WorldWideScience

Sample records for surface crystallization occurs

  1. Nonlinear Boundary Value Problem for Concave Capillary Surfaces Occurring in Single Crystal Rod Growth from the Melt

    Directory of Open Access Journals (Sweden)

    Agneta Maria Balint

    2008-12-01

    Full Text Available The boundary value problem z″=((ρ⋅g⋅z−p/γ[1+(z′2]3/2−(1/r⋅[1+(z′2]⋅z′, r∈[r1, r0], z′(r1=−tan⁡(π/2−αg, z′(r0=−tan⁡αc, z(r0=0, and z(r is strictly decreasing on [r1,r0], is considered. Here, 0crystal rod growth from the melt by edge-defined film-fed growth (EFG method. With this aim, this study was undertaken.

  2. Single Crystal Surfaces

    Science.gov (United States)

    Aguilar-Santillan, Joaquin

    2014-06-01

    The present work studies (0001) Al2O3 and (111) Al2MgO4 wetting with pure molten Al by the sessile drop technique from 1073 K to 1473 K (800 °C to 1200 °C) under Ar at PO2 10-15 Pa. Al pure liquid wets a smooth and chemically homogeneous surface of an inert solid, the wetting driving force ( t, T) can be readily studied when surface solid roughness increases in the system. Both crystals planes (0001) Al2O3 and (111) Al2MgO4 have crystallographic surfaces with identical O-2 crystalline positions however considering Mg2+ content in Al2MgO4 structure may influence a reactive mode. Kinetic models results under similar experimental conditions show that Al wetting on (0001) Al2O3 is less reactive than (111) Al2MgO4, however at >1273 K (1000 °C) (0001) Al2O3 transformation occurs and a transition of wetting improves. The (111) Al2MgO4 and Al system promotes interface formations that slow its wetting process.

  3. Surface properties of HMX crystal

    Science.gov (United States)

    Yee, R. Y.; Adicoff, A.; Dibble, E. J.

    1980-01-01

    The surface properties of Beta-HMX crystals were studied. The surface energies of three principal crystal faces were obtained by measuring contact angles with several reference liquids. The surface energies and polarity of the three crystal faces are found to be different.

  4. Occurence of pharmaceuticals in surface water

    Directory of Open Access Journals (Sweden)

    Dajana Gašo-Sokač

    2017-01-01

    Full Text Available Pharmaceuticals constitute a large group of human and veterinary medicinal organic compounds which have long been used throughout the world. According to their therapeutic activity they are classified in several groups: antibiotics, analgesics/antipyretic, CNS (Central nervous system drugs, cardiovascular drugs, endocrinology treatments, diagnostic aid-adsorbable organic halogen compounds. Pharmaceuticals are designed to have a physiological effect on humans and animals in trace concentrations. Pharmaceuticals end up in soil, surface waters and eventually in ground water, which can be used as a source of drinking water, after their excretion (in unmetabolized form or as active metabolites from humans or animals via urine or faeces. The possible fates of pharmaceuticals once they get into the aquatic environment are mainly three: (i ultimately they are mineralized to carbon dioxide and water, (ii the compound does not degrade readily because it is lipophilic and is partially retained in the sedimentation sludge and (iii the compound metabolizes to a more hydrophilic molecule, passes through the wastewater treatment plant and ends up in receiving waters (which are surface waters, mainly rivers. These compounds exhibit the highest persistence in the environment. In recent years, and in particular after the use of the advanced measurement technologies, many pharmaceuticals have been identified worldwide and detected at ng/L levels (trace concentrations in the aquatic environment, and are considered as an emerging environmental problem due to their continuous input and persistence in the aquatic ecosystem even at low concentrations.

  5. Surface states in photonic crystals

    Directory of Open Access Journals (Sweden)

    Vojtíšek P.

    2013-05-01

    Full Text Available Among many unusual and interesting physical properties of photonic crystals (PhC, in recent years, the propagation of surface electromagnetic waves along dielectric PhC boundaries have attracted considerable attention, also in connection to their possible applications. Such surfaces states, produced with the help of specialized defects on PhC boundaries, similarly to surfaces plasmons, are localized surfaces waves and, as such, can be used in various sensing applications. In this contribution, we present our recent studies on numerical modelling of surface states (SS for all three cases of PhC dimensionality. Simulations of these states were carried out by the use of plane wave expansion (PWE method via the MIT MPB package.

  6. Growth morphologies of crystal surfaces

    Science.gov (United States)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1991-03-01

    We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation and growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly with the mean free path in the vapor. However, the three-dimensional (3D) the systems show increased shape stability compared to corresponding 2D cases. Extrapolation of the model results to mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude agreement of the predicted critical size with experimental findings. The stability region for macroscopically smooth (faceted) surfaces in the parameter space of temperature and supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The atomic surface roughness increases with increase in growth temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be advantageously used at low temperatures and supersaturations, is insufficient to describe the growth dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing temperature or supersaturation. When the mean free path in the nutrient is comparable to the lattice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a growth spiral in its center region. At elevated

  7. Surface effects on lyotropic liquid crystals

    OpenAIRE

    Oliveira, Elisabeth Andreoli de

    1998-01-01

    Liquid crystals are very sensitive to surface effects. In fact, these effects are very useful in designing eletro-optical devices. We present a review of the theoretical models that describe the surface interactions in liquid crystals, focusing on lyotropic systems. Experimental results will be presented and compared to theoretical predictions.

  8. Protein surface shielding agents in protein crystallization

    International Nuclear Information System (INIS)

    Hašek, J.

    2011-01-01

    The crystallization process can be controlled by protein surface shielding agents blocking undesirable competitive adhesion modes during non-equilibrium processes of deposition of protein molecules on the surface of growing crystalline blocks. The hypothesis is based on a number of experimental proofs from diffraction experiments and also retrieved from the Protein Data Bank. The molecules adhering temporarily on the surface of protein molecules change the propensity of protein molecules to deposit on the crystal surface in a definite position and orientation. The concepts of competitive adhesion modes and protein surface shielding agents acting on the surface of molecules in a non-equilibrium process of protein crystallization provide a useful platform for the control of crystallization. The desirable goal, i.e. a transient preference of a single dominating adhesion mode between protein molecules during crystallization, leads to uniform deposition of proteins in a crystal. This condition is the most important factor for diffraction quality and thus also for the accuracy of protein structure determination. The presented hypothesis is a generalization of the experimentally well proven behaviour of hydrophilic polymers on the surface of protein molecules of other compounds

  9. Crystal shapes on striped surface domains

    International Nuclear Information System (INIS)

    Valencia, Antoni

    2004-01-01

    The equilibrium shapes of a simple cubic crystal in contact with a planar chemically patterned substrate are studied theoretically using an effective interface model. The substrate is primarily made of lyophobic material and is patterned with a lyophilic (easily wettable) stripe domain. Three regimes can be distinguished for the equilibrium shapes of the crystal. The transitions between these regimes as the volume of the crystal is changed are continuous or discontinuous depending on the strength of the couplings between the crystal and the lyophilic and lyophobic surface domains. If the crystal grows through a series of states close to equilibrium, the discontinuous transitions correspond to growth instabilities. These transitions are compared with similar results that have been obtained for a volume of liquid wetting a lyophilic stripe domain

  10. Protein crystallization on polymeric film surfaces

    Science.gov (United States)

    Fermani, Simona; Falini, Giuseppe; Minnucci, Massimiliano; Ripamonti, Alberto

    2001-04-01

    Polymeric films containing ionizable groups, such as sulfonated polystyrene, cross-linked gelatin films with adsorbed poly- L-lysine or entrapped poly- L-aspartate and silk fibroin with entrapped poly- L-lysine or poly- L-aspartate, have been tested as heterogeneous nucleant surfaces for proteins. Concanavalin A from jack bean and chicken egg-white lysozyme were used as models. It was found that the crystallization of concanavalin A by the vapor diffusion technique, is strongly influenced by the presence of ionizable groups on the film surface. Both the induction time and protein concentration necessary for the crystal nucleation decrease whereas the nucleation density increases on going from the reference siliconized cover slip to the uncharged polymeric surfaces and even more to the charged ones. Non-specific attractive and local interactions between the protein and the film surface might promote molecular collisions and the clustering with the due symmetry for the formation of the crystal nuclei. The results suggest that the studied polymeric film surfaces could be particularly useful for the crystallization of proteins from solutions at low starting concentration, thus using small quantities of protein, and for proteins with very long crystallization time.

  11. Surface Restructuring of Hybrid Perovskite Crystals

    KAUST Repository

    Banavoth, Murali

    2016-11-07

    Hybrid perovskite crystals have emerged as an important class of semiconductors because of their remarkable performance in optoelectronics devices. The interface structure and chemistry of these crystals are key determinants of the device\\'s performance. Unfortunately, little is known about the intrinsic properties of the surfaces of perovskite materials because extrinsic effects, such as complex microstructures, processing conditions, and hydration under ambient conditions, are thought to cause resistive losses and high leakage current in solar cells. We reveal the intrinsic structural and optoelectronic properties of both pristinely cleaved and aged surfaces of single crystals. We identify surface restructuring on the aged surfaces (visualized on the atomic-scale by scanning tunneling microscopy) that lead to compositional and optical bandgap changes as well as degradation of carrier dynamics, photocurrent, and solar cell device performance. The insights reported herein clarify the key variables involved in the performance of perovskite-based solar cells and fabrication of high-quality surface single crystals, thus paving the way toward their future exploitation in highly efficient solar cells.

  12. The Surface Structure of Ground Metal Crystals

    Science.gov (United States)

    Boas, W.; Schmid, E.

    1944-01-01

    The changes produced on metallic surfaces as a result of grinding and polishing are not as yet fully understood. Undoubtedly there is some more or less marked change in the crystal structure, at least, in the top layer. Hereby a diffusion of separated crystal particles may be involved, or, on plastic material, the formation of a layer in greatly deformed state, with possible recrystallization in certain conditions. Czochralski verified the existence of such a layer on tin micro-sections by successive observations of the texture after repeated etching; while Thomassen established, roentgenographically by means of the Debye-Scherrer method, the existence of diffused crystal fractions on the surface of ground and polished tin bars, which he had already observed after turning (on the lathe). (Thickness of this layer - 0.07 mm). Whether this layer borders direct on the undamaged base material or whether deformed intermediate layers form the transition, nothing is known. One observation ty Sachs and Shoji simply states that after the turning of an alpha-brass crystal the disturbance starting from the surface, penetrates fairly deep (approx. 1 mm) into the crystal (proof by recrystallization at 750 C).

  13. On the Bertin surfaces of photoelastic crystals.

    Science.gov (United States)

    Daví, Fabrizio

    2015-12-01

    Conoscopic analysis of interference fringes is one of the most useful tools for investigating the mechanical properties of a crystal. These fringes are generated by a surface of constant phase difference, called the Bertin surface, whose shape depends on the piezo-optic properties of the material and on the applied stress. Here we investigate systematically for the first time, to the best of our knowledge, these surfaces as algebraic surfaces. We also describe their dependence on the stress when these are "small" and give a detailed analysis for all crystallographic classes.

  14. Fast surface crystallization of amorphous griseofulvin below T g.

    Science.gov (United States)

    Zhu, Lei; Jona, Janan; Nagapudi, Karthik; Wu, Tian

    2010-08-01

    To study crystal growth rates of amorphous griseofulvin (GSF) below its glass transition temperature (T (g)) and the effect of surface crystallization on the overall crystallization kinetics of amorphous GSF. Amorphous GSF was generated by melt quenching. Surface and bulk crystal growth rates were determined using polarized light microscope. X-ray powder diffraction (XRPD) and Raman microscopy were used to identify the polymorph of the crystals. Crystallization kinetics of amorphous GSF powder stored at 40 degrees C (T (g)-48 degrees C) and room temperature (T (g)-66 degrees C) was monitored using XRPD. Crystal growth at the surface of amorphous GSF is 10- to 100-fold faster than that in the bulk. The surface crystal growth can be suppressed by an ultrathin gold coating. Below T (g), the crystallization of amorphous GSF powder was biphasic with a rapid initial crystallization stage dominated by the surface crystallization and a slow or suspended late stage controlled by the bulk crystallization. GSF exhibits the fastest surface crystallization kinetics among the known amorphous pharmaceutical solids. Well below T (g), surface crystallization dominated the overall crystallization kinetics of amorphous GSF powder. Thus, surface crystallization should be distinguished from bulk crystallization in studying, modeling and controlling the crystallization of amorphous solids.

  15. Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface

    Directory of Open Access Journals (Sweden)

    Vasily F. Shabanov

    2013-08-01

    Full Text Available Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface.

  16. Field evidences of secondary surface ruptures occurred during the ...

    Indian Academy of Sciences (India)

    Some rock slides of several tens of meters in size that obviously require significantly high ground shaking were also developed on steep fault scarps. The orientation of the principal stress tensor as deduced from the surface rupture of the Eskisehir earthquake displays clear inconsistency with the geometry of prominent ...

  17. Field evidences of secondary surface ruptures occurred during the ...

    Indian Academy of Sciences (India)

    The orientation of the principal stress tensor as deduced from the surface rupture of the Eskisehir earthquake ... history extended back to late Oligocene exhuma- tion of the Uludag massif (Okay et al 2008) and the ensuing ... accepted this view estimating stress directions from slip measurements in the main bounding faults.

  18. Field evidences of secondary surface ruptures occurred during the ...

    Indian Academy of Sciences (India)

    Surface rupture and source fault of the 20 February 1956 Eskişehir earthquake have been a matter of debate that potentially contributes towards the understanding of the active deformation and seismic risk in the highly populated NW Anatolia. Field observations on the two fault segments (namely Kavacık and Uludere ...

  19. Surface states in crystals with low-index surfaces

    International Nuclear Information System (INIS)

    Wang Hui-Ping; Tao Rui-Bao

    2015-01-01

    For most of the conventional crystals with low-index surfaces, the hopping between the nearest neighbor (1NN) crystal planes (CPs) is dominant and the ones from the nNN (2 ≤ n < ∞) CPs are relatively weak, considered as small perturbations. The recent theoretical analysis [1] has demonstrated the absence of surface states at the level of the hopping approximation between the 1NN CPs when the original infinite crystal has the geometric reflection symmetry (GRS) for each CP. Meanwhile, based on the perturbation theory, it has also been shown that small perturbations from the hopping between the nNN (2 ≤ n < ∞) CPs and surface relaxation have no impact on the above conclusion. However, for the crystals with strong intrinsic spin-orbit coupling (SOC), the dominant terms of intrinsic SOC associate with two 1NN bond hoppings. Thus SOC will significantly contribute the hoppings from the 1NN and/or 2NN CPs except the ones within each CP. Here, we will study the effect of the hopping between the 2NN CPs on the surface states in model crystals with three different type structures (Type I: “···–P–P–P–P–···”, Type II: “···–P–Q–P–Q–···” and Type III: “···–P=Q–P=Q–···” where P and Q indicate CPs and the signs “−” and “=” mark the distance between the 1NN CPs). In terms of analytical and numerical calculations, we study the behavior of surface states in three types after the symmetric/asymmetric hopping from the 2NN CPs is added. We analytically prove that the symmetric hopping from the 2NN CPs cannot induce surface states in Type I when each CP has only one electron mode. The numerical calculations also provide strong support for the conclusion, even up to 5NN. However, in general, the coupling from the 2NN CPs (symmetric and asymmetric) is favorable to generate surface states except Type I with single electron mode only. (paper)

  20. Co-crystals on the Surface of Titan

    Science.gov (United States)

    Cable, Morgan; Vu, Tuan; Hodyss, Robert

    2016-10-01

    Titan and Earth are the only bodies in the Solar System that have standing liquids on their surface. At Titan's low surface temperatures (90-95 K), this liquid is comprised of hydrocarbons, primarily methane and ethane. Photochemistry in the atmosphere, driven by solar radiation and energy from Saturn's magnetosphere, generates a wide range of organic products. Some of these products will dissolve in the hydrocarbon fluids and be concentrated in the lakes. Evaporation or other processes that reduce lake levels could potentially induce precipitation, forming evaporite deposits around the lakes. This might explain the deposits seen by the Cassini Visual and Infrared Mapping Spectrometer (VIMS) and Synthetic Aperture Radar (SAR) around some of the northern lakes. These evaporites would play an important role in Titan's surface chemistry.While studying the potential identity of these evaporites, we discovered that solid benzene, when immersed in liquid ethane at Titan surface temperatures, forms a stable co-crystalline structure that can hold considerable amounts of ethane. Such material represents an exciting new class of compounds for Titan's surface, and implies that lake edges and evaporite basins could serve as hydrocarbon reservoirs on Titan. This finding has motivated our search for other co-crystals that may form under similar conditions. In this work, we report on the formation of a co-crystal between acetylene and ammonia (two other possible surface molecules) under Titan's conditions. A series of optical Raman experiments was performed in which solid acetylene was deposited onto solid ammonia at 100 K. Spectral features indicate that co-crystallization happens within minutes, with the structure being stabilized by a network of C-H…N interactions. Subsequent thermal stability studies show that this co-crystal can remain intact until a relatively warm temperature of 130 K. Thus, the ammonia-acetylene co-crystal can be expected to occur readily and remain

  1. Simulations of surface stress effects in nanoscale single crystals

    Science.gov (United States)

    Zadin, V.; Veske, M.; Vigonski, S.; Jansson, V.; Muszinsky, J.; Parviainen, S.; Aabloo, A.; Djurabekova, F.

    2018-04-01

    Onset of vacuum arcing near a metal surface is often associated with nanoscale asperities, which may dynamically appear due to different processes ongoing in the surface and subsurface layers in the presence of high electric fields. Thermally activated processes, as well as plastic deformation caused by tensile stress due to an applied electric field, are usually not accessible by atomistic simulations because of the long time needed for these processes to occur. On the other hand, finite element methods, able to describe the process of plastic deformations in materials at realistic stresses, do not include surface properties. The latter are particularly important for the problems where the surface plays crucial role in the studied process, as for instance, in the case of plastic deformations at a nanovoid. In the current study by means of molecular dynamics (MD) and finite element simulations we analyse the stress distribution in single crystal copper containing a nanovoid buried deep under the surface. We have developed a methodology to incorporate the surface effects into the solid mechanics framework by utilizing elastic properties of crystals, pre-calculated using MD simulations. The method leads to computationally efficient stress calculations and can be easily implemented in commercially available finite element software, making it an attractive analysis tool.

  2. Probing Anisotropic Surface Properties and Surface Forces of Fluorite Crystals.

    Science.gov (United States)

    Gao, Zhiyong; Xie, Lei; Cui, Xin; Hu, Yuehua; Sun, Wei; Zeng, Hongbo

    2018-02-20

    molecules on mineral surfaces with different orientations, and the methodology can be extended to many other crystal surfaces in various interfacial processes.

  3. On the spectrum of facet crystallization waves at the smooth 4He crystal surface

    International Nuclear Information System (INIS)

    Burmistrov, S.N.

    2011-01-01

    The wavelike processes of crystallization and melting or crystallization waves are well known to exist at the 4 He crystal surface in the rough state. Much less is known about crystallization waves for the 4 He crystal surface in the smooth well-faceted state below the roughening transition temperature. To meet the lack, we analyze here the spectrum of facet crystallization waves and its dependence upon the wavelength, perturbation amplitude, and the number of possible facet steps distributed somehow over the wavelength. All the distinctive features of facet crystallization waves from conventional waves at the rough surface result from a nonanalytic cusplike behavior in the angle dependence for the surface tension of smooth crystal facets.

  4. Growth of crystalline semiconductor materials on crystal surfaces

    CERN Document Server

    Aleksandrov, L

    2013-01-01

    Written for physicists, chemists, and engineers specialising in crystal and film growth, semiconductor electronics, and various applications of thin films, this book reviews promising scientific and engineering trends in thin films and thin-films materials science. The first part discusses the physical characteristics of the processes occurring during the deposition and growth of films, the principal methods of obtaining semiconductor films and of reparing substrate surfaces on which crystalline films are grown, and the main applications of films. The second part contains data on epitaxial i

  5. Surface treatment and protection method for cadmium zinc telluride crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2003-01-01

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water.

  6. Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals

    Science.gov (United States)

    Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.

    2006-02-21

    A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.

  7. A scanning electron microscope study of olivine crystal surfaces

    Science.gov (United States)

    Olsen, E. J.; Grossman, L.

    1974-01-01

    SEM photographs were taken of euhedral olivine grains from the Murchison C2 chondrite and several terrestrial and lunar occurrences. In general, the crystal faces of the meteorite grains are rough and uneven, with irregular growth patterns. They are very similar to crystal faces on terrestrial olivine grains that formed by sublimation from a vapor phase. They are very different from the relatively smooth and featureless surfaces of magmatic olivine crystals that precipitated from igneous melts. Qualitatively, the surface morphology of the crystal supports the contention that many euhedral crystals of olivine in C2 meteorites condensed from a gas phase.

  8. Understanding surface structure and chemistry of single crystal lanthanum aluminate

    KAUST Repository

    Pramana, Stevin S.

    2017-03-02

    The surface crystallography and chemistry of a LaAlO3 single crystal, a material mainly used as a substrate to deposit technologically important thin films (e.g. for superconducting and magnetic devices), was analysed using surface X-ray diffraction and low energy ion scattering spectroscopy. The surface was determined to be terminated by Al-O species, and was significantly different from the idealised bulk structure. Termination reversal was not observed at higher temperature (600 °C) and chamber pressure of 10−10 Torr, but rather an increased Al-O occupancy occurred, which was accompanied by a larger outwards relaxation of Al from the bulk positions. Changing the oxygen pressure to 10−6 Torr enriched the Al site occupancy fraction at the outermost surface from 0.245(10) to 0.325(9). In contrast the LaO, which is located at the next sub-surface atomic layer, showed no chemical enrichment and the structural relaxation was lower than for the top AlO2 layer. Knowledge of the surface structure will aid the understanding of how and which type of interface will be formed when LaAlO3 is used as a substrate as a function of temperature and pressure, and so lead to improved design of device structures.

  9. X-ray scattering from surfaces of organic crystals

    DEFF Research Database (Denmark)

    Gidalevitz, D.; Feidenhans'l, R.; Smilgies, D.-M.

    1997-01-01

    X-ray scattering experiments have been performed on the surfaces of organic crystals. The (010) cleavage planes of beta-alanine and alpha-glycine were investigated, and both specular and off-specular crystal truncation rods were measured. This allowed a determination of the molecular layering...

  10. Comment on 'Modelling of surface energies of elemental crystals'

    International Nuclear Information System (INIS)

    Li Jinping; Luo Xiaoguang; Hu Ping; Dong Shanliang

    2009-01-01

    Jiang et al (2004 J. Phys.: Condens. Matter 16 521) present a model based on the traditional broken-bond model for predicting surface energies of elemental crystals. It is found that bias errors can be produced in calculating the coordination numbers of surface atoms, especially in the prediction of high-Miller-index surface energies. (comment)

  11. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  12. Surface Crystallization of Aqueous Salt Solution Under Overheating and Overcooling

    Directory of Open Access Journals (Sweden)

    Nakoryakov Vladimir

    2016-01-01

    Full Text Available The investigation of the surface crystallization with low negative and high positive temperatures were carried in the paper. Crystallization curves for distillate (Ts0 = −9 °C and different mass salt concentrations NaCl (Ts0 = 80 °C were obtained. Experimental data indicate that the crystallization centers influence each other and the number of centers does not change with time. The maximum speeds for the crystallization front reached 0.3–0.5 m/s. There are a significant anisotropy and a curvature of crystallization front. The surface kinetics should be considered to clarify the rate of freezing and melting of ice in modeling global warming.

  13. Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions

    Science.gov (United States)

    Magee, N. B.; Miller, A.; Amaral, M.; Cumiskey, A.

    2014-11-01

    Here we show high-magnification images of hexagonal ice crystals acquired by environmental scanning electron microscopy (ESEM). Most ice crystals were grown and sublimated in the water vapor environment of an FEI-Quanta-200 ESEM, but crystals grown in a laboratory diffusion chamber were also transferred intact and imaged via ESEM. All of these images display prominent mesoscopic topography including linear striations, ridges, islands, steps, peaks, pits, and crevasses; the roughness is not observed to be confined to prism facets. The observations represent the most highly magnified images of ice surfaces yet reported and expand the range of conditions in which rough surface features are known to be conspicuous. Microscale surface topography is seen to be ubiquitously present at temperatures ranging from -10 °C to -40 °C, in supersaturated and subsaturated conditions, on all crystal facets, and irrespective of substrate. Despite the constant presence of surface roughness, the patterns of roughness are observed to be dramatically different between growing and sublimating crystals, and transferred crystals also display qualitatively different patterns of roughness. Crystals are also demonstrated to sometimes exhibit inhibited growth in moderately supersaturated conditions following exposure to near-equilibrium conditions, a phenomenon interpreted as evidence of 2-D nucleation. New knowledge about the characteristics of these features could affect the fundamental understanding of ice surfaces and their physical parameterization in the context of satellite retrievals and cloud modeling. Links to supplemental videos of ice growth and sublimation are provided.

  14. Crystallization of isotactic polypropylene: the effect of fiber surface

    Directory of Open Access Journals (Sweden)

    GORDANA BOGOEVA-GACEVA

    2006-05-01

    Full Text Available Different quantitative approaches enabling the determination of the basic parameters of polymer crystallization were applied to characterize the isothermal and non-isothermal crystallization of homo- and MAH-modified PP in the presence of glass and carbon fibers. Depending on the type of surface treatment and the surface morphology, the fibers were shown to exhibit different nucleation effects, which further influenced the course of the crystallization process. The results obtained by DSC and POM were evaluated using the induction time approach, interfacial energy parameters method, as well as the method for determination of the work of heterogeneous and homogeneous nucleation in polymer systems with additives.

  15. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    International Nuclear Information System (INIS)

    Pascal, Mathieu

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed azimuth. The tilt of the molecule with respect to the surface and the degree to which the surface is relaxed have also been investigated. The adsorption of methyl on Cu(111) was studied using either azomethane or methyl iodide to prepare the surface layers. At saturation coverage the preferred adsorption site is the fcc threefold hollow site, whereas at half saturation coverage ∼ 30 % of the methyl species occupy the hop threefold hollow sites. Best agreement between theory and experiment corresponded to a methyl group adsorbed with C 3v symmetry. The height of the C above the surface in a pure methyl layer was 1.66 ± 0.02 A, but was reduced to 1.62 ± 0.02 A in the presence of co-adsorbed iodine, suggesting that iodine increases the strength of adsorption. Iodine was also found to occupy the fee threefold hollow sites with a Cu-l bondlength of 2.61 ± 0.02 A. (author)

  16. Scattering of x-ray from crystal surfaces

    International Nuclear Information System (INIS)

    Andrews, S.R.; Cowley, R.A.

    1985-01-01

    X-ray measurements performed on a variety of materials demonstrate that it is possible to observe diffuse scattering that originates in the abrupt change of density at a crystal surface. Such a discontinuity gives rise, in general, to rods of scattering in reciprocal space which are most intense close to the Bragg peaks tau and are well defined for sufficiently smooth surfaces. For wave-vector transfer Q=tau+q the q-dependence of the intensity of scattering gives information on the topographic structure of the crystal surface. Experimental results on crystals of GaAs and KTaO 3 , with surfaces prepared in various ways, were obtained using conventional x-ray techniques with a rotating anode source and can be described by a continuum model of the surface. There are discrepancies between the predictions of the models and the experimental results and the suggest that further experiments are needed to achieve a more complete understanding. (author)

  17. The Surface of Hybrid Perovskite Crystals: A Boon or Bane

    KAUST Repository

    Banavoth, Murali

    2017-03-03

    Hybrid perovskite single crystals have garnered tremendous research attention and are expected to be next-generation materials for high-efficiency photoactive devices. Therefore, it is fundamentally important to understand the 8 relationship between the optoelectronic properties of these materials and the marginally exploited surface chemistry in ambient air. For instance, a strong surface disorder, including hydration and ion migration, can possibly lead to extremely different optical and electronic properties at the surface compared to the bulk of the single crystal (SC). From this perspective, we evaluate the key variables that underlie the perovskite SC surface restructuring in ambient air and discuss their merits and limitations. In addition, a comprehensive picture of surface disordering, the remarkable change in the charge carrier dynamics and carrier mobility, surface hydration, and the effect of ion migration on the surface behavior will be discussed. Finally, surface passivation methods are highlighted to resolve or overcome the challenges for device integration.

  18. Surface Curvatures and Diffraction Profiles of Sagittaly Bent Laue Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shi, X.; Takacs, P.; Ghose, S.; Zhong, Z.; Rehak, M.L.; Kaznatcheev, K.; Dooryhee, E.

    2011-05-17

    The performance of a bent Laue crystal monochromator crucially depends on the sagittal and meridional bending curvatures of the crystal. To optimize the design of monochromator crystals, the surface curvatures and diffraction profiles of a set of sagittally bent Laue crystals with different aspect ratios have been studied experimentally by optical metrology and X-ray measurements. The results were confirmed with finite-element analysis using large-deformation theory. The nonlinear relationship between the curvatures necessitates an experimentally determined parameter in the theoretical modeling of the diffraction profiles. By taking into account the local stress and the aspect ratio of the sagittally bent Laue crystal, the modified analytical approach successfully predicts the rocking-curve width and the integrated reflecting power. The effect of extreme sagittal bending on the rocking curve is also discussed. To retain high reflectivity, the bending curvature should not exceed its critical value for the specified crystal geometry. Furthermore, the uniformity of the bending curvatures across the crystal surface has been examined, which suggests that the minimum crystal dimension should be approximately twice the size of the beam footprint.

  19. Alignment of liquid crystals : on geometrically and chemically modified surfaces

    NARCIS (Netherlands)

    Zhang, J.

    2013-01-01

    This thesis consists of two main parts. The first part describes a new model to explain the complex role of surface materials and surface geometry in the liquid crystal (LC) alignment, which has been a subject of intensive debate over the last 40 years. The second part presents a potentially cost

  20. Orientation and deformation of mineral crystals in tooth surfaces.

    Science.gov (United States)

    Fujisaki, Kazuhiro; Todoh, Masahiro; Niida, Atsushi; Shibuya, Ryota; Kitami, Shunsuke; Tadano, Shigeru

    2012-06-01

    Tooth enamel is the hardest material in the human body, and it is mainly composed of hydroxyapatite (HAp)-like mineral particles. As HAp has a hexagonal crystal structure, X-ray diffraction methods can be used to analyze the crystal structure of HAp in teeth. Here, the X-ray diffraction method was applied to the surface of tooth enamel to measure the orientation and strain of the HAp crystals. The c-axis of the hexagonal crystal structure of HAp was oriented to the surface perpendicular to the tooth enamel covering the tooth surface. Thus, the strain of HAp at the surface of teeth was measured by X-ray diffraction from the (004) lattice planes aligned along the c-axis. The X-ray strain measurements were conducted on tooth specimens with intact surfaces under loading. Highly accurate strain measurements of the surface of tooth specimens were performed by precise positioning of the X-ray irradiation area during loading. The strains of the (004) lattice plane were measured at several positions on the surface of the specimens under compression along the tooth axis. The strains were obtained as tensile strains at the labial side of incisor tooth specimens. In posterior teeth, the strains were different at different measurement positions, varying from tensile to compressive types. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Surface effects on converse piezoelectricity of crystals.

    Science.gov (United States)

    Molayem, Mohammad; Springborg, Michael; Kirtman, Bernard

    2017-09-20

    The contribution of surface units to bulk properties are often neglected in theoretical and computational studies of crystalline systems. We demonstrate that this assumption has to be made with caution in the case of (electric field) polarization. As a generalization of an earlier work on quasi-one-dimensional systems [Springborg, et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2010, 82, 165442], it is shown that the polarization for 2D and 3D systems contains a surface contribution that can, in principle, take any value (within physical limits) and has consequences for converse piezoelectric responses. Subsequently, we determine the surface effects quantitatively for a group of ferroelectric perovskite structures. Our results indicate that such contributions can be substantial.

  2. Surface-engineered growth of AgIn₅S₈ crystals.

    Science.gov (United States)

    Lai, Chia-Hung; Chiang, Ching-Yeh; Lin, Po-Chang; Yang, Kai-Yu; Hua, Chi Chung; Lee, Tai-Chou

    2013-05-01

    The growth of semiconductor crystals and thin films plays an essential role in industry and academic research. Considering the environmental damage caused by energy consumption during their fabrication, a simpler and cheaper method is desired. In fact, preparing semiconductor materials at lower temperatures using solution chemistry has potential in this research field. We found that solution chemistry, the physical and chemical properties of the substrate surface, and the phase diagram of the multicomponent compound semiconductor have a decisive influence on the crystal structure of the material. In this study, we used self-assembled monolayers (SAMs) to modify the silicon/glass substrate surface and effectively control the density of the functional groups and surface energy of the substrates. We first employed various solutions to grow octadecyltrichlorosilane (OTS), 3-mercaptopropyl-trimethoxysilane (MPS), and mixed OTS-MPS SAMs. The surface energy can be adjusted between 24.9 and 50.8 erg/cm(2). Using metal sulfide precursors in appropriate concentrations, AgIn5S8 crystals can be grown on the modified substrates without any post-thermal treatment. We can easily adjust the nucleation in order to vary the density of AgIn5S8 crystals. Our current process can achieve AgIn5S8 crystals of a maximum of 1 μm in diameter and a minimum crystal density of approximately 0.038/μm(2). One proof-of-concept experiment demonstrated that the material prepared from this low temperature process showed positive photocatalytic activity. This method for growing crystals can be applied to the green fabrication of optoelectronic materials.

  3. Single crystal surface structure by bragg scattering

    DEFF Research Database (Denmark)

    Nielsen, Mogens

    1985-01-01

    X-ray diffraction is becoming an important tool in the measurements of surface structures. Single crystalline samples are used as in Low Energy Electron Diffraction (LEED)-studies. The X-ray technique is somewhat more involved due to the need of bright, collimated photon sources, in general...

  4. Surface characterization of amorphous and crystallized Fe 80B 20

    Science.gov (United States)

    Huntley, D. R.; Overbury, S. H.; Zehner, D. M.; Budai, J. D.; Brower, W. E.

    1986-11-01

    Recent studies of catalysis by amorphous metals have prompted an interest in their surface properties. We have utilized Auger electron spectroscopy, X-ray photoelectron spectroscopy and low energy alkali ion scattering to study the surface composition, electronic properties and topography of amorphous and crystallized Fe 80B 20 ribbons. The majorresults are that the surface stoichiometry is approximately that of the bulk, unaltered by segregation. Bulk crystallization results in the diffusion of impurities to the surface, but does not change the Fe/B ratio. A small shift in the B1s core level binding energy was observed on crystalline, annealed surfaces relative to amorphous or sputtered surfaces, but no shifts were observed in the iron core level energies. A weak feature due to the B2p levels was observed in the valence band spectra from sputtered surfaces. The surfaces exhibit atomic scale roughness which is not altered by bulk crystallization. Finally, there were no observable differences in the structure, composition or electronic properties between the two sides of the ribbons.

  5. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.

    Science.gov (United States)

    Scholz, I; Bückins, M; Dolge, L; Erlinghagen, T; Weth, A; Hischen, F; Mayer, J; Hoffmann, S; Riederer, M; Riedel, M; Baumgartner, W

    2010-04-01

    Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.

  6. Site-discrimination by molecular imposters at dissymmetric molecular crystal surfaces

    Science.gov (United States)

    Poloni, Laura N.

    incorporation at dissymmetric surfaces because their morphology is dominated by dissymmetric {101} growth faces. Growth processes on the dissymmetric (101) surfaces of these crystalline systems were investigated using metadynamics simulations to determine the free energy of adsorption for solute and impurity attachment to different flat, stepped, and kinked (101) surface terminations. Results suggest that growth occurs via a non-Kossel crystal growth mechanism, and highlights the need for dissymmetric surface structures (i.e. steps and kinks) for a higher fidelity in the orientation of adsorbed molecules. Overall, the results presented in this thesis suggest that growth of molecular crystals, particularly at dissymmetric surfaces, is complex and requires the combination of several experimental and computational techniques to decipher the mechanisms responsible for growth phenomena. The use of molecular imposters to inhibit growth can be useful for the development of therapeutics for pathological crystals, but can also inform processes by which crystal growth occurs at complex surfaces as a result of their site selectivity.

  7. Liquid Crystals Indicate Directions Of Surface Shear Stresses

    Science.gov (United States)

    Reda, Daniel C.

    1996-01-01

    Report consisting of main text of U.S. Patent 5,394,752 presents detailed information on one aspect of method of using changes in colors of liquid-crystal coatings to indicate instantaneous directions of flow-induced shear stresses (skin friction) on aerodynamic surfaces.

  8. A simple model for the surface energy of ionic crystals

    International Nuclear Information System (INIS)

    Roman, E.; Tosi, M.P.

    1982-01-01

    The surface energy of ionic materials is empirically related to bulk properties (elastic constants, electronic dielectric constant and optical band gap) through an analysis of the cleavage force. This is evaluated at small and large separations of the two crystal halves from phonon dispersion curves and from van der Waals interactions, respectively, and these two limiting behaviours are connected by a scaling hypothesis introduced for metals by Kohn and Yaniv. The experimental data that are available for a few ionic crystals seem to satisfy the suggested relation, with an empirical universal parameter which has roughly the same value as determined for metals. (author)

  9. Convergence of surface diffusion parameters with model crystal size

    Science.gov (United States)

    Cohen, Jennifer M.; Voter, Arthur F.

    1994-07-01

    A study of the variation in the calculated quantities for adatom diffusion with respect to the size of the model crystal is presented. The reported quantities include surface diffusion barrier heights, pre-exponential factors, and dynamical correction factors. Embedded atom method (EAM) potentials were used throughout this effort. Both the layer size and the depth of the crystal were found to influence the values of the Arrhenius factors significantly. In particular, exchange type mechanisms required a significantly larger model than standard hopping mechanisms to determine adatom diffusion barriers of equivalent accuracy. The dynamical events that govern the corrections to transition state theory (TST) did not appear to be as sensitive to crystal depth. Suitable criteria for the convergence of the diffusion parameters with regard to the rate properties are illustrated.

  10. Glancing-angle scattering of fast ions at crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mannami, Michihiko; Narumi, Kazumasa; Katoh, Humiya; Kimura, Kenji [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    Glancing angle scattering of fast ions from a single crystal surface is a novel technique to study ion-surface interaction. Results of recent studies of ion-surface interaction are reviewed for ions with velocities faster than the Fermi velocity of solid. For the ions with velocities less than the Fermi velocity of target valence electrons the ion-surface interaction shows a new aspect where only the valence electrons of target solid participate in the stopping processes. It will show that the position-dependent stopping power of a surface for these ions governed by the elastic collisions of valence electrons and the ions. A method is proposed from this position-dependent stopping power to derived the electron density distribution averaged over the plane parallel to the surface. (author)

  11. Mechanism of Nanostructure Formation on a Surface of CdZnTe Crystal by Laser Irradiation

    OpenAIRE

    Medvids, A; Mičko, A

    2009-01-01

    Since crystalline Cd1-xZnxTe is widely used in radiation techniques to produce X-ray, gamma-ray, and other hard radiation detectors, present work is a further study of processes, occurring near the surface of Cd1-xZnxTe under laser radiation. Surface morphology and optical property change of Cd0.9Zn0.1Te crystal near-surface layer after irradiation with laser, aimed to create graded band-gap, was investigated. As a radiation source Nd:YAG laser working in Q-modulation mode with parameters...

  12. Label-Free Biosensor Imaging on Photonic Crystal Surfaces.

    Science.gov (United States)

    Zhuo, Yue; Cunningham, Brian T

    2015-08-28

    We review the development and application of nanostructured photonic crystal surfaces and a hyperspectral reflectance imaging detection instrument which, when used together, represent a new form of optical microscopy that enables label-free, quantitative, and kinetic monitoring of biomaterial interaction with substrate surfaces. Photonic Crystal Enhanced Microscopy (PCEM) has been used to detect broad classes of materials which include dielectric nanoparticles, metal plasmonic nanoparticles, biomolecular layers, and live cells. Because PCEM does not require cytotoxic stains or photobleachable fluorescent dyes, it is especially useful for monitoring the long-term interactions of cells with extracellular matrix surfaces. PCEM is only sensitive to the attachment of cell components within ~200 nm of the photonic crystal surface, which may correspond to the region of most interest for adhesion processes that involve stem cell differentiation, chemotaxis, and metastasis. PCEM has also demonstrated sufficient sensitivity for sensing nanoparticle contrast agents that are roughly the same size as protein molecules, which may enable applications in "digital" diagnostics with single molecule sensing resolution. We will review PCEM's development history, operating principles, nanostructure design, and imaging modalities that enable tracking of optical scatterers, emitters, absorbers, and centers of dielectric permittivity.

  13. Conoscopic interferometry of surface-acoustic-wave substrate crystals.

    Science.gov (United States)

    Ayräs, P H; Friberg, A T; Kaivola, M A; Salomaa, M M

    1999-09-01

    Conoscopic interferometry is applied for determining the crystal orientation of lithium niobate and other commonly employed substrate wafers for integrated-optic and surface-acoustic-wave devices. The method is particularly applicable for detecting the orientation of the optic axes of the strongly birefringent niobate but is less sensitive for lithium tantalate or quartz. Conoscopic interference is a low-cost and easy-to-use method that is especially suitable for laboratory usage.

  14. Photonic Crystal Biosensor Based on Optical Surface Waves

    Directory of Open Access Journals (Sweden)

    Giovanni Dietler

    2013-02-01

    Full Text Available A label-free biosensor device based on registration of photonic crystal surface waves is described. Angular interrogation of the optical surface wave resonance is used to detect changes in the thickness of an adsorbed layer, while an additional simultaneous detection of the critical angle of total internal reflection provides independent data of the liquid refractive index. The abilities of the device are demonstrated by measuring of biotin molecule binding to a streptavidin monolayer, and by measuring association and dissociation kinetics of immunoglobulin G proteins. Additionally, deposition of PSS / PAH polyelectrolytes is recorded in situ resulting calculation of PSS and PAH monolayer thicknesses separately.

  15. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing....

  16. Controlling Molecular Growth between Fractals and Crystals on Surfaces.

    Science.gov (United States)

    Zhang, Xue; Li, Na; Gu, Gao-Chen; Wang, Hao; Nieckarz, Damian; Szabelski, Paweł; He, Yang; Wang, Yu; Xie, Chao; Shen, Zi-Yong; Lü, Jing-Tao; Tang, Hao; Peng, Lian-Mao; Hou, Shi-Min; Wu, Kai; Wang, Yong-Feng

    2015-12-22

    Recent studies demonstrate that simple functional molecules, which usually form two-dimensional (2D) crystal structures when adsorbed on solid substrates, are also able to self-assemble into ordered openwork fractal aggregates. To direct and control the growth of such fractal supramolecules, it is necessary to explore the conditions under which both fractal and crystalline patterns develop and coexist. In this contribution, we study the coexistence of Sierpiński triangle (ST) fractals and 2D molecular crystals that were formed by 4,4″-dihydroxy-1,1':3',1″-terphenyl molecules on Au(111) in ultrahigh vacuum. Growth competition between the STs and 2D crystals was realized by tuning substrate and molecular surface coverage and changing the functional groups of the molecular building block. Density functional theory calculations and Monte Carlo simulations are used to characterize the process. Both experimental and theoretical results demonstrate the possibility of steering the surface self-assembly to generate fractal and nonfractal structures made up of the same molecular building block.

  17. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    Science.gov (United States)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  18. Influence of impurities on the surface morphology of the TIBr crystal semiconductor

    International Nuclear Information System (INIS)

    Santos, Robinson A. dos; Silva, Julio B. Rodrigues da; Martins, Joao F.T.; Ferraz, Caue de M.; Costa, Fabio E. da; Mesquita, Carlos H. de; Hamada, Margarida M.; Gennari, Roseli F.

    2013-01-01

    The impurity effect in the surface morphology quality of TlBr crystals was evaluated, aiming a future application of these crystals as room temperature radiation semiconductor detectors. The crystals were purified and grown by the Repeated Bridgman technique. Systematic measurements were carried out for determining the stoichiometry, structure orientation, surface morphology and impurity of the crystal. A significant difference in the crystals impurity concentration was observed for almost all impurities, compared to those found in the raw material. The crystals wafer grown twice showed a surface roughness and grains which may be due to the presence of impurities on the surface, while those obtained with crystals grown three times presented a more uniform surface: even though, a smaller roughness was still observed. It was demonstrated that the impurities affect strongly the surface morphology quality of crystals. (author)

  19. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  20. Aberrated surface soliton formation in a nonlinear 1D and 2D photonic crystal.

    Science.gov (United States)

    Trofimov, Vyacheslav A; Lysak, Tatiana M; Trykin, Evgenii M

    2018-01-01

    We discuss a novel type of surface soliton-aberrated surface soliton-appearance in a nonlinear one dimensional photonic crystal and a possibility of this surface soliton formation in two dimensional photonic crystal. An aberrated surface soliton possesses a nonlinear distribution of the wavefront. We show that, in one dimensional photonic crystal, the surface soliton is formed at the photonic crystal boundary with the ambient medium. Essentially, that it occupies several layers at the photonic crystal boundary and penetrates into the ambient medium at a distance also equal to several layers, so that one can infer about light energy localization at the lateral surface of the photonic crystal. In the one dimensional case, the surface soliton is formed from an earlier formed soliton that falls along the photonic crystal layers at an angle which differs slightly from the normal to the photonic crystal face. In the two dimensional case, the soliton can appear if an incident Gaussian beam falls on the photonic crystal face. The influence of laser radiation parameters, optical properties of photonic crystal layers and ambient medium on the one dimensional surface soliton formation is investigated. We also discuss the influence of two dimensional photonic crystal configuration on light energy localization near the photonic crystal surface. It is important that aberrated surface solitons can be created at relatively low laser pulse intensity and for close values of alternating layers dielectric permittivity which allows their experimental observation.

  1. The effect of temperature on the secondary electron emission yield from single crystal and polycrystalline diamond surfaces

    International Nuclear Information System (INIS)

    Stacey, A.; Prawer, S.; Rubanov, S.; Ahkvlediani, R.; Michaelson, Sh.; Hoffman, A.

    2009-01-01

    The effect of temperature in the 293-473 K range, on the secondary electron emission (SEE) yield of single crystal and polycrystalline diamond film surfaces is reported. For the polycrystalline films the SEE yield was found to decay as function of electron irradiation dose while for the single crystal an increase occurs first, followed by a decrease. For both surfaces, the SEE yield increases significantly upon heating and obtained a nearly constant value with electron dose at 473 K. These effects are explained as due to the temperature dependence of the electron beam induced hydrogen desorption and surface band bending.

  2. Au crystal growth on natural occurring Au-Ag aggregate elucidated by means of precession electron diffraction (PED)

    Science.gov (United States)

    Roqué Rosell, Josep; Portillo Serra, Joaquim; Aiglsperger, Thomas; Plana-Ruiz, Sergi; Trifonov, Trifon; Proenza, Joaquín A.

    2018-02-01

    In the present work, a lamella from an Au-Ag aggregate found in Ni-laterites has been examined using Transmission Electron Microscope to produce a series of Precision Electron Diffraction (PED) patterns. The analysis of the structural data obtained, coupled with Energy Dispersive X-ray microanalysis, made it possible to determine the orientation of twinned native gold growing on the Au-Ag aggregate. The native Au crystal domains are found to have grown at the outermost part of the aggregate whereas the inner core of the aggregate is an Au-Ag alloy (∼4 wt% Ag). The submicron structural study of the natural occurring Au aggregate points to the mobilization and precipitation of gold in laterites and provides insights on Au aggregates development at supergene conditions. This manuscript demonstrates the great potential of electron crystallographic analysis, and in particular, PED to study submicron structural features of micron sized mineral aggregates by using the example of a gold grain found in a Ni-laterite deposits.

  3. Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals

    Science.gov (United States)

    Miraglia, Peter Q.; Yilmaz, Bilge; Warzywoda, Juliusz; Sacco, Albert

    2004-10-01

    Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to , and directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {1 0 0} and {0 0 1} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {1 0 0} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred.

  4. Photon management assisted by surface waves on photonic crystals

    CERN Document Server

    Angelini, Angelo

    2017-01-01

    This book illustrates original pathways to manipulate light at the nanoscale by means of surface electromagnetic waves (here, Bloch surface waves, BSWs) on planar dielectric multilayers, also known as one-dimensional photonic crystals. This approach is particularly valuable as it represents an effective alternative to the widely exploited surface plasmon paradigm. After a brief overview on the fundamentals of BSWs, several significant applications of BSW-sustaining structures are described. Particular consideration is given to the propagation, guiding, and diffraction of BSW-coupled radiation. Further, the interaction of organic emitters with BSWs on planar and corrugated multilayers is investigated, including fluorescence beaming in free space. To provide greater insight into sensing applications, an illustrative example of fluorescent microarray-based detection is presented. The book is intended for scientists and researchers working on photon management opportunities in fields such as biosensing, optical c...

  5. Surface modes at metallic an photonic crystal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weitao [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT) and beaming are two examples and they are the subjects I am studying in this thesis. EOT means the transmission through holes in an opaque screen can be much larger than the geometrical optics limitation. Based on our everyday experience about shadows, the transmission equals the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor (PEC) film converges to zero when the hole's dimension is much smaller than the wavelength (40). Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes at some special wavelengths (41). This cannot be explained by conventional theories, so it is called extraordinary transmission. It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a periodic subwavelength hole array in a metallic film. The common theories in literatures are based on these arguments. The surface plasmons cannot be excited by incident plane waves directly because of momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited. Then these surface plasmons will collect the energy along the input surface and carry them to the holes. So the transmission can be bigger than the filling ratio. Based

  6. Influence of the atomic structure of crystal surfaces on the surface diffusion in medium temperature range

    International Nuclear Information System (INIS)

    Cousty, J.P.

    1981-12-01

    In this work, we have studied the influence of atomic structure of crystal surface on surface self-diffusion in the medium temperature range. Two ways are followed. First, we have measured, using a radiotracer method, the self-diffusion coefficient at 820 K (0.6 T melting) on copper surfaces both the structure and the cleanliness of which were stable during the experiment. We have shown that the interaction between mobile surface defects and steps can be studied through measurements of the anisotropy of surface self diffusion. Second, the behavior of an adatom and a surface vacancy is simulated via a molecular dynamics method, on several surfaces of a Lennard Jones crystal. An inventory of possible migration mechanisms of these surface defects has been drawn between 0.35 and 0.45 Tsub(m). The results obtained with both the methods point out the influence of the surface atomic structure in surface self-diffusion in the medium temperature range [fr

  7. Crystal structure and Hirshfeld surface analysis of pulcherrin J

    Directory of Open Access Journals (Sweden)

    K. Osahon Ogbeide

    2017-10-01

    Full Text Available The title compound, C29H36O4 [systematic name (4aR,5R,6aS,7R,11aS,11bR-4a-hydroxy-4,4,7,11b-tetramethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-5-yl cinnamate], a natural diterpene known as pulcherrin J, was isolated from stem barks of medicinally important Caesalpinia pulcherrima (L.. The crystal structure of pulcherrin J shows it to be composed of a central core of three trans-fused cyclohexane rings and a near planar five-membered furan ring, along with an axially oriented cinnamate moiety and an hydroxy substituent attached at positions 4a and 5 of the steroid ring system, respectively. The absolute structure was established with the use of Cu Kα radiation. In the crystal, molecules are linked by O—H...O hydrogen bonds to generate [100] C(8 chains. Hirshfeld surface analysis indicates that the most significant contacts in packing are H...H (67.5%, followed by C...H (19.6% and H...O (12.9%.

  8. Sulfatide Preserves Insulin Crystals Not by Being Integrated in the Lattice but by Stabilizing Their Surface

    DEFF Research Database (Denmark)

    Buschard, Karsten; Bracey, Austin W.; McElroy, Daniel L.

    2016-01-01

    of sulfatide does not reveal ordered occupancy representing sulfatide in the crystal lattice, suggesting that sulfatide does not permeate the crystal lattice but exerts its stabilizing effect by alternative interactions such as on the external surface of insulin crystals. Conclusions. Sulfatide is known...

  9. Stress Induced Phononic Properties and Surface Waves in 2D Model of Auxetic Crystal

    International Nuclear Information System (INIS)

    Trzupek, D.; Twarog, D.; Zielinski, P.

    2009-01-01

    Elastic stiffness parameters are determined in a 2D model system of rigid rods interacting by harmonic force constants. Any positive ('' normal '' crystal) or negative (auxetic crystal) Poisson ratio can be obtained in this model as a function of the external stress. Conditions for opening an absolute stop band (phononic crystal) and for various kinds of surface waves are obtained. (authors)

  10. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation.

    Science.gov (United States)

    Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli

    2013-05-04

    The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.

  11. Modification of the x-ray diffraction efficiency of lithium fluoride crystals by surface treatment

    International Nuclear Information System (INIS)

    Sellick, B.O.

    1976-01-01

    Convex-curved crystals of lithium fluoride demonstrate good dispersion and efficiency when used in reflection for x-ray spectral analysis. The crystals are stable and reasonably unaffected by harsh environments. In addition, they are mechanically strong, easily cleavable or machinable, and plastically deformable with heat. In the present study, flat crystal wafers were left either clear as cleaved or were subjected to surface treatment by sandblasting or lapping. Some wafers were then bent in a press mold to obtain convex-curved crystals of differing radii. The diffraction efficiency data presented show how surface treatment affects the efficiency of these various crystals when used as x-ray diffracting agents

  12. Hydrogenated amorphous silicon nitride photonic crystals for improved-performance surface electromagnetic wave biosensors.

    Science.gov (United States)

    Sinibaldi, Alberto; Descrovi, Emiliano; Giorgis, Fabrizio; Dominici, Lorenzo; Ballarini, Mirko; Mandracci, Pietro; Danz, Norbert; Michelotti, Francesco

    2012-10-01

    We exploit the properties of surface electromagnetic waves propagating at the surface of finite one dimensional photonic crystals to improve the performance of optical biosensors with respect to the standard surface plasmon resonance approach. We demonstrate that the hydrogenated amorphous silicon nitride technology is a versatile platform for fabricating one dimensional photonic crystals with any desirable design and operating in a wide wavelength range, from the visible to the near infrared. We prepared sensors based on photonic crystals sustaining either guided modes or surface electromagnetic waves, also known as Bloch surface waves. We carried out for the first time a direct experimental comparison of their sensitivity and figure of merit with surface plasmon polaritons on metal layers, by making use of a commercial surface plasmon resonance instrument that was slightly adapted for the experiments. Our measurements demonstrate that the Bloch surface waves on silicon nitride photonic crystals outperform surface plasmon polaritons by a factor 1.3 in terms of figure of merit.

  13. Modeling Surface Processes Occurring on Moons of the Outer Solar System

    Science.gov (United States)

    Umurhan, O. M.; White, O. L.; Moore, J. M.; Howard, A. D.; Schenk, P.

    2016-12-01

    A variety of processes, some with familiar terrestrial analogs, are known to take place on moon surfaces in the outer solar system. In this talk, we discuss the observed features of mass wasting and surface transport seen on both Jupiter's moon Calisto and one of Saturn's Trojan moons Helene. We provide a number of numerical models using upgraded version of MARSSIM in support of several hypotheses suggested on behalf of the observations made regarding these objects. Calisto exhibits rolling plains of low albedo materials surrounding relatively high jutting peaks harboring high albedo deposits. Our modeling supports the interpretation that Calisto's surface is a record of erosion driven by the sublimation of CO2 and H2O contained in the bedrock. Both solar insolation and surface re-radiation drives the sublimation leaving behind debris which we interpret to be the observed darkened regolith and, further, the high albedo peaks are water ice deposits on surface cold traps. On the other hand, the 45 km scale Helene, being a milligravity environment, exhibits mysterious looking streaks and grooves of very high albedo materials extending for several kilometers with a down-sloping grade of 7o-9o. Helene's cratered terrain also shows evidence of narrowed septa. The observed surface features suggest some type of advective processes are at play in this system. Our modeling lends support to the suggestion that Helene's surface materials behave as a Bingham plastic material - our flow modeling with such rheologies can reproduce the observed pattern of streakiness depending upon the smoothness of the underlying bedrock; the overall gradients observed; and the narrowed septa of inter-crater regions.

  14. Surface polarity of beta-HMX crystal and the related adhesive forces with Estane binder.

    Science.gov (United States)

    Yang, Lu

    2008-12-02

    Here I present the results on the study of surface properties of beta-HMX crystal utilizing molecular dynamics simulations. The surface polarity of three principal crystal surfaces, (011), (010), and (110), is investigated by measuring the water contact angles. The calculated contact angles are in excellent agreement with the values measured by experiment and show that the surface polarity of three crystal surfaces are different. The free energies and forces of detaching an Estane chain (with and without surrounding nitroplasticizer molecules) from the three principal crystal surfaces are also calculated using the umbrella sampling method. I find that the force for Estane detachment increases with the increasing HMX surface polarity. In addition, my results show that the nitroplasticizer also plays an important role in the adhesion between Estane and HMX surfaces.

  15. Study of dopamine reactivity on platinum single crystal electrode surfaces

    International Nuclear Information System (INIS)

    Chumillas, Sara; Figueiredo, Marta C.; Climent, Víctor; Feliu, Juan M.

    2013-01-01

    Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a

  16. Sulfatide Preserves Insulin Crystals Not by Being Integrated in the Lattice but by Stabilizing Their Surface

    Directory of Open Access Journals (Sweden)

    Karsten Buschard

    2016-01-01

    Full Text Available Background. Sulfatide is known to chaperone insulin crystallization within the pancreatic beta cell, but it is not known if this results from sulfatide being integrated inside the crystal structure or by binding the surface of the crystal. With this study, we aimed to characterize the molecular mechanisms underlying the integral role for sulfatide in stabilizing insulin crystals prior to exocytosis. Methods. We cocrystallized human insulin in the presence of sulfatide and solved the structure by molecular replacement. Results. The crystal structure of insulin crystallized in the presence of sulfatide does not reveal ordered occupancy representing sulfatide in the crystal lattice, suggesting that sulfatide does not permeate the crystal lattice but exerts its stabilizing effect by alternative interactions such as on the external surface of insulin crystals. Conclusions. Sulfatide is known to stabilize insulin crystals, and we demonstrate here that in beta cells sulfatide is likely coating insulin crystals. However, there is no evidence for sulfatide to be built into the crystal lattice.

  17. Sulfatide Preserves Insulin Crystals Not by Being Integrated in the Lattice but by Stabilizing Their Surface

    Science.gov (United States)

    Buschard, Karsten; Bracey, Austin W.; McElroy, Daniel L.; Magis, Andrew T.; Osterbye, Thomas; Atkinson, Mark A.; Bailey, Kate M.; Posgai, Amanda L.; Ostrov, David A.

    2016-01-01

    Background. Sulfatide is known to chaperone insulin crystallization within the pancreatic beta cell, but it is not known if this results from sulfatide being integrated inside the crystal structure or by binding the surface of the crystal. With this study, we aimed to characterize the molecular mechanisms underlying the integral role for sulfatide in stabilizing insulin crystals prior to exocytosis. Methods. We cocrystallized human insulin in the presence of sulfatide and solved the structure by molecular replacement. Results. The crystal structure of insulin crystallized in the presence of sulfatide does not reveal ordered occupancy representing sulfatide in the crystal lattice, suggesting that sulfatide does not permeate the crystal lattice but exerts its stabilizing effect by alternative interactions such as on the external surface of insulin crystals. Conclusions. Sulfatide is known to stabilize insulin crystals, and we demonstrate here that in beta cells sulfatide is likely coating insulin crystals. However, there is no evidence for sulfatide to be built into the crystal lattice. PMID:26981544

  18. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites

    KAUST Repository

    Zhumekenov, Ayan A.

    2017-07-06

    The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current bottlenecks retarding the shift towards single crystal-based optoelectronics. Here we theoretically and experimentally elucidate the role of surface tension in the rapid synthesis of perovskite single crystals by inverse temperature crystallization (ITC). Understanding the nucleation and growth mechanisms enabled us to exploit surface tension to direct the growth of monocrystalline films of perovskites (AMX3, where A = CH3NH3+ or MA; M = Pb2+, Sn2+; X = Br-, I-) on the solution surface. We achieve up to 1 cm2-sized monocrystalline films with thickness on the order of the charge carrier diffusion length (~5-10 µm). Our work paves the way to control the crystallization process of perovskites, including thin film deposition, which is essential to advance the performance benchmarks of perovskite optoelectronics.

  19. The surface preparation of beryl crystals for X-ray spectroscopy

    International Nuclear Information System (INIS)

    Hayes, R.W.; Kent, B.J.

    1980-08-01

    One of the few crystals available for X-ray spectroscopy in the 10 to 15 A band is natural beryl. Surface preparation of beryl crystals by etching in hydrofluric acid followed by polishing in X-30 syton is shown to bring the rocking curve widths (FWHM) as measured on a two-crystal spectrometer to the near perfect values of 5 arc sec at Cu Kα (1.54 A) and 3.3 arc min at Cu Lα (13.31 A). In addition the crystals peak reflectivity can be enhanced by a factor eight times that of flat and ground but otherwise untreated crystals. (author)

  20. Manipulation of photons at the surface of three-dimensional photonic crystals.

    Science.gov (United States)

    Ishizaki, Kenji; Noda, Susumu

    2009-07-16

    In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.

  1. Color changing plasmonic surfaces utilizing liquid crystal (Conference Presentation)

    Science.gov (United States)

    Franklin, Daniel; Wu, Shin-Tson; Chanda, Debashis

    2016-09-01

    Plasmonic structural color has recently garnered significant interest as an alternative to the organic dyes standard in print media and liquid crystal displays. These nanostructured metallic systems can produce diffraction limited images, be made polarization dependent, and exhibit resistance to color bleaching. Perhaps even more advantageous, their optical characteristics can also be tuned, post-fabrication, by altering the surrounding media's refractive index parallel to the local plasmonic fields. A common material with which to achieve this is liquid crystal. By reorienting the liquid crystal molecules through external electric fields, the optical resonances of the plasmonic filters can be dynamically controlled. Demonstrations of this phenomenon, however, have been limited to modest shifts in plasmon resonance. Here, we report a liquid crystal-plasmonic system with an enhanced tuning range through the use of a shallow array of nano-wells and high birefringent liquid crystal. The continuous metallic nanostructure maximizes the overlap between plasmonic fields and liquid crystal while also allowing full reorientation of the liquid crystal upon an applied electric field. Sweeping over structural dimensions and voltages results in a color palette for these dynamic reflective pixels that can further be exploited to create color tunable images. These advances make plasmonic-liquid crystal systems more attractive candidates for filter, display, and other tunable optical technologies.

  2. An Investigation of Ni2P Single Crystal Surfaces : Structure, Electronic State and Reactivity

    OpenAIRE

    Yuan, Qiuyi; Ariga, Hiroko; Asakura, Kiyotaka

    2015-01-01

    Ni2P has demonstrated high catalytic activity for hydrodesulfurization and has recently been employed as a catalyst in a variety of other reactions. We have thoroughly reviewed the literature concerning Ni2P single crystal surfaces, with the aim of determining the relationship between surface structure and catalytic properties. Published results to date indicate that Ni2P single crystal surfaces exhibit reconstructed structures, and so the bulk terminated structure may not be stable. We have ...

  3. Surface Crystallization of Cloud Droplets: Implications for Climate Change and Ozone Depletion

    Science.gov (United States)

    Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    The process of supercooled liquid water crystallization into ice is still not well understood. Current experimental data on homogeneous freezing rates of ice nucleation in supercooled water droplets show considerable scatter. For example, at -33 C, the reported freezing nucleation rates vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Until now, experimental data on the freezing of supercooled water has been analyzed under the assumption that nucleation of ice took place in the interior volume of a water droplet. Here, the same data is reanalyzed assuming that the nucleation occurred "pseudoheterogeneously" at the air (or oil)-liquid water interface of the droplet. Our analysis suggest that the scatter in the nucleation data can be explained by two main factors. First, the current assumption that nucleation occurs solely inside the volume of a water droplet is incorrect. Second, because the nucleation process most likely occurs on the surface, the rates of nuclei formation could differ vastly when oil or air interfaces are involved. Our results suggest that ice freezing in clouds may initiate on droplet surfaces and such a process can allow for low amounts of liquid water (approx. 0.002 g per cubic meters) to remain supercooled down to -40 C as observed in the atmosphere.

  4. On the origin of surface imposed anisotropic growth of salicylic and acetylsalicylic acids crystals during droplet evaporation.

    Science.gov (United States)

    Przybyłek, Maciej; Cysewski, Piotr; Pawelec, Maciej; Ziółkowska, Dorota; Kobierski, Mirosław

    2015-03-01

    In this paper droplet evaporative crystallization of salicylic acid (SA) and acetylsalicylic acid (ASA) crystals on different surfaces, such as glass, polyvinyl alcohol (PVA), and paraffin was studied. The obtained crystals were analyzed using powder X-ray diffraction (PXRD) technique. In order to better understand the effect of the surface on evaporative crystallization, crystals deposited on glass were scraped off. Moreover, evaporative crystallization of a large volume of solution was performed. As we found, paraffin which is non-polar surface promotes formation of crystals morphologically similar to those obtained via bulk evaporative crystallization. On the other hand, when crystallization is carried out on the polar surfaces (glass and PVA), there is a significant orientation effect. This phenomenon is manifested by the reduction of the number of peaks in PXRD spectrum recorded for deposited on the surface crystals. Noteworthy, reduction of PXRD signals is not observed for powder samples obtained after scraping crystals off the glass. In order to explain the mechanism of carboxylic crystals growth on the polar surfaces, quantum-chemical computations were performed. It has been found that crystal faces of the strongest orientation effect can be characterized by the highest surface densities of intermolecular interactions energy (IIE). In case of SA and ASA crystals formed on the polar surfaces the most dominant faces are characterized by the highest adhesive and cohesive properties. This suggests that the selection rules of the orientation effect comes directly from surface IIE densities.

  5. Effect of processing parameters of rotary ultrasonic machining on surface integrity of potassium dihydrogen phosphate crystals

    Directory of Open Access Journals (Sweden)

    Jianfu Zhang

    2015-09-01

    Full Text Available Potassium dihydrogen phosphate is an important optical crystal. However, high-precision processing of large potassium dihydrogen phosphate crystal workpieces is difficult. In this article, surface roughness and subsurface damage characteristics of a (001 potassium dihydrogen phosphate crystal surface produced by traditional and rotary ultrasonic machining are studied. The influence of process parameters, including spindle speed, feed speed, type and size of sintered diamond wheel, ultrasonic power, and selection of cutting fluid on potassium dihydrogen phosphate crystal surface integrity, was analyzed. The surface integrity, especially the subsurface damage depth, was affected significantly by the ultrasonic power. Metal-sintered diamond tools with high granularity were most suitable for machining potassium dihydrogen phosphate crystal. Cutting fluid played a key role in potassium dihydrogen phosphate crystal machining. A more precise surface can be obtained in machining with a higher spindle speed, lower feed speed, and using kerosene as cutting fluid. Based on the provided optimized process parameters for machining potassium dihydrogen phosphate crystal, a processed surface quality with Ra value of 33 nm and subsurface damage depth value of 6.38 μm was achieved.

  6. Electronic properties of dislocations introduced mechanically at room temperature on a single crystal silicon surface

    International Nuclear Information System (INIS)

    Ogawa, Masatoshi; Kamiya, Shoji; Izumi, Hayato; Tokuda, Yutaka

    2012-01-01

    This paper focuses on the effects of temperature and environment on the electronic properties of dislocations in n-type single crystal silicon near the surface. Deep level transient spectroscopy (DLTS) analyses were carried out with Schottky electrodes and p + -n junctions. The trap level, originally found at E C -0.50 eV (as commonly reported), shifted to a shallower level at E C -0.23 eV after a heat treatment at 350 K in an inert environment. The same heat treatment in lab air, however, did not cause any shift. The trap level shifted by the heat treatment in an inert environment was found to revert back to the original level when the specimens were exposed to lab air again. Therefore, the intrinsic trap level is expected to occur at E C -0.23 eV and shift sensitively with gas adsorption in air.

  7. Surface studies on as-grown (111) faces of sodium bromate crystals

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Single crystals of sodium bromate are grown at various supersaturations ranging from 3% to 8%. Surface studies have been carried out on as-grown and etched (111) faces of these crystals. Typical and syste- matically oriented growth hillocks are observed almost on all the faces. Further dislocation studies are ...

  8. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. He atom-surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    1992-01-01

    Investigations in this laboratory have focused on the surface structure and dynamics of ionic insulators and on epitaxial growth onto alkali halide crystals. In the later the homoepitaxial growth of NaCl/NaCl(001) and the heteroepitaxial growth of KBr/NaCl(001), NaCl/KBr(001) and KBr/RbCl(001) have been studied by monitoring the specular He scattering as a function of the coverage and by measuring the angular and energy distributions of the scattered He atoms. These data provide information on the surface structure, defect densities, island sizes and surface strain during the layer-by-layer growth. The temperature dependence of these measurements also provides information on the mobilities of the admolecules. He atom scattering is unique among surface probes because the low-energy, inert atoms are sensitive only to the electronic structure of the topmost surface layer and are equally applicable to all crystalline materials. It is proposed for the next year to exploit further the variety of combinations possible with the alkali halides in order to carry out a definitive study of epitaxial growth in the ionic insulators. The work completed so far, including measurements of the Bragg diffraction and surface dispersion at various stages of growth, appears to be exceptionally rich in detail, which is particularly promising for theoretical modeling. In addition, because epitaxial growth conditions over a wide range of lattice mismatches is possible with these materials, size effects in growth processes can be explored in great depth. Further, as some of the alkali halides have the CsCl structure instead of the NaCl structure, we can investigate the effects of the heteroepitaxy with materials having different lattice preferences. Finally, by using co-deposition of different alkali halides, one can investigate the formation and stability of alloys and even alkali halide superlattices

  10. Investigation on the growth of DAST crystals of large surface area for THz applications

    International Nuclear Information System (INIS)

    Vijay, R. Jerald; Melikechi, N.; Thomas, Tina; Gunaseelan, R.; Arockiaraj, M. Antony; Sagayaraj, P.

    2012-01-01

    Graphical abstract: It is evident from the photographs that the crystal tend to grow as a needle (Fig. 1a) in the lower concentration region (2–3 g/200 mL); whereas, in the high concentration region (5 g/200 mL) though there is a marked enlargement in the size of the crystal, the morphology of the resulting DAST crystal is slightly irregular (Fig. 1d) in nature. Among the four concentrations employed, best result was obtained with the DAST–methanol solution of concentration 4 g/200 mL; which resulted in the DAST crystal of large surface area (270 mm 2 ) with high transparency and nearly square shape (Fig. 1c) in a growth period of 20–25 days. Highlights: ► DAST crystals of different sizes are obtained for different concentrations. ► The main focus is to grow DAST crystals with large surface area. ► Structural, optical, thermal and mechanical properties are investigated. - Abstract: The growth of high quality 4-N,N-dimethylamino-4-N-methyl-stilbazoliumtosylate (DAST) crystal with large surface area is reported by adopting the slope nucleation coupled slow evaporation method (SNM-SE). The structure and composition of the crystal are studied by single crystal X-ray diffraction and CHN analyses. The linear optical properties are investigated by UV–vis absorption. The melting point and thermal behavior of DAST are investigated using differential scanning calorimetric (DSC) and thermogravimetric analyses (TGA). The Vickers microhardness number (VHN) and work hardening coefficient of the grown crystal have been determined. The surface features of the DAST crystal are analyzed by scanning electron microscopy (SEM) and it confirmed the presence of narrow line defects (NLDs) in the sample.

  11. High-pressure catalytic reactions over single-crystal metal surfaces

    Science.gov (United States)

    Rodriguez, JoséA.; Wayne Goodman, D.

    1991-11-01

    Studies dealing with high-pressure catalytic reactions over single-crystal surfaces are reviewed. The coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis allows detailed study of structure sensitivity, the effects of promoters and inhibitors on catalytic activity, and, in certain cases, identification of reaction intermediates by post-reaction surface analysis. Examples are provided which demonstrate the relevance of single-crystal studies for modeling the behaviour of high-surface-area supported catalysts. Studies of CO methanation and CO oxidation over single-crystal surfaces provide convincing evidence that these reactions are structure insensitive. For structure-sensitive reactions (ammonia synthesis, alkane hydrogenolysis, alkane isomerization, water-gas shift reaction, etc.) model single-crystal studies allow correlations to be established between surface structure and catalytic activity. The effects of both electronegative (S and P) and electropositive (alkali metals) impurities upon the catalytic activity of metal single crystals for ammonia synthesis, CO methanation, alkane hydrogenolysis, ethylene epoxidation and water-gas shift are discussed. The roles of "ensemble" and "ligand" effects in bimetallic catalysts are examined in light of data obtained using surfaces prepared by vapor-depositing one metal onto a crystal face of a dissimilar metal.

  12. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    Science.gov (United States)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  13. Surface relief grating formation on a single crystal of 4-(dimethylamino)azobenzene

    International Nuclear Information System (INIS)

    Nakano, Hideyuki; Tanino, Takahiro; Shirota, Yasuhiko

    2005-01-01

    Surface relief grating (SRG) formation on an organic single crystal by irradiation with two coherent laser beams has been demonstrated by using 4-(dimethylamino)azobenzene (DAAB). It was found that the SRG formation was greatly depending upon both the coordination of the crystal and the polarization of the writing beams. The dependence of the polarization of writing beams on the SRG formation using the single crystal was found to be quite different from that reported for amorphous polymers and photochromic amorphous molecular materials, suggesting that the mechanism of the SRG formation on the organic crystal is somewhat different from that on amorphous materials

  14. Modes of surface premelting in colloidal crystals composed of attractive particles.

    Science.gov (United States)

    Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong

    2016-03-24

    Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface

  15. He atom surface scattering: Surface dynamics of insulators, overlayers and crystal growth

    International Nuclear Information System (INIS)

    1992-01-01

    Investigations have focused primarily on surface structure and dynamics of ionic insulators, epitaxial growth onto alkali halide crystals and multiphoton studies. The surface dynamics of RbCl has been re-examined. We have developed a simple force constant model which provides insight into the dynamics of KBr overlayers on NaCl(001), a system with a large lattice mismatch. The KBr/NaCl(001) results are compared to Na/Cu(001) and NaCl/Ge(001). We have completed epitaxial growth experiments for KBr onto RbCl(001). Slab dynamics calculations using a shell model for this system with very small lattice mismatch are being carried out in collaboration with Professor Manson of Clemson University and with Professor Schroeder in Regensburg, Germany. Extensive experiments on multiphoton scattering of helium atoms onto NaCl and, particularly, LiF have been carried out and the theory has been developed to a rather advanced stage by Professor Manson. This work will permit the extraction of more information from time-of-flight spectra. It is shown that the theoretical model provides a very good description of the multiphoton scattering from organic films. Work has started on self-assembling organic films on gold (alkyl thiols/Au(111)). We have begun to prepare and characterize the gold crystal; one of the group members has spent two weeks at the Oak Ridge National Laboratory learning the proper Au(111) preparation techniques. One of our students has carried out neutron scattering experiments on NiO, measuring both bulk phonon and magnon dispersion curves

  16. The structure and properties of fluorite crystal surfaces

    OpenAIRE

    Tasker, P.

    1980-01-01

    The surface energies, tensions and structure of the (111) and (110) surfaces of CaF2, SrF2, BaF2 and UO2, ThO2, PrO2, PuO2, CeO2 have been calculated using an ionic shell model. The surface energies for the natural cleavage plane (111) are compared with the available experimental data and agree well. The surface tensions indicate a compressive stress in both surfaces. The surface structures show increasing relaxation with increasing ion size and the rumpling of the (110) surface indicates a q...

  17. Slippery surfaces of carnivorous plants: composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers.

    Science.gov (United States)

    Riedel, Michael; Eichner, Anna; Jetter, Reinhard

    2003-11-01

    Plants in the genus Nepenthes obtain a substantial nutrient supply by trapping insects in highly modified leaves. A broad zone of the inner surface of these pitchers is densely covered with wax crystals on which most insects lose their footing. This slippery wax surface, capturing prey and preventing its escape from the trap, plays a pivotal role in the carnivorous syndrome. To understand the mechanism of slipperiness, the present investigation aimed at an ultrastructural and physico-chemical characterization of the wax crystals in pitchers of N. alata Blanco. Scanning electron microscopy revealed that entire platelets protruded perpendicularly from the surface. Methods were developed that allowed the mechanical removal of wax crystals from the pitcher surface. It could be shown that the sampling was selective for the epicuticular wax, relevant for plant-insect interactions. The crystals consisted of a mixture of aliphatic compounds dominated by very-long-chain aldehydes. Triacontanal, at 43% the most abundant constituent, was largely responsible for crystal formation. Solubility data indicate that the Nepenthes crystals contained polymeric forms of this aldehyde. The resulting mechanical properties of the polymer crystals and the mechanism of slipperiness are discussed.

  18. Effects of Humidity and Surfaces on the Melt Crystallization of Ibuprofen

    Directory of Open Access Journals (Sweden)

    Il Won Kim

    2012-08-01

    Full Text Available Melt crystallization of ibuprofen was studied to understand the effects of humidity and surfaces. The molecular self-assembly during the amorphous-to-crystal transformation was examined in terms of the nucleation and growth of the crystals. The crystallization was on Al, Au, and self-assembled monolayers with –CH3, –OH, and –COOH functional groups. Effects of the humidity were studied at room temperature (18–20 °C with relative humidity 33%, 75%, and 100%. Effects of the surfaces were observed at −20 °C (relative humidity 36% to enable close monitoring with slower crystal growth. The nucleation time of ibuprofen was faster at high humidity conditions probably due to the local formation of the unfavorable ibuprofen melt/water interface. The crystal morphologies of ibuprofen were governed by the nature of the surfaces, and they could be associated with the growth kinetics by the Avrami equation. The current study demonstrated the effective control of the melt crystallization of ibuprofen through the melt/atmosphere and melt/surface interfaces.

  19. Studies of the surface regions of (Cd,Mn)Te crystals

    International Nuclear Information System (INIS)

    Kochanowska, Dominika; Witkowska-Baran, Marta; Mycielski, Andrzej; Rasinski, Marcin; Lewandowska, Malgorzata

    2014-01-01

    The growth process conditions affect quality of the crys-tal. Structural defects such as grains, twin boundaries and precipitates are formed during the crystal growth. The defects (especially-inclusions) at the surface can be investigated in a microscale by the scanning electron microscopy (SEM). It is shown in the article that a well known etchant, usually used for visual inspection of the quality of the CdTe-related crystals, can be applied to the preparation of the (Cd,Mn)Te surface for SEM investigations. Samples, cut from different parts of a (Cd,Mn)Te crystal, were ground, mechano-chemically polished, and treated by the special etchant (to indicate polarity and to reveal twinning). After that treatment the defects (grain and twin boundaries, tellurium inclusions) at the surface became much more accessible for both SEM and visual investigations. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. A numerical method for predicting Rayleigh surface wave velocity in anisotropic crystals

    Science.gov (United States)

    Cherry, Matthew R.; Sathish, Shamachary; Grandhi, Ramana

    2017-12-01

    A numerical method was developed for calculating the Rayleigh Surface Wave (RSW) velocity in arbitrarily oriented single crystals in 360 degrees of propagation. This method relies on the results from modern analysis of RSW behavior with the Stroh formalism to restrict the domain in which to search for velocities by first calculating the limiting velocity. This extension of existing numerical methods also leads to a natural way of determining both the existence of the RSW as well as the possibility of encountering a pseudo-surface wave. Furthermore, the algorithm is applied to the calculation of elastic properties from measurement of the surface wave velocity in multiple different directions on a single crystal sample. The algorithm was tested with crystal symmetries and single crystal elastic moduli from literature. It was found to be very robust and efficient in calculating RSW velocity curves in all cases.

  1. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    Science.gov (United States)

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  2. X-Ray Reflectivity from the Surface of a Liquid Crystal:

    DEFF Research Database (Denmark)

    Pershan, P.S.; Als-Nielsen, Jens Aage

    1984-01-01

    X-ray reflectivity from the surface of a nematic liquid crystal is interpreted as the coherent superposition of Fresnel reflection from the surface and Bragg reflection from smectic order induced by the surface. Angular dependence of the Fresnel effect yields information on surface structure....... Measurement of the intensity of diffuse critical scattering relative to the Fresnel reflection yields the absolute value of the critical part of the density-density correlation function....

  3. Adsorbates on cobalt and platinum single crystal surfaces studied by STM

    Energy Technology Data Exchange (ETDEWEB)

    Venvik, Hilde Johnsen

    1998-12-31

    This thesis on surface physics may contribute to the understanding of catalysts and so be of interest to companies working on oil and natural gas refining. The thesis deals with room temperature experimental investigations of adsorbates of CO and C{sub 2}H{sub 4} gases on Co and Pt single crystal surfaces. 252 refs., 51 figs., 1 table

  4. Quasi-ideal strontium titanate crystal surfaces through formation of stontium hydroxide

    NARCIS (Netherlands)

    Koster, Gertjan; Kropman, B.L.; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Rogalla, Horst

    1998-01-01

    In recent years, well-defined and nearly perfect single crystal surfaces of oxide perovskites have become increasingly important. A single terminated surface is a prerequisite for reproducible thin film growth and fundamental growth studies. In this work, atomic and lateral force microscopy have

  5. Antiferroelectric surface layers in a liquid crystal as observed by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Gramsbergen, E. F.; de Jeu, W. H.; Als-Nielsen, Jens Aage

    1986-01-01

    The X-ray reflectivity form the surface of a liquid crystal with terminally polar (cyano substituted) molecules has been studied using a high-resolution triple-axis X-ray spectrometer in combination with a synchrotron source. It is demonstrated that at the surface of the smectic Al phase a few...

  6. Ion effects in the adsorption of carboxylate on oxide surfaces, studied with quartz crystal microbalance

    NARCIS (Netherlands)

    Wang, Lei; Sîretanu, Igor; Duits, Michael H.G.; Cohen Stuart, Martinus Abraham; Mugele, Friedrich Gunther

    2016-01-01

    We chose water-soluble sodium hexanoate as a model organic molecule to study the role of salt ions (Ca2+, Na+, Cl−) in the adsorption of carboxylates to mineral surfaces (silica, alumina, gibbsite) of variable surface charge and chemistry. Quartz crystal microbalance (QCM-D) measurements reveal a

  7. Method for surface passivation and protection of cadmium zinc telluride crystals

    Science.gov (United States)

    Mescher, Mark J.; James, Ralph B.; Schlesinger, Tuviah E.; Hermon, Haim

    2000-01-01

    A method for reducing the leakage current in CZT crystals, particularly Cd.sub.1-x Zn.sub.x Te crystals (where x is greater than equal to zero and less than or equal to 0.5), and preferably Cd.sub.0.9 Zn.sub.0.1 Te crystals, thereby enhancing the ability of these crystal to spectrally resolve radiological emissions from a wide variety of radionuclides. Two processes are disclosed. The first method provides for depositing, via reactive sputtering, a silicon nitride hard-coat overlayer which provides significant reduction in surface leakage currents. The second method enhances the passivation by oxidizing the CZT surface with an oxygen plasma prior to silicon nitride deposition without breaking the vacuum state.

  8. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states

    Science.gov (United States)

    Chen, Wen-Jie; Xiao, Meng; Chan, C. T.

    2016-01-01

    Weyl points, as monopoles of Berry curvature in momentum space, have captured much attention recently in various branches of physics. Realizing topological materials that exhibit such nodal points is challenging and indeed, Weyl points have been found experimentally in transition metal arsenide and phosphide and gyroid photonic crystal whose structure is complex. If realizing even the simplest type of single Weyl nodes with a topological charge of 1 is difficult, then making a real crystal carrying higher topological charges may seem more challenging. Here we design, and fabricate using planar fabrication technology, a photonic crystal possessing single Weyl points (including type-II nodes) and multiple Weyl points with topological charges of 2 and 3. We characterize this photonic crystal and find nontrivial 2D bulk band gaps for a fixed kz and the associated surface modes. The robustness of these surface states against kz-preserving scattering is experimentally observed for the first time. PMID:27703140

  9. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)

    2016-12-01

    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  10. Modeling of surface effects in crystalline materials within the framework of gradient crystal plasticity

    Science.gov (United States)

    Peng, Xiang-Long; Husser, Edgar; Huang, Gan-Yun; Bargmann, Swantje

    2018-03-01

    A finite-deformation gradient crystal plasticity theory is developed, which takes into account the interaction between dislocations and surfaces. The model captures both energetic and dissipative effects for surfaces penetrable by dislocations. By taking advantage of the principle of virtual power, the surface microscopic boundary equations are obtained naturally. Surface equations govern surface yielding and hardening. A thin film under shear deformation serves as a benchmark problem for validation of the proposed model. It is found that both energetic and dissipative surface effects significantly affect the plastic behavior.

  11. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  12. Structure and energetics of high index Fe, Al, Cu and Ni surfaces using equivalent crystal theory

    Science.gov (United States)

    Rodriguez, Agustin M.; Bozzolo, Guillermo; Ferrante, John

    1993-01-01

    Equivalent crystal theory (ECT) is applied to the study of multilayer relaxations and surface energies of high-index faces of Fe, Al, Ni, and Cu. Changes in interplanar spacing as well as registry of planes close to the surface and the ensuing surface energies changes are discussed in reference to available experimental data and other theoretical calculations. Since ECT is a semiempirical method, the dependence of the results on the variation of the input used was investigated.

  13. Crystal deposition patterns from evaporating sessile drops on superhydrophobic and liquid impregnated surfaces

    Science.gov (United States)

    McBride, Samantha; Dash, Susmita; Varanasi, Kripa; Varanasi Group Team

    2016-11-01

    Accelerated corrosion and scale buildup near oceans is partially due to deposition of salty sea mist onto ships, cars, and building structures. Many corrosion preventative measures are expensive, time intensive, and/or have negative impacts on the environment. One solution is the use of specific surfaces that are engineered for scale resistance. In this work, we show that we can delay crystallization and reduce scale adhesion on specifically engineered liquid impregnated surfaces (LIS). The low contact angle hysteresis of the LIS results in a sliding contact line of the saline droplet during evaporation, and the elevated energy barrier of the smooth liquid interface delays crystallization. Experiments conducted on surfaces with different wettability also demonstrate the corresponding influence in controlling salt crystal polymorphism.

  14. Manipulating poly(lactic acid) surface morphology by solvent-induced crystallization

    Science.gov (United States)

    Gao, Jian; Duan, Lingyan; Yang, Guanghui; Zhang, Qin; Yang, Mingbo; Fu, Qiang

    2012-11-01

    Here, we report some unique crystalline morphologies of poly(lactic acid) (PLA) via organic solvent-induced crystallization. It was revealed that the surface morphology of PLA can be fine tuned by simply varying the volume ratio of a mixed solvent (acetone/ethanol). By increasing the ethanol content in the mixed solvent, we observed a morphological evolution of PLA surface from spherulite to shish-kebab and bamboo-cage-like structure. It was also interesting to find that the initial surface structure of PLA plays an important role to determine the final solvent-induced crystalline morphology. This work provides a new method for manipulating PLA crystal morphology through a simple solvent-induced crystallization.

  15. Surface Crystallization in Mg-Based Bulk Metallic Glass during Copper Mold Casting

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2014-01-01

    Full Text Available The localized crystallization of Mg54Cu28Ag7Y11 bulk metallic glass (BMG in the injection casting process using a copper mold was investigated. It has been found that several crystalline phases were formed close to the as-cast surface but did not exist in the internal part of the BMG plate. It is abnormal that the as-cast surface is partially crystallized with higher cooling rate than that of inside. Overheating of the melt and nucleation induced by the surface of copper mold play key roles in the abnormal crystallization. It is suggested that the function of copper mold to trigger heterogeneous nucleation cannot be totally ignored, although it provides the high cooling rate for the glass formation during casting.

  16. Observation of surface superconductivity and paramagnetic Meissner effect in a spherical single crystal of Nb

    International Nuclear Information System (INIS)

    Das, Pradip; Tomy, C.V.; Takeya, H.; Ramakrishnan, S.; Grover, A.K.

    2008-01-01

    We report the observation of surface superconductivity as well as paramagnetic Meissner effect (PME), along with peak effect phenomena (PE) in ac and dc magnetization measurements in a high purity spherical single crystal of niobium. We study how the surface superconductivity and the PME evolve over the field (H) and the temperature (T) phase-space. We observe from our data that the magnitude of the PME progressively weakens as the temperature is decreased or magnetic field is increased. A vortex phase diagram is constructed by marking the onset positions of the PE (H p on ), the upper critical field (H c2 ) and the surface critical field (H c3 ). Unlike a previous report which shows the existence of a multi-critical point in the phase diagram of a Nb crystal, where H p , H c2 and H c3 lines meet, we do not observe a multi-critical point in our weak pinning crystal. (author)

  17. Anisotropic surface physicochemical properties of spodumene and albite crystals: Implications for flotation separation

    Science.gov (United States)

    Xu, Longhua; Peng, Tiefeng; Tian, Jia; Lu, Zhongyuan; Hu, Yuehua; Sun, Wei

    2017-12-01

    Aluminosilicate minerals (e.g., spodumene, albite) have complex crystal structures and similar surface chemistries, but they have poor selectivity compared to traditional fatty acid collectors, making flotation separation difficult. Previous research has mainly considered the mineral crystal structure as a whole. In contrast, the surface characteristics at the atomic level and the effects of different crystal interfaces on the flotation behavior have rarely been investigated. This study focuses on investigating the surface anisotropy quantitatively, including the chemical bond characteristics, surface energies, and broken bond densities, using density functional theory and classical theoretical calculations. In addition, the anisotropy of the surface wettability and adsorption characteristics were examined using contact angle, zeta potential, and Fourier-transform infrared measurements. Finally, these surface anisotropies with different flotation behaviors were investigated and interpreted using molecular dynamics simulations, scanning electron microscopy, and X-ray photoelectron spectroscopy. This systematic research offers new ideas concerning the selective grinding and stage flotation of aluminosilicate minerals based on the crystal characteristics.

  18. Interface nano-confined acoustic waves in polymeric surface phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Travagliati, Marco, E-mail: marco.travagliati@iit.it [Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Nardi, Damiano [JILA and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309 (United States); Giannetti, Claudio; Ferrini, Gabriele; Banfi, Francesco, E-mail: francesco.banfi@unicatt.it [i-LAMP and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia (Italy); Gusev, Vitalyi [LAUM, UMR-CNRS 6613, Université du Maine, av. O. Messiaen, 72085 Le Mans (France); Pingue, Pasqualantonio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Piazza, Vincenzo [Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy)

    2015-01-12

    The impulsive acoustic dynamics of soft polymeric surface phononic crystals is investigated here in the hypersonic frequency range by near-IR time-resolved optical diffraction. The acoustic response is analysed by means of wavelet spectral methods and finite element modeling. An unprecedented class of acoustic modes propagating within the polymer surface phononic crystal and confined within 100 nm of the nano-patterned interface is revealed. The present finding opens the path to an alternative paradigm for characterizing the mechanical properties of soft polymers at interfaces and for sensing schemes exploiting polymers as embedding materials.

  19. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  20. Quantized layer growth at liquid-crystal surfaces

    DEFF Research Database (Denmark)

    Ocko, B. M.; Braslau, A.; Pershan, P. S.

    1986-01-01

    of the specular reflectivity is consistent with a sinusoidal density modulation, starting at the surface and terminating abruptly, after an integral number of bilayers. As the transition is approached the number of layers increases in quantized steps from zero to five before the bulk undergoes a first...

  1. Radiation of fast positrons interacting with periodic microstructure on the surface of a crystal

    Energy Technology Data Exchange (ETDEWEB)

    Epp, V., E-mail: epp@tspu.edu.ru [Tomsk State Pedagogical University, ul. Kievskaya 60, 634061 Tomsk (Russian Federation); Tomsk State University, pr. Lenina 36, 634050 Tomsk (Russian Federation); Janz, J.G., E-mail: Yanc@tpu.ru [Tomsk Polytechnic University, pr. Lenina 34, 634050 Tomsk (Russian Federation); Kaplin, V.V., E-mail: kaplin@tpu.ru [Tomsk Polytechnic University, pr. Lenina 34, 634050 Tomsk (Russian Federation)

    2016-12-01

    Highlights: • New tunable crystalline source of X-ray radiation is described. • Radiation is emitted by the channeling relativistic particles. • A set of crystal plates offers more effective monitoring of the photon energy. • Formulae describing the radiation properties are obtained. - Abstract: Radiation of positrons passing through a set of equidistant crystal plates is calculated. Each plate is of thickness of half of the particle trajectory period at planar channeling in a thick crystal. Positively charged particle entering the first plate at an angle smaller than the critical channeling angle is captured into channeling mode and changes the direction of its transversal velocity to reversed. Between the half-wave plates the particle moves along a straight line. The proposed setup can be realized as a set of equidistant ridges on the surface of a single crystal. Passing through such set of half-wave crystal plates the particle moves on quasi-undulator trajectories. Properties of the particle radiation emitted during their passage through such “multicrystal undulator” are calculated. The radiation spectrum in each particular direction is discrete, and the frequency of the first harmonic and the number of harmonics in the spectrum depend on the distance between the plates, on energy of the particles and on the averaged potential energy of atomic planes of the crystal. The radiation is bound to a narrow cone in the direction of the average particle velocity and polarized essentially in a plane orthogonal to the atomic planes in the crystal.

  2. Variation in Pockels constants of silicate glass-ceramics prepared by perfect surface crystallization

    Science.gov (United States)

    Takano, Kazuya; Takahashi, Yoshihiro; Miyazaki, Takamichi; Terakado, Nobuaki; Fujiwara, Takumi

    2018-01-01

    We investigated the Pockels effect in polycrystalline materials consisting of highly oriented polar fresnoite-type Sr2TiSi2O8 fabricated using perfectly surface-crystallized glass-ceramics (PSC-GCs). The chemical composition of the precursor glass was shown to significantly affect the crystallized texture, e.g., the crystal orientation and appearance of amorphous nanoparasites in the domains, resulting in variations in the Pockels constants. Single crystals exhibiting spontaneous polarization possessed large structural anisotropy, leading to a strong dependence of the nonlinear-optical properties on the direction of polarized light. This study suggests that variations in the Pockels constants (r13 and r33) and tuning of the r13/r33 ratio can be realized in PSC-GC materials.

  3. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingnan [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  4. Functionalization of silicon crystal surface by energetic cluster ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Dejneka, Alexandr; Jastrabík, Lubomír; Vorlíček, Vladimír; Chvostová, Dagmar; Potůček, Zdeněk; Narumi, K.; Naramoto, H.

    2012-01-01

    Roč. 12, č. 12 (2012), s. 9136-9141 ISSN 1533-4880 R&D Projects: GA AV ČR(CZ) KAN400480701; GA ČR GA106/09/1264; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 ; RVO:68378271 Keywords : cluster impacts * silicon * surface * quantum dots * light emission Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.149, year: 2012

  5. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  6. Scattering of atomic and molecular ions from single crystal surfaces of Cu, Ag and Fe

    International Nuclear Information System (INIS)

    Zoest, J.M. van.

    1986-01-01

    This thesis deals with analysis of crystal surfaces of Cu, Ag and Fe with Low Energy Ion scattering Spectroscopy (LEIS). Different atomic and molecular ions with fixed energies below 7 keV are scattered by a metal single crystal (with adsorbates). The energy and direction of the scattered particles are analysed for different selected charge states. In that way information can be obtained concerning the composition and atomic and electronic structure of the single crystal surface. Energy spectra contain information on the composition of the surface, while structural atomic information is obtained by direction measurements (photograms). In Ch.1 a description is given of the experimental equipment, in Ch.2 a characterization of the LEIS method. Ch.3 deals with the neutralization of keV-ions in surface scattering. Two different ways of data interpretation are presented. First a model is treated in which the observed directional dependence of neutralization action of the first atom layer of the surface is presented by a laterally varying thickness of the neutralizing layer. Secondly it is shown that the data can be reproduced by a more realistic, physical model based on atomic transition matrix elements. In Ch.4 the low energy hydrogen scattering is described. The study of the dissociation of H 2 + at an Ag surface r0230ted in a model based on electronic dissociation, initialized by electron capture into a repulsive (molecular) state. In Ch.5 finally the method is applied to the investigation of the surface structure of oxidized Fe. (Auth.)

  7. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    Science.gov (United States)

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-07

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

  8. Surface morphology study on CdZnTe crystals by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, M.; George, M.A.; Burger, A.; Collins, W.E.; Silberman, E. [Fisk Univ., Nashville, TN (United States)

    1993-03-01

    The study of the crystal surface morphology of CdZnTe is important for the understanding of the fundamentals of crystal growth in order to improve the crystal quality which is essential in applications such as substrates for epitaxy or performance of devices, i.e., room temperature nuclear spectrometers. We present a first atomic force microscopy study on CdZnTe. Cleaved (110) surfaces were imaged in the ambient and an atomic layer step structure was revealed. The effects of thermal annealing on the atomic steps together with Te precipitation along these steps are discussed in terms of deformation due to stress relief and the diffusion of tellurium precipitates. 12 refs., 3 figs.

  9. Orientation and Optical Polarized Spectra (380–900 nm of Methylene Blue Crystals on a Glass Surface

    Directory of Open Access Journals (Sweden)

    Maja D. Milošević

    2013-01-01

    Full Text Available The crystallographic directions of the crystal toward the vector of polarized light can accurately be positioned, so the information that we gain from polarized spectra can be consistently interpreted according to known crystal structure. The orientation and optical properties of the methylene blue (MB crystals were analyzed by XRD, XRPD, and polarized VIS-NIR spectroscopy. Cationic dye, MB, was polymerized into crystals on a glass slate. The blue color crystals showed pronounced dichroism, twin lamellar structure and bladed to fibrous habit. According to XRD data, [010] direction lies perpendicular to the crystal surface, so we recognized it as (0k0 face, while [100] and [001] directions coincide with crystal elongation and crystal thickness respectively. In this paper, the polarized spectra of MB crystal are presented, measured with the aim of acquisition of referent values, which could be helpful for the identification of MB molecular aggregation.

  10. Atomic-scale friction on stepped surfaces of ionic crystals.

    Science.gov (United States)

    Steiner, Pascal; Gnecco, Enrico; Krok, Franciszek; Budzioch, Janusz; Walczak, Lukasz; Konior, Jerzy; Szymonski, Marek; Meyer, Ernst

    2011-05-06

    We report on high-resolution friction force microscopy on a stepped NaCl(001) surface in ultrahigh vacuum. The measurements were performed on single cleavage step edges. When blunt tips are used, friction is found to increase while scanning both up and down a step edge. With atomically sharp tips, friction still increases upwards, but it decreases and even changes sign downwards. Our observations extend previous results obtained without resolving atomic features and are associated with the competition between the Schwöbel barrier and the asymmetric potential well accompanying the step edges.

  11. Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru

    2001-01-01

    An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surface has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen Isotopic defined beams from Pd (111) surface in the 40-400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one to the 5% D/(D+H) ratio - and for different incident energies. The beam was directed onto a single-crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to it. (authors)

  12. Studies of isotopic defined hydrogen beams scattering from Pd single-crystal surfaces

    International Nuclear Information System (INIS)

    Varlam, Mihai; Steflea, Dumitru

    1999-01-01

    An experimental investigation of hydrogen isotopes interaction with Pd single-crystal surfaces has been carried out using molecular beam technique. The energy dependence of the sticking probability and its relation with the trapping probability into the precursor state is studied by integrating the scattered angular distribution of hydrogen isotopic defined beams from Pd (111) surfaces in the 40 - 400 K surface temperature range. The dependence has been evaluated by defining hydrogen molecular beams with different isotopic concentration - from the natural one until 5% D/(D + H) and different incident energies and directed onto a single - crystal Pd (111) surface. In the paper, we report the experimental results and some considerations related to them. (authors)

  13. Surface-polarization electrooptic effect in a nematic liquid crystal

    International Nuclear Information System (INIS)

    Lavrentovich, O.D.; Nazarenko, V.G.; Pergamenshchik, V.M.; Sergan, V.V.; Sorokin, V.M.

    1991-01-01

    A new electrooptic effect was observed experimentally in a homeotropic layer of a nematic with a positive anisotropy of the permittivity and of the electrical conductivity. This effect appeared in an external vertical static electric field and was manifested by the appearance of circular or elongated domain structures due to static distortions of the director near the anode or cathode of a cell. The polarity of the effect depended on the nature of an orienting coating. The origin of the effect was the nematic surface polarization which was sufficiently strong (∼10 -2 dyn 1/2 ) to induce an instability even under the conditions where other mechanisms (dielectric, flexoelectric, anisotropic electrohydrodynamic) impeded stability. Special attention was given to the separation of the surface polarization mechanism of the investigated effect from the flexoelectric and isotropic electrodynamic mechanisms. A hierarchy of static structures observed experimentally was clearly accounted for by a theory based on an equilibrium thermodynamic approach allowing for the anisotropic properties and for the real geometry of the system

  14. A new method for solid surface topographical studies using nematic liquid crystals

    Science.gov (United States)

    Baber, N.; Strugalski, Z.

    1984-03-01

    A new simple method has been developed to investigate the topography of a wide range of solid surfaces using nematic liquid crystals. Polarizing microscopy is employed. The usefulness of the method for detecting weak mechanical effects has been demonstrated. An application in criminology is foreseen.

  15. Two new organotin(IV) phosphoryl complexes: crystal structure and Hirshfeld surface analysis.

    Czech Academy of Sciences Publication Activity Database

    Pourayoubi, M.; Saneei, A.; Dušek, Michal; Rostami, S.A.; Crochet, A.; Kučeráková, Monika

    2015-01-01

    Roč. 12, č. 12 (2015), s. 2093-2103 ISSN 1735-2428 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : Hirshfeld surfaces * tin * organotin(IV)-phosphoryl complex * crystal structure Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Smectic-A Order at the Surface of a Nematic Liquid Crystal

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Christensen, Finn Erland; Pershan, P. S.

    1982-01-01

    A novel geometry in which it is possible to do x-ray diffraction from a horizontal surface of fluids is applied to liquid crystals. A large-diameter drop of octyloxycyanobiphenyl (8OCB) on a glass plate treated for homeotropic alignment yields perfect alignment of the smectic-A layers at the top...

  17. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    DEFF Research Database (Denmark)

    Yu, X; Zhang, Y.; Pan, S.S.

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensi...

  18. Random lasing of microporous surface of Cr2+:ZnSe crystal induced by femtosecond laser

    Directory of Open Access Journals (Sweden)

    Xianheng Yang

    2015-06-01

    Full Text Available We demonstrate a random lasing emission based on microporous surface of Cr2+:ZnSe crystal prepared by femtosecond pulsed laser ablation in high vacuum (below 5 × 10−4 Pa. The scanning electron microscope results show that there are a mass of micropores with an average size of ∼13 μm and smaller ones with ∼1.2 μm on the surface of Cr2+:ZnSe crystal. The adjacent micropore spacing of the smaller micropores ranges from 1 μm to 5 μm. Under 1750 nm excitation of Nd:YAG (355 nm pumped optical parametric oscillator, a random lasing emission with center wavelength of 2350 nm and laser-like threshold of 0.3 mJ/pulse is observed. The emission lifetime of 2350 nm laser reduces from 800 ns to 30 ns as the pump energy increases above threshold. The emission spectra and decay time of smooth surface, groove and microporous surface of Cr2+:ZnSe crystal are contrasted. The optional pump wavelength range is from 1500 nm to 1950 nm, which in accordance with the optical absorption property of Cr2+:ZnSe crystal. The peak position of excitation spectra is almost identical to the strongest absorption wavelength.

  19. A Numerical Method for Predicting Rayleigh Surface Wave Velocity in Anisotropic Crystals (Postprint)

    Science.gov (United States)

    2017-09-05

    crystal symmetries and directions of propagation, and the advantages and disadvantages are dis- cussed. An alternative method of finding the RSW velocity...efficient in calculating RSW velocity curves in all cases. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license ...http://creativecommons.org/ licenses /by-nc-nd/4.0/). 1. Introduction Surface acoustic waves (SAW) such as Rayleigh surface waves (RSW) are important in

  20. Optical Effects Induced by Bloch Surface Waves in One-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Irina V. Soboleva

    2018-01-01

    Full Text Available The review considers the influence of Bloch surface waves on the optical and magneto-optical effects observed in photonic crystals; for example, the Goos–Hänchen effect, the Faraday effect, optical trapping and so on. Prospects for using Bloch surface waves for spatial light modulation, for controlling the polarization of light, for optical trapping and control of micro-objects are discussed.

  1. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  2. Molecular beam studies of energy transfer in scattering from crystal surfaces

    International Nuclear Information System (INIS)

    Guthrie, W.L.

    1983-01-01

    The translational energy distributions and angular distributions of D 2 O produced from the reaction of incident D 2 and O 2 on a (111) platinum single crystal surface have been measured through the use of a molecular beam-surface scattering apparatus equipped with a time-of-flight spectrometer. The translation energies were measured over the surface temperature range T/sub s/ = 664 K - 913 K and at scattering angles of 7 0 and 40 0 from the surface normal. The D 2 O translational energy, , was found to be approximately half the equilibrium value over the temperature range examined, with /2k varying from 280 K to 480 K. These results are discussed in terms of a non-equilibrium desorption model. The two-photon ionization spectrometer was built to investigate the internal rotational and vibrational energy distributions of NO scattered from Pt(111) surfaces. The rotational energy distributions were measured over the crystal temperature range of T/sub s/ = 400 K - 1200 K. The translational energy distributions and angular distributions were measured using the time-of-flight spectrometer over the crystal temperature range of 400 K - 110 K and for beam translational energies of 0.046 eV, 0.11 eV and 0.24 eV, so that complete energy exchange information for translation, rotation and vibration is available for this gas-surface system. Significant energy transfer was observed in all three modes

  3. Potential dependence of surface crystal structure of iron passive films in borate buffer solution

    International Nuclear Information System (INIS)

    Deng, Huihua; Nanjo, Hiroshi; Qian, Pu; Santosa, Arifin; Ishikawa, Ikuo; Kurata, Yoshiaki

    2007-01-01

    The effect of passivation potential on surface crystal structure, apparent thickness and passivity of oxide films formed on pure iron prepared by plasma sputter deposition was investigated. The crystallinity was improved with passivation potential and the width of atomically flat terraces was expanded to 6 nm when passivating at 750 mV for 15 min, as observed by ex situ scanning tunneling microscopy (STM) after aging in air (<30% RH). Apparent thickness and passivity are linearly dependent on passivation potential. The former weakly depends on passivation duration, the latter strongly depends on passivation duration. This is well explained by the correlation between crystal structure and passivity

  4. Anisotropy effect of crater formation on single crystal silicon surface under intense pulsed ion beam irradiation

    Science.gov (United States)

    Shen, Jie; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Shahid, Ijaz; Zhang, Xiaofu; Yan, Sha; Le, Xiaoyun

    2018-04-01

    Due to the induced extremely fast thermal and dynamic process, Intense Pulsed Ion Beam (IPIB) is widely applied in material processing, which can bring enhanced material performance and surface craters as well. To investigate the craters' formation mechanism, a specific model was built with Finite Element Methods (FEM) to simulate the thermal field on irradiated single crystal silicon. The direct evidence for the existence of the simulated 6-fold rotational symmetric thermal distribution was provided by electron microscope images obtained on single crystal silicon. The correlation of the experiment and simulation is of great importance to understand the interaction between IPIB and materials.

  5. Supersmooth and modified surface of sapphire crystals: Formation, characterization, and applications in nanotechnologies

    International Nuclear Information System (INIS)

    Muslimov, A. E.; Asadchikov, V. E.; Butashin, A. V.; Vlasov, V. P.; Deryabin, A. N.; Roshchin, B. S.; Sulyanov, S. N.; Kanevsky, V. M.

    2016-01-01

    The results of studying the state of the surface of sapphire crystals by a complex of methods in different stages of crystal treatment are considered by an example of preparing sapphire substrates with a supersmooth surface. The possibility of purposefully forming regular micro- and nanoreliefs and thin transition layers using thermal and thermochemical impacts are considered. The advantages of sapphire substrates with a modified surface for forming heteroepitaxial CdTe and ZnO semiconductor films and ordered ensembles of gold nanoparticles are described. The results of the experiments on the application of crystalline sapphire as a material for X-ray optical elements are reported. These elements include total external reflection mirrors and substrates for multilayer mirrors, output windows for synchrotron radiation, and monochromators working in the reflection geometry in X-ray spectrometers. In the latter case, the problems of the defect structure of bulk crystals sapphire and the choice of a method for growing sapphire crystals of the highest structural quality are considered.

  6. Supersmooth and modified surface of sapphire crystals: Formation, characterization, and applications in nanotechnologies

    Science.gov (United States)

    Muslimov, A. E.; Asadchikov, V. E.; Butashin, A. V.; Vlasov, V. P.; Deryabin, A. N.; Roshchin, B. S.; Sulyanov, S. N.; Kanevsky, V. M.

    2016-09-01

    The results of studying the state of the surface of sapphire crystals by a complex of methods in different stages of crystal treatment are considered by an example of preparing sapphire substrates with a supersmooth surface. The possibility of purposefully forming regular micro- and nanoreliefs and thin transition layers using thermal and thermochemical impacts are considered. The advantages of sapphire substrates with a modified surface for forming heteroepitaxial CdTe and ZnO semiconductor films and ordered ensembles of gold nanoparticles are described. The results of the experiments on the application of crystalline sapphire as a material for X-ray optical elements are reported. These elements include total external reflection mirrors and substrates for multilayer mirrors, output windows for synchrotron radiation, and monochromators working in the reflection geometry in X-ray spectrometers. In the latter case, the problems of the defect structure of bulk crystals sapphire and the choice of a method for growing sapphire crystals of the highest structural quality are considered.

  7. Communication: Anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators

    Science.gov (United States)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-01

    We investigated the anti-icing characteristics of superhydrophobic surfaces with various morphologies by using quartz crystal microresonators. Anodic aluminum oxide (AAO) or ZnO nanorods were synthesized directly on gold-coated quartz crystal substrates and their surfaces were rendered hydrophobic via chemical modifications with octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODS), or octadecanethiol (ODT). Four different hydrophobic nanostructures were prepared on the quartz crystals: ODT-modified hydrophobic plain gold (C18-Au), an OTS-modified AAO nanostructure (C8-AAO), an ODS-modified AAO nanostructure (C18-AAO), and ODT-modified ZnO nanorods (C18-ZnO). The water contact angles on the C18-Au, C8-AAO, C18-AAO, and C18-ZnO surfaces were measured to be 91.4°, 147.2°, 156.3°, and 157.8°, respectively. A sessile water droplet was placed on each quartz crystal and its freezing temperature was determined by monitoring the drastic changes in the resonance frequency and Q-factor upon freezing. The freezing temperature of a water droplet was found to decrease with decreases in the water contact radius due to the decreases in the number of active sites available for ice nucleation.

  8. Tracking Traction Force Changes of Single Cells on the Liquid Crystal Surface

    Directory of Open Access Journals (Sweden)

    Chin Fhong Soon

    2015-01-01

    Full Text Available Cell migration is a key contributor to wound repair. This study presents findings indicating that the liquid crystal based cell traction force transducer (LCTFT system can be used in conjunction with a bespoke cell traction force mapping (CTFM software to monitor cell/surface traction forces from quiescent state in real time. In this study, time-lapse photo microscopy allowed cell induced deformations in liquid crystal coated substrates to be monitored and analyzed. The results indicated that the system could be used to monitor the generation of cell/surface forces in an initially quiescent cell, as it migrated over the culture substrate, via multiple points of contact between the cell and the surface. Future application of this system is the real-time assaying of the pharmacological effects of cytokines on the mechanics of cell migration.

  9. Surface structures of normal paraffins and cyclohexane monolayers and thin crystals grown on the (111) crystal face of platinum. A low-energy electron diffraction study

    International Nuclear Information System (INIS)

    Firment, L.E.; Somorjai, G.A.

    1977-01-01

    The surfaces of the normal paraffins (C 3 --C 8 ) and cyclohexane have been studied using low-energy electron diffraction (LEED). The samples were prepared by vapor deposition on the (111) face of a platinum single crystal in ultrahigh vacuum, and were studied both as thick films and as adsorbed monolayers. These molecules form ordered monolayers on the clean metal surface in the temperature range 100--220 K and at a vapor flux corresponding to 10 -7 Torr. In the adsorbed monolayers of the normal paraffins (C 4 --C 8 ), the molecules lie with their chain axes parallel to the Pt surface and Pt[110]. The paraffin monolayer structures undergo order--disorder transitions as a function of temperature. Multilayers condensed upon the ordered monolayers maintained the same orientation and packing as found in the monolayers. The surface structures of the growing organic crystals do not corresond to planes in their reported bulk crystal structures and are evidence for epitaxial growth of pseudomorphic crystal forms. Multilayers of n-octane and n-heptane condensed upon disordered monolayers have also grown with the (001) plane of the triclinic bulk crystal structures parallel to the surface. n-Butane has three monolayer structures on Pt(111) and one of the three is maintained during growth of the crystal. Cyclohexane forms an ordered monolayer, upon which a multilayer of cyclohexane grows exhibiting the (001) surface orientation of the monoclinic bulk crystal structure. Surface structures of saturated hydrocarbons are found to be very susceptible to electron beam induced damage. Surface charging interferes with LEED only at sample thicknesses greater than 200 A

  10. Observation of surface-guided waves in holey hypersonic phononic crystal

    Science.gov (United States)

    Benchabane, Sarah; Gaiffe, Olivier; Ulliac, Gwenn; Salut, Roland; Achaoui, Younes; Laude, Vincent

    2011-04-01

    We observe experimentally the propagation of surface-guided waves in a hypersonic phononic crystal, both in the radiative and nonradiative regions of the spectrum. Combining electrical measurements in reflection and transmission as well as optical maps of the surface displacement, a band gap extending from 0.6 to 0.95 GHz is identified in a square lattice array of 1 μm radius air holes milled in lithium niobate. The optical measurements reveal the transmission of surface-guided waves above the band gap, well inside the sound cone.

  11. On the topography of sputtered or chemically etched crystals: surface energies minimised

    International Nuclear Information System (INIS)

    Chadderton, L.T.; Cope, J.O.

    1984-01-01

    The sputtering of single or polycrystalline metal surfaces by heavy ions gives rise to the characteristic topographical features of etch pits, ripples, and cones (pyramids). For cones and pyramids, in particular, no completely satisfactory explanation exists as to the origin of the basic geometry. Scanning electron micrographs are shown. It is proposed that for topographical features of both chemical etch and ion beam origin on single crystal surfaces, the presence of facets on cones and pyramids in particular, is due to the minimization of surface energy. (U.K.)

  12. Rapid, green synthesis and surface-enhanced Raman scattering effect of single-crystal silver nanocubes

    Science.gov (United States)

    Mao, Aiqin; Jin, Xia; Gu, Xiaolong; Wei, Xiaoqing; Yang, Guojing

    2012-08-01

    Single-crystal silver (Ag) nanocubes have been synthesized by a rapid and green method at room temperature by adding sodium hydroxide solution to the mixed solutions of silver nitrate, glucose and polyvinylpyrrolidone (PVP). The X-ray diffraction (XRD), ultraviolet-visible (UV-visible) and transmission electron microscopy (TEM) were used to characterize the phase composition and morphology. The results showed that the as-prepared particles were single-crystal Ag nanocubes with edge lengths of around 77 nm and a growing direction along {1 0 0} facets. As substrates for surface-enhanced Raman scattering (SERS) experiment on crystal violet (CV), the SERS enhancement factor of the as-prepared Ag nanocubes were measured to be 5.5 × 104, indicating potential applications in chemical and biological analysis.

  13. Surface structure modification of single crystal graphite after slow, highly charged ion irradiation

    Science.gov (United States)

    Alzaher, I.; Akcöltekin, S.; Ban-d'Etat, B.; Manil, B.; Dey, K. R.; Been, T.; Boduch, P.; Rothard, H.; Schleberger, M.; Lebius, H.

    2018-04-01

    Single crystal graphite was irradiated by slow, highly charged ions. The modification of the surface structure was studied by means of Low-Energy Electron Diffraction. The observed damage cross section increases with the potential energy, i.e. the charge state of the incident ion, at a constant kinetic energy. The potential energy is more efficient for the damage production than the kinetic energy by more than a factor of twenty. Comparison with earlier results hints to a strong link between early electron creation and later target atom rearrangement. With increasing ion fluence, the initially large-scale single crystal is first transformed into μ m-sized crystals, before complete amorphisation takes place.

  14. Crystal surface analysis using matrix textural features classified by a Probabilistic Neural Network

    International Nuclear Information System (INIS)

    Sawyer, C.R.; Quach, V.T.; Nason, D.; van den Berg, L.

    1991-01-01

    A system is under development in which surface quality of a growing bulk mercuric iodide crystal is monitored by video camera at regular intervals for early detection of growth irregularities. Mercuric iodide single crystals are employed in radiation detectors. A microcomputer system is used for image capture and processing. The digitized image is divided into multiple overlappings subimage and features are extracted from each subimage based on statistical measures of the gray tone distribution, according to the method of Haralick [1]. Twenty parameters are derived from each subimage and presented to a Probabilistic Neural Network (PNN) [2] for classification. This number of parameters was found to be optimal for the system. The PNN is a hierarchical, feed-forward network that can be rapidly reconfigured as additional training data become available. Training data is gathered by reviewing digital images of many crystals during their growth cycle and compiling two sets of images, those with and without irregularities. 6 refs., 4 figs

  15. Tracer Studies of the Influence of Foreign Substances at the Surface of the Electrodes. II Influence in electro crystallization phenomena

    International Nuclear Information System (INIS)

    Llopis, J.; Gamboa, J. M.; Arizmendi, L.

    1963-01-01

    The action of foreign substances present on the surface of the electrodes, in electro crystallization phenomena, has been studied. The number of Ag crystals per square centimeter of Pt electrode varies with the polishing, the current density and the presence of multilayers of stearic acid. The statistical distribution of Ag crystals without and with multilayers and their influence on the concentration index and the deformation of Ag crystals has been studied. the size of these crystals increases as the current density decreases. (Author) 16 refs

  16. Alpha-enolase on apical surface of renal tubular epithelial cells serves as a calcium oxalate crystal receptor

    Science.gov (United States)

    Fong-Ngern, Kedsarin; Thongboonkerd, Visith

    2016-10-01

    To search for a strategy to prevent kidney stone formation/recurrence, this study addressed the role of α-enolase on apical membrane of renal tubular cells in mediating calcium oxalate monohydrate (COM) crystal adhesion. Its presence on apical membrane and in COM crystal-bound fraction was confirmed by Western blotting and immunofluorescence staining. Pretreating MDCK cells with anti-α-enolase antibody, not isotype-controlled IgG, dramatically reduced cell-crystal adhesion. Immunofluorescence staining also confirmed the direct binding of purified α-enolase to COM crystals at {121} > {100} > {010} crystal faces. Coating COM crystals with urinary proteins diminished the crystal binding capacity to cells and purified α-enolase. Moreover, α-enolase selectively bound to COM, not other crystals. Chemico-protein interactions analysis revealed that α-enolase interacted directly with Ca2+ and Mg2+. Incubating the cells with Mg2+ prior to cell-crystal adhesion assay significantly reduced crystal binding on the cell surface, whereas preincubation with EDTA, a divalent cation chelator, completely abolished Mg2+ effect, indicating that COM and Mg2+ competitively bind to α-enolase. Taken together, we successfully confirmed the role of α-enolase as a COM crystal receptor to mediate COM crystal adhesion at apical membrane of renal tubular cells. It may also serve as a target for stone prevention by blocking cell-crystal adhesion and stone nidus formation.

  17. Effect of differential surface anisotropy on performance of two plate shaped crystals of aspirin form I.

    Science.gov (United States)

    Jain, Tanshu; Sheokand, Sneha; Modi, Sameer R; Ugale, Bharat; Yadav, Ram Naresh; Kumar, Navin; Nagaraja, C M; Bansal, Arvind K

    2017-03-01

    Differential surface anisotropy of different crystals of the same API can have a significant impact on their pharmaceutical performance. The present work investigated the impact of differential surface anisotropy of two plate-shaped crystals of aspirin (form I) on their hygroscopicity, stability and compaction behavior. These crystals differed in their predominant facets (100) and (001) and were coded as AE-100 & E-001. (100) facets exposed polar carbonyl groups which provided hydrophilicity to the facets. In contrast, (001) facets possessed hydrophobicity as they exposed non-polar aryl and methyl groups. Both the samples showed different degradation behavior, at various stability conditions (i.e. 40°C/75%RH, 30°C/90%RH and 30°C/60%RH) and different time intervals. Polar groups of aspirin have been reported to be prone to hydrolysis due to which AE-100 was less stable than E-001. Dynamic vapor sorption (DVS) analysis at different simulated stability conditions also supported this observation, wherein AE-100 showed higher moisture sorption than E-001. Both the samples having similar particle size, shape, surface area and hardness value, showed differences in their compactibility. However, milling narrowed down the predominance of facets and both the milled samples showed similar stability and compaction behavior. This study was also supported by surface free energy determination, molecular modeling and face indexation of unmilled and milled samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Imaging of surfaces and defects of crystals. Progress report, May 1, 1978--April 30, 1979

    International Nuclear Information System (INIS)

    Cowley, J.M.

    1979-04-01

    The possibility of obtaining electron diffraction patterns from very small specimen regions combined with high resolution imaging by use of scanning transmission electron microscopy (STEM) allows the detailed study of small nuclei of reaction products or of crystal defects. The capabilities of this method have been extended by the design and construction of a TV system for the viewing and recording of microdiffraction patterns from our STEM instrument so that clear patterns can be obtained from regions as small as 10A in diameter. This system has been applied to the study of initial stages of oxidation of chromium films, revealing the presence of very small oxide nuclei and identifying these crystals as having a previously unsuspected spinel structure. The further stages of growth of oxides on chromium are being investigated. Initial results have also been obtained on the surface structure of oxides such as MgO. The extension of previous work on the diffraction from, and imaging of crystal surfaces by the use of medium-to-low energy electrons (15 to 1 keV) has allowed a much more complete understanding of the contrast-producing mechanisms. Application to the study of pyrolytic graphite surfaces has given a clear picture of the mosaic structure and defect distribution and provided a basis for the more reliable and quantitative general use of these techniques in surface structure analysis

  19. Ab initio analysis of a vacancy and a self-interstitial near single crystal silicon surfaces: Implications for intrinsic point defect incorporation during crystal growth from a melt

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, Eiji; Sueoka, Koji [Department of Communication Engineering, Okayama Prefectural University, 111 Kuboki, Soja, Okayama 719-1197 (Japan); Vanhellemont, Jan [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, Gent 9000 (Belgium)

    2012-10-15

    The microscopic model of the Si (001) crystal surface was investigated by first principles calculations to clarify the behavior of intrinsic point defects near crystal surfaces. A c(4 x 2) structure model was used to describe the crystal surface in contact with vacuum. The calculations show lower formation energy near the surface and the existence of formation energy differences between the surface and the bulk for both types of intrinsic point defects. The tetrahedral (T)-site and the dumbbell (DB)-site, in which a Si atom is captured from the surface and forms a self-interstitial, are found as stable sites near the third atomic layer. The T-site has a barrier of 0.48 eV, whereas the DB-site has no barrier for the interstitial to penetrate into the crystal from the vacuum. Si atoms in a melt can migrate and reach at the third layer during crystal growth when bulk diffusion coefficient is used. Therefore, the melt/solid interface is always a source of intrinsic point defects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Reduction-induced inward diffusion and crystal growth on the surfaces of iron-bearing silicate glasses

    DEFF Research Database (Denmark)

    Liu, S.J.; Tao, H.Z.; Zhang, Y.F.

    2015-01-01

    We investigate the sodium inward diffusion (i.e., sodium diffusion from surface toward interior) in iron containing alkaline earth silicate glasses under reducing conditions around Tg and the induced surface crystallization. The surface crystallization is caused by formation of a silicate-gel layer...... first and then the growth of silica crystals on the glass surface. The type of alkaline earth cations has a strong impact on both the glass transition and the surface crystallization. In the Mg-containing glass, a quartz layer forms on the glass surface. This could be attributed to the fact that Mg2......+ ions have stronger bonds to oxygen and lower coordination number (4~5) than Ca2+, Sr2+ and Ba2+ ions. In contrast, a cristobalite layer forms in Ca-, Sr- and Ba-containing glasses....

  1. Phenylacetic acid co-crystals with acridine, caffeine, isonicotinamide and nicotinamide: Crystal structures, thermal analysis, FTIR spectroscopy and Hirshfeld surface analysis

    Science.gov (United States)

    Amombo Noa, Francoise M.; Jacobs, Ayesha

    2017-07-01

    Co-crystals of phenylacetic acid (PAA) with acridine (ACR), caffeine (CAF), isonicotinamide (INM) and nicotinamide (NAM) have been successfully prepared and characterised by single crystal X-ray diffraction, FTIR spectroscopy, thermal analysis and Hirshfeld surface analysis. The ACR, INM and NAM co-crystals with PAA exhibit the carboxylic acid-pyridine heterosynthon. Furthermore the amide-amide supramolecular homosynthon is observed in the PAA co-crystals with INM and NAM as well as Nsbnd H⋯O interactions between the acid and the respective base. The CAF co-crystal exhibits hydrogen bonding between the imidazole nitrogen and the COOH group of the PAA. The compounds demonstrate different stoichiometries; for PAA·ACR and PAA·INM a 1:1 ratio is displayed, a 2:1 in 2PAA·CAF and a 2:2 in the case of 2PAA·2NAM.

  2. Orientations of Liquid Crystals in Contact with Surfaces that Present Continuous Gradients of Chemical Functionality

    International Nuclear Information System (INIS)

    Clare, B.; Efimenko, K.; Fischer, D.; Genzer, J.; Abbott, N.

    2006-01-01

    We report the formation of continuous spatial gradients in the density of grafted semifluorinated chains on silicon oxide surfaces by vapor-phase diffusion of semifluorinated silanes. We quantify the orientations of the nematic liquid crystal (LC) 4-cyano-4'-pentylbiphenyl on these surfaces as a function of local surface composition obtained by using NEXAFS. These measurements demonstrate that it is possible to obtain the full range of tilt angles of a LC on these surfaces. We also use the data provided by these gradient surfaces to test hypotheses regarding the nature of the interaction between the LC and surfaces that give rise to the range of tilted orientations of the LC. We conclude that the orientations of the LC are not determined solely by the density of grafted semifluorinated chains or by the density of residual hydroxyl groups presented at these surfaces following reactions with the silanes. Instead, our results raise the possibility that the tilt angles of the semifluorinated chains on these surfaces (which are a function of the density of the grafted chains) may influence the orientation of the LC. These results, when combined, demonstrate the potential utility of gradient surfaces for screening surface chemistries that achieve desired orientations of LCs as well as for rapidly assembling experimental data sets that can be used to test propositions regarding mechanisms of anchoring LCs at surfaces

  3. Bonding xenon and krypton on the surface of uranium dioxide single crystal

    Directory of Open Access Journals (Sweden)

    Dąbrowski Ludwik

    2014-08-01

    Full Text Available We present density functional theory (DFT calculation results of krypton and xenon atoms interaction on the surface of uranium dioxide single crystal. A pseudo-potential approach in the generalised gradient approximation (GGA was applied using the ABINIT program package. To compute the unit cell parameters, the 25 atom super-cell was chosen. It has been revealed that close to the surface of a potential well is formed for xenon and krypton atom due to its interaction with the atoms of oxygen and uranium. Depth and shape of the well is the subject of ab initio calculations in adiabatic approximation. The calculations were performed both for the case of oxygenic and metallic surfaces. It has been shown that the potential well for the oxygenic surface is deeper than for the metallic surface. The thermal stability of immobilising the atoms of krypton and xenon in the potential wells were evaluated. The results are shown in graphs.

  4. Surface Structure Study of Crystal Hydroxy-Apatite from Fluorosis Enamels

    Directory of Open Access Journals (Sweden)

    Abdillah Imron Nasution

    2013-07-01

    Full Text Available Fluorosis is a condition due to ingestion of excessive amounts of fluor which can cause the change in tooth structure and strength. However, there is still lack of explanation on the surface structure of crystal hydroxyapatite that influences the microscopic characteristic of fluorosis enamel. Objectives: To investigate the surface structure of crystal hydroxy-apatite in fluorosis enamel. Materials and Methods: Determination of fluor concentration and the surface structure of normal and fluorosis enamel specimen were carried out by using Scanning Electron Microscopy/Energy Disperse X-Ray (SEM/EDX. Results: Fluor concentration of fluorosis enamel was significantly higher with increased surface roughness and porosity than normal enamel. SEM observation also showed gaps areas between enamel rods and visible aprismatic zone in some regions. Conclusion: High level of fluor concentration on fluorosis enamel indicated the subtitution of OH- by F- increasing the surface roughness of enamel surface.DOI: 10.14693/jdi.v16i3.100

  5. Surface acoustic waves in finite slabs of three-dimensional phononic crystals

    OpenAIRE

    Sainidou, R.; Djafari-Rouhani, B.; Vasseur, J. O.

    2008-01-01

    We study theoretically, by means of layer-multiple-scattering techniques, the propagation of elastic waves through finite slabs of phononic crystals consisting of metallic spheres in a polyester matrix, embedded in air. In particular, we focus on the study of modes localized on the surfaces of the structure. Their origin and behavior, as well as the physical parameters that influence and determine their appearance, are investigated in detail. Our results reveal the existence of absolute phono...

  6. Studies of the surface structures of molecular crystals and of adsorbed molecular monolayers on the (111) crystal faces of platinum and silver by low-energy electron diffraction

    International Nuclear Information System (INIS)

    Firment, L.E.

    1977-01-01

    The structures of molecular crystal surfaces were investigated for the first time by the use of low-energy electron diffraction (LEED). The experimental results from a variety of molecular crystals were examined and compared as a first step towards understanding the properties of these surfaces on a microscopic level. The method of sample preparation employed, vapor deposition onto metal single-crystal substrates at low temperatures in ultrahigh vacuum, allowed concurrent study of the structures of adsorbed monolayers on metal surfaces and of the growth processes of molecular films on metal substrates. The systems investigated were ice, ammonia, naphthalene, benzene, the n-paraffins (C 3 to C 8 ), cyclohexane, trioxane, acetic acid, propionic acid, methanol, and methylamine adsorbed and condensed on both Pt(111) and Ag(111) surfaces. Electron-beam-induced damage of the molecular surfaces was observed after electron exposures of 10 -4 A sec cm -2 at 20 eV. Aromatic molecular crystal samples were more resistant to damage than samples of saturated molecules. The quality and orientation of the grown molecular crystal films were influenced by substrate preparation and growth conditions. Forty ordered monolayer structures were observed. 110 figures, 22 tables, 162 references

  7. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics.

    Science.gov (United States)

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E; Kolyadin, Alexander V; Katrusha, Andrey

    2016-09-01

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad.

  8. Investigation of KDP crystal surface based on an improved bidimensional empirical mode decomposition method

    Science.gov (United States)

    Lu, Lei; Yan, Jihong; Chen, Wanqun; An, Shi

    2018-03-01

    This paper proposed a novel spatial frequency analysis method for the investigation of potassium dihydrogen phosphate (KDP) crystal surface based on an improved bidimensional empirical mode decomposition (BEMD) method. Aiming to eliminate end effects of the BEMD method and improve the intrinsic mode functions (IMFs) for the efficient identification of texture features, a denoising process was embedded in the sifting iteration of BEMD method. With removing redundant information in decomposed sub-components of KDP crystal surface, middle spatial frequencies of the cutting and feeding processes were identified. Comparative study with the power spectral density method, two-dimensional wavelet transform (2D-WT), as well as the traditional BEMD method, demonstrated that the method developed in this paper can efficiently extract texture features and reveal gradient development of KDP crystal surface. Furthermore, the proposed method was a self-adaptive data driven technique without prior knowledge, which overcame shortcomings of the 2D-WT model such as the parameters selection. Additionally, the proposed method was a promising tool for the application of online monitoring and optimal control of precision machining process.

  9. Scanning Electron Microscopy Coupled with Energy Dispersive Spectrometric Analysis Reveals for the First Time Weddellite and Sylvite Crystals on the Surface of Involucral Bracts and Petals of two Xeranthemum L. (Compositae) Species.

    Science.gov (United States)

    Gavrilović, Milan; Erić, Suzana; Marin, Petar D; Garcia-Jacas, Núria; Susanna, Alfonso; Janaćković, Pedja

    2017-06-01

    In this work, weddellite and sylvite crystals are identified for the first time on the involucral bracts and petals of Xeranthemum annuum and Xeranthemum cylindraceum using scanning electron microscopy coupled with energy dispersive spectrometric (SEM-EDS) analysis. Well-developed crystals of weddellite (CaC2O4·2H2O) occur in the form of a tetragonal bipyramid (hhl), rarely in combination of a bipyramid and tetragonal prism (h00). Indumentum of involucral bracts of X. cylindraceum consists of nonglandular and glandular trichomes. Sylvite (KCl) crystals are observed only on the petal surface of X. cylindraceum. The crystals of sylvite occur in the form of perfect cubes (hexahedrons), but some crystals are deformed, i.e., partially elongated. Taxonomic significance of investigated microcharacters as well as the use of SEM-EDS analysis in taxonomic studies of plants are discussed.

  10. Antiferroelectric surface layers in a liquid crystal as observed by synchrotron x-ray scattering

    DEFF Research Database (Denmark)

    Gramsbergen, E. F.; de Jeu, W. H.; Als-Nielsen, Jens Aage

    1986-01-01

    The X-ray reflectivity form the surface of a liquid crystal with terminally polar (cyano substituted) molecules has been studied using a high-resolution triple-axis X-ray spectrometer in combination with a synchrotron source. It is demonstrated that at the surface of the smectic Al phase a few...... antiferroelectric double layers develop that can be distinguished from the bulk single layer structure. A model is developed that separates the electron density in a contribution from the molecular form factor, and from the structure factor of the mono- and the bilayers, respectively. It shows that (i) the first...

  11. Fracture analysis of surface exfoliation on single crystal silicon irradiated by intense pulsed ion beam

    Science.gov (United States)

    Shen, Jie; Shahid, Ijaz; Yu, Xiao; Zhang, Jie; Zhong, Haowen; Cui, Xiaojun; Liang, Guoying; Yu, Xiang; Huang, Wanying; Yan, Sha; Zhang, Gaolong; Zhang, Xiaofu; Le, Xiaoyun

    2017-12-01

    Surface exfoliation was observed on single crystal silicon surface irradiated by Intense Pulsed Ion Beam (IPIB). As the strong transient thermal stress impact induced by IPIB was mainly attributed to the exfoliation, a micro scale model combined with thermal conduction and linear elastic fracture mechanics was built to analyze the thermal stress distribution along the energy deposition process. After computation with finite element method, J integral parameter was applied as the criterion for crack development. It was demonstrated that the exfoliation initiation calls for specific material, crack depth and IPIB parameter. The results are potentially valuable for beam/target selection and IPIB parameter optimization.

  12. Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging

    Science.gov (United States)

    Landis, W. J.; Hodgens, K. J.; Song, M. J.; Arena, J.; Kiyonaga, S.; Marko, M.; Owen, C.; McEwen, B. F.

    1996-01-01

    The interaction between collagen and mineral crystals in the normally calcifying leg tendons from the domestic turkey, Meleagris gallopavo, has been investigated at an ultrastructural level with conventional and high-voltage electron microscopy, computed tomography, and three-dimensional image reconstruction methods. Specimens treated by either aqueous or anhydrous techniques and resin-embedded were appropriately sectioned and regions of early tendon mineralization were photographed. On the basis of individual photomicrographs, stereoscopic pairs of images, and tomographic three-dimensional image reconstructions, platelet-shaped crystals may be demonstrated for the first time in association with the surface of collagen fibrils. Mineral is also observed in closely parallel arrays within collagen hole and overlap zones. The mineral deposition at these spatially distinct locations in the tendon provides insight into possible means by which calcification is mediated by collagen as a fundamental event in skeletal and dental formation among vertebrates.

  13. Evanescent coupling between surface and linear-defect guided modes in phononic crystals

    Science.gov (United States)

    Cicek, Ahmet; Salman, Aysevil; Adem Kaya, Olgun; Ulug, Bulent

    2016-01-01

    Evanescent coupling between surface and linear-defect waveguide modes in a two-dimensional phononic crystal of steel cylinders in air is numerically demonstrated. When the ratio of scatterer radii to the lattice constant is set to 0.47 in the square phononic crystal, the two types of modes start interacting if there is one-row separation between the surface and waveguide. Supercell band structure computations through the Finite Element Method suggest that the waveguide band is displaced significantly, whereas the surface band remains almost intact when the waveguide and surface are in close proximity. The two resultant hybrid bands are such that the coupling length, which varies between 8 and 22 periods, initially changes linearly with frequency, while a much sharper variation is observed towards the top of the lower hybrid band. Such small values facilitate the design of compact devices based on heterogeneous coupling. Finite-element simulations demonstrate bilateral coupling behaviour, where waves incident from either the surface or waveguide can efficiently couple to the other side. The coupling lengths calculated from simulation results are in agreement with the values predicted from the supercell band structure. The possible utilisation of the coupling scheme in sensing applications, especially in acoustic Doppler velocimetry, is discussed.

  14. A combined reflectometry and quartz crystal microbalance with dissipation setup for surface interaction studies

    Science.gov (United States)

    Wang, Guoliang; Rodahl, Michael; Edvardsson, Malin; Svedhem, Sofia; Ohlsson, Gabriel; Höök, Fredrik; Kasemo, Bengt

    2008-07-01

    We have developed an instrument for surface interaction studies, which combines a newly invented four detector optical reflectometry setup with quartz crystal microbalance with dissipation (QCM-D) monitoring. The design is such that data from both techniques can be obtained simultaneously on the same sensor surface, with the same signal-to-noise ratio and time resolution, as for the individual techniques. In addition, synchronized information about structural transformations, molecular mass, and the hydration of thin films on solid surfaces can be obtained on the same specimen, as validated by monitoring the formation of supported lipid bilayers on a silica-coated QCM sensor surface. We emphasize that the optical (molecular) mass can be separated from the acoustic mass including hydrodynamically coupled solvent, which means, in turn, that the amount of solvent sensed by the QCM-D technique can be dynamically resolved during adsorption processes. In addition, the advantage/necessity to use four, compared to two, detector reflectometry is emphasized.

  15. A combined reflectometry and quartz crystal microbalance with dissipation setup for surface interaction studies

    International Nuclear Information System (INIS)

    Wang Guoliang; Ohlsson, Gabriel; Rodahl, Michael; Edvardsson, Malin; Svedhem, Sofia; Kasemo, Bengt; Hoeoek, Fredrik

    2008-01-01

    We have developed an instrument for surface interaction studies, which combines a newly invented four detector optical reflectometry setup with quartz crystal microbalance with dissipation (QCM-D) monitoring. The design is such that data from both techniques can be obtained simultaneously on the same sensor surface, with the same signal-to-noise ratio and time resolution, as for the individual techniques. In addition, synchronized information about structural transformations, molecular mass, and the hydration of thin films on solid surfaces can be obtained on the same specimen, as validated by monitoring the formation of supported lipid bilayers on a silica-coated QCM sensor surface. We emphasize that the optical (molecular) mass can be separated from the acoustic mass including hydrodynamically coupled solvent, which means, in turn, that the amount of solvent sensed by the QCM-D technique can be dynamically resolved during adsorption processes. In addition, the advantage/necessity to use four, compared to two, detector reflectometry is emphasized

  16. Synthesis, crystal structure, Hirshfeld surfaces analysis and anti-ischemic activity of cinnamide derivatives

    Science.gov (United States)

    Zhong, Jian-gang; Han, Jia-pei; Li, Xiao-feng; Xu, Yi; Zhong, Yan; Wu, Bin

    2018-02-01

    Two cinnamide derivatives, namely, (E)-1-(4-(bis(4-methylphenyl)- methyl)piperazin-1-yl)-3-(3,4-diethoxyphenyl)prop-2-en-1-one (5) and (E)-1-(4-(bis- (4-fluorophenyl)methyl)piperazin-1-yl)-3-(4-methoxyphenyl)prop-2-en-1-one (6), have been synthesized and characterized by IR spectra, High resolution mass spectra, 1H NMR spectra, 13C NMR spectra. The compound 5 is a novel compound and has never been reported in the literature. Their crystal structures were studied by single-crystal X-ray diffraction. They all crystallize in the monoclinic system. The single-crystal X-ray revealed that compound 5 has infinite X-shaped 1-D polymeric chains structure and compound 6 has a layered 3-D structure by intermolecular interactions. Hirshfeld surface analysis demonstrated the presence of H⋯H, O⋯H, C⋯H, F⋯H, Csbnd H⋯π and π⋯π intermolecular interactions. In addition, the MTT assay results indicated that the compounds 5 and 6 display effective activities against neurotoxicity which is induced by glutamine in PC12 cells. The in vivo experiment indicated that the compound 6 has a good protective effect on cerebral infarction.

  17. Effect of milling on particle shape and surface energy heterogeneity of needle-shaped crystals.

    Science.gov (United States)

    Ho, Raimundo; Naderi, Majid; Heng, Jerry Y Y; Williams, Daryl R; Thielmann, Frank; Bouza, Peter; Keith, Adam R; Thiele, Greg; Burnett, Daniel J

    2012-10-01

    Milling and micronization of particles are routinely employed in the pharmaceutical industry to obtain small particles with desired particle size characteristics. The aim of this study is to demonstrate that particle shape is an important factor affecting the fracture mechanism in milling. Needle-shaped crystals of the β polymorph of D-mannitol were prepared from recrystallization in water. A portion of the recrystallized materials was ball-milled. Unmilled and milled sieved fractions of recrystallized D-mannitol were analyzed by dynamic image analysis (DIA) and inverse gas chromatography (IGC) at finite concentration to explain the breakage/fracture behavior. In the process of ball-milling, D-mannitol preferentially fractured along their shortest axis, exposing (011) plane with increased hydrophilicity and increased bounding rectangular aspect ratio. This is in contrary to attachment energy modeling which predicts a fracture mechanism across the (010) plane with increased hydrophobicity, and small change in particle shape. Crystal size, and more importantly, crystal shape and facet-specific mechanical properties, can dictate the fracture/cleavage behavior of organic crystalline materials. Thorough understanding of the crystal slip systems, combining attachment energy prediction with particle shape and surface characterization using DIA and IGC, are important in understanding fracture behavior of organic crystalline solids in milling and micronization.

  18. Investigation of gamma radiation effect on chemical properties and surface morphology of some nonlinear optical (NLO) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahlam, M.A., E-mail: omaymn771@yahoo.com [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Ravishankar, M.N. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Vijayan, N. [Materials Characterization Division, National Physical Laboratory, New Delhi 110 012 (India); Govindaraj, G. [Department of Physics, Pondicherry University, Pondicherry 605 014 (India); Siddaramaiah [Department of Polymer and Technology, Sri Jayachamarajendra College of Engineering, Mysore 570 006 (India); Gnana Prakash, A.P., E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India)

    2012-05-01

    The effect of Co-60 gamma irradiation on L-alanine cadmium chloride (LACC), L-alanine doped potassium dihydrogen orthophosphate (KDP) and L-arginine doped KDP nonlinear optical (NLO) single crystals were studied in doses ranging from 100 krad to 6 Mrad. The crystals were grown by slow evaporation method at room temperature. The effects of gamma irradiation on the chemical, surface morphology, DC electrical conductivity, thermal and mechanical properties of the grown crystals have been studied. The functional groups of unirradiated and irradiated crystals have been identified and confirmed by Fourier transform infrared (FTIR) studies. Scanning electron microscopy (SEM) of irradiated crystals shows some morphological changes in the crystals. The dc conductivity of LACC and L-alanine doped KDP crystals were found to increase with increase in radiation dose whereas in case of L-arginine doped KDP crystals, the dc conductivity was found to decrease with increase in radiation dose. Differential scanning calorimetry (DSC) thermograms reveals that there is no significant change in the melting point of the crystals after irradiation and the crystals does not decompose as a result of irradiation. The mechanical behavior of both unirradiated and irradiated crystals is explained with the indentation effects using Vicker's microhardness tester. The Vicker's hardness number H{sub V} and Mayer's index 'n' has been estimated and confirms that LACC belong to the hard materials.

  19. Characterisation and stabilisation of the surface region of a highly polished silicon crystal sphere

    International Nuclear Information System (INIS)

    Kenny, M.J.; Wielunski, L.S.

    1999-01-01

    Full text: Typically a single crystal silicon wafer has a native oxide layer a few nm thick which changes slowly with time. A number of parameters such as hydrocarbons, water vapour, storage environment can affect this layer. The thickness of the layer is also orientation dependent. In the case of a silicon sphere the situation becomes more complex, because all orientations are present and the process of polishing involves a higher pressure and also high local temperatures. A highly polished single crystal sphere 93.6 mm in diameter is being used to determine the Avogadro constant with an uncertainty of ≤ 1 x 10 -8 . This will then be used to obtain an atomic definition of the kilogram. The composition and structure of the surface oxide layer play an important role in this measurement. Firstly the density of the oxide layer is different from that of silicon. Secondly since the diameter is measured by optical interferometry, corrections must be applied for the phase change in the reflected light beam due to the surface layer. Thirdly the orientation dependence of the layer complicated the corrections to be applied. Fourthly if measurements are made over a period of time, any changes in the surface layer must be taken into account. Given the accuracy required in the determination, the surface layer is a determining factor in the final result. A number of techniques such as spectroscopic ellipsometry and ion beam analysis are being used to study the composition and structure of the surface of a silicon sphere. Cleaning techniques such as HF and low temperature ultraviolet (ozone) are being developed to produce a clean surface. The next step involves deposition of a stable and uniform surface oxide layer a few nm thick. Techniques being investigated for this include ultra violet ozone deposition at 450 deg C and plasma deposition. The paper describes work at the NML in achieving an appropriate stable surface on the silicon sphere

  20. Experimental study of micro-milling mechanism and surface quality of a nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qi; Gong, Yadong; Zhou, Yun Guang; Wen, Xue Long [School of Mechanical Engineering and Automation, Northeastern University, Shenyang (China)

    2017-01-15

    Micro-milling is widely used as a method for machining of micro-parts with high precision and efficiency. Taking the nickel-based single-crystal superalloy DD98 as the research object, the crystal characteristics of single-crystal materials were analysed, and the removal mechanism of single-crystal micro-milled parts was described. Based on molecular dynamics, a simulation model for nickel-based single-crystal superalloy DD98 micro-milling was established. Based on the response surface method of central composite design, the influences of spindle speed, feed rate, and milling depth on the surface roughness were examined, and a second-order regression model of the DD98 surface roughness was established. Using analysis of variance and the residuals of the model, a significant influence on surface roughness was found in the following order from large to small: Feed rate, spindle speed, and milling depth. Comparisons were conducted between the micro-milling experimental values and the predicted model values for different process parameters. The results show that the model fit is relatively high, and the adaptability is good. Scanning electron microscopy analysis of the micro-milling surfaces was performed to verify the slip and the removal mechanism of single-crystal materials. These results offer a theoretical reference and experimental basis for micro-milling of single-crystal materials.

  1. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.

    Science.gov (United States)

    Zharov, Ilya; Khabibullin, Amir

    2014-02-18

    Nanoporous membranes are important for the study of the transport of small molecules and macromolecules through confined spaces and in applications ranging from separation of biomacromolecules and pharmaceuticals to sensing and controlled release of drugs. For many of these applications, chemists need to gate the ionic and molecular flux through the nanopores, which in turn depends on the ability to control the nanopore geometry and surface chemistry. Most commonly used nanoporous membrane materials are based on polymers. However, the nanostructure of polymeric membranes is not well-defined, and their surface is hard to modify. Inorganic nanoporous materials are attractive alternatives for polymers in the preparation of nanoporous membranes. In this Account, we describe the preparation and surface modification of inorganic nanoporous films and membranes self-assembled from silica colloidal spheres. These spheres form colloidal crystals with close-packed face centered cubic lattices upon vertical deposition from colloidal solutions. Silica colloidal crystals contain ordered arrays of interconnected three dimensional voids, which function as nanopores. We can prepare silica colloidal crystals as supported thin films on various flat solid surfaces or obtain free-standing silica colloidal membranes by sintering the colloidal crystals above 1000 °C. Unmodified silica colloidal membranes are capable of size-selective separation of macromolecules, and we can surface-modify them in a well-defined and controlled manner with small molecules and polymers. For the surface modification with small molecules, we use silanol chemistry. We grow polymer brushes with narrow molecular weight distribution and controlled length on the colloidal nanopore surface using atom transfer radical polymerization or ring-opening polymerization. We can control the flux in the resulting surface-modified nanoporous films and membranes by pH and ionic strength, temperature, light, and small molecule

  2. Ion bombardment induced topography evolution on low index crystal surfaces of Cu and Pb

    International Nuclear Information System (INIS)

    Tanovic, L.; Tanovic, N.; Carter, G.; Nobes, M.J.

    1993-01-01

    (100), (110) and (111) oriented single crystal surfaces of Cu and Pb have been bombarded with inert gas ions, self ions, ions of the other substrate species and Bi in the energy range 50-150 keV and in the fluence range 10 15 -10 18 ions.cm 2 . The evolving surface topography was observed by scanning electron microscopy. This topography was observed to be strongly influenced by ion species and surface orientation but the habit of the topography was delineated at low fluences and the features increased in size and density with increasing fluence with some mutation to the more stable of the features. As an example Bi and Pb bombardment of (100) Cu leads to little topographic evolution, (110) Cu develops a system of parallel ridges with (100) facets and (111) Cu develops a prismatic surface, each prism possessing (100) facets. These, and the more general, results cannot be explained by surface erosion by sputtering theory alone (this predicts surface stability of the lowest sputtering yield orientation (110), nor by surface free energy density minimisation criteria (this predicts stability of (111) surfaces). It is proposed that the observed topography is most strongly related to the crystallographic form of precipitates of implanted species. (orig.)

  3. Ion bombardment induced topography evolution on low index crystal surfaces of Cu and Pb

    International Nuclear Information System (INIS)

    Tanovic, L.; Tanovic, N.; Carter, G.; Nobes, M.J.

    1994-01-01

    (100), (110) and (111) oriented single crystal surfaces of Cu and Pb have been bombarded with inert gas ions, self ions, ions of the other substrate species and Bi in the energy range 50-150 keV and in the fluence range 10 15 -10 18 ions cm 2 . The evolving surface topography was observed by scanning electron microscopy. This topography was observed to be strongly influenced by ion species and surface orientation but the habit of the topography was delineated at low fluences and the features increased in size and density with increasing fluence with some mutation to the more stable of the features. As an example Bi and Pb bombardment of (100) Cu leads to little topographic evolution, (110) Cu develops a system of parallel ridges with (100) facets and (111) Cu develops a prismatic surface, each prism possessing (100) facets. These, and the more general, results cannot be explained by surface erosion by sputtering theory alone (this predicts surface stability of the lowest sputtering yield orientation (110), nor by surface free energy density minimisation criteria (this predicts stability of (111) surfaces). It is proposed that the observed topography is most strongly related to the crystallographic form of precipitates of implanted species. (orig.)

  4. High-resolution bistable nematic liquid crystal device realized on orientational surface patterns

    International Nuclear Information System (INIS)

    Kim, Jong-Hyun; Yoneya, Makoto; Yokoyama, Hiroshi

    2003-01-01

    The four-fold symmetry of a checkerboard-like surface alignment consisted of square domains arrived at the macroscopic orientational bistability of nematic liquid crystals. Switching between the two orientations took place with an appropriate electric field. Here the threshold field of bistable switching decreased as temperature increased, and the light could heat only the selected region in the cell including a light-absorbing medium. Irradiating the laser concurrently with an electric field, we addressed a selected region in the alignment pattern without the disturbance of neighboring regions. Extending this process, we realized an extremely fine bistable device of nematic liquid crystal with a pixel size down to about 2 μm

  5. Shape control of surface-stabilized disclination loops in nematic liquid crystals

    Science.gov (United States)

    Sunami, Kanta; Imamura, Koki; Ouchi, Tomohiro; Yoshida, Hiroyuki; Ozaki, Masanori

    2018-02-01

    Recent studies on topological defects in conventional and active nematic liquid crystals have revealed their potential as sources of advanced functionality whereby the collective behavior of the constituent molecules or cells is controlled. On the other hand, the fact that they have high energies and are metastable makes their shape control a nontrivial issue. Here, we demonstrate stabilization of arbitrary-shaped closed disclination loops with 1/2 strength floating in the bulk by designing the twist angle distribution in a liquid crystal cell. Continuous variation of the twist angle from below to above |π /2 | allows us to unambiguously position reverse twist disclinations at will. We also analyze the elastic free energy and uncover the relationship between the twist angle pattern and shrink rate of the surface-stabilized disclination loop.

  6. Effect of physicochemical factors on the microplasticity of the surface layer of molybdenum single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Savenko, V.I.; Kuchumova, V.M.; Kochanova, L.A.; Shchukin, E.D.

    1984-07-01

    The microplastic properties of the surface layer of molybdenum single crystals produced by electron-beam zone melting have been investigated experimentaly using ultramicrosclerometry and microindentation techniques. It is found that the 111 plane has the highest susceptibility to plastic damage, while the 100 plane is the hardest. An analysis of the stressed state of the material under an indenter shows that the dislocation density along the loading paths, which characterizes the microplasticity of the material, is largely determined by the crystallography of the lattice, i.e., by the arrangement and the number of effective slip systems in specimens of different orientations. The effect of a monolayer octadecylamine film on the microplastic behavior of molybdenum single crystals is discussed.

  7. Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence.

    Science.gov (United States)

    Takeuchi, K; Yamamoto, N

    2011-06-20

    A cathodoluminescence technique using a 200-keV transmission electron microscope revealed the dispersion patterns of surface plasmon polaritons (SPPs) in a two-dimensional plasmonic crystal with cylindrical hole arrays. The dispersion curves of the SPP modes involving the Γ point were derived from the angle-resolved spectrum patterns. The contrast along the dispersion curves changed with the polarization direction of the emitted light due to the property of the SPP modes. The SPP modes at the Γ point were identified from the photon maps, which mimicked standing SPP waves in a real space. The beam-scan spectral images across the plasmonic crystal edge clearly demonstrated the dependence of the SPP to light conversion efficiency on the emission angle and polarization of light.

  8. Comprehensive three-dimensional analysis of surface plasmon polariton modes at uniaxial liquid crystal-metal interface.

    Science.gov (United States)

    Yen, Yin-Ray; Lee, Tsun-Hsiun; Wu, Zheng-Yu; Lin, Tsung-Hsien; Hung, Yu-Ju

    2015-12-14

    This paper describes the derivation of surface plasmon polariton modes associated with the generalized three-dimensional rotation of liquid crystal molecules on a metal film. The calculated dispersion relation was verified by coupling laser light into surface plasmon polariton waves in a one-dimensional grating device. The grating-assisted plasmon coupling condition was consistent with the formulated k(spp) value. This provides a general rule for the design of liquid-crystal tunable plasmonic devices.

  9. Controlled parallel crystallization of lithium disilicate and diopside using a combination of internal and surface nucleation

    Directory of Open Access Journals (Sweden)

    Markus Rampf

    2016-10-01

    Full Text Available In the mid-19th century, Dr. Donald Stookey identified the importance and usability of nucleating agents and mechanisms for the development of glass-ceramic materials. Today, a number of various internal and surface mechanisms as well as combinations thereof have been established in the production of glass-ceramic materials. In order to create new innovative material properties the present study focuses on the precipitation of CaMgSiO6 as a minor phase in Li2Si2O5 based glass-ceramics. In the base glass of the SiO2-Li2O-P2O5-Al2O3-K2O-MgO-CaO system P2O5 serves as nucleating agent for the internal precipitation of Li2Si2O5 crystals while a mechanical activation of the glass surface by means of ball milling is necessary to nucleate the minor CaMgSi2O6 crystal phase. For a successful precipitation of CaMgSi2O6 a minimum ratio of MgO and CaO in the range between 1.4 mol% and 2.9 mol% in the base glasses was determined. The nucleation and crystallization of both crystal phases takes place during sintering a powder compact. Dependent on the quality of the sintering process the dense Li2Si2O5-CaMgSi2O6 glass-ceramics show a mean biaxial strength of up to 392 ± 98 MPa. The microstructure of the glass-ceramics is formed by large (5-10 µm bar like CaMgSi2O6 crystals randomly embedded in a matrix of small (≤ 0.5 µm plate like Li2Si2O5 crystals arranged in an interlocking manner. While there is no significant influence of the minor CaMgSi2O6 phase on the strength of the material, the translucency of the material decreases upon precipitation of the minor phase.

  10. Influences of surface and flexoelectric polarization on the effective anchoring energy in nematic liquid crystal

    International Nuclear Information System (INIS)

    Guan Rong-Hua; Ye Wen-Jiang; Xing Hong-Yu

    2015-01-01

    The physical effects on surface and flexoelectric polarization in a weak anchoring nematic liquid crystal cell are investigated systematically. We derive the analytic expressions of two effective anchoring energies for lower and upper substrates respectively as well as their effective anchoring strengths and corresponding tilt angles of effective easy direction. All of these quantities are relevant to the magnitudes of both two polarizations and the applied voltage U. Based on these expressions, the variations of effective anchoring strength and the tilt angle with the applied voltage are calculated for the fixed values of two polarizations. For an original weak anchoring hybrid aligned nematic cell, it may be equivalent to a planar cell for a small value of U and has a threshold voltage. The variation of reduced threshold voltage with reduced surface polarization strength is also calculated. The role of surface polarization is important without the adsorptive ions considered. (paper)

  11. Analysis of Surface Chemistry and Detector Performance of Chemically Process CdZnTe crystals

    Energy Technology Data Exchange (ETDEWEB)

    HOSSAIN, A.; Yang, G.; Sutton, J.; Zergaw, T.; Babalola, O. S.; Bolotnikov, A. E.; Camarda. ZG. S.; Gul, R.; Roy, U. N., and James, R. B.

    2015-10-05

    The goal is to produce non-conductive smooth surfaces for fabricating low-noise and high-efficiency CdZnTe devices for gamma spectroscopy. Sample preparation and results are discussed. The researachers demonstrated various bulk defects (e.g., dislocations and sub-grain boundaries) and surface defects, and examined their effects on the performance of detectors. A comparison study was made between two chemical etchants to produce non-conductive smooth surfaces. A mixture of bromine and hydrogen peroxide proved more effective than conventional bromine etchant. Both energy resolution and detection efficiency of CZT planar detectors were noticeably increased after processing the detector crystals using improved chemical etchant and processing methods.

  12. Thermally controlled growth of surface nanostructures on ion-modified AIII-BV semiconductor crystals

    Science.gov (United States)

    Trynkiewicz, Elzbieta; Jany, Benedykt R.; Wrana, Dominik; Krok, Franciszek

    2018-01-01

    The primary motivation for our systematic study is to provide a comprehensive overview of the role of sample temperature on the pattern evolution of several AIII-BV semiconductor crystal (001) surfaces (i.e., InSb, InP, InAs, GaSb) in terms of their response to low-energy Ar+ ion irradiation conditions. The surface morphology and the chemical diversity of such ion-modified binary materials has been characterized by means of scanning electron microscopy (SEM). In general, all surface textures following ion irradiation exhibit transitional behavior from small islands, via vertically oriented 3D nanostructures, to smoothened surface when the sample temperature is increased. This result reinforces our conviction that the mass redistribution of adatoms along the surface plays a vital role during the formation and growth process of surface nanostructures. We would like to emphasize that this paper addresses in detail for the first time the topic of the growth kinetics of the nanostructures with regard to thermal surface diffusion, while simultaneously offering some possible approaches to supplementing previous studies and therein gaining a new insight into this complex issue. The experimental results are discussed with reference to models of the pillars growth, abutting on preferential sputtering, the self-sustained etch masking effect and the redeposition process recently proposed to elucidate the observed nanostructuring mechanism.

  13. Formation of surface nanolayers in chalcogenide crystals using coherent laser beams

    Science.gov (United States)

    Ozga, K.; Fedorchuk, A. O.; El-Naggar, A. M.; Albassam, A. A.; Kityk, V.

    2018-03-01

    We have shown a possibility to form laser modified surface nanolayers with thickness up to 60 nm in some ternary chalcogenide crystals (Ag3AsS3, Ag3SbS3, Tl3SbS3) The laser treatment was performed by two coherent laser beams split in a space. As the inducing lasers we have applied continuous wave (cw) Hesbnd Cd laser at wavelength 441 nm and doubled frequency cw Nd: YAG laser at 532 nm. The spectral energies of these lasers were higher with respect to the energy gaps of the studied crystals. The optical anisotropy was appeared and defected by monitoring of birefringence at probing wavelength of cw Hesbnd Ne laser at λ = 3390 nm. The changes of the laser stimulated near the surface layer morphology was monitored by TEM and AFM methods as well as by the reflected optical second harmonic generation at fundamental wavelength of microsecond CO2 laser generating at wavelength 10600 nm. This technique may open a new approach for the formation of the near the surface nanolayers in chalcogenides using external cw laser illumination.

  14. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik

    2015-09-22

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  15. Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam

    International Nuclear Information System (INIS)

    Zhang, Shunzu; Gao, Yuanwen

    2017-01-01

    A theoretical model is established to study the size-dependent performance of flexural wave propagation in magneto-elastic phononic crystal (PC) nanobeam with surface effect based on Euler–Bernoulli beam theory and Gurtin–Murdoch theory. Considering the magneto-mechanical coupling constitutive relation of magnetostrictive material, the influence of surface effect on band structure is calculated by the plane wave expansion method for PC nanobeam subjected to pre-stress and magnetic field loadings. Through the example of an epoxy/Terfenol-D PC nanobeam, it can be observed that the characteristics of flexural wave band structures are size-dependent, and remarkably affected by surface effect when the dimension of the PC beam reduces to the nanoscale. The edges and width of the band gap with surface effect are higher than those without surface effect, especially for high frequency region. And surface effect gradually reduces with the increasing of bulk layer-to-surface layer thickness ratio until the band gap descends to a constant for the conventional one in the absence of surface effect. The effects of surface elasticity and piezomagneticity on band gap are more prominent than the residual surface stress. In addition, a distinctly nonlinear variation of band gap appears under the combined effects of pre-stress and magnetic field. Moreover, with the varying of filling fraction, multi-peaks of the width of the band gap are obtained and discussed. These results could be helpful for the intelligent regulation of magneto-elastic PC nanobeam and the design of nanobeam-based devices. (paper)

  16. Surface effect on band structure of flexural wave propagating in magneto-elastic phononic crystal nanobeam

    Science.gov (United States)

    Zhang, Shunzu; Gao, Yuanwen

    2017-11-01

    A theoretical model is established to study the size-dependent performance of flexural wave propagation in magneto-elastic phononic crystal (PC) nanobeam with surface effect based on Euler-Bernoulli beam theory and Gurtin-Murdoch theory. Considering the magneto-mechanical coupling constitutive relation of magnetostrictive material, the influence of surface effect on band structure is calculated by the plane wave expansion method for PC nanobeam subjected to pre-stress and magnetic field loadings. Through the example of an epoxy/Terfenol-D PC nanobeam, it can be observed that the characteristics of flexural wave band structures are size-dependent, and remarkably affected by surface effect when the dimension of the PC beam reduces to the nanoscale. The edges and width of the band gap with surface effect are higher than those without surface effect, especially for high frequency region. And surface effect gradually reduces with the increasing of bulk layer-to-surface layer thickness ratio until the band gap descends to a constant for the conventional one in the absence of surface effect. The effects of surface elasticity and piezomagneticity on band gap are more prominent than the residual surface stress. In addition, a distinctly nonlinear variation of band gap appears under the combined effects of pre-stress and magnetic field. Moreover, with the varying of filling fraction, multi-peaks of the width of the band gap are obtained and discussed. These results could be helpful for the intelligent regulation of magneto-elastic PC nanobeam and the design of nanobeam-based devices.

  17. Naturally occurring mutations in large surface genes related to occult infection of hepatitis B virus genotype C.

    Directory of Open Access Journals (Sweden)

    Hong Kim

    Full Text Available Molecular mechanisms related to occult hepatitis B virus (HBV infection, particularly those based on genotype C infection, have rarely been determined thus far in the ongoing efforts to determine infection mechanisms. Therefore, we aim to elucidate the mutation patterns in the surface open reading frame (S ORF underlying occult infections of HBV genotype C in the present study. Nested PCRs were applied to 624 HBV surface antigen (HBsAg negative Korean subjects. Cloning and sequencing of the S ORF gene was applied to 41 occult cases and 40 control chronic carriers. Forty-one (6.6% of the 624 Korean adults with HBsAg-negative serostatus were found to be positive for DNA according to nested PCR tests. Mutation frequencies in the three regions labeled here as preS1, preS2, and S were significantly higher in the occult subjects compared to the carriers in all cases. A total of two types of deletions, preS1 deletions in the start codon and preS2 deletions as well as nine types of point mutations were significantly implicated in the occult infection cases. Mutations within the "a" determinant region in HBsAg were found more frequently in the occult subjects than in the carriers. Mutations leading to premature termination of S ORF were found in 16 occult subjects (39.0% but only in one subject from among the carriers (2.5%. In conclusion, our data suggest that preS deletions, the premature termination of S ORF, and "a" determinant mutations are associated with occult infections of HBV genotype C among a HBsAg-negative population. The novel mutation patterns related to occult infection introduced in the present study can help to broaden our understanding of HBV occult infections.

  18. Direct observation of surface mode excitation and slow light coupling in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Volkov, V.S.; Bozhevolnyi, Sergey I.; Frandsen, Lars Hagedorn

    2007-01-01

    A scanning near-field optical microscope (SNOM) is used to systematically study the properties of guided modes in linear and slow-light regimes of silicon-on-insulator (SOI)-based photonic crystal waveguides (PhCWs) with different terminations of the photonic lattice. High quality SNOM images...... are obtained for light at telecom wavelengths propagating in the PhCW, demonstrating directly, for the first time to our knowledge, drastic widening of the PhCW guided mode in the slow-light regime and excitation of surface waves at the PhCW interface along with their feeding into the guided mode...

  19. Surface Functionalization of Metal-Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance.

    Science.gov (United States)

    Castells-Gil, Javier; Novio, Fernando; Padial, Natalia M; Tatay, Sergio; Ruíz-Molina, Daniel; Martí-Gastaldo, Carlos

    2017-12-27

    Robust catechol coatings for enhanced moisture tolerance were produced in one step by direct reaction of Hong Kong University of Science and Technology (HKUST) with synthetic catechols. We ascribe the rapid formation of homogeneous coatings around the metal-organic framework particles to the biomimetic catalytic activity of Cu(II) dimers in the external surface of the crystals. Use of fluorinated catechols results in hydrophobic, permeable coatings that protect HKUST from water degradation while retaining close to 100% of its original sorption capacity.

  20. Propagation of long-range surface plasmon polaritons in photonic crystals

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, T.

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film embedded...... structures, is rather weak, so that the photonic bandgap effect might be expected to take place only for some particular propagation directions. Preliminary experiments on LR-SPP bending and splitting at large angles are reported, and further research directions are discussed....

  1. Surface plasmon resonance fiber optic biosensor-based graphene and photonic crystal

    Science.gov (United States)

    Tong, Kai; Guo, Jia; Dang, Peng; Wang, Meiyu; Wang, Fucheng; Zhang, Yungang; Wang, Meiting

    2018-02-01

    A new sensor — transverse electric (TE) polarized excite surface plasmon resonance (SPR) fiber optic biosensor is proposed. The graphene is the plasma layer. The transfer matrix method and the finite difference time domain method are applied to conduct the numerical simulation of the four layers (fiber core/photonic crystals/graphene/sample) of fiber optic biosensor. The results show that the relationship between refractive index and resonant wavelength is linear and the sensitivity of the fiber optic biosensor reaches 1942 nm/RIU.

  2. Electrochemistry of Hemin on Single-Crystal Au(111)-electrode Surfaces

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    . Hemin itself also acts as catalyst in electrochemical reduction of dioxygen and other small inert molecules suchas nitrogen monoxide, and in electrochemiluminescent detection of dioxygen, peroxide, DNA, and proteins. л-л interactions of hemin with carbon materials have been broadly studied. Hemin...... adsorption on well-defined single-crystal Au(111)-electrode surfaces using electrochemistry combined with scanning tunnelling microscopy under electrochemical control. Hemin gives two voltammetric peaks assigned to adsorbed monomers and dimmers (Fig. 1B). In situ STM shows that hemin self...

  3. Propagation of long-range surface plasmon polaritons in photonic crystals

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Søndergaard, Thomas; Nikolajsen, T.

    2005-01-01

    We study the interaction of long-range surface plasmon polaritons (LR-SPPs), excited at telecommunication wavelengths, with photonic crystals (PCs) formed by periodic arrays of gold bumps that are arranged in a triangular lattice and placed symmetrically on both sides of a thin gold film embedded......) into the investigated PC structures. Using a self-consistent description based on the Green'S function formalism, we simulate numerically the LR-SPP transmission through and reflection from finite-size PC structures consisting of finite-size scatterers, as well as the LR-SPP guiding along line defects...

  4. Fast flexoelectric switching in a cholesteric liquid crystal cell with surface-localized polymer network

    International Nuclear Information System (INIS)

    Kim, Sang Hwa; Shi, Lei; Chien, Liang-Chy

    2009-01-01

    We developed an electro-optical device based on the flexoelectric effect of a polymer-stabilized cholesteric liquid crystal with a uniform lying helix. Using a dual-frequency switchable nematic, a small amount of chiral dopant and a small amount of phase-separated polymer localized at the substrate surfaces, we were able to create a device that operates in both the amplitude (flexoelectric) and phase (dielectric) modes. Using a high-frequency voltage we were able to suppress the phase mode and preserve the amplitude mode.

  5. Analysis of Leaky Modes in Photonic Crystal Fibers Using the Surface Integral Equation Method

    Directory of Open Access Journals (Sweden)

    Jung-Sheng Chiang

    2018-04-01

    Full Text Available A fully vectorial algorithm based on the surface integral equation method for the modelling of leaky modes in photonic crystal fibers (PCFs by solely solving the complex propagation constants of characteristic equations is presented. It can be used for calculations of the complex effective index and confinement losses of photonic crystal fibers. As complex root examination is the key technique in the solution, the new algorithm which possesses this technique can be used to solve the leaky modes of photonic crystal fibers. The leaky modes of solid-core PCFs with a hexagonal lattice of circular air-holes are reported and discussed. The simulation results indicate how the confinement loss by the imaginary part of the effective index changes with air-hole size, the number of rings of air-holes, and wavelength. Confinement loss reductions can be realized by increasing the air-hole size and the number of air-holes. The results show that the confinement loss rises with wavelength, implying that the light leaks more easily for longer wavelengths; meanwhile, the losses are decreased significantly as the air-hole size d/Λ is increased.

  6. Electrochemical and surface characterisation of carbon-film-coated piezoelectric quartz crystals

    International Nuclear Information System (INIS)

    Pinto, Edilson M.; Gouveia-Caridade, Carla; Soares, David M.; Brett, Christopher M.A.

    2009-01-01

    The electrochemical properties of carbon films, of thickness between 200 and 500 nm, sputter-coated on gold- and platinum-coated 6 MHz piezoelectric quartz crystal oscillators, as new electrode materials have been investigated. Comparative studies under the same experimental conditions were performed on bulk electrodes. Cyclic voltammetry was carried out in 0.1 M KCl electrolyte solution, and kinetic parameters of the model redox systems Fe(CN) 6 3-/4- and [Ru(NH 3 ) 6 ] 3+/2+ as well as the electroactive area of the electrodes were obtained. Atomic force microscopy was used in order to examine the surface morphology of the films, and the properties of the carbon films and the electrode-solution interface were studied by electrochemical impedance spectroscopy. The results obtained demonstrate the feasibility of the preparation and development of nanometer thick carbon film modified quartz crystals. Such modified crystals should open up new opportunities for the investigation of electrode processes at carbon electrodes and for the application of electrochemical sensing associated with the EQCM.

  7. Design of photonic crystal surface emitting lasers with indium-tin-oxide top claddings

    Science.gov (United States)

    Huang, Shen-Che; Hong, Kuo-Bin; Chiu, Han-Lun; Lan, Shao-Wun; Chang, Tsu-Chi; Li, Heng; Lu, Tien-Chang

    2018-02-01

    Electrically pumped GaAs-based photonic crystal surface emitting lasers were fabricated using a simple fabrication process by directly capping the indium-tin-oxide transparent conducting thin film as the top cladding layer upon a photonic crystal layer. Optimization of the separate-confinement heterostructures of a laser structure is crucial to improving characteristics by providing advantageous optical confinements. The turn-on voltage, series resistance, threshold current, and slope efficiency of the laser with a 100 × 100 μm2 photonic crystal area operated at room temperature were 1.3 V, 1.5 Ω, 121 mA, and 0.2 W/A, respectively. Furthermore, we demonstrated a single-lobed lasing wavelength of 928.6 nm at 200 mA and a wavelength redshift rate of 0.05 nm/K in temperature-dependent measurements. The device exhibited the maximum output power of approximately 400 mW at an injection current of 2 A; moreover, divergence angles of less than 1° for the unpolarized circular-shaped laser beam were measured at various injection currents. Overall, the low threshold current, excellent beam quality, small divergence, high output power, and high-operating-temperature (up to 343 K) of our devices indicate that they can potentially fill the requirements for next-generation light sources and optoelectronic devices.

  8. Optical monitoring of surface anchoring changes for nematic liquid crystal based chemical and biological sensors

    Science.gov (United States)

    Zou, Yang

    In this dissertation, optically monitoring the surface anchoring changes of liquid crystal (LC) due to the chemical or biological bindings is presented. The deformation of LC director with different anchoring energies is simulated using Finite Element Method and continuum theory of nematic LC. The optical properties of the LC film are simulated using the Finite Difference Time Domain method. First, the interference color method was used to monitor the anchoring change. The calculated and experimental interference colors of liquid crystal films due to the optical retardation of two orthogonal electromagnetic components at different surface anchoring conditions and applied voltages are studied. The calculated colors were converted into sRGB parameters so that the corresponding colors can be displayed on a color computer monitor and printed out on a color printer. A gold micro-structure was fabricated and used to control the optical retardation. Polarizing micrographs were collected and compared with the calculated colors. Second, the influence of a bias voltage on the surface-driven orientational transition of liquid crystals resulted from the weakening anchoring and anchoring transition is analyzed theoretically and experimentally. The same interdigitated Au micro-structure was used in the nematic LC based chemical and biological sensors. With a suitable bias electric field, the process of the weakening anchoring energy and the uniform surface-driven orientational transition due to targeted molecules binding to a functionalized surface were observed optically. Finally, measurement of optical transmission was used to monitor the anchoring change. Polarizing micrographs were collected and compared with simulated textures. Experimental and simulation results both demonstrate the optical method can effectively monitor the surface anchoring change due to the presence of targeted analytes. These results show that these optical techniques are suitable for LC based sensing

  9. Surface potential at the hematite (001) crystal plane in aqueous environments and the effects of prolonged aging in water

    Science.gov (United States)

    Lützenkirchen, Johannes; Preočanin, Tajana; Stipić, Filip; Heberling, Frank; Rosenqvist, Jörgen; Kallay, Nikola

    2013-11-01

    The surface potentials of a (0 0 1) terminated hematite crystal that was annealed at high-temperature were measured as a function of pH by means of the corresponding single crystal electrode. The surface potential at a given pH did not depend on the electrolyte concentration, and was found to exhibit an inflection point. The shape of the function is in phenomenological agreement with the presence of two distinct surface terminations (O and Fe) that have been previously reported for this surface. Aging of the annealed hematite surface, in aqueous electrolyte medium over 2 weeks, leads to a drastic change in the surface potential pH curve. The surface potential becomes that of the ideal O termination. While the O termination data can be modeled using the MUSIC approach, the initial sample that is expected to correspond to the two-domain surface with O and Fe terminations cannot be described within the MUSIC approach based on previously published surface diffraction data. However, the experimental data fall between the O and Fe termination limiting cases when the point of zero potential is placed at the inflection point. The fact that a surface with the two terminations cannot be modeled may be attributed to various issues, three of which are discussed: (i) the general difficulty to average the potential arising from both terminations, which furthermore are short-circuited via the crystal, (ii) the difficulty of treating patchwise heterogeneous surfaces in surface complexation models, and (iii) the incapability of surface complexation models in their present form to describe potential gradients within the solid. Conclusively, we interpret our results as a transformation from a bi-domain surface, to a single domain surface over time under conditions where bulk hematite solubility is low. Accordingly, the oxygen terminated domain should be the more stable one at this single crystal surface at our experimental conditions.

  10. Determination of surface structure of cleaved (001) USb2 single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shao-ping [Los Alamos National Laboratory; Hawley, Marilyn [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Stockum, Phil B [STANFORD UNIV; Manoharan, Hari C [STANFORD UNIV

    2009-01-01

    We have achieved what we believe to be the first atomic resolution STM images for a uranium compound taken at room temperature. The a, b, and c lattice parameters in the images confirm that the USb{sub 2} crystals cleave on the (001) basal plane as expected. The a and b dimensions were equal, with the atoms arranged in a cubic pattern. Our calculations indicate a symmetric cut between Sb planes to be the most favorable cleavage plane and U atoms to be responsible for most of the DOS measured by STM. Some strange features associated with vacancies were observed in the STM win be discussed in conjunction with ab initio calculations. The purpose of this work is to demonstrate the power of scanning tunneling microscopy (STM) techniques combined with a theoretical underpinning to determine the surface atomic structure and properties of actinide materials, such as the quasi 2-dimensional uranium dipnictide USb{sub 2} single crystal, thereby contributing to the understanding of their surface structural and electronic properties. The members of this interesting UX{sub 2} (X=P, As, Sb, Bi) series of compounds display dual localized and itinerant 5f electron behavior within the same compound due to the hybridization of the 5f orbitals with the conduction band. With the exception of UO{sub 2}, which has to be studied at elevated temperature to generate enough carriers for STM imaging, STM techniques have not been applied successfully to the characterization of the surface atomic structure of any other single crystal actinide compound, to the best of our knowledge. However, STM has been used to a limited extent for the study of some cerium compounds. STM probes electronic properties at the atomic level and can directly provide information about the local density of filled and empty states (LDOS) states simultaneously. A STM topograph provides the local atomic arrangement and spacing of the atoms on the surface, local defect structures (e.g. steps, vacancies, and kink sites

  11. Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals

    Directory of Open Access Journals (Sweden)

    Valeri S. Harutyunyan

    2017-11-01

    Full Text Available In this study, we derive and analyze the analytical expressions for stress components of the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal lattice. The variation of above stress components depending on “free surface–dislocation” distance (i.e., free surface effect is studied by means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the force of interaction between two neighboring basal screw dislocations on the “free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly elastically-anisotropic materials as Ti, Zn, Cd, and graphite. The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative decrease of the force of interaction between near-surface screw dislocations due to free surface effect is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin film–substrate” system at a (0001 basal interface between the film and substrate provided that the elastic constants

  12. Applications of low-energy electron diffraction to ordering at crystal and quasicrystal surfaces

    International Nuclear Information System (INIS)

    McRae, E.G.; Malic, R.A.

    1990-01-01

    The ability to measure low-energy electron diffraction (LEED) intensity profiles has been enhanced by use of low-current well-defined primary electron beams in conjunction with position-sensitive detection (PSD) of the diffracted electrons. The following are examples of applications of LEED-PSD. Compositional ordering at ordering alloy Cu 3 Au (100) and (110) surfaces - the ordering of the (100) surface is believed to conform to a conventional picture in which the already-ordered bulk acts as a template, but the profiles measured in the course of ordering of the (110) surface are of the shapes expected if the ordering occurred first at the surface. Disordering of Ge(111) surface 150 K below the bulk melting temperature - the intensities and profiles are inconsistent with surface melting or roughening, but a model based on molecular dynamics simulations is not ruled out. Order and disordering at decagonal quasicrystal Al 65 Cu 15 Co 20 surfaces - at room temperature the quasicrystalline order is well developed at both the 'ten-fold' surface (perpendicular to the ten-fold surface (perpendicular to the ten-fold periodic axis) and a 'two-fold' one (parallel to the ten-fold axis) as evidenced by narrow beam profiles. The ten-fold surface undergoes a disordering transition at 700 K, but the temperature dependence of the profiles is unlike that expected for the roughening transition anticipated theoretically. 57 refs., 15 figs

  13. Electro-osmosis of nematic liquid crystals under weak anchoring and second-order surface effects

    Science.gov (United States)

    Poddar, Antarip; Dhar, Jayabrata; Chakraborty, Suman

    2017-07-01

    Advent of nematic liquid crystal flows has attracted renewed attention in view of microfluidic transport phenomena. Among various transport processes, electro-osmosis stands as one of the efficient flow actuation mechanisms through narrow confinements. In the present study, we explore the electrically actuated flow of an ordered nematic fluid with ionic inclusions, taking into account the influences from surface-induced elasticity and electrical double layer (EDL) phenomena. Toward this, we devise the coupled flow governing equations from fundamental free-energy analysis, considering the contributions from first- and second-order elastic, dielectric, flexoelectric, charged surface polarization, ionic and entropic energies. The present study focuses on the influence of surface charge and elasticity effects in the resulting linear electro-osmosis through a slit-type microchannel whose surfaces are chemically treated to display a homeotropic-type weak anchoring state. An optical periodic stripe configuration of the nematic director has been observed, especially for higher electric fields, wherein the Ericksen number for the dynamic study is restricted to the order of unity. Contrary to the isotropic electrolytes, the EDL potential in this case was found to be dependent on the external field strength. Through a systematic investigation, we brought out the fact that the wavelength of the oscillating patterns is dictated mainly by the external field, while the amplitude depends on most of the physical variables ranging from the anchoring strength and the flexoelectric coefficients to the surface charge density and electrical double layer thickness.

  14. TEM monitoring of silver nanoparticles formation on the surface of lead crystal glass

    Energy Technology Data Exchange (ETDEWEB)

    Gil, C. [Fundacion Centro Nacional del Vidrio, Real Fabrica de Cristales, Po Pocillo, 1. 40100 La Granja de San Ildefonso, Segovia (Spain); Villegas, M.A. [Centro Nacional de Investigaciones Metalurgicas, CSIC, Avda. Gregorio del Amo, 8. 28040 Madrid (Spain)]. E-mail: mavillegas@cenim.csic.es; Navarro, J.M. Fernandez [Instituto de Optica Daza de Valdes, CSIC, C. Serrano, 121. 28006 Madrid (Spain)

    2006-12-15

    Silver nanoparticles have been formed on the surface of lead crystal glass by means of (i) ion-exchange of alkaline ions from the glass by Ag{sup +} ions from a molten salts bath, and (ii) silica based sol-gel coatings containing silver. All experimental variables concerning both ion-exchange process and sol-gel coatings application were combined and studied as main parameters governing the reduction of Ag{sup +} ions to Ag{sup 0} atoms and further aggregation to form nanosized colloids. The content of thermoreducing agents (arsenic or antimony oxides) in the lead crystal glass was essential to favour the reduction of silver ions to form nanoparticles. Optimal experimental conditions to be used for the obtaining of surface silver nanoparticles were determined. TEM was used as the principal characterisation technique for direct observation of the nanoparticles generated. The size of silver colloids varied in the 20-300 nm range for ion-exchanged samples and in the 10-80 nm range for sol-gel coated samples.

  15. Chiral symmetry breaking and surface faceting in chromonic liquid crystal droplets with giant elastic anisotropy.

    Science.gov (United States)

    Jeong, Joonwoo; Davidson, Zoey S; Collings, Peter J; Lubensky, Tom C; Yodh, A G

    2014-02-04

    Confined liquid crystals (LC) provide a unique platform for technological applications and for the study of LC properties, such as bulk elasticity, surface anchoring, and topological defects. In this work, lyotropic chromonic liquid crystals (LCLCs) are confined in spherical droplets, and their director configurations are investigated as a function of mesogen concentration using bright-field and polarized optical microscopy. Because of the unusually small twist elastic modulus of the nematic phase of LCLCs, droplets of this phase exhibit a twisted bipolar configuration with remarkably large chiral symmetry breaking. Further, the hexagonal ordering of columns and the resultant strong suppression of twist and splay but not bend deformation in the columnar phase, cause droplets of this phase to adopt a concentric director configuration around a central bend disclination line and, at sufficiently high mesogen concentration, to exhibit surface faceting. Observations of director configurations are consistent with Jones matrix calculations and are understood theoretically to be a result of the giant elastic anisotropy of LCLCs.

  16. Studies of the kinetics and mechanisms of ammonia synthesis and hydrodesulfurization on metal single-crystal surfaces

    International Nuclear Information System (INIS)

    Gellman, A.J.; Asscher, M.; Somorjai, G.A.

    1985-01-01

    The authors studied the ammonia synthesis reaction over Fe and Re single crystal surfaces and the hydrodesulfurization of thiophene over the Mo(100) single crystal surface. The studies have been performed using UHV surface science tools with the capability of exposing the surfaces to high pressure, high temperature reaction conditions. The ammonia synthesis reaction was shown to be extremely sensitive to surface structure on both Fe and Re, favoring surfaces with a rough or open topography. The HDS reaction on the Mo(100) surface has been shown to be similar to that on MoS/sub 2/ and appears to proceed via a reaction path that does not produce a strong Mo-S bond as an intermediate species

  17. Two dialkylammonium salts of 2-amino-4-nitrobenzoic acid: crystal structures and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    James L. Wardell

    2016-12-01

    all ammonium-N—H and carboxylate O atoms leads to a three-dimensional architecture; additional C—H...O(nitro interactions contribute to the packing. The Hirshfeld surface analysis confirms the importance of the hydrogen bonding in both crystal structures. Indeed, O...H/H...O interactions contribute nearly 50% to the entire Hirshfeld surface in (I.

  18. Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria.

    Science.gov (United States)

    Arakaki, Atsushi; Yamagishi, Ayana; Fukuyo, Ayumi; Tanaka, Masayoshi; Matsunaga, Tadashi

    2014-08-01

    Magnetotactic bacteria synthesize magnetosomes comprised of membrane-enveloped single crystalline magnetite (Fe3 O4 ). The size and morphology of the nano-sized magnetite crystals (Mms (Mms5, Mms6, Mms7, and Mms13), was previously isolated from the surface of cubo-octahedral magnetite crystals in Magnetospirillum magneticum strain AMB-1. Analysis of an mms6 gene deletion mutant suggested that the Mms6 protein plays a major role in the regulation of magnetite crystal size and morphology. In this study, we constructed various mms gene deletion mutants and characterized the magnetite crystals formed by the mutant strains. Comparative analysis showed that all mms genes were involved in the promotion of crystal growth in different manners. The phenotypic characterization of magnetites also suggested that these proteins are involved in controlling the geometries of the crystal surface structures. Thus, the co-ordinated functions of Mms proteins regulate the morphology of the cubo-octahedral magnetite crystals in magnetotactic bacteria. © 2014 John Wiley & Sons Ltd.

  19. Existence of quasi-stationary neutron and x-ray states near the surface of a deformed single crystal

    CERN Document Server

    Iolin, E

    1999-01-01

    The problem of x-ray or neutron multiply internally reflected inside a bent single crystal plate (Bragg geometry) is considered. It is found that such multiple reflections lead to the existence of quasi-stationary (QS) states. QS states are discrete and correspond to the resonance of motion of the tie point between the front surface and a 'turning place' inside a single crystal. (author)

  20. CHARACTERIZATION OF SURFACE OF THE (010 FACE OF BORAX CRYSTALS USING EX SITU ATOMIC FORCE MICROSCOPY (AFM:

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available The surface topology of borax crystals grown at a relative supersaturation of 0.21 has been investigated using ex situ atomic force microscopy (AFM. It was found that the cleavage of borax crystals along the (010 face planes has features of the cleavage of layered compounds, exhibiting cleavage steps of low heights. The step heights of the cleavage of the (010 face of borax crystal are from one unit cell to three unit cells of this face.   Keywords: AFM, cleavage, borax.

  1. Photo-driven directional motion of droplets on the surface of a liquid crystal doped with photochromic azobenzene: theory

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Kazuhiko; Tachiya, M [National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565 (Japan)

    2005-12-14

    Recently, photo-driven directional motion of glycerol droplets on the surface of a liquid crystal doped with photochromic azobenzene derivatives has been reported. We present a theoretical model for this phenomenon. The motion of droplets is induced by a gradient in surface tension, which is produced by the combined effect of photo-isomerization and diffusion of surface azobenzenes. The theoretical relation between the surface tension and the surface concentration of cis isomers is proposed. The experimentally observed depletion zone of droplets can be reasonably well explained in terms of diffusion of droplets in the presence of the gradient in the surface tension.

  2. The determination of the surface potential for the CdxHg1-xTe crystals and the V-CdxHg1-xTe and Ni-V-CdxMg1-xTe structures

    International Nuclear Information System (INIS)

    Veliyulin, Eh.I.; Ragimova, R.A.; Mamedov, A.A.

    1996-01-01

    Surface potential of semiconductor crystals n-Cd x Hg 1-x Te (unannealed and annealed in mercury vapors) and of the structures V-Cd x Hg 1-x Te, Ni-V-Cd x Hg 1-x Te has been defined using spectroscopy of weak-field electric reflection. It is shown that a deep penetration of vanadium atoms in near the surface region of the crystal occurs in the structures on the basis of unannealed Cd x Hg 1-x Te. 1 ref.; 4 figs

  3. Biosensors based on Bloch surface waves in one-dimensional photonic crystal with graphene nanolayers.

    Science.gov (United States)

    Baghbadorani, H Kaviani; Barvestani, J; Entezar, S Roshan

    2017-01-20

    In biosensors research, much effort has been made to achieve high sensitivity to detect lower concentrations of analyte in a solution by testing different kinds of materials. In this paper, we present a biosensor based on Bloch surface waves made of photonic crystal (PhC) including graphene nanolayers under the Kretschmann configuration. The band structures, surface modes, reflectivity, and sensitivity of the PhC biosensor are calculated by the transfer matrix method and results are compared with those of the structure without graphene layers. Our investigations show that the angular sensitivity of the biosensor considerably increases in the presence of the graphene layers. Moreover, we study the effect of the number of the graphene layers placed on the surface of the biosensor on the performance of our proposed biosensor. The results reveal that the sensitivity of the biosensor is enhanced by increasing the number of graphene layers on the surface due to the π-stacking interactions between graphene's honeycomb cells and the carbon rings in biomolecules. Furthermore, our results show that the phase sensitivity is higher than the angular sensitivity, which can promote the accuracy of the calculations.

  4. Crystal Structure of Neurotropism-Associated Variable Surface Protein 1 (VSP1) of Borrelia Turicatae

    Energy Technology Data Exchange (ETDEWEB)

    Lawson,C.; Yung, B.; Barbour, A.; Zuckert, W.

    2006-01-01

    Vsp surface lipoproteins are serotype-defining antigens of relapsing fever spirochetes that undergo multiphasic antigenic variation to allow bacterial persistence in spite of an immune response. Two isogenic serotypes of Borrelia turicatae strain Oz1 differ in their Vsp sequences and in disease manifestations in infected mice: Vsp1 is associated with the selection of a neurological niche, while Vsp2 is associated with blood and skin infection. We report here crystal structures of the Vsp1 dimer at 2.7 and 2.2 Angstroms. The structures confirm that relapsing fever Vsp proteins share a common helical fold with OspCs of Lyme disease-causing Borrelia. The fold features an inner stem formed by highly conserved N and C termini and an outer 'dome' formed by the variable central residues. Both Vsp1 and OspC structures possess small water-filled cavities, or pockets, that are lined largely by variable residues and are thus highly variable in shape. These features appear to signify tolerance of the Vsp-OspC fold for imperfect packing of residues at its antigenic surface. Structural comparison of Vsp1 with a homology model for Vsp2 suggests that observed differences in disease manifestation may arise in part from distinct differences in electrostatic surface properties; additional predicted positively charged surface patches on Vsp2 compared to Vsp1 may be sufficient to explain the relative propensity of Vsp2 to bind to acidic glycosaminoglycans.

  5. Subwavelength waveguiding of surface phonons in pillars-based phononic crystal

    Directory of Open Access Journals (Sweden)

    Mahmoud Addouche

    2014-12-01

    Full Text Available In this study, we theoretically analyze the guiding of surface phonons through locally resonant defects in pillars-based phononic crystal. Using finite element method, we simulate the propagation of surface phonons through a periodic array of cylindrical pillars deposited on a semi-infinite substrate. This structure displays several band gaps, some of which are due to local resonances of the pillar. By introducing pillar defects inside the phononic structure, we show the possibility to perform a waveguiding of surface phonons based on two mechanisms that spatially confine the elastic energy in very small waveguide apertures. A careful choice of the height of the defect pillars, allows to shift the frequency position of the defect modes inside or outside the locally resonant band gaps and create two subwavelenght waveguiding mechanisms. The first is a classical mechanism that corresponds to the presence of the defect modes inside the locally resonant band gap. The seconde is due to the hybridation between the phonon resonances of defect modes and the surface phonons of the semi-infinite homogenous medium. We discuss the nature and the difference between both waveguiding phenomena.

  6. Growth, structure, Hirshfeld surface and spectroscopic properties of 2-amino-4-hydroxy-6-methylpyrimidinium-2,3-pyrazinedicorboxylate single crystal

    Science.gov (United States)

    Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Rodrigues, Vítor Hugo Nunes; Ahmad, Shabbir

    2018-03-01

    The present work is focused on the crystal structure, vibrational spectroscopy and DFT calculations of hydrogen bonded 2,3-pyrazinedicorboxylic acid and 2-amino-4-hydroxy-6-methylpyrimidine (PDCA-.AHMP+) crystal. The crystal structure has been determined using single crystal X-ray diffraction analysis which shows that the crystal belongs to monoclinic space group P21/n. The PDCA-.AHMP+ crystal has been characterized by FTIR, FT-Raman and FT-NMR spectroscopic techniques. The FTIR and FT-Raman spectra of the complex have unique spectroscopic feature as compared with those of the starting material to confirm salt formation. The theoretical vibrational studies have been performed to understand the modes of the vibrations of asymmetric unit of the complex by DFT methods. Hirschfeld surface and 2D fingerprint plots analyses were carried out to investigate the intermolecular interactions and its contribution in the building of PDCA-.AHMP+ crystal. The experimental and simulated 13C and 1H NMR studies have assisted in structural analysis of PDCA-.AHMP+ crystal. The electronic spectroscopic properties of the complex were explored by the experimental as well as theoretical electronic spectra simulated using TD-DFT/IEF-PCM method at B3LYP/6-311++G (d,p) level of theory. In addition, frontier molecular orbitals, molecular electrostatic potential map (MEP) and nonlinear optical (NLO) properties using DFT method have been also presented.

  7. Structure revision of aspergicin by the crystal structure of aspergicine, a co-occurring isomer produced by co-culture of two mangrove epiphytic fungi.

    Science.gov (United States)

    Zhu, Feng; Li, Jie-Sen; Xie, Wu-Cheng; Shi, Jun-Jun; Xu, Feng; Song, Zhao-Feng; Liu, Yi-Lu

    2017-10-01

    The structure of aspergicin (1), an antibacterial alkaloid produced by co-culture of two marine-derived mangrove epiphytic fungi, were revised by the co-occurring isomer named as aspergicine (2), whose structure was determined on the basis of spectroscopic analysis and X-ray crystallography.

  8. Crystal structures and Hirshfeld surfaces of two 1,3-benzoxathiol-2-one derivatives

    Directory of Open Access Journals (Sweden)

    Eliza de L. Chazin

    2018-01-01

    Full Text Available The crystal structures of 6-methoxy-1,3-benzoxathiol-2-one, C9H8O3S, (I, and 2-oxo-1,3-benzoxathiol-6-yl acetate, C9H6O4S, (II, are described. Compound (I is almost planar (r.m.s. deviation for the non-H atoms = 0.011 Å, whereas (II shows a substantial twist between the fused-ring system and the acetate substituent [dihedral angle = 74.42 (3°]. For both structures, the bond distances in the heterocyclic ring suggest that little if any conjugation occurs. In the crystal of (I, C—H...O hydrogen bonds link the molecules into [1-11] chains incorporating alternating R22(8 and R22(12 inversion dimers. The extended structure of (II features C(7 [201] chains linked by C—H...O hydrogen bonds, with further C—H...O bonds and weak π–π stacking interactions connecting the chains into a three-dimensional network. Hirshfeld fingerprint analyses for (I and (II are presented and discussed.

  9. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    Energy Technology Data Exchange (ETDEWEB)

    Pinkhasova, Polina; Chen, Hui; Du, Henry, E-mail: hdu@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030 (United States); Kanka, Jiri [Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberska 57, 182 31 Prague (Czech Republic); Mergo, Pawel [Department of Optical Fibres Technology, Maria Curie-Sklodovska University, PI. M. Currie-Sklodowskiej 5, 20-031 Lublin (Poland)

    2015-02-16

    Core-shell nanotags that are active in surface-enhanced Raman scattering (SERS) and entrapped with thiocyanate (SCN) label molecules were immobilized in the air channels of suspended-core photonic crystal fiber (PCF) to impart quantitative capacity to SERS-based PCF optofluidic sensing platform. The Raman intensity of Rhodamine 6G increases with concentration, whereas the intensity of SCN remains constant when measured using this platform. The signal from the SCN label can be used as an internal reference to establish calibration for quantitative measurements of analytes of unknown concentrations. The long optical path-length PCF optofluidic platform integrated with SERS-active core-shell nanotags holds significant promise for sensitive quantitative chem/bio measurements with the added benefit of small sampling volume. The dependence of SERS intensity on the nanotag coverage density and PCF length was interpreted based on numerical-analytical simulations.

  10. Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings.

    Science.gov (United States)

    Ji, Zhichao; Zhang, Xinzheng; Shi, Bin; Li, Wei; Luo, Weiwei; Drevensek-Olenik, Irena; Wu, Qiang; Xu, Jingjun

    2016-01-15

    We report on the liquid crystal (LC) alignment induced by sparse polymer ribbons fabricated by the two-photon polymerization-based direct laser writing method. Each ribbon is fabricated by a single scan of the laser through the photoresist and possesses surface relief gratings on both sides. The relief gratings are caused by the optical interference between the incident and reflected laser beams. With the aid of these relief gratings, LC molecules can be well aligned along the selected direction of the ribbons. LC cells with the Z-shaped and checkerboard-type microstructures are constructed based on the sparse out-of-plane polymeric ribbons. Our results show that with such polymer ribbons a compartmentalized LC alignment in the arbitrary microstructures can be realized.

  11. Surface Plasmon Resonance Sensor Based on Polymer Photonic Crystal Fibers with Metal Nanolayers

    Directory of Open Access Journals (Sweden)

    Jian-Quan Yao

    2013-01-01

    Full Text Available A large-mode-area polymer photonic crystal fiber made of polymethyl methacrylate with the cladding having only one layer of air holes near the edge of the fiber is designed and proposed to be used in surface plasmon resonance sensors. In such sensor, a nanoscale metal film and analyte can be deposited on the outer side of the fiber instead of coating or filling in the holes of the conventional PCF, which make the real time detection with high sensitivity easily to realize. Moreover, it is relatively stable to changes of the amount and the diameter of air holes, which is very beneficial for sensor fabrication and sensing applications. Numerical simulation results show that under the conditions of the similar spectral and intensity sensitivity of 8.3 × 10−5–9.4 × 10−5 RIU, the confinement loss can be increased dramatically.

  12. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    International Nuclear Information System (INIS)

    Yu, Xia; Zhang, Ying; Pan, Shanshan; Shum, Ping; Yan, Min; Leviatan, Yehuda; Li, Changming

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensitivity as high as 5500 nm/RIU (refractive index unit) can be achieved in the proposed structure. Compared with the entirely coated structure, the selectively coated sensor design demonstrates narrower resonance spectral width. Moreover, the greater resonance depth can improve the sensing performance in terms of signal to noise ratio (SNR). The improvements in spectral width and SNR can both contribute to a better detection limit for this refractive index sensor

  13. Step-height standards based on the rapid formation of monolayer steps on the surface of layered crystals

    Energy Technology Data Exchange (ETDEWEB)

    Komonov, A.I. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Prinz, V.Ya., E-mail: prinz@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Seleznev, V.A. [Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences (ISP SBRAS), pr. Lavrentieva 13, Novosibirsk 630090 (Russian Federation); Kokh, K.A. [Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences (IGM SB RAS), pr. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Shlegel, V.N. [Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (NIIC SB RAS), pr. Lavrentieva 3, Novosibirsk 630090 (Russian Federation)

    2017-07-15

    Highlights: • Easily reproducible step-height standard for SPM calibrations was proposed. • Step-height standard is monolayer steps on the surface of layered single crystal. • Long-term change in surface morphology of Bi{sub 2}Se{sub 3} and ZnWO{sub 4} was investigated. • Conducting surface of Bi{sub 2}Se{sub 3} crystals appropriate for calibrating STM. • Ability of robust SPM calibrations under ambient conditions were demonstrated. - Abstract: Metrology is essential for nanotechnology, especially for structures and devices with feature sizes going down to nm. Scanning probe microscopes (SPMs) permits measurement of nanometer- and subnanometer-scale objects. Accuracy of size measurements performed using SPMs is largely defined by the accuracy of used calibration measures. In the present publication, we demonstrate that height standards of monolayer step (∼1 and ∼0.6 nm) can be easily prepared by cleaving Bi{sub 2}Se{sub 3} and ZnWO{sub 4} layered single crystals. It was shown that the conducting surface of Bi{sub 2}Se{sub 3} crystals offers height standard appropriate for calibrating STMs and for testing conductive SPM probes. Our AFM study of the morphology of freshly cleaved (0001) Bi{sub 2}Se{sub 3} surfaces proved that such surfaces remained atomically smooth during a period of at least half a year. The (010) surfaces of ZnWO{sub 4} crystals remained atomically smooth during one day, but already two days later an additional nanorelief of amplitude ∼0.3 nm appeared on those surfaces. This relief, however, did not further grow in height, and it did not hamper the calibration. Simplicity and the possibility of rapid fabrication of the step-height standards, as well as their high stability, make these standards available for a great, permanently growing number of users involved in 3D printing activities.

  14. Photonic crystal structures on nonflat surfaces fabricated by dry lift-off soft UV nanoimprint lithography

    International Nuclear Information System (INIS)

    Sun, Tangyou; Xu, Zhimou; Xu, Haifeng; Zhao, Wenning; Wu, Xinghui; Liu, Sisi; Ma, Zhichao; He, Jian; Liu, Shiyuan; Peng, Jing

    2013-01-01

    The surface nonflatness induced from the material itself or the production atmosphere can lead to serious non-uniformity consequences in nanoimprint lithography (NIL) which is used for providing a low cost and high throughput nano-fabrication process. In this paper, soft UV NIL (SUNIL) processes are used for photonic crystal (PC) pattern transfer of a GaN-based light-emitting diode (LED) with patterned sapphire substrate (PSS). The results reveal a significant incompatibility between the conventional SUNIL and the nonflat p-GaN surface. Ellipse-shaped rather than circle-shaped PC structure is obtained on the p-GaN surface due the deformation of the soft mold in nonflat NIL. A dry lift-off (DLO) SUNIL is proposed to overcome the non-uniformity issue in nonflat NIL as well as the collapse problem of the free-standing pillar-shaped resist in wet lift-off. The photoluminescence enhancements of the LED fabricated by the DLO SUNIL method compared to those with conventional SUNIL and unpatterned LED are 1.41 fold and 3.48 fold, respectively. Further study shows that the DLO SUNIL is applicable in the fabrication of the PC structure with tunable duty cycle via one single initial PC mold. (paper)

  15. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    Science.gov (United States)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  16. Quartz Crystal Microbalance Model for Quantitatively Probing the Deformation of Adsorbed Particles at Low Surface Coverage.

    Science.gov (United States)

    Gillissen, Jurriaan J J; Jackman, Joshua A; Tabaei, Seyed R; Yoon, Bo Kyeong; Cho, Nam-Joon

    2017-11-07

    Characterizing the deformation of nanoscale, soft-matter particulates at solid-liquid interfaces is a demanding task, and there are limited experimental options to perform quantitative measurements in a nonperturbative manner. Previous attempts, based on the quartz crystal microbalance (QCM) technique, focused on the high surface coverage regime and modeled the adsorbed particles as a homogeneous film, while not considering the coupling between particles and surrounding fluid and hence resulting in an underestimation of the known particle height. In this work, we develop a model for the hydrodynamic coupling between adsorbed particles and surrounding fluid in the limit of a low surface coverage, which can be used to extract shape information from QCM measurement data. We tackle this problem by using hydrodynamic simulations of an ellipsoidal particle on an oscillating surface. From the simulation results, we derived a phenomenological relation between the aspect ratio r of the absorbed particles and the slope and intercept of the line that fits instantaneous, overtone-dependent QCM data on (δ/a, -Δf/n) coordinates where δ is the viscous penetration depth, a is the particle radius, Δf is the QCM frequency shift, and n is the overtone number. The model was applied to QCM measurement data pertaining to the adsorption of 34 nm radius, fluid-phase and gel-phase liposomes onto a titanium oxide-coated surface. The osmotic pressure across the liposomal bilayer was varied to induce shape deformation. By combining these results with a membrane bending model, we determined the membrane bending energy for the gel-phase liposomes, and the results are consistent with literature values. In summary, a phenomenological model is presented and validated in order to show for the first time that QCM experiments can quantitatively measure the deformation of adsorbed particles at low surface coverage.

  17. Surface modification of nanoporous anodic alumina photonic crystals for photocatalytic applications

    Science.gov (United States)

    Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel

    2018-01-01

    Herein, we report on the development of a rationally designed composite photocatalyst material by combining nanoporous anodic alumina-rugate filters (NAA-RFs) with photo-active layers of titanium dioxide (TiO2). NAA-RFs are synthesised by sinusoidal pulse anodisation and subsequently functionalised with TiO2 by sol-gel method to provide the photonic structures with photocatalytic properties. We demonstrate that the characteristic photonic stopband (PSB) of the surface-modified NAA-RFs can be precisely tuned across the UV-visible-NIR spectrum to enhance the photon-toelectron conversion of TiO2 by `slow photon effect'. We systematically investigate the effect of the anodisation parameters (i.e. anodisation period and pore widening time) on the position of the PSB of NAA-RFs as well as the photocatalytic performances displayed by these photonic crystal structures. When the edges of the PSB of surfacemodified NAA-RFs are positioned closely to the absorption peak of the model organic dye (i.e. methyl orange - MO), the photocatalytic performance of the system to degrade these molecules is enhanced under simulated solar light irradiation due to slow photon effect. Our investigation also reveals that the photocatalytic activity of surface-modified NAA-RFs is independent of slow photon effect and enhances with increasing period length (i.e. increasing anodisation period) of the photonic structures when there is no overlap between the PSB and the absorption peak of MO. This study therefore provides a rationale towards the photocatalytic enhancement of photonic crystals by a rational design of the PSB, creating new opportunities for the future development of high-performance photocatalysts.

  18. Surface topography and crystal and domain structures of films of ferroelectric copolymer of vinylidene difluoride and trifluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Kochervinskii, V. V., E-mail: kochval@mail.ru [Karpov Institute of Physical Chemistry, Branch (Russian Federation); Kiselev, D. A.; Malinkovich, M. D. [National University of Science and Technology MISiS (Russian Federation); Korlyukov, A. A.; Lokshin, B. V. [Russian Academy of Sciences, Nesmeyanov Institute of Organoelement Compounds (Russian Federation); Volkov, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Kirakosyan, G. A. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Pavlov, A. S. [Karpov Institute of Physical Chemistry, Branch (Russian Federation)

    2017-03-15

    The crystallization of a copolymer from a solution at room temperature is found to lead to the formation of a metastable structure, characterized by the coexistence of ferroelectric and paraelectric phases. The fraction of the latter decreases after annealing above the Curie point. Atomic force microscopy (AFM) has revealed a difference in the surface topographies between the films contacting with air and the films contacting with a glass substrate. The microstructure of copolymer chains has been investigated by {sup 19}F NMR spectroscopy. The chain fragments with “defect” attached monomeric units are ejected to the surface. The character of the ferroelectric domains formed during crystallization and their size distribution are analyzed.

  19. Optimization of methanol crystallization for highly efficient separation of palmitic acid from palm fatty acid mixture using response surface methodology

    Directory of Open Access Journals (Sweden)

    A. A.W. Japir

    2018-01-01

    Full Text Available The objective of the current study was to develop parameters for the separation of palmitic acid (PA from a crude palm oil saturated fatty acid (SFAs mixture by using the methanol crystallization method. The conditions of methanol crystallization were optimized by the response surface methodology (RSM with the D-optimal design. The procedure of developing the solvent crystallization method was based on various different parameters. The fatty acid composition was carried out using a gas chromatography flame ionization detector (GC-FID as fatty acid methyl esters. The highest percentage of SFAs was more than 96% with the percentage yield of 87.5% under the optimal conditions of fatty acids-to-methanol ratio of 1: 20 (w/v, the crystallization temperature of -15 °C, and the crystallization time of 24 hours, respectively. The composition of separated SFAs in the solid fraction contains 96.7% of palmitic acid (C16:0 as a dominant component and 3.3% of stearic acid (C18:0. The results showed that utilizing methanol as a crystallization solvent is recommended because of its high efficiency, low cost, stability, availability, comparative ease of recovery and its ability to form needle-like crystals which have good filtering and washing characteristics.

  20. Optimization of methanol crystallization for highly efficient separation of palmitic acid from palm fatty acid mixture using response surface methodology

    International Nuclear Information System (INIS)

    Japir, A.A.W.; Salimon, J.; Derawi, D.; Yahaya, B.H.; Jamil, M.S.M.; Yusop, M.R.

    2017-01-01

    The objective of the current study was to develop parameters for the separation of palmitic acid (PA) from a crude palm oil saturated fatty acid (SFAs) mixture by using the methanol crystallization method. The conditions of methanol crystallization were optimized by the response surface methodology (RSM) with the D-optimal design. The procedure of developing the solvent crystallization method was based on various different parameters. The fatty acid composition was carried out using a gas chromatography flame ionization detector (GC-FID) as fatty acid methyl esters. The highest percentage of SFAs was more than 96% with the percentage yield of 87.5% under the optimal conditions of fatty acids-to-methanol ratio of 1: 20 (w/v), the crystallization temperature of -15 °C, and the crystallization time of 24 hours, respectively. The composition of separated SFAs in the solid fraction contains 96.7% of palmitic acid (C16:0) as a dominant component and 3.3% of stearic acid (C18:0). The results showed that utilizing methanol as a crystallization solvent is recommended because of its high efficiency, low cost, stability, availability, comparative ease of recovery and its ability to form needle-like crystals which have good filtering and washing characteristics. [es

  1. Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); FT Innovations BV, Braamsluiper 1, 5831 PW Boxmeer (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); LayerWise NV, Kapeldreef 60, Leuven (Belgium); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 PB 2450, 3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Department of Rheumatology, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-30

    Porous titanium biomaterials manufactured using additive manufacturing techniques such as selective laser melting are considered promising materials for orthopedic applications where the biomaterial needs to mimic the properties of bone. Despite their appropriate mechanical properties and the ample pore space they provide for bone ingrowth and osseointegration, porous titanium structures have an intrinsically bioinert surface and need to be subjected to surface bio-functionalizing procedures to enhance their in vivo performance. In this study, we used a specific anodizing process to build a hierarchical oxide layer on the surface of porous titanium structures made by selective laser melting of Ti6Al4V ELI powder. The hierarchical structure included both nanotopographical features (nanotubes) and micro-features (micropits). After anodizing, the biomaterial was heat treated in Argon at different temperatures ranging between 400 and 600 °C for either 1 or 2 h to improve its bioactivity. The effects of applied heat treatment on the crystal structure of TiO{sub 2} nanotubes and the nanotopographical features of the surface were studied using scanning electron microscopy and X-ray diffraction. It was shown that the transition from the initial crystal structure, i.e. anatase, to rutile occurs between 500 and 600 °C and that after 2 h of heat treatment at 600 °C the crystal structure is predominantly rutile. The nanotopographical features of the surface were found to be largely unchanged for heat treatments carried out at 500 °C or below, whereas they were partially or largely disrupted after heat treatment at 600 °C. The possible implications of these findings for the bioactivity of porous titanium structures are discussed.

  2. Study of the surface crystallization and resistance to dissolution of niobium phosphate glasses for nuclear waste immobilization

    International Nuclear Information System (INIS)

    Vieira, Heveline

    2008-01-01

    The surface crystallization and the dissolution rate of three phosphate glass compositions containing different amounts of niobium oxide were studied. The glasses were named Nb30, Nb37, and Nb44 according to the nominal content of niobium oxide in the glass composition. The three compositions were evaluated keeping the P 2 O 5 /K 2 O ratio constant and varying the amount of Nb 2 O 5 . These glasses were produced by melting appropriate chemical compounds at 1500 deg C for 0.5 hour. The crystalline phases which were nucleated on the glass surface after heat treatment were determined by X-ray diffraction. The crystalline structures depend on the amount of niobium oxide in the glass composition. The crystal morphologies were observed by using an optical microscope, and their characteristics are specific for each kind of crystalline phase. The crystal growth rate and the surface nuclei density were determined for each glass composition, and they depend on each crystalline phase nucleated on the surface. From the differential thermal analysis curves it was determined that the Nb44 glass containing 46.5 mol por cent of niobium oxide is the most thermally stable against crystallization when compared to the Nb30 and Nb37 glasses. According to the activation energies determined for crystal growth on the surface of each glass type, the Nb44 glass can also be considered the most resistant one against crystallization. The dissolution rate for the Nb44 glass after 14 days immersed in an aqueous solution with pH equals to 7 at 90 deg C is the lowest (9.0 x 10 -7 g. cm -2 . day -1 ) when compared to the other two glass compositions. The dissolution rates in acidic and neutral solutions of all studied glasses meet the international standards for materials which can be used in the immobilization of nuclear wastes. (author)

  3. Surface plasmon-enhanced amplified spontaneous emission from organic single crystals by integrating graphene/copper nanoparticle hybrid nanostructures.

    Science.gov (United States)

    Li, Yun-Fei; Feng, Jing; Dong, Feng-Xi; Ding, Ran; Zhang, Zhen-Yu; Zhang, Xu-Lin; Chen, Yang; Bi, Yan-Gang; Sun, Hong-Bo

    2017-12-14

    Organic single crystals have attracted great attention because of their advantages such as high carrier mobility and high thermal stability. Amplified spontaneous emission (ASE) is an important parameter for the optoelectronic applications of organic single crystals. Here, surface plasmon-enhanced ASE from the organic single crystals has been demonstrated by integrating graphene/copper nanoparticle (Cu NP) hybrid nanostructures. Graphene is fully accommodating to the topography of Cu NPs by the transfer-free as-grown method for the configuration of the hybrid nanostructures, which makes full electrical contact and strong interactions between graphene and the local electric field of surface plasmon resonances. The enhanced localized surface plasmon resonances induced by the hybrid nanostructures result in an enhanced intensity and lowered threshold of ASE from the organic single crystals. Moreover, the as-grown graphene sheets covering fully and uniformly on the Cu NPs act as a barrier against oxidation, and results in an enhanced stability of the fluorescence from the crystals.

  4. Crystal Orientation and Electrical Properties of Tin Oxide Transparent Conducting Films Deposited on Rutile Surface

    Science.gov (United States)

    Sawada, Y.; Hashimoto, Y.; Hoshi, Y.; Uchida, T.; Kobayashi, S.; Sun, L.; Yue, B.

    2017-10-01

    Thin films of tin oxide (SnO2) without doping are attractive transparent conducting film since environmentally unfavorable elements of antimony or fluorine are eliminated. Tin oxide films without doping were fabricated very cheaply on (001) and (100) planes of single crystal of rutile (TiO2) by spray chemical vapor deposition (mist CVD). The film deposited on rutile (001) surface was poorly epitaxial (double domain) but with higher mobility (24 cm2 V-1 s-1) and lower resistivity (1.6×10-3 Ω cm) than that deposited on glass substrate (16 cm2 V-1 s-1 and 2.4×10-3 Ω cm) for reference. Deposition on rutile (100) surface resulted in better epitaxial growth (single domain). The mobility (39 cm2 V-1 s-1) and the carrier electron density (2.7×1020 cm-3) were much higher. The resistivity (6.2×10-4 Ω cm) was compatible with those doped with antimony or fluorine and will be the lowest among tin oxide films without doping.

  5. Ultracompact 1×4 TM-polarized beam splitter based on photonic crystal surface mode.

    Science.gov (United States)

    Jiang, Bin; Zhang, Yejin; Wang, Yufei; Liu, Anjin; Zheng, Wanhua

    2012-05-01

    We provide an improved surface-mode photonic crystal (PhC) T-junction waveguide, combine it with an improved PhC bandgap T-junction waveguide, and then provide an ultracompact 1×4 TM-polarized beam splitter. The energy is split equally into the four output waveguides. The maximal transmission ratio of each output waveguide branch equals 24.7%, and the corresponding total transmission ratio of the ultracompact 1×4 beam splitter equals 98.8%. The normalized frequency of maximal transmission ratio is 0.397(2πc/a), and the bandwidth of the ultracompact 1×4 TM-polarized beam splitter is 0.0106(2πc/a). To the best of our knowledge, this is the first time such a high-efficiency 1×4 beam splitter exploiting the nonradiative surface mode as a guided mode has been proposed. Although we only employed a 1×4 beam splitter, our design can easily be extended to other 1×n beam splitters.

  6. Surface acoustic waves in two dimensional phononic crystal with anisotropic inclusions

    Directory of Open Access Journals (Sweden)

    Ketata H.

    2012-06-01

    Full Text Available An analysis is given to the band structure of the two dimensional solid phononic crystal considered as a semi infinite medium. The lattice includes an array of elastic anisotropic materials with different shapes embedded in a uniform matrix. For illustration two kinds of phononic materials are assumed. A particular attention is devoted to the computational procedure which is mainly based on the plane wave expansion (PWE method. It has been adapted to Matlab environment. Numerical calculations of the dispersion curves have been achieved by introducing particular functions which transform motion equations into an Eigen value problem. Significant improvements are obtained by increasing reasonably the number of Fourier components even when a large elastic mismatch is assumed. Such approach can be generalized to different types of symmetry and permit new physical properties as piezoelectricity to be added. The actual semi infinite phononic structure with a free surface has been shown to support surface acoustic waves (SAW. The obtained dispersion curves reveal band gaps in the SAW branches. It has been found that the influence, of the filling factor and anisotropy on their band gaps, is different from that of bulk waves.

  7. Crystal Structure of West Nile Virus Envelope Glycoprotein Reveals Viral Surface Epitopes

    Energy Technology Data Exchange (ETDEWEB)

    Kanai,R.; Kar, K.; Anthony, K.; Gould, L.; Ledizet, M.; Fikrig, E.; Marasco, W.; Koski, R.; Modis, Y.

    2006-01-01

    West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.

  8. Atomic scale study of surface orientations and energies of Ti 2 O 3 crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Meng [Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, Guangdong 518055, China; Wang, Zhiguo [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, People' s Republic of China; Wang, Chongmin [Environmental Molecular Science Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, USA; Zheng, Jianming [Energy and Environmental Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, USA

    2017-10-30

    For nanostructured particles, the faceting planes and their terminating chemical species are two critical factors that govern the chemical behavior of the particle. The surface atomistic structure and termination of the Ti2O3 crystals were analyzed using atomic-scale aberration-corrected scanning transmission electron microscopy (STEM) combining with density functional theory (DFT) calculations. STEM imaging reveals that the Ti2O3 crystal are most often faceted along (001), (012), (-114) and (1-20) planes. DFT calculation indicates that the (012) surface with TiO-termination have the lowest cleavage energy and correspondingly the lowest surface energy, indicating that (012) will be the most stable and prevalent surfaces in Ti2O3 nanocrystals. These observations provide insights for exploring the interfacial process involving Ti2O3 nanoparticles.

  9. Preparation and characterization of ethylenediamine and cysteamine plasma polymerized films on piezoelectric quartz crystal surfaces for a biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Mutlu, Selma [Department of Chemical Engineering, Hacettepe University, Beytepe Campus, 06800 Ankara (Turkey)], E-mail: smselma@hacettepe.edu.tr; Coekeliler, Dilek [Plasma Aided Bioengineering and Biotechnology Research Group(PABB), Faculty of Engineering, Hacettepe University, Beytepe Campus, 06800 Ankara (Turkey); Shard, Alex [Department of Engineering Materials, The University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD (United Kingdom); Goktas, Hilal [Physics Department, Canakkale Onsekiz Mart University, 17100 Canakkale (Turkey); Ozansoy, Berna [Department of Chemical Engineering, Hacettepe University, Beytepe Campus, 06800 Ankara (Turkey); Mutlu, Mehmet [Plasma Aided Bioengineering and Biotechnology Research Group(PABB), Faculty of Engineering, Hacettepe University, Beytepe Campus, 06800 Ankara (Turkey)

    2008-01-30

    This paper describes a method for the modification of quartz crystal surfaces to be used as a transducer in biosensors that allow recognition and quantification of certain biomolecules (antibodies, enzymes, proteins, etc). Quartz crystal sensors were modified by a plasma based electron beam generator in order to detect the level of the toxin histamine within biological liquids (blood, serum) and food (wine, cheese, fish etc.). Cysteamine and ethylenediamine were used as precursors in the plasma. After each modification step, the layers on the quartz crystal were characterized by frequency measurements. Modified surfaces were also characterized by contact angle, X-ray photoelectron spectroscopy and atomic force microscopy to determine the physical and chemical characteristics of the surfaces after each modification. Finally, the performance of the sensors were tested by the response to histamine via frequency shifts. The frequency shifts of the sensors prepared by plasma polymerization of ethylenediamine and cysteamine were approximately 3230 Hz and 5630 Hz, respectively, whereas the frequency change of the unmodified crystal surface was around 575 Hz.

  10. Preparation and characterization of ethylenediamine and cysteamine plasma polymerized films on piezoelectric quartz crystal surfaces for a biosensor

    International Nuclear Information System (INIS)

    Mutlu, Selma; Coekeliler, Dilek; Shard, Alex; Goktas, Hilal; Ozansoy, Berna; Mutlu, Mehmet

    2008-01-01

    This paper describes a method for the modification of quartz crystal surfaces to be used as a transducer in biosensors that allow recognition and quantification of certain biomolecules (antibodies, enzymes, proteins, etc). Quartz crystal sensors were modified by a plasma based electron beam generator in order to detect the level of the toxin histamine within biological liquids (blood, serum) and food (wine, cheese, fish etc.). Cysteamine and ethylenediamine were used as precursors in the plasma. After each modification step, the layers on the quartz crystal were characterized by frequency measurements. Modified surfaces were also characterized by contact angle, X-ray photoelectron spectroscopy and atomic force microscopy to determine the physical and chemical characteristics of the surfaces after each modification. Finally, the performance of the sensors were tested by the response to histamine via frequency shifts. The frequency shifts of the sensors prepared by plasma polymerization of ethylenediamine and cysteamine were approximately 3230 Hz and 5630 Hz, respectively, whereas the frequency change of the unmodified crystal surface was around 575 Hz

  11. Extreme UV and X-ray scattering measurements from a rough LiF crystal surface characterized by electron micrography

    DEFF Research Database (Denmark)

    Alehyane; Arbaoui; Barchewitz

    1989-01-01

    XUV and X-ray scattering by a LiF crystal is measured. The angular distribution of the scattered radiation (ADSR) reveals characteristic features, side peaks or asymmetry. The surface of the sample is statistically characterized by a microdensitometer analysis of electron micrographs resolving...

  12. Quartz Crystal Microbalance Investigation of the Structure of Adsorbed Soybean Oil and Methyl Oleate onto Steel Surface

    Science.gov (United States)

    The adsorption of soybean oil (SBO) and methyl oleate (MO) onto steel was investigated using quartz crystal microbalance with dissipation monitoring (QCM-D). Adsorption of both SBO and MO increased with increasing concentrations. At full surface coverage, SBO and MO formed rigid thin films and ach...

  13. Polarization-dependent transverse-stress sensing characters of the gold-coated and liquid crystal filled photonic crystal fiber based on Surface Plasmon Resonance

    Science.gov (United States)

    Liu, Hai; Zhu, Chenghao; Wang, Yan; Tan, Ce; Li, Hongwei

    2018-03-01

    A transverse-stress sensor with enhanced sensitivity based on nematic liquid crystal (NLC) filled photonic crystal fiber (PCF) is proposed and analyzed by using the finite element method (FEM). The central hole of the PCF is infiltrated with NLC material with an adjustable rotation angle to achieve the polarization-dependent wavelength-selective sensing. And the combined use of side-hole structure and Surface Plasmon Resonance (SPR) technology enhanced the transverse-stress sensitivity enormously. Results reveal that the sensor can achieve a high sensitivity based on the polarization filter characteristic at special wavelengths. Besides that, the temperature and the transverse-stress in either direction can be effectively discriminated through dual-parameter demodulation method by adjusting the rotation angle of the NLC to introduce a new degree of freedom for sensing.

  14. Diffraction efficiency and relative intensity of various x-ray analyzing crystals at Cu/sub Kα/ and Sn/sub Kα/ wavelengths and with two surface conditions

    International Nuclear Information System (INIS)

    Sellick, B.O. Sr.

    1978-01-01

    Crystals used for x-ray analysis come in many useful planes and 2d spacings with great variation in diffraction efficiency. This report compares the diffraction efficiency of 13 different crystals at two wavelengths, Cu/sub Kα/ and Sn/sub Kα/, and with two surface conditions, first with a cleaved or polished surface and second with a ground or sandblasted surface for enhanced diffraction. It is not obvious from published information how to select a crystal for best detection efficiency for a given plane or 2d spacing. The information in this report should help users select a crystal for a specific application

  15. XPS study of Li/Nb ratio in LiNbO{sub 3} crystals. Effect of polarity and mechanical processing on LiNbO{sub 3} surface chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Skryleva, E.A., E-mail: easkryleva@gmail.com; Kubasov, I.V., E-mail: kubasov.ilya@gmail.com; Kiryukhantsev-Korneev, Ph.V., E-mail: kiruhancev-korneev@yandex.ru; Senatulin, B.R., E-mail: borisrs@yandex.ru; Zhukov, R.N., E-mail: rom_zhuk@mail.ru; Zakutailov, K.V., E-mail: zakkonst@gmail.com; Malinkovich, M.D., E-mail: malinkovich@yandex.ru; Parkhomenko, Yu.N., E-mail: parkh@rambler.ru

    2016-12-15

    Highlights: • XPS Li/Nb ratio measurement uncertainty in LNbO3 specimens was obtained. • The effect of polarization on surface chemistry was observed only on cleaves. • Li/Nb ratio on positive cleave surface is higher than on negative one. • The positive cleave surface adsorbs fluorine more efficiently than negative one. • Mechanical processing of crystals reduces surface Li/Nb. - Abstract: Different sections of congruent lithium niobate (CLN) crystals have been studied using X-ray photoelectron spectroscopy (XPS). We have developed a method for measuring the lithium-to-niobium atomic ratio Li/Nb from the ratio of the Li1s and Nb4s spectral integral intensities with an overall error of within 8 %. Polarity and mechanical processing affect the Li/Nb ratio on CLN crystal surfaces. The Li/Nb ratio is within the tolerance (0.946 ± 0.074) on the negative cleave surface Z, and there is excess lithium (Li/Nb = 1.25 ± 0.10) on the positive surface. The positive surfaces of the 128° Y cut plates after long exposure to air exhibit LiOH formation indications (obvious lithium excess, higher Li1s spectral binding energy and a wide additional peak in the O1s spectrum produced by nonstructural oxygen). XPS and glow discharge optical electron spectroscopy showed that mechanical processing of differently oriented crystals (X, Z and 128° Y) and different polarities dramatically reduces the Li/Nb ratio. In situ fluorine adsorption experiments revealed the following regularities: fluorine adsorption only occurred on crystal cleaves and was not observed for mechanically processed specimens. Positive cleave surfaces have substantially higher fluorine adsorption capacity compared to negative ones.

  16. Nonreciprocity of spin waves in magnonic crystals created by surface acoustic waves in structures with yttrium iron garnet

    Energy Technology Data Exchange (ETDEWEB)

    Kryshtal, R.G.; Medved, A.V., E-mail: avm@ms.ire.rssi.ru

    2015-12-01

    Experimental results of investigations of nonreciprocity for surface magnetostatic spin waves (SMSW) in the magnonic crystal created by surface acoustic waves (SAW) in yttrium iron garnet films on a gallium gadolinium garnet substrate as without metallization and with aluminum films with different electrical conductivities (thicknesses) are presented. In structures without metallization, the frequency of magnonic gaps is dependent on mutual directions of propagation of the SAW and SMSW, showing nonreciprocal properties for SMSW in SAW – magnonic crystals even with the symmetrical dispersion characteristic. In metalized SAW – magnonic crystals the shift of the magnonic band gaps frequencies at the inversion of the biasing magnetic field was observed. The frequencies of magnonic band gaps as functions of SAW frequency are presented. Measured dependencies, showing the decrease of magnonic gaps frequency and the expansion of the magnonic band gap width with the decreasing of the metal film conductivity are given. Such nonreciprocal properties of the SAW – magnonic crystals are promising for signal processing in the GHz range. - Highlights: • Spin waves nonreciprocity in YIG magnonic crystals with SAW was studied. • SAW was shown to create nonreciprocity for spin waves in YIG–GGG even without metal. • Frequency and width of magnonic band gaps were measured versus metal conductivity. • Conductivity for practical use of spin waves in the structure YIG–metal was defined.

  17. Crystallization and X-ray diffraction analysis of a novel surface-adhesin protein: protein E from Haemophilus influenzae

    International Nuclear Information System (INIS)

    Singh, Birendra; Al Jubair, Tamim; Förnvik, Karolina; Thunnissen, Marjolein M.; Riesbeck, Kristian

    2012-01-01

    Protein E of the respiratory pathogen H. influenzae is a multifunctional adhesin that is involved in bacterial attachment to host epithelium and direct interactions with vitronectin, laminin and plasminogen. The method of crystallization and X-ray data collection for protein E at 1.8 Å is presented. Protein E (PE) is a ubiquitous multifunctional surface protein of Haemophilus spp. and other bacterial pathogens of the Pasteurellaceae family. H. influenzae utilizes PE for attachment to respiratory epithelial cells. In addition, PE interacts directly with plasminogen and the extracellular matrix (ECM) components vitronectin and laminin. Vitronectin is a complement regulator that inhibits the formation of the membrane-attack complex (MAC). PE-mediated vitronectin recruitment at the H. influenzae surface thus inhibits MAC and protects against serum bactericidal activity. Laminin is an abundant ECM protein and is present in the basement membrane that helps in adherence of H. influenzae during colonization. Here, the expression, purification and crystallization of and the collection of high-resolution data for this important H. influenzae adhesin are reported. To solve the phase problem for PE, Met residues were introduced and an SeMet variant was expressed and crystallized. Both native and SeMet-containing PE gave plate-like crystals in space group P2 1 , with unit-cell parameters a = 44, b = 57, c = 61 Å, β = 96°. Diffraction data collected from native and SeMet-derivative crystals extended to resolutions of 1.8 and 2.6 Å, respectively

  18. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions

    Science.gov (United States)

    Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan

    2018-04-01

    The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.

  19. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    International Nuclear Information System (INIS)

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia; Thulin, Petra; Ehrenborg, Ewa; Olivecrona, Thomas; Olivecrona, Gunilla

    2012-01-01

    Highlights: ► Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. ► Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. ► Only monomers of ANGPTL4 are present within THP-1 macrophages. ► Covalent oligomers of ANGPTL4 appear on cell surface and in medium. ► Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPARδ agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  20. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    Energy Technology Data Exchange (ETDEWEB)

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Thulin, Petra; Ehrenborg, Ewa [Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm (Sweden); Olivecrona, Thomas [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Olivecrona, Gunilla, E-mail: Gunilla.Olivecrona@medbio.umu.se [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. Black-Right-Pointing-Pointer Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. Black-Right-Pointing-Pointer Only monomers of ANGPTL4 are present within THP-1 macrophages. Black-Right-Pointing-Pointer Covalent oligomers of ANGPTL4 appear on cell surface and in medium. Black-Right-Pointing-Pointer Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPAR{delta} agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  1. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia

    International Nuclear Information System (INIS)

    Jumat, Muhammad Raihan; Yan, Yan; Ravi, Laxmi Iyer; Wong, Puisan; Huong, Tra Nguyen; Li, Chunwei; Tan, Boon Huan; Wang, De Yun; Sugrue, Richard J.

    2015-01-01

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in the cilia and reduced cilia function. At 5 dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss. - Highlights: • Respiratory syncytial virus (RSV) infects nasal ciliated epithelial cells. • Virus morphogenesis occurs within filamentous projections distinct from cilia. • The RSV N protein was not detected in the cilia at any time during infection. • Trafficking of the F protein into the cilia occurred early in infection. • Presence of the F protein in cilia correlated with impaired cilia function

  2. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia

    Energy Technology Data Exchange (ETDEWEB)

    Jumat, Muhammad Raihan [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Yan, Yan [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Ravi, Laxmi Iyer [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Wong, Puisan [Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510 (Singapore); Huong, Tra Nguyen [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Li, Chunwei [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Tan, Boon Huan [Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510 (Singapore); Wang, De Yun [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Sugrue, Richard J., E-mail: rjsugrue@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)

    2015-10-15

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in the cilia and reduced cilia function. At 5 dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss. - Highlights: • Respiratory syncytial virus (RSV) infects nasal ciliated epithelial cells. • Virus morphogenesis occurs within filamentous projections distinct from cilia. • The RSV N protein was not detected in the cilia at any time during infection. • Trafficking of the F protein into the cilia occurred early in infection. • Presence of the F protein in cilia correlated with impaired cilia function.

  3. Synthetic Hemozoin (β-Hematin) Crystals Nucleate at the Surface of Neutral Lipid Droplets that Control Their Sizes

    Science.gov (United States)

    Ambele, Melvin A.; Sewell, B. Trevor; Cummings, Franscious R.; Smith, Peter J.; Egan, Timothy J.

    2013-01-01

    Emulsions of monopalmitoylglycerol (MPG) and of a neutral lipid blend (NLB), consisting of MPG, monostearoylglycerol, dipalmitoylglycerol, dioleoylglycerol and dilineoylglycerol (4:2:1:1:1), the composition associated with hemozoin from the malaria parasite Plasmodium falciparum, have been used to mediate the formation of β-hematin microcrystals. Transmission electron microscopy (TEM), electron diffraction and electron spectroscopic imaging/electron energy loss spectroscopy (ESI/EELS) have been used to characterize both the lipid emulsion and β-hematin crystals. The latter have been compared with β-hematin formed at a pentanol/aqueous interface and with hemozoin both within P. falciparum parasites and extracted from the parasites. When lipid and ferriprotoporphyrin IX solutions in 1:9 v/v acetone/methanol were thoroughly pre-mixed either using an extruder or ultrasound, β-hematin crystals were found formed in intimate association with the lipid droplets. These crystals resembled hemozoin crystals, with prominent {100} faces. Lattice fringes in TEM indicated that these faces made contact with the lipid surface. The average length of these crystals was 0.62 times the average diameter of NLB droplets and their size distributions were statistically equivalent after 10 min incubation, suggesting that the lipid droplets also controlled the sizes of the crystals. This most closely resembles hemozoin formation in the helminth worm Schistosoma mansoni, while in P. falciparum, crystal formation appears to be associated with the much more gently curved digestive vacuole membrane which apparently leads to formation of much larger hemozoin crystals, similar to those formed at the flat pentanol-water interface. PMID:24244110

  4. MO LCAO approximation in solid state approach for calculations of electronic structure of a crystal surface and chemisorbed molecule

    International Nuclear Information System (INIS)

    Tapilin, V.M.

    1982-01-01

    A scheme of calculation of the electronic structure of a solid state surface and chemisorbed molecules is discussed. The method of the Green's function and MO LCAO approximation are used which permits to perform calculations, taking into account the whole crystal but not its fragment only, with the accuracy adopted by quantum chemistry. Results of model calculations are presented: chemisorption of hydrogen-like atom on the (100) face of the one-band crystal model and dispersion curves for the density of states of nickel (100) face. (Auth.)

  5. Dependence of the structure of ion-modified NiTi single crystal layers on the orientation of irradiated surface

    Science.gov (United States)

    Poletika, T. M.; Meisner, L. L.; Girsova, S. L.; Tverdokhlebova, A. V.; Meisner, S. N.

    2017-07-01

    The composition and structure of Si layers implanted into titanium nickelide single crystals with different orientations relative to the ion beam propagation direction have been studied using Auger electron spectroscopy and transmission electron microscopy. The role of the "soft" [111]B2 and "hard" [001]B2 NiTi orientations in the formation of the structure of ion-modified surface layer, as well as the defect structure of the surface layers of the single crystals, has been revealed. Orientation effects of selective sputtering and channeling of ions, which control the composition and thickness of the oxide and amorphous layers being formed, ion and impurity penetration depth, as well as the concentration profile of the Ni distribution over the surface, have been detected.

  6. Adsorption effectiveness of β-lactoglobulin onto gold surface determined by quartz crystal microbalance.

    Science.gov (United States)

    Jachimska, B; Świątek, S; Loch, J I; Lewiński, K; Luxbacher, T

    2018-06-01

    Bovine β-lactoglobulin (LGB) is a transport protein that can bind to its structure hydrophobic bioactive molecules. Due to the lack of toxicity, high stability and pH-dependent molecular binding mechanism, lactoglobulin can be used as a carrier of sparingly soluble drugs. Dynamic light scattering has confirmed LGB's tendency to create oligomeric forms. The hydrodynamic diameter of LGB molecules varies from 4 nm to 6 nm in the pH range of 2-10 and ionic strength I = 0.001-0.15 M, which corresponds to the presence of mono or dimeric LGB forms. The LGB zeta potential varies from 26.5 mV to -33.3 mV for I = 0.01 M and from 13.3 mV to -16 mV for I = 0.15 M in the pH range of 2-10. The isoelectric point is at pH 4.8. As a result of strong surface charge compensation, the maximum effective ionization degree of the LGB molecule is 35% for ionic strength I = 0.01 M and 22% for I = 0.15 M. The effectiveness of adsorption is linked with the properties of the protein, as well as those of the adsorption surface. The functionalization of gold surfaces with β-lactoglobulin (LGB) was studied using a quartz crystal microbalance with energy dissipation monitoring (QCM-D). The effectiveness of LGB adsorption correlates strongly with a charge of gold surface and the zeta potential of the molecule. The greatest value of the adsorbed mass was observed in the pH range in which LGB has a positive zeta potential values, below pH 4.8. This observation shows that electrostatic interactions play a dominant role in LGB adsorption on gold surfaces. Based on the adsorbed mass, protein orientation on gold surfaces was determined. The preferential side-on orientation of LGB molecules observed in the adsorption layer is consistent with the direction of the molecule dipole momentum determined by molecular dynamics simulations of the protein (MD). The use of the QCM-D method also allowed us to determine the effectiveness of adsorption of LGB on gold

  7. Surface (glyco-)proteins: primary structure and crystallization under microgravity conditions

    Science.gov (United States)

    Claus, H.; Akca, E.; Schultz, N.; Karbach, G.; Schlott, B.; Debaerdemaeker, T.; De Clercq, J.-P.; König, H.

    2001-08-01

    The Archaea comprise microorganisms that live under environmental extremes, like high temperature, low pH value or high salt concentration. Their cells are often covered by a single layer of (glyco)protein subunits (S-layer) in hexagonal arrangement. In order to get further hints about the molecular mechanisms of protein stabilization we compared the primary and secondary structures of archaeal S-layer (glyco)proteins. We found an increase of charged amino acids in the S-layer proteins of the extreme thermophilic species compared to their mesophilic counterparts. Our data and those of other authors suggest that ionic interactions, e.g., salt bridges seem to be played a major role in protein stabilization at high temperatures. Despite the differences in the growth optima and the predominance of some amino acids the primary structures of S-layers revealed also a significant degree of identity between phylogenetically related archaea. These obervations indicate that protein sequences of S-layers have been conserved during the evolution from extremely thermophilic to mesophilic life. To support these findings the three-dimensional structure of the S-layer proteins has to be elucidated. Recently, we described the first successful crystallization of an extreme thermophilic surface(glyco)protein under microgravity conditions.

  8. Square array photonic crystal fiber-based surface plasmon resonance refractive index sensor

    Science.gov (United States)

    Liu, Min; Yang, Xu; Zhao, Bingyue; Hou, Jingyun; Shum, Ping

    2017-12-01

    Based on surface plasmon resonance (SPR), a novel refractive index (RI) sensor comprising a square photonic crystal fiber (PCF) is proposed to realize the detection of the annular analyte. Instead of hexagon structure, four large air-holes in a square array are introduced to enhance the sensitivity by allowing two polarization directions of the core mode to be more sensitive. The gold is used as the only plasmonic material. The design purpose is to reduce the difficulty in gold deposition and enhance the RI sensitivity. The guiding properties and the effects of the parameters on the performance of the sensor are numerically investigated by the Finite Element Method (FEM). By optimizing the structure, the sensor can exhibit remarkable sensitivity up to 7250 nm/RIU and resolution of 1.0638 × 10‑5 RIU with only one plasmonic material, which is very competitive compared with the other reported externally coated and single-layer coated PCF-based SPR (PCF-SPR) sensors, to our best knowledge.

  9. A Highly Sensitive Gold-Coated Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Md. Rabiul Hasan

    2017-03-01

    Full Text Available In this paper, we numerically demonstrate a two-layer circular lattice photonic crystal fiber (PCF biosensor based on the principle of surface plasmon resonance (SPR. The finite element method (FEM with circular perfectly matched layer (PML boundary condition is applied to evaluate the performance of the proposed sensor. A thin gold layer is deposited outside the PCF structure, which acts as the plasmonic material for this design. The sensing layer (analyte is implemented in the outermost layer, which permits easy and more practical fabrication process compared to analyte is put inside the air holes. It is demonstrated that, at gold layer thickness of 40 nm, the proposed sensor shows maximum sensitivity of 2200 nm/RIU using the wavelength interrogation method in the sensing range between 1.33–1.36. Besides, using an amplitude interrogation method, a maximum sensitivity of 266 RIU−1 and a maximum sensor resolution of 3.75 × 10−5 RIU are obtained. We also discuss how phase matching points are varied with different fiber parameters. Owing to high sensitivity and simple design, the proposed sensor may find important applications in biochemical and biological analyte detection.

  10. Detection of amino acid neurotransmitters by surface enhanced Raman scattering and hollow core photonic crystal fiber

    Science.gov (United States)

    Tiwari, Vidhu S.; Khetani, Altaf; Monfared, Ali Momenpour T.; Smith, Brett; Anis, Hanan; Trudeau, Vance L.

    2012-03-01

    The present work explores the feasibility of using surface enhanced Raman scattering (SERS) for detecting the neurotransmitters such as glutamate (GLU) and gamma-amino butyric acid (GABA). These amino acid neurotransmitters that respectively mediate fast excitatory and inhibitory neurotransmission in the brain, are important for neuroendocrine control, and upsets in their synthesis are also linked to epilepsy. Our SERS-based detection scheme enabled the detection of low amounts of GLU (10-7 M) and GABA (10-4 M). It may complement existing techniques for characterizing such kinds of neurotransmitters that include high-performance liquid chromatography (HPLC) or mass spectrography (MS). This is mainly because SERS has other advantages such as ease of sample preparation, molecular specificity and sensitivity, thus making it potentially applicable to characterization of experimental brain extracts or clinical diagnostic samples of cerebrospinal fluid and saliva. Using hollow core photonic crystal fiber (HC-PCF) further enhanced the Raman signal relative to that in a standard cuvette providing sensitive detection of GLU and GABA in micro-litre volume of aqueous solutions.

  11. Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach.

    Science.gov (United States)

    Singh, Kunwar P; Gupta, Shikha; Singh, Arun K; Sinha, Sarita

    2011-02-28

    A magnetic nanocomposite was developed and characterized. Adsorption of crystal violet (CV) dye from water was studied using the nanocomposite. A four-factor central composite design (CCD) combined with response surface modeling (RSM) was employed for maximizing CV removal from aqueous solution by the nanocomposite based on 30 different experimental data obtained in a batch study. Four independent variables, viz. temperature (10-50°C), pH of solution (2-10), dye concentration (240-400 mg/l), and adsorbent dose (1-5 g/l) were transformed to coded values and a second-order quadratic model was built to predict the responses. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. Adequacy of the model was tested by the correlation between experimental and predicted values of the response and enumeration of prediction errors. Optimization of the process variables for maximum adsorption of CV by nanocomposite was performed using the quadratic model. The Langmuir adsorption capacity of the adsorbent was determined as 81.70 mg/g. The model predicted maximum adsorption of 113.31 mg/g under the optimum conditions of variables (concentration 240 mg/l; temperature 50°C; pH 8.50; dose 1g/l), which was very close to the experimental value (111.80 mg/g) determined in batch experiment. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Hydrazinium 2-amino-4-nitrobenzoate dihydrate: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    James L. Wardell

    2017-04-01

    Full Text Available In the anion of the title salt hydrate, H5N2+·C7H5N2O4−·2H2O, the carboxylate and nitro groups lie out of the plane of the benzene ring to which they are bound [dihedral angles = 18.80 (10 and 8.04 (9°, respectively], and as these groups are conrotatory, the dihedral angle between them is 26.73 (15°. An intramolecular amino-N—H...O(carboxylate hydrogen bond is noted. The main feature of the crystal packing is the formation of a supramolecular chain along the b axis, with a zigzag topology, sustained by charge-assisted water-O—H...O(carboxylate hydrogen bonds and comprising alternating twelve-membered {...OCO...HOH}2 and eight-membered {...O...HOH}2 synthons. Each ammonium-N—H atom forms a charge-assisted hydrogen bond to a water molecule and, in addition, one of these forms a hydrogen bond with a nitro-O atom. The amine-N—H atoms form hydrogen bonds to carboxylate-O and water-O atoms, and the amine N atom accepts a hydrogen bond from an amino-H atom. The hydrogen bonds lead to a three-dimensional architecture. An analysis of the Hirshfeld surface highlights the major contribution of O...H/H...O hydrogen bonding to the overall surface, i.e. 46.8%, compared with H...H contacts (32.4%.

  13. Ice Multiplication by Crystal Growth?Ice growing from the vapor along with tiny amounts of salt solution sheds free ice crystals, at -5C and saturation with respect to liquid water, in quiescent conditions. This is a more appealing explanation for the Hallett-Mossop effect than rime splintering, if it occurs primarily at temperatures near -5C.

    Science.gov (United States)

    Knight, C. A.

    2015-12-01

    Ice growing from the vapor, at -5C and liquid water supersaturation, often sheds crystals when it grows along with a small amount of salt solution. The experiments are done with single crystals growing in a temperature-controlled chamber with 5 ml of water in the bottom to maintain and control supersaturation, and the new crystals are detected when they fall into and nucleate the water in the bottom. Crystal growth is initiated by inserting into the growth chamber a pipet tip that contained a few microliters of very dilute salt solution that had been supercooled to -5C and nucleated at the tip. Growth from the vapor ensues, with condensation directly onto ice and onto whatever salt solution is exposed. The results are not completely reproducible, no doubt because the starting details of the exposure of ice and solution is not controllable. However, the shedding of crystals often occurs with starting NaCl concentrations of the order of 0.01 wt. percent, and almost never occurs with "pure" water. The shedding events themselves have not been identified, and an attractive hypothesis for how the shedding of ice occurs has not been found at the time of writing this abstract. By the time of the AGU meeting it is hoped that enough experiments will have been performed in order to say whether this effect is found only near -5C. If it requires a temperature near -5C then it seems to be an attractive explanation of the Hallett-Mossop process. It also, of course, is hoped that an attractive hypothesis for the mechanism of the shedding will have been found.

  14. Fine Structure in the Secondary Electron Emission Peak for Diamond Crystal with (100) Negative Electron Affinity Surface

    Science.gov (United States)

    Asnin, V. M.; Krainsky, I. L.

    1998-01-01

    A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.

  15. Right- and left-handed rules on the transverse spin angular momentum of a surface wave of photonic crystal.

    Science.gov (United States)

    Hu, Jinbing; Xia, Tongnan; Cai, Xiaoshu; Tian, Shengnan; Guo, Hanming; Zhuang, Songlin

    2017-07-01

    By investigating the surface wave of photonic crystal, we put forward two sets of rules: the right-handed screw rule, judging the transverse spin angular momentum (SAM) directions according to the propagation direction of the surface wave; and the left-handed rule, judging the excitation direction of the surface wave in accordance to the SAM direction of incident circularly polarized light and the relative position of the dipole-like scatterer with respect to the interface where the surface wave propagates. Both right- and left-handed rules apply to the interface consisting of opposite-sign-permittivity materials. With the help of these two sets of rules, it is convenient to judge the direction of the transverse SAM and the excited surface wave, which facilitate the application involving transverse SAM of the surface wave.

  16. The fluid phenomena in the crystallization of the protein crystal

    International Nuclear Information System (INIS)

    Duan Li; Kang Qi

    2008-01-01

    This paper reports that an optical diagnostic system consisting of Mach–Zehnder interferometer with a phase shift device and image processor has been used for study of the kinetics of protein crystal growing process. The crystallization process of protein crystal by vapour diffusion is investigated. The interference fringes are observed in real time. The present experiment demonstrates that the diffusion and the sedimentation influence the crystallization of protein crystal which grows in solution, and the concentration capillary convection associated with surface tension occurs at the vicinity of free surface of the protein mother liquor, and directly affects on the outcome of protein crystallization. So far the detailed analysis and the important role of the fluid phenomena in protein crystallization have been discussed a little in both space- and ground-based crystal growth experiments. It is also found that these fluid phenomena affect the outcome of protein crystallization, regular growth, and crystal quality. This may explain the fact that many results of space-based investigation do not show overall improvement. (cross-disciplinary physics and related areas of science and technology)

  17. Characterization of etch pit formation via the Everson-etching method on CdZnTe crystal surfaces from the bulk to the nanoscale

    International Nuclear Information System (INIS)

    Teague, Lucile C.; Duff, Martine C.; Cadieux, James R.; Soundararajan, Raji; Shick, Charles R.; Lynn, Kelvin G.

    2011-01-01

    A combination of atomic force microscopy, optical microscopy, and mass spectrometry was employed to study CdZnTe crystal surface and used etchant solution following exposure of the CdZnTe crystal to the Everson etch solution. We discuss the results of these studies in relationship to the initial surface preparation methods, the performance of the crystals as radiation spectrometers, the observed etch pit densities, and the chemical mechanism of surface etching. Our results show that the surface features that are exposed to etchants result from interactions with the chemical components of the etchants as well as pre-existing mechanical polishing.

  18. Affinity Interaction between Hexamer Peptide Ligand HWRGWV and Immunoglobulin G Studied by Quartz Crystal Microbalance and Surface Plasmon Resonance

    Science.gov (United States)

    Shen, Fei

    Immunoglobulins (Ig), also referred to as antibodies, act as protective agents against pathogens trying to invade an organism. Human immunoglobulin G (hIgG), as the most prominent immunoglobulin presented in serum and other human fluids, has broad applications in fields like immunotherapy and clinical diagnostics. Staphylococcus aureus Protein A and Streptococcus Protein G are the most common affinity ligands for IgG purifaction and detection. However, drawbacks associated with these two protein ligands have motivated searches for alternative affinity ligands. The hexamer peptide ligand HWRGWV identified from a one-bead-one-peptide combinatorial library synthesized on chromatography resins has demonstrated high affinity and specificity to the Fc fragment of hIgG. A chromatography resin with HWRGWV can purify human IgG (hIgG) from complete minimum essential medium (cMEM) with purities and yields as high as 95%, which are comparable to using Protein A as affinity ligand (4). As a short peptide ligand, HWRGWV can be produced at relatively low costs under good manufacturing practices (GMP) conditions, it is highly robust, less immunogenic and allows for milder elution conditions for the bound antibody (3, 5). Although this short peptide ligand has exhibited promising properties for IgG capture and purification, limited information is available on the intrinsic mechanisms of affinity interaction between the peptide ligand and target protein. In this study, the affinity interaction between hIgG and peptide ligand immobilized on solid surfaces was studied by quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). Compared with previous methods employed for the peptide characterization, QCM and SPR can provide direct measurements of equilibrium adsorption isotherms and rates of adsorption, allowing a complete kinetic and thermodynamics analyses of the ligand-target interactions. New methods were developed to modify gold and silica surfaces of QCM and SPR

  19. Surface hydroxyl configuration of various crystal faces of hematite and goethite

    Energy Technology Data Exchange (ETDEWEB)

    Barron, V.; Torrent, J. [Universidad de Cordoba (Spain). Dept. de Ciencias y Recursos Agricolas y Forestales

    1996-02-10

    The surface properties of oxides and hydroxides depend on their surface hydroxyl configuration (SHC). Unfortunately, the SHC of the various Fe (hydr) oxides has not been systematically studied to date. This paper reports the SHC of the hematite {l_brace}100{r_brace}, {l_brace}110{r_brace}, {l_brace}012{r_brace}, {l_brace}104{r_brace}, {l_brace}018{r_brace}, {l_brace}113{r_brace}, and {l_brace}001{r_brace}, and the goethite {l_brace}100{r_brace}, {l_brace}010{r_brace}, {l_brace}110{r_brace}, and {l_brace}021{r_brace} faces, which are the most common in natural and synthetic specimens. Both minerals exhibit marked differences between faces, particularly with regard to the presence and proportion of singly, doubly, and triply coordinated OH groups. Pairs of contiguous singly coordinated OH groups, which are involved in the specific adsorption of phosphate and other ions, occur on all the goethite faces studied, but not on those of hematite. According to the hypotheses inherent in some models, the variable SHC of hematite and goethite faces should result in marked differences in proton and adsorption and, hence, surface charging properties.

  20. Liquid-crystal indicators for temperature monitoring at the surface of pipeline insulators

    International Nuclear Information System (INIS)

    Zvonarev, M.G.; Igon'kin, E.L.; Sidel'nikova, G.A.; Chernyshev, S.K.

    1986-01-01

    The design and specifications of cholesteric type liquid-crystal indicators used for temperature monitoring at NPP an TPP pipeline insulators if temperature deviation makes up ± 1 deg C, are considered. The liquid-crystal indicators operate in the temperature range from room temperature to 200-250 deg C

  1. Nanotag-enabled photonic crystal fiber as quantitative surface-enhanced Raman scattering optofluidic platform

    Czech Academy of Sciences Publication Activity Database

    Pinkhasova, P.; Chen, H.; Kaňka, Jiří; Mergo, P.; Du, H.

    2015-01-01

    Roč. 106, č. 7 (2015), 0711061-0711064 ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LH11038 Institutional support: RVO:67985882 Keywords : Photonic crystal fibers * Raman scattering * Crystal whiskers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.142, year: 2015

  2. Thermochemical micro imprinting of single-crystal diamond surface using a nickel mold under high-pressure conditions

    International Nuclear Information System (INIS)

    Imoto, Yuji; Yan, Jiwang

    2017-01-01

    Graphical abstract: A Ni mold and thermochemically imprinted microstructures on diamond. - Highlights: • A thermochemical method for micro machining/patterning of diamond is proposed. • Various kinds of microstructures were imprinted on diamond using a Ni mold. • A graphite layer is formed during imprinting which can be removed by acid. • The processing depth depends strongly on pressure and temperature. - Abstract: Single-crystal diamond is an important material for cutting tools, micro electro mechanical systems, optical devices, and semiconductor substrates. However, the techniques for producing microstructures on diamond surface with high efficiency and accuracy have not been established. This paper proposes a thermochemical imprinting method for transferring microstructures from a nickel (Ni) mold onto single-crystal diamond surface. The Ni mold was micro-structured by a nanoindenter and then pressed against the diamond surface under high temperature and pressure in argon atmosphere. Results show that microstructures on the Ni mold were successfully transferred onto the diamond surface, and their depth increased with both pressure and temperature. Laser micro-Raman spectroscopy, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses indicate that a graphite layer was formed over the contact area between diamond and Ni during pressing, and after washing by a mixed acid, the graphite layer could be completely removed. This study demonstrated the feasibility of a cost-efficient fabrication method for large-area microstructures on single-crystal diamond.

  3. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model

    Science.gov (United States)

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland [Phys. FluidsPHFLE61070-663110.1063/1.3584815 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  4. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    Science.gov (United States)

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  5. The effects of intracrystalline and surface-bound proteins on the attachment of calcium oxalate monohydrate crystals to renal cells in undiluted human urine.

    Science.gov (United States)

    Grover, Phulwinder K; Thurgood, Lauren A; Wang, Tingting; Ryall, Rosemary L

    2010-03-01

    To compare the binding to Madin-Darby canine kidney (MDCK)-II cells of: (i) inorganic calcium oxalate monohydrate (iCOM) crystals and COM crystals precipitated from urine containing different concentrations of protein; and (ii) urinary COM crystals containing intracrystalline and intracrystalline + surface-bound protein. Urinary COM crystals were generated in sieved (sCOM), centrifuged and filtered (cfCOM), and ultrafiltered (ufCOM) portions of a pooled human urine and their adhesion to MDCK-II cells was compared using six different ultrafiltered urine samples as the binding medium. Crystal matrix extract (CME) was prepared by demineralizing calcium oxalate crystals precipitated from human urine and used to prepare COM crystals with intracrystalline, and intracrystalline + surface-bound CME at protein concentrations of 0, 0.05, 0.1, 0.5 and 5.0 mg/L. The amount of protein associated with the crystals was qualitatively assessed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting, using prothrombin fragment 1 (PTF1) as a marker. Protein concentration was determined in sieved, centrifuged and filtered, and ultrafiltered fractions of 10 additional urine samples. The median crystal attachment in the six urine types decreased in the order iCOM > ufCOM > cfCOM = sCOM, in inverse proportion to the concentration of protein in the solution or urine from which they were precipitated. sCOM and cfCOM crystals bound approximately 23% less than iCOM crystals. The attachment of COM crystals generated in the presence of increasing concentrations of CME proteins was unaffected up to a concentration of 5 mg/L, but binding of crystals containing the same concentrations of intracrystalline + surface-bound proteins decreased proportionally at protein concentrations from 0 to 5.0 mg/L. Inorganic COM crystals bind significantly more strongly to MDCK-II cells than urinary crystals precipitated from sieved, centrifuged and filtered, and ultrafiltered urine

  6. Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal

    International Nuclear Information System (INIS)

    Zhong Minjian; Guo Guanglei; Yang Junyi; Ma Ninghua; Ye Guo; Ma Hongliang; Guo Xiaodong; Li Ruxin

    2008-01-01

    This paper reports self-organized nanostructures observed on the surface of ZnO crystal after irradiation by a focused beam of a femtosecond Ti:sapphire laser with a repetition rate of 250 kHz. For a linearly polarized femtosecond laser, the periodic nanograting structure on the ablation crater surface was promoted. The period of self-organization structures is about 180 nm. The grating orientation is adjusted by the laser polarization direction. A long range Bragg-like grating is formed by moving the sample at a speed of 10 μm/s. For a circularly polarized laser beam, uniform spherical nanoparticles were formed as a result of Coulomb explosion during the interaction of near-infrared laser with ZnO crystal

  7. Cutting Materials in Half: A Graph Theory Approach for Generating Crystal Surfaces and Its Prediction of 2D Zeolites.

    Science.gov (United States)

    Witman, Matthew; Ling, Sanliang; Boyd, Peter; Barthel, Senja; Haranczyk, Maciej; Slater, Ben; Smit, Berend

    2018-02-28

    Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. We hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area can yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts. We report here a simple descriptor based only on structural information that predicts whether a zeolite is likely to be synthesizable in the 2D form and correctly identifies the expressed surface in known layered 2D zeolites. The discovery of this descriptor allows us to highlight other zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our method is general since the mathematical formalism can be applied to find the minimum cut surfaces of other crystallographic materials such as metal-organic frameworks, covalent-organic frameworks, zeolitic-imidazolate frameworks, metal oxides, etc.

  8. Three kinds of high-energy Pb ion tracks on the LiF crystal surface at grazing angles of incidence

    CERN Document Server

    Vorobyova, I V

    2002-01-01

    Tracks induced on a surface of a LiF crystal by Pb ions with energy of 4.46 MeV/u were studied by the method of shadow replica electron microscopy. The irradiation was carried out at angles of 0.5 deg. and 2 deg. relative to the surface plane of the crystal. Lengths and widths of three kinds of tracks were compared: (1) surface tracks which are formed on a pure crystal surface; (2) island tracks which are formed in an island film of gold (with island radius and separation of <=5 nm) deposited on the crystal surface prior to irradiation and (3) island tracks which are formed in the same island film pressed against the crystal surface by the carbon layer. It was established: (1) At angle of irradiation of 0.5 deg. , the surface track formation is initiated at a point where the ion has not yet crossed the crystal surface, but rather moves above the surface plane at a distance of <=1 nm. (2) When the island track is formed in the free island film, the islands completely removed from the track zone. (3) When...

  9. Plasmonic Photonic-Crystal Slabs: Visualization of the Bloch Surface Wave Resonance for an Ultrasensitive, Robust and Reusable Optical Biosensor

    Directory of Open Access Journals (Sweden)

    Alexander V. Baryshev

    2014-12-01

    Full Text Available A one-dimensional photonic crystal (PhC with termination by a metal film—a plasmonic photonic-crystal slab—has been theoretically analyzed for its optical response at a variation of the dielectric permittivity of an analyte and at a condition simulating the molecular binding event. Visualization of the Bloch surface wave resonance (SWR was done with the aid of plasmon absorption in a dielectric/metal/dielectric sandwich terminating a PhC. An SWR peak in spectra of such a plasmonic photonic crystal (PPhC slab comprising a noble or base metal layer was shown to be sensitive to a negligible variation of refractive index of a medium adjoining to the slab. As a consequence, the considered PPhC-based optical sensors exhibited an enhanced sensitivity and a good robustness in comparison with the conventional surface-plasmon and Bloch surface wave sensors. The PPhC biosensors can be of practical importance because the metal layer is protected by a capping dielectric layer from contact with analytes and, consequently, from deterioration.

  10. Bulk chirality effect for symmetric bistable switching of liquid crystals on topologically self-patterned degenerate anchoring surface.

    Science.gov (United States)

    Park, Min-Kyu; Joo, Kyung-Il; Kim, Hak-Rin

    2017-06-26

    We demonstrate a bistable switching liquid crystal (LC) mode utilizing a topologically self-structured dual-groove surface for degenerated easy axes of LC anchoring. In our study, the effect of the bulk elastic distortion of the LC directors on the bistable anchoring surface is theoretically analyzed for balanced bistable states based on a free energy diagram. By adjusting bulk LC chirality, we developed ideally symmetric and stable bistable anchoring and switching properties, which can be driven by a low in-plane pulsed field of about 0.7 V/µm. The fabricated device has a contrast ratio of 196:1.

  11. Nanoimprint lithography-based plasmonic crystal-surface enhanced Raman scattering substrate for point of care testing application

    Science.gov (United States)

    Endo, Tatsuro; Yamada, Kenji

    2017-02-01

    Surface enhanced raman scattering (SERS) is known for its high sensitivity toward detection down to single molecule level under optimal conditions using surface plasmon resonance (SPR). To excite the SPR for SERS application, nanostructured noble metal supports such as a nanoparticle have been widely used. However, for excitation of SPR for SERS application using noble metal nanoparticle has several disadvantages such as sophisticated fabrication procedure and low reproducibility of SPR excitation efficiency. To overcome these disadvantages, in this study, plasmonic crystal (PC)-SERS substrate which has a periodic noble metal nanostructure was successfully fabricated rapidly and cost-effectively based on nanoimprint lithography (NIL).

  12. Measurement of the pollutants on the surface of crystal slice using PIXE

    CERN Document Server

    Zhu Guang Hua; Wang Xin Fu; Zhou Hong Yu

    2001-01-01

    The analytical sensitivity and detection limit and the applications of the PIXE technique or the samples of crystal slice are presented. The crystal slices implanted with oxygen ions at different implantation machines are polluted with element Cr, Mn, Fe, Cu etc. during oxygen ion implantation. These results show that PIXE method has high sensitivity and is non-destructive for measuring pollutants, and is suitable in this research field

  13. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective

    International Nuclear Information System (INIS)

    Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang

    2017-01-01

    We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P 12 for scattering angles between 20°–120°, whereas surface roughness has a much weaker effect, increasing -P 12 slightly from 60°–120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered. - Highlights: • Surface roughness and air bubble inclusions affect optical properties of ice crystals significantly. • Including both factors improves simulations of ice cloud.• Cirrus cloud particle habit model of the MODIS collection 6 achieves better self-consistency and consistency with

  14. Surface-treated self-standing curved crystals as high-efficiency elements for X- and γ-ray optics: theory and experiment.

    Science.gov (United States)

    Bonnini, Elisa; Buffagni, Elisa; Zappettini, Andrea; Doyle, Stephen; Ferrari, Claudio

    2015-06-01

    The efficiency of a Laue lens for X- and γ-ray focusing in the energy range 60-600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X-ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDPs) are considered for the realization of a focusing system for γ-rays, owing to their high diffraction efficiency in a predetermined angular range. In this work, a comparison of the efficiency of CDP crystals and Cu and Au mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. In order to increase the efficiency of the lens further, a stack of several CDP crystals is proposed as an optical element. CDP crystals were obtained by a surface-damage method, and a stack of two surface-damaged bent Si crystals was prepared and tested. Rocking curves of the stack were performed with synchrotron radiation at 19 keV to check the lattice alignment: they exhibited only one diffraction peak.

  15. Surface and crystal structure of nitridated sapphire substrates and their effect on polar InN layers

    International Nuclear Information System (INIS)

    Skuridina, D.; Dinh, D.V.; Pristovsek, M.; Lacroix, B.; Chauvat, M.-P.; Ruterana, P.; Kneissl, M.; Vogt, P.

    2014-01-01

    Comprehensive analysis of the surface and crystal properties has been performed at clean c-plane sapphire substrates, sapphire layers after nitridation, and subsequently grown InN layers deposited by metal–organic vapor phase epitaxy. The (1 × 1) surface of clean sapphire reconstructs into a (√(31) × √(31))R ± 9° structure after annealing at 1050 °C, which was performed prior to the nitridation process. The formation of crystalline AlN was observed for nitridation above 800 °C. X-ray photoelectron spectroscopy performed on the nitridated layers shows that N-Al chemical bonds dominate this structure, while the number of N-O bonds is negligibly small. Amorphous AlN x O y layers form during nitridation below 800 °C, where N-O bonds dominate. All layers formed by nitridation show defects associated with N bonds. The morphology of the nitridated layers affects the surface and crystal quality of the subsequently grown polar InN layers. N-polar InN layers with a smooth surface and single crystalline structure were grown on the AlN nitridated layers, while In-polar InN layers with a rough surface and a polycrystalline structure were grown on the amorphous nitridated layers.

  16. Laser ablation and photostimulated passivation of the surface of Cd1–хZnхTe crystals

    Directory of Open Access Journals (Sweden)

    Zagoruiko Yu. A.

    2011-06-01

    Full Text Available A new physical method of Cd1–хZnхTe-detectors passivation is proposed — the treatment of crystal surface by a laser ablation (LA with subsequent photostimulated passivation (PhSP, during wich a high-resistance oxide layer is formed on it’s surface after the surface cleaning under intensive light irradiation effect. It is shown that the method of LA+PhSP is manufacturable and in comparison with PhSP and PhESP methods developed earlier provides a thick, homogeneous and high-oxide films, which significantly increases the surface resistivity of Cd1–хZnхTe samples and reduces leakage currents in them.

  17. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  18. Release kinetics of multiwalled carbon nanotubes deposited on silica surfaces: quartz crystal microbalance with dissipation (QCM-D) measurements and modeling.

    Science.gov (United States)

    Yi, Peng; Chen, Kai Loon

    2014-04-15

    Understanding the kinetics of the release of carbon nanotubes (CNTs) from naturally occurring surfaces is crucial for the prediction of the environmental fate and transport of CNTs. In this study, the release kinetics of multiwalled CNTs (MWNTs) from silica surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). MWNTs were first deposited on silica surfaces under favorable deposition conditions (1.50 mM CaCl2 and pH 7.1) and the deposited MWNTs were then rinsed at different electrolyte solutions to induce the release of MWNTs from the primary energy minimum. The kinetics of MWNT release was shown to be first order with respect to the deposited MWNTs when complete release took place. A model that accounts for the releasable and unreleasable components of MWNTs was used to fit the experimental data in order to derive the release rate coefficients. When the CaCl2 concentration in the eluent was decreased, a larger fraction of deposited MWNTs was released and the release rate coefficient of the releasable MWNTs also increased. The rise in the surface charges of both MWNTs and silica surfaces with the drop in CaCl2 concentration likely resulted in the decrease in the height of the energy barrier, thus facilitating the release of the nanotubes. Moreover, when the initial surface concentrations of deposited MWNTs were over 1000 ng/cm(2), the release rate coefficient was lower than expected. The reduced release kinetics was likely due to the formation of large surface-bound MWNT clusters which had considerably lower diffusion coefficients than dispersed MWNTs or MWNT aggregates.

  19. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective

    Science.gov (United States)

    Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang

    2017-07-01

    We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P12 for scattering angles between 20°-120°, whereas surface roughness has a much weaker effect, increasing -P12 slightly from 60°-120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered.

  20. Crystal structure, Hirshfeld surfaces and DNA cleavage investigation of two copper(II) complexes containing polypyridine and salicylide ligands.

    Science.gov (United States)

    Luo, Yang-Hui; Sun, Bai-Wang

    2014-05-21

    Two copper complexes 1 [Cu2(phen)2(salicylaldehyde)2(ClO4)2] and 2 [Cu2 (2,2'-dipyridyl)2(salicylaldehyde)2(ClO4)2] have been synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. These two complexes were display binuclear structure with Cu(II) ions in distorted octahedral environment but antipodal orientation of the binuclear units between them. Molecular Hirshfeld surfaces revealed that the crystal structures of 1 and 2 were supported mainly by H-H, C-H⋯π, π⋯π (C-C), and C-H⋯O intermolecular interactions. DNA cleavage experiments of complexes 1 and 2 revealed that these complexes can intercalation with DNA. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A thermodynamic model for predicting surface melting and overheating of different crystal planes in BCC, FCC and HCP pure metallic thin films

    International Nuclear Information System (INIS)

    Jahangir, Vafa; Riahifar, Reza; Sahba Yaghmaee, Maziar

    2016-01-01

    In order to predict as well as study the surface melting phenomena in contradiction to surface overheating, a generalized thermodynamics model including the surface free energy of solid and the melt state along with the interfacial energy of solid–liquid (melt on substrate) has been introduced. In addition, the effect of different crystal structures of surfaces in fcc, bcc and hcp metals was included in surface energies as well as in the atomistic model. These considerations lead us to predict surface melting and overheating as two contradictory melting phenomena. The results of the calculation are demonstrated on the example of Pb and Al thin films in three groups of (100), (110) and (111) surface planes. Our conclusions show good agreement with experimental results and other theoretical investigations. Moreover, a computational algorithm has been developed which enables users to investigate the surface melt or overheating of single component metallic thin film with variable crystal structures and different crystalline planes. This model and developed software can be used for studying all related surface phenomena. - Highlights: • Investigating the surface melting and overheating phenomena • Effect of crystal orientations, surface energies, geometry and different atomic surface layers • Developing a computational algorithm and its related code (free-software SMSO-Ver1) • Thickness and orientation of surface plane dominate the surface melting or overheating. • Total excess surface energy as a function of thickness and temperature explains melting.

  2. Specular and non-specular X-ray reflection from a single-crystal molybdenum mirror surface

    CERN Document Server

    Mizusawa, M

    2003-01-01

    The surface morphology of a super-polished mirror of single-crystal molybdenum has been studied by grazing-incidence X-ray reflection. It yields a rather high specular reflectivity (82.0%) for 16.0 keV X-rays below the critical angle. The data suggest that the mirror has a small roughness (0.7 nm rms) unlike other metal mirrors, but, on the other hand, strongly damaged layers (6.35 nm in total) exist at the near surface. It has been also found that the surface has a large correlation length (>3 mu m) and a small Hurst parameter (0.2-0.3) from the non-specular reflection.

  3. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    Science.gov (United States)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  4. Surface studies on as-grown (111) faces of sodium bromate crystals

    Indian Academy of Sciences (India)

    Unknown

    facilitates to etch almost at the selective position. It consists of a small tube with pointed tip, after filling with ... the selective position by turning the socket. By pressing the tube gently the etchant is released drop by ... In the present study attention has also been focused to study the inclusions in the sodium bromate crystals. In.

  5. Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Oo, M. K .K.; Han, Y.; Kaňka, Jiří; Sukhishvili, S.; Du, H.

    2010-01-01

    Roč. 35, č. 4 (2010), s. 466-468 ISSN 0146-9592 R&D Projects: GA ČR GA102/08/1719 Institutional research plan: CEZ:AV0Z20670512 Keywords : Photonic crystal fiber * Raman spectroscopy * Fiber - optic evanescent sensor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.316, year: 2010

  6. Intensity distributions of reflected surface channeling protons scattered on surfaces of electron-bombarded alkali halide crystals

    Science.gov (United States)

    Fukazawa, Y.; Kihara, K.; Iwamoto, K.; Susuki, Y.

    2013-11-01

    We have examined the surface-channeling of 550 keV protons on electron-bombarded KBr(0 0 1) surfaces at grazing incidence. On the surface, electron-stimulated desorption (ESD) resulting from the irradiation of 5 keV electrons changes the surface morphology. In order to investigate the change of the surface morphology, the luminous intensity distributions observed on a fluorescent screen (scattering patterns) of the reflected protons under the surface-channeling conditions are measured. Normalized specular intensity of the protons oscillates, and the results of computer simulations show that the period of the intensity oscillation agrees with the period of layer-by-layer desorption. The measured period of the oscillation is comparable to the simulated one, i.e., the period of the desorption, however, the measured amplitude of the oscillation is weak. This shows that the layer-by-layer desorption of the experimental surface is observed but is not as remarkable as that of the perfect surface introduced in the simulation.

  7. Intensity distributions of reflected surface channeling protons scattered on surfaces of electron-bombarded alkali halide crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fukazawa, Y., E-mail: yukofu@cc.osaka-kyoiku.ac.jp; Kihara, K.; Iwamoto, K.; Susuki, Y.

    2013-11-15

    We have examined the surface-channeling of 550 keV protons on electron-bombarded KBr(0 0 1) surfaces at grazing incidence. On the surface, electron-stimulated desorption (ESD) resulting from the irradiation of 5 keV electrons changes the surface morphology. In order to investigate the change of the surface morphology, the luminous intensity distributions observed on a fluorescent screen (scattering patterns) of the reflected protons under the surface-channeling conditions are measured. Normalized specular intensity of the protons oscillates, and the results of computer simulations show that the period of the intensity oscillation agrees with the period of layer-by-layer desorption. The measured period of the oscillation is comparable to the simulated one, i.e., the period of the desorption, however, the measured amplitude of the oscillation is weak. This shows that the layer-by-layer desorption of the experimental surface is observed but is not as remarkable as that of the perfect surface introduced in the simulation.

  8. Atomic force microscopy studies of surface and dimensional changes in Li xCoO2 crystals during lithium de-intercalation

    International Nuclear Information System (INIS)

    Clemencon, A.; Appapillai, A.T.; Kumar, S.; Shao-Horn, Y.

    2007-01-01

    An in situ electrochemical atomic force microscopy (EC-AFM) cell was developed to study surface and dimensional changes of individual Li x CoO 2 crystals during lithium de-intercalation. Discrete Li 2 CO 3 particles having 50-250 nm in diameter and 5-15 nm in height were observed on the surface of stoichiometric LiCoO 2 crystals and they were shown to gradually dissolve into the LiPF 6 -containing electrolyte. The dimensional change of individual Li x CoO 2 crystals along the c hex. axis was monitored in situ during lithium de-intercalation. Evidence of surface instability or structural instability was not found in Li x CoO 2 single crystals upon de-intercalation to 4.2 V versus Li

  9. Optical Properties of Nanostructure Formed on a Surface of CdZnTe Crystal by Laser Radiation

    OpenAIRE

    Medvids, A; Mičko, A; Litovchenko, N; Strilchuk, O; Onufrijevs, P; Plūdons, A

    2008-01-01

    Self-organizing structures of nanometer size are observed on the surface of CdZnTe crystal irradiated by strongly absorbed Nd:YAG laser radiation (LR) at intensities within 4 - 12 MW/cm2. The effect of exciton quantum confinement manifested by a shift to higher energies of the A0,X exciton band of the photoluminescent spectrum is present in structures of 10 – 15 nm in diameter at the top of nano-hills. A graded band gap structure with optical window is formed at the top of nano-hills.

  10. Crystal structure, DFT study, hirshfeld surface and PIXEL energy calculations of benzimidazolium and hexadecylaminium hydrogen maleate salts

    Science.gov (United States)

    Padmavathy, R.; Karthikeyan, N.; Sathya, D.; Jagan, R.; Kumar, R. Mohan; Sivakumar, K.

    2017-05-01

    Two new organic dicarboxylate salts, namely Benzimidazolium hydrogen maleate (BHM) (1) and Hexadecylaminium hydrogen maleate (HDHM) (2) have been prepared and characterized by single crystal X-ray diffraction, FT-IR and TG/DTA analysis. The crystal structures of both the compounds are stabilized by intramolecular Osbnd H⋯O and intermolecular Nsbnd H⋯O,Csbnd H⋯O hydrogen bonds. The supramolecular structure of the salts consists of various ring motifs generating diverse 2D and 3D architectures. The structural parameters were correlated with computed geometrical parameters obtained from DFT/B3LYP quantum chemical calculations using 6-31++g(d,p) basis set. The experimentally determined vibrational frequencies were matched with theoretically achieved FTIR modes and the complete vibrational assignments were done based on PED calculations. The TG/DTA studies reveal the thermal stability of the title compounds. Molecular electrostatic potential mapping were drawn to understand the chemical reactivity based on their charge distribution. The Frontier Molecular orbitals and other related molecular energies were evaluated using the same theoretical calculations. Hirshfeld surface analysis and its associated fingerprint plots were visualised to make clear signs on entity of intermolecular contacts and their impact on crystal packing. The intermolecular and lattice energies of the compounds were studied using PIXELC method to elucidate the quantitative information on interactions appeared between the molecules.

  11. Refractive index sensing and surface-enhanced Raman spectroscopy using silver–gold layered bimetallic plasmonic crystals

    Directory of Open Access Journals (Sweden)

    Somi Kang

    2017-11-01

    Full Text Available Herein we describe the fabrication and characterization of Ag and Au bimetallic plasmonic crystals as a system that exhibits improved capabilities for quantitative, bulk refractive index (RI sensing and surface-enhanced Raman spectroscopy (SERS as compared to monometallic plasmonic crystals of similar form. The sensing optics, which are bimetallic plasmonic crystals consisting of sequential nanoscale layers of Ag coated by Au, are chemically stable and useful for quantitative, multispectral, refractive index and spectroscopic chemical sensing. Compared to previously reported homometallic devices, the results presented herein illustrate improvements in performance that stem from the distinctive plasmonic features and strong localized electric fields produced by the Ag and Au layers, which are optimized in terms of metal thickness and geometric features. Finite-difference time-domain (FDTD simulations theoretically verify the nature of the multimode plasmonic resonances generated by the devices and allow for a better understanding of the enhancements in multispectral refractive index and SERS-based sensing. Taken together, these results demonstrate a robust and potentially useful new platform for chemical/spectroscopic sensing.

  12. Measurement of Total Condensation on a Shrouded Cryogenic Surface using a Single Quart Crystal Microbalance

    International Nuclear Information System (INIS)

    Haid, B.J.; Malsbury, T.N.; Gibson, C.R.; Warren, C.T.

    2008-01-01

    A single quartz crystal microbalance (QCM) is cooled to 18 K to measure condensation rates inside of a retractable ''shroud'' enclosure. The shroud is of a design intended to minimize condensate on fusion targets to be fielded at the National Ignition Facility (NIF). The shroud has a double-wall construction with an inner wall that may be cooled to 75-100 K. The QCM and the shroud system were mounted in a vacuum chamber and cooled using a cryocooler. Condensation rates were measured at various vacuum levels and compositions, and with the shroud open or closed. A technique for measuring total condensate during the cooldown of the system with an accuracy of better than 1.0 x 10 -6 g/cm 2 was also demonstrated. The technique involved a separate measurement of the condensate-free crystal frequency as a function of temperature that was later applied to the measurement of interest

  13. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone

    2012-01-01

    The adsorption dynamics of *OH and *O species at Pt(111) and Cu/Pt(111) near-surface alloy (NSA) surfaces in oxygen-free and O2-saturated 0.1M HClO4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(111) surface resulting in weaker bonding to adsorbates like *OH, *H or *...

  14. Surface potentials of (001), (012), (113) hematite (α-Fe2O3) crystal faces in aqueous solution.

    Science.gov (United States)

    Chatman, Shawn; Zarzycki, Piotr; Rosso, Kevin M

    2013-09-07

    Hematite (α-Fe2O3) is an important candidate electrode for energy system technologies such as photoelectrochemical water splitting. Conversion efficiency issues with this material are presently being addressed through nanostructuring, doping, and surface modification. However, key electrochemical properties of hematite/electrolyte interfaces remain poorly understood at a fundamental level, in particular those of crystallographically well-defined hematite faces likely present as interfacial components at the grain scale. We report a combined measurement and theory study that isolates and evaluates the equilibrium surface potentials of three nearly defect-free single crystal faces of hematite, titrated from pH 3 to 11.25. We link measured surface potentials with atomic-scale surface topology, namely the ratio and distributions of surface protonation-deprotonation site types expected from the bulk structure. The data reveal face-specific points of zero potential (PZP) relatable to points of zero net charge (PZC) that lie within a small pH window (8.35-8.85). Over the entire pH range the surface potentials show strong non-Nernstian charging at pH extremes separated by a wide central plateau in agreement with surface complexation modeling predictions, but with important face-specific distinctions. We introduce a new surface complexation model based on fitting the entire data set that depends primarily only on the proton affinities of two site types and the two associated electrical double layer capacitances. The data and model show that magnitudes of surface potential biases at the pH extremes are on the order of 100 mV, similar to the activation energy for electron hopping mobility. An energy band diagram for hematite crystallites with specific face expression and pH effects is proposed that could provide a baseline for understanding water splitting performance enhancement effects from nanostructuring, and guide morphology targets and pH for systematic improvements in

  15. Passivation of the surfaces of single crystal gadolinium molybdate (Gd2(MoO4)3) against attack by hydrofluoric acid by inert ion beam irradiation

    International Nuclear Information System (INIS)

    Bhalla, A.; Cross, L.E.; Tongson, L.

    1978-01-01

    The passivation effect from inert ion beam bombardment has been studied on a ferroelectric surface. The mechanism in these materials may have some additional contributions because of the polarization charges of the domains and the dipole effect (ion beam and surface species) on the surfaces. For these studies Gd 2 (MoO 4 ) 3 (GMO) crystals were selected. Two possible mechanisms of passivation of GMO surfaces when bombarded with ion beams are discussed

  16. Microneedle crystals of cyano-substituted thiophene/phenylene co-oligomer epitaxially grown on KCl surface

    Science.gov (United States)

    Torii, Kazuki; Dokiya, Shohei; Tanaka, Yosuke; Yoshinaga, Shohei; Yanagi, Hisao

    2017-06-01

    A cyno-substituted thiophene/phenylene co-oligomer (TPCO), 5,5‧-bis(4‧-cyanobiphenyl-4-yl)-2,2‧-bithiophene (BP2T-CN), is vapor-deposited on KCl (001) surface kept at 220 °C by the mask-shadowing method. Transmission electron microscopy and fluorescence microscopy reveal that the deposited BP2T-CN crystallizes in two types of morphologies: microneedles and thin film crystallites. In particular, the predominant microneedles epitaxially grow in four directions in the manner that the BP2T-CN molecules align along the [110]KCl or [-110]KCl. X-ray diffraction patterns indicate that the BP2T-CN molecules in the microneedle lie parallel while those in the thin film crystallite obliquely stand on the KCl surface.

  17. Adsorptive removal of crystal violet dye by a local clay and process optimization by response surface methodology

    Science.gov (United States)

    Loqman, Amal; El Bali, Brahim; Lützenkirchen, Johannes; Weidler, Peter G.; Kherbeche, Abdelhak

    2017-11-01

    The current study relates to the removal of a dye [crystal violet (CV)] from aqueous solutions through batch adsorption experiment onto a local clay from Morocco. The clay was characterized by X-ray diffraction, IR spectroscopy, X-ray fluorescence, scanning electron microscope, Brunauer-Emmett-Teller analysis and Fraunhofer diffraction method. The influence of independent variables on the removal efficiency was determined and optimized by response surface methodology using the Box-Behnken surface statistical design. The model predicted maximum adsorption of 81.62% under the optimum conditions of operational parameters (125 mg L-1 initial dye concentration, 2.5 g L-1 adsorbent dose and time of 43 min). Practically, the removal ranges in 27.4-95.3%.

  18. A Hirshfeld surface analysis, crystal structure and spectroscopic properties of new Zn(II) complex with N-aminoethylpiperazine ligand

    Science.gov (United States)

    El Glaoui, Maroua; El Glaoui, Maher; Jelsch, Christian; Aubert, Emmanuel; Lefebvre, Frédéric; Ben Nasr, Chérif

    2017-04-01

    A new organic-inorganic hybrid material, 1-amonioethylpiperazine-1, 4-diium tetrachloridozincate(II) chloride, (C6H18N3)[ZnCl4]Cl, has been synthesized and characterized by various physicochemical techniques including UV-visible absorption, Infra-Red (IR), Raman and NMR spectroscopies. The compound crystallizes in the monoclinic system and P21 space group with Z = 2 and the following unit cell dimensions: a = 7.1728 (6), b = 12.4160 (11), c = 8.0278 (7) Å, β = 97.513 (1)°, V = 708.80 (11) Å3. In this structure, the Zn2+ ion, surrounded by four chlorides, adopts a distorted tetrahedral coordination geometry. The structure of this compound consists of monomeric 1-amonioethylpiperazine-1, 4-diium trications and monomeric [ZnCl4]2- and Cl- anions. These entities are interconnected by means of hydrogen bonding contacts [Nsbnd H⋯Cl, Csbnd H⋯Cl], forming a three-dimensional network. Intermolecular interactions were investigated by Hirshfeld surfaces. More than three quarters of the interaction surface in the crystal packing is constituted by attractive and favored H⋯Cl hydrogen bonds. The 13C and 15N CP-MAS NMR spectra are discussed and the vibrational absorption bands were identified by infrared and Raman spectroscopy.

  19. Inverse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects.

    Science.gov (United States)

    Cares-Pacheco, M G; Calvet, R; Vaca-Medina, G; Rouilly, A; Espitalier, F

    2015-10-15

    Powders are complex systems and so pharmaceutical solids are not the exception. Nowadays, pharmaceutical ingredients must comply with well-defined draconian specifications imposing narrow particle size range, control on the mean particle size, crystalline structure, crystal habits aspect and surface properties of powders, among others. The different facets, physical forms, defects and/or impurities of the solid will alter its interaction properties. A powerful way of studying surface properties is based on the adsorption of an organic or water vapor on a powder. Inverse gas chromatography (IGC) appears as a useful method to characterize the surface properties of divided solids. The aim of this work is to study the sensitivity of IGC, in Henry's domain, in order to detect the impact of size and morphology in surface energy of two crystalline forms of an excipient, d-mannitol. Surface energy analyses using IGC have shown that the α form is the most energetically active form. To study size and shape influence on polymorphism, pure α and β mannitol samples were cryomilled (CM) and/or spray dried (SD). All forms showed an increase of the surface energy after treatment, with a higher influence for β samples (γs(d) of 40-62 mJ m(-2)) than for α mannitol samples (γs(d) of 75-86 mJ m(-2)). Surface heterogeneity analysis in Henry's domain showed a more heterogeneous β-CM sample (62-52 mJ m(-2)). Moreover, despite its spherical shape and quite homogeneous size distribution, β-SD mannitol samples showed a slightly heterogeneous surface (57-52 mJ m(-2)) also higher than the recrystallized β pure sample (∼40 mJ m(-2)). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    George, M.A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E. [Fisk Univ., Nashville, TN (United States). Dept. of Physics; Nason, D. [EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations

    1993-05-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using Atomic Force Microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  1. Molecular Assembly of Hemin on Single-Crystal Au(111)-electrode Surfaces

    DEFF Research Database (Denmark)

    Zhang, Ling; Ulstrup, Jens; Zhang, Jingdong

    also acts as catalyst in electrochemical reduction of dioxygen and other small inert molecules such as nitrogen monoxide, and in electrochemiluminescent detection of dioxygen, peroxide, DNA, and proteins. л-л interactions of hemin with carbon materials have been broadly studied. Hemin onnoble metal......-defined single-crystal Au(111)-electrodesurfaces using electrochemistry combined with scanning tunnelling microscopy under electrochemical control. Hemin gives two voltammetric peaks assigned to adsorbed monomers and dimmers (Fig. 1A). In situ STM shows that hemin self-assembles in ordered monolayers through non...

  2. Diamond photonic crystal slab: leaky modes and modified photoluminescence emission of surface-deposited quantum dots

    Czech Academy of Sciences Publication Activity Database

    Ondič, Lukáš; Babchenko, Oleg; Varga, Marián; Kromka, Alexander; Čtyroký, Jiří; Pelant, Ivan

    2012-01-01

    Roč. 2, Dec (2012), s. 1-6 ISSN 2045-2322 R&D Projects: GA ČR(CZ) GAP108/11/0794; GA AV ČR(CZ) IAA101120804; GA AV ČR KJB100100903; GA ČR(CZ) GAP205/10/0046 Grant - others:AVČR(CZ) M100100902 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z20670512 Keywords : photonic crystal * diamond * photoluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.927, year: 2012 http://www.nature.com/srep/2012/121203/srep00914/full/srep00914.html

  3. Ikaite crystals in melting sea ice - implications for pCO(2) and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, Ronnie N.; Lennert, Kunuk

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3 center dot 6H(2)O) in Arctic and Antarctic sea ice, which indicate......, melt reduced the ice floe thickness by 0.2m per week and resulted in an estimated 3.8 ppm decrease of pCO(2) in the ocean surface mixed layer. This corresponds to an air-sea CO2 uptake of 10.6 mmol m(-2) sea ice d(-1) or to 3.3 ton km(-2) ice floe week(-1). This is markedly higher than the estimated...... that multiple chemical transformations occur in sea ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km(2) (0.5-1m thick) drifting ice floe...

  4. Determination of surface-induced platelet activation by applying time-dependency dissipation factor versus frequency using quartz crystal microbalance with dissipation

    Science.gov (United States)

    Fatisson, Julien; Mansouri, Sania; Yacoub, Daniel; Merhi, Yahye; Tabrizian, Maryam

    2011-01-01

    Platelet adhesion and activation rates are frequently used to assess the thrombogenicity of biomaterials, which is a crucial step for the development of blood-contacting devices. Until now, electron and confocal microscopes have been used to investigate platelet activation but they failed to characterize this activation quantitatively and in real time. In order to overcome these limitations, quartz crystal microbalance with dissipation (QCM-D) was employed and an explicit time scale introduced in the dissipation versus frequency plots (Df–t) provided us with quantitative data at different stages of platelet activation. The QCM-D chips were coated with thrombogenic and non-thrombogenic model proteins to develop the methodology, further extended to investigate polymer thrombogenicity. Electron microscopy and immunofluorescence labelling were used to validate the QCM-D data and confirmed the relevance of Df–t plots to discriminate the activation rate among protein-modified surfaces. The responses showed the predominant role of surface hydrophobicity and roughness towards platelet activation and thereby towards polymer thrombogenicity. Modelling experimental data obtained with QCM-D with a Matlab code allowed us to define the rate at which mass change occurs (A/B), to obtain an A/B value for each polymer and correlate this value with polymer thrombogenicity. PMID:21247945

  5. Energy loss of light ions scattered off Al(110) single crystal surfaces at low energy

    NARCIS (Netherlands)

    Hausmann, S; Hofner, C; Schlathölter, Thomas; Franke, H; Narmann, A; Heiland, W

    We present energy loss data taken after grazing incidence scattering of H+, H-0, He2+, He+, and He-0 off an Al(110) surface, The data is evaluated by means of a procedure that allows to extract surface electron density parameters. The obtained density parameters will be compared to those obtained

  6. Spectroscopic ellipsometric investigation of clean and oxygen covered copper single crystal surfaces

    NARCIS (Netherlands)

    Hanekamp, L.J.; Lisowski, W.F.; Bootsma, G.A.

    1982-01-01

    Spectroscopic ellipsometric measurements (400–820 nm) have been performed on clean and oxygen covered Cu(110) and Cu(111) surfaces in an AES-LEED UHV system. The complex dielectric functions of the clean surfaces were calculated from measurements between room temperature and 600 K. In contrast with

  7. Zn Electrodeposition on Single-Crystal GaN(0001 Surface: Nucleation and Growth Mechanism

    Directory of Open Access Journals (Sweden)

    Fei Peng

    2016-01-01

    Full Text Available The electrochemical deposition of zinc on single-crystal n-type GaN(0001 from a sulphate solution has been investigated on the basis of electrochemical techniques including cyclic voltammetry, chronoamperometry, and Tafel plot. The morphology and crystal structure of zinc deposits have been characterized by means of scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analysis. The result has revealed that the deposition of Zn on GaN electrode commenced at a potential of −1.12 V versus Ag/AgCl. According to the Tafel plot, an exchange current density of ~0.132 mA cm−2 was calculated. In addition, the current transient measurements have shown that Zn deposition process followed the instantaneous nucleation in 10 mM ZnSO4 + 0.5 M Na2SO4 + 0.5 M H3BO3 (pH = 4.

  8. Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals

    International Nuclear Information System (INIS)

    Gallego, Daniel; Higuita, Natalia; Garcia, Felipe; Ferrell, Nicholas; Hansford, Derek J.

    2008-01-01

    We report a method for depositing bioactive coatings onto cement materials for bone tissue engineering applications. White Portland cement substrates were hydrated under a 20% CO 2 atmosphere, allowing the formation of CaCO 3 . The substrates were incubated in a calcium phosphate solution for 1, 3, and 6 days (CPI, CPII, and CPIII respectively) at 37 deg. C to induce the formation of carbonated apatite. Cement controls were prepared and hydrated with and without CO 2 atmosphere (C+ and C- respectively). The presence of apatite-like crystals was verified by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The substrate cytocompatibility was evaluated via SEM after 24 hour cell cultures. SEM revealed the presence Ca(OH) 2 on C-, and CaCO 3 on C+. Apatite-like crystals were detected only on CPIII, confirmed by phosphorus EDS peaks only for CPIII. Cells attached and proliferated similarly well on all the substrates except C-. These results prove the feasibility of obtaining biocompatible and bioactive coatings on Portland cement for bone tissue engineering applications

  9. Stripping scattering of fast atoms on surfaces of metal-oxide crystals and ultrathin films

    International Nuclear Information System (INIS)

    Blauth, David

    2010-01-01

    In the framework of the present dissertation the interactions of fast atoms with surfaces of bulk oxides, metals and thin films on metals were studied. The experiments were performed in the regime of grazing incidence of atoms with energies of some keV. The advantage of this scattering geometry is the high surface sensibility and thus the possibility to determine the crystallographic and electronic characteristics of the topmost surface layer. In addition to these experiments, the energy loss and the electron emission induced by scattered projectiles was investigated. The energy for electron emission and exciton excitation on Alumina/NiAl(110) and SiO 2 /Mo(112) are determined. By detection of the number of projectile induced emitted electrons as function of azimuthal angle for the rotation of the target surface, the geometrical structure of atoms forming the topmost layer of different adsorbate films on metal surfaces where determined via ion beam triangulation. (orig.)

  10. Statistical studies on the light output and energy resolution of small LSO single crystals with different surface treatments combined with various reflector materials

    CERN Document Server

    Heinrichs, U; Bussmann, N; Engels, R; Kemmerling, G; Weber, S; Ziemons, K

    2002-01-01

    The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2x2x10 mm sup 3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO sub 4) and exposed to a sup 2 sup 2 Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551+-35% by mechanical polishing the surface compared to 100+-5% for raw crystals. Etching the surface increased the light output to 441+-29%. The untreated crystals had an energy resolution of 24.6+-4.0%. By mechanical polishing the surfac...

  11. High-beam-quality, efficient operation of passively Q-switched Yb:YAG/Cr:YAG laser pumped by photonic-crystal surface-emitting laser

    Science.gov (United States)

    Guo, Xiaoyang; Tokita, Shigeki; Fujioka, Kana; Nishida, Hiro; Hirose, Kazuyoshi; Sugiyama, Takahiro; Watanabe, Akiyoshi; Ishizaki, Kenji; Noda, Susumu; Miyanaga, Noriaki; Kawanaka, Junji

    2017-07-01

    A passively Q-switched Yb:YAG/Cr:YAG laser pumped by a photonic-crystal surface-emitting laser (PCSEL) was developed. Yb:YAG crystal was cryogenically cooled by liquid nitrogen at 77 K. Excellent Gaussian beam profile ( M 2 = 1.02) and high slope efficiency of 58% were demonstrated without using a coupling optics between a laser material and PCSEL.

  12. Molecular dynamics modeling self-organization of pyramid-like structures after crystallization of nanodrops in the field of solid surface

    International Nuclear Information System (INIS)

    Samsonov, V.M.; Murav'ev, S.D.; Pushkar', M.Yu.

    2005-01-01

    The process of nanodrop crystallization in the field of solid surface was investigated on the basis of the isothermal molecular dynamics. The initial stage of the process corresponds to the spreading under a constant cooling rate. The crystallization resulted in the formation of layered pyramid-like structures. A comparative analysis of forms and conditions was made, which yielded the pyramid-like structure formation in molecular dynamics simulation and in the experiments with Ge/Si systems [ru

  13. INTERFACIAL FREE-ENERGY CHANGES OCCURRING DURING BSA ADSORPTION IN SOLUTION DROPLETS ON FEP-TEFLON SURFACES AS MEASURED BY ADSA-P

    NARCIS (Netherlands)

    BUSSCHER, HJ; VANDERVEGT, W; SCHAKENRAAD, JM; VANDERMEI, HC

    1991-01-01

    Axisymmetric drop shape analysis by profile (ADSA-P) was employed to determine the interfacial free energy changes occurring during bovine serum albumin (BSA) adsorption from solution droplets on fluoroethylenepropylene-Teflon (FEP-Teflon). 100-mu-l droplets of BSA solutions on FEP-Teflon were

  14. Photonic Crystal Fiber-Based Surface Plasmon Resonance Sensor with Selective Analyte Channels and Graphene-Silver Deposited Core

    Directory of Open Access Journals (Sweden)

    Ahmmed A. Rifat

    2015-05-01

    Full Text Available We propose a surface plasmon resonance (SPR sensor based on photonic crystal fiber (PCF with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs. Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber’s properties and sensing performance are performed using the finite element method (FEM. The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU−1 with resolution as high as 2.4 × 10−5 RIU. Using the wavelength interrogation method, a maximum refractive index (RI sensitivity of 3000 nm/RIU in the sensing range of 1.46–1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor’s footprint.

  15. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core.

    Science.gov (United States)

    Rifat, Ahmmed A; Mahdiraji, G Amouzad; Chow, Desmond M; Shee, Yu Gang; Ahmed, Rajib; Adikan, Faisal Rafiq Mahamd

    2015-05-19

    We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber's properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU-1) with resolution as high as 2.4 × 10(-5) RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46-1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor's footprint.

  16. Surface acoustic load sensing using a face-shear PIN-PMN-PT single-crystal resonator.

    Science.gov (United States)

    Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2012-11-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) resonators for surface acoustic load sensing are presented in this paper. Different acoustic loads are applied to thickness mode, thickness-shear mode, and face-shear mode resonators, and the electrical impedances at resonance and anti-resonance frequencies are recorded. More than one order of magnitude higher sensitivity (ratio of electrical impedance change to surface acoustic impedance change) at the resonance is achieved for the face-shear-mode resonator compared with other resonators with the same dimensions. The Krimholtz, Leedom, and Matthaei (KLM) model is used to verify the surface acoustic loading effect on the electrical impedance spectrum of face-shear PIN-PMN-PT single-crystal resonators. The demonstrated high sensitivity of face-shear mode resonators to surface loads is promising for a broad range of applications, including artificial skin, biological and chemical sensors, touch screens, and other touch-based sensors.

  17. Plasma proteins adsorption mechanism on polyethylene-grafted poly(ethylene glycol) surface by quartz crystal microbalance with dissipation.

    Science.gov (United States)

    Jin, Jing; Jiang, Wei; Yin, Jinghua; Ji, Xiangling; Stagnaro, Paola

    2013-06-04

    Protein adsorption has a vital role in biomaterial surface science because it is directly related to the hemocompatibility of blood-contacting materials. In this study, monomethoxy poly(ethylene glycol) (mPEG) with two different molecular weights was grafted on polyethylene as a model to elucidate the adsorption mechanisms of plasma protein through quartz crystal microbalance with dissipation (QCM-D). Combined with data from platelet adhesion, whole blood clotting time, and hemolysis rate, the blood compatibility of PE-g-mPEG film was found to have significantly improved. Two adsorption schemes were developed for real-time monitoring of protein adsorption. Results showed that the preadsorbed bovine serum albumin (BSA) on the surfaces of PE-g-mPEG films could effectively inhibit subsequent adsorption of fibrinogen (Fib). Nonspecific protein adsorption of BSA was determined by surface coverage, not by the chain length of PEG. Dense PEG brush could release more trapped water molecules to resist BSA adsorption. Moreover, the preadsorbed Fib could be gradually displaced by high-concentration BSA. However, the adsorption and displacement of Fib was determined by surface hydrophilicity.

  18. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    International Nuclear Information System (INIS)

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2011-01-01

    Research highlights: → Bacterial alginate-binding Algp7 is similar to component EfeO of Fe 2+ transporter. → We determined the crystal structure of Algp7 with a metal-binding motif. → Algp7 consists of two helical bundles formed through duplication of a single bundle. → A deep cleft involved in alginate binding locates around the metal-binding site. → Algp7 may function as a Fe 2+ -chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  19. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Yukie; Ochiai, Akihito [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Laboratory of Applied Structural Biology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Hashimoto, Wataru [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan); Murata, Kousaku, E-mail: kmurata@kais.kyoto-u.ac.jp [Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-02-18

    Research highlights: {yields} Bacterial alginate-binding Algp7 is similar to component EfeO of Fe{sup 2+} transporter. {yields} We determined the crystal structure of Algp7 with a metal-binding motif. {yields} Algp7 consists of two helical bundles formed through duplication of a single bundle. {yields} A deep cleft involved in alginate binding locates around the metal-binding site. {yields} Algp7 may function as a Fe{sup 2+}-chelated alginate-binding protein. -- Abstract: A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10 A resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

  20. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.

    Science.gov (United States)

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-06-27

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

  1. Fractal Surfaces of Molecular Crystals Mimicking Lotus Leaf with Phototunable Double Roughness Structures.

    Science.gov (United States)

    Nishimura, Ryo; Hyodo, Kengo; Sawaguchi, Haruna; Yamamoto, Yoshiaki; Nonomura, Yoshimune; Mayama, Hiroyuki; Yokojima, Satoshi; Nakamura, Shinichiro; Uchida, Kingo

    2016-08-17

    Double roughness structure, the origin of the lotus effect of natural lotus leaf, was successfully reproduced on a diarylethene microcrystalline surface. Static superwater-repellency and dynamic water-drop-bouncing were observed on the surface, in the manner of natural lotus leaves. Double roughness structure was essential for water-drop-bouncing. This ability was not observed on a single roughness microcrystalline surface showing the lotus effect of the same diarylethene derivative. The double roughness structure was reversibly controlled by alternating irradiation with UV and visible light.

  2. Analyzing the Deposition of Titanium Dioxide Nanoparticles at Model Rough Mineral Surfaces Using a Quartz Crystal Microbalance with Dissipation Monitoring

    Science.gov (United States)

    Li, Y.; Kananizadeh, N.; Rodenhausen, K. B.; Schubert, M.; Bartelt-Hunt, S.

    2015-12-01

    Titanium dioxide nanoparticles (nTiO2) is the most extensively manufactured engineered materials. nTiO2 from sunscreens was found to enter sediments after released into a lake. nTiO2 may also enter the subsurface via irrigation using effluents from wastewater treatment plants. Interaction of nTiO2 with soils and sediments will largely influence their fate, transport, and ecotoxicity. Measuring the interaction between nTiO2 and natural substrates (e.g. such as sands) is particularly challenging due to highly heterogeneous and rough natural sand surfaces. In this study, an engineered controllable rough surface known as three dimensional nanostructured sculptured columnar thin films (SCTFs) has been used to mimic surface roughness. SCTFs were fabricated by glancing angle deposition (GLAD), a physical vapor deposition technique facilitated by electron beam evaporation. Interaction between nTiO2 and SCTF coated surfaces was investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D). In parallel, a Generalized Ellipsometry (GE) was coupled with the QCM-D to measure the deposition of nTiO2. We found that the typical QCM-D modeling approach, e.g. viscoelastic model, would largely overestimate the mass of deposited nTiO2, because the frequency drops due to particle deposition or water entrapment in rough areas were not differentiated. Here, we demonstrate a new approach to model QCM-D data for nTiO2 deposition on rough surfaces, which couples the viscoelastic model with a model of flow on the non-uniform surface.

  3. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced Raman scattering (SERS).

    Science.gov (United States)

    Khetani, Altaf; Momenpour, Ali; Alarcon, Emilio I; Anis, Hanan

    2015-11-01

    The present paper demonstrates an antibody-free, robust, fast, and portable platform for detection of leukemia cells using Raman spectroscopy with a 785-nm laser diode coupled to a hollow core photonic crystal (HC-PCF) containing silver nanoparticles. Acute myeloid leukemia is one of the most common bone marrow cancers in children and youths. Clinical studies suggest that early diagnosis and remission evaluation of myoblasts in the bone marrow are pivotal for improving patient survival. However, the current protocols for leukemic cells detection involve the use of expensive antibodies and flow cytometers. Thus, we have developed a new technology for detection of leukemia cells up to 300 cells/ml using a compact fiber HC-PCF, which offers a novel alternative to existing clinical standards. Furthermore, we were also able to accurately distinguish live, apoptotic and necrotic leukemic cells.

  4. High-stability quartz-crystal microbalance for investigations in surface science

    International Nuclear Information System (INIS)

    Bouzidi, L.; Narine, S.S.; Stefanov, K.G.; Slavin, A.J.

    2003-01-01

    This article describes a high-stability quartz-crystal microbalance (QCM) and the methodology for measuring the change in mass during thin-film growth in deposition and sputter processes. Much lower noise and higher-frequency stability have been achieved than with conventional QCMs. A stability of ±0.1 Hz at 6 MHz has been obtained over 4 h, with a rms stability of 0.03 Hz. The adsorption of one atomic monolayer of oxygen produces a frequency shift of about 5 Hz, so this stability enables the QCM to be used to determine the stoichiometry of submonolayer oxide films, as well as for high-accuracy measurements of adsorbate sticking probability and ion-milling rate

  5. Surface Electronic Structure of Hybrid Organo Lead Bromide Perovskite Single Crystals

    KAUST Repository

    Komesu, Takashi

    2016-08-24

    The electronic structure and band dispersion of methylammonium lead bromide, CH3NH3PbBr3, has been investigated through a combination of angle-resolved photoemission spectroscopy (ARPES) and inverse photoemission spectroscopy (IPES), as well as theoretical modeling based on density functional theory. The experimental band structures are consistent with the density functional calculations. The results demonstrate the presence of a dispersive valence band in MAPbBr3 that peaks at the M point of the surface Brillouin zone. The results also indicate that the surface termination of the CH3NH3PbBr3 is the methylammonium bromide (CH3NH3Br) layer. We find our results support models that predict a heavier hole effective mass in the region of -0.23 to -0.26 me, along the Γ (surface Brillouin center) to M point of the surface Brillouin zone. The surface appears to be n-type as a result of an excess of lead in the surface region. © 2016 American Chemical Society.

  6. Imaging of surfaces and defects of crystals. Progress report, August 1, 1983-July 31, 1984

    International Nuclear Information System (INIS)

    Cowley, J.M.

    1984-01-01

    The current year has been one of major advances in our progress towards the development of techniques for the study of surfaces with high spatial resolution. The medium-energy (1-15keV) REMEDIE system (for Reflection Electron Microscopy and Electron Diffraction at Intermediate Energies) has been rebuilt to the stage of showing better than 100A in the transmission mode in good vacuum and has been applied to the study of some surface reconstructions on silicon. These instruments include a 300 keV TEM-STEM analytical electron microscopy from Philips, to be converted for operation under ultra-high vacuum conditions by GATAN Inc. In this a resolution of better than 2.3A and various microanalytical techniques will be applied to surface studies. Also an ultra-high vacuum dedicated STEM instrument is being obtained and this will be modified for the combined application of high resolution STEM imaging, microdiffraction and microanalysis and the surface research techniques of AES, SAM, LEED, UPS and so on. Further observations on the interactions of small metal particles with ceramics have revealed a situation which has profound implications for electron-optical studies and for some possible technical applications of ceramic systems. It has been shown that the surface of MgO is modified by the presence of small amounts of various metals in such a way that it becomes highly sensitive to electron irradiation, undergoing vigorous reconstructions of the surface morphology and in some cases, becoming amorphous

  7. Theoretical estimation of optical hyperpolarizability appearance in fullerene molecule and carbon nanotubes interacting with ionic crystal surface

    Science.gov (United States)

    Mestechkin, M. M.

    2007-05-01

    The first hyperpolarizability (HP) of fullerene and finite length carbon nanotubes (FCN), attached to the neutral surfaces of SiO 2 (1 1 0), CdS(1 1 2 0), and CdTe(1 1 0) crystals, is calculated in the framework of the semi-empirical version of the time-dependent Hartree-Fock theory (TDHF). The norm of β-vector invariant, induced by the substrate, is of the same order as in some organic molecules with the observed nonlinear optical properties. The orthogonal to the substrate β-component is responsible for generation of the second harmonic by fullerene according to Hoshi and co-authors [H. Hoshi, N. Nakamura, Y. Maruyama, T. Nakagawa, S. Suzuki, H. Shiromaru, Y. Achiba, Jpn. J. Appl. Phys. 30 (1991) L1397]. The calculated value of this component is shown sufficient for the weak generation. It is found that zig-zag FCN, in contrast to armchair FCN, are characterized by the resonant behaviour of HP for second harmonic generation (SHG) at low frequencies due to the existence of quasi-degenerate (hyperbolic) levels in the close vicinity of the Fermi level. This ability is created by the external ionic crystal potential and affected by mutual electron interaction of molecules in the layer.

  8. Role of dbnd NOH intermolecular interactions in oxime derivatives via Crystal structure, Hirshfeld surface, PIXELC and DFT calculations

    Science.gov (United States)

    Purushothaman, Gayathri; Thiruvenkatam, Vijay

    2017-11-01

    Oximes are building block of organic synthesis and they have wide range applications in laboratories, industries, and pharmaceutical as antidotes. Herein we report the crystal structures of oxime derivative Beta-p-Dimethylaminodeoxybenzionoxime (I) and o-Chloro-p-dimethylaminodeoxybenzion (II) the precursor molecule of o-Chloro-p-dimethylaminodeoxybenzionoxime and their intermolecular interactions studies through Hirshfeld surface & 2D-fingerprint plot analysis along with PIXELC and DFT calculations. The packing arrangements in I and II are driven by Osbnd H⋯N and Osbnd H⋯C interactions respectively. The Osbnd H⋯N hydrogen bonding in I facilitates the formation of the dimer with the motif of R (22(6)), whereas in II absence of oxime moiety (dbnd NOH) restricts the dimer formation. The 2D-fingerprint plot shows the close contacts for the intermolecular interactions in I & II. The PIXELC calculation of II suggests Osbnd H⋯C contributes for intermolecular interaction that stabilizes the crystal packing with the total energy value of 60.4 kcal/mol. The DFT calculation using B3LYP with 6-311G (d, p) functional set for both the derivatives shows a small deviation in the benzene ring (I) and chlorobenzene ring (II) with the RMSD value of 0.5095 Å and 0.8472 Å respectively.

  9. Coupled-wave analysis for photonic-crystal surface-emitting lasers on air holes with arbitrary sidewalls.

    Science.gov (United States)

    Peng, Chao; Liang, Yong; Sakai, Kyosuke; Iwahashi, Seita; Noda, Susumu

    2011-11-21

    The coupled-wave theory (CWT) is extended to a photonic crystal structure with arbitrary sidewalls, and a simple, fast, and effective model for the quantitatively analysis of the radiative characteristics of two-dimensional (2D) photonic-crystal surface-emitting lasers (PC-SELs) has been developed. For illustrating complicated coupling effects accurately, sufficient numbers of waves are included in the formulation, by considering their vertical field profiles. The radiation of band-edge modes is analyzed for two in-plane air-hole geometries, in the case of two types of sidewalls: i.e. "tapered case" and "tilted case." The results of CWT analysis agree well with the results of finite-difference time-domain (FDTD) numerical simulation. From the analytical solutions of the CWT, the symmetry properties of the band-edge modes are investigated. In-plane asymmetry of the air holes is crucial for achieving high output power because it causes partial constructive interference. Asymmetric air holes and tilted sidewalls help in inducing in-plane asymmetries. By breaking the symmetries with respect to the two orthogonal symmetric axes of the band-edge modes, the two factors can be tuned independently, so that the radiation power is enhanced while preserving the mode selectivity performance. Finally, top-down reactive ion etching (RIE) approach is suggested for the fabrication of such a structure. © 2011 Optical Society of America

  10. XPS study of the surface chemistry of UO2 (111) single crystal film

    Science.gov (United States)

    Maslakov, Konstantin I.; Teterin, Yury A.; Popel, Aleksej J.; Teterin, Anton Yu.; Ivanov, Kirill E.; Kalmykov, Stepan N.; Petrov, Vladimir G.; Springell, Ross; Scott, Thomas B.; Farnan, Ian

    2018-03-01

    A (111) air-exposed surface of UO2 thin film (150 nm) on (111) YSZ (yttria-stabilized zirconia) before and after the Ar+ etching and subsequent in situ annealing in the spectrometer analytic chamber was studied by XPS technique. The U 5f, U 4f and O 1s electron peak intensities were employed for determining the oxygen coefficient kO = 2 + x of a UO2+x oxide on the surface. It was found that initial surface (several nm) had kO = 2.20. A 20 s Ar+ etching led to formation of oxide UO2.12, whose composition does not depend significantly on the etching time (up to 180 s). Ar+ etching and subsequent annealing at temperatures 100-380 °C in vacuum was established to result in formation of stable well-organized structure UO2.12 reflected in the U 4f XPS spectra as high intensity (∼28% of the basic peak) shake-up satellites 6.9 eV away from the basic peaks, and virtually did not change the oxygen coefficient of the sample surface. This agrees with the suggestion that a stable (self-assembling) phase with the oxygen coefficient kO ≈ 2.12 forms on the UO2 surface.

  11. Small particle reagent based on crystal violet dye for developing latent fingerprints on non-porous wet surfaces

    Directory of Open Access Journals (Sweden)

    Richa Rohatgi

    2015-12-01

    Full Text Available Small particle reagent (SPR is a widely used method for developing latent fingerprints on non-porous wet surfaces. SPR based on zinc carbonate hydroxide monohydrate, ZnCo3·2Zn(OH2·H2O – also called basic zinc carbonate – has been formulated. The other ingredients of the formulation are crystal violet dye and a commercial liquid detergent. The composition develops clear, sharp and detailed fingerprints on non-porous items, after these were immersed separately in clean and dirty water for variable periods of time. The ability of the present formulation to detect weak and faint chance prints not only enhances its utility, but also its potentiality in forensic case work investigations. The raw materials used to prepare the SPR are cost-effective and non-hazardous.

  12. Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment

    International Nuclear Information System (INIS)

    Lee, J. H.; Kim, Y. S.

    2015-01-01

    Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering

  13. Crystal and geometry-optimized structure, and Hirshfeld surface analysis of 1-(2-bromoethylindoline-2,3-dione

    Directory of Open Access Journals (Sweden)

    N. Sharmila

    2016-11-01

    Full Text Available In the title compound, C10H8BrNO2, the isatin (1H-indole-2,3-dione moiety is nearly planar (r.m.s. deviation = 0.026 Å. In the crystal, molecules are linked by C—H...O hydrogen bonds, forming layers parallel to the ab plane, and enclosing R44(24 loops. There are a low percentage (19.3% of intermolecular H...H contacts in the structure, as estimated by the analysis of Hirshfeld surfaces. This could be due to the presence of the Br atom, present in the bromoethylene group, which makes ca 18.7% Br...H contacts.

  14. First-principles approaches to intrinsic strength and deformation of materials: perfect crystals, nano-structures, surfaces and interfaces

    International Nuclear Information System (INIS)

    Ogata, Shigenobu; Umeno, Yoshitaka; Kohyama, Masanori

    2009-01-01

    First-principles studies on the intrinsic mechanical properties of various materials and systems through ab initio tensile and shear testing simulations based on density-functional theory are reviewed. For various materials, ideal tensile and shear strength and features of the deformation of bulk crystals without any defects have been examined, and the relation with the bonding nature has been analyzed. The surfaces or low-dimensional nano-structures reveal peculiar strength and deformation behavior due to local different bonding nature. For grain boundaries and metal/ceramic interfaces, tensile and shear behaviors depend on the interface bonding, which impacts on the research of real engineering materials. Remaining problems and future directions in this research field are discussed. (topical review)

  15. Translation effects on vertical Bridgman growth and optical, mechanical and surface analysis of 2-phenylphenol single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Sadhasivam, S., E-mail: sadha.phy1@gmail.com [Department of Physics, Center for Crystal Growth, SSN College of Engineering, Tamil Nadu, India-603 110 (India); Perumal, Rajesh Narayana

    2016-05-06

    2-phenylphenol optical crystals were grown in cone ampoules using vertical Bridgman technique. Single crystal of 2-phenylphenol with 150 mm length has been grown. The inclination on the conical part of the ampoule reduces the growth defects in the 2-phenylphenol single crystal. The lattice parameters and structure studied using single crystal X-ray diffraction method. 2-phenylphenol single crystal belongs to orthorhombic space group Fdd2. The micro translation rate affects crystal growth of 2-phenylphenol crystal was studied. The translation rate dependent defects present in the crystal were investigated by transmittance, indentation and etching characterizations. The dislocation induced indentation crack lengths variations were studied. Etch pits and striations observed for the selective etchants furnish significant information on growth aspects and degree of defect present in the crystal.

  16. Surface modifications of crystal-ion-sliced LiNbO3 thin films by low energy ion irradiations

    Science.gov (United States)

    Bai, Xiaoyuan; Shuai, Yao; Gong, Chaoguan; Wu, Chuangui; Luo, Wenbo; Böttger, Roman; Zhou, Shengqiang; Zhang, Wanli

    2018-03-01

    Single crystalline 128°Y-cut LiNbO3 thin films with a thickness of 670 nm are fabricated onto Si substrates by means of crystal ion slicing (CIS) technique, adhesive wafer bonding using BCB as the medium layer to alleviate the large thermal coefficient mismatch between LiNbO3 and Si, and the X-ray diffraction pattern indicates the exfoliated thin films have good crystalline quality. The LiNbO3 thin films are modified by low energy Ar+ irradiation, and the surface roughness of the films is decreased from 8.7 nm to 3.4 nm. The sputtering of the Ar+ irradiation is studied by scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy, and the results show that an amorphous layer exists at the surface of the exfoliated film, which can be quickly removed by Ar+ irradiation. A two-stage etching mechanism by Ar+ irradiation is demonstrated, which not only establishes a new non-contact surface polishing method for the CIS-fabricated single crystalline thin films, but also is potentially useful to remove the residue damage layer produced during the CIS process.

  17. Surface texture of single-crystal silicon oxidized under a thin V{sub 2}O{sub 5} layer

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, S. E., E-mail: nikitin@mail.ioffe.ru; Verbitskiy, V. N.; Nashchekin, A. V.; Trapeznikova, I. N.; Bobyl, A. V.; Terukova, E. E. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The process of surface texturing of single-crystal silicon oxidized under a V{sub 2}O{sub 5} layer is studied. Intense silicon oxidation at the Si–V{sub 2}O{sub 5} interface begins at a temperature of 903 K which is 200 K below than upon silicon thermal oxidation in an oxygen atmosphere. A silicon dioxide layer 30–50 nm thick with SiO{sub 2} inclusions in silicon depth up to 400 nm is formed at the V{sub 2}O{sub 5}–Si interface. The diffusion coefficient of atomic oxygen through the silicon-dioxide layer at 903 K is determined (D ≥ 2 × 10{sup –15} cm{sup 2} s{sup –1}). A model of low-temperature silicon oxidation, based on atomic oxygen diffusion from V{sub 2}O{sub 5} through the SiO{sub 2} layer to silicon, and SiO{sub x} precipitate formation in silicon is proposed. After removing the V{sub 2}O{sub 5} and silicon-dioxide layers, texture is formed on the silicon surface, which intensely scatters light in the wavelength range of 300–550 nm and is important in the texturing of the front and rear surfaces of solar cells.

  18. Crystal structure of bacterial cell-surface alginate-binding protein with an M75 peptidase motif.

    Science.gov (United States)

    Maruyama, Yukie; Ochiai, Akihito; Mikami, Bunzo; Hashimoto, Wataru; Murata, Kousaku

    2011-02-18

    A gram-negative Sphingomonas sp. A1 directly incorporates alginate polysaccharide into the cytoplasm via the cell-surface pit and ABC transporter. A cell-surface alginate-binding protein, Algp7, functions as a concentrator of the polysaccharide in the pit. Based on the primary structure and genetic organization in the bacterial genome, Algp7 was found to be homologous to an M75 peptidase motif-containing EfeO, a component of a ferrous ion transporter. Despite the presence of an M75 peptidase motif with high similarity, the Algp7 protein purified from recombinant Escherichia coli cells was inert on insulin B chain and N-benzoyl-Phe-Val-Arg-p-nitroanilide, both of which are substrates for a typical M75 peptidase, imelysin, from Pseudomonas aeruginosa. The X-ray crystallographic structure of Algp7 was determined at 2.10Å resolution by single-wavelength anomalous diffraction. Although a metal-binding motif, HxxE, conserved in zinc ion-dependent M75 peptidases is also found in Algp7, the crystal structure of Algp7 contains no metal even at the motif. The protein consists of two structurally similar up-and-down helical bundles as the basic scaffold. A deep cleft between the bundles is sufficiently large to accommodate macromolecules such as alginate polysaccharide. This is the first structural report on a bacterial cell-surface alginate-binding protein with an M75 peptidase motif. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Electrostatic interactions between ions near Thomas-Fermi substrates and the surface energy of ionic crystals at imperfect metals.

    Science.gov (United States)

    Kaiser, V; Comtet, J; Niguès, A; Siria, A; Coasne, B; Bocquet, L

    2017-07-01

    The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon a previous approach [M. A. Vorotyntsev and A. A. Kornyshev, Zh. Eksp. Teor. Fiz., 1980, 78(3), 1008-1019] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allows for an estimation of the interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. The counter-intuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length l TF , profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement.

  20. Electrostatic interactions between ions near Thomas-Fermi substrates and the surface energy of ionic crystal at imperfect metals

    Science.gov (United States)

    Kaiser, V.; Comtet, J.; Niguès, A.; Siria, A.; Coasne, B.; Bocquet, L.

    2017-01-01

    The electrostatic interaction between two charged particles is strongly modified in the vicinity of a metal. This situation is usually accounted for by the celebrated image charges approach, which was further extended to account for the electronic screening properties of the metal at the level of the Thomas-Fermi description. In this paper we build upon the approach by [Kornyshev et al. Zh. Eksp. Teor. Fiz., 78(3):1008–1019, 1980] and successive works to calculate the 1-body and 2-body electrostatic energy of ions near a metal in terms of the Thomas-Fermi screening length. We propose workable approximations suitable for molecular simulations of ionic systems close to metallic walls. Furthermore, we use this framework to calculate analytically the electrostatic contribution to the surface energy of a one dimensional crystal at a metallic wall and its dependence on the Thomas-Fermi screening length. These calculations provide a simple interpretation for the surface energy in terms of image charges, which allow for an estimate of interfacial properties in more complex situations of a disordered ionic liquid close to a metal surface. A counterintuitive outcome is that electronic screening, as characterized by a molecular Thomas-Fermi length ℓTF, profoundly affects the wetting of ionic systems close to a metal, in line with the recent experimental observation of capillary freezing of ionic liquids in metallic confinement. PMID:28436506

  1. Determination of functionalized gold nanoparticles incorporated in hydrophilic and hydrophobic microenvironments by surface modification of quartz crystal microbalance

    International Nuclear Information System (INIS)

    Wu, Tsui-Hsun; Liao, Shu-Chuan; Chen, Ying-Fang; Huang, Yi-You; Wei, Yi-Syuan; Tu, Shu-Ju; Chen, Ko-Shao

    2013-01-01

    In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R 2 range, 0.94–0.965, 0.934–0.972, and 0.874–0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.

  2. The structural and compositional analysis of single crystal surfaces using low energy ion scattering

    International Nuclear Information System (INIS)

    Armour, D.G.; Van der Berg, J.A.; Verheij, IL.K.

    1979-01-01

    The use of ion scattering for surface composition and structure analysis has been reviewed. The extreme surface specificity of this technique has been widely used to obtain quitative information in a straightforward way, but the/aolc/currence of charge exchange processes, thermal lattice vibrations and multiple scattering have precluded quantitative analysis of experimental data. Examples are quoted to illustrate the progress that has been made in understanding these fundamental processes and in applying this knowledge to the development of the analytical capabilities of the technique. (author)

  3. Molecular beam study of the mechanism of catalyzed hydrogen--deuterium exchange on platinum single crystal surfaces

    International Nuclear Information System (INIS)

    Bernasek, S.L.; Somorjai, G.A.

    1975-01-01

    The hydrogen--deuterium exchange reaction was studied by molecular beam scattering on low and high Miller index crystal faces of platinum in the surface temperature range of 300--1300degreeK. Under the condition of the experiments which put strict limitation on the residence time of the detected molecules, the reaction product, HD, was readily detectable from the high Miller index, stepped surfaces (integrated reaction probability, defined as total desorbed HD flux divided by D 2 flux, is approx.10/sup -1/) while HD formation was below the limit of detectability on the Pt(111) low Miller index surface (reaction probability 2 beam pressure and half-order in H 2 background pressure. The absence of beam kinetic energy dependence of the rate indicates that the molecular adsorption does not require activation energy. The surface is able to store a sufficiently large concentration of atoms which react with the molecules by a two-branch mechanism. The rate constants for this two-branch mechanism were determined under conditions of constant H atom coverage, reducing the bimolecular reaction to a pseudo-first-order reaction. At lower temperatures ( 1 = (2plus-or-minus1) times10 5 exp(-4.5plus-or-minus0.5 kcal/RT) sec/sup -1/. The rate determining step appears to be the diffusion of the D 2 molecule on the surface to a step site where HD is formed via a three-center (atom--molecule) reaction, or via a two-center (atom--atom) reaction subsequent to D 2 dissociation at the step. At higher temperatures (>600degreeK) the reaction between an adsorbed H atom and an incident D 2 gas molecule competes with the low temperature branch. The rate constant for this branch is k 2 = (1plus-or-minus2) times10 2 exp(-0.6plus-or-minus0.3 kcal/RT) sec/sup -1/

  4. APEX (Aqueous Photochemistry of Environmentally occurring Xenobiotics): a free software tool to predict the kinetics of photochemical processes in surface waters.

    Science.gov (United States)

    Bodrato, Marco; Vione, Davide

    2014-04-01

    The APEX software predicts the photochemical transformation kinetics of xenobiotics in surface waters as a function of: photoreactivity parameters (direct photolysis quantum yield and second-order reaction rate constants with transient species, namely ˙OH, CO₃(-)˙, (1)O₂ and the triplet states of chromophoric dissolved organic matter, (3)CDOM*), water chemistry (nitrate, nitrite, bicarbonate, carbonate, bromide and dissolved organic carbon, DOC), and water depth (more specifically, the optical path length of sunlight in water). It applies to well-mixed surface water layers, including the epilimnion of stratified lakes, and the output data are average values over the considered water column. Based on intermediate formation yields from the parent compound via the different photochemical pathways, the software can also predict intermediate formation kinetics and overall yield. APEX is based on a photochemical model that has been validated against available field data of pollutant phototransformation, with good agreement between model predictions and field results. The APEX software makes allowance for different levels of knowledge of a photochemical system. For instance, the absorption spectrum of surface water can be used if known, or otherwise it can be modelled from the values of DOC. Also the direct photolysis quantum yield can be entered as a detailed wavelength trend, as a single value (constant or average), or it can be defined as a variable if unknown. APEX is based on the free software Octave. Additional applications are provided within APEX to assess the σ-level uncertainty of the results and the seasonal trend of photochemical processes.

  5. Adsorption and combing of DNA on HOPG surfaces of bulk crystals and nanosheets: application to the bridging of DNA between HOPG/Si heterostructures

    International Nuclear Information System (INIS)

    Rose, F; Martin, P; Fujita, H; Kawakatsu, H

    2006-01-01

    Controlled and reproducible combing of λ-phage DNA molecules can be realized in predetermined orientations on highly oriented pyrolitic graphite (HOPG) surfaces. Observations by atomic force microscopy (AFM) show that DNA adsorption onto HOPG surfaces leads to different hierarchical organizations such as balls, networks, films, and fractal structures. HOPG nanosheets (3.5-100 nm thick) were created by simply rubbing a HOPG crystal onto a silicon oxide surface, and then patterned with a focused ion beam (FIB) to fabricate HOPG/Si heterostructures (arrays of silicon micropillars and microtracks decorated on their top surface with HOPG nanosheets). The surface reactivity of HOPG nanosheets toward DNA is found to be the same as of HOPG bulk crystals. Finally, combing is used to attach and suspend bundles of approximately 20-50 DNA molecules between HOPG/Si heterostructures

  6. Surface Geometry and Chemistry of Hydrothermally Synthesized Single Crystal Thorium Dioxide

    Science.gov (United States)

    2015-03-01

    Member Alex G. Li, PhD Member iv AFIT-ENP-MS-15-M-87 Abstract The surface chemistry and geometry of hydrothermally grown, single...Interactions with Materials and Atoms 268(9), pp. 1482-1485. 2010. . DOI: 10.1016/j.nimb.2010.01.027. [4] J. A. Felix , D. M. Fleetwood, R. D. Schrimpf, J. G

  7. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy.

    Science.gov (United States)

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N; Crowley, Paula J; Brady, L Jeannine; Long, Joanna R

    2016-02-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ~57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  8. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

    International Nuclear Information System (INIS)

    Tang, Wenxing; Bhatt, Avni; Smith, Adam N.; Crowley, Paula J.; Brady, L. Jeannine; Long, Joanna R.

    2016-01-01

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ∼57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin

  9. Specific binding of a naturally occurring amyloidogenic fragment of Streptococcus mutans adhesin P1 to intact P1 on the cell surface characterized by solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wenxing; Bhatt, Avni [University of Florida, Department of Biochemistry and Molecular Biology, College of Medicine (United States); Smith, Adam N. [University of Florida, Department of Chemistry, College of Liberal Arts and Sciences (United States); Crowley, Paula J.; Brady, L. Jeannine, E-mail: jbrady@dental.ufl.edu [University of Florida, Department of Oral Biology, College of Dentistry (United States); Long, Joanna R., E-mail: jrlong@ufl.edu [University of Florida, Department of Biochemistry and Molecular Biology, College of Medicine (United States)

    2016-02-15

    The P1 adhesin (aka Antigen I/II or PAc) of the cariogenic bacterium Streptococcus mutans is a cell surface-localized protein involved in sucrose-independent adhesion and colonization of the tooth surface. The immunoreactive and adhesive properties of S. mutans suggest an unusual functional quaternary ultrastructure comprised of intact P1 covalently attached to the cell wall and interacting with non-covalently associated proteolytic fragments thereof, particularly the ∼57-kDa C-terminal fragment C123 previously identified as Antigen II. S. mutans is capable of amyloid formation when grown in a biofilm and P1 is among its amyloidogenic proteins. The C123 fragment of P1 readily forms amyloid fibers in vitro suggesting it may play a role in the formation of functional amyloid during biofilm development. Using wild-type and P1-deficient strains of S. mutans, we demonstrate that solid state NMR (ssNMR) spectroscopy can be used to (1) globally characterize cell walls isolated from a Gram-positive bacterium and (2) characterize the specific binding of heterologously expressed, isotopically-enriched C123 to cell wall-anchored P1. Our results lay the groundwork for future high-resolution characterization of the C123/P1 ultrastructure and subsequent steps in biofilm formation via ssNMR spectroscopy, and they support an emerging model of S. mutans colonization whereby quaternary P1-C123 interactions confer adhesive properties important to binding to immobilized human salivary agglutinin.

  10. Monte Carlo simulations of temperature-programmed and isothermal desorption from single-crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, S.J. (California Inst. of Tech., Pasadena, CA (USA). Dept. of Chemical Engineering Lawrence Berkeley Lab., CA (USA))

    1990-08-01

    The kinetics of temperature-programmed and isothermal desorption have been simulated with a Monte Carlo model. Included in the model are the elementary steps of adsorption, surface diffusion, and desorption. Interactions between adsorbates and the metal as well as interactions between the adsorbates are taken into account with the Bond-Order-Conservation-Morse-Potential method. The shape, number, and location of the TPD peaks predicted by the simulations is shown to be sensitive to the binding energy, coverage, and coordination of the adsorbates. In addition, the occurrence of lateral interactions between adsorbates is seen to strongly effect the distribution of adsorbates is seen to strongly effect the distribution of adsorbates on the surface. Temperature-programmed desorption spectra of a single type of adsorbate have been simulated for the following adsorbate-metal systems: CO on Pd(100); H{sub 2} on Mo(100); and H{sub 2} on Ni(111). The model predictions are in good agreement with experimental observation. TPD spectra have also been simulated for two species coadsorbed on a surface; the model predictions are in qualitative agreement with the experimental results for H{sub 2} coadsorbed with strongly bound atomic species on Mo(100) and Fe(100) surfaces as well as for CO and H{sub 2} coadsorbed on Ni(100) and Rh(100) surfaces. Finally, the desorption kinetics of CO from Pd(100) and Ni(100) in the presence of gas-phase CO have been examined. The effect of pressure is seen to lead to an increase in the rate of desorption relative to the rate observed in the absence of gas-phase CO. This increase arises as a consequence of higher coverages and therefore stronger lateral interactions between the adsorbed CO molecules.

  11. Reaction of ethane with deuterium over platinum(111) single-crystal surfaces

    International Nuclear Information System (INIS)

    Zaera, F.; Somorhai, G.A.

    1985-01-01

    Deuterium exchange and hydrogenolysis of ethane were studied over (111) platinum surfaces under atmospheric pressures and a temperature range of 475-625 K. Activation energies of 19 kcal/mol for exchange and 34 kcal/mol for hydrogenolysis were obtained. The exchange reaction rates displayed kinetic orders with respect to deuterium and ethane partial pressures of -0.55 and 1.2, respectively. The exchange production distribution was U-shaped, peaking at one and six deuterium atoms per ethane molecule, similar to results reported for other forms of platinum, e.g., supported, films, and foils. The pressure of ethylidyne moieties on the surface was inferred from low-energy electron diffraction and thermal desorption spectroscopy. A mechanism is proposed to explain the experimental results, in which ethylidyne constitutes an intermediate in one of two competitive pathways. 31 references, 9 figures, 3 tables

  12. Construction of High Activity Titanium Dioxide Crystal Surface Heterostructures and Characterization of Its Basic Properties

    Science.gov (United States)

    Wang, Chunxiao; Li, DanQi; Shen, Tingting; Lu, Cheng; Sun, Jing; Wang, Xikui

    2018-01-01

    Heterogeneous photocatalytic materials, which combine the advantages of photocatalytic materials and heterojunction, have been developed rapidly in the field of environmental pollution control. In this paper, TiO2 surface heterojunction catalysts with different catalytic activity were prepared by controlling the amount of HF, and their XRD characterization was also carried out. In addition, the optimum amount of HF was determined by photocatalytic degradation of simulated dye wastewater by methylene blue solution. And the optimal amount of catalyst and the optimal pH reaction conditions for degradation experiments were used to screen the highly reactive titania surface heterojunction system and its optimum application conditions. It provides the possibility of application in the degradation of industrial wastewater and environmental treatment.

  13. Scanning tunneling microscopy studies of organic monolayers adsorbed on the rhodium(111) crystal surface

    Energy Technology Data Exchange (ETDEWEB)

    Cernota, Paul Davis [Univ. of California, Berkeley, CA (United States)

    1999-08-01

    Scanning Tunneling Microscopy studies were carried out on ordered overlayers on the (111) surface of rhodium. These adsorbates include carbon monoxide (CO), cyclohexane, cyclohexene, 1,4-cyclohexadiene, para-xylene, and meta-xylene. Coadsorbate systems included: CO with ethylidyne, CO with para- and meta-xylene, and para-xylene with meta-xylene. In the case of CO, the structure of the low coverage (2x2) overlayer has been observed. The symmetry of the unit cell in this layer suggests that the CO is adsorbed in the 3-fold hollow sites. There were also two higher coverage surface structures with (√7x√7) unit cells. One of these is composed of trimers of CO and has three CO molecules in each unit cell. The other structure has an additional CO molecule, making a total of four. This extra CO sits on a top site.

  14. Parametric Conversion in Micrometer and Submicrometer Structured Ferroelectric Crystals by Surface Poling

    Directory of Open Access Journals (Sweden)

    Alessandro C. Busacca

    2012-01-01

    Full Text Available We report on recent technological improvements concerning nonlinear patterning of lithium niobate and lithium tantalate in the micrometer and submicrometer scales using surface periodic poling for ferroelectric domain inversion. The fabricated samples were employed for frequency doubling via quasiphase-matching both in bulk and guided wave geometries, including forward and backward configurations and wavelength conversion in bands C and L. We also investigated short-period quasiperiodic samples with randomly distributed mark-to-space ratios.

  15. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Dapeng [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island

  16. A 3D Optical Surface Profilometer Using a Dual-Frequency Liquid Crystal-Based Dynamic Fringe Pattern Generator

    Directory of Open Access Journals (Sweden)

    Kyung-Il Joo

    2016-10-01

    Full Text Available We propose a liquid crystal (LC-based 3D optical surface profilometer that can utilize multiple fringe patterns to extract an enhanced 3D surface depth profile. To avoid the optical phase ambiguity and enhance the 3D depth extraction, 16 interference patterns were generated by the LC-based dynamic fringe pattern generator (DFPG using four-step phase shifting and four-step spatial frequency varying schemes. The DFPG had one common slit with an electrically controllable birefringence (ECB LC mode and four switching slits with a twisted nematic LC mode. The spatial frequency of the projected fringe pattern could be controlled by selecting one of the switching slits. In addition, moving fringe patterns were obtainable by applying voltages to the ECB LC layer, which varied the phase difference between the common and the selected switching slits. Notably, the DFPG switching time required to project 16 fringe patterns was minimized by utilizing the dual-frequency modulation of the driving waveform to switch the LC layers. We calculated the phase modulation of the DFPG and reconstructed the depth profile of 3D objects using a discrete Fourier transform method and geometric optical parameters.

  17. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    International Nuclear Information System (INIS)

    Mtangi, W.; Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M.; Nyamhere, C.

    2012-01-01

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8±0.3) meV that has been suggested as Zn i related and possibly H-complex related and (54.5±0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X Zn . The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60×10 17 cm −3 at 200 °C to 4.37×10 18 cm -3 at 800 °C.

  18. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M. [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nyamhere, C. [Nelson Mandela Metropolitan University, Physics Department, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8{+-}0.3) meV that has been suggested as Zn{sub i} related and possibly H-complex related and (54.5{+-}0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X{sub Zn}. The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60 Multiplication-Sign 10{sup 17} cm{sup -3} at 200 Degree-Sign C to 4.37 Multiplication-Sign 10{sup 18} cm{sup -3} at 800 Degree-Sign C.

  19. Nonlinear spin waves in dynamic magnonic crystals created by surface acoustic waves in yttrium iron garnet films

    Science.gov (United States)

    Kryshtal, R. G.; Medved, A. V.

    2017-12-01

    Experimental results on the influence of the intensity of surface magnetostatic spin wave (SMSW) on its propagation in the dynamic magnonic crystals (MCs) created by surface acoustic waves (SAW) propagating in yttrium iron garnet (YIG) film on the gallium gadolinium garnet (GGG) substrate are presented. The shift of the resonant frequency of the SMSW reflections (frequency of the magnonic gap) and widening of the resonant reflection curves (increasing the width of the magnonic band gap) from their former meanings (3730 MHz and 5.25 MHz, respectively) were observed at 20 MHz SAW of 20 mW in biasing magnetic field of 640 Oe at input microwave power exceeding the threshold value of  ‑5 dBm. At the input power of 10 dBm, the deviations of the magnonic gap frequency and of the width of the SMSW resonant reflected curves reach the values of 5 MHz and 2 MHz, respectively. At a frequency of 3730 MHz, a decrease in the reflection coefficient of the SMSW was observed at the input powers above the threshold. These results may be useful in investigations of MC and for creating new nonlinear signal processing devices.

  20. Probing the interactions of organic molecules, nanomaterials, and microbes with solid surfaces using quartz crystal microbalances: methodology, advantages, and limitations.

    Science.gov (United States)

    Huang, Rixiang; Yi, Peng; Tang, Yuanzhi

    2017-06-21

    Quartz crystal microbalances (QCMs) provide a new analytical opportunity and prospect to characterize many environmental processes at solid/liquid interfaces, thanks to their almost real-time measurement of physicochemical changes on their quartz sensor. This work reviews the applications of QCMs in probing the interactions of organic molecules, nanomaterials (NMs) and microbes with solid surfaces. These interfacial interactions are relevant to critical environmental processes such as biofilm formation, fate and transport of NMs, fouling in engineering systems and antifouling practices. The high sensitivity, real-time monitoring, and simultaneous frequency and dissipation measurements make QCM-D a unique technique that helps reveal the interaction mechanisms for the abovementioned processes (e.g., driving forces, affinity, kinetics, and the interplay between surface chemistry and solution chemistry). On the other hand, QCM measurement is nonselective and spatially-dependent. Thus, caution should be taken during data analysis and interpretation, and it is necessary to cross-validate the results using complementary information from other techniques for more quantitative and accurate interpretation. This review summarizes the general methodologies for collecting and analyzing raw QCM data, as well as for evaluating the associated uncertainties. It serves to help researchers gain deeper insights into the fundamentals and applications of QCMs, and provides new perspectives on future research directions.

  1. Photocatalytic Active Bismuth Fluoride/Oxyfluoride Surface Crystallized 2Bi2O3-B2O3 Glass-Ceramics

    Science.gov (United States)

    Sharma, Sumeet Kumar; Singh, V. P.; Chauhan, Vishal S.; Kushwaha, H. S.; Vaish, Rahul

    2018-03-01

    The present article deals with 2Bi2O3-B2O3 (BBO) glass whose photocatalytic activity has been enhanced by the method of wet etching using an aqueous solution of hydrofluoric acid (HF). X-ray diffraction of the samples reveals that etching with an aqueous solution of HF leads to the formation of BiF3 and BiO0.1F2.8 phases. Surface morphology obtained from scanning electron microscopy show granular and plate-like morphology on the etched glass samples. Rhodamine 6G (Rh 6G) has been used to investigate the photocatalytic activity of the as-quenched and etched glasses. Enhanced visible light-driven photocatalytic activity was observed in HF etched glass-ceramics compared to the as-quenched BBO glass. Contact angle of the as-quenched glass was 90.2°, which decreases up to 20.02° with an increase in concentration of HF in the etching solution. Enhanced photocatalytic activity and increase in the hydrophilic nature suggests the efficient treatment of water pollutants by using the prepared surface crystallized glass-ceramics.

  2. Radiological control in a mine with a naturally-occurring radioactive material -NORM: III assessment of removable surface contamination in a pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, W.S.; Py Junior, D.A.; Silva, A.C.A.; Garcia Filho, O., E-mail: pereiraws@gmail.com [Industrias Nucleares do Brasil (INB), Pocos de Caldas, MG (Brazil). Unidade de Tratamento de Minerio. Grupo Multidisciplinar de Radioprotecao; Kelecom, A., E-mail: akelecom@id.uff.br [Universidade Federal Fluminense (GETA/LARARA-PLS/UFF), Niteroi, RJ, (Brazil). Grupo de Estudos em Temas Ambientais. Lab. de Radiobiologia e Radiometria; Pereira, J.R.S., E-mail: pereirarsj@gmail.com [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil)

    2013-07-01

    Ore Treatment Unit (OUT) possesses a process laboratory. Considering the uranium ore processing, this laboratory works in close cooperation with the Radiation Protection Service of the Unit. In the year of 2009 a pilot plant for the development of solvent uranium extraction from the phosphate ore of the mine of Santa Quiteria city, in Ceara State, Brazil was developed. In this kind of plant the surface contamination may cause contamination for Occupational Exposed Individuals (OEI). In order to control this kind of contamination and offer a safety work's condition for OEIs, a monitoring program of transferable contamination using swab samples was developed. 162 swabs were made. For the alpha emitters the monitoring results varied from 0.001 Bq cm{sup -2} to 0.014 Bq cm{sup -2}, with average value of 0.002 Bq cm{sup -2}. For beta emitters the results varied from 0.010 Bq cm{sup -2} to 0.031 Bq cm{sup -2} with average equal to 0.011 Bq cm{sup -2}. For alpha emitters, 87.65 % of the results were below 0.004 Bq cm{sup -2}, values that are one order of magnitude smaller than the limit and the maximum value stayed in 35 % of the limit for an object to be considered contaminated. For beta emitters, 90 % of the results were below 0.010 Bq cm{sup -2} that corresponds to 25 % of the limit and 100 % were below 0.031 Bq cm{sup -2} below the limit for an object to be considered contaminated. In both cases any object monitored during the operation, was not considered contaminated, proving the good practices employed in the laboratory, resultant of the good planning of the Radiation Protection Service for the operations' process. (author)

  3. Multiple-beam output of a surface-emitted terahertz-wave parametric oscillator by using a slab MgO:LiNbO₃ crystal.

    Science.gov (United States)

    Wang, Weitao; Zhang, Xingyu; Wang, Qingpu; Cong, Zhenhua; Chen, Xiaohan; Liu, Zhaojun; Qin, Zengguang; Li, Ping; Tang, Guanqi; Li, Ning; Wang, Cong; Li, Yongfu; Cheng, Wenyong

    2014-02-15

    A MgO:LiNbO₃ slab configuration for the surface-emitted terahertz-wave parametric oscillator (TPO) is presented. The pump and the oscillating Stokes beams were totally reflected at the slab surface and propagated zigzaggedly in the slab MgO:LiNbO₃ crystal. Up to five terahertz beams were emitted perpendicularly to the surface of the crystal. The total output energy of the five THz-wave beams was 3.56 times as large as that obtained from the conventional surface-emitted TPO at the same experimental conditions. The intensity distributions of the THz wave beams were measured, and they were unsymmetrical in the horizontal direction while symmetrical in the vertical direction.

  4. Preparation of high surface area nickel electrodeposit using a liquid crystal template technique

    International Nuclear Information System (INIS)

    Ganesh, V.; Lakshminarayanan, V.

    2004-01-01

    We show in this work that template electrodeposition of nickel at room temperature from a nickel sulphamate bath prepared in a new hexagonal liquid crystalline phase of water-Triton X-100-poly (acrylic acid) results in a highly porous surface. The roughness factor value of about 3620 obtained for this coating is the highest value reported in the literature for any electrodeposited nickel. The scanning electron microscopy (SEM) and scanning tunneling microscopy (STM) pictures show the formation of porous deposit with granular features in between the pores. The single electrode double layer capacitance value measured for the deposit is 338 mF cm -2 , which translates into a specific capacitance of 50 F g -1 without any post-thermal treatment of the electrode, suggesting its utility in super capacitors. Electrochemical studies using cyclic voltammetry (CV), Tafel plots and electrochemical impedance spectroscopy (EIS) and comparison of these results with some existing high surface area Ni catalysts show that the material has potential application as an excellent hydrogen evolving cathode

  5. Surface finish in ultra-precision diamond turning of single-crystal silicon

    Science.gov (United States)

    Ayomoh, M.; Abou-El-Hossein, K.

    2015-10-01

    Silicon is an optical material widely used in the production of infrared optics. However, silicon as a brittle material exhibits some difficulties when ultra-precision machined by mono-crystalline single point diamond. Finish turning of silicon with mono- crystalline diamond inserts results in accelerated tool wear rates if the right combination of the machining parameters is not properly selected. In this study, we conducted a series of machining tests on an ultra-high precision machine tool using finish turning conditions when using mono-crystalline diamond inserts with negative rake angle and relatively big nose radius. The study yields some recommendations on the best combination of machining parameters that will result in maximum material removal rates with smallest possible surface finish. In this work, standard non-controlled waviness diamond inserts having nose radius of about 1.5 mm, rake angle of negative 25°, and clearance angle of 5° were used to produce flat surfaces on silicon disk. From the results, it has been established that feed rate has the most influential effect followed by the depth of cut and cutting speed.

  6. EVAPORATION FORM OF ICE CRYSTALS IN SUBSATURATED AIR AND THEIR EVAPORATION MECHANISM

    OpenAIRE

    ゴンダ, タケヒコ; セイ, タダノリ; Takehiko, GONDA; Tadanori, SEI

    1987-01-01

    The evaporation form and the evaporation mechanism of dendritic ice crystals grown in air of 1.0×(10)^5 Pa and at water saturation and polyhedral ice crystals grown in air of 4.0×10 Pa and at relatively low supersaturation are studied. In the case of dendritic ice crystals, the evaporation preferentially occurs in the convex parts of the crystal surfaces and in minute secondary branches. On the other hand, in the case of polyhedral ice crystals, the evaporation preferentially occurs in the pa...

  7. TEM investigation of the surface layer structure [111]{sub B2} of the single NiTi crystal modified by the Si-ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Girsova, S. L., E-mail: girs@ispms.tsc.ru; Poletika, T. M., E-mail: poletm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, S. N., E-mail: msn@ispms.tsc.ru; Meisner, L. L., E-mail: llm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The study was carried on for the single NiTi crystals subjected to the Si-ion beam implantation. Using the transmission electron microscopy technique (TEM), the surface layer structure [111]{sub B2} was examined for the treated material. The modified near-surface sublayers were found to have different composition. Thus the uppermost sublayer contained mostly oxides; the lower-lying modified sublayer material was in an amorphous state and the thin underlying sublayer had a defect structure.

  8. Diffraction efficiency and relative intensity of various x-ray analyzing crystals at Cu/sub K. cap alpha. / and Sn/sub K. cap alpha. / wavelengths and with two surface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sellick, B.O. Sr.

    1978-04-01

    Crystals used for x-ray analysis come in many useful planes and 2d spacings with great variation in diffraction efficiency. This report compares the diffraction efficiency of 13 different crystals at two wavelengths, Cu/sub K..cap alpha../ and Sn/sub K..cap alpha../, and with two surface conditions, first with a cleaved or polished surface and second with a ground or sandblasted surface for enhanced diffraction. It is not obvious from published information how to select a crystal for best detection efficiency for a given plane or 2d spacing. The information in this report should help users select a crystal for a specific application.

  9. Active Self-Assembled Spinners: dynamic crystals, transport and induced surface flows

    Science.gov (United States)

    Snezhko, Alexey; Kokot, Gasper

    Strongly interacting colloids driven out-of-equilibrium by an external periodic forcing often develop nontrivial collective dynamics. Active magnetic colloids proved to be excellent model experimental systems to explore emergent behavior and active (out-of-equilibrium) self-assembly phenomena. Ferromagnetic micro-particles, suspended at a liquid interface and energized by a rotational homogeneous alternating magnetic field applied along the supporting interface, spontaneously form ensembles of synchronized self-assembled spinners with well-defined characteristic length. The size and the torque of an individual self-assembled spinner are controlled by the frequency of the driving magnetic field. Experiments reveal a rich collective dynamics in large ensembles of synchronized magnetic spinners that spontaneously form dynamic spinner lattices at the interface in a certain range of the excitation parameters. Non-trivial dynamics inside of the formed spinner lattices is observed. Transport of passive cargo particles and structure of the underlying self-induced surface flows is analyzed. The research was supported by the U.S. DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering.

  10. Crystal structure and Hirshfeld surface analysis of (E-3-(2-chloro-6-fluorophenyl-1-(3-fluoro-4-methoxyphenylprop-2-en-1-one

    Directory of Open Access Journals (Sweden)

    Nur Hafiq Hanif Hassan

    2016-05-01

    Full Text Available In the title chalcone derivative, C16H11ClF2O2, the enone group adopts an E conformation. The dihedral angle between the benzene rings is 0.47 (9° and an intramolecular C—H...F hydrogen bond closes an S(6 ring. In the crystal, molecules are linked into a three-dimensional network by C—H...O hydrogen bonds and aromatic π–π stacking interactions are also observed [centroid–centroid separation = 3.5629 (18 Å]. The intermolecular interactions in the crystal structure were quantified and analysed using Hirshfeld surface analysis.

  11. Crystal structure, Hirshfeld surfaces computational study and physicochemical characterization of the hybrid material (C7H10N)2[SnCl6]·H2O

    Science.gov (United States)

    BelhajSalah, S.; Abdelbaky, Mohammed S. M.; García-Granda, Santiago; Essalah, K.; Ben Nasr, C.; Mrad, M. L.

    2018-01-01

    A novel hybrid compound, bis(4-methylanilinium)hexachlorostannate(IV) monohydrate, formulated as (C7H10N)2[SnCl6]·H2O, has been prepared and characterized by powder and single crystal X-ray diffraction (XRD), Hirshfeld surface analysis, infrared spectroscopy (IR), optical study, differential thermal analysis(DTA) and X-ray photoelectron spectroscopy analysis (XPS). The title compound crystallizes in the monoclinic space group P21/c with a = 13.093(1)Å, b = 7.093(6)Å, c = 24.152(2)Å, β = 98.536(4)⁰ and V = 2218.4(4) Å3. Their crystal structure exhibits alternating inorganic layers parallel to the (ab) plane at z = n/2. The different entities, [SnCl6]2-, organic cations and water molecules, are connected via hydrogen bonds to form a three-dimensional network. The powder XRD data confirms the phase purity of the crystalline sample. The intermolecular interactions were investigated by Hirshfeld surfaces. The vibrational absorption bands were identified by IR spectroscopy and have been discussed. The optical properties of the crystal were studied by using optical absorption, UV-visible absorption and photoluminescence spectroscopy studies. The compound was also characterized by DTA to determine its thermal behavior with respect to the temperature. Finally, XPS technique is reported for analyzing the surface chemistry of this compound.

  12. Summary of theoretical and experimental investigation of grating type, silicon photovoltaic cells. [using p-n junctions on light receiving surface of base crystal

    Science.gov (United States)

    Chen, L. Y.; Loferski, J. J.

    1975-01-01

    Theoretical and experimental aspects are summarized for single crystal, silicon photovoltaic devices made by forming a grating pattern of p/n junctions on the light receiving surface of the base crystal. Based on the general semiconductor equations, a mathematical description is presented for the photovoltaic properties of such grating-like structures in a two dimensional form. The resulting second order elliptical equation is solved by computer modeling to give solutions for various, reasonable, initial values of bulk resistivity, excess carrier concentration, and surface recombination velocity. The validity of the computer model is established by comparison with p/n devices produced by alloying an aluminum grating pattern into the surface of n-type silicon wafers. Current voltage characteristics and spectral response curves are presented for cells of this type constructed on wafers of different resistivities and orientations.

  13. Crystal Structure of the Botulinum Neurotoxin Type G Binding Domain: Insight into Cell Surface Binding

    Energy Technology Data Exchange (ETDEWEB)

    Stenmark, Pål; Dong, Min; Dupuy, Jérôme; Chapman, Edwin R.; Stevens, Raymond C. (Scripps); (UW)

    2011-11-02

    Botulinum neurotoxins (BoNTs) typically bind the neuronal cell surface via dual interactions with both protein receptors and gangliosides. We present here the 1.9-{angstrom} X-ray structure of the BoNT serotype G (BoNT/G) receptor binding domain (residues 868-1297) and a detailed view of protein receptor and ganglioside binding regions. The ganglioside binding motif (SxWY) has a conserved structure compared to the corresponding regions in BoNT serotype A and BoNT serotype B (BoNT/B), but several features of interactions with the hydrophilic face of the ganglioside are absent at the opposite side of the motif in the BoNT/G ganglioside binding cleft. This may significantly reduce the affinity between BoNT/G and gangliosides. BoNT/G and BoNT/B share the protein receptor synaptotagmin (Syt) I/II. The Syt binding site has a conserved hydrophobic plateau located centrally in the proposed protein receptor binding interface (Tyr1189, Phe1202, Ala1204, Pro1205, and Phe1212). Interestingly, only 5 of 14 residues that are important for binding between Syt-II and BoNT/B are conserved in BoNT/G, suggesting that the means by which BoNT/G and BoNT/B bind Syt diverges more than previously appreciated. Indeed, substitution of Syt-II Phe47 and Phe55 with alanine residues had little effect on the binding of BoNT/G, but strongly reduced the binding of BoNT/B. Furthermore, an extended solvent-exposed hydrophobic loop, located between the Syt binding site and the ganglioside binding cleft, may serve as a third membrane association and binding element to contribute to high-affinity binding to the neuronal membrane. While BoNT/G and BoNT/B are homologous to each other and both utilize Syt-I/Syt-II as their protein receptor, the precise means by which these two toxin serotypes bind to Syt appears surprisingly divergent.

  14. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David Adams [The University of Alabama

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  15. A cinnamaldehyde Schiff base of S-(4-methylbenzyl dithiocarbazate: crystal structure, Hirshfeld surface analysis and computational study

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2017-04-01

    Full Text Available The title dithiocarbazate ester (I, C18H18N2S2 [systematic name: (E-4-methylbenzyl 2-[(E-3-phenylallylidene]hydrazinecarbodithioate, comprises an almost planar central CN2S2 residue [r.m.s. deviation = 0.0131 Å]. The methylene(tolyl-4 group forms a dihedral angle of 72.25 (4° with the best plane through the remaining non-hydrogen atoms [r.m.s. deviation = 0.0586 Å] so the molecule approximates mirror symmetry with the 4-tolyl group bisected by the plane. The configuration about both double bonds in the N—N=C—C=C chain is E; the chain has an all trans conformation. In the crystal, eight-membered centrosymmetric thioamide synthons, {...HNCS}2, are formed via N—H...S(thione hydrogen bonds. Connections between the dimers via C—H...π interactions lead to a three-dimensional architecture. A Hirshfeld surface analysis shows that (I possesses an interaction profile similar to that of a closely related analogue with an S-bound benzyl substituent, (II. Computational chemistry indicates the dimeric species of (II connected via N—H...S hydrogen bonds is about 0.94 kcal mol−1 more stable than that in (I.

  16. Zwitterionic 1-{(1E-[(4-hydroxyphenyliminio]methyl}naphthalen-2-olate: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    Bhai R. Devika

    2017-11-01

    Full Text Available The title zwitterion, C17H13NO2 (systematic name: 1-{(1E-[(4-hydroxyphenyliminiumyl]methyl}naphthalen-2-olate, features an intramolecular charge-assisted N+—H...O− hydrogen bond. A twist in the molecule is evident around the N—C(hydroxybenzene bond [C—N—C—C torsion angle = 39.42 (8°] and is reflected in the dihedral angle of 39.42 (8° formed between the aromatic regions of the molecule. In the crystal, zigzag supramolecular chains along the a axis are formed by charge-assisted hydroxy-O—H...O(phenoxide hydrogen bonding. These are connected into a layer in the ab plane by charge-assisted hydroxybenzene-C—H...O(phenoxide interactions and π–π contacts [inter-centroid distance between naphthyl-C6 rings = 3.4905 (12 Å]. Layers stack along the c axis with no specific interactions between them. The Hirshfeld surface analysis points to the significance C...H contacts between layers.

  17. Supramolecular patterns and Hirshfeld surface analysis in the crystal structure of bis(2-amino-4-methoxy-6-methylpyrimidinium isophthalate

    Directory of Open Access Journals (Sweden)

    Muthaiah Jeevaraj

    2017-10-01

    Full Text Available In the title molecular salt, 2C6H10N3O+·C8H4O42−, the N atom of each of the two 2-amino-4-methoxy-6-methylpyrimidine molecules lying between the amine and methyl groups has been protonated. The dihedral angles between the pyrimidine rings of the cations and the benzene ring of the succinate dianion are 5.04 (8 and 7.95 (8°. Each of the cations is linked to the anion through a pair of N—H...O(carboxylate hydrogen bonds, forming cyclic R22(8 ring motifs which are then linked through inversion-related N—H...O hydrogen bonds, giving a central R24(8 motif. Peripheral amine N—H...O hydrogen-bonding interactions on either side of the succinate anion, also through centrosymmetric R22(8 extensions, form one-dimensional ribbons extending along [211]. The crystal structure also features π–π stacking interactions between the aromatic rings of the pyrimidine cations [minimum ring centroid separation = 3.6337 (9 Å]. The intermolecular interactions were also investigated using Hirshfeld surface studies and two-dimensional fingerprint images.

  18. Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor.

    Science.gov (United States)

    Tan, Zhixin; Hao, Xin; Shao, Yonghong; Chen, Yuzhi; Li, Xuejin; Fan, Ping

    2014-06-16

    We numerically investigate a D-shaped fiber surface plasmon resonance sensor based on all-solid photonic crystal fiber (PCF) with finite element method. In the side-polished PCF sensor, field leakage is guided to penetrate through the gap between the rods, causing a pronounced phase modulation in the deep polishing case. Taking advantage of these amplified phase shifts, a high-performance fiber sensor design is proposed. The significant enhancements arising from this new sensor design should lift the performance of the fiber SPR sensor into the range capable of detecting a wide range of biochemical interactions, which makes it especially attractive for many in vivo and in situ bioanalysis applications. Several parameters which influence the field leakage, such as the polishing position, the pitch of the PCF, and the rod diameter, are inspected to evaluate their impacts. Furthermore, we develop a mathematical model to describe the effects of varying the structural parameters of a D-shaped PCF sensor on the evanescent field and the sensor performance.

  19. The crystal structure of the Dachshund domain of human SnoN reveals flexibility in the putative protein interaction surface.

    Directory of Open Access Journals (Sweden)

    Tomas Nyman

    2010-09-01

    Full Text Available The human SnoN is an oncoprotein that interacts with several transcription-regulatory proteins such as the histone-deacetylase, N-CoR containing co-repressor complex and Smad proteins. This study presents the crystal structure of the Dachshund homology domain of human SnoN. The structure reveals a groove composed of conserved residues with characteristic properties of a protein-interaction surface. A comparison of the 12 monomers in the asymmetric unit reveals the presence of two major conformations: an open conformation with a well accessible groove and a tight conformation with a less accessible groove. The variability in the backbone between the open and the tight conformations matches the differences seen in previously determined structures of individual Dachshund homology domains, suggesting a general plasticity within this fold family. The flexibility observed in the putative protein binding groove may enable SnoN to recognize multiple interaction partners.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  20. Crystal structure of the gamma-2 herpesvirus LANA DNA binding domain identifies charged surface residues which impact viral latency.

    Directory of Open Access Journals (Sweden)

    Bruno Correia

    Full Text Available Latency-associated nuclear antigen (LANA mediates γ2-herpesvirus genome persistence and regulates transcription. We describe the crystal structure of the murine gammaherpesvirus-68 LANA C-terminal domain at 2.2 Å resolution. The structure reveals an alpha-beta fold that assembles as a dimer, reminiscent of Epstein-Barr virus EBNA1. A predicted DNA binding surface is present and opposite this interface is a positive electrostatic patch. Targeted DNA recognition substitutions eliminated DNA binding, while certain charged patch mutations reduced bromodomain protein, BRD4, binding. Virus containing LANA abolished for DNA binding was incapable of viable latent infection in mice. Virus with mutations at the charged patch periphery exhibited substantial deficiency in expansion of latent infection, while central region substitutions had little effect. This deficiency was independent of BRD4. These results elucidate the LANA DNA binding domain structure and reveal a unique charged region that exerts a critical role in viral latent infection, likely acting through a host cell protein(s.

  1. Surface morphology and chemical state of epitaxial Al sub 2 O sub 3 film on Cu-9%Al(111) single crystal

    CERN Document Server

    Yamauchi, Y; Song, W

    2003-01-01

    We investigated the surface morphology, natures of chemical bond and thickness of oxide film grew on the Cu-9%Al (111) single crystal by means of Auger electron spectroscopy (AES) and a scanning electron microscopy (SEM). By introducing 1300L oxygen at 725degC, aluminum was oxidized and copper was not, and the epitaxial alumina film grew on the Cu-9%Al surface. The alumina surface showed two morphologies in SEM image. One was a flat surface with a few small defects, and the other was a rough surface which had smooth and rough regions. The rough surface was remarkably seen in sputtered region to obtain clean surface. The alumina film whose thickness was about 3.5 nm uniformly grew on the flat surface, and the thickness was about 3.0-3.5 nm on rough surface. It is concluded that the surface roughness in alumina is related to the roughness of clean surface. Therefore, to grow the uniform alumina film over large area of Cu-9%Al surface, it is essential to obtain the flat clean surface prior to oxidation. (author)

  2. Role of crystallographic anisotropy in the formation of surface layers of single NiTi crystals after ion-plasma alloying

    Energy Technology Data Exchange (ETDEWEB)

    Poletika, T. M., E-mail: poletm@ispms.tsc.ru; Girsova, S. L., E-mail: llm@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Meisner, L. L., E-mail: girs@ispms.tsc.ru; Meisner, S. N., E-mail: msn@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Shulepov, I. A., E-mail: iashulepov@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The structure of the surface and near-surface layers of single crystals of NiTi, differently oriented relative to the direction of ion beam treatment was investigated. The role of the crystallographic orientation in formation of structure of surface layers after ion-plasma alloying was revealed. It was found that the orientation effects of selective sputtering and channeling determine the thickness of the oxide and amorphous layers, the depth of penetration of ions and impurities, the distribution of Ni with depth.

  3. Enhancement of acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities by utilizing surface acoustic waves

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Tian-Xue [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Wang, Yue-Sheng, E-mail: yswang@bjtu.edu.cn [Institute of Engineering Mechanics, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Chuanzeng [Department of Civil Engineering, University of Siegen, D-57068 Siegen (Germany)

    2017-01-30

    A phoxonic crystal is a periodically patterned material that can simultaneously localize optical and acoustic modes. The acousto-optical coupling in two-dimensional air-slot phoxonic crystal cavities is investigated numerically. The photons can be well confined in the slot owing to the large electric field discontinuity at the air/dielectric interfaces. Besides, the surface acoustic modes lead to the localization of the phonons near the air-slot. The high overlap of the photonic and phononic cavity modes near the slot results in a significant enhancement of the moving interface effect, and thus strengthens the total acousto-optical interaction. The results of two cavities with different slot widths show that the coupling strength is dependent on the slot width. It is expected to achieve a strong acousto-optical/optomechanical coupling in air-slot phoxonic crystal structures by utilizing surface acoustic modes. - Highlights: • Two-dimensional air-slot phoxonic crystal cavities which can confine simultaneously optical and acoustic waves are proposed. • The acoustic and optical waves are highly confined near/in the air-slot. • The high overlap of the photonic and phononic cavity modes significantly enhances the moving interface effect. • Different factors which affect the acousto-optical coupling are discussed.

  4. Effective removal of ammonia nitrogen from waste seawater using crystal seed enhanced struvite precipitation technology with response surface methodology for process optimization.

    Science.gov (United States)

    Song, Weilong; Li, Zhipeng; Liu, Feng; Ding, Yi; Qi, Peishi; You, Hong; Jin, Chao

    2018-01-01

    Traditional biological treatment was not effective for removing nitrogen from saline wastewater due to the inhibition of high salinity on biomass activity. In this context, a method of removing ammonia nitrogen from waste seawater was proposed by struvite precipitation which was enhanced by seeding technique. The abundant magnesium contained in waste seawater was used as the key component of struvite crystallization without additional magnesium. The effects of pH and P:N molar ratio on ammonia nitrogen removal efficiency were studied. The results showed that optimum pH value was in range of 8.5-10 and the P:N molar ratio should be controlled within 2:1-3:1. XRD and SEM-EDS analyses of the precipitates proved that Ca 2+ and excess Mg 2+ contained in waste seawater inhibited the struvite crystallization by competing PO 4 3- to form by-products. Then, seeding technique for enhancing the struvite crystallization was investigated, and the results indicated that using preformed struvite as crystal seed significantly improved the ammonia nitrogen removal efficiency, especially when initial ammonia nitrogen concentration was relatively low. Moreover, response surface optimization experiment following a Box-Behnken design was conducted. A response surface model was established, based on which optimum process conditions were determined and interactions between various factors were clarified. At last, economic evaluation demonstrated this proposed method was economic feasible.

  5. Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Directory of Open Access Journals (Sweden)

    Yoshihisa Suzuki

    2016-07-01

    Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.

  6. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  7. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  8. Lessons from the Crystal Structure of the S. aureus Surface Protein Clumping Factor A in Complex With Tefibazumab, an Inhibiting Monoclonal Antibody

    Directory of Open Access Journals (Sweden)

    Vannakambadi K. Ganesh

    2016-11-01

    Full Text Available The Staphylococcus aureus fibrinogen binding MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules, ClfA (clumping factor A is an important virulence factor in staphylococcal infections and a component of several vaccines currently under clinical evaluation. The mouse monoclonal antibody aurexis (also called 12-9, and the humanized version tefibazumab are therapeutic monoclonal antibodies targeting ClfA that in combination with conventional antibiotics were effective in animal models but showed less impressive efficacy in a limited Phase II clinical trial. We here report the crystal structure and a biochemical characterization of the ClfA/tefibazumab (Fab complex. The epitope for tefibazumab is located to the “top” of the N3 subdomain of ClfA and partially overlaps with a previously unidentified second binding site for fibrinogen. A high-affinity binding of ClfA to fibrinogen involves both an interaction at the N3 site and the previously identified docking of the C-terminal segment of the fibrinogen γ-chain in the N2N3 trench. Although tefibazumab binds ClfA with high affinity we observe a modest IC50 value for the inhibition of fibrinogen binding to the MSCRAMM. This observation, paired with a common natural occurring variant of ClfA that is not effectively recognized by the mAb, may partly explain the modest effect tefibazumab showed in the initial clinic trail. This information will provide guidance for the design of the next generation of therapeutic anti-staphylococcal mAbs targeting ClfA.

  9. Surface Brillouin scattering measurement of the elastic constants of single crystal InAs{sub 0.91}Sb{sub 0.09}

    Energy Technology Data Exchange (ETDEWEB)

    Kotane, L M; Comins, J D; Every, A G [Materials Physics Research Institute, School of Physics, University of the Witwatersrand, Johannesburg, Wits 2050 (South Africa); Botha, J R, E-mail: Lesias.Kotane@wits.ac.z [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2011-01-01

    Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs{sub 0.91}Sb{sub 0.09}. The wave speed measurements have been used to determine the room temperature values of the elastic constants C{sub 11}, C{sub 12} and C{sub 44} of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.

  10. Surface Brillouin scattering measurement of the elastic constants of single crystal InAs0.91Sb0.09

    International Nuclear Information System (INIS)

    Kotane, L M; Comins, J D; Every, A G; Botha, J R

    2011-01-01

    Surface Brillouin scattering of light has been used to measure the angular dependence of the Rayleigh surface acoustic wave (SAW), pseudo surface acoustic wave (PSAW) and longitudinal lateral wave (LLW) speeds in a (100)-oriented single crystal of the ternary semiconductor alloy InAs 0.91 Sb 0.09 . The wave speed measurements have been used to determine the room temperature values of the elastic constants C 11 , C 12 and C 44 of the alloy. A simple and robust fitting procedure has been implemented for recovering the elastic constants, in which the merit function is constructed from explicit secular functions that determine the surface and lateral wave speeds in the [001] and [011] crystallographic directions. In the fitting, relatively larger weighting factors have been assigned to the SAW and PSAW data because of the greater precision with which the surface modes can be measured as compared with the lateral wave.

  11. Phase properties of elastic waves in systems constituted of adsorbed diatomic molecules on the (001) surface of a simple cubic crystal

    Science.gov (United States)

    Deymier, P. A.; Runge, K.

    2018-03-01

    A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.

  12. FTIR Spectroscopic Study of Mn(II) Oxidizing Pseudomonas putida GB1 Biofilms on ZnSe, Ge, and CdTe Crystal Surfaces

    Science.gov (United States)

    Parikh, S. J.; Gilbert, H. L.; Conklin, M. H.; Chorover, J.

    2003-12-01

    Pseudomonas putida strain GB1 is an aerobic, gram-negative bacterium capable of gaining energy from the biological oxidation of Mn(II). The increased kinetics of Mn(II) oxidation resulting from this microbial catalysis is known to contribute to the formation of Mn(IV) oxides in natural waters. Environmental conditions, including aqueous and surface chemistry, greatly affect the macromolecular composition and surface adhesion behavior of bacteria. For example, the chemistry of GB1 biofilms forming on crystal surfaces is expected to vary with Mn(II) concentration in solution. We used Fourier transform infrared (FTIR) spectroscopy to probe the formation of GB1 biofilms on the surfaces of negatively-charged IR transparent ZnSe, Ge, and CdTe crystal windows. Bacterial adhesion experiments were carried out both in the presence and absence of Mn(II)(aq) with FTIR windows suspended in a bioreactor comprising GB1 cells in a mineral growth medium at pH 7.6 and 30° C. After 85 h, windows were removed from the reactor and IR spectra were collected. Oxidation of Mn(II) was confirmed via leucoberbelin blue (LBB) indicator and the appearance of Mn-O stretches in biofilm IR spectra. Transmission FTIR spectra do not reveal detectable effects of crystal type on biofilm composition, but do indicate changes in chemistry resulting from introduction of Mn(II). In the presence of Mn(II), spectra of biofilms show higher relative intensity in the carbohydrate region (specifically 1160, 1052 cm-1). A down frequency shift in the P=O absorbance was also observed (1240 to 1222 cm-1). These results indicate a modification of bacterial cell/biofilm composition resulting during biological oxidation of Mn(II). The CdTe transmission window permits measurements to low wavenumbers (treatment. Transmission electron microscopy (TEM) of the bioreactor suspension revealed needle-like clusters of Mn oxide crystals in association with GB1 biomass and extracellular materials.

  13. Printed Large-Area Single-Mode Photonic Crystal Bandedge Surface-Emitting Lasers on Silicon (Open Access Publisher’s Version)

    Science.gov (United States)

    2016-01-04

    beam shape, catastrophic optical damage free, and two-dimensional integration capabilities with CMOS electronics , vertical-cavity surface-emitting...longitudinal and transverse mode over a large lasing area , narrow linewidth, high power output, small beam divergence angle, polarization control...crystal lasers—ultimate nanolasers and broad - area coherent lasers [Invited]. J. Opt. Soc. Am. B 27, B1–B8 (2010). 13. Painter, O. et al. Two-dimensional

  14. Self-construction of core-shell and hollow zeolite analcime icositetrahedra: a reversed crystal growth process via oriented aggregation of nanocrystallites and recrystallization from surface to core.

    Science.gov (United States)

    Chen, Xueying; Qiao, Minghua; Xie, Songhai; Fan, Kangnian; Zhou, Wuzong; He, Heyong

    2007-10-31

    Zeolite analcime with a core-shell and hollow icositetrahedron architecture was prepared by a one-pot hydrothermal route in the presence of ethylamine and Raney Ni. Detailed investigations on samples at different preparation stages revealed that the growth of the complex single crystalline geometrical structure did not follow the classic crystal growth route, i.e., a crystal with a highly symmetric morphology (such as polyhedra) is normally developed by attachment of atoms or ions to a nucleus. A reversed crystal growth process through oriented aggregation of nanocrystallites and surface recrystallization was observed. The whole process can be described by the following four successive steps. (1) Primary analcime nanoplatelets undergo oriented aggregation to yield discus-shaped particles. (2) These disci further assemble into polycrystalline microspheres. (3) The relatively large platelets grow into nanorods by consuming the smaller ones, and meanwhile, the surface of the microspheres recrystallizes into a thin single crystalline icositetrahedral shell via Ostwald ripening. (4) Recrystallization continues from the surface to the core at the expense of the nanorods, and the thickness of the monocrystalline shell keeps on increasing until all the nanorods are consumed, leading to hollow single crystalline analcime icositetrahedra. The present work adds new useful information for the understanding of the principles of zeolite growth.

  15. Supramolecular self-assembly of a coumarine-based acylthiourea synthon directed by π-stacking interactions: Crystal structure and Hirshfeld surface analysis

    Science.gov (United States)

    Saeed, Aamer; Ashraf, Saba; Flörke, Ulrich; Delgado Espinoza, Zuly Yuliana; Erben, Mauricio F.; Pérez, Hiram

    2016-05-01

    The structure of 1-(2-oxo-2H-chromene-3-carbonyl)-3-(2-methoxy-phenyl)thiourea (1) has been determined by single-crystal X-ray crystallography. This compound crystallizes in the monoclinic space group P21/c with a = 7.455 (2) Å, b = 12.744 (3) Å, c = 16.892 (4) Å, β = 90.203 (6)° and Z = 4. Both, the coumarin and the phenyl rings are nearly coplanar with the central 1-acylthiourea group, with the Cdbnd O and Cdbnd S bonds adopting an opposite orientation. Intramolecular N-H···O, C-H···O, and C-H···S hydrogen bonds are favored by the planar conformation. The molecules are packed through C-H···O, C-H···S and C-H···C hydrogen bonds, and two π···π interactions with offset arrangement. Inter-centroid distance of 3.490 (2) Å, slip angles of 18.5 and 20.9°, and vertical displacements of 1.10 and 1.24 Å are the stacking parameters corresponding to the stronger π···π interaction. Hirshfeld surface analysis was performed for visualizing, exploring and quantifying intermolecular interactions in the crystal lattice of compound 1, and compared with two closely related species. Shape index and Curvedness surfaces indicated π-stacking with different features in opposed sides of the molecule. Fingerprint plot showed C···C contacts with similar contributions to the crystal packing in comparison with those associated to hydrogen bonds. Enrichment ratios for H···H, O···H, S···H and C···C contacts revealed a high propensity to form in the crystal.

  16. Effects of Electronic Quantum Interference, Photonic-Crystal Cavity, Longitudinal Field and Surface-Plasmon- Polariton for Optical Amplification

    National Research Council Canada - National Science Library

    Cardimona, David A; Alsing, Paul M; Huang, Danhong

    2008-01-01

    ... by a coupling laser field in a three-level system, field enhancement through the cavity confinement of a radiation field in a photonic crystal and field concentration seen in a transmitted near field...

  17. Extracellular matrix protein in calcified endoskeleton: a potential additive for crystal growth and design

    Science.gov (United States)

    Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu

    2011-06-01

    In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.

  18. Surface modification of LiNbO3 and KTa1-xNbxO3 crystals irradiated by intense pulsed ion beam

    Science.gov (United States)

    Cui, Xiaojun; Shen, Jie; Zhong, Haowen; Zhang, Jie; Yu, Xiao; Liang, Guoying; Qu, Miao; Yan, Sha; Zhang, Xiaofu; Le, Xiaoyun

    2017-10-01

    In this work, we studied the surface modification of LiNbO3 and KTa1-xNbxO3 irradiated by intense pulsed ion beam, which was mainly composed of H+ (70%) and Cn+ (30%) at an acceleration voltage of about 450 kV. The surface morphologies, microstructural evolution and elemental analysis of the sample surfaces after IPIB irradiation have been analyzed by scanning electron microscope, atomic force microscope, X-ray diffraction and energy dispersive spectrometer techniques, respectively. The results show that the surface morphologies have significant difference impacted by the irradiation effect. Regular gully damages range from 200 to 400 nm in depth appeared in LiNbO3 under 2 J/cm2 energy density for 1 pulse, block cracking appeared in KTa1-xNbxO3 at the same condition. Surface of the crystals have melted and were darkened with the increasing number up to 5 pulses. Crystal lattice arrangement is believed to be the dominant reason for the different experimental results irradiated by intense pulsed ion beam.

  19. Tight control of light trapping in surface addressable photonic crystal membranes: application to spectrally and spatially selective optical devices (Conference Presentation)

    Science.gov (United States)

    Letartre, Xavier; Blanchard, Cédric; Grillet, Christian; Jamois, Cécile; Leclercq, Jean-Louis; Viktorovitch, Pierre

    2016-04-01

    Surface addressable Photonic Crystal Membranes (PCM) are 1D or 2D photonic crystals formed in a slab waveguides where Bloch modes located above the light line are exploited. These modes are responsible for resonances in the reflection spectrum whose bandwidth can be adjusted at will. These resonances result from the coupling between a guided mode of the membrane and a free-space mode through the pattern of the photonic crystal. If broadband, these structures represent an ideal mirror to form compact vertical microcavity with 3D confinement of photons and polarization selectivity. Among numerous devices, low threshold VCSELs with remarkable and tunable modal properties have been demonstrated. Narrow band PCMs (or high Q resonators) have also been extensively used for surface addressable optoelectronic devices where an active material is embedded into the membrane, leading to the demonstration of low threshold surface emitting lasers, nonlinear bistables, optical traps... In this presentation, we will describe the main physical rules which govern the lifetime of photons in these resonant modes. More specifically, it will be emphasized that the Q factor of the PCM is determined, to the first order, by the integral overlap between the electromagnetic field distributions of the guided and free space modes and of the dielectric periodic perturbation which is applied to the homogeneous membrane to get the photonic crystal. It turns out that the symmetries of these distributions are of prime importance for the strength of the resonance. It will be shown that, by molding in-plane or vertical symmetries of Bloch modes, spectrally and spatially selective light absorbers or emitters can be designed. First proof of concept devices will be also presented.

  20. Influence of Teflon substrate on crystallization and enzymatic degradation of polymorphic poly(butylene adipate)

    DEFF Research Database (Denmark)

    Ning, Zhenbo; Nielsen, Ronnie Bo Højstrup; Zhao, Lifen

    2014-01-01

    for PBA beta crystals between neither the oriented nor the non-oriented Teflon films. The enzymatic degradation rate of PBA films was not determined by the epitaxial crystallization, in fact it was still dependent on the polymorphic crystal structure of PBA. The morphological changes of PBA films after...... enzymatic degradation confirmed again that the epitaxial crystallization only occurred for the PBA film with alpha crystal structure which was produced by being sandwiched between oriented Teflon films, and it happened only on the surface of PBA films....

  1. Catalyzed hydrogenation of nitrogen and ethylene on metal (Fe, Pt) single crystal surfaces and effects of coadsorption: A sum frequency generation vibrational spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Staffan Per Gustav [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    High-pressure catalytic reactions and associated processes, such as adsorption have been studied on a molecular level on single crystal surfaces. Sum Frequency Generation (SFG) vibrational spectroscopy together with Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) and Gas Chromatography (GC) were used to investigate the nature of species on catalytic surfaces and to measure the catalytic reaction rates. Special attention has been directed at studying high-pressure reactions and in particular, ammonia synthesis in order to identify reaction intermediates and the influence of adsorbates on the surface during reaction conditions. The adsorption of gases N2, H2, O2 and NH3 that play a role in ammonia synthesis have been studied on the Fe(111) crystal surface by sum frequency generation vibrational spectroscopy using an integrated Ultra-High Vacuum (UHV)/high-pressure system. SFG spectra are presented for the dissociation intermediates, NH2 (~3325 cm-1) and NH (~3235 cm-1) under high pressure of ammonia (200 Torr) on the clean Fe(111) surface. Addition of 0.5 Torr of oxygen to 200 Torr of ammonia does not significantly change the bonding of dissociation intermediates to the surface. However, it leads to a phase change of nearly 180° between the resonant and non-resonant second order non-linear susceptibility of the surface, demonstrated by the reversal of the SFG spectral features. Heating the surface in the presence of 200 Torr ammonia and 0.5 Torr oxygen reduces the oxygen coverage, which can be seen from the SFG spectra as another relative phase change of 180°. The reduction of the oxide is also supported by Auger electron spectroscopy. The result suggests that the phase change of the spectral features could serve as a sensitive indicator of the chemical environment of the adsorbates.

  2. Theoretical study of the HAP crystal growth inhibition potency of pyrophosphate, etidronate, citrate and phytate. Deciphered the adsorbed conformation of phytate on the HAP (001) surface

    Science.gov (United States)

    Fernández, David; Ortega-Castro, Joaquín; Frau, Juan

    2017-06-01

    The study of hydroxyapatite (HAP) crystal growth inhibitors has become an important field of research since HAP was identified as the main mineral component involved in pathological calcifications of soft tissues. In this work we performed a theoretical study of the deposition and the adsorption of a series of the most important HAP crystal inhibitors, such as pyrophosphate, etidronate, citrate and phytate, by means the Density Functional Theory. We showed that the adsorption energies of the inhibitors increased in the sequence: pyrophosphate functional groups of the molecules that interact with the HAP surface, and the total molecular negative charge. The study highlights phytate as the best inhibitor of pathological calcifications of the series, but also opened the door to further structural modifications of citrate that will match the inhibition potency of phytate.

  3. Educational utilization of outstanding spherulitic rhyolite occurred in Cheongsong, Korea

    Science.gov (United States)

    Jang, Y. D.; Woo, H.

    2015-12-01

    Cheongsong is located in the central eastern area of South Korea. Unique spherulitic rhyolites occur in this region as dykes formed about 48 to 50 million years ago. Composed of quartz and feldspar these spherulitic rhyolites show various flowerlike shapes, such as chrysanthemum, dandelion, rose, carnation, sunflower, dahlia and so on, so they are called 'flower stones'. The spherulite indicates that it was undercooled caused by very fast cooling at a shallow depth near the surface and the variety of shapes resulted from the difference of crystallizing conditions. According to the condition, minerals start to crystallize homogeneously or heterogeneously and develop as rounded or fibrous shapes, representing beautiful patterns when combined. These spherulitic structures are very rare not only in Korea but also globally, being valuable for research and preservation because of their rarity, beauty and diversity. Cheongsong therefore applies to the UGG (UNESCO Global Geopark) in an attempt to popularize the flower stones and use them as education materials which can also be incorporated in other valuable sites. The exhibition center provides diverse types of flower stones in which visitors could learn about rhyolitic volcanism, crystallization and spherulite and can experience the process of changing a rough stone into a flower stone. A geotrail course has also been created, showing each type of flower stone on the outcrop and providing educational programs about geological mechanisms of the stones with a trained guide.

  4. Quartz dissolution. I - Negative crystal experiments and a rate law. II - Theory of rough and smooth surfaces

    Science.gov (United States)

    Gratz, Andrew J.; Bird, Peter

    1993-01-01

    The range of the measured quartz dissolution rates, as a function of temperature and pOH, extent of saturation, and ionic strength, is extended to cover a wider range of solution chemistries, using the negative crystal methodology of Gratz et al. (1990) to measure the dissolution rate. A simple rate law describing the quartz dissolution kinetics above the point of zero charge of quartz is derived for ionic strengths above 0.003 m. Measurements were performed on some defective crystals, and the mathematics of step motion was developed for quartz dissolution and was compared with rough-face behavior using two different models.

  5. The Relationship between the Mechanism of Zinc Oxide Crystallization and Its Antimicrobial Properties for the Surface Modification of Surgical Meshes

    Science.gov (United States)

    Fiedot, Marta; Maliszewska, Irena; Rac-Rumijowska, Olga; Suchorska-Woźniak, Patrycja; Lewińska, Agnieszka; Teterycz, Helena

    2017-01-01

    Surgical meshes were modified with zinc oxide (ZnO) using a chemical bath deposition method (CBD) at 50 °C, 70 °C, or 90 °C, in order to biologically activate them. Scanning electron microscopy (SEM), mass changes, and X-ray diffraction measurements revealed that at low temperatures Zn(OH)2 was formed, and that this was converted into ZnO with a temperature increase. The antimicrobial activity without light stimulation of the ZnO modified Mersilene™ meshes was related to the species of microorganism, the incubation time, and the conditions of the experiment. Generally, cocci (S. aureus, S. epidermidis) and yeast (C. albicans) were more sensitive than Gram-negative rods (E. coli). The differences in sensitivity of the studied microorganisms to ZnO were discussed. The most active sample was that obtained at 90 °C. The mechanism of antimicrobial action of ZnO was determined by various techniques, such as zeta potential analysis, electron paramagnetic resonance (EPR) spectroscopy, SEM studies, and measurements of Zn(II) and reactive oxygen species (ROS) concentration. Our results confirmed that the generation of free radicals was crucial, which occurs on the surface of crystalline ZnO. PMID:28772718

  6. The investigations of nanoclusters and micron-sized periodic structures created at the surface of the crystal and amorphous silica by resonant CO2 laser irradiation

    Directory of Open Access Journals (Sweden)

    Mukhamedgalieva A.F.

    2017-01-01

    Full Text Available The creation of nanoclasters and micrometer sized periodical structures at the surface of silica (crystal quartz and fused quartz by action of pulsed CO2 laser radiation (pulse energy of 1 J, pulse time of 70 ns have been investigated. The laser action on the surface of samples lead to appearance of two kind of structures – periodical micron-sized structures with the period length close to wave length of CO2 laser irradiation and nanoclusters with size close to 50-100 nanometers. This creation connects with the intensive ablation of matter at the maxima of standing waves which are a results of the interference of falling and surfaces waves. This connects with the resonant absorption of infrared laser radiation by silicate minerals.

  7. Evaluating the Effect of Surface Roughness on Titanium Dioxide Nanoparticle Deposition using a Combined Quartz Crystal Microbalance with Dissipation (QCM-D) and Generalized Ellipsometry (GE) Technique

    Science.gov (United States)

    Kananizadeh, N.; Lee, J.; Rodenhausen, K. B.; Sekora, D.; Schubert, M.; Schubert, E.; Bartelt-Hunt, S.; Li, Y.

    2016-12-01

    Quantification and characterization of nanoparticles in soils and sediments are very challenging because they will interact not only with soil-water chemistry but also with highly heterogeneous soil and sediment surfaces. In this work, we measured the interaction of Titanium dioxide nanoparticles (nTiO2), the most extensively manufactured engineered materials, with engineered rough surfaces under varied ionic strength conditions. Innovative three-dimensional Silicon nanostructured surfaces, referred to here as slanted columnar thin films (SCTFs), were used to generate surface roughness with controlled heights of 50nm, 100nm, and 200nm. Using atomic layer deposition technique (ALD), surfaces of SCTF were coated with either silicon dioxide or aluminum oxides to represent the most abundant silica aquifer materials and metal oxide impurities, respectively. The interaction between nTiO2 and model rough surfaces was measured using quartz crystal microbalance with dissipation monitoring (QCM-D). The data were analyzed using a model that couples the viscoelastic effect with the surface roughness effect. No nTiO2 deposition was observed on neither flat nor rough silicon dioxide surfaces under ionic strength ranged from 0 to 100 mM NaCl. On the other hand, the deposition of nTiO2 on the aluminum oxides coated surfaces increased as the height of roughness increased. In parallel with QCM-D, a Generalized Ellipsometry (GE) was used to measure the mass of deposited nTiO2. The combination of QCM-D and GE revealed that the properties (i.e. porosity and rigidness) of attached nTiO2 layer on the QCM-D surfaces were dependent on ionic strength and surface roughness.

  8. Crystallization of urea from an evaporative aqueous solution sessile droplet at sub-boiling temperatures and surfaces with different wettability

    NARCIS (Netherlands)

    Schmid, J.; Zarikos, I.|info:eu-repo/dai/nl/413577473; Terzis, A.; Roth, N.; Weigand, B.

    The injection of urea-water-solution sprays in the exhaust pipe of modern diesel engines eliminates NOx emissions in a very great extent. However, as water evaporates from the solution, urea is crystallized and causes walldeposit formations hindering the performance of selective-catalytic-reaction.

  9. Effect of surface funcionalized carbon nanotubes on the morphology, as well as thermal, thermomechanical, and crystallization properties of polyactide

    CSIR Research Space (South Africa)

    Ramontja, J

    2011-01-01

    Full Text Available revealed homogenous dispersion of f-MWCNTs in the PLA matrix with some agglomerates. Melting and crystallization phenomena of the nanocomposite studied through differential scanning calorimeter (DSC), wide angle X-ray scattering (WAXS), and POM show that f...

  10. Morphological stability of 4H-SiC crystals in solution growth on {0001} and {1 1 ̅0m } surfaces

    Science.gov (United States)

    Mitani, Takeshi; Komatsu, Naoyoshi; Hayashi, Yuichiro; Kato, Tomohisa; Okumura, Hajime

    2017-06-01

    For solution growth of 4H-SiC, the surface morphology of the crystals grown on {0001 } and {1 1 ̅0m } (m=0‒4, 10 and 20) surfaces was systematically investigated. For short-term growth for 30 min on {0001 } and {1 1 ̅0m } (m=0 and 2) seeds, the height of the macrosteps was less than 400 nm, and terraces having the same crystallographic orientation as the seeds were formed. In contrast, the growth surfaces on {1 1 ̅0m } (m=4, 10 and 20) seeds became rough owing to the surface reconstruction with the {1 1 ̅02 } and {0001} planes, suggesting the morphological stability of the {1 1 ̅0m } (m=0 and 2) planes. Long-term morphological stability was examined by bulk growth experiments for 24 h. A smooth growth surface was obtained on both (1 ̅10 1 ̅) and (1 ̅10 2 ̅) seeds. Surface roughening owing to the macrostep faceting was observed for the long-term growth on (000 1 ̅) and (1 1 ̅00) seeds, whereas smooth step-terrace surfaces were obtained for the short-term growth on these planes. We also found that surface roughening tended to increase in the step-flow directions in which the angle formed by the original growth surface and a faceted slope of large macrosteps is large. Among the (1 ̅10 m ̅) (m=1 and 2) planes, growth on a (1 ̅10 1 ̅) plane exhibited the smoothest surface even after long-term growth with several millimeters in thickness.

  11. Exploratory Data Analysis of Synthetic Aperture Radar (SAR Measurements to Distinguish the Sea Surface Expressions of Naturally-Occurring Oil Seeps from Human-Related Oil Spills in Campeche Bay (Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Gustavo de Araújo Carvalho

    2017-12-01

    Full Text Available An Exploratory Data Analysis (EDA aims to use Synthetic Aperture Radar (SAR measurements for discriminating between two oil slick types observed on the sea surface: naturally-occurring oil seeps versus human-related oil spills—the use of satellite sensors for this task is poorly documented in scientific literature. A long-term RADARSAT dataset (2008–2012 is exploited to investigate oil slicks in Campeche Bay (Gulf of Mexico. Simple Classification Algorithms to distinguish the oil slick type are designed based on standard multivariate data analysis techniques. Various attributes of geometry, shape, and dimension that describe the oil slick Size Information are combined with SAR-derived backscatter coefficients—sigma-(σo, beta-(βo, and gamma-(γo naught. The combination of several of these characteristics is capable of distinguishing the oil slick type with ~70% of overall accuracy, however, the sole and simple use of two specific oil slick’s Size Information (i.e., area and perimeter is equally capable of distinguishing seeps from spills. The data mining exercise of our EDA promotes a novel idea bridging petroleum pollution and remote sensing research, thus paving the way to further investigate the satellite synoptic view to express geophysical differences between seeped and spilled oil observed on the sea surface for systematic use.

  12. Theoretical explanation of the photoswitchable superhydrophobicity of diarylethene microcrystalline surfaces.

    Science.gov (United States)

    Nishikawa, Naoki; Mayama, Hiroyuki; Nonomura, Yoshimune; Fujinaga, Noriko; Yokojima, Satoshi; Nakamura, Shinichiro; Uchida, Kingo

    2014-09-09

    Two types of superhydrophobic surfaces which show lotus and petal effects were induced on photochromic diarylethene microcrystalline surfaces by UV and visible light irradiation and temperature control. On the surfaces showing the lotus effect, a low-adhesion superhydrophobic property is attributed to the surface structure being covered with densely standing needle-shaped crystals of the closed-ring isomer. On surfaces showing the petal effect, a high-adhesion superhydrophobic surface consists of fine needle-shaped crystals with high density together with a few rod-shaped crystals, where an invasion phenomenon occurs between these rod-shaped crystals. Furthermore, the different superhydrophobic properties of the surfaces are theoretically explained using multipillar surface models.

  13. 16α-Hydroxyfriedelin and 3-Oxo-16-methylfriedel-16-ene as Building Blocks: Crystal Structure and Hirshfeld Surfaces Decoding Intermolecular Contacts

    Directory of Open Access Journals (Sweden)

    Rodrigo S. Corrêa

    2013-01-01

    Full Text Available In this paper the importance of C–H⋯O intermolecular hydrogen bonds and van der Waals forces in crystal packing stabilization of 16α-hydroxyfriedelin (1 and 3-oxo-16-methylfriedel-16-ene (2 is described. Compound 1 is a natural product isolated from the hexane extract of Salacia elliptica branches, whereas compound 2 is obtained from compound 1 after dehydration accompanied by methyl migration of C-17 to C-16. The single-crystal X-ray diffraction experiments for 1 and 2 were carried out at 150 K, and the crystallographic study demonstrated that these compounds crystallize in noncentrosymmetric space groups, with 1 showing an orthorhombic P212121 space group and 2 a monoclinic P21 one. Compounds 1 and 2 are composed of five fused six-membered rings presenting a chair conformation, except for the central ring of 2, which adopts a half-chair conformation. In addition, the intra- and intermolecular parameters were studied using CCDC MOGUL analyses and Hirshfeld surfaces.

  14. Synthesis, crystal structure, Hirshfeld surface analysis, spectroscopic characterization, reactivity study by DFT and MD approaches and molecular docking study of a novel chalcone derivative

    Science.gov (United States)

    Arshad, Suhana; Pillai, Renjith Raveendran; Zainuri, Dian Alwani; Khalib, Nuridayanti Che; Razak, Ibrahim Abdul; Armaković, Stevan; Armaković, Sanja J.; Panicker, C. Yohannan; Van Alsenoy, C.

    2017-05-01

    In the present study, the title compound named as (E)-1-(4-bromophenyl)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-one was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in monoclinic crystal system in P21/c space group, unit cell parameters a = 16.7629 (12) Å, b = 13.9681 (10) Å, c = 5.8740 (4) Å, β = 96.3860 (12)° and Z = 4. Hirshfeld surface analysis revealed that the molecular structure is dominated by H⋯H, C⋯H/H⋯C, Br⋯F/F⋯Br and F⋯F contacts. The FT-IR spectrum was recorded and interpreted in details with the aid of Density Functional Theory (DFT) calculations and Potential Energy Distribution (PED) analysis. Average local ionization energies (ALIE) and Fukui functions have been used as quantum-molecular descriptors to locate the molecule sites that could be of importance from the aspect of reactivity. Degradation properties have been assessed by calculations of bond dissociation energies (BDE) for hydrogen abstraction and the rest of the single acyclic bonds, while molecular dynamics (MD) simulations were used in order to calculate radial distribution functions and determine the atoms with significant interactions with water. In order to understand how the title molecule inhibits and hence increases the catalytic efficiency of MOA-B enzyme, molecular docking study was performed.

  15. Crystal structure and Hirshfeld surface analysis of (E-4-{[2-(4-hydroxybenzoylhydrazin-1-ylidene]methyl}pyridin-1-ium nitrate

    Directory of Open Access Journals (Sweden)

    Mir Abolfazl Naziri

    2018-03-01

    Full Text Available The asymmetric unit of the title aroyl hydrazone Schiff base salt, C13H12N3O2+·N O3−, consists of one molecular cation in the keto tautomeric form, adopting an E configuration with respect to the azomethine bond, and one nitrate anion. The two units are linked via an N—H...O hydrogen bond. The molecule overall is non-planar, with the pyridinium and benzene rings being inclined to each other by 4.21 (4°. In the crystal, cations and anions are linked via intermolecular O—H...O and bifurcated N—H...O hydrogen bonds, forming a two-dimensional network parallel to (101. These networks are further linked by C—H...O hydrogen bonds, forming slabs parallel to (101. The slabs are linked by offset π–π interactions, involving the benzene and pyridinium rings of adjacent slabs [intercentroid distance = 3.610 (2 Å], forming a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...O/O...H (45.1%, H...H (19.3%, H...C/C...H (14.5%, H...N/N...H (7.9% and C...C (6.0% interactions.

  16. Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films

    Directory of Open Access Journals (Sweden)

    Karupanan Periyanan Ganesan

    Full Text Available Cuprous oxide (Cu2O thin films with different crystal orientations were electrochemically deposited in the presence of various molar concentrations of cetyl trimethyl ammonium bromide (CTAB on fluorine doped tin oxide (FTO glass substrate using standard three electrodes system. X-ray diffraction (XRD studies reveal cubic structure of Cu2O with (111 plane orientation, after addition of CTAB in deposition solution, the orientation of crystal changes from (111 into (200 plane. Scanning electron microscope (SEM images explored significant variation on morphology of Cu2O thin films deposited with addition of CTAB compared to without addition of CTAB. Photoluminescence (PL spectra illustrate that the emission peak around at 650 nm is attributed to near band edge emission, and the film prepared at the 3 mM of CTAB exhibits much higher intensity than that of the all other films. UV–Visible spectra show optical absorption in the range of 480–610 nm and the highest transparency of Cu2O film prepared at the concentration of 3 mM CTAB. The optical band gap is increased in the range between 2.16 and 2.45 eV with increasing the CTAB concentrations. Keywords: Cuprous oxide, Crystal orientation, Electrodeposition and cubic structure

  17. The accretion of the new ice layer on the surface of hexagonal ice crystal and the influence of the local electric field on this process

    Science.gov (United States)

    Grabowska, Joanna; Kuffel, Anna; Zielkiewicz, Jan

    2017-11-01

    The process of creation of a new layer of ice on the basal plane and on the prism plane of a hexagonal ice crystal is analyzed. It is demonstrated that the ordering of water molecules in the already existing crystal affects the freezing. On the basal plane, when the orientations of water molecules in the ice block are random, the arrangement of the new layer in a cubic manner is observed more frequently—approximately 1.7 times more often than in a hexagonal manner. When the water molecules in the ice block are more ordered, it results in the predominance of the oxygen atoms or the hydrogen atoms on the most outer part of the surface of the ice block. In this case, the hexagonal structure is formed more frequently when the supercooling of water exceeds 10 K. This phenomenon is explained by the influence of the oriented electric field, present as a consequence of the ordering of the dipoles of water molecules in the ice block. This field modifies the structure of solvation water (i.e., the layer of water in the immediate vicinity of the ice surface). We showed that the structure of solvation water predetermines the kind of the newly created layer of ice. This effect is temperature-dependent: when the temperature draws nearer to the melting point, the cubic structure becomes the prevailing form. The temperature at which the cubic and the hexagonal structures are formed with the same probabilities is equal to about 260 K. In the case of the prism plane, the new layer that is formed is always the hexagonal one, which is independent of the arrangement of water molecules in the ice block and is in agreement with previous literature data. For the basal plane, as well as for the prism plane, no evident dependence on the ordering of water molecules that constitute the ice block on the rate of crystallization can be observed.

  18. Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating.

    Science.gov (United States)

    Wang, Jiangxue; Fan, Yubo

    2014-12-03

    With the rapid development of nanotechnology, a variety of engineered nanoparticles (NPs) are being produced. Nanotoxicology has become a hot topic in many fields, as researchers attempt to elucidate the potential adverse health effects of NPs. The biological activity of NPs strongly depends on physicochemical parameters but these are not routinely considered in toxicity screening, such as dose metrics. In this work, nanoscale titanium dioxide (TiO2), one of the most commonly produced and widely used NPs, is put forth as a representative. The correlation between the lung toxicity and pulmonary cell impairment related to TiO2 NPs and its unusual structural features, including size, shape, crystal phases, and surface coating, is reviewed in detail. The reactive oxygen species (ROS) production in pulmonary inflammation in response to the properties of TiO2 NPs is also briefly described. To fully understand the potential biological effects of NPs in toxicity screening, we highly recommend that the size, crystal phase, dispersion and agglomeration status, surface coating, and chemical composition should be most appropriately characterized.

  19. Nucleation and growth of hydroxyapatite on arc-deposited TiO{sub 2} surfaces studied by quartz crystal microbalance with dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Lilja, Mirjam [Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, Box 534, 75121 Uppsala (Sweden); Sandvik Coromant Sverige AB, Lerkrogsvägen 19, 12680 Stockholm (Sweden); Butt, Umer [Sandvik Coromant Sverige AB, Lerkrogsvägen 19, 12680 Stockholm (Sweden); Berzelii Centre EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 114 18 Stockholm (Sweden); Shen, Zhijian [Berzelii Centre EXSELENT on Porous Materials and Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 114 18 Stockholm (Sweden); Bjöörn, Dorota, E-mail: dorota.bjoorn@sandvik.com [Sandvik Coromant Sverige AB, Lerkrogsvägen 19, 12680 Stockholm (Sweden)

    2013-11-01

    Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO{sub 2} surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO{sub 2} coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO{sub 2} coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO{sub 2} coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.

  20. Nucleation and growth of hydroxyapatite on arc-deposited TiO2 surfaces studied by quartz crystal microbalance with dissipation

    International Nuclear Information System (INIS)

    Lilja, Mirjam; Butt, Umer; Shen, Zhijian; Bjöörn, Dorota

    2013-01-01

    Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO 2 surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO 2 coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO 2 coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO 2 coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.

  1. Nucleation and growth of hydroxyapatite on arc-deposited TiO2 surfaces studied by quartz crystal microbalance with dissipation

    Science.gov (United States)

    Lilja, Mirjam; Butt, Umer; Shen, Zhijian; Bjöörn, Dorota

    2013-11-01

    Understanding of nucleation and growth kinetics of biomimetically deposited hydroxyapatite (HA) on crystalline TiO2 surfaces is important with respect to the application and performance of HA as functional implant coatings. Arc-evaporation was used to deposit TiO2 coatings dominated by anatase phase, rutile phase or their mixtures. Subsequent formation of HA from phosphate buffered saline solution (PBS) was investigated in real-time using in situ quartz crystal microbalance with dissipation technique (QCM-D). Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to characterize the presence, morphology and crystal structure of TiO2 coatings and the formed HA. Increasing temperature of the PBS, increasing flow rate and applying a higher ion concentration in solution were found to accelerate HA nucleation process and hence affect growth kinetics. Lower PBS temperature resulted in the formation of HA coatings with flake-like morphology and increasing HA porosity. All TiO2 coatings under study enabled HA formation at body temperature, while in contrast Ti reference surfaces only supported HA nucleation and growth at elevated temperatures. QCM-D technique is a powerful tool for studying the impact of process parameters during biomimetic coating deposition on coating structure evolution in real time and provides valuable information for understanding, optimizing as well as tailoring the biomimetic HA growth processes.

  2. Dependence of optical phase modulation on anchoring strength of dielectric shield wall surfaces in small liquid crystal pixels

    Science.gov (United States)

    Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo

    2018-03-01

    We demonstrated that the uniform phase modulation in a pixel can be realized by optimizing the anchoring strength on the walls and the wall width in the dielectric shield wall structure, which is the needed pixel structure for realizing a 1-µm-pitch optical phase modulator. The anchoring force degrades the uniformity of the phase modulation in ON-state pixels, but it also keeps liquid crystals from rotating against the leakage of an electric field. We clarified that the optimal wall width and anchoring strength are 250 nm and less than 10‑4 J/m2, respectively.

  3. High field electron paramagnetic resonance spectroscopy under ultrahigh vacuum conditions—A multipurpose machine to study paramagnetic species on well defined single crystal surfaces

    Science.gov (United States)

    Rocker, J.; Cornu, D.; Kieseritzky, E.; Seiler, A.; Bondarchuk, O.; Hänsel-Ziegler, W.; Risse, T.; Freund, H.-J.

    2014-08-01

    A new ultrahigh vacuum (UHV) electron paramagnetic resonance (EPR) spectrometer operating at 94 GHz to investigate paramagnetic centers on single crystal surfaces is described. It is particularly designed to study paramagnetic centers on well-defined model catalysts using epitaxial thin oxide films grown on metal single crystals. The EPR setup is based on a commercial Bruker E600 spectrometer, which is adapted to ultrahigh vacuum conditions using a home made Fabry Perot resonator. The key idea of the resonator is to use the planar metal single crystal required to grow the single crystalline oxide films as one of the mirrors of the resonator. EPR spectroscopy is solely sensitive to paramagnetic species, which are typically minority species in such a system. Hence, additional experimental characterization tools are required to allow for a comprehensive investigation of the surface. The apparatus includes a preparation chamber hosting equipment, which is required to prepare supported model catalysts. In addition, surface characterization tools such as low energy electron diffraction (LEED)/Auger spectroscopy, temperature programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRAS) are available to characterize the surfaces. A second chamber used to perform EPR spectroscopy at 94 GHz has a room temperature scanning tunneling microscope attached to it, which allows for real space structural characterization. The heart of the UHV adaptation of the EPR experiment is the sealing of the Fabry-Perot resonator against atmosphere. To this end it is possible to use a thin sapphire window glued to the backside of the coupling orifice of the Fabry Perot resonator. With the help of a variety of stabilization measures reducing vibrations as well as thermal drift it is possible to accumulate data for a time span, which is for low temperature measurements only limited by the amount of liquid helium. Test measurements show that the system can detect paramagnetic

  4. Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin-Voigt and Maxwell models.

    Science.gov (United States)

    van der Westen, Rebecca; Sharma, Prashant K; De Raedt, Hans; Vermue, Ijsbrand; van der Mei, Henny C; Busscher, Henk J

    2017-09-27

    A quartz-crystal-microbalance with dissipation (QCM-D) can measure molecular mass adsorption as well as register adhesion of colloidal particles. However, analysis of the QCM-D output to quantitatively analyze adhesion of (bio)colloids to obtain viscoelastic bond properties is still a subject of debate. Here, we analyze the QCM-D output to analyze the bond between two hydrophilic streptococcal strains 91 nm long and without fibrillar surface appendages and micron-sized hydrophobic polystyrene particles on QCM-D crystal surfaces with different hydrophobicities, using the Kelvin-Voigt model and the Maxwell model. A Poisson distribution was implemented in order to determine the possible virtues of including polydispersity when fitting model parameters to the data. The quality of the fits did not indicate whether the Kelvin-Voigt or the Maxwell model is preferable and only polydispersity in spring-constants improved the fit for polystyrene particles. The Kelvin-Voigt and Maxwell models both yielded higher spring-constants for the bald streptococcus than for the fibrillated one. In both models, the drag coefficients increased for the bald streptococcus with the ratio of electron-donating over electron-accepting parameters of the crystal surface, while for the fibrillated strain the drag coefficient was similar on all crystal surfaces. Combined with the propensity of fibrillated streptococci to bind to the sensor crystal as a coupled-resonator above the crystal surface, this suggests that the drag experienced by resonator-coupled, hydrophilic particles is more influenced by the viscosity of the bulk water than by interfacial water adjacent to the crystal surface. Hydrophilic particles that lack a surface tether are mass-coupled just above the crystal surface and accordingly probe the drag due to the thin layer of interfacial water that is differently structured on hydrophobic and hydrophilic surfaces. Hydrophobic particles without a surface tether are also mass

  5. Absence of Ni on the outer surface of Sr doped La 2 NiO 4 single crystals

    KAUST Repository

    Burriel, Mónica

    2014-01-01

    A combination of surface sensitive techniques was used to determine the surface structure and chemistry of La2-xSrxNiO 4+δ. These measurements unequivocally showed that Ni is not present in the outermost atomic layer, suggesting that the accepted model with the B-site cations exposed to the environment is incorrect. © 2014 The Royal Society of Chemistry.

  6. The crystal chemistry and structural analysis of uranium oxide hydrates. Final report, May 15, 1995--December 31, 1997

    International Nuclear Information System (INIS)

    Miller, M.L.; Ewing, R.C.

    1998-01-01

    The purpose of this research program was to develop a thorough understanding of the crystal-chemical and crystal-structural systematics of uranyl oxide hydrates which are the initial corrosion products of the UO 2 in spent nuclear fuel and the principal phases in which actinides occur in the near surface environment. The scope of this program has been expanded to include all inorganic phases in which U 6+ plays a significant structural role; currently 183 phases with known crystal structures

  7. Crystals in crystals

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Schmidt, I.; Carlsson, A.

    2005-01-01

    A major factor governing the performance of catalytically active particles supported on a zeolite carrier is the degree of dispersion. It is shown that the introduction of noncrystallographic mesopores into zeolite single crystals (silicalite-1, ZSM-5) may increase the degree of particle dispersion...... of the zeolite particles, particularly after thermal treatment. When using mesoporous zeolites, the particles were evenly distributed throughout the mesopore system of the zeolitic support, even after calcination, leading to nanocrystals within mesoporous zeolite single crystals....

  8. THEORY OF INCOMMENSURATE CRYSTAL FACETS

    NARCIS (Netherlands)

    VANSMAALEN, S

    1993-01-01

    The morphology of incommensurately modulated crystals is considered. A surface free energy model is constructed which interprets the stabilization of the incommensurate facets as due to surface pinning of the phase of the modulation wave. The stepped nature of the true crystal surface restricts the

  9. Combined quartz crystal microbalance with dissipation (QCM-D) and generalized ellipsometry (GE) to characterize the deposition of titanium dioxide nanoparticles on model rough surfaces.

    Science.gov (United States)

    Kananizadeh, Negin; Rice, Charles; Lee, Jaewoong; Rodenhausen, Keith B; Sekora, Derek; Schubert, Mathias; Schubert, Eva; Bartelt-Hunt, Shannon; Li, Yusong

    2017-01-15

    Measuring the interactions between engineered nanoparticles and natural substrates (e.g. soils and sediments) has been very challenging due to highly heterogeneous and rough natural surfaces. In this study, three-dimensional nanostructured slanted columnar thin films (SCTFs), with well-defined roughness height and spacing, have been used to mimic surface roughness. Interactions between titanium dioxide nanoparticles (TiO 2 NP), the most extensively manufactured engineered nanomaterials, and SCTF coated surfaces were measured using a quartz crystal microbalance with dissipation monitoring (QCM-D). In parallel, in-situ generalized ellipsometry (GE) was coupled with QCM-D to simultaneously measure the amount of TiO 2 NP deposited on the surface of SCTF. While GE is insensitive to effects of mechanical water entrapment variations in roughness spaces, we found that the viscoelastic model, a typical QCM-D model analysis approach, overestimates the mass of deposited TiO 2 NP. This overestimation arises from overlaid frequency changes caused by particle deposition as well as additional water entrapment and partial water displacement upon nanoparticle adsorption. Here, we demonstrate a new approach to model QCM-D data, accounting for both viscoelastic effects and the effects of roughness-retained water. Finally, the porosity of attached TiO 2 NP layer was determined by coupling the areal mass density determined by QCM-D and independent GE measurements. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Fermi surface of a disordered Cu-Al -alloy single crystal studied by high-resolution Compton scattering and electron diffraction

    Science.gov (United States)

    Kwiatkowska, J.; Maniawski, F.; Matsumoto, I.; Kawata, H.; Shiotani, N.; Lityńska, L.; Kaprzyk, S.; Bansil, A.

    2004-08-01

    We have measured high resolution Compton scattering profiles for momentum transfer along a series of 28 independent directions from Cu0.842Al0.158 disordered alloy single crystals with normals to the surfaces oriented along the [100], [110], and [111] directions. The experimental spectra are interpreted via parallel first-principles KKR-CPA (Korringa-Kohn-Rostoker coherent-potential approximation) computations of these directional profiles. The Fermi surface determined by inverting the Compton data is found to be in good agreement with the KKR-CPA predictions. An electron diffraction study of the present Cu0.842Al0.158 sample is additionally undertaken to gain insight into short-range ordering effects. The scattering pattern displays not only the familiar diffuse scattering peaks, but also shows the presence of weak streaks interconnecting the four diffuse scattering spots around the (110) reciprocal lattice points. This study provides a comprehensive picture of the evolution of the shape of the Fermi surface of Cu with the addition of Al . Our results are consistent with the notion that Fermi surface nesting is an important factor in driving short-range ordering effects in disordered alloys.

  11. Minimizing radiation damage in nonlinear optical crystals

    Science.gov (United States)

    Cooke, D. Wayne; Bennett, Bryan L.; Cockroft, Nigel J.

    1998-01-01

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal.

  12. Construction of a 2D Co(II) Coordination Polymer with (4,4)-Connected Topology: Synthesis, Crystal Structure, and Surface Photo-electric Property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiaming [Qinzhou Univ., Qinzhou (China)

    2014-04-15

    A 2D grid-like (4, 4)-connected topology coordination polymer, [Co(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n}, where HBTA = 2-(1H-benzotriazol-1-yl)acetic acid, has been synthesized by hydrothermal method and characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and surface photovoltage spectroscopy (SPS). X-ray diffraction analyses indicated that displays octahedral metal centers with secondary building units (SBUs) [Co(BTA){sub 2}(H{sub 2}O){sub 2}] bridged by the BTA. ligands. In the crystal, the 2D supramolecular architecture is further supported by O-H···O, O-H···N, C-H···O hydrogen bonds and π··π stacking interactions. The SPS of polymer 1 indicates that there are positive response bands in the range of 300.600 nm showing photo-electric conversion properties. There are good relationships between SPS and UV-Vis spectra.

  13. Investigation of Carboxymethyl Cellulose Adsorption onto Regenerated Cellulose Surfaces via Quartz Crystal Microbalance with Dissipation Monitoring and Surface Plasmon Resonance Spectroscopy

    Science.gov (United States)

    Liu, Zelin; Gatenholm, Paul; Esker, Alan

    2009-03-01

    The adsorption of anionic polyeletrolytes, sodium salts of carboxymethyl celluloses (CMC), with different degrees of substitution (DS = 0.9 and 1.2) from aqueous electrolyte solutions onto regenerated cellulose surface was studied via quartz microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR). The influence of both calcium chloride (CaCl2) and sodium chloride (NaCl) was examined. Both QCM-D and SPR results indicate that CMC adsorption onto regenerated cellulose surfaces increases with increasing electrolyte concentration and CaCl2 (divalent cation) showed a significant effect on CMC adsorption compared to NaCl (monovalent cation) at the same ionic strength. Voigt-based viscoelastic modeling of the QCM-D data and analysis of the SPR data are consistent with the existence of a swollen CMC layer on the cellulose surface with a viscosity of ˜1.3×10-3 kg m-1 s-1 and an elastic shear modulus of ˜10^5 kg m-1 s-2.

  14. Crystallization and characterization of human chorionic gonadotropin in chemically deglycosylated and enzymatically desialylated states

    International Nuclear Information System (INIS)

    Lustbader, J.W.; Birken, S.; Pileggi, N.F.; Folks, M.A.G.; Pollak, S.; Cuff, M.E.; Yang, Wei; Hendrickson, W.A.; Canfield, R.E.

    1989-01-01

    Crystals suitable for X-ray diffraction studies at moderate resolution have been grown from two forms of human chorionic gonadotropin (hCG): HF-treated hCG and neuraminidase-treated hCG. The enzymatically desialylated form of hCG produced crystals that diffract to 2.8 angstrom as compared to the HF-treated hCG crystals that diffract to 3.0 angstrom. Although it was assumed that the high and heterogeneous carbohydrate content of the glycoprotein hormones inhibited their crystallization, this report suggests that it is the negatively charged surface sugars and neither the total carbohydrate content nor its heterogeneity which interferes with crystal formation. Chemical deglycosylation resulted in significantly increased protein degradation during crystal growth. Such peptide bond cleavages were observed to a much lesser extent in the crystals grown from neuraminidase-digested hCG. Sequence analysis of the HF-treated hCG crystals suggested that up to 45% of the molecules within the crystal had an acid-labile peptide bond cleaved. In contrast, the neuraminidase-treated hCG exhibited less than 9% of this type of cleavage. The manner in which hCG was treated prior to crystallization was found to be a very important factor in the extent of peptide bound cleavages occurring during crystal growth. HF treatment of glycoproteins may render glycoproteins more susceptible to peptide bond cleavage during crystal growth

  15. Synthesis of Ag nanobars in the presence of single-crystal seeds and a bromide compound, and their surface-enhanced Raman scattering (SERS) properties.

    Science.gov (United States)

    Zhang, Qiang; Moran, Christine H; Xia, Xiaohu; Rycenga, Matthew; Li, Naixu; Xia, Younan

    2012-06-19

    This Article describes the synthesis of Ag nanobars with different aspect ratios using a seed-mediated method and evaluation of their use for surface-enhanced Raman scattering (SERS). The formation of Ag nanobars was found to critically depend on the introduction of a bromide compound into the reaction system, with ionic salts being more effective than covalent molecules. We examined single-crystal seeds with both spherical and cubic shapes and found that Ag nanobars grown from spherical seeds had much higher aspect ratios than those grown from cubic seeds. The typical product of a synthesis contained nanocrystals with three different morphologies: nanocubes, nanobars with a square cross section, and nanobars with a rectangular cross section. Their formation can be attributed to the difference in growth rates along the three orthogonal directions. The SERS enhancement factor of the Ag nanobar was found to depend on its aspect ratio, its orientation relative to the laser polarization, and the wavelength of excitation.

  16. Di-n-butylbis[N-(2-methoxyethyl-N-methyldithiocarbamato-κ2S,S′]tin(IV: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    Rapidah Mohamad

    2017-02-01

    Full Text Available The complete molecule of the title compound, [Sn(C4H92(C5H10NOS22], is generated by a crystallographic mirror plane, with the SnIV atom and the two inner methylene C atoms of the butyl ligands lying on the mirror plane; statistical disorder is noted in the two terminal ethyl groups, which deviate from mirror symmetry. The dithiocarbamate ligand coordinates to the metal atom in an asymmetric mode with the resulting C2S4 donor set defining a skew trapezoidal bipyramidal geometry; the n-butyl groups are disposed to lie over the longer Sn—S bonds. Supramolecular chains aligned along the a-axis direction and sustained by methylene-C—H...S(weakly coordinating interactions feature in the molecular packing. A Hirshfeld surface analysis reveals the dominance of H...H contacts in the crystal.

  17. Bis{4-methylbenzyl 2-[4-(propan-2-ylbenzylidene]hydrazinecarbodithioato-κ2N2,S}nickel(II: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2017-03-01

    Full Text Available The complete molecule of the title hydrazine carbodithioate complex, [Ni(C19H21N2S22], is generated by the application of a centre of inversion. The NiII atom is N,S-chelated by two hydrazinecarbodithioate ligands, which provide a trans-N2S2 donor set that defines a distorted square-planar geometry. The conformation of the five-membered chelate ring is an envelope with the NiII atom being the flap atom. In the crystal, p-tolyl-C—H...π(benzene-iPr, iPr-C—H...π(p-tolyl and π–π interactions [between p-tolyl rings with inter-centroid distance = 3.8051 (12 Å] help to consolidate the three-dimensional architecture. The analysis of the Hirshfeld surface confirms the importance of H-atom contacts in establishing the packing.

  18. Surface study and thickness control of thin Al2O3 film on Cu-9%Al(111) single crystal

    International Nuclear Information System (INIS)

    Yamauchi, Yasuhiro; Yoshitake, Michiko; Song Weijie

    2004-01-01

    We were successful in growing a uniform flat Al 2 O 3 film on the Cu-9%Al(111) surface using the improved cleaning process, low ion energy and short time sputtering. The growth of ultra-thin film of Al 2 O 3 on Cu-9%Al was investigated using Auger electron spectroscopy (AES) and a scanning electron microscope (SEM). The Al 2 O 3 film whose maximum thickness was about 4.0 nm grew uniformly on the Cu-9%Al surface. The Al and O KLL Auger peaks of Al 2 O 3 film shifted toward low kinetic energy, and the shifts were related to Schottky barrier formation and band bending at the Al 2 O 3 /Cu-9%Al interface. The thickness of Al 2 O 3 film on the Cu-9%Al surface was controlled by the oxygen exposure

  19. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    International Nuclear Information System (INIS)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C 2 H 2 and C 2 H 4 adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals

  20. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C/sub 2/H/sub 2/ and C/sub 2/H/sub 4/ adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals.

  1. The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization.

    Science.gov (United States)

    Gong, Xiuqing; Wang, Yun-Wei; Ihli, Johannes; Kim, Yi-Yeoun; Li, Shunbo; Walshaw, Richard; Chen, Li; Meldrum, Fiona C

    2015-12-02

    A "crystal hotel" microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Simultaneous surface plasmon resonance and quartz crystal microbalance with dissipation monitoring measurements of biomolecular adsorption events involving structural transformations and variations in coupled water.

    Science.gov (United States)

    Reimhult, Erik; Larsson, Charlotte; Kasemo, Bengt; Höök, Fredrik

    2004-12-15

    Simultaneous quartz crystal microbalance with dissipation monitoring (QCM-D) and surface plasmon resonance (SPR) measurements are used to analyze the surface kinetics of two biomacromolecular systems, one lipid and one protein based, undergoing surface-induced conformational changes. First we establish a theoretical platform, which allows quantitative analysis of the combined SPR and QCM-D data. With this theoretical base, new information can be extracted, not obtainable with either technique alone. As an example we demonstrate how time-resolved measurements with these two techniques in combination--yielding three independent measured quantities--add new information about (i) kinetics, i.e. number of adsorbed molecules per unit area versus time, and (ii) temporal variation in the mass fraction of coupled water versus coverage. In particular, it is demonstrated for the first time, how the kinetics of the process during which adsorbed vesicles are spontaneously transformed into a supported phospholipid bilayer (SPB) on SiO(2) can be quantitatively separated into its two dominating states: adsorbed vesicles and supported planar bilayer patches. In addition, the relevance of dynamically coupled water for interpretation and modeling of the QCM-D response during bilayer formation is discussed and further illustrated with a second model system: streptavidin adsorption on a biotin-modified SPB. A very strong coverage dependence in the number of water molecules per protein sensed by the QCM is demonstrated, with strong implications for the use of QCM as a tool for quantitative determination of protein mass uptake kinetics.

  3. Theoretical study of the deposition and adsorption of bisphosphonates on the 001 hydroxyapatite surface: Implications in the pathological crystallization inhibition and the bone antiresorptive action

    Science.gov (United States)

    Fernández, David; Ortega-Castro, Joaquín; Frau, Juan

    2017-01-01

    The effect of different side chain groups of bisphosphonates (BPs) on the adsorption on the hydroxyapatite (HAP) is still a controversial issue. In this work, we studied the deposition and adsorption of a set of 26 BPs on the HAP (001) surface by using density functional theory (DFT) in which has been shown that the charge, the length or the presence of different functional groups at R2 side chain can modulate the adsorption energy of the BP. It was observed that negative charged groups at R2 enhanced the favourable electrostatic interactions between the BP and the HAP surface, but also that the length of R2 was important to enable the formation of the favorable electrostatic interactions between the functional group at R2 and the surface. A crossover study between the HAP/BP model (3D-QSAR/DFT) and the inhibition of the human farnesyl pyrophosphate synthase (FPPS) (3D-QSAR) pointed out that the electrostatic character of the R2 side chain provokes contrary effects in the inhibition of pathological crystallization and in the bone antiresorptive action of BPs.

  4. Adsorption of human insulin on single-crystal gold surfaces investigated by in situ scanning tunnelling microscopy and electrochemistry

    DEFF Research Database (Denmark)

    Welinder, Anna Christina; Zhang, Jingdong; Steensgaard, D.B.

    2010-01-01

    We have explored the adsorption of zinc-free human insulin on the three low-index single-crystalline Au(111)-, Au(100)- and Au(110)-surfaces in aqueous buffer (KH2PO4, pH 5) by a combination of electrochemical scanning tunnelling microscopy (in situ STM) at single-molecule resolution and linear...... sweep, LSV, cyclic, CV, and square wave (SQWV) voltammetry. Multifarious electrochemical patterns were observed. Most attention was given to reductive desorption caused by insulin binding to the Au-surfaces via up to three disulfide groups per insulin monomer, presumably converted to single Au-S links...

  5. Stability of two-dimensional clusters on crystal surfaces: from Ostwald ripening to single-cluster decay

    NARCIS (Netherlands)

    Rosenfeld, G.; Morgenstern, Karina; Beckmann, Ingo; Wulfhekel, Wulf; Wulfhekel, W.C.U.; Laegsgaard, Erik; Besenbacher, Flemming; Comsa, George

    1998-01-01

    An overview is given of recent work on the decay of two-dimensional clusters on a Ag(111) surface. Experimental studies using scanning tunnelling microscopy are presented, and various approaches to extract quantitative information on the relevant atomic processes from cluster decay experiments are

  6. Laser MBE-grown CoFeB epitaxial layers on MgO: Surface morphology, crystal structure, and magnetic properties

    Science.gov (United States)

    Kaveev, Andrey K.; Bursian, Viktor E.; Krichevtsov, Boris B.; Mashkov, Konstantin V.; Suturin, Sergey M.; Volkov, Mikhail P.; Tabuchi, Masao; Sokolov, Nikolai S.

    2018-01-01

    Epitaxial layers of CoFeB were grown on MgO by means of laser molecular beam epitaxy using C o40F e40B20 target. The growth was combined with in situ structural characterization by three-dimensional reciprocal space mapping obtained from reflection high energy electron diffraction (RHEED) data. High-temperature single stage growth regime was adopted to fabricate CoFeB layers. As confirmed by the atomic force microscopy, the surface of CoFeB layers consists of closely spaced nanometer sized islands with dimensions dependent on the growth temperature. As shown by RHEED and XRD analysis, the CoFeB layers grown at high-temperature on MgO(001) possess body centered cubic (bcc) crystal structure with the lattice constant a =2.87 Å close to that of the C o75F e25 alloy. It was further shown that following the same high-temperature growth technique the MgO/CoFeB/MgO(001) heterostructures can be fabricated with top and bottom MgO layers of the same crystallographic orientation. The CoFeB layers were also grown on the GaN(0001) substrates using MgO(111) as a buffer layer. In this case, the CoFeB layers crystallize in bcc crystal structure with the (111) axis perpendicular to the substrate surface. The magnetic properties of the CoFeB/MgO (001) heterostructures have been investigated by measuring magnetization curves with a vibrating sample magnetometer as well as by performing magneto-optical Kerr effect (MOKE) and ferromagnetic resonance (FMR) studies. FMR spectra were obtained for the variety of the magnetic field directions and typically consisted of a single relatively narrow resonance line. The magnetization orientations and the resonance conditions were calculated in the framework of a standard magnetic energy minimization procedure involving a single K1 c cubic term for the magnetocrystalline anisotropy. This allows a fairly accurate description of the angular dependences of the resonance fields—both in-plane and out-of-plane. It was shown that CoFeB layers exhibit

  7. A novel cationic cobalt(III) Schiff base complex: Preparation, crystal structure, Hirshfeld surface analysis, antimicrobial activities and molecular docking.

    Science.gov (United States)

    Yousef Ebrahimipour, S; Machura, Barbara; Mohamadi, Maryam; Khaleghi, Moj

    2017-12-01

    A novel Co(III) complex, [Co(L)(Imi) 3 ]Cl incorporating 2-((3-methoxy-2-oxidobenzylidene)amino)-4-methylphenolate (L 2- ), as a dibasic deprotonated Schiff base ligand and imidazole (Imi) was synthesized and fully characterized using physicochemical and spectroscopic techniques including elemental analysis, conductance measurement, FT-IR, UV-Vis and X-ray single crystal diffraction. As the conductivity data showed, the synthesized complex had a 1:1 ionic nature. The structure of the complex was found to be distorted octahedral in which, O/N donor atoms of the Schiff base ligand and N atoms of three imidazole groups were involved. Antimicrobial activity of the Co(III) complex as well as the its parent Schiff base ligand against two Gram-positive bacteria (S. Aureus and M. luteus), two Gram-negative bacteria (E. coli and P. aeruginosa) and a fungus (C. Albicans) was studied. Moreover, the antimicrobial activity of [Co(L)(Imi) 3 ]Cl was investigated using molecular docking of the complex with GlcN-6-P synthase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Study of the surface crystallization and resistance to dissolution of niobium phosphate glasses for nuclear waste immobilization; Estudo da cristalizacao superficial e da resistencia a dissolucao de vidros niobofosfatos visando a imobilizacao de rejeitos radioativos

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Heveline

    2008-07-01

    The surface crystallization and the dissolution rate of three phosphate glass compositions containing different amounts of niobium oxide were studied. The glasses were named Nb30, Nb37, and Nb44 according to the nominal content of niobium oxide in the glass composition. The three compositions were evaluated keeping the P{sub 2}O{sub 5}/K{sub 2}O ratio constant and varying the amount of Nb{sub 2}O{sub 5}. These glasses were produced by melting appropriate chemical compounds at 1500 deg C for 0.5 hour. The crystalline phases which were nucleated on the glass surface after heat treatment were determined by X-ray diffraction. The crystalline structures depend on the amount of niobium oxide in the glass composition. The crystal morphologies were observed by using an optical microscope, and their characteristics are specific for each kind of crystalline phase. The crystal growth rate and the surface nuclei density were determined for each glass composition, and they depend on each crystalline phase nucleated on the surface. From the differential thermal analysis curves it was determined that the Nb44 glass containing 46.5 mol por cent of niobium oxide is the most thermally stable against crystallization when compared to the Nb30 and Nb37 glasses. According to the activation energies determined for crystal growth on the surface of each glass type, the Nb44 glass can also be considered the most resistant one against crystallization. The dissolution rate for the Nb44 glass after 14 days immersed in an aqueous solution with pH equals to 7 at 90 deg C is the lowest (9.0 x 10{sup -7} g. cm{sup -2} . day{sup -1}) when compared to the other two glass compositions. The dissolution rates in acidic and neutral solutions of all studied glasses meet the international standards for materials which can be used in the immobilization of nuclear wastes. (author)

  9. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions

    Science.gov (United States)

    Mitani, Takeshi; Komatsu, Naoyoshi; Takahashi, Tetsuo; Kato, Tomohisa; Fujii, Kuniharu; Ujihara, Toru; Matsumoto, Yuji; Kurashige, Kazuhisa; Okumura, Hajime

    2014-09-01

    The growth rate and surface morphology of 4H-SiC crystals prepared by solution growth with Si1-xCrx and Si1-x-yCrxAly (x=0.4, 0.5 and 0.6; y=0.04) solvents were investigated under various temperature conditions. The growth rate was examined as functions of the temperature difference between the growth surface and C source, the amount of supersaturated C and supersaturation at the growth surface. We found that generation of trench-like surface defects in 4H-SiC crystals was suppressed using Si1-x-yCrxAly solvents even under highly supersaturated conditions where the growth rate exceeded 760 μm/h. Conversely, trench-like defects were observed in crystals grown with Si1-xCrx solvents under all experimental conditions. Statistical observation of the macrostep structure showed that the macrostep height in crystals grown with Si1-x-yCrxAly solvents was maintained at lower levels than that obtained using Si1-xCrx solvents. Addition of Al prevents the macrosteps from developing into large steps, which are responsible for the generation of trench-like surface defects.

  10. Large-area single-crystal graphene grown on a recrystallized Cu(111) surface by using a hole-pocket method

    Science.gov (United States)

    Phan, Hoang Danh; Jung, Jaehyuck; Kim, Youngchan; Huynh, Van Ngoc; Lee, Changgu

    2016-07-01

    We describe an efficient chemical vapor deposition (CVD) method for synthesizing graphene with a single crystal orientation on the whole surface of a copper (Cu) foil. We specifically synthesized graphene on the inner surface of a folded Cu foil, on which small holes were made for regulating the permeation and adsorption of the gases used for the synthesis. We compared the results of this method, which we call a ``hole-pocket'' method, with previously developed methods involving traditional synthesis on an open Cu foil and a Cu ``pita-pocket''. From these comparisons, we found the orientation of recrystallized Cu to depend on the shape of the Cu foil. Our hole-pocket method did not require treatment of the Cu surface with a complicated process to reduce the density of nucleation seeds in order to synthesize large hexagonal graphene grains, nor did it require the use of a single-crystalline substrate because methane passing through holes on the upper side of the hole-pocket slowly decomposed into carbon atoms and the control of the evaporation of Cu inside the foil pocket helped induce a transformation of the Cu domains to Cu(111). The current hole-pocket method resulted in domains that were both large, ranging from 2-5 mm in size, and oriented in the same manner. By extending the synthesis time, we were able to obtain continuous large-area films of single-crystalline orientation on the whole surface with dimensions of several centimeters.We describe an efficient chemical vapor deposition (CVD) method for synthesizing graphene with a single crystal orientation on the whole surface of a copper (Cu) foil. We specifically synthesized graphene on the inner surface of a folded Cu foil, on which small holes were made for regulating the permeation and adsorption of the gases used for the synthesis. We compared the results of this method, which we call a ``hole-pocket'' method, with previously developed methods involving traditional synthesis on an open Cu foil and a Cu

  11. Ethylene hydrogenation catalysis on Pt(111) single-crystal surfaces studied by using mass spectrometry and in situ infrared absorption spectroscopy

    Science.gov (United States)

    Tillekaratne, Aashani; Simonovis, Juan Pablo; Zaera, Francisco

    2016-10-01

    The catalytic hydrogenation of ethylene promoted by a Pt(111) single crystal was studied by using a ultrahigh-vacuum surface-science instrument equipped with a so-called high-pressure cell. Kinetic data were acquired continuously during the catalytic conversion of atmospheric-pressure mixtures of ethylene and hydrogen by using mass spectrometry while simultaneously characterizing the surface species in operando mode by reflection-absorption infrared spectroscopy (RAIRS). Many observations reported in previous studies of this system were corroborated, including the presence of adsorbed alkylidyne intermediates during the reaction and the zero-order dependence of the rate of hydrogenation on the pressure of ethylene. In addition, the high quality of the kinetic data, which could be recorded continuously versus time and processed to calculate time-dependent turnover frequencies (TOFs), afforded a more detailed analysis of the mechanism. Specifically, deuterium labeling could be used to estimate the extent of isotope scrambling reached with mixed-isotope-substituted reactants (C2H4 + D2 and C2D4 + H2). Perhaps the most important new observation from this work is that, although extensive H-D exchange takes place on ethylene before being fully converted to ethane, the average stoichiometry of the final product retains the expected stoichiometry of the gas mixture, that is, four regular hydrogen atoms and two deuteriums per ethane molecule in the case of the experiments with C2H4 + D2. This means that no hydrogen atoms are removed from the surface via their inter-recombination to produce X2 (X = H or D). It is concluded that, under catalytic conditions, hydrogen surface recombination is much slower than ethylene hydrogenation and H-D exchange.

  12. Interaction of slow, highly charged ions with the surface of ionic crystals; Wechselwirkung langsamer hochgeladener Ionen mit der Oberflaeche von Ionenkristallen

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Rene

    2009-08-15

    In this thesis the creation of permanent nanostructures induced by the impact of very slow (v{<=}5 x 10{sup 5} m/s) highly charged (q{<=}40) ions on the ionic crystal surfaces of CaF{sub 2} and KBr is investigated. The systematic analysis of the samples surfaces by means of atomic force microscopy supplies information on the influence of the potential as well as the kinetic projectile energy on the process of structure creation. The individual impact of highly charged ions on the KBr(001) surface can initiate the creation of mono-atomic deep pit-like structures -nanopits- with a lateral size of a few 10 nm. The volume of these pits and the corresponding number of sputtered secondary particles show a linear dependence on the projectiles potential energy. For the onset of pit formation a kinetic energy dependent threshold in the potential energy E{sup grenz}{sub pot}(E{sub kin}) could be identified. Based on the defect-mediated desorption by electrons and by including effects of defect agglomeration a consistent model for the process of pit formation was drawn. In this work the recently discovered creation of hillock-like structures by impact of highly charged ions on CaF{sub 2}(111) surfaces could be verified for lowest kinetic energies (E{sub kin}{<=}150 eV x q). For the first time the potential energy of impinging projectiles could be identified to be exclusively responsible for the creation of nanostructures. Furthermore, a shift of potential energy threshold for hillock formation was observed for very small projectile velocities. Within the framework of cooperation with the Vienna University of Technology simulations based on the inelastic thermal spike model were performed, which allowed to interlink the individual hillock formation with a local melting of the ionic lattice. The essential influence of electron emission during the interaction of the highly charged ions with the surface on the process of nanostructuring was taken into consideration by

  13. Flux synthesis of regular Bi4TaO8Cl square nanoplates exhibiting dominant exposure surfaces of {001} crystal facets for photocatalytic reduction of CO2to methane.

    Science.gov (United States)

    Li, Liang; Han, Qiutong; Tang, Lanqin; Zhang, Yuan; Li, Ping; Zhou, Yong; Zou, Zhigang

    2018-01-25

    Herein, orthorhombic regular Bi 4 TaO 8 Cl square nanoplates with an edge length of about 500 nm and a thickness of about 100 nm were successfully synthesized using a facile molten salt route. The as-prepared square nanoplates have been proven to be of {001} crystal facets as two dominantly exposed surfaces. The density functional theory calculation and photo-deposition of noble metal experiment demonstrate the electron and hole separation on different crystal facets and reveal that {001} crystal facets are in favor of the reduction reaction. Since the square nanoplate structure exhibits dominant exposure surfaces of the {001} facets, the molten salt route-based samples basically possess an obviously higher photocatalytic activity than those prepared by the solid state reaction (SSR) method. This study may provide inspiration for fabricating efficient photocatalysts.

  14. fac-Aceto-nitrile-tricarbon-yl(di-methyl-carbamodi-thio-ato-κ2S,S')rhenium(I): crystal structure and Hirshfeld surface analysis.

    Science.gov (United States)

    Tan, Sang Loon; Lee, See Mun; Heard, Peter J; Halcovitch, Nathan R; Tiekink, Edward R T

    2017-02-01

    The title compound, [Re(C 3 H 6 NS 2 )(C 2 H 3 N)(CO) 3 ], features an octa-hedrally coordinated Re I atom within a C 3 NS 2 donor set defined by three carbonyl ligands in a facial arrangement, an aceto-nitrile N atom and two S atoms derived from a symmetrically coordinating di-thio-carbamate ligand. In the crystal, di-thio-carbamate-methyl-H⋯O(carbon-yl) inter-actions lead to supra-molecular chains along [36-1]; both di-thio-carbamate S atoms participate in intra-molecular methyl-H⋯S inter-actions. Further but weaker aceto-nitrile-C-H⋯O(carbonyl) inter-actions assemble mol-ecules in the ab plane. The nature of the supra-molecular assembly was also probed by a Hirshfeld surface analysis. Despite their weak nature, the C-H⋯O contacts are predominant on the Hirshfeld surface and, indeed, on those of related [Re(CO) 3 (C 3 H 6 NS 2 ) L ] structures.

  15. A vapor response mechanism study of surface-modified single-walled carbon nanotubes coated chemiresistors and quartz crystal microbalance sensor arrays.

    Science.gov (United States)

    Lu, Hung-Ling; Lu, Chia-Jung; Tian, Wei-Cheng; Sheen, Horn-Jiunn

    2015-01-01

    This paper compares the selectivity and discusses the response mechanisms of various surface-modified, single-walled carbon nanotube (SWCNT)-coated sensor arrays for the detection of volatile organic compounds (VOCs). Two types of sensor platforms, chemiresistor and quartz crystal microbalance (QCM), were used to probe the resistance changes and absorption masses during vapor sensing. Four sensing materials were used in this comparison study: pristine, acidified, esterified, and surfactant (sodium dodecyl sulfate, SDS)-coated SWCNTs. SWCNT-coated QCMs reached the response equilibrium faster than the chemiresistors did, which revealed a delay diffusion behavior at the inter-tube junction. In addition, the calibration lines for QCMs were all linear, but the chemiresistors showed curvature calibration lines which indicated less effectiveness of swelling at high concentrations. While the sorption of vapor molecules caused an increase in the resistance for most SWCNTs due to the swelling, the acidified SWCNTs showed no responses to nonpolar vapors and a negative response to hydrogen bond acceptors. This discovery provided insight into the inter-tube interlocks and conductivity modulation of acidified SWCNTs via a hydrogen bond. The results in this study provide a stepping-stone for further understanding of the mechanisms behind the vapor selectivity of surface-modified SWCNT sensor arrays. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Enhancing the Antibacterial Activity of Light-Activated Surfaces Containing Crystal Violet and ZnO Nanoparticles: Investigation of Nanoparticle Size, Capping Ligand, and Dopants.

    Science.gov (United States)

    Sehmi, Sandeep K; Noimark, Sacha; Pike, Sebastian D; Bear, Joseph C; Peveler, William J; Williams, Charlotte K; Shaffer, Milo S P; Allan, Elaine; Parkin, Ivan P; MacRobert, Alexander J

    2016-09-30

    Healthcare-associated infections pose a serious risk for patients, staff, and visitors and are a severe burden on the National Health Service, costing at least £1 billion annually. Antimicrobial surfaces significantly contribute toward reducing the incidence of infections as they prevent bacterial adhesion and cause bacterial cell death. Using a simple, easily upscalable swell-encapsulation-shrink method, novel antimicrobial surfaces have been developed by incorporating metal oxide nanoparticles (NPs) and crystal violet (CV) dye into medical-grade polyurethane sheets. This study compares the bactericidal effects of polyurethane incorporating ZnO, Mg-doped ZnO, and MgO. All metal oxide NPs are well defined, with average diameters ranging from 2 to 18 nm. These materials demonstrate potent bactericidal activity when tested against clinically relevant bacteria such as Escherichia coli and Staphylococcus aureus . Additionally, these composites are tested against an epidemic strain of methicillin-resistant Staphylococcus aureus (MRSA) that is rife in hospitals throughout the UK. Furthermore, we have tested these materials using a low light intensity (∼500 lx), similar to that present in many clinical environments. The highest activity is achieved from polymer composites incorporating CV and ∼3 nm ZnO NPs, and the different performances of the metal oxides have been discussed.

  17. New procedure to record the rupture of bonds between macromolecules and the surface of the quartz crystal microbalance (QCM).

    Science.gov (United States)

    Dultsev, Fedor N; Kolosovsky, Eugeny A; Mik, Ivan A

    2012-10-02

    It is shown that an increase in the amplitude of QCM shear oscillations during frequency scanning around the resonance frequency is accompanied (at a definite voltage) by distortions in the amplitude-frequency dependence for QCM. We demonstrated that these distortions are connected to the rupture of macromolecules from the QCM surface. It is shown that the identification of the rupture of particles and macromolecules from the QCM surface can be carried out by relying on the analysis of these distortions of the amplitude-frequency dependence. The distortions were distinguished as a signal. The number of broken bonds can be estimated from the value of this distortion signal, and the threshold voltage applied to the system can be used to estimate the rupture force to high accuracy. Using the proposed method, we estimated the strength of a physical bond, which was 3 pN. This procedure can be useful for studying biological objects and represents an advanced step in the development of the REVS (rupture event scanning) technique.

  18. New five coordinated supramolecular structured cadmium complex as precursor for CdO nanoparticles: Synthesis, crystal structure, theoretical and 3D Hirshfeld surface analyses

    Science.gov (United States)

    Ghanbari Niyaky, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.

    2017-03-01

    In this paper, a combined experimental and theoretical study on a new CdLBr2 complex (L = N1-(2-bromobenzylidene)-N2-(2-((E)-(2-bromobenzylidene) amino)ethyl) ethane-1,2-diamine) synthesized via template method, is described. The crystal structure analysis of the complex indicates that, the Cd(II) ion is centered in a distorted square pyramidal space constructed by three iminic nitrogens of the ligand as well as two bromide anions. More analysis of crystal packing proposed a supramolecular structure stabilized by some non-covalent interactions such as Br⋯Br and Xsbnd H⋯Br (X = N and C) in solid state. Furthermore, 3D Hirshfeld surface analyses and DFT studies were applied for theoretical investigation of the complexes. Theoretical achievements were found in a good agreement with respect to the experimental data. To evaluate the nature of bonding and the strength of the intra and inter-molecular interactions a natural bond orbital (NBO) analysis on the complex structure was performed. Time dependent density functional theory (TD-DFT) was also applied to predict the electronic spectral data of the complex as compared with the experimental ones. CdLBr2 complex as nano-structure compound was also prepared under ultrasonic conditions and characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Finally, it was found that the cadmium complex can be used as a suitable precursor for preparation of CdO nanoparticles via calcination process at 600 °C under air atmosphere.

  19. Effect of swift heavy ion Ag9+ irradiation on the surface morphology, structure and optical properties of AgGaS2 single crystals

    Science.gov (United States)

    Prabukanthan, P.; Asokan, K.; Kanjilal, D.; Dhanasekaran, R.

    2008-12-01

    AgGaS2 (AGS) single crystals grown by chemical vapor transport (CVT) method were irradiated with Ag9+ ions (120 MeV) with various ion fluences. The irradiation was carried out at room temperature (RT) and at liquid nitrogen temperature (LNT). A glancing angle x-ray diffraction (GAXRD) analysis reveals a huge lattice disorder at RT irradiation. This is observed from an increase in the full width at half maximum (FWHM) and a decrease in the intensity of the AGS (1 1 2) peak. However, there is no change in the FWHM of the (1 1 2) peak but the intensity slightly decreases at LNT irradiation. Also, AGS (3 0 3) peak is not observed for the samples irradiated with the fluences of 5 × 1013 and 1 × 1013 ions cm-2 at RT conditions. The GAXRD results show the decrease in degree of crystallinity upon ion irradiation at RT while there is not much degradation in crystallinity upon ion irradiation at LNT. But the LNT irradiation on AGS has its own effects. Atomic force microscope (AFM) studies show that the roughness of AGS increases on increasing the ion fluences at LNT and at RT. Also, it is found that there is an increase in the surface defects with fluences of Ag9+ ion irradiation when compared to pristine AGS. UV-visible transmission spectra show that the percentage of transmission and bandgap energy decrease with increasing ion fluences and also that the peaks are broadened at LNT and at RT. The photoluminescence (PL) spectra were analyzed as a function of irradiation ion fluences in the AGS crystals at RT. It has been found that the emission intensities of band-to-band transition decrease with increase of ion fluences at LNT and at RT.

  20. Response surface methodology based extraction of Tribulus terrestris leads to an upsurge of antilithiatic potential by inhibition of calcium oxalate crystallization processes

    Science.gov (United States)

    Kaushik, Jyoti; Tandon, Simran; Gupta, Varun; Nayyar, Jasamrit; Singla, Surinder Kumar; Tandon, Chanderdeep

    2017-01-01

    Tribulus terrestris has significant antilithiatic efficacy established via both in vitro as well as in vivo studies and is used in numerous anti-urolithiatic herbal formulations viz. Cystone, Uriflow, Uritone and Neeri. However, to fully utilize its antilithiatic potential, the influence of different extraction parameters on antilithiatic ability of T. terrestris aqueous extract needs elucidation. Thus, the current study was undertaken using statistically optimized extraction conditions for aqueous extract preparation. Response surface methodology was employed to observe the influence of three variables i.e. temperature (°C), time (h) and solid: liquid ratio (S: L) on the extraction yield (%) and protein content (mg/g) of T. terrestris aqueous extract. RSM results revealed that the high S:L ratio, low temperature and reduced incubation time were optimal conditions for aqueous extraction. Under such extraction conditions the protein content reached the value of 26.6±1.22 mg/g and the obtained extraction yield was 27.32±1.62%. The assessment of antilithiatic activity of 4 selected extracts (AE1-4), revealed enhanced nucleation and aggregation inhibition of calcium oxalate crystals with AE1 and AE2, which in addition significantly altered the size and morphology of calcium oxalate monohydrate (COM) crystals compared to AE3 and AE4. In vitro cell culture based studies on renal epithelial cells (MDCK, NRK-52E and PK 15) proved that the AE1 showed higher cytoprotective potency by increasing cell viability as compared to the oxalate treated group. The free radical scavenging activity of aqueous extract lowered the reactive oxygen specie’s induced damage and potentially reduced the signals of programmed cell death due to oxalate injury. In addition, modulation of the COM crystal morphology was enhanced by AE1 as compared to AE2. The FTIR and GC-MS analysis of AE1, showed the presence of biomolecules which could aid in the attenuation of lithiatic process. In the light

  1. Response surface methodology based extraction of Tribulus terrestris leads to an upsurge of antilithiatic potential by inhibition of calcium oxalate crystallization processes.

    Science.gov (United States)

    Kaushik, Jyoti; Tandon, Simran; Gupta, Varun; Nayyar, Jasamrit; Singla, Surinder Kumar; Tandon, Chanderdeep

    2017-01-01

    Tribulus terrestris has significant antilithiatic efficacy established via both in vitro as well as in vivo studies and is used in numerous anti-urolithiatic herbal formulations viz. Cystone, Uriflow, Uritone and Neeri. However, to fully utilize its antilithiatic potential, the influence of different extraction parameters on antilithiatic ability of T. terrestris aqueous extract needs elucidation. Thus, the current study was undertaken using statistically optimized extraction conditions for aqueous extract preparation. Response surface methodology was employed to observe the influence of three variables i.e. temperature (°C), time (h) and solid: liquid ratio (S: L) on the extraction yield (%) and protein content (mg/g) of T. terrestris aqueous extract. RSM results revealed that the high S:L ratio, low temperature and reduced incubation time were optimal conditions for aqueous extraction. Under such extraction conditions the protein content reached the value of 26.6±1.22 mg/g and the obtained extraction yield was 27.32±1.62%. The assessment of antilithiatic activity of 4 selected extracts (AE1-4), revealed enhanced nucleation and aggregation inhibition of calcium oxalate crystals with AE1 and AE2, which in addition significantly altered the size and morphology of calcium oxalate monohydrate (COM) crystals compared to AE3 and AE4. In vitro cell culture based studies on renal epithelial cells (MDCK, NRK-52E and PK 15) proved that the AE1 showed higher cytoprotective potency by increasing cell viability as compared to the oxalate treated group. The free radical scavenging activity of aqueous extract lowered the reactive oxygen specie's induced damage and potentially reduced the signals of programmed cell death due to oxalate injury. In addition, modulation of the COM crystal morphology was enhanced by AE1 as compared to AE2. The FTIR and GC-MS analysis of AE1, showed the presence of biomolecules which could aid in the attenuation of lithiatic process. In the light

  2. Response surface methodology based extraction of Tribulus terrestris leads to an upsurge of antilithiatic potential by inhibition of calcium oxalate crystallization processes.

    Directory of Open Access Journals (Sweden)

    Jyoti Kaushik

    Full Text Available Tribulus terrestris has significant antilithiatic efficacy established via both in vitro as well as in vivo studies and is used in numerous anti-urolithiatic herbal formulations viz. Cystone, Uriflow, Uritone and Neeri. However, to fully utilize its antilithiatic potential, the influence of different extraction parameters on antilithiatic ability of T. terrestris aqueous extract needs elucidation. Thus, the current study was undertaken using statistically optimized extraction conditions for aqueous extract preparation. Response surface methodology was employed to observe the influence of three variables i.e. temperature (°C, time (h and solid: liquid ratio (S: L on the extraction yield (% and protein content (mg/g of T. terrestris aqueous extract. RSM results revealed that the high S:L ratio, low temperature and reduced incubation time were optimal conditions for aqueous extraction. Under such extraction conditions the protein content reached the value of 26.6±1.22 mg/g and the obtained extraction yield was 27.32±1.62%. The assessment of antilithiatic activity of 4 selected extracts (AE1-4, revealed enhanced nucleation and aggregation inhibition of calcium oxalate crystals with AE1 and AE2, which in addition significantly altered the size and morphology of calcium oxalate monohydrate (COM crystals compared to AE3 and AE4. In vitro cell culture based studies on renal epithelial cells (MDCK, NRK-52E and PK 15 proved that the AE1 showed higher cytoprotective potency by increasing cell viability as compared to the oxalate treated group. The free radical scavenging activity of aqueous extract lowered the reactive oxygen specie's induced damage and potentially reduced the signals of programmed cell death due to oxalate injury. In addition, modulation of the COM crystal morphology was enhanced by AE1 as compared to AE2. The FTIR and GC-MS analysis of AE1, showed the presence of biomolecules which could aid in the attenuation of lithiatic process. In

  3. EVALUATION OF SODIUM CHLORIDE CRYSTALLIZATION IN MEMBRANE DISTILLATION CRYSTALLIZATION APPLIED TO WATER DESALINATION

    Directory of Open Access Journals (Sweden)

    Y. N. Nariyoshi

    Full Text Available Abstract Crystallization in a Direct Contact Membrane Distillation (DCMD process was studied both theoretically and experimentally. A mathematical model was proposed in order to predict the transmembrane flux in DCMD. The model fitted well experimental data for the system NaCl-H2O from undersaturated to supersaturated conditions in a specially designed crystallization setup at a bench scale. It was found that higher transmembrane fluxes induce higher temperature and concentration polarizations, as well as higher supersaturation in the vicinity of the solution-vapor interface. In this region, the supersaturation ratio largely exceeded the metastable limit for NaCl crystallization for the whole range of transmembrane fluxes of 0.37 to 1.54 kg/ (m2 h, implying that heterogeneous primary nucleation occurred close to such interface either in solution or on the membrane surface. Solids formed in solution accounted for 14 to 36% of the total solids, whereas solid formed on the membrane surface (fouling was responsible for 6 to 19%. The remaining solids deposited on other surfaces such as in pumps and pipe fittings. It was also discovered that, by increasing the supersaturation ratio, heterogeneous nucleation in solution increased and on the membrane surface decreased. Heterogeneous nuclei in solution grew in size both by a molecular mechanism and by agglomeration. Single crystals were cubic shaped with well-formed edges and dominant size of about 40 µm whereas agglomerates were about 240 µm in size. The approach developed here may be applied to understanding crystallization phenomena in Membrane Distillation Crystallization (MDC processes of any scale.

  4. Reinjury risk of nano-calcium oxalate monohydrate and calcium oxalate dihydrate crystals on injured renal epithelial cells: aggravation of crystal adhesion and aggregation

    Science.gov (United States)

    Gan, Qiong-Zhi; Sun, Xin-Yuan; Bhadja, Poonam; Yao, Xiu-Qiong; Ouyang, Jian-Ming

    2016-01-01

    Background Renal epithelial cell injury facilitates crystal adhesion to cell surface and serves as a key step in renal stone formation. However, the effects of cell injury on the adhesion of nano-calcium oxalate crystals and the nano-crystal-induced reinjury risk of injured cells remain unclear. Methods African green monkey renal epithelial (Vero) cells were injured with H2O2 to establish a cell injury model. Cell viability, superoxide dismutase (SOD) activity, malonaldehyde (MDA) content, propidium iodide staining, hematoxylin–eosin staining, reactive oxygen species production, and mitochondrial membrane potential (Δψm) were determined to examine cell injury during adhesion. Changes in the surface structure of H2O2-injured cells were assessed through atomic force microscopy. The altered expression of hyaluronan during adhesion was examined through laser scanning confocal microscopy. The adhesion of nano-calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystals to Vero cells was observed through scanning electron microscopy. Nano-COM and COD binding was quantitatively determined through inductively coupled plasma emission spectrometry. Results The expression of hyaluronan on the cell surface was increased during wound healing because of Vero cell injury. The structure and function of the cell membrane were also altered by cell injury; thus, nano-crystal adhesion occurred. The ability of nano-COM to adhere to the injured Vero cells was higher than that of nano-COD crystals. The cell viability, SOD activity, and Δψm decreased when nano-crystals attached to the cell surface. By contrast, the MDA content, reactive oxygen species production, and cell death rate increased. Conclusion Cell injury contributes to crystal adhesion to Vero cell surface. The attached nano-COM and COD crystals can aggravate Vero cell injury. As a consequence, crystal adhesion and aggregation are enhanced. These findings provide further insights into kidney stone

  5. Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency

    Science.gov (United States)

    Nejati, Ameneh; Sadeghzadeh, Ramezan Ali; Geran, Fatemeh

    2014-09-01

    In this paper, microstrip patch antenna with frequency selective surface (FSS) and photonic band gap (PBG) structures in the frequency range of 0.5-0.7 THz is presented for wireless communications. Proposed patch antenna is designed on a substrate with uniform and non-uniform PBG structures. Here, the effects of substrate thickness, various radii and arrangement of holes on antenna resonance in both PBG forms are studied. Near zero characteristic on uniform and non-uniform PBG substrate is compared and the results show that along with increase in hole radius, antenna operating frequency and bandwidth are increased. Also, the FSS structure is designed as a perfect absorber. Finally, by using FSS and PBG structures simultaneously, gain enhancement, increase in directivity and pattern shaping are studied at THz field. The antenna gain in final structure is increased by 2 dBi (32%) in comparison to simple form and Half-Power beam width is reduced from 100°×80° in simple form to 72°×48° by using FSS and PBG. All simulations and designs are done by Ansoft HFSS and CST Microwave Studio simulation tools with different full wave methods.

  6. The crystal orientation relation and macroscopic surface roughness in hetero-epitaxial graphene grown on Cu/mica

    International Nuclear Information System (INIS)

    Qi, J L; Nagashio, K; Nishimura, T; Toriumi, A

    2014-01-01

    Clean, flat and orientation-identified graphene on a substrate is in high demand for graphene electronics. In this study, the hetero-epitaxial graphene growth on Cu(111)/mica(001) by chemical vapor deposition is investigated to check the applicability for top-gate insulator research on graphene, as well as graphene channel research, by transferring graphene on to SiO 2 /Si substrates. After adjusting the graphene growth conditions, the surface roughness of the graphene/Cu/mica substrate and the average smoothed areas are ∼0.34 nm and ∼100 μm 2 , respectively. The orientation of graphene in the graphene/Cu/mica substrate can be identified by the hexagonal void morphology of Cu. Moreover, we demonstrate a relatively high mobility of ∼4500 cm 2 V −1 s −1 in graphene transferred on the SiO 2 /Si substrate. These results suggest that the present graphene/Cu/mica substrate can be used for top-gate insulator research on graphene. (papers)

  7. Crystal Systems.

    Science.gov (United States)

    Schomaker, Verner; Lingafelter, E. C.

    1985-01-01

    Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)

  8. Virtual Crystallizer

    Energy Technology Data Exchange (ETDEWEB)

    Land, T A; Dylla-Spears, R; Thorsness, C B

    2006-08-29

    Large dihydrogen phosphate (KDP) crystals are grown in large crystallizers to provide raw material for the manufacture of optical components for large laser systems. It is a challenge to grow crystal with sufficient mass and geometric properties to allow large optical plates to be cut from them. In addition, KDP has long been the canonical solution crystal for study of growth processes. To assist in the production of the crystals and the understanding of crystal growth phenomena, analysis of growth habits of large KDP crystals has been studied, small scale kinetic experiments have been performed, mass transfer rates in model systems have been measured, and computational-fluid-mechanics tools have been used to develop an engineering model of the crystal growth process. The model has been tested by looking at its ability to simulate the growth of nine KDP boules that all weighed more than 200 kg.

  9. Crystal Engineering

    Indian Academy of Sciences (India)

    Nangia (2002). “Today, research areas under the wide umbrella of crystal engineering include: supramolecular synthesis; nanotechnology; separation science and catalysis; supramolecular materials and devices; polymorphism; cocrystals, crystal structure prediction; drug design and ligand–protein binding.”

  10. Biomolecular Modification of Inorganic Crystal Growth

    Energy Technology Data Exchange (ETDEWEB)

    De Yoreo, J J

    2007-04-27

    The fascinating shapes and hierarchical designs of biomineralized structures are an inspiration to materials scientists because of the potential they suggest for biomolecular control over materials synthesis. Conversely, the failure to prevent or limit tissue mineralization in the vascular, skeletal, and urinary systems is a common source of disease. Understanding the mechanisms by which organisms direct or limit crystallization has long been a central challenge to the biomineralization community. One prevailing view is that mineral-associated macromolecules are responsible for either inhibiting crystallization or initiating and stabilizing non-equilibrium crystal polymorphs and morphologies through interactions between anionic moieties and cations in solution or at mineralizing surfaces. In particular, biomolecules that present carboxyl groups to the growing crystal have been implicated as primary modulators of growth. Here we review the results from a combination of in situ atomic force microscopy (AFM) and molecular modeling (MM) studies to investigate the effect of specific interactions between carboxylate-rich biomolecules and atomic steps on crystal surfaces during the growth of carbonates, oxalates and phosphates of calcium. Specifically, we how the growth kinetics and morphology depend on the concentration of additives that include citrate, simple amino acids, synthetic Asp-rich polypeptides, and naturally occurring Asp-rich proteins found in both functional and pathological mineral tissues. The results reveal a consistent picture of shape modification in which stereochemical matching of modifiers to specific atomic steps drives shape modification. Inhibition and other changes in growth kinetics are shown to be due to a range of mechanisms that depend on chemistry and molecular size. Some effects are well described by classic crystal growth theories, but others, such as step acceleration due to peptide charge and hydrophylicity, were previously unrealized

  11. Crystallization and preliminary X-ray diffraction analysis of PsaA, the adhesive pilin subunit that forms the pH 6 antigen on the surface of Yersinia pestis

    International Nuclear Information System (INIS)

    Bao, Rui; Esser, Lothar; Sadhukhan, Annapurna; Nair, Manoj K. M.; Schifferli, Dieter M.; Xia, Di

    2012-01-01

    The pH 6 antigen Psa displayed on the surface of Yersinia pestis, the bacterium that causes plague in humans, consists of polymers of a single protein subunit termed PsaA. Donor-strand complemented PsaA was purified and crystallized. Yersinia pestis has been responsible for a number of high-mortality epidemics throughout human history. Like all other bacterial infections, the pathogenesis of Y. pestis begins with the attachment of bacteria to the surface of host cells. At least five surface proteins from Y. pestis have been shown to interact with host cells. Psa, the pH 6 antigen, is one of them and is deployed on the surface of bacteria as thin flexible fibrils that are the result of the polymerization of a single PsaA pilin subunit. Here, the crystallization of recombinant donor-strand complemented PsaA by the hanging-drop vapor-diffusion method is reported. X-ray diffraction data sets were collected to 1.9 Å resolution from a native crystal and to 1.5 Å resolution from a bromide-derivatized crystal. These crystals displayed the symmetry of the orthorhombic space group P222 1 , with unit-cell parameters a = 26.3, b = 54.6, c = 102.1 Å. Initial phases were derived from single isomorphous replacement with anomalous scattering experiments, resulting in an electron-density map that showed a single molecule in the crystallographic asymmetric unit. Sequence assignment was aided by residues binding to bromide ions of the heavy-atom derivative

  12. [μ2-Bis(diphenylphosphanylhexane]bis[undecacarbonyl-triangulo-triruthenium(3 Ru—Ru] hexane monosolvate: crystal structure and Hirshfeld surface analysis

    Directory of Open Access Journals (Sweden)

    Omar bin Shawkataly

    2017-11-01

    Full Text Available In the title cluster complex hexane solvate, [Ru6(C30H32P2(CO22]·C6H14, two Ru3(CO11 fragments are linked by a Ph2P(CH26PPh2 bridge with the P atoms equatorially disposed with respect to the Ru3 triangle in each case; the hexane solvent molecule is statistically disordered. The Ru...Ru distances span a relatively narrow range, i.e. 2.8378 (4 to 2.8644 (4 Å. The hexyl chain within the bridge has an all-trans conformation. In the molecular packing, C—H...O interactions between cluster molecules, and between cluster and hexane solvent molecules lead to a three-dimensional architecture. In addition, there are a large number of C[triple-bond]O...π(arene interactions in the crystal. The importance of the carbonyl groups in establishing the packing is emphasized by the contribution of 53.4% to the Hirshfeld surface by O...H/H...O contacts.

  13. The properties of photonic band gap and surface plasmon modes in the three-dimensional magnetized photonic crystals as the mixed polarized modes considered

    Science.gov (United States)

    Zhang, Hai-Feng; Liu, Shao-Bin; Jiang, Yu-Chi

    2015-04-01

    In this paper, the properties of photonic band gap (PBG) and surface plasmon modes in the three-dimensional (3D) magnetized plasma photonic crystals (MPPCs) with face-centered-cubic (fcc) lattices are theoretically investigated based on the plane wave expansion (PWE) method, in which the homogeneous magnetized plasma spheres are immersed in the homogeneous dielectric background, as the Voigt effects of magnetized plasma are considered (the incidence electromagnetic wave vector is perpendicular to the external magnetic field at any time). The dispersive properties of all of the EM modes are studied because the PBG is not only for the extraordinary and ordinary modes but also for the mixed polarized modes. The equations for PBGs also are theoretically deduced. The numerical results show that the PBG and a flatbands region can be observed. The effects of the dielectric constant of dielectric background, filling factor, plasma frequency and plasma cyclotron frequency (the external magnetic field) on the dispersive properties of all of the EM modes in such 3D MPPCs are investigated in detail, respectively. Theoretical simulations show that the PBG can be manipulated by the parameters as mentioned above. Compared to the conventional dielectric-air PCs with similar structure, the larger PBG can be obtained in such 3D MPPCs. It is also shown that the upper edge of flatbands region cannot be tuned by the filling factor and dielectric constant of dielectric background, but it can be manipulated by the plasma frequency and plasma cyclotron frequency.

  14. Crystal structure and Hirshfeld surface analysis of hexakis(μ-benzoato-κ2O:O′bis(pyridine-3-carbonitrile-κN1trizinc(II

    Directory of Open Access Journals (Sweden)

    Tuncer Hökelek

    2017-12-01

    Full Text Available The asymmetric unit of the title complex, [Zn3(C7H5O26(C6H4N22], contains one half of the complex molecule, i.e. one and a half ZnII cations, three benzoate (Bnz and one pyridine-3-carbonitrile (Cpy molecule; the Bnz anions act as bidentate ligands through the carboxylate O atoms, while the Cpy ligand acts as a monodentate N(pyridine-bonding ligand. The complete centrosymmetric trinuclear complex thus comprises a linear array of three ZnII cations. The central ZnII cation shows an octahedral coordination and is bridged to each of the terminal ZnII cations by three Bnz anions. By additional coordination of the CPy ligand, the terminal ZnII cations adopt a trigonal–pyramidal coordination environment. In the crystal, the Bnz anions link to the Cpy N atoms via weak C—H...N hydrogen bonds, forming a two-dimensional network. C—H...π and π–π interactions [between the benzene and pyridine rings of adjacent molecules with an intercentroid distance of 3.850 (4 Å] help to consolidate a three-dimensional architecture. The Hirshfeld surface analysis confirms the role of H-atom contacts in establishing the packing.

  15. High-Efficiency and High-Color-Rendering-Index Semitransparent Polymer Solar Cells Induced by Photonic Crystals and Surface Plasmon Resonance.

    Science.gov (United States)

    Shen, Ping; Wang, Guoxin; Kang, Bonan; Guo, Wenbin; Shen, Liang

    2018-02-21

    Semitransparent polymer solar cells (ST-PSCs) show attractive potential in power-generating windows or building-integrated photovoltaics. However, the development of ST-PSCs is lagging behind opaque PSCs because of the contradiction between device efficiency and transmission. Herein, Ag/Au alloy nanoparticles and photonic crystals (PCs) were simultaneously introduced into ST-PSCs, acting compatibly as localized surface plasmon resonances and distributed Bragg reflectors to enhance light absorption and transmission. As a result, ST-PSCs based on a hybrid PTB7-Th:PC 71 BM active layer contribute an efficiency as high as 7.13 ± 0.15% and an average visible transmission beyond 20%, which are superior to most of the reported results. Furthermore, PCs can partly compensate valley range of transmission by balancing reflection and transmission regions, yielding a high color rendering index of 95. We believe that the idea of two light management methods compatibly enhancing the performance of ST-PSCs can offer a promising path to develop photovoltaic applications.

  16. 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino) methyl)-4-chlorophenol; synthesis, characterization, crystal structure, Hirshfeld surface analysis and BSA binding studies

    Science.gov (United States)

    Kumar, Savithri; Basappa Chidananda, Vasantha Kumar; Hosakere Doddarevanna, Revanasiddappa; Hamse Kameshwar, Vivek; Kaur, Manpreet; Jasinski, Jerry P.

    2017-08-01

    A new imine-based molecule 2-((E)-(6-fluorobenzo[d]thiazol-2-ylimino) methyl)-4-chlorophenol (FBt) was synthesized by microwave and conventional method. It was structurally characterized by spectral techniques (NMR, FT-IR, LC-MS and electronic absorption), elemental analysis and single-crystal X-ray diffraction methods. Hirshfeld surface analysis was employed to ensure the existence of intermolecular interactions in FBt structure. A preliminary in vitro susceptibility test against two pathogenic fungi with respect to standard has shown that the ligand is proved to be a potent antifungal agent. Since the carrying of a drug by BSA may effect on its structure and action, the investigation on the interaction between model protein BSA and FBt was carried out by employing UV-Vis and fluorescence spectroscopy. The characteristics of the binding, i.e., binding constant, number of binding sites, and nature of binding were determined. Besides, the Förster's parameters associated with the binding process were calculated. Molecular docking was also carried on interaction study of the FBt with BSA.

  17. Diethylenetriamine/diamines/copper (II complexes [Cu(dien(NN]Br2: Synthesis, solvatochromism, thermal, electrochemistry, single crystal, Hirshfeld surface analysis and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Fatima Abu Saleemh

    2017-09-01

    Full Text Available Two dicationic water soluble mixed triamine/diamine copper (II complexes, of general formula [Cu(dienNN]Br2 (1–2 [dien = diethelenetriamine and NN is en = ethylenediamine or Me4en = N,N′,N,N′-tetramethylethylenediamine] were prepared under ultrasonic mode with a relatively high yield. These complexes were characterized by elemental microanalysis, UV visible IR spectroscopy, and thermal and electrochemical techniques. In addition, complex 2 structure was solved by X-ray single crystal and Hirshfeld surface analysis. The complex exhibits a distorted square pyramidal coordination environment around Cu(II centre. The solvatochromism of the desired complexes was investigated in water and other suitable organic solvents. The results show that the Guttmann’s DN parameter values of the solvents have mainly contributed to the shift of the d–d absorption band towards the linear increase in the wavelength of the absorption maxima of the complexes. The complex 1 showed higher antibacterial activity against the studied microorganisms compared to complex 2. Both complexes revealed promising antibacterial activities.

  18. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber

    Science.gov (United States)

    Yan, Bei; Wang, Anran; Liu, Exian; Tan, Wei; Xie, Jianlan; Ge, Rui; Liu, Jianjun

    2018-04-01

    A novel polarization filter based on a sunflower-type photonic quasi-crystal fiber (PQF) is proposed in this paper. We also discuss different methods to tune the filter wavelength. The proposed filter can efficiently produce polarized light with visible wavelengths by using the resonance between the second-order surface plasmon polariton mode and the core mode of the PQF. The filtered wavelength can be tuned between 0.55 µm and 0.68 µm by adjusting the thickness of the gold film. When the thickness of the gold film is 25.3 nm, the resonance loss in the y-polarized direction reaches 11707 dB m‑1 for a wavelength of 0.6326 µm, and the full width at half maximum is only 5 nm. Due to the flexible design and absence of both polarization coupling and polarization dispersion, this polarization filter can be used in devices that require narrow-band filtering.

  19. [μ2-Bis(di-phenyl-phosphan-yl)hexa-ne]bis-[undeca-carbonyl-triangulo-triruthenium(3Ru-Ru)] hexane monosolvate: crystal structure and Hirshfeld surface analysis.

    Science.gov (United States)

    Shawkataly, Omar Bin; Sirat, Siti Syaida; Jotani, Mukesh M; Tiekink, Edward R T

    2017-11-01

    In the title cluster complex hexane solvate, [Ru 6 (C 30 H 32 P 2 )(CO) 22 ]·C 6 H 14 , two Ru 3 (CO) 11 fragments are linked by a Ph 2 P(CH 2 ) 6 PPh 2 bridge with the P atoms equatorially disposed with respect to the Ru 3 triangle in each case; the hexane solvent mol-ecule is statistically disordered. The Ru⋯Ru distances span a relatively narrow range, i.e . 2.8378 (4) to 2.8644 (4) Å. The hexyl chain within the bridge has an all- trans conformation. In the mol-ecular packing, C-H⋯O inter-actions between cluster mol-ecules, and between cluster and hexane solvent mol-ecules lead to a three-dimensional architecture. In addition, there are a large number of C≡O⋯π(arene) inter-actions in the crystal. The importance of the carbonyl groups in establishing the packing is emphasized by the contribution of 53.4% to the Hirshfeld surface by O⋯H/H⋯O contacts.

  20. Comparative analysis on surface property in anodic oxidation polishing of reaction-sintered silicon carbide and single-crystal 4H silicon carbide

    Science.gov (United States)

    Shen, Xinmin; Tu, Qunzhang; Deng, Hui; Jiang, Guoliang; He, Xiaohui; Liu, Bin; Yamamura, Kazuya

    2016-04-01

    For effective machining of difficult-to-machine materials, such as reaction-sintered silicon carbide (RS-SiC) and single-crystal 4H silicon carbide (4H-SiC), a novel polishing technique named anodic oxidation polishing was proposed, which combined with the anodic oxidation of substrate and slurry polishing of oxide. By scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) observation and atomic force microscopy analysis, both the anodic oxidation behaviors of RS-SiC and 4H-SiC were investigated. Through comparison of the surfaces before and after hydrofluoric acid etching of the oxidized samples by the scanning white light interferometry (SWLI) measurement, the relationships between oxidation depth and oxidation time were obtained, and the calculated oxidation rate for RS-SiC was 5.3 nm/s and that for 4H-SiC was 5.8 nm/s based on the linear Deal-Grove model. Through anodic oxidation polishing of RS-SiC substrate and 4H-SiC substrate, respectively, the surface roughness rms obtained by SWLI was improved to 2.103 nm for RS-SiC and to 0.892 nm for 4H-SiC. Experimental results indicate that anodic oxidation polishing is an effective method for the machining of RS-SiC and 4H-SiC samples, which would improve the process level of SiC substrates and promote the application of SiC products in the fields of optics, ceramics, semiconductors, electronics, and so on.