ethane (BTSE) onto anodized samples of 7075-T6 aluminum alloy that have been subjected to the various pre-treatments considered in Part I. The oxide layer thins when this sample is subjected to a Forest Products Laboratory (FPL) treatment; topographical changes are detected by SEM after only 5 min, and the 'scallop structures' increase in size for longer times of the FPL treatment. These 7075-Al surfaces adsorb more BTSE than the high-purity Al samples considered in Part I, although the interfacial bonding indicated by the [AlOSi] + /[Al 2 O] + SIMS ratios measured for the former samples are constant for different times of FPL treatment, unlike the situation for high-purity Al. Heating anodized 7075-Al samples, either before or after FPL treatment, has no significant effect on the subsequent BTSE adsorption, but a H 2 plasma treatment can enhance the interfacial Al-O-Si bonding with a decrease in the total BTSE polymerization

  17. Pre-treatments applied to oxidized aluminum surfaces to modify the interfacial bonding with bis-1,2-(triethoxysilyl)ethane (BTSE)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Teo, M. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, P.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Wong, K.C. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Mitchell, K.A.R. [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada)]. E-mail: karm@chem.ubc.ca

    2005-12-15

    The methods of X-ray photoelectron spectroscopy (XPS), secondary-ion mass spectrometry (SIMS), and scanning electron microscopy (SEM) have been used to investigate aspects of the bonding of bis-1,2-(triethoxysilyl)ethane (BTSE) onto anodized samples of 7075-T6 aluminum alloy that have been subjected to the various pre-treatments considered in Part I. The oxide layer thins when this sample is subjected to a Forest Products Laboratory (FPL) treatment; topographical changes are detected by SEM after only 5 min, and the 'scallop structures' increase in size for longer times of the FPL treatment. These 7075-Al surfaces adsorb more BTSE than the high-purity Al samples considered in Part I, although the interfacial bonding indicated by the [AlOSi]{sup +}/[Al{sub 2}O]{sup +} SIMS ratios measured for the former samples are constant for different times of FPL treatment, unlike the situation for high-purity Al. Heating anodized 7075-Al samples, either before or after FPL treatment, has no significant effect on the subsequent BTSE adsorption, but a H{sub 2} plasma treatment can enhance the interfacial Al-O-Si bonding with a decrease in the total BTSE polymerization.

  18. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  19. 1.3 μm wavelength vertical cavity surface emitting laser fabricated by orientation-mismatched wafer bonding: A prospect for polarization control

    Science.gov (United States)

    Okuno, Yae L.; Geske, Jon; Gan, Kian-Giap; Chiu, Yi-Jen; DenBaars, Steven P.; Bowers, John E.

    2003-04-01

    We propose and demonstrate a long-wavelength vertical cavity surface emitting laser (VCSEL) which consists of a (311)B InP-based active region and (100) GaAs-based distributed Bragg reflectors (DBRs), with an aim to control the in-plane polarization of output power. Crystal growth on (311)B InP substrates was performed under low-migration conditions to achieve good crystalline quality. The VCSEL was fabricated by wafer bonding, which enables us to combine different materials regardless of their lattice and orientation mismatch without degrading their quality. The VCSEL was polarized with a power extinction ratio of 31 dB.

  20. Assessment and characterization of degradation effect for the varied degrees of ultra-violet radiation onto the collagen-bonded polypropylene non-woven fabric surfaces.

    Science.gov (United States)

    Tyan, Yu-Chang; Liao, Jiunn-Der; Klauser, Ruth; Wu, Ie-Der; Weng, Chih-Chiang

    2002-01-01

    Exposure to ultra-violet (UV)-C radiation is a frequently used method to prevent bacteria from invasion of blood-contact biomedical products. Potential damage induced by UV radiation to collagen is of concern due to the decay of bioactivity, considerably correlated with structural alterations. Our current investigation studies the collagen-bonded non-woven polypropylene (PP) fabric surface. In this experiment, antenna-coupling microwave plasma is utilized to activate PP fabric and then the sample is grafted with acrylic acid (AAc). Type III collagen is immobilized by using water soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as coupling agent. The collagen-bonded samples with sample temperature ca. 4 degrees C are then exposed to UV-254nm radiation for different time intervals. By using fourier-transformed infrared with attenuated total reflection (FTIR-ATR) and XPS (X-ray photoelectron spectroscopy), we examine the chemical structures of samples with different treatments. Coomassie brilliant blue G250 method is utilized to quantify the immobilized collagen on the PP fabric surfaces. Blood-clotting effects are evaluated by activated partial thromboplastin time, thrombin time, and fibrinogen concentration tests. By means of cell counter and scanning electron microscopy we count red blood cells and platelets adhesion in the modified porous matrix. Our experimental results have demonstrated that with pAAc-grafting of ca. 173 microg cm(-2) and immobilized collagen of 80.5+/-4.7 microg cm(-2), for human plasma incubated samples of various intervals of UV-254 nm radiation, fibrinogen concentration decreases in human plasma, while platelets and red blood cells adhesions increase before UV radiation. However, the required time for thrombination shows significant change for UV radiation exposure of less than 20 h (alpha = 0.05). The decay of bioactivity for the UV-irradiated, collagen-bonded surfaces is thus evaluated. Surface analyses indicate that the decrease of

  1. Passivation of hexagonal SiC surfaces by hydrogen termination

    International Nuclear Information System (INIS)

    Seyller, Thomas

    2004-01-01

    Surface hydrogenation is a well established technique in silicon technology. It is easily accomplished by wet-chemical procedures and results in clean and unreconstructed surfaces, which are extremely low in charged surface states and stable against oxidation in air, thus constituting an ideal surface preparation. As a consequence, methods for hydrogenation have been sought for preparing silicon carbide (SiC) surfaces with similar well defined properties. It was soon recognized, however, that due to different surface chemistry new ground had to be broken in order to find a method leading to the desired monatomic hydrogen saturation. In this paper the results of H passivation of SiC surfaces by high-temperature hydrogen annealing will be discussed, thereby placing emphasis on chemical, structural and electronic properties of the resulting surfaces. In addition to their unique properties, hydrogenated hexagonal SiC {0001} surfaces offer the interesting possibility of gaining insight into the formation of silicon- and carbon-rich reconstructions as well. This is due to the fact that to date hydrogenation is the only method providing oxygen-free surfaces with a C to Si ratio of 1:1. Last but not least, the electronic properties of hydrogen-free SiC {0001} surfaces will be alluded to. SiC {0001} surfaces are the only known semiconductor surfaces that can be prepared in their unreconstructed (1 x 1) state with one dangling bond per unit cell by photon induced hydrogen desorption. These surfaces give indications of a Mott-Hubbard surface band structure

  2. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    Science.gov (United States)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  3. Fluorescence properties of dansyl groups covalently bonded to the surface of oxidatively functionalized low-density polyethylene film

    Science.gov (United States)

    Holmes-Farley, S. R.; Whitesides, G. M.

    1985-12-01

    Brief oxidation of low-density polyethylene film with chromic acid in aqueous sulfuric acid introduced carboxylic acid and ketone and/or aldehyde groups onto the surface of the film. The carboxylic acid moieties can be used to attach more complex functionality to the polymer surface. We are developing this surface-functionalized polyethylene (named polyethylene carboxylic acid, PE-CO2H, to emphasize the functional group that dominates its surface properties) as a substrate with which to study problems in organic surface chemistry--especially wetting, polymer surface reconstruction, and adhesion--using physical-organic techniques. This document describes the preparation, characterization, and fluorescence properties of derivatives of PE-CO2H in which the Dansyl (5-dimethylaminonaphthalene-1-sulfonyl) group has been covalently attached by amide links to the surface carbonyl moieties.

  4. Effect of surface pretreatment on interfacial chemical bonding states of atomic layer deposited ZrO2 on AlGaN

    International Nuclear Information System (INIS)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Wang, Hong; Ng, Serene Lay Geok; Ji, Rong; Liu, Zhi Hong

    2015-01-01

    Atomic layer deposition (ALD) of ZrO 2 on native oxide covered (untreated) and buffered oxide etchant (BOE) treated AlGaN surface was analyzed by utilizing x-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy. Evidenced by Ga–O and Al–O chemical bonds by XPS, parasitic oxidation during deposition is largely enhanced on BOE treated AlGaN surface. Due to the high reactivity of Al atoms, more prominent oxidation of Al atoms is observed, which leads to thicker interfacial layer formed on BOE treated surface. The results suggest that native oxide on AlGaN surface may serve as a protecting layer to inhibit the surface from further parasitic oxidation during ALD. The findings provide important process guidelines for the use of ALD ZrO 2 and its pre-ALD surface treatments for high-k AlGaN/GaN metal–insulator–semiconductor high electron mobility transistors and other related device applications

  5. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces.

    Science.gov (United States)

    Mahouche-Chergui, Samia; Gam-Derouich, Sarra; Mangeney, Claire; Chehimi, Mohamed M

    2011-07-01

    This critical review summarizes existing knowledge on the use of diazonium salts as a new generation of surface modifiers and coupling agents for binding synthetic polymers, biomacromolecules, and nanoparticles to surfaces. Polymer grafts can be directly grown at surfaces through the so-called grafting from approaches based on several polymerization methods but can also be pre-formed in solution and then grafted to surfaces through grafting onto strategies including "click" reactions. Several routes are also described for binding biomacromolecules through aryl layers in view of developing biosensors and protein arrays, while the use of aryl diazonium coupling agents is extended to the attachment of nanoparticles. Patents and industrial applications of the surface chemistry of diazonium compounds are covered. This review stresses the paramount role of aryl diazonium coupling agents in adhesion, surface and materials sciences (114 references).

  6. Quasi-plane-hypothesis of strain coordination for RC beams seismically strengthened with externally-bonded or near-surface mounted fiber reinforced plastic

    Science.gov (United States)

    Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun

    2013-03-01

    The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.

  7. High-frequency EPR of surface impurities on nanodiamond

    Science.gov (United States)

    Peng, Zaili; Stepanov, Viktor; Takahashi, Susumu

    Diamond is a fascinating material, hosting nitrogen-vacancy (NV) defect centers with unique magnetic and optical properties. There have been many reports that suggest the existence of paramagnetic impurities near surface of various kinds of diamonds. Electron paramagnetic resonance (EPR) investigation of mechanically crushed nanodiamonds (NDs) as well as detonation NDs revealed g 2 like signals that are attributed to structural defects and dangling bonds near the diamond surface. In this presentation, we investigate paramagnetic impurities in various sizes of NDs using high-frequency (HF) continuous wave (cw) and pulsed EPR spectroscopy. Strong size dependence on the linewidth of HF cw EPR spectra reveals the existence of paramagnetic impurities in the vicinity of the diamond surface. We also study the size dependence of the spin-lattice and spin-spin relaxation times (T1 and T2) of single substitutional nitrogen defects in NDs Significant deviations from the temperature dependence of the phonon-assisted T1 process were observed in the ND samples, and were attributed to the contribution from the surface impurities. This work was supported by the Searle Scholars Program and the National Science Foundation (DMR-1508661 and CHE-1611134).

  8. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    International Nuclear Information System (INIS)

    Can, Mustafa; Havare, Ali Kemal; Aydın, Hasan; Yagmurcukardes, Nesli; Demic, Serafettin; Icli, Sıddık; Okur, Salih

    2014-01-01

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  9. Electrical properties of SAM-modified ITO surface using aromatic small molecules with double bond carboxylic acid groups for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Can, Mustafa [Izmir Katip Celebi University, Faculty of Engineering, Department of Engineering Sciences, Çiğli, Izmir (Turkey); Havare, Ali Kemal [Toros University, Faculty of Engineering, Electric and Electronic Department, Mersin (Turkey); Aydın, Hasan; Yagmurcukardes, Nesli [Izmir Institute of Technology, Material Science and Engineering, Izmir (Turkey); Demic, Serafettin [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey); Icli, Sıddık [Ege University, Solar Energy Institute, Izmir (Turkey); Okur, Salih, E-mail: salih.okur@ikc.edu.tr [Izmir Katip Celebi University, Faculty of Engineering, Department of Material Science and Engineering, Çiğli, Izmir (Turkey)

    2014-09-30

    Graphical abstract: - Highlights: • We report that the performance of OLED consist of aromatic small molecules with double bond carboxylic acid groups on ITO surface. • The OLED devices were tested in terms of electrical and optical characteristics. • The I–V results show that OLEDs with SAM-modified ITO surface have lower turn on voltages than OLED configurations without SAMs. - Abstract: 5-[(3-Methylphenyl)(phenyl)amino]isophthalic acid (5-MePIFA) and 5-(diphenyl)amino]isophthalic acid (5-DPIFA) organic molecules were synthesized to form self-assembled monolayer on indium tin oxide (ITO) anode to enhance hole transport from ITO to organic hole transport layers such as TPD. The modified surface was characterized by scanning tunneling microscopy (STM). The change in the surface potential was measured by Kelvin probe force microscopy (KPFM). Our Kelvin probe force microscopy (KPFM) measurements showed that the surface potentials increased more than 100 mV with reference to bare indium tin-oxide. The results show that the threshold voltage on OLEDs with modified ITO is lowered significantly compared to OLEDs with unmodified ITO. The hole mobility of TPD has been estimated using space–charge-limited current measurements (SCLC)

  10. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  11. Role of Surface Chemistry in Grain Adhesion and Dissipation during Collisions of Silica Nanograins

    Energy Technology Data Exchange (ETDEWEB)

    Quadery, Abrar H.; Tucker, William C.; Dove, Adrienne R.; Schelling, Patrick K. [Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); Doan, Baochi D., E-mail: patrick.schelling@ucf.edu [Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2017-08-01

    The accretion of dust grains to form larger objects, including planetesimals, is a central problem in planetary science. It is generally thought that weak van der Waals interactions play a role in accretion at small scales where gravitational attraction is negligible. However, it is likely that in many instances, chemical reactions also play an important role, and the particular chemical environment on the surface could determine the outcomes of dust grain collisions. Using atomic-scale simulations of collisional aggregation of nanometer-sized silica (SiO{sub 2}) grains, we demonstrate that surface hydroxylation can act to weaken adhesive forces and reduce the ability of mineral grains to dissipate kinetic energy during collisions. The results suggest that surface passivation of dangling bonds, which generally is quite complete in an Earth environment, should tend to render mineral grains less likely to adhere during collisions. It is shown that during collisions, interactions scale with interparticle distance in a manner consistent with the formation of strong chemical bonds. Finally, it is demonstrated that in the case of collisions of nanometer-scale grains with no angular momentum, adhesion can occur even for relative velocities of several kilometers per second. These results have significant implications for early planet formation processes, potentially expanding the range of collision velocities over which larger dust grains can form.

  12. Self-trapping nature of Tl nanoclusters on the Si(111)-7x7 surface

    International Nuclear Information System (INIS)

    Hwang, C G; Kim, N D; Lee, G; Shin, S Y; Kim, J S; Chung, J W

    2008-01-01

    We have studied properties of thallium (Tl) nanoclusters formed on the Si(111)-7x7 surface at room temperature (RT) by utilizing photoemission spectroscopy (PES) and high-resolution electron-energy-loss spectroscopy (HREELS) combined with first principles calculations. Our PES data reveal that the surface states stemming from the Si substrate remain quite inert with Tl adsorption producing no Tl-induced state until saturation at Tl coverage θ=0.21 monolayers. Such a behavior, in sharp contrast with the extremely reactive surface states upon the formation of Na or Li nanoclusters, together with the presence of a unique Tl-induced loss peak in HREELS spectra suggests no strong Si-Tl bonding, and is well understood in terms of gradual filling of Si dangling bonds with increasing θ. Our calculation further indicates the presence of several metastable atomic structures of Tl nanoclusters at RT rapidly transforming from one to another faster than 10 10 flippings per second. We thus conclude that the highly mobile Tl atoms form self-trapped nanoclusters within the attractive basins of the Si substrate at RT with several metastable phases. The mobile and multi-phased nature of Tl nanoclusters not only accounts for all the existing experimental observations available at present, but also provides an example of self-trapping of atoms in a nanometre-scale region

  13. First-principles investigations of electronic and magnetic properties of SrTiO3 (001) surfaces with adsorbed ethanol and acetone molecules

    Science.gov (United States)

    Adeagbo, Waheed A.; Fischer, Guntram; Hergert, Wolfram

    2011-05-01

    First-principles methods based on density functional theory are used to investigate the electronic and magnetic properties of molecular interaction of the TiO2 terminated SrTiO3 (100) surface with ethanol or acetone. Both the perfect surface and the surface with an oxygen or a titanium vacancy in the top layer are considered. Ethanol and acetone are preferentially adsorbed molecularly via their respective oxygen atom on top of the Ti atom on the perfect surface. In case of an oxygen vacancy the adsorption of ethanol or acetone occurs directly on top of the vacancy and does not significantly affect the magnetism caused by the vacancy. In the case of a titanium vacancy both adsorbates occupy positions above Ti atoms. During this adsorption process the ethanol molecule dissociates into a CH3CO radical and three hydrogen atoms. The latter form hydroxide bonds with three of the four dangling oxygen bonds around the Ti vacancy and any magnetic moment induced by the Ti vacancy is annihilated. Thus the ethanol and acetone have a different impact on the surface magnetism of the SrTiO3 (100) surface.

  14. Sum-frequency spectroscopic studies: I. Surface melting of ice, II. Surface alignment of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xing [Univ. of California, Berkeley, CA (United States)

    2000-01-01

    Surface vibrational spectroscopy via infrared-visible sum-frequency generation (SFG) has been established as a useful tool to study the structures of different kinds of surfaces and interfaces. This technique was used to study the (0001) face of hexagonal ice (Ih). SFG spectra in the O-H stretch frequency range were obtained at various sample temperatures. For the vapor(air)/ice interface, the degree of orientational order of the dangling OH bonds at the surface was measured as a function of temperature. Disordering sets in around 200 K and increases dramatically with temperature, which is strong evidence of surface melting of ice. For the other ice interfaces (silica/OTS/ice and silica/ice), a similar temperature dependence of the hydrogen bonded OH stretch peak was observed; the free OH stretch mode, however, appears to be different from that of the vapor (air)/ice interface due to interactions at the interfaces. The technique was also used to measure the orientational distributions of the polymer chains on a rubbed polyvinyl alcohol surface. Results show that the polymer chains at the surface appear to be well aligned by rubbing, and the adsorbed liquid crystal molecules are aligned, in turn, by the surface polymer chains. A strong correlation exists between the orientational distributions of the polymer chains and the liquid crystal molecules, indicating that the surface-induced bulk alignment of a liquid crystal film by rubbed polymer surfaces is via an orientational epitaxy-like mechanism. This thesis also contains studies on some related issues that are crucial to the above applications. An experiment was designed to measure SFG spectra in both reflection and transmission. The result confirms that SFG in reflection is generally dominated by the surface contribution. Another issue is the motional effect due to fast orientational motion of molecules at a surface or interface. Calculations show that the effect is significant if the molecular orientation varies

  15. Method to improve commercial bonded SOI material

    Science.gov (United States)

    Maris, Humphrey John; Sadana, Devendra Kumar

    2000-07-11

    A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.

  16. Low-loss integrated electrical surface plasmon source with ultra-smooth metal film fabricated by polymethyl methacrylate ‘bond and peel’ method

    Science.gov (United States)

    Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun

    2018-06-01

    External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate ‘bond and peel’ method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.

  17. Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy

    International Nuclear Information System (INIS)

    Ren Yu; Wang Chunxia; Qiu Yiping

    2007-01-01

    One of the main differences between a low-pressure plasma treatment and an atmospheric pressure plasma treatment is that in atmosphere, the substrate material may absorb significant amount of water which may potentially influence the plasma treatment effects. This paper investigates how the moisture absorbed by aramid fibers during the atmospheric pressure plasma treatment influences the aging behavior of the modified surfaces. Kevlar 49 fibers with different moisture regains (MR) (0.5, 3.5 and 5.5%, respectively) are treated with atmospheric pressure plasma jet (APPJ) with helium as the carrier gas and oxygen as the treatment gas. Surface wettability and chemical compositions, and interfacial shear strengths (IFSS) to epoxy for the aramid fibers in all groups are determined using water contact angle measurements, X-ray photoelectron spectroscopy (XPS), and micro-bond pull out tests, respectively. Immediately after the plasma treatment, the treated fibers have substantially lower water contact angles, higher surface oxygen and nitrogen contents, and larger IFSS to epoxy than those of the control group. At the end of 30 day aging period, the fibers treated with 5.5% moisture regain had a lower water contact angle and more polar groups on the fiber surface, leading to 75% improvement of IFSS over the control fibers, while those for the 0.5 and 3.5% moisture regain groups were only 30%

  18. Corrosion resistance of rigid bonded magnet MQP-0 (NdFeB compound) pre and post surface coating

    International Nuclear Information System (INIS)

    Purwanto, Setyo; Ihsan, M.; Mujamilah; Mashadi

    2002-01-01

    Rigid Bonded Magnet (RBM) MQP-0 (NdFeB magnetics material compound) has been created and done some treatment. It has been known that corrosion resistance of RBM with epoxy resin binder is higher than RBM with polyester binder (PE). Corrosion rate in variety solutions like water. Na CI, H 2 SO 4 , has proved the earlier statement. For corrosion testing of RBM in Na CI solution with concentrations 0.05 M and 0.10 M shows corrosion rate 0.18 milli inches/year (mpy) and 2.93 mpy for epoxy binder, and 4.10 mpy and 24.87 mpy for polyester binder. In order to enhance the corrosion resistance, coating of RBM with epoxy resin has been done. And it has been known that coating of RBM with epoxy resin decrease of corrosion rate almost 50%. Corrosion rate of RBM with epoxy coating in 0.15 M Na CI is 9.38 mpy, compared without coating 15.11 mpy

  19. Surface modification of polyethylene by radiation-induced grafting for adhesive bonding. IV. Improvement in wet peel strength

    International Nuclear Information System (INIS)

    Yamakawa, S.; Yamamoto, F.

    1980-01-01

    Adhesive joints of hydrolyzed methyl acrylate grafts, bonded with epoxy adhesives, yield extremely high peel strength (adherend failure) in dry conditions. However, when the joints are exposed to humid environments, the peel strength rapidly decreases with exposure time and then reaches a constant value (wet peel strength). Since the locus of failure changes from the adherend to the homopolymer layer with decreasing peel strength, the decrease is due to a decrease in mechanical strength of the homopolymer layer itself, which results from its swelling by water absorption. Many attempts to reduce the swelling of the homopolymer layer or to strengthen the swollen homopolymer layer were unsuccessful except (1) priming with epoxy solutions consisting of a base epoxy resin and organic solvents which can dissolve not only epoxy resins but also hydrolyzed poly(methyl acrylate) and (2) partial etching of the homopolymer layer by photo-oxidative degradation. All the results on the improvement in wet peel strength can be explained in terms of the penetration of epoxy resins into the homopolymer layer and subsequent curing of the penetrated epoxy resin. 15 figures, 1 table

  20. Halogen bond preferences of thiocyanate ligand coordinated to Ru(II) via sulphur atom

    Science.gov (United States)

    Ding, Xin; Tuikka, Matti; Hirva, Pipsa; Haukka, Matti

    2017-09-01

    Halogen bonding between [Ru(bpy)(CO)2(S-SCN)2] (bpy = 2,2'-bipyridine), I2 was studied by co-crystallising the metal compound and diiodine from dichloromethane. The only observed crystalline product was found to be [Ru(bpy)(CO)2(S-SCN)2]ṡI2 with only one NCSṡṡṡI2 halogen bond between I2 and the metal coordinated S atom of one of the thiocyanate ligand. The dangling nitrogen atoms were not involved in halogen bonding. However, computational analysis suggests that there are no major energetic differences between the NCSṡṡṡI2 and SCNṡṡṡI2 bonding modes. The reason for the observed NCSṡṡṡI2 mode lies most probably in the more favourable packing effects rather than energetic preferences between NCSṡṡṡI2 and SCNṡṡṡI2 contacts.

  1. Cobalt(II phthalocyanine bonded to 3-n-propylimidazole immobilized on silica gel surface: preparation and electrochemical properties

    Directory of Open Access Journals (Sweden)

    Fujiwara Sergio T.

    1999-01-01

    Full Text Available Co-Phthalocyanine complex was immobilized on 3-n-propylimidazole groups grafted on a porous SiO2 surface (specific surface area S BET = 500 m² g-1 and efficiently electrocatalyzed the oxalic acid oxidation on a carbon paste electrode surface made of this material. Intermolecular interactions of the complex species which can normally interfere in the redox process practically are not observed in the present case because of a low average surface density, delta = 4.7 x 10-13 mol cm-2 (delta = Nf/S BET, where Nf is the amount of adsorbed Co-phtalocyanine per gram of modified silica gel of the complex species material prepared. The linear response of the electrode to oxalic acid concentration, between 6.5 x 10-4 and 3.2 x 10-3 mol L-1, associated with its high chemical stability makes the covalently immobilized Co-phtalocyanine complex material very attractive in preparing a new class of chemical sensors.

  2. Adsorption of charged and neutral polymer chains on silica surfaces: The role of electrostatics, volume exclusion, and hydrogen bonding

    NARCIS (Netherlands)

    Spruijt, Evan; Biesheuvel, P.M.; de Vos, Wiebe Matthijs

    2015-01-01

    We develop an off-lattice (continuum) model to describe the adsorption of neutral polymer chains and polyelectrolytes to surfaces. Our continuum description allows taking excluded volume interactions between polymer chains and ions directly into account. To implement those interactions, we use a

  3. Effects of post heat-treatment on surface characteristics and adhesive bonding performance of medium density fiberboard

    Science.gov (United States)

    Nadir Ayrilimis; Jerrold E. Winandy

    2009-01-01

    A series of commercially manufactured medium density fiberboard (MDF) panels were exposed to a post-manufacture heat-treatment at various temperatures and durations using a hot press and just enough pressure to ensure firm contact between the panel and the press platens. Post-manufacture heat-treatment improved surface roughness of the exterior MDF panels. Panels...

  4. Characterizing the potential energy surface of the water dimer with DFT: failures of some popular functionals for hydrogen bonding.

    Science.gov (United States)

    Anderson, Julie A; Tschumper, Gregory S

    2006-06-08

    Ten stationary points on the water dimer potential energy surface have been examined with ten density functional methods (X3LYP, B3LYP, B971, B98, MPWLYP, PBE1PBE, PBE, MPW1K, B3P86, and BHandHLYP). Geometry optimizations and vibrational frequency calculations were carried out with the TZ2P(f,d)+dif basis set. All ten of the density functionals correctly describe the relative energies of the ten stationary points. However, correctly describing the curvature of the potential energy surface is far more difficult. Only one functional (BHandHLYP) reproduces the number of imaginary frequencies from CCSD(T) calculations. The other nine density functionals fail to correctly characterize the nature of at least one of the ten (H(2)O)(2) stationary points studied here.

  5. Mixed resin and carbon fibres surface treatment for preparation of carbon fibres composites with good interfacial bonding strength

    International Nuclear Information System (INIS)

    He, Hongwei; Wang, Jianlong; Li, Kaixi; Wang, Jian; Gu, Jianyu

    2010-01-01

    The objective of this work is to improve the interlaminar shear strength of composites by mixing epoxy resin and modifying carbon fibres. The effect of mixed resin matrix's structure on carbon fibres composites was studied. Anodic oxidation treatment was used to modify the surface of carbon fibres. The tensile strength of multifilament and interlaminar shear strength of composites were investigated respectively. The morphologies of untreated and treated carbon fibres were characterized by scanning electron microscope and X-ray photoelectron spectroscopy. Surface analysis indicates that the amount of carbon fibres chemisorbed oxygen-containing groups, active carbon atom, the surface roughness, and wetting ability increases after treatment. The tensile strength of carbon fibres decreased little after treatment by anodic oxidation. The results show that the treated carbon fibres composites could possess excellent interfacial properties with mixed resins, and interlaminar shear strength of the composites is up to 85.41 MPa. The mechanism of mixed resins and treated carbon fibres to improve the interfacial property of composites is obtained.

  6. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bu...

  7. Bipodal surface organometallic complexes with surface N-donor ligands and application to the catalytic cleavage of C-H and C-C bonds in n -Butane

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa

    2013-11-27

    We present a new generation of "true vicinal" functions well-distributed on the inner surface of SBA15: [(Sî - Si-NH 2)(≡Si-OH)] (1) and [(≡Si-NH2)2] (2). From these amine-modified SBA15s, two new well-defined surface organometallic species [(≡Si-NH-)(≡Si-O-)]Zr(CH2tBu) 2 (3) and [(≡Si-NH-)2]Zr(CH2tBu) 2 (4) have been obtained by reaction with Zr(CH2tBu) 4. The surfaces were characterized with 2D multiple-quantum 1H-1H NMR and infrared spectroscopies. Energy-filtered transmission electron microscopy (EFTEM), mass balance, and elemental analysis unambiguously proved that Zr(CH2tBu)4 reacts with these vicinal amine-modified surfaces to give mainly bipodal bis(neopentyl)zirconium complexes (3) and (4), uniformly distributed in the channels of SBA15. (3) and (4) react with hydrogen to give the homologous hydrides (5) and (6). Hydrogenolysis of n-butane catalyzed by these hydrides was carried out at low temperature (100 C) and low pressure (1 atm). While (6) exhibits a bis(silylamido)zirconium bishydride, [(≡Si-NH-)2]Zr(H) 2 (6a) (60%), and a bis(silylamido)silyloxozirconium monohydride, [(≡Si-NH-)2(≡Si-O-)]ZrH (6b) (40%), (5) displays a new surface organometallic complex characterized by an 1H NMR signal at 14.46 ppm. The latter is assigned to a (silylimido)(silyloxo)zirconium monohydride, [(≡Si-Nî)(≡Si-O-)]ZrH (5b) (30%), coexistent with a (silylamido)(silyloxo)zirconium bishydride, [(≡Si-NH-)(≡Si-O-)] Zr(H)2 (5a) (45%), and a silylamidobis(silyloxo)zirconium monohydride, [(≡Si-NH-)(≡Si-O-)2]ZrH (5c) (25%). Surprisingly, nitrogen surface ligands possess catalytic properties already encountered with silicon oxide surfaces, but interestingly, catalyst (5) with chelating [N,O] shows better activity than (6) with chelating [N,N]. © 2013 American Chemical Society.

  8. Bipodal surface organometallic complexes with surface N-donor ligands and application to the catalytic cleavage of C-H and C-C bonds in n -Butane

    KAUST Repository

    Bendjeriou-Sedjerari, Anissa; Azzi, Joachim; Abou-Hamad, Edy; Anjum, Dalaver H.; Pasha, Fahran A.; Huang, Kuo-Wei; Emsley, Lyndon; Basset, Jean-Marie

    2013-01-01

    We present a new generation of "true vicinal" functions well-distributed on the inner surface of SBA15: [(Sî - Si-NH 2)(≡Si-OH)] (1) and [(≡Si-NH2)2] (2). From these amine-modified SBA15s, two new well-defined surface organometallic species [(≡Si-NH-)(≡Si-O-)]Zr(CH2tBu) 2 (3) and [(≡Si-NH-)2]Zr(CH2tBu) 2 (4) have been obtained by reaction with Zr(CH2tBu) 4. The surfaces were characterized with 2D multiple-quantum 1H-1H NMR and infrared spectroscopies. Energy-filtered transmission electron microscopy (EFTEM), mass balance, and elemental analysis unambiguously proved that Zr(CH2tBu)4 reacts with these vicinal amine-modified surfaces to give mainly bipodal bis(neopentyl)zirconium complexes (3) and (4), uniformly distributed in the channels of SBA15. (3) and (4) react with hydrogen to give the homologous hydrides (5) and (6). Hydrogenolysis of n-butane catalyzed by these hydrides was carried out at low temperature (100 C) and low pressure (1 atm). While (6) exhibits a bis(silylamido)zirconium bishydride, [(≡Si-NH-)2]Zr(H) 2 (6a) (60%), and a bis(silylamido)silyloxozirconium monohydride, [(≡Si-NH-)2(≡Si-O-)]ZrH (6b) (40%), (5) displays a new surface organometallic complex characterized by an 1H NMR signal at 14.46 ppm. The latter is assigned to a (silylimido)(silyloxo)zirconium monohydride, [(≡Si-Nî)(≡Si-O-)]ZrH (5b) (30%), coexistent with a (silylamido)(silyloxo)zirconium bishydride, [(≡Si-NH-)(≡Si-O-)] Zr(H)2 (5a) (45%), and a silylamidobis(silyloxo)zirconium monohydride, [(≡Si-NH-)(≡Si-O-)2]ZrH (5c) (25%). Surprisingly, nitrogen surface ligands possess catalytic properties already encountered with silicon oxide surfaces, but interestingly, catalyst (5) with chelating [N,O] shows better activity than (6) with chelating [N,N]. © 2013 American Chemical Society.

  9. Theoretical modelling of tip effects in the pushing manipulation of C60 on the Si(001) surface

    International Nuclear Information System (INIS)

    Martsinovich, N; Kantorovich, L

    2008-01-01

    We present the results of our theoretical studies on the repulsive (pushing) manipulation of a C 60 molecule on the Si(001) surface with several scanning tunnelling microscopy tips. We show that, for silicon tips, tip-C 60 bonds are formed even with tips that do not initially have dangling bonds, and this tip-C 60 interaction drives the manipulation of the molecule. The details of the atomic structure of the tip and its position relative to the molecule do not have a significant effect on the mechanism and the sequence of adsorption configurations during the pushing manipulation of C 60 along the trough, where the trough itself provides a guiding effect. The pushing manipulation is thus a very robust process that occurs largely independently of the tip structure. On the other hand, the pushing manipulation across an Si-Si dimer row into the neighbouring trough proceeds in a more complex way, with tip deformation and detachment more likely to occur. We demonstrate the role of tip deformation and tip-molecule bond rearrangement in the continuous manipulation of the molecule. Finally, we calculate and analyse the forces acting on the tip during manipulation and identify characteristic patterns

  10. Self-Assembled Si(111) Surface States: 2D Dirac Material for THz Plasmonics.

    Science.gov (United States)

    Wang, Z F; Liu, Feng

    2015-07-10

    Graphene, the first discovered 2D Dirac material, has had a profound impact on science and technology. In the last decade, we have witnessed huge advances in graphene related fundamental and applied research. Here, based on first-principles calculations, we propose a new 2D Dirac band on the Si(111) surface with 1/3 monolayer halogen coverage. The sp(3) dangling bonds form a honeycomb superstructure on the Si(111) surface that results in an anisotropic Dirac band with a group velocity (∼10(6)  m/s) comparable to that in graphene. Most remarkably, the Si-based surface Dirac band can be used to excite a tunable THz plasmon through electron-hole doping. Our results demonstrate a new way to design Dirac states on a traditional semiconductor surface, so as to make them directly compatible with Si technology. We envision this new type of Dirac material to be generalized to other semiconductor surfaces with broad applications.

  11. Effects of annealing temperatures on the morphological, mechanical, surface chemical bonding, and solar selectivity properties of sputtered TiAlSiN thin films

    International Nuclear Information System (INIS)

    Rahman, M. Mahbubur; Jiang, Zhong-Tao; Zhou, Zhi-feng; Xie, Zonghan; Yin, Chun Yang; Kabir, Humayun; Haque, Md. Mahbubul; Amri, Amun; Mondinos, Nicholas; Altarawneh, Mohammednoor

    2016-01-01

    Quaternary sputtered TiAlSiN coatings were investigated for their high temperature structural stability, surface morphology, mechanical behaviors, surface chemical bonding states, solar absorptance and thermal emittance for possible solar selective surface applications. The TiAlSiN films were synthesized, via unbalanced magnetron sputtered technology, on AISI M2 steel substrate and annealed at 500 °C - 800 °C temperature range. SEM micrographs show nanocomposite-like structure with amorphous grain boundaries. Nanoindentation analyses indicate a decrease of hardness, plastic deformation and constant yield strength for the coatings. XPS analysis show mixed Ti, Al and Si nitride and oxide as main coating components but at 800 °C the top layer of the coatings is clearly composed of only Ti and Al oxides. Synchrotron radiation XRD (SR-XRD) results indicate various Ti, Al and Si nitride and oxide phases, for the above annealing temperature range with a phase change occurring with the Fe component of the substrate. UV–Vis spectroscopy, FTIR spectroscopy studies determined a high solar selectivity, s of 24.6 for the sample annealed at 600 °C. Overall results show good structural and morphological stability of these coatings at temperatures up to 800 °C with a very good solar selectivity for real world applications. - Highlights: • TiAlSiN sputtered coatings were characterized for solar selective applications. • In situ synchrotron radiation XRD were studies show the occurrence of multiple stable phases. • A high selectivity of 24.63 has been achieved for the coatings annealed at 700 °C. • Existence of XRD phases were also confirmed by XPS measurements. • At high temperature annealing the mechanical properties of films were governed by the utmost surfaces of the films.

  12. Engineering out motion: introduction of a de novo disulfide bond and a salt bridge designed to close a dynamic cleft on the surface of cytochrome b5.

    Science.gov (United States)

    Storch, E M; Daggett, V; Atkins, W M

    1999-04-20

    A previous molecular dynamics (MD) simulation of cytochrome b5 (cyt b5) at 25 degrees C displayed localized dynamics on the surface of the protein giving rise to the periodic formation of a cleft that provides access to the heme through a protected hydrophobic channel [Storch and Daggett (1995) Biochemistry 34, 9682]. Here we describe the production and testing of mutants designed to prevent the cleft from opening using a combination of experimental and theoretical techniques. Two mutants have been designed to close the surface cleft: S18D to introduce a salt bridge and S18C:R47C to incorporate a disulfide bond. The putative cleft forms between two separate cores of the protein: one is structural in nature and can be monitored through the fluorescence of Trp 22, and the other binds the heme prosthetic group and can be tracked via heme absorbance. An increase in motion localized to the cleft region was observed for each protein, except for the disulfide-containing variant, in MD simulations at 50 degrees C compared to simulations at 25 degrees C. For the disulfide-containing variant, the cleft remained closed. Both urea and temperature denaturation curves were nearly identical for wild-type and mutant proteins when heme absorbance was monitored. In contrast, fluorescence studies revealed oxidized S18C:R47C to be considerably more stable based on the midpoints of the denaturation transitions, Tm and U1/2. Moreover, the fluorescence changes for each protein were complete at approximately 50 degrees C and a urea concentration of approximately 3.9 M, significantly below the temperature and urea concentration (62 degrees C, 5 M urea) required to observe heme release. In addition, solvent accessibility based on acrylamide quenching of Trp 22 was lower in the S18C:R47C mutant, particularly at 50 degrees C, before heme release [presented in the accompanying paper (58)]. The results suggest that a constraining disulfide bond can be designed to inhibit dynamic cleft formation

  13. Cold pressure welding - the mechanisms governing bonding

    DEFF Research Database (Denmark)

    Bay, Niels

    1979-01-01

    Investigations of the bonding surface in scanning electron microscope after fracture confirm the mechanisms of bond formation in cold pressure welding to be: fracture of work-hardened surface layer, surface expansion increasing the area of virgin surface, extrusion of virgin material through cracks...... of the original surface layer, and establishment of real contact and bonding between virgin material. This implies that normal pressure as well as surface expansion are basic parameters governing the bond strength. Experimental investigations of pressure welding Al-Al under plane strain compression in a specially...

  14. Effect of different surface treatments and retainer designs on the retention of posterior Pd-Ag porcelain-fused-to-metal resin-bonded fixed partial dentures.

    Science.gov (United States)

    Chen, Xiwen; Zhang, Yixin; Zhou, Jinru; Chen, Chenfeng; Zhu, Zhimin; Li, Lei

    2018-02-01

    The aim of this study was to investigate the adhesive property of palladium-silver alloy (Pd-Ag) and the simulated clinical performance of Pd-Ag porcelain-fused-to-metal (PFM), resin-bonded, fixed partial dentures (RBFPDs). A total of 40 Pd-Ag discs (diameter=5 mm) were prepared and divided into the following four groups (n=10): a) No sandblasting, used as a control; and b, 50 µm; c, 110 µm; and d, 250 µm aluminum oxide (Al 2 O 3 ) particles, respectively. Another 50 discs were pre-sandblasted and divided into five groups (n=10) subjected to different treatments: e) Sandblasting, used as a control; f) silane; g) alloy primer; h) silica coating + silane and i) silica coating + alloy primer. All 90 discs were bonded to enamel with Panavia F 2.0 and then subjected to shear bond strength (SBS) testing. The fracture surfaces were examined by scanning electron microscopy. Next, 40 missing maxillary second premolar models were restored with one of the four following RBFPD designs (n=10): I) A premolar occlusal bar combined with molar double rests (MDR); II) both occlusal bars with a wing (OBB); III) a premolar occlusal bar combined with a molar dental band (MDB); and IV) two single rests adjacent to the edentulous space with a wing (SRB) used as a control. All specimens were aged with thermal cycling and mechanical loading. Subsequently, they were loaded until broken. The data were analyzed by one-way analysis of variance. Al 2 O 3 (250 µm) abrasion provided the highest SBS (P<0.05). The alloy primer and silica + silane exhibited increased SBS. Furthermore, fracture analysis revealed that the failure mode varied among the different treatments. Whereas MDB exhibited the highest retention (P<0.05), that of OBB was greater than that of MDR (P<0.05), and the control exhibited the lowest retention. Abrasion with Al 2 O 3 (250 µm) effectively increased the adhesive property of Pd-Ag. Additionally, treatment with the alloy primer and silica coating + silane was able to

  15. Rate equation analysis of hydrogen uptake on Si (100) surfaces

    International Nuclear Information System (INIS)

    Inanaga, S.; Rahman, F.; Khanom, F.; Namiki, A.

    2005-01-01

    We have studied the uptake process of H on Si (100) surfaces by means of rate equation analysis. Flowers' quasiequilibrium model for adsorption and desorption of H [M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, Surf. Sci. 396, 227 (1998)] is extended so that in addition to the H abstraction (ABS) and β 2 -channel thermal desorption (TD) the proposed rate equation further includes the adsorption-induced desorption (AID) and β 1 -TD. The validity of the model is tested by the experiments of ABS and AID rates in the reaction system H+D/Si (100). Consequently, we find it can well reproduce the experimental results, validating the proposed model. We find the AID rate curve as a function of surface temperature T s exhibits a clear anti-correlation with the bulk dangling bond density versus T s curve reported in the plasma-enhanced chemical vapor deposition (CVD) for amorphous Si films. The significance of the H chemistry in plasma-enhanced CVD is discussed

  16. Superhydrophobic nanostructured Kapton® surfaces fabricated through Ar + O2 plasma treatment: Effects of different environments on wetting behaviour

    Science.gov (United States)

    Barshilia, Harish C.; Ananth, A.; Gupta, Nitant; Anandan, C.

    2013-03-01

    Kapton® [poly (4,4'-oxy diphenylene pyromellitimide)] polyimides have widespread usage in semiconductor devices, solar arrays, protective coatings and space applications, due to their excellent chemical and physical properties. In addition to their inherent properties, imparting superhydrophobicity on these surfaces will be an added advantage. Present work describes the usage of Ar + O2 plasma treatment for the preparation of superhydrophobic Kapton® surfaces. Immediately after the plasma treatment, the surfaces showed superhydrophilicity as a result of high energy dangling bonds and polar group concentration. But the samples kept in low vacuum for 48 h exhibited superhydrophobicity with high water contact angles (>150°). It is found that the post plasma treatment process, called ageing, especially in low vacuum plays an important role in delivering superhydrophobic property to Kapton®. Field emission scanning electron microscopy and atomic force microscopy were used to probe the physical changes in the surface of the Kapton®. The surfaces showed formation of nano-feathers and nano-tussock microstructures with variation in surface roughness against plasma treatment time. A thorough chemical investigation was performed using Fourier transform infrared spectroscopy and micro-Raman spectroscopy, which revealed changes in the surface of the Ar + O2 plasma treated Kapton®. Surface chemical species of Kapton® were confirmed again by X-ray photoelectron spectroscopy spectra for untreated surfaces whereas Ar + O2 plasma treated samples showed the de-bonding and re-organization of structural elements. Creation of surface roughness plays a dominant role in the contribution of superhydrophobicity to Kapton® apart from the surface modifications due to Ar + O2 plasma treatment and ageing in low vacuum.

  17. Interstellar hydrogen bonding

    Science.gov (United States)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  18. Effects of Crystallinity, Composition, and Texture on Hydrogen Solubility and Adsorption in Lunar Surface Materials and their Relevance to Remote Sensing

    Science.gov (United States)

    Dyar, M. D.; Hibbitts, C.; Orlando, T. M.; Poston, M.; Grieves, G. A.

    2011-12-01

    Abundant spacecraft data now demonstrate the presence of features associated with H on the lunar surface. The origin of that lunar H, whether as OH or H2O, is some combination of endogenic (juvenile) sources in the interiors of planetary materials and those resulting from exogenic deposition such as from the solar wind or comets. The ability of mineral (rock) and glass surfaces to internally host and surficially adsorb H is a function of several interrelated variables -- composition, crystallinity, and texture -- all of which will have an effect on observed band depth in remote sensing measurements. Studies of terrestrial materials show that the ability of nominally-anhydrous minerals to host H is related to composition in ways that reflect partition coefficients for H between melt and mineral, variations in bond strengths, and defect densities. This is important because the ability of a mineral to adsorb water on its exterior surface (chemisorption) should be related to some of the same factors that govern 'solubility' of H in the interiors of different mineral groups and compositions. IR signatures of internal OH/H2O can easily be confused with those of adsorbed OH/H2O. No correlation between H solubility and surface adsorptivity is observed in pristine glasses, which generally have passivated bonds on the surface and are hydrophobic. However, on the Moon, glass 'matures' rapidly via micrometeorite bombardment, potentially exposing dangling bonds on the surface that provide sites for H to adsorb. Unlike glasses, crystalline materials provide both defect lattice sites and dangling bonds on freshly-fractured surfaces that may enhance H adsorption. For example, bonding on mineral surfaces ranges from hydrogen bonding at non-lattice oxygen atoms (electronegative sites) to chemisorption at electropositive surface sites, such as structural defects or unsatisfied cations. Moreover, glasses and different mineral species also have different optical absorption coefficients

  19. 2D layered insulator hexagonal boron nitride enabled surface passivation in dye sensitized solar cells.

    Science.gov (United States)

    Shanmugam, Mariyappan; Jacobs-Gedrim, Robin; Durcan, Chris; Yu, Bin

    2013-11-21

    A two-dimensional layered insulator, hexagonal boron nitride (h-BN), is demonstrated as a new class of surface passivation materials in dye-sensitized solar cells (DSSCs) to reduce interfacial carrier recombination. We observe ~57% enhancement in the photo-conversion efficiency of the DSSC utilizing h-BN coated semiconductor TiO2 as compared with the device without surface passivation. The h-BN coated TiO2 is characterized by Raman spectroscopy to confirm the presence of highly crystalline, mixed monolayer/few-layer h-BN nanoflakes on the surface of TiO2. The passivation helps to minimize electron-hole recombination at the TiO2/dye/electrolyte interfaces. The DSSC with h-BN passivation exhibits significantly lower dark saturation current in the low forward bias region and higher saturation in the high forward bias region, respectively, suggesting that the interface quality is largely improved without impeding carrier transport at the material interface. The experimental results reveal that the emerging 2D layered insulator could be used for effective surface passivation in solar cell applications attributed to desirable material features such as high crystallinity and self-terminated/dangling-bond-free atomic planes as compared with high-k thin-film dielectrics.

  20. Diffusionless bonding of aluminum to Zircaloy-2

    International Nuclear Information System (INIS)

    Watson, R.D.

    1965-04-01

    Aluminum can be bonded to zirconium without difficulty even when a thin layer of oxide is present on the surface of the zirconium . No detectable diffusion takes place during the bonding process. The bond layer can be stretched as much. as 8% without affecting the bond. The bond can be heated for 1000 hours at 260 o C (500 o F), and can be water quenched from 260 o C (500 o F) without any noticeable change in the bond strength. An extrusion technique has been devised for making transition sections of aluminum bonded to zirconium which can then be used to join these metals by conventional welding. Welding can be done close to the bond zone without seriously affecting the integrity of the bond. This method of bonding aluminum to Zircaloy-2 is covered by Canadian patent 702,438 January 26, 1965. (author)

  1. A comparative study of shear bond strength of orthodontic bracket after acid-etched and Er:YAG treatment on enamel surface

    Science.gov (United States)

    Leão, Juliana C.; Mota, Cláudia C. B. O.; Cassimiro-silva, Patricia F.; Gomes, Anderson S. L.

    2016-02-01

    This study aimed to evaluate the shear bond strength (SBS) of teeth prepared for orthodontic bracket bonding with 37% phosphoric acid and Er:YAG laser. Forty bovine incisors were divided into two groups. In Group I, the teeth were conditioned with 37% phosphoric acid and brackets were bonded with Transbond XT; in Group II, the teeth were irradiated with Er:YAG and bonding with Transbond XT. After SBS test, the adhesive remnant index was determined. Adhesion to dental hard tissues after Er:YAG laser etching was inferior to that obtained after acid etching but exceeded what is believed to be clinically sufficient strength, and therefore can be used in patients.

  2. Bonds Boom.

    Science.gov (United States)

    Reynolds, Cathryn

    1989-01-01

    The combined effect of the "Serrano" decision and Proposition 13 left California school districts with aging, overcrowded facilities. Chico schools won a $18.5 million general obligation bond election for facilities construction. With $11 billion needed for new school construction, California will need to tap local sources. A sidebar…

  3. Urea functionalized surface-bonded sol-gel coating for on-line hyphenation of capillary microextraction with high-performance liquid chromatography.

    Science.gov (United States)

    Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid

    2018-03-30

    Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Ab initio study of friction of graphene flake on graphene/graphite or SiC surface

    Science.gov (United States)

    Gulseren, Oguz; Tayran, Ceren; Sayin, Ceren Sibel

    Recently, the rich dynamics of graphene flake on graphite or SiC surfaces are revealed from atomic force microcopy experiments. The studies toward to the understanding of microscopic origin of friction are getting a lot of attention. Despite the several studies of these systems using molecular dynamics methods, density functional theory based investigations are limited because of the huge system sizes. In this study, we investigated the frictional force on graphene flake on graphite or SiC surfaces from pseudopotential planewave calculations based on density functional theory. In both cases, graphene flake (24 C) on graphite or SiC surface, bilayer flake is introduced by freezing the top layer as well as the bottom layer of the surface slab. After fixing the load with these frozen layers, we checked the relative motion of the flake over the surface. A minimum energy is reached when the flake is moved on graphene to attain AB stacking. We also conclude that edge reconstruction because of the finite size of the flake is very critical for frictional properties of the flake; therefore the saturation of dangling bonds with hydrogen is also addressed. Not only the symmetric configurations remaining parameter space is extensively studied. Supported by TUBITAK Project No: 114F162. This work is supported by TUBITAK Project No: 114F162.

  5. 30 CFR 800.21 - Collateral bonds.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Collateral bonds. 800.21 Section 800.21 Mineral... FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS § 800.21 Collateral bonds. (a) Collateral bonds, except for letters of credit, cash accounts, and real property, shall be...

  6. Time-resolved two-photon photoemission at the Si(001)-surface. Hot electron dynamics and two-dimensional Fano resonance; Zeitaufgeloeste Zweiphotonen-Photoemission an der Si(001)-Oberflaeche. Dynamik heisser Elektronen und zweidimensionaler Fano-Effekt

    Energy Technology Data Exchange (ETDEWEB)

    Eickhoff, Christian

    2010-10-27

    By combining ultrafast laser excitation with energy-, angle- and time-resolved twophoton photoemission (2PPE), the electronic properties of bulk silicon and the Si(001) surface are investigated in this thesis. A custom-built laser- and UHV-systemequipped with a display type 2D-CCD-detector gives new insight into the relaxation dynamics of excited carriers on a femtosecond timescale. The bandgap between occupied valence bands and unoccupied conduction bands characteristically influences the dynamics of excited electrons in the bulk, as well as in surface states and resonances. For the electron-phonon interaction this leads to the formation of a bottleneck during the relaxation of hot electrons in the conduction band, which maintains the elevated electronic temperature for several picoseconds. During relaxation, excited electrons also scatter from the conduction band into the unoccupied dangling-bond surface state D{sub down}. Depending on the excitation density this surface recombination is dominated by electron-electron- or electron-phonon scattering. The relaxation of the carriers in the D{sub down}-band is again slowed down by the formation of a bottleneck in electron-phonon coupling. Furthermore, the new laser system has allowed detection of the Rydberg-like series of image-potential resonances on the Si(001)-surface. It is shown that the lifetime of these image-potential resonances in front of the semiconducting surface exhibits the same behavior as those in front of metallic surfaces. Moreover the electron-phonon coupling in the first image-potential resonance was investigated and compared to the D{sub down}-surface state. For the first time, Fano-type lineprofiles are demonstrated and analyzed in a 2PPEprocess on a surface. Tuning the photon energy of the pump-laser across the resonance between the occupied dangling-bond state D{sub up}, and the unoccupied image-potential resonance n=1, reveals a clear intensity variation that can be successfully described

  7. Layered insulator hexagonal boron nitride for surface passivation in quantum dot solar cell

    International Nuclear Information System (INIS)

    Shanmugam, Mariyappan; Jain, Nikhil; Jacobs-Gedrim, Robin; Yu, Bin; Xu, Yang

    2013-01-01

    Single crystalline, two dimensional (2D) layered insulator hexagonal boron nitride (h-BN), is demonstrated as an emerging material candidate for surface passivation on mesoporous TiO 2 . Cadmium selenide (CdSe) quantum dot based bulk heterojunction (BHJ) solar cell employed h-BN passivated TiO 2 as an electron acceptor exhibits photoconversion efficiency ∼46% more than BHJ employed unpassivated TiO 2 . Dominant interfacial recombination pathways such as electron capture by TiO 2 surface states and recombination with hole at valence band of CdSe are efficiently controlled by h-BN enabled surface passivation, leading to improved photovoltaic performance. Highly crystalline, confirmed by transmission electron microscopy, dangling bond-free 2D layered h-BN with self-terminated atomic planes, achieved by chemical exfoliation, enables efficient passivation on TiO 2 , allowing electronic transport at TiO 2 /h-BN/CdSe interface with much lower recombination rate compared to an unpassivated TiO 2 /CdSe interface

  8. Ab-initio modeling of oxygen on the surface passivation of 3C-SiC nanostructures

    International Nuclear Information System (INIS)

    Cuevas, J.L.; Trejo, A.; Calvino, M.; Carvajal, E.; Cruz-Irisson, M.

    2012-01-01

    In this work the effect of OH on the electronic states of H-passivated 3C-SiC nanostructures, was studied by means of Density Functional Theory. We compare the electronic band structure for a [1 1 1]-oriented nanowire with total H, OH passivation and a combination of both. Also the electronic states of a porous silicon carbide case (PSiC) a C-rich pore surface in which the dangling bonds on the surface are saturated with H and OH was studied. The calculations show that the surface replacement of H with OH radicals is always energetically favorable and more stable. In all cases the OH passivation produced a similar effect than the H passivation, with electronic band gap of lower energy value than the H-terminated phase. When the OH groups are attached to C atoms, the band gap feature is changed from direct to indirect. The results indicate the possibility of band gap engineering on SiC nanostructures through the surface passivation species.

  9. Effects of surface modification of Nd-Fe-B powders using parylene C by CVDP method on the properties of anisotropic bonded Nd–Fe–B magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Bin; Sun, Aizhi, E-mail: sunaizhi@126.com; Lu, Zhenwen; Cheng, Chuan; Xu, Chen

    2016-10-15

    This paper presents effects of surface modification of Nd–Fe–B powders using parylene C by means of chemical vapor deposition polymerization (CVDP) on the properties of anisotropic bonded Nd–Fe–B magnets. It can be well verified from SEM images and EDS analysis that the surface of Nd–Fe–B powder is coated with thin parylene C films. The maximum energy product ((BH)max), degree of alignment (DOA), actual density and corrosion resistance of parylene Nd–Fe–B magnets prepared at room temperature are much higher than that of non-parylene Nd–Fe–B magnets. (BH)max, DOA and actual density of parylene Nd–Fe–B magnets (70 kJ/m{sup 3}, 0.342, 5.82 g/cm{sup 3}) prepared at room temperature under 578 MPa are improved by 18.6%, 4.6%, 2.1% and 27.3%, 29.1%, 7.8% compared with non-parylene Nd‐Fe‐B magnets prepared at 140 °C (59 kJ/m{sup 3}, 0327, 5.70 g/cm{sup 3}) and room temperature (55 kJ/m{sup 3}, 0.265, 5.40 g/cm{sup 3}), respectively. Additional, the improvement of actual density and the room temperature process also solve problems such as powders’ sticking wall, non-uniform powder filling, non-uniform magnetic properties, seriously mould damage, short life cycle of mould and so on, which exists during warm compaction process. Parylene Nd–Fe–B magnets have better corrosion resistance and worse mechanical properties than that of non-parylene Nd–Fe–B magnets. The reason for the improvement of magnetic properties and actual density is the low friction cofficient of parylene C films, which results in lower frictional resistance and better lubricating property of parylene Nd–Fe–B powders. - Highlights: • Parylene Nd–Fe–B magnets prepared at room temperature show higher (BH)max and DOA. • Actual density of parylene Nd–Fe–B magnet is improved greatly. • Problems such as powders’ sticking wall, mould damage and so on are solved. • Parylene NdFeB magnets have better corrosion resistance. • Low friction cofficient of

  10. Avaliação do efeito de tratamentos superficiais sobre a força de adesão de braquetes em provisórios de resina acrílica Assessment of the effect of different surface treatments on the bond strength of brackets bonded to acrylic resin

    Directory of Open Access Journals (Sweden)

    Deise Lima Cunha Masioli

    2011-02-01

    Full Text Available OBJETIVO: avaliar a influência do tratamento de superfície de resinas acrílicas na resistência ao cisalhamento de braquetes colados com resina composta. MÉTODOS: foram confeccionados 140 discos de resina acrílica autopolimerizável (Duralay®, divididos aleatoriamente em 14 grupos (n=10. Em cada grupo, os corpos de prova receberam um tipo diferente de tratamento de superfície: grupo 1 = sem tratamento de superfície (controle; grupo 2 = silano; grupo 3 = jato de óxido de alumínio (JOA; grupo 4 = JOA + silano; grupo 5 = broca diamantada; grupo 6 = broca diamantada+ silano; grupo 7 = ácido fluorídrico; grupo 8 = ácido fluorídrico + silano; grupo 9 = ácido fosfórico; grupo 10 = ácido fosfórico + silano; grupo 11 = monômero de metilmetacrilato (MMA; grupo 12 = MMA + silano; grupo 13 = Plastic conditioner (Reliance®; grupo 14 = Plastic conditioner (Reliance® + silano. Após o preparo de superfície, os corpos de prova foram analizados através da rugosimetria. Posteriormente, foram colados braquetes (Morelli® de incisivo central "standard edgewise" com resina fotopolimerizável Transbond XT®; de acordo com as instruções do fabricante. RESULTADOS: o agente umectante à base de silano não teve um efeito estatisticamente significativo sobre os valores de força de adesão; os tratamentos com JOA e broca produziram maiores mudanças topográficas na superfície da resina acrílica, bem como os maiores valores de rugosidade; observou-se uma correlação não linear entre a força de adesão e a rugosidade de superfície; tratamentos com monômero e JOA resultaram nas maiores forças de adesão. CONCLUSÕES: o silano não foi capaz de aumentar a força de adesão entre braquete e resina acrílica. Sugere-se mais estudos sobre este tema, pois a força de adesão obtida foi muito baixa.OBJECTIVE: To evaluate the influence of the surface treatment of acrylic resins on the shear bond strength of brackets bonded with composite resin

  11. PMMA to Polystyrene bonding for polymer based microfluidic systems

    KAUST Repository

    Fan, Yiqiang

    2013-03-29

    A thermal bonding technique for Poly (methylmethacrylate) (PMMA) to Polystyrene (PS) is presented in this paper. The PMMA to PS bonding was achieved using a thermocompression method, and the bonding strength was carefully characterized. The bonding temperature ranged from 110 to 125 C with a varying compression force, from 700 to 1,000 N (0.36-0.51 MPa). After the bonding process, two kinds of adhesion quantification methods were used to measure the bonding strength: the double cantilever beam method and the tensile stress method. The results show that the bonding strength increases with a rising bonding temperature and bonding force. The results also indicate that the bonding strength is independent of bonding time. A deep-UV surface treatment method was also provided in this paper to lower the bonding temperature and compression force. Finally, a PMMA to PS bonded microfluidic device was fabricated successfully. © 2013 Springer-Verlag Berlin Heidelberg.

  12. Modification of dentin surface to enamel-like structure: A potential strategy for improving dentin bonding durability, desensitizing and self-repairing

    Directory of Open Access Journals (Sweden)

    Hongye Yang

    2014-01-01

    Full Text Available Introduction: Current theories of dentin bonding are based on the concept of "hybrid layer". However, the histological complexity of dentin, as well as the vulnerability of the hybrid layer, goes against the long-term effect of dentin bonding. At the same time, post-operative sensitivity is more likely to occur after traditional adhesive restoration. The Hypothesis: Compared to dentin bonding, enamel bonding exhibits a more optimal immediate and long-term performance, owing to its higher degree of mineralization, well-arranged enamel crystals and the porous structure after etching. Moreover, "enamel hypersensitivity" is never going to happen due to the lack of tubules existing in dentin. In light of this phenomenon, we brought up the concept and the proposal method to form an "enamel-like" dentin, simulating enamel structure to achieve satisfying durability of dentin bonding and obtain good performance for preventing post-operative sensitivity. With the application of mesoporous silicon bi-directionally binding to hydroxyapatite of dentin itself and hydroxyapatite nanorods synthetized in vitro, we may be able to form an enamel-like "functional layer" via ion-regulating self-assembly. Evaluation of Hypothesis: This paper explains how to achieve dentin enamel-like modification by chemical methods, especially, details the strategies and possible mechanisms of the hypothesis. Validation of the hypothesis is more likely to eliminate the adverse effect of dentinal fluid, improve long-term performance of dentin bonding, offer strategies for desensitizing treatment and self-repairing carious-affected dentin, and furthermore, provide the possibility to introduce new theories of dentin bonding.

  13. Analysis of surface states in ZnO nanowire field effect transistors

    International Nuclear Information System (INIS)

    Shao, Ye; Yoon, Jongwon; Kim, Hyeongnam; Lee, Takhee; Lu, Wu

    2014-01-01

    Highlights: • The electron transport in ZnO nanowire FETs is space charged limited below a trap temperature. • Metallic contacts to ZnO nanowires exhibit non-linear behavior with a Schottky barrier height of ∼0.35 eV. • The surface state density is in the range of 1.04 × 10 10 –1.24 × 10 10 /cm 2 . • The trap activation energy is ∼0.26 eV. - Abstract: Nanowires (NWs) have attracted considerable interests for scaled electronic and optoelectronic device applications. However, NW based semiconductor devices normally suffer from surface states due to the existence of dangling bonds or surface reconstruction. Because of their large surface-to-volume ratio, surface states in NWs can easily affect the metallic contacts to NWs and electron transport in NW. Here, we present ZnO NW surface analysis by performing current–voltage characterization on ZnO NW Schottky barrier field effect transistors with different metal contacts (Ti, Al, Au) at both room temperature and cryogenic temperature. Our results show that three metal contacts are all Schottky contacts to ZnO NWs due to surface states. Our further study reveals: (a) the surface states related Schottky barrier height (SBH) can be extracted from a back to back Schottky diodes model and the SBH values are in the range of 0.34–0.37 eV for three metal contacts; (b) the trap activation energy determined from the Arrhenius plots of different Schottky metal contacts is in the range of 0.23–0.29 eV, which is oxygen vacancies related; and (c) based on the space-charge-limited model, the surface state density of ZnO NW is in the range of 1.04 × 10 10 –1.24 × 10 10 /cm 2

  14. Number series of atoms, interatomic bonds and interface bonds defining zinc-blende nanocrystals as function of size, shape and surface orientation: Analytic tools to interpret solid state spectroscopy data

    Directory of Open Access Journals (Sweden)

    Dirk König

    2016-08-01

    Full Text Available Semiconductor nanocrystals (NCs experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size dNC. I deduce geometrical number series as analytical tools to obtain the number of NC atoms NNC(dNC[i], bonds between NC atoms Nbnd(dNC[i] and interface bonds NIF(dNC[i] for seven high symmetry zinc-blende (zb NCs with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.

  15. Number series of atoms, interatomic bonds and interface bonds defining zinc-blende nanocrystals as function of size, shape and surface orientation: Analytic tools to interpret solid state spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    König, Dirk, E-mail: dirk.koenig@unsw.edu.au [Integrated Materials Design Centre (IMDC) and School of Photovoltaic and Renewable Energy Engineering (SPREE), University of New South Wales, Sydney (Australia)

    2016-08-15

    Semiconductor nanocrystals (NCs) experience stress and charge transfer by embedding materials or ligands and impurity atoms. In return, the environment of NCs experiences a NC stress response which may lead to matrix deformation and propagated strain. Up to now, there is no universal gauge to evaluate the stress impact on NCs and their response as a function of NC size d{sub NC}. I deduce geometrical number series as analytical tools to obtain the number of NC atoms N{sub NC}(d{sub NC}[i]), bonds between NC atoms N{sub bnd}(d{sub NC}[i]) and interface bonds N{sub IF}(d{sub NC}[i]) for seven high symmetry zinc-blende (zb) NCs with low-index faceting: {001} cubes, {111} octahedra, {110} dodecahedra, {001}-{111} pyramids, {111} tetrahedra, {111}-{001} quatrodecahedra and {001}-{111} quadrodecahedra. The fundamental insights into NC structures revealed here allow for major advancements in data interpretation and understanding of zb- and diamond-lattice based nanomaterials. The analytical number series can serve as a standard procedure for stress evaluation in solid state spectroscopy due to their deterministic nature, easy use and general applicability over a wide range of spectroscopy methods as well as NC sizes, forms and materials.

  16. Surface Roughening of Polystyrene and Poly(methyl methacrylate in Ar/O2 Plasma Etching

    Directory of Open Access Journals (Sweden)

    Amy E. Wendt

    2010-12-01

    Full Text Available Selectively plasma-etched polystyrene-block-poly(methyl methacrylate (PS-b-PMMA diblock copolymer masks present a promising alternative for subsequent nanoscale patterning of underlying films. Because mask roughness can be detrimental to pattern transfer, this study examines roughness formation, with a focus on the role of cross-linking, during plasma etching of PS and PMMA. Variables include ion bombardment energy, polymer molecular weight and etch gas mixture. Roughness data support a proposed model in which surface roughness is attributed to polymer aggregation associated with cross-linking induced by energetic ion bombardment. In this model, RMS roughness peaks when cross-linking rates are comparable to chain scissioning rates, and drop to negligible levels for either very low or very high rates of cross-linking. Aggregation is minimal for very low rates of cross-linking, while very high rates produce a continuous cross-linked surface layer with low roughness. Molecular weight shows a negligible effect on roughness, while the introduction of H and F atoms suppresses roughness, apparently by terminating dangling bonds. For PS etched in Ar/O2 plasmas, roughness decreases with increasing ion energy are tentatively attributed to the formation of a continuous cross-linked layer, while roughness increases with ion energy for PMMA are attributed to increases in cross-linking from negligible to moderate levels.

  17. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    International Nuclear Information System (INIS)

    Ishikawa, Kenji; Hori, Masaru

    2014-01-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens. (author)

  18. Hydrogen, oxygen and hydroxyl on porous silicon surface: A joint density-functional perturbation theory and infrared spectroscopy approach

    International Nuclear Information System (INIS)

    Alfaro, Pedro; Palavicini, Alessio; Wang, Chumin

    2014-01-01

    Based on the density functional perturbation theory (DFPT), infrared absorption spectra of porous silicon are calculated by using an ordered pore model, in which columns of silicon atoms are removed along the [001] direction and dangling bonds are initially saturated with hydrogen atoms. When these atoms on the pore surface are gradually replaced by oxygen ones, the ab-initio infrared absorption spectra reveal oxygen, hydroxyl, and coupled hydrogen–oxygen vibrational modes. In a parallel way, freestanding porous silicon samples were prepared by using electrochemical etching and they were further thermally oxidized in a dry oxygen ambient. Fourier transform infrared spectroscopy was used to investigate the surface modifications caused by oxygen adsorption. In particular, the predicted hydroxyl and oxygen bound to the silicon pore surface are confirmed. Finally, a global analysis of measured transmittance spectra has been performed by means of a combined DFPT and thin-film optics approach. - Highlights: • The density functional perturbation theory is used to study infrared absorption. • An ordered pore model is used to investigate the oxidation in porous silicon (PSi). • Infrared transmittance spectra of oxidized PSi freestanding samples are measured

  19. A role of nanotube dangling pyrrole and oxygen functions in the electrochemical synthesis of polypyrrole/MWCNTs hybrid materials

    International Nuclear Information System (INIS)

    Krukiewicz, Katarzyna; Herman, Artur P.; Turczyn, Roman; Szymańska, Katarzyna; Koziol, Krzysztof K.K.; Boncel, Sławomir; Zak, Jerzy K.

    2014-01-01

    Highlights: • The effect of MWCNT functionalization on properties of PPy composites was explained. • The behavior of pristine, pyrrole-modified and oxidized MWCNT was explained. • Functionalization of MWCNT improved their dispersibility and processability. • Different mechanisms of (f-)MWCNT incorporation into PPy composites were explained. • Orientation of growing PPy chains was tailored through the addition of (f-)MWCNT. - Abstract: The effect of the functionalization of multi-walled carbon nanotubes (MWCNTs) on the process of electrochemical co-deposition of MWCNTs and polypyrrole (PPy), as well as the morphology of obtained composites have been demonstrated. As the nanotube components of the hybrids, three types of MWCNT were used, namely c-CVD derived (pristine) MWCNTs, their oxidized counterparts MWCNT-Ox and pyrrole-modified MWCNT-Py. The stability of pristine and functionalized MWCNTs (f-MWCNT) dispersions in tetrahydrofuran and water was studied together with the description of the process of formation PPy/(f-)MWCNT hybrid materials via electrochemical co-deposition. The structural and morphological properties of the hybrids were characterized by Raman spectroscopy, scanning electron microscopy and atomic force microscopy revealing substantial differences among hybrid materials in their surface morphology and the influence of MWCNT functionalization on the orientation of growing PPy chains

  20. A role of nanotube dangling pyrrole and oxygen functions in the electrochemical synthesis of polypyrrole/MWCNTs hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Krukiewicz, Katarzyna, E-mail: katarzyna.krukiewicz@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Herman, Artur P., E-mail: artur.herman@polsl.pl [Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100 (Poland); Turczyn, Roman, E-mail: roman.turczyn@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Szymańska, Katarzyna, E-mail: katarzyna.szymanska@polsl.pl [Department of Chemical and Process Engineering, Silesian University of Technology, Strzody 7, 44-100 Gliwice (Poland); Koziol, Krzysztof K.K., E-mail: kk292@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Boncel, Sławomir, E-mail: slawomir.boncel@polsl.pl [Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, Gliwice 44-100 (Poland); Zak, Jerzy K., E-mail: jerzy.zak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland)

    2014-10-30

    Highlights: • The effect of MWCNT functionalization on properties of PPy composites was explained. • The behavior of pristine, pyrrole-modified and oxidized MWCNT was explained. • Functionalization of MWCNT improved their dispersibility and processability. • Different mechanisms of (f-)MWCNT incorporation into PPy composites were explained. • Orientation of growing PPy chains was tailored through the addition of (f-)MWCNT. - Abstract: The effect of the functionalization of multi-walled carbon nanotubes (MWCNTs) on the process of electrochemical co-deposition of MWCNTs and polypyrrole (PPy), as well as the morphology of obtained composites have been demonstrated. As the nanotube components of the hybrids, three types of MWCNT were used, namely c-CVD derived (pristine) MWCNTs, their oxidized counterparts MWCNT-Ox and pyrrole-modified MWCNT-Py. The stability of pristine and functionalized MWCNTs (f-MWCNT) dispersions in tetrahydrofuran and water was studied together with the description of the process of formation PPy/(f-)MWCNT hybrid materials via electrochemical co-deposition. The structural and morphological properties of the hybrids were characterized by Raman spectroscopy, scanning electron microscopy and atomic force microscopy revealing substantial differences among hybrid materials in their surface morphology and the influence of MWCNT functionalization on the orientation of growing PPy chains.

  1. The adhesive bonding of beryllium structural components

    International Nuclear Information System (INIS)

    Fullerton-Batten, R.C.

    1977-01-01

    Where service conditions permit, adhesive bonding is a highly recommendable, reliable means of joining beryllium structural parts. Several important programs have successfully used adhesive bonding for joining structural and non-structural beryllium components. Adhesive bonding minimizes stress concentrations associated with other joining techniques and considerably improves fatigue resistance. In addition, no degradation of base metal properties occur. In many instances, structural joints can be fabricated more cheaply by adhesive bonding or in combination with adhesive bonding than by any other method used alone. An evaluation program on structural adhesive bonding of beryllium sheet components is described. A suitable surface pretreatment for beryllium adherends prior to bonding is given. Tensile shear strength and fatigue properties of FM 1000 and FM 123-5 adhesive bonded joints are reviewed and compared with data obtained from riveted joints of similar geometry. (author)

  2. Bonding polycarbonate brackets to ceramic: : Effects of substrate treatment on bond strength

    NARCIS (Netherlands)

    Özcan, Mutlu; Vallittu, Pekka K.; Peltomäki, Timo; Huysmans, Marie-Charlotte; Kalk, Warner

    2004-01-01

    This study evaluated the effects of 5 different surface conditioning methods on the bond strength of polycarbonate brackets bonded to ceramic surfaces with resin based cement. Six disc-shaped ceramic specimens (feldspathic porcelain) with glazed surfaces were used for each group. The specimens were

  3. Surface termination dependence of the reactivity of single crystal hematite with CCl 4

    Science.gov (United States)

    Camillone, Nicholas, III; Adib, Kaveh; Fitts, Jeffrey P.; Rim, Kwang T.; Flynn, George W.; Joyce, S. A.; Osgood, Richard M.

    2002-06-01

    We describe ultrahigh vacuum Auger electron spectrometric measurements of the uptake of chlorine following the room temperature exposure of single crystal hematite, α-Fe2O3, to CCl4. We compare the surface chemistry of two specific surface phases formed on the basal plane of α-Fe2O3: the Fe3O4(1 1 1)-(2×2) ;selvedge; and the α-Fe2O3/Fe1-xO ;biphase.; For Fe3O4(1 1 1)-(2×2) an estimated saturation level of Cl of ∼75% of a monolayer is readily attained. Carbon uptake is well below that expected for simple stoichiometric dissociative chemisorption, consistent with desorption of organic products during the surface reaction. Low energy electron diffraction measurements suggest that, dependent upon preparation procedures, at least two types of α-Fe2O3/Fe1-xO biphase structures can be formed. Surprisingly, upon exposure to CCl4, Cl uptake does not occur on either of these biphase surfaces, despite the fact that these surfaces are thought to have the same surface concentrations of iron and oxygen as Fe3O4(1 1 1). The dramatic difference between the reactivity of the Fe3O4 and biphase surfaces suggests that the active site for the dissociative adsorption of CCl4 on Fe3O4(1 1 1)-(2×2) comprises both an iron cation and an oxygen anion with a surface-normal-oriented dangling bond that is uncapped by iron cations. Electron stimulated and thermal desorption of Cl from the saturated Fe3O4(1 1 1)-(2×2) selvedge is also reported.

  4. Nanomagnets La0.8Pb0.2(Fe0.8Co0.2)O3 assembled with a bonded surface graphene oxide: sensitive for sensing small gas molecules.

    Science.gov (United States)

    Bhargav, K K; Ram, S; Majumder, S B

    2012-04-01

    Nanocrystallites La0.8Pb0.2(Fe0.8Co0.2)O3 (LPFC) when bonded through a surface layer (carbon) in small ensembles display surface sensitive magnetism useful for biological probes, electrodes, and toxic gas sensors. A simple dispersion and hydrolysis of the salts in ethylene glycol (EG) in water is explored to form ensembles of the nanocrystallites (NCs) by combustion of a liquid precursor gel slowly in microwave at 70-80 dgrees C (apparent) in a closed container in air. In a dilute sample, the EG molecules mediate hydrolyzed species to configure in small groups in process to form a gel. Proposed models describe how a residual carbon bridges a stable bonded layer of a graphene-oxide-like hybrid structure on the LPFC-NCs in attenuating the magnetic structure. SEM images, measured from a pelletized sample which was used to study the gas sensing features in terms of the electrical resistance, describe plate shaped NCs, typically 30-60 nm widths, 60-180 nm lengths and -50 m2/g surface area (after heating at -750 degrees C). These NCs are arranged in ensembles (200-900 nm size). As per the X-ray diffraction, the plates (a Pnma orthorhombic structure) bear only small strain -0.0023 N/m2 and oxygen vacancies. The phonon and electronic bands from a bonded surface layer disappear when it is etched out slowly by heating above 550 degrees C in air. The surface layer actively promotes selective H2 gas sensor properties.

  5. Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments.

    Science.gov (United States)

    Fukuda, A; Takemoto, M; Saito, T; Fujibayashi, S; Neo, M; Yamaguchi, S; Kizuki, T; Matsushita, T; Niinomi, M; Kokubo, T; Nakamura, T

    2011-03-01

    Ti15Zr4Nb4Ta and Ti29Nb13Ta4.6Zr, which do not contain the potentially cytotoxic elements V and Al, represent a new generation of alloys with improved corrosion resistance, mechanical properties, and cytocompatibility. Recently it has become possible for the apatite forming ability of these alloys to be ascertained by treatment with alkali, CaCl2, heat, and water (ACaHW). In order to confirm the actual in vivo bioactivity of commercially pure titanium (cp-Ti) and these alloys after subjecting them to ACaHW treatment at different temperatures, the bone bonding strength of implants made from these materials was evaluated. The failure load between implant and bone was measured for treated and untreated plates at 4, 8, 16, and 26 weeks after implantation in rabbit tibia. The untreated implants showed almost no bonding, whereas all treated implants showed successful bonding by 4 weeks, and the failure load subsequently increased with time. This suggests that a simple and economical ACaHW treatment could successfully be used to impart bone bonding bioactivity to Ti metal and Ti-Zr-Nb-Ta alloys in vivo. In particular, implants heat treated at 700 °C exhibited significantly greater bone bonding strength, as well as augmented in vitro apatite formation, in comparison with those treated at 600 °C. Thus, with this improved bioactive treatment process these advantageous Ti-Zr-Nb-Ta alloys can serve as useful candidates for orthopedic devices. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Bond strength of masonry

    NARCIS (Netherlands)

    Pluijm, van der R.; Vermeltfoort, A.Th.

    1992-01-01

    Bond strength is not a well defined property of masonry. Normally three types of bond strength can be distinguished: - tensile bond strength, - shear (and torsional) bond strength, - flexural bond strength. In this contribution the behaviour and strength of masonry in deformation controlled uniaxial

  7. Unravelling the secrets of Cs controlled secondary ion formation: Evidence of the dominance of site specific surface chemistry, alloying and ionic bonding

    Science.gov (United States)

    Wittmaack, Klaus

    2013-03-01

    implantation can be evaluated as a function of Cs coverage. The summarised results imply that secondary ions are commonly not formed by charge transfer between an escaping atom and the electronic system of the sample but are already emitted as ions. The probability of ion formation appears to be controlled by the local ionic character of the alkali-target atom bonds, i.e., by the difference in electronegativity between the involved elements as well as by the electron affinity and the ionisation potential of the departing atom. This idea is supported by the finding that Si- yields exhibit the same very strong dependence on Cs coverage as Si+ and O- yields on the oxygen fraction in oxygen loaded Si. Most challenging to theoreticians is the finding that the ionisation probability is independent of the emission velocity of sputtered ions. This phenomenon cannot be rationalised along established routes of thinking. Different concepts need to be explored. An old, somewhat exotic idea takes account of the heavy perturbation created for a very short period of time at the site of ion emission (dynamic randomisation). Molecular dynamics simulations are desirable to clarify the issue. Ultimately it may be possible to describe all phenomena of enhanced or suppressed secondary ion formation, produced either by surface loading with alkali atoms or by enforced surface oxidation, on the basis of a single universal model. There is plenty of room for exciting new studies.

  8. Water’s dual nature and its continuously changing hydrogen bonds

    International Nuclear Information System (INIS)

    Henchman, Richard H

    2016-01-01

    A model is proposed for liquid water that is a continuum between the ordered state with predominantly tetrahedral coordination, linear hydrogen bonds and activated dynamics and a disordered state with a continuous distribution of multiple coordinations, multiple types of hydrogen bond, and diffusive dynamics, similar to that of normal liquids. Central to water’s heterogeneous structure is the ability of hydrogen to donate to either one acceptor in a conventional linear hydrogen bond or to multiple acceptors as a furcated hydrogen. Linear hydrogen bonds are marked by slow, activated kinetics for hydrogen-bond switching to more crowded acceptors and sharp first peaks in the hydrogen-oxygen radial distribution function. Furcated hydrogens, equivalent to free, broken, dangling or distorted hydrogens, have barrierless, rapid kinetics and poorly defined first peaks in their hydrogen-oxygen radial distribution function. They involve the weakest donor in a local excess of donors, such that barrierless whole-molecule vibration rapidly swaps them between the linear and furcated forms. Despite the low number of furcated hydrogens and their transient existence, they are readily created in a single hydrogen-bond switch and free up the dynamics of numerous surrounding molecules, bringing about the disordered state. Hydrogens in the ordered state switch with activated dynamics to make the non-tetrahedral coordinations of the disordered state, which can also combine to make the ordered state. Consequently, the ordered and disordered states are both connected by diffusive dynamics and differentiated by activated dynamics, bringing about water’s continuous heterogeneity. (paper)

  9. Progress in cold roll bonding of metals

    International Nuclear Information System (INIS)

    Li Long; Nagai, Kotobu; Yin Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for fcc structure metals to bond compared with bcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. Corrections were made to the abstract and conclusion of this article on 18 June 2008. The corrected electronic version is identical to the print version. (topical review)

  10. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    Science.gov (United States)

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  11. Relationship between thin-film bond strength as measured by a scratch test, and indentation hardness for bonding agents.

    Science.gov (United States)

    Kusakabe, Shusuke; Rawls, H Ralph; Hotta, Masato

    2016-03-01

    To evaluate thin-film bond strength between a bonding agent and human dentin, using a scratch test, and the characteristics and accuracy of measurement. One-step bonding agents (BeautiBond; Bond Force; Adper Easy Bond; Clearfil tri-S Bond) and two-step bonding agents (Cleafil SE Bond; FL-Bond II) were investigated in this study. Flat dentin surfaces were prepared for extracted human molars. The dentin surfaces were ground and bonding agents were applied and light cured. The thin-film bond strength test of the specimens was evaluated by the critical load at which the coated bonding agent failed and dentin appeared. The scratch mark sections were then observed under a scanning electron microscope. Indentation hardness was evaluated by the variation in depth under an applied load of 10gf. Data were compared by one-way ANOVA with the Scheffé's post hoc multiple comparison test (pstrength and indentation hardness were analyzed using analysis of correlation and covariance. The thin-film bond strength of two-step bonding agents were found to be significantly higher than that of one-step bonding agents with small standard deviations. Scratch marks consistently showed adhesive failure in the vicinity of the bonding agent/dentin interface. The indentation hardness showed a trend that two-step bonding agents have greater hardness than one-step bonding agents. A moderately significant correlation (r(2)=0.31) was found between thin-film bond strength and indentation hardness. Thin-film bond strength test is a valid and reliable means of evaluating bond strength in the vicinity of the adhesive interface and is more accurate than other methods currently in use. Further, the thin-film bond strength is influenced by the hardness of the cued bonding agent. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Understanding Bonds - Denmark

    DEFF Research Database (Denmark)

    Rimmer, Nina Røhr

    2016-01-01

    Undervisningsmateriale. A bond is a debt security, similar to an ”I Owe You document” (IOU). When you purchase a bond, you are lending money to a government, municipality, corporation, federal agency or other entity known as the issuer. In return for the loan, the issuer promises to pay you...... a specified rate of interest during the life of the bond and to repay the face value of the bond (the principal) when it “matures,” or comes due. Among the types of bonds you can choose from are: Government securities, municipal bonds, corporate bonds, mortgage and asset-backed securities, federal agency...... securities and foreign government bonds....

  13. Atom-resolved surface chemistry using scanning tunneling microscopy (STM) and spectroscopy (STS)

    International Nuclear Information System (INIS)

    Avouris, P.

    1989-01-01

    The author shows that by using STM and STS one can study chemistry with atomic resolution. The author uses two examples: the reaction of Si(111)-(7x7) with (a) NH 3 and (b) decaborane (DB). In case (a) the authors can directly observe the spatial distribution of the reaction. He determined which surface atoms have reacted and how the products of the reaction are distributed. He found that the different dangling-bond sites have significantly different reactivities and explain these differences in terms of the local electronic structure. In case (b) the 7x7 reconstruction is eliminated and at high temperatures, (√3 x √3) R30 degree reconstructions are observed. Depending on the amount of DB and the annealing temperature the √3 structures contain variable numbers of B and Si adatoms on T 4 -sites. Calculations show that the structure involving B adatoms, although kinetically favored, is not the lowest energy configuration. The lowest energy state involves B in a substitutional site under a Si adatom

  14. Interfacial bonding and electronic structure of GaN/GaAs interface: A first-principles study

    International Nuclear Information System (INIS)

    Cao, Ruyue; Zhang, Zhaofu; Wang, Changhong; Li, Haobo; Dong, Hong; Liu, Hui; Wang, Weichao; Xie, Xinjian

    2015-01-01

    Understanding of GaN interfacing with GaAs is crucial for GaN to be an effective interfacial layer between high-k oxides and III-V materials with the application in high-mobility metal-oxide-semiconductor field effect transistor (MOSFET) devices. Utilizing first principles calculations, here, we investigate the structural and electronic properties of the GaN/GaAs interface with respect to the interfacial nitrogen contents. The decrease of interfacial N contents leads to more Ga dangling bonds and As-As dimers. At the N-rich limit, the interface with N concentration of 87.5% shows the most stability. Furthermore, a strong band offsets dependence on the interfacial N concentration is also observed. The valance band offset of N7 with hybrid functional calculation is 0.51 eV. The electronic structure analysis shows that significant interface states exist in all the GaN/GaAs models with various N contents, which originate from the interfacial dangling bonds and some unsaturated Ga and N atoms. These large amounts of gap states result in Fermi level pinning and essentially degrade the device performance

  15. A Initio Theoretical Studies of Surfaces of Semiconductors

    Science.gov (United States)

    Wang, Jing

    1993-01-01

    The first semiconductor which we study with these techniques is the archetypal elemental semiconductor, silicon. We present the first extensive study of point defects on Si(100). We identify the principal defects and two primary mechanisms responsible for their dominance: the need to eliminate dangling bonds on the surface and the need to compensate the strain induced by topological effects. Furthermore, we present evidence that the presence of point defects on the Si(100) surface is not intrinsic to the ground state of the surface as a stress relieving mechanism but rather is due merely to thermal fluctuations. We address materials issues associated with the identification of the lowest energy surfaces of GaAs and the determination of the geometric structure of a GaAs crystallite growing freely in three dimensions. The fracture energies associated with (110), (100) and (111) interface planes are calculated and a Wulff construction indicates that an ideal stoichiometric GaAs crystal should be terminated with (110) surfaces. We investigate the more complex issues that arise on surfaces when aspects of these two semiconductors are mixed. We investigate the problem of growing GaAs on the Si(100) surface and demonstrate how and why the most fundamental properties of the resulting bulk GaAs material, such as its crystalline orientation, may depend sensitively on the interplay between growth conditions such as temperature and the properties of the Si surface. For stepped Si(100) -As, we show that the growth of As directly on top of the Si surface produces a metastable state, while the replacement of the original top Si layer leads to a lower energy configuration, with the rearrangement of the surface driven by the relaxation of stress by surface steps. Finally, we study delta -doping, where one attempts to grow a single layer of Si on a GaAs surface before continuing with the growth of bulk GaAs. We shall employ a slightly different modality of the ab initio approach. We

  16. Recent Advances in Adhesive Bonding - The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates.

    Science.gov (United States)

    Münchow, Eliseu A; Bottino, Marco C

    2017-09-01

    To present an overview on the main agents (i.e., biomolecules and nanocompounds) and/or strategies currently available to amplify or stabilize resin-dentin bonding. According to studies retrieved for full text reading (2014-2017), there are currently six major strategies available to overcome resin-dentin bond degradation: (i) use of collagen crosslinking agents, which may form stable covalent bonds with collagen fibrils, thus strengthening the hybrid layer; (ii) use of antioxidants, which may allow further polymerization reactions over time; (iii) use of protease inhibitors, which may inhibit or inactivate metalloproteinases; (iv) modification of the bonding procedure, which may be performed by using the ethanol wet-bonding technique or by applying an additional adhesive (hydrophobic) coating, thereby strengthening the hybrid layer; (v) laser treatment of the substrate prior to bonding, which may cause specific topographic changes in the surface of dental substrates, increasing bonding efficacy; and (vi) reinforcement of the resin matrix with inorganic fillers and/or remineralizing agents, which may positively enhance physico-mechanical properties of the hybrid layer. With the present review, we contributed to the better understanding of adhesion concepts and mechanisms of resin-dentin bond degradation, showing the current prospects available to solve that problematic. Also, adhesively-bonded restorations may be benefited by the use of some biomolecules, nanocompounds or alternative bonding strategies in order to minimize bond strength degradation.

  17. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  18. Proposal of new bonding technique 'Instantaneous Liquid Phase (ILP) Bonding'

    International Nuclear Information System (INIS)

    Zhang, Yue-Chang; Nakagawa, Hiroji; Matsuda, Fukuhisa.

    1987-01-01

    A new bonding technique named ''Instantaneous Liquid Phase (ILP) bonding'' suitable mainly for welding dissimilar materials was proposed by which instantaneous melting of one or two of the faying surfaces is utilized. The processes of ILP bonding are mainly consisted of three stages, namely the first stage forming thin liquid layer by rapid heating, the second stage joining both specimens by thin liquid layer, and the third stage cooling the specimens rapidly to avoid the formation of brittle layer. The welding temperatures of the specimens to be welded in ILP bonding are generally differentiated from each other. ILP bonding was applied for a variety of combinations of dissimilar materials of aluminum, aluminum alloys, titanium, titanium alloy, carbon steel, austenitic stainless steel, copper and tungsten, and for similar materials of stainless steel and nickel-base alloy. There were no microvoids in these welding joints, and the formation of brittle layer at the bonding interface was suppressed. The welded joints of Al + Ti, Cu + carbon steel and Cu + austenitic stainless steel showed the fracture in base metal having lower tensile strength. Further, the welded joints of Al + carbon steel, Al alloy + Ti, Al alloy + carbon steel or + austenitic stainless steel, Ti + carbon steel or + austenitic stainless steel showed better tensile properties in the comparison with diffusion welding. Furthermore, ILP bonding was available for welding same materials susceptible to hot cracking. Because of the existence of liquid layer, the welding pressure required was extremely low, and preparation of faying surface by simple tooling or polishing by no.80 emery paper was enough. The change in specimen length before and after welding was relatively little, only depending on the thickness of liquid layer. The welding time was very short, and thus high welding efficiency was obtained. (author)

  19. 利用响应面法研究微孔处理杨木单板的胶合性能%Bonding Properties of Poplar Veneer Punched with Micro-holes by Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    唐忠荣; 黄健; 戴玉玲; 丰江拓

    2015-01-01

    利用响应面法分析研究了经微孔处理后的杨木单板的胶合性能。通过对杨木单板进行微孔处理,可使胶黏剂通过微孔渗入单板体内,增加杨木单板的本体强度,同时也可使相邻胶层透过微孔形成一体而增加单板的胶合强度等,以期制造出一种高性能的地板基材。结果表明:在试验范围内,随微孔孔径增大,孔距减小和施胶量的增加,其胶合强度增加;随热压压力增加,胶合强度先增强,当压力超过0.8 MPa,胶合强度反而降低。%We studied the bonding properties of poplar veneer punched with micro-holes by using response surface experiment. The permeability of poplar veneer increased after micro-hole punching.The adhesive could penetrate into the veneer through these micro holes, and the poplar veneer was strengthened.Through micro holes, the neighboring glue lines formed a whole to increase the bonding strength of veneers.Expecting to produce a high performance floor material.The bonding strength of poplar plywood increased with the increasing of micro-hole diameter,resin content , and the decreasing of holes distance.With the increasing of hot pressing pressure, the bonding strength was improved firstly, however, it declined when the pressure exceeded 0.8 MPa.

  20. Large scale Full QM-MD investigation of small peptides and insulin adsorption on ideal and defective TiO2 (1 0 0) surfaces. Influence of peptide size on interfacial bonds

    Science.gov (United States)

    Dubot, Pierre; Boisseau, Nicolas; Cenedese, Pierre

    2018-05-01

    Large biomolecule interaction with oxide surface has attracted a lot of attention because it drives behavior of implanted devices in the living body. To investigate the role of TiO2 surface structure on a large polypeptide (insulin) adsorption, we use a homemade mixed Molecular Dynamics-Full large scale Quantum Mechanics code. A specific re-parameterized (Ti) and globally convergent NDDO method fitted on high level ab initio method (coupled cluster CCSD(T) and DFT) allows us to safely describe the electronic structure of the whole insulin-TiO2 surface system (up to 4000 atoms). Looking specifically at carboxylate residues, we demonstrate in this work that specific interfacial bonds are obtained from the insulin/TiO2 system that are not observed in the case of smaller peptides (tripeptides, insulin segment chains with different configurations). We also demonstrate that a large part of the adsorption energy is compensated by insulin conformational energy changes and surface defects enhanced this trend. Large slab dimensions allow us to take into account surface defects that are actually beyond ab initio capabilities owing to size effect. These results highlight the influence of the surface structure on the conformation and therefore of the possible inactivity of an adsorbed polypeptides.

  1. Photoinduced Charge Transfer from Titania to Surface Doping Site.

    Science.gov (United States)

    Inerbaev, Talgat; Hoefelmeyer, James D; Kilin, Dmitri S

    2013-05-16

    We evaluate a theoretical model in which Ru is substituting for Ti at the (100) surface of anatase TiO 2 . Charge transfer from the photo-excited TiO 2 substrate to the catalytic site triggers the photo-catalytic event (such as water oxidation or reduction half-reaction). We perform ab-initio computational modeling of the charge transfer dynamics on the interface of TiO 2 nanorod and catalytic site. A slab of TiO 2 represents a fragment of TiO 2 nanorod in the anatase phase. Titanium to ruthenium replacement is performed in a way to match the symmetry of TiO 2 substrate. One molecular layer of adsorbed water is taken into consideration to mimic the experimental conditions. It is found that these adsorbed water molecules saturate dangling surface bonds and drastically affect the electronic properties of systems investigated. The modeling is performed by reduced density matrix method in the basis of Kohn-Sham orbitals. A nano-catalyst modeled through replacement defect contributes energy levels near the bottom of the conduction band of TiO 2 nano-structure. An exciton in the nano-rod is dissipating due to interaction with lattice vibrations, treated through non-adiabatic coupling. The electron relaxes to conduction band edge and then to the Ru cite with faster rate than hole relaxes to the Ru cite. These results are of the importance for an optimal design of nano-materials for photo-catalytic water splitting and solar energy harvesting.

  2. Nano surface engineering of Mn 2 O 3 for potential light-harvesting application

    KAUST Repository

    Kar, Prasenjit; Sardar, Samim; Ghosh, Srabanti; Parida, Manas R.; Liu, Bo; Mohammed, Omar F.; Lemmens, Peter; Pal, Samir Kumar

    2015-01-01

    Manganese oxides are well known applied materials including their use as efficient catalysts for various environmental applications. Multiple oxidation states and their change due to various experimental conditions are concluded to be responsible for their multifaceted functionality. Here we demonstrate that the interaction of a small organic ligand with one of the oxide varieties induces completely new optical properties and functionalities (photocatalysis). We have synthesized Mn2O3 microspheres via a hydrothermal route and characterized them using scanning electron microscopy (SEM), X-ray diffraction (XRD) and elemental mapping (EDAX). When the microspheres are allowed to interact with the biologically important small ligand citrate, nanometer-sized surface functionalized Mn2O3 (NPs) are formed. Raman and Fourier transformed infrared spectroscopy confirm the covalent attachment of the citrate ligand to the dangling bond of Mn at the material surface. While cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS) analysis confirm multiple surface charge states after the citrate functionalization of the Mn2O3 NPs, new optical properties of the surface engineered nanomaterials in terms of absorption and emission emerge consequently. The engineered material offers a novel photocatalytic functionality to the model water contaminant methylene blue (MB). The effect of doping other metal ions including Fe3+ and Cu2+ on the optical and catalytic properties is also investigated. In order to prepare a prototype for potential environmental application of water decontamination, we have synthesized and duly functionalized the material on the extended surface of a stainless steel metal mesh (size 2 cm × 1.5 cm, pore size 150 μm × 200 μm). We demonstrate that the functionalized mesh always works as a "physical" filter of suspended particulates. However, it works as a "chemical" filter (photocatalyst) for the potential water soluble contaminant (MB) in the presence

  3. Bond strength of compomers to dentin using acidic primers.

    Science.gov (United States)

    Tate, W H; You, C; Powers, J M

    1999-10-01

    To determine the in vitro bond strengths of seven compomer/bonding agent restorative systems to human dentin. Seven compomer/bonding agents were bonded to human dentin, stored in water at 37 degrees C for 24 hours, and debonded in tension. Bonding conditions were with and without phosphoric acid etching, with and without the use of combined primer/bonding agents, and under moist and wet bond interfaces. Without phosphoric acid etching, F2000/F2000 Compomer Primer/Adhesive and F2000/Single Bond Dental Adhesive System were less sensitive to dentin wetness. With moist dentin, bond strengths of Dyract/Prime & Bond 2.1, Dyract AP/Prime & Bond 2.1, Hytac/OSB light-curing, one-component bonding agent, F2000/Single Bond, and Freedom/STAE single component light-cured dentin/enamel adhesive system, were improved with phosphoric acid etching. Also, with moist dentin, the bond strength of F2000/F2000 Compomer Primer/Adhesive in the 3M Clicker dispensing system was higher without phosphoric acid etching, whereas bonds of Compoglass/Syntac Single-component were not affected by phosphoric acid etching. Bonding did not occur without primer/bonding agent, regardless of surface condition or use of phosphoric acid etching.

  4. Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor

    Science.gov (United States)

    Park, Jun Hong

    , the effect of ambient air on TMDs will be investigated and partial oxidation of TMDs. In the last part, uniform deposition of dielectric layers on 2D materials will be presented, employing organic seedling layer. Although 2D materials have been expected as next generation semiconductor platform, direct deposition of dielectric is still challenging and induces leakage current commonly, because inertness of their surface resulted from absent of dangling bond. Here, metal phthalocyanine monolayer (ML) is employed as seedling layers and the growth of atomic layer deposition (ALD) dielectric is investigated in each step using STM.

  5. Physics and Chemistry on Well-Defined Semiconductor and Oxide Surfaces

    Science.gov (United States)

    Chen, Peijun

    High resolution electron energy loss spectroscopy (HREELS) and other surface spectroscopic techniques have been employed to investigate the following two classes of surface/interface phenomena on well-defined semiconductor and oxide surfaces: (i) the fundamental physical and chemical processes involved in gas-solid interaction on silicon single crystal surfaces, and (ii) the physical and chemical properties of metal-oxide interfaces. The particular systems reported in this dissertation are: NH_3, PH_3 and B_ {10}H_{14} on Si(111)-(7 x 7); NH_3 on Si(100) -(2 x 1); atomic H on Si(111)-(7 x 7) and boron-modified Si(111); Al on Al_2O_3 and Sn on SiO_2.. On silicon surfaces, the surface dangling bonds function as the primary adsorption sites where surface chemical processes take place. The unambiguous identification of surface species by vibrational spectroscopy allows the elementary steps involved in these surface chemical processes to be followed on a molecular level. For adsorbate molecules such as NH_3 and PH_3, the nature of the initial low temperature (100 -300 K) adsorption is found to be dissociative, while that for B_{10}H_ {14} is non-dissociative. This has been deduced based upon the presence (or absence) of specific characteristic vibrational mode(s) on surface. By following the evolution of surface species as a function of temperature, the elementary steps leading to silicon nitride thin film growth and doping of silicon are elucidated. In the case of NH_3 on Si(111)-(7 x 7) and Si(100)-(2 x 1), a detailed understanding on the role of substrate surface structure in controlling the surface reactivity has been gained on the basis of a Si adatom backbond-strain relief mechanism on the Si(111) -(7 x 7). The electronic modification to Si(111) surface by subsurface boron doping has been shown to quench its surface chemistry, even for the most aggressive atomic H. This discovery is potentially meaningful to the technology of gas-phase silicon etching. The

  6. "Vibrational bonding": a new type of chemical bond is discovered.

    Science.gov (United States)

    Rhodes, Christopher J; Macrae, Roderick M

    2015-01-01

    A long-sought but elusive new type of chemical bond, occurring on a minimum-free, purely repulsive potential energy surface, has recently been convincingly shown to be possible on the basis of high-level quantum-chemical calculations. This type of bond, termed a vibrational bond, forms because the total energy, including the dynamical energy of the nuclei, is lower than the total energy of the dissociated products, including their vibrational zero-point energy. For this to be the case, the ZPE of the product molecule must be very high, which is ensured by replacing a conventional hydrogen atom with its light isotope muonium (Mu, mass = 1/9 u) in the system Br-H-Br, a natural transition state in the reaction between Br and HBr. A paramagnetic species observed in the reaction Mu +Br2 has been proposed as a first experimental sighting of this species, but definitive identification remains challenging.

  7. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Si–O bonding, they may still exhibit significant chemical reactivity due to the creation of surface dangling bonds resulting from H{sub 2} desorption from previously undetected silicon hydride and surface hydroxide species.

  8. Nanoscale fabrication and characterization of chemically modified silicon surfaces using conductive atomic force microscopy in liquids

    Science.gov (United States)

    Kinser, Christopher Reagan

    with areal densities corresponding to 50% and 57% of the Si(111) surface bonds. XPS and XSW analyses of SAM-2 reveal that Br abstraction by reactive silicon dangling bonds competes with olefin addition to the surface so that 0.48 monolayer (ML) of a total Br coverage of 0.58 ML is bound to the Si(111) lattice position.

  9. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley-Read-Hall recombination.

    Science.gov (United States)

    Zhao, Chao; Ng, Tien Khee; Prabaswara, Aditya; Conroy, Michele; Jahangir, Shafat; Frost, Thomas; O'Connell, John; Holmes, Justin D; Parbrook, Peter J; Bhattacharya, Pallab; Ooi, Boon S

    2015-10-28

    We present a detailed study of the effects of dangling bond passivation and the comparison of different sulfide passivation processes on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed that octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, and thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency and higher peak efficiency. Our results highlighted the possibility of employing this technique to further design and produce high performance NW-LEDs and NW-lasers.

  10. An enhanced surface passivation effect in InGaN/GaN disk-in-nanowire light emitting diodes for mitigating Shockley–Read–Hall recombination

    KAUST Repository

    Zhao, Chao

    2015-07-24

    We present a detailed study on the effects of dangling bond passivation and the comparison of different sulfides passivation process on the properties of InGaN/GaN quantum-disk (Qdisk)-in-nanowire based light emitting diodes (NW-LEDs). Our results demonstrated the first organic sulfide passivation process for nitride nanowires (NWs). The results from Raman spectroscopy, photoluminescence (PL) measurements, and X-ray photoelectron spectroscopy (XPS) showed octadecylthiol (ODT) effectively passivated the surface states, and altered the surface dynamic charge, thereby recovered the band-edge emission. The effectiveness of the process with passivation duration was also studied. Moreover, we also compared the electro-optical performance of NW-LEDs emitting at green wavelength before and after ODT passivation. We have shown that the Shockley-Read-Hall (SRH) non-radiative recombination of NW-LEDs can be greatly reduced after passivation by ODT, which led to a much faster increasing trend of quantum efficiency, and higher peak efficiency. Our results highlighted the research opportunity in employing this technique for further design and realization of high performance NW-LEDs and NW-lasers.

  11. Investigating Micro-Tensile Bond Strength of Silorane Based Composite in Enamel Surfaces Prepared by Er:YAG Laser vs. Bur-Cut

    Directory of Open Access Journals (Sweden)

    AR Daneshkazemi

    2014-10-01

    Full Text Available Introduction: Recently, Er:YAG laser has been used for tooth preparations and silorane-based composites have been introduced to dentistry, though investigating this type of composites has received scant attention. Therefore, the aim of this study was to compare microtensile bond strength (MTBS of silorane- based composite (Filtek P90 3M/USA to enamel sufaces, prepared by Er:YAG laser irradiation versus bur cut. Methods:Same sized cavities were prepared by ER:YAG laser and bur on the enamel of 20 extracted teeth which were randomly divided into 4 groups:E1 laser + acid etching, E2: laser, E3: bur + acid etching, E4: bur. Then primer, adhesive and P60 resin composite were utilized according to the manufacturer instructions. After thermocycling, 20 samples were created in the form of an hour glass model with 1 mm2 slices in each group, and were tested by SD Mechatronic MTD 500 (Germany machine with cross head speed of 1mm/min to create the fracture. The failure mode was assessed under stereomicroscope (ZTX-3E, Zhejiang/China, and the study data were analysed by ANOVA test. Results: The study results revealed that highest and lowest microtensile bond strength belonged to E3 and E2 group respectively. No significant differences were observed between the tested groups(p= 0.213. Highest and lowest modes of failure were adhesive and cohesive respectively. ANOVA results did not demonstrate any significant differences between groups(p=0.845. Conclusion: Laser-prepared or bur-prepared cavities with or without etching and silorane based composite could not significantly affect MTBS in order to enamel.

  12. Low-temperature Au/a-Si wafer bonding

    International Nuclear Information System (INIS)

    Jing, Errong; Xiong, Bin; Wang, Yuelin

    2011-01-01

    The Si/SiO 2 /Ti/Au–Au/Ti/a-Si/SiO 2 /Si bonding structure, which can also be used for the bonding of non-silicon material, was investigated for the first time in this paper. The bond quality test showed that the bond yield, bond repeatability and average shear strength are higher for this bonding structure. The interfacial microstructure analysis indicated that the Au-induced crystallization of the amorphous silicon process leads to big Si grains extending across the bond interface and Au filling the other regions of the bond interface, which result into a strong and void-free bond interface. In addition, the Au-induced crystallization reaction leads to a change in the IR images of the bond interface. Therefore, the IR microscope can be used to evaluate and compare the different bond strengths qualitatively. Furthermore, in order to verify the superiority of the bonding structure, the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si (i.e. no Ti/Au layer on the a-Si surface) and Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structures (i.e. Au thermocompression bonding) were also investigated. For the Si/SiO 2 /Ti/Au–a-Si/SiO 2 /Si bonding structure, the poor bond quality is due to the native oxide layer on the a-Si surface, and for the Si/SiO 2 /Ti/Au–Au/Ti/SiO 2 /Si bonding structure, the poor bond quality is caused by the wafer surface roughness which prevents intimate contact and limits the interdiffusion at the bond interface.

  13. Coverage dependent desorption dynamics of deuterium on Si(100) surfaces: interpretation with a diffusion-promoted desorption model.

    Science.gov (United States)

    Matsuno, T; Niida, T; Tsurumaki, H; Namiki, A

    2005-01-08

    We studied coverage dependence of time-of-flight (TOF) spectra of D2 molecules thermally desorbed from the D/Si(100) surface. The mean translational energies Et of desorbed D2 molecules were found to increase from 0.20+/-0.05 eV to 0.40+/-0.04 eV as the desorption coverage window was decreased from 1.0 ML> or =thetaD> or =0.9 ML to 0.2 ML> or =thetaD> or =0 ML, being consistent with the kinetics switch predicted in the interdimer mechanism. The measured TOF spectra were deconvoluted into 2H, 3H, and 4H components by a curve fitting method along the principle of detailed balance. As a result, it turned out that the desorption kinetics changes from the 4H to the 3H situation at high coverage above thetaD=0.9 ML, while the 2H desorption is dominant for a quite wide coverage region up to thetaD=0.8 ML. A dynamic desorption mechanism by which the desorption is promoted by D-atom diffusion to dangling bonds was proposed. 2005 American Institute of Physics.

  14. Chemical structural analysis of diamondlike carbon films: I. Surface growth model

    Science.gov (United States)

    Takabayashi, Susumu; Ješko, Radek; Shinohara, Masanori; Hayashi, Hiroyuki; Sugimoto, Rintaro; Ogawa, Shuichi; Takakuwa, Yuji

    2018-02-01

    The surface growth mechanisms of diamondlike carbon (DLC) films has been clarified. DLC films were synthesized in atmospheres with a fixed methane-to-argon ratio at different temperatures up to 700 °C by the photoemission-assisted glow discharge of photoemission-assisted plasma-enhanced chemical vapor deposition. The electrical resistivity of the films decreased logarithmically as the synthesis temperature was increased. Conversely, the dielectric constant of the films increased and became divergent at high temperature. However, the very high electrical resistivity of the film synthesized at 150 °C was retained even after post-annealing treatments at temperatures up to 500 °C, and divergence of the dielectric constant was not observed. Such films exhibited excellent thermal stability and retained large amounts of hydrogen, even after post-annealing treatments. These results suggest that numerous hydrogen atoms were incorporated into the DLC films during synthesis at low temperatures. Hydrogen atoms terminate carbon dangling bonds in the films to restrict π-conjugated growth. During synthesis at high temperature, hydrogen was desorbed from the interior of the growing films and π-conjugated conductive films were formed. Moreover, hydrogen radicals were chemisorbed by carbon atoms at the growing DLC surface, leading to removal of carbon atoms from the surface as methane gas. The methane molecules decomposed into hydrocarbons and hydrogen radicals through the attack of electrons above the surface. Hydrogen radicals contributed to the etching reaction cycle of the film; the hydrocarbon radicals were polymerized by reacting with other radicals and the methane source. The polymer radicals remained above the film, preventing the supply of the methane source and disrupting the action of argon ions. At high temperatures, the resultant DLC films were rough and thin.

  15. Composite Bonding to Stainless Steel Crowns Using a New Universal Bonding and Single-Bottle Systems

    OpenAIRE

    Mohammad Ali Hattan; Sharat Chandra Pani; Mohammad AlOmari

    2013-01-01

    Aim. The aim of this study is to evaluate the shear bond strength of nanocomposite to stainless steel crowns using a new universal bonding system. Material and Methods. Eighty (80) stainless steel crowns (SSCs) were divided into four groups (20 each). Packable nanocomposite was bonded to the lingual surface of the crowns in the following methods: Group A without adhesive (control group), Group B using a new universal adhesive system (Scotchbond Universal Adhesive, 3M ESPE, Seefeld, Germany), ...

  16. The thioredoxin reductase--Thioredoxin redox system cleaves the interchain disulphide bond of botulinum neurotoxins on the cytosolic surface of synaptic vesicles.

    Science.gov (United States)

    Pirazzini, Marco; Azarnia Tehran, Domenico; Zanetti, Giulia; Lista, Florigio; Binz, Thomas; Shone, Clifford C; Rossetto, Ornella; Montecucco, Cesare

    2015-12-01

    Botulinum neurotoxins (BoNTs) are Janus toxins, as they are at the same time the most deadly substances known and one of the safest drugs used in human therapy. They specifically block neurotransmission at peripheral nerves through the proteolysis of SNARE proteins, i.e. the essential proteins which are the core of the neuroexocytosis machinery. Even if BoNTs are traditionally known as seven main serotypes, their actual number is much higher as each serotype exists in many different subtypes, with individual biological properties and little antigenic relations. Since BoNTs can be used as biological weapons, and the only currently available therapy is based on immunological approaches, the existence of so many different subtypes is a major safety problem. Nevertheless, all BoNT isoforms are structurally similar and intoxicate peripheral nerve endings via a conserved mechanism. They consist of two chains linked by a unique disulphide bond which must be reduced to enable their toxicity. We found that thioredoxin 1 and its reductase compose the cell redox system responsible for this reduction, and its inhibition via specific chemicals significantly reduces BoNTs activity, in vitro as well as in vivo. Such molecules can be considered as lead compounds for the development of pan-inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Bonding with Your Baby

    Science.gov (United States)

    ... the future bonding of the child and parent. Adoptive parents may be concerned about bonding with their ... general emotional support. And it's OK to ask family members and friends for help in the days — ...

  18. Heparin-bonded, expanded polytetrafluoroethylene-lined stent graft in the treatment of femoropopliteal artery disease: 1-year results of the VIPER (Viabahn Endoprosthesis with Heparin Bioactive Surface in the Treatment of Superficial Femoral Artery Obstructive Disease) trial.

    Science.gov (United States)

    Saxon, Richard R; Chervu, Arun; Jones, Paul A; Bajwa, Tanvir K; Gable, Dennis R; Soukas, Peter A; Begg, Richard J; Adams, John G; Ansel, Gary M; Schneider, Darren B; Eichler, Charles M; Rush, Michael J

    2013-02-01

    To evaluate the performance of a heparin-bonded, expanded polytetrafluoroethylene (ePTFE)-lined nitinol endoprosthesis in the treatment of long-segment occlusive disease of the femoropopliteal artery (FPA) and to identify factors associated with loss of patency. In a single-arm, prospective, 11-center study (VIPER [Gore Viabahn Endoprosthesis with Heparin Bioactive Surface in the Treatment of Superficial Femoral Artery Obstructive Disease] trial), 119 limbs (113 patients; 69 men; mean age, 67 y), including 88 with Rutherford category 3-5 disease and 72 with Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II) C or D lesions of the FPA, underwent stent graft implantation. The mean lesion length was 19 cm; 56% of lesions were occlusions. Follow-up evaluations included color duplex ultrasonography in all patients, with patency defined as a peak systolic velocity ratio20% was 70% (P = .047). Primary patency was not significantly affected by device diameter (5 vs 6 vs 7 mm) or lesion length (≤20 cm vs>20 cm). The 30-day major adverse event rate was 0.8%. The heparin-bonded, ePTFE/nitinol stent graft provided clinical improvement and a primary patency rate of 73% at 1 year in the treatment of long-segment FPA disease. Careful sizing of the device relative to vessel landing zones is essential for achieving optimal outcomes. Copyright © 2013 SIR. Published by Elsevier Inc. All rights reserved.

  19. 30 CFR 800.30 - Replacement of bonds.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Replacement of bonds. 800.30 Section 800.30... REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION OPERATIONS UNDER REGULATORY PROGRAMS § 800.30 Replacement... replacement performance bonds. Replacement of a performance bond pursuant to this section shall not constitute...

  20. Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol

    Science.gov (United States)

    Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen

    2006-01-01

    A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...

  1. Australia's Bond Home Bias

    OpenAIRE

    Anil V. Mishra; Umaru B. Conteh

    2014-01-01

    This paper constructs the float adjusted measure of home bias and explores the determinants of bond home bias by employing the International Monetary Fund's high quality dataset (2001 to 2009) on cross-border bond investment. The paper finds that Australian investors' prefer investing in countries with higher economic development and more developed bond markets. Exchange rate volatility appears to be an impediment for cross-border bond investment. Investors prefer investing in countries with ...

  2. Comparative evaluation of shear bond strength of metallic brackets bonded with two different bonding agents under dry conditions and with saliva contamination.

    Science.gov (United States)

    Khanehmasjedi, Mashallah; Naseri, Mohammad Ali; Khanehmasjedi, Samaneh; Basir, Leila

    2017-02-01

    This study compared the shear bond strength of metallic brackets bonded with Single Bond and Assure bonding agents under dry and saliva-contamination conditions. Sixty sound premolar teeth were selected, and stainless-steel brackets were bonded on enamel surfaces with Single Bond and Assure bonding agents under dry condition or with saliva contamination. Shear bond strength values of brackets were measured in a universal testing machine. The adhesive remnant index scores were determined after debonding of the brackets under a stereomicroscope. One-way analysis of variance (ANOVA) was used to analyze bond strength. Two-by-two comparisons were made with post hoc Tukey tests (pbrackets to tooth structure were 9.29±8.56 MPa and 21.25±8.93 MPa with the use of Assure resin bonding agent under saliva-contamination and dry conditions, respectively. These values were 10.13±6.69 MPa and 14.09±6.6 MPa, respectively, under the same conditions with the use of Single Bond adhesive. Contamination with saliva resulted in a significant decrease in the bond strength of brackets to tooth structure with the application of Assure adhesive resin (pbrackets to tooth structures. Contamination with saliva significantly decreased the bond strength of Assure bonding agent compared with dry conditions. Copyright © 2016. Published by Elsevier Taiwan LLC.

  3. Bonding auto-polymerising acrylic resin to acrylic denture teeth.

    LENUS (Irish Health Repository)

    Nagle, Susan

    2009-09-01

    This study investigated the effect of surface treatments on the shear bond strength of an auto-polymerising acrylic resin cured to acrylic denture teeth. The surface treatments included a combination of grit-blasting and\\/or wetting the surface with monomer. Samples were prepared and then stored in water prior to shear testing. The results indicated that the application of monomer to the surface prior to bonding did not influence the bond strength. Grit blasting was found to significantly increase the bond strength.

  4. TD-DFT investigation of the potential energy surface for Excited-State Intramolecular Proton Transfer (ESIPT) reaction of 10-hydroxybenzo[h]quinoline: Topological (AIM) and population (NBO) analysis of the intramolecular hydrogen bonding interaction

    International Nuclear Information System (INIS)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-01-01

    Here, we report a Density Functional Theoretical (DFT) study on the photophysics of a potent Excited-State Intramolecular Proton Transfer (ESIPT) molecular system, viz., 10-hydroxybenzo[h]quinoline (HBQ). Particular emphasis has been rendered on the assessment of the proton transfer reaction in HBQ in the ground and excited-states through elucidation and a careful perusal of the potential energy surfaces (PES). The non-viability of Ground-State Intramolecular Proton Transfer (GSIPT) process is dictated by a high-energy barrier coupled with no energy minimum for the proton transferred (K-form) form at the ground-state (S 0 ) PES. Remarkable reduction of the barrier along with thermodynamic stability inversion between the enol (E-form) and the keto forms (K-form) of HBQ upon photoexcitation from S 0 to the S 1 -state advocate for the operation of ESIPT process. These findings have been cross-validated on the lexicon of analysis of optimized geometry parameters, Mulliken's charge distribution on the heavy atoms, and molecular orbitals (MO) of the E- and the K-forms of HBQ. Our computational results also corroborate to experimental observations. From the modulations in optimized geometry parameters in course of the PT process a critical assessment has been endeavoured to delve into the movement of the proton during the process. Additional stress has been placed on the analysis of the intramolecular hydrogen bonding (IMHB) interaction in HBQ. The IMHB interaction has been explored by calculation of electron density ρ(r) and the Laplacian ∇ 2 ρ(r) at the bond critical point (BCP) using Atoms-In-Molecule (AIM) method and by calculation of interaction between σ* of OH with the lone pair of the nitrogen atom using Natural Bond Orbital (NBO) analysis. - Highlights: → Theoretical modelling of the photophysics of an ESIPT probe 10-hydroxybenzo[h]quinoline (HBQ). → Calculation of intramolecular hydrogen bond (IMHB) energy. → Role of hyperconjugative charge transfer

  5. Phenylacetylene and H bond

    Indian Academy of Sciences (India)

    ... all resembling H bonds. Non-linear H bonds due to secondary interactions. C-H stretching frequency shows blue shift. Heavy atom distances are longer than the sum of van der Waals radii. Formed a task group through IUPAC to come up with a modern definition of H bond. 15 international experts including Desiraju.

  6. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  7. Surface enhancement Raman scattering of tautomeric thiobarbituric acid. Natural bond orbitals and B3LYP/6-311+G (d, p) assignments of the Fourier Infrared and Fourier Raman Spectra.

    Science.gov (United States)

    Soto, C A Téllez; Ramos, J M; Costa Junior, A C; Vieira, Laís S; Rangel, João L; Raniero, L; Fávero, Priscila P; Lemma, Tibebe; Ondar, Grisset F; Versiane, Otavio; Martin, A A

    2013-10-01

    Surface enhancement Raman scattering (SERS) of two tautomer of thiobarbituric acid was obtained using silver and gold nanoparticles. Large band enhancement in the region of the ν(C=S), ν(C=C), δ(CH2), and δ(CNH) vibrational modes was found. Natural bond analysis of the tautomer species revealed expressive values of charge transfer, principally from lone pair electron orbitals of the S, N, and O atoms. Complete vibrational assignment was done for the two tautomers using the B3LYP/6-311+G (d, p) procedure, band deconvolution analysis, and from a rigorous interpretation of the normal modes matrix. The calculated spectra agree well with the experimental ones. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Enamel and dentin bond strength following gaseous ozone application.

    Science.gov (United States)

    Cadenaro, Milena; Delise, Chiara; Antoniollo, Francesca; Navarra, Ottavia Chiara; Di Lenarda, Roberto; Breschi, Lorenzo

    2009-08-01

    To evaluate the effects of gaseous ozone application on enamel and dentin bond strength produced by two self-etching adhesive systems. The shear bond strength test was conducted to assess adhesion on enamel (protocol 1), while the microtensile bond strength test was performed on dentin (protocol 2). Protocol 1: 96 bovine incisors were randomly divided into 4 groups, and enamel surfaces were bonded in accordance with the following treatments: (1E) ozone + Clearfil Protect Bond; (2E) Clearfil Protect Bond (control); (3E) ozone + Xeno III; (4E) Xeno III (control). Ozone gas was applied for 80 s. Shear bond strength was measured with a universal testing machine. Protocol 2: 40 noncarious human molars were selected. Middle/deep dentin was exposed and bonded in accordance with the following treatments: (1D) ozone+Clearfil Protect Bond; (2D) Clearfil Protect Bond (control); (3D) ozone+Xeno III (4D) Xeno III (control). Four-mm-thick buildups were built on the adhesives, then specimens were sectioned in accordance with the nontrimming technique. Specimens were stressed until failure occurred, and failure modes were analyzed. Shear bond and microtensile bond strength data were analyzed using two-way ANOVA and Tukey's post-hoc test. No statistical differences were found between ozone treated specimens and controls, neither on enamel nor on dentin irrespective of the tested adhesive. Clearfil Protect Bond showed higher bond strength to enamel than Xeno III, irrespective of the ozone treatment (p enamel and dentin bond strength.

  9. Evaluation of shear bond strength of different treatments of ceramic bracket surfaces Avaliação da resistência ao cisalhamento de diferentes tratamentos na superfície de braquetes cerâmicos

    Directory of Open Access Journals (Sweden)

    Patrícia Helou Ramos Andrade

    2012-08-01

    Full Text Available OBJECTIVE: To evaluate the bonding strength of the ceramic bracket and composite resin restoration interface, using four types of treatment on the base of the bracket. METHODOLOGY: 48 photoactivated composite resin discs were used (FiltekTM Z250 contained in specimens and divided into 4 groups of 12 specimens for each group according to the type of treatment performed on the base of the brackets. Once the brackets were bonded, the specimens were subjected to shear stress carried out in a universal testing machine (MTS: 810 Material Test System calibrated with a fixed speed of 0.5 mm / minute. The values obtained were recorded and compared by means of appropriate statistical tests - analysis of variance and then Tukey's test. RESULTS AND CONCLUSIONS: The surfaces of ceramic brackets conditioned with 10% hydrofluoric acid for 1 minute, followed by aluminum oxide blasting, 50µ, after silane application and primer application, was considered the best method to prepare surfaces of ceramic brackets prior to orthodontic esthetic bonding.OBJETIVO: avaliar a resistência à união da interface entre braquete cerâmico e restauração de resina composta, empregando quatro tipos de tratamento na base do braquete. MÉTODOS: foram utilizados 48 discos de resina fotoativada (Filtek® Z250 incluídos em corpos de prova, divididos em quatro grupos, com 12 espécimes em cada grupo, de acordo com o tipo de tratamento realizado na base do braquete. Uma vez colados os braquetes, os corpos de prova foram submetidos à tensão de cisalhamento, realizado numa máquina universal de ensaios (MTS: 810 Material Test System calibrada com velocidade fixa de 0,5mm/min. Os valores obtidos foram registrados e comparados por meio de médias, utilizando-se testes estatísticos adequados (análise de Variância e, posteriormente, teste de Tukey. RESULTADOS E CONCLUSÕES: o condicionamento das superfícies dos braquetes cerâmicos com ácido hidrofluorídrico a 10% por 1 minuto

  10. Are Bonding Agents being Effective on the Shear Bond Strength of Orthodontic Brackets Bonded to the Composite?

    Directory of Open Access Journals (Sweden)

    Fahimeh Farzanegan

    2014-06-01

    Full Text Available Introduction: One of the clinical problems in orthodontics is the bonding of brackets tocomposite restorations. The aim of this study was to evaluate the shear bondstrength of brackets bonded to composite restorations using Excite. Methods:Forty brackets were bonded to composite surfaces, which were embedded inacrylic resin. One of the following four protocols was employed for surfacepreparation of the composite: group 1 37% phosphoric acid for 60 seconds, group2 roughening with a diamond bur plus 37% phosphoric acid for 60 seconds, group3 37% phosphoric acid for 60 seconds and the applying Excite®, group4 roughening with diamond bur plus 37% phosphoric acid for 60 seconds andapplying Excite®. Maxillary central brackets were bonded onto thecomposite prepared samples with Transbond XT. Shear Bond Strength (SBS wasmeasured by a universal testing machine. The ANOVA and Tukey test was utilizedfor data analysis. Results: There was a significant difference betweenthe four groups (P

  11. Shear Bond Strength of Three Orthodontic Bonding Systems on Enamel and Restorative Materials.

    Science.gov (United States)

    Hellak, Andreas; Ebeling, Jennifer; Schauseil, Michael; Stein, Steffen; Roggendorf, Matthias; Korbmacher-Steiner, Heike

    2016-01-01

    Objective. The aim of this in vitro study was to determine the shear bond strength (SBS) and adhesive remnant index (ARI) score of two self-etching no-mix adhesives (iBond ™ and Scotchbond ™ ) on different prosthetic surfaces and enamel, in comparison with the commonly used total etch system Transbond XT ™ . Materials and Methods . A total of 270 surfaces (1 enamel and 8 restorative surfaces, n = 30) were randomly divided into three adhesive groups. In group 1 (control) brackets were bonded with Transbond XT primer. In the experimental groups iBond adhesive (group 2) and Scotchbond Universal adhesive (group 3) were used. The SBS was measured using a Zwicki 1120 ™ testing machine. The ARI and SBS were compared statistically using the Kruskal-Wallis test ( P ≤ 0.05). Results . Significant differences in SBS and ARI were found between the control group and experimental groups. Conclusions . Transbond XT showed the highest SBS on human enamel. Scotchbond Universal on average provides the best bonding on all other types of surface (metal, composite, and porcelain), with no need for additional primers. It might therefore be helpful for simplifying bonding in orthodontic procedures on restorative materials in patients. If metal brackets have to be bonded to a metal surface, the use of a dual-curing resin is recommended.

  12. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and Fourier-transform sum-frequency vibrational spectroscopy

    International Nuclear Information System (INIS)

    McGuire, John Andrew

    2004-01-01

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process.