WorldWideScience

Sample records for surface creep divergence

  1. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.

  2. DIVERGENT HORIZONTAL SUB-SURFACE FLOWS WITHIN ACTIVE REGION 11158

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Kiran; Tripathy, S. C.; Hill, F., E-mail: kjain@nso.edu, E-mail: stripathy@nso.edu, E-mail: fhill@nso.edu [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-07-20

    We measure the horizontal subsurface flow in a fast emerging active region (AR; NOAA 11158) using the ring-diagram technique and the Helioseismic and Magnetic Imager high spatial resolution Dopplergrams. This AR had a complex magnetic structure and displayed significant changes in morphology during its disk passage. Over a period of six days from 2011 February 11 to 16, the temporal variation in the magnitude of the total velocity is found to follow the trend of magnetic field strength. We further analyze regions of individual magnetic polarity within AR 11158 and find that the horizontal velocity components in these sub-regions have significant variation with time and depth. The leading and trailing polarity regions move faster than the mixed-polarity region. Furthermore, both zonal and meridional components have opposite signs for trailing and leading polarity regions at all depths showing divergent flows within the AR. We also find a sharp decrease in the magnitude of total horizontal velocity in deeper layers around major flares. It is suggested that the re-organization of magnetic fields during flares, combined with the sunspot rotation, decreases the magnitude of horizontal flows or that the flow kinetic energy has been converted into the energy released by flares. After the decline in flare activity and sunspot rotation, the flows tend to follow the pattern of magnetic activity. We also observe less variation in the velocity components near the surface but these tend to increase with depth, further demonstrating that the deeper layers are more affected by the topology of ARs.

  3. Creep of MDF panels under constant load and cyclic environmental conditions. Influence of surface coating

    OpenAIRE

    Fernández-Golfín Seco, J. I.; Díez Barra, M. Rafael

    1997-01-01

    Four different strategies of surface coating (based on 80 g m2 melamin impregnated papers) were used on 19 mm thick commercial MDF panels to assess its reological behaviour under cyclic humidity conditions (20ºC 30 % rh-20ºC 90 % rh). Three different levels of stress (20 %, 30 % and 40 %), based on the ultimate load in bending, were used. Tests were conducted by means of the three points load system. For the same stress level, the relative creep of MDF panels was higher than that in par...

  4. Influence of Surface Abrasion on Creep and Shrinkage of Railway Prestressed Concrete Sleepers

    Science.gov (United States)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-10-01

    Ballasted railway track is very suitable for heavy-rail networks because of its many superior advantages in design, construction, short- and long-term maintenance, sustainability, and life-cycle cost. The sleeper, which supports rail and distributes loads from rail to ballast, is a very important component of rail track system. Prestressed concrete is very popular used in manufacturing sleepers. Therefore, improved knowledge about design techniques for prestressed concrete (PC) sleepers has been developed. However, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers. Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of abrasions in concrete sleepers. This paper presents a comparative investigation using a variety of methods to evaluate creep and shrinkage effects in railway prestressed concrete sleepers. The outcome of this study will improve the material design, which is very critical to the durability of railway track components.

  5. Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate

    Science.gov (United States)

    Tormann, Theresa; Wiemer, Stefan; Metzger, Sabrina; Michael, Andrew J.; Hardebeck, Jeanne L.

    2013-01-01

    The nucleation area of the series of M6 events in Parkfield has been shown to be characterized by low b-values throughout the seismic cycle. Since low b-values represent high differential stresses, the asperity structure seems to be always stably stressed and even unaffected by the latest main shock in 2004. However, because fault loading rates and applied shear stress vary with time, some degree of temporal variability of the b-value within stable blocks is to be expected. We discuss in this study adequate techniques and uncertainty treatment for a detailed analysis of the temporal evolution of b-values. We show that the derived signal for the Parkfield asperity correlates with changes in surface creep, suggesting a sensitive time resolution of the b-value stress meter, and confirming near-critical loading conditions within the Parkfield asperity.

  6. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  7. Shearing creep properties of cements with different irregularities on two surfaces

    International Nuclear Information System (INIS)

    Zhang, Qingzhao; Shen, Mingrong; Ding, Wenqi; Clark, Carl

    2012-01-01

    The study of creep properties of the rock mass structural plane is of great importance in solving practical problems in rock mass mechanics. The time-dependent deformation and long-term strength of the rock mass are controlled significantly by the creep mechanical behaviour of the structural plane, and the study of creep properties of the rock mass structural plane is an important area in rock mass deformation. This paper presents fundamental research on the mechanical properties of regular jugged discontinuities under various normal stresses, and focuses on the creep property of the structural plane with various slope angles under different normal stress through shear creep tests of the structural plane under shear stress. According to test results, the shear creep property of the structural plane is described and the creep velocity and long-term strength of the structural plane during shear creep is also investigated. Finally, an empirical formula is established to evaluate the shear strength of the discontinuity and a modified Burger model proposed to represent the shear deformation property during creep. (paper)

  8. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    International Nuclear Information System (INIS)

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.

    1998-01-01

    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production

  9. Statistics of surface divergence and their relation to air-water gas transfer velocity

    Science.gov (United States)

    Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.

    2012-05-01

    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.

  10. Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.

    Science.gov (United States)

    Jin, J; Yusoh, K; Zhang, H X; Song, M

    2016-03-01

    A series of exfoliated and intercalated polyurethane organoclay nanocomposites were prepared by in situ polymerization of polyol/organoclay mixture, chain extender and diisocyanate. The creep behaviour of subsurface and bulk of the polyurethane coatings was investigated by nanoindentation technique and uniaxial conventional creep testing method, respectively. The results showed that the creep resistance of the nanocomposites was significantly improved by incorporation of organoclay. The enhancement of creep resistance was dependent on clay content as well as organoclay structure (exfoliation or intercalation) in the polymer matrix. With 1 wt% organoclay, the creep resistance increased by about 50% for the intercalated organoclay and 6% for the exfoliated organoclay systems, respectively, compared to the pristine polyurethane. Viscoelastic model was employed to investigate the effect of organoclay loadings on the creep performance of the polyurethane. Results showed the model was in good agreement with the experimental data. Incorporation of clay leads to an increase in elastic deformation especially in exfoliated polyurethane nanocomposites and induces a higher initial displacement at the early stage of creep.

  11. Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data

    Science.gov (United States)

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John

    2014-01-01

    Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.

  12. Divergent opinions on surface disinfection: myths or prevention? A review of the literature

    OpenAIRE

    Exner, Martin

    2007-01-01

    Virtually no prevention strategy in hospital hygiene has been the focus of such frequent controversial discussions as the role of surface disinfection. Set against that background, the Commission for Hospital Hygiene and Infection Prevention at the Robert Koch Institute founded a working group comprising members with divergent views of risk evaluation as regards the role of disinfection. This working group produced a most carefully drafted guideline on how to deal with various risk areas and ...

  13. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the intertropical convergence zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern Hadley cell. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scale spatiotemporal ...

  14. The tropical Atlantic surface wind divergence belt and its effect on clouds

    OpenAIRE

    Y. Tubul; I. Koren; O. Altaratz

    2015-01-01

    A well-defined surface wind divergence (SWD) belt with distinct cloud properties forms over the equatorial Atlantic during the boreal summer months. This belt separates the deep convective clouds of the Intertropical Convergence Zone (ITCZ) from the shallow marine stratocumulus cloud decks forming over the cold-water subtropical region of the southern branch of the Hadley cell in the Atlantic. Using the QuikSCAT-SeaWinds and Aqua-MODIS instruments, we examined the large-scal...

  15. Silica-forming articles having engineered surfaces to enhance resistance to creep sliding under high-temperature loading

    Science.gov (United States)

    Lipkin, Don Mark; Johnson, Curtis Alan; Meschter, Peter Joel; Sundaram, Sairam; Wan, Julin

    2017-02-07

    An article includes a silicon-containing region; at least one outer layer overlying a surface of the silicon-containing region; and a constituent layer on the surface of the silicon-containing region and between and contacting the silicon-containing region and the at least one outer layer, the constituent layer being formed by constituents of the silicon-containing region and being susceptible to creep within an operating environment of the article, wherein the silicon-containing region defines a plurality of channels and a plurality of ridges that interlock within the plurality of channels are formed in the silicon-containing region to physically interlock the at least one outer layer with the silicon-containing region through the constituent layer.

  16. Tensile-Creep Test Specimen Preparation Practices of Surface Support Liners

    Science.gov (United States)

    Guner, Dogukan; Ozturk, Hasan

    2017-12-01

    Ground support has always been considered as a challenging issue in all underground operations. Many forms of support systems and supporting techniques are available in the mining/tunnelling industry. In the last two decades, a new polymer based material, Thin Spray-on Liner (TSL), has attained a place in the market as an alternative to the current areal ground support systems. Although TSL provides numerous merits and has different application purposes, the knowledge on mechanical properties and performance of this material is still limited. In laboratory studies, since tensile rupture is the most commonly observed failure mechanism in field applications, researchers have generally studied the tensile testing of TSLs with modification of American Society for Testing and Materials (ASTM) D-638 standards. For tensile creep testing, specimen preparation process also follows the ASTM standards. Two different specimen dimension types (Type I, Type IV) are widely preferred in TSL tensile testing that conform to the related standards. Moreover, molding and die cutting are commonly used specimen preparation techniques. In literature, there is a great variability of test results due to the difference in specimen preparation techniques and practices. In this study, a ductile TSL product was tested in order to investigate the effect of both specimen preparation techniques and specimen dimensions under 7-day curing time. As a result, ultimate tensile strength, tensile yield strength, tensile modulus, and elongation at break values were obtained for 4 different test series. It is concluded that Type IV specimens have higher strength values compared to Type I specimens and moulded specimens have lower results than that of prepared by using die cutter. Moreover, specimens prepared by molding techniques have scattered test results. Type IV specimens prepared by die cutter technique are suggested for preparation of tensile test and Type I specimens prepared by die cutter technique

  17. Seemingly divergent sea surface temperature proxy records in the central Mediterranean during the last deglaciation

    Directory of Open Access Journals (Sweden)

    M.-A. Sicre

    2013-06-01

    Full Text Available Sea surface temperatures (SSTs were reconstructed over the last 25 000 yr using alkenone paleothermometry and planktonic foraminifera assemblages from two cores of the central Mediterranean Sea: the MD04-2797 core (Siculo–Tunisian channel and the MD90-917 core (South Adriatic Sea. Comparison of the centennial scale structure of the two temperature signals during the last deglaciation period reveals significant differences in timing and amplitude. We suggest that seasonal changes likely account for seemingly proxy record divergences during abrupt transitions from glacial to interglacial climates and for the apparent short duration of the Younger Dryas (YD depicted by the alkenone time series, a feature that has already been stressed in earlier studies on the Mediterranean deglaciation.

  18. Divergent opinions on surface disinfection: myths or prevention? A review of the literature.

    Science.gov (United States)

    Exner, Martin

    2007-09-13

    Virtually no prevention strategy in hospital hygiene has been the focus of such frequent controversial discussions as the role of surface disinfection. Set against that background, the Commission for Hospital Hygiene and Infection Prevention at the Robert Koch Institute founded a working group comprising members with divergent views of risk evaluation as regards the role of disinfection. This working group produced a most carefully drafted guideline on how to deal with various risk areas and also incorporated a new provision into the guideline, stating that: "Cleaning and disinfection procedures must be organized and implemented such that there is no increase in the microbial load or spread of facultatively pathogenic or pathogenic microorganisms on surfaces."Numerous studies have come to the conclusion that surface disinfection constitutes a basic infection control measure with which the spread of pathogens can be controlled. Conversely, when using only detergents such a form of control is not possible, something that must be taken into account in future when engaging in risk evaluation and formulating infection control measures. In view of the burgeoning trend in, for example, norovirus outbreaks, also in hospitals and nursing homes, such insights are of paramount importance and attest to the need for disinfection of surfaces and of areas with frequent hand and skin contacts. This discussion about the need for surface disinfection has, in addition to causing confusion among users, led to a decline in the willingness to accept hygienic practices, thus increasing the risk of occurrence of nosocomial infections as well as of antibiotic-resistant microorganisms.

  19. Finite Divergence

    DEFF Research Database (Denmark)

    Hansen, Michael Edberg; Pandya, P. K.; Chaochen, Zhou

    1995-01-01

    the framework of duration calculus. Axioms and proof rules are given. Patterns of occurrence of divergence are classified into dense divergence, accumulative divergence and discrete divergence by appropriate axioms. Induction rules are given for reasoning about discrete divergence...

  20. Creep cavitation effects in polycrystalline alumina

    International Nuclear Information System (INIS)

    Porter, J.R.; Blumenthal, W.; Evans, A.G.

    1981-01-01

    Fine grained polycrystalline alumina has been deformed in creep at high temperatures, to examine the evolution of cavities at grain boundaries. Cavities with equilibrium and crack-like morphologies have been observed, distributed nonuniformly throughout the material. The role of these cavities during creep has been described. A transition from equilibrium to crack-like morphology has been observed and correlated with a model based on the influence of the surface to boundary diffusivity ratio and the local tensile stress. The contribution of cavitation to the creep rate and total creep strain has been analyzed and excluded as the principal cause of the observed non-linear creep rate

  1. Resisting the seduction of "ethics creep": using Foucault to surface complexity and contradiction in research ethics review.

    Science.gov (United States)

    Guta, Adrian; Nixon, Stephanie A; Wilson, Michael G

    2013-12-01

    In this paper we examine "ethics creep", a concept developed by Haggerty (2004) to account for the increasing bureaucratization of research ethics boards and institutional review boards (REB/IRBs) and the expanding reach of ethics review. We start with an overview of the recent surge of academic interest in ethics creep and similar arguments about the prohibitive effect of ethics review. We then introduce elements of Michel Foucault's theoretical framework which are used to inform our analysis of empirical data drawn from a multi-phase study exploring the accessibility of community-engaged research within existing ethics review structures in Canada. First, we present how ethics creep emerged both explicitly and implicitly in our data. We then present data that demonstrate how REB/IRBs are experiencing their own form of regulation. Finally, we present data that situate ethics review alongside other trends affecting the academy. Our results show that ethics review is growing in some ways while simultaneously being constrained in others. Drawing on Foucauldian theory we reframe ethics creep as a repressive hypothesis which belies the complexity of the phenomenon it purports to explain. Our discussion complicates ethics creep by proposing an understanding of REB/IRBs that locates them at the intersection of various neoliberal discourses about the role of science, ethics, and knowledge production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Multiaxial creep behavior of 304 stainless steel

    International Nuclear Information System (INIS)

    Findley, W.N.; Mark, R.

    1975-07-01

    Tests in combined tension-torsion, pure tension and pure torsion, were conducted at elevated temperature (about 1100 0 F). Most of these tests were repeats of previous experiments where friction in the extensometer caused anomalous creep behavior. The existence of a creep surface at 12.5 ksi effective Mises stress was explored. Work on a compression creep apparatus continued. Creep and recovery data were fitted to the equation epsilon/sub ij/ = epsilon 0 /sub ij/ + e + /sub ij/t/sup n//sub ij/ by means of a least squares method. (5 tables, 10 fig) (auth)

  3. Slow creep in soft granular packings.

    Science.gov (United States)

    Srivastava, Ishan; Fisher, Timothy S

    2017-05-14

    Transient creep mechanisms in soft granular packings are studied numerically using a constant pressure and constant stress simulation method. Rapid compression followed by slow dilation is predicted on the basis of a logarithmic creep phenomenon. Characteristic scales of creep strain and time exhibit a power-law dependence on jamming pressure, and they diverge at the jamming point. Microscopic analysis indicates the existence of a correlation between rheology and nonaffine fluctuations. Localized regions of large strain appear during creep and grow in magnitude and size at short times. At long times, the spatial structure of highly correlated local deformation becomes time-invariant. Finally, a microscale connection between local rheology and local fluctuations is demonstrated in the form of a linear scaling between granular fluidity and nonaffine velocity.

  4. Wear, creep, and frictional heating of femoral implant articulating surfaces and the effect on long-term performance--Part II, Friction, heating, and torque.

    Science.gov (United States)

    Davidson, J A; Schwartz, G; Lynch, G; Gir, S

    1988-04-01

    In Part I, (J.A. Davidson and G. Schwartz, "Wear, creep, and frictional heating of femoral implant articulating surfaces and the effect on long-term performance--Part I, A review," J. Biomed. Mater. Res., 21, 000-000 (1987) it was shown that lubrication of the artificial hip joint was complex and that long-term performance is governed by the combined wear, creep, and to a lesser extent, oxidation degradation of the articulating materials. Importantly, it was shown that a tendency for heating exists during articulation in the hip joint and that elevated temperatures can increase the wear, creep, and oxidation degradation rate of UHMWPE. The present study was performed to examine closely the propensity to generate heat during articulation in a hip joint simulator. The systems investigated were polished Co-Cr-Mo alloy articulating against UHMWPE, polished alumina ceramic against UHMWPE, and polished alumina against itself. Frictional torque was also evaluated for each system at various levels of applied loads. A walking load history was used in both the frictional heating and torque tests. The majority of tests were performed with 5 mL of water lubricant. However, the effect of various concentrations of hyaluronic acid was also evaluated. Results showed frictional heating to occur in all three systems, reaching an equilibrium after roughly 30 min articulation time. Ceramic systems showed reduced levels of heating compared to the cobalt alloy-UHMWPE system. The level of frictional torque for each system ranked similar to their respective tendencies to generate heat. Hyaluronic acid had little effect, while dry conditions and the presence of small quantities of bone cement powder in water lubricant significantly increased frictional torque.

  5. Studies of Grain Boundaries in Materials Subjected to Diffusional Creep

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas

    Grain boundaries in crystalline Cu(2%Ni) creep specimens have been studied by use of scanning and transmission electron microscopy in order to establish the mechanism of deformation. Creep rate measurements and dependencies were found to fit reasonably well with the model for diffusional creep......) with the activity displayed during diffusional creep testing. It was found that boundaries with low deviation from perfect Σ did not contribute macroscopically to the creep strain. A resist deposition procedure was examined to improve the reference surface grid so as to allow determination of the grain boundary...... plane by use of simple stereomicroscopy directly on the surface. The etched pattern deteriorated heav-ily during creep testing, supposedly because of dislocation creep, due to exces-sive creep stress. Grain boundaries have been studied and characterised by TEM providing an insight into the diversity...

  6. Trends in Upper-Level Cloud Cover and Surface Divergence Over the Tropical Indo-Pacific Ocean Between 1952 And 1997

    Science.gov (United States)

    Norris, Joel R.

    2005-01-01

    This study investigated the spatial pattern of linear trends in surface-observed upper-level (combined mid-level and High-level) cloud cover, precipitation, and surface divergence over the tropical Indo-Pacific Ocean during 1952-1957. Cloud values were obtained from the Extended Edited Cloud Report Archive (EECRA), precipitation values were obtained from the Hulme/Climate Research Unit Data Set, and surface divergence was alternatively calculated from wind reported Comprehensive Ocean-Atmosphere Data Set and from Smith and Reynolds Extended Reconstructed sea level pressure data.

  7. Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico

    International Nuclear Information System (INIS)

    Avila-Olivera, Jorge A.; Farina, Paolo; Garduno-Monroy, Victor H.

    2008-01-01

    In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults 'Oriente' and 'Poniente'. At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system 'Taxco-San Miguel de Allende'. In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create a map of the current phreatic level decline in city with the information of deep wells and using the 'kriging' method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults 'Oriente' and 'Universidad Pedagogica' are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year

  8. Study of Immobilization Procedure on Silver Nanolayers and Detection of Estrone with Diverged Beam Surface Plasmon Resonance (SPR Imaging

    Directory of Open Access Journals (Sweden)

    Ibrahim Abdulhalim

    2013-03-01

    Full Text Available An immobilization protocol was developed to attach receptors on smooth silver thin films. Dense and packed 11-mercaptoundecanoic acid (11-MUA was used to avoid uncontrolled sulfidization and harmful oxidation of silver nanolayers. N,N'-dicyclohexylcarbodiimide (DCC and N-hydroxysuccinimide (NHS were added to make the silver surfaces reactive. A comparative study was carried out with different immersion times of silver samples in 11-MUA solutions with different concentrations to find the optimum conditions for immobilization. The signals, during each step of the protocol, were analyzed with a refractometer based on the surface plasmon resonance (SPR effect and luminescence techniques. Molecular interactions at the surfaces between the probe and target at the surface nanolayer shift the SPR signal, thus indicating the presence of the substance. To demonstrate specific biosensing, rabbit anti-estrone polyclonal immunoglobulin G (IgG antibody was immobilized through a linker on 47 nm silver layer deposited on SF11 glass. At the final stage, the representative endocrine disruptor—estrone—was attached and detected in deionized water with a diverging beam SPR imaging sensor.

  9. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  10. Simultaneous consolidation and creep

    DEFF Research Database (Denmark)

    Krogsbøll, Anette

    1997-01-01

    Materials that exhibit creep under constant effective stress typically also show rate dependent behavior. The creep deformations and the rate sensitive behavior is very important when engineering and geological problems with large time scales are considered. When stress induced compaction...

  11. Creep of crystals

    International Nuclear Information System (INIS)

    Poirier, J.-P.

    1988-01-01

    Creep mechanisms for metals, ceramics and rocks, effect of pressure and temperature on deformation processes are considered. The role of crystal defects is analysed, different models of creep are described. Deformation mechanisms maps for different materials are presented

  12. The influence of beam divergence on ion-beam induced surface patterns

    International Nuclear Information System (INIS)

    Kree, R.; Yasseri, T.; Hartmann, A.K.

    2009-01-01

    We present a continuum theory and a Monte Carlo model of self-organized surface pattern formation by ion-beam sputtering including effects of beam profiles. Recently, it has turned out that such secondary ion-beam parameters may have a strong influence on the types of emerging patterns. We first discuss several cases, for which beam profiles lead to random parameters in the theory of pattern formation. Subsequently we study the evolution of the averaged height profile in continuum theory and find that the typical Bradley-Harper scenario of dependence of ripple patterns on the angle of incidence can be changed qualitatively. Beam profiles are implemented in Monte Carlo simulations, where we find generic effects on pattern formation. Finally, we demonstrate that realistic beam profiles, taken from experiments, may lead to qualitative changes of surface patterns.

  13. Creep rupture behavior of welded Grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Triratna [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Basirat, Mehdi [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States); Alsagabi, Sultan; Sittiho, Anumat [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States)

    2016-07-04

    Creep rupture behavior of fusion welded Grade 91 steel was studied in the temperature range of 600 – 700 °C and at stresses of 50–200 MPa. The creep data were analyzed in terms of the Monkman-Grant relation and Larson-Miller parameter. The creep damage tolerance factor was used to identify the origin of creep damage. The creep damage was identified as the void growth in combination with microstructural degradation. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy and deformed microstructure examined by transmission electron microscopy, to further elucidate the rupture mechanisms.

  14. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  15. Integration of InSAR and GIS in the Study of Surface Faults Caused by Subsidence-Creep-Fault Processes in Celaya, Guanajuato, Mexico

    Science.gov (United States)

    Avila-Olivera, Jorge A.; Farina, Paolo; Garduño-Monroy, Victor H.

    2008-05-01

    In Celaya city, Subsidence-Creep-Fault Processes (SCFP) began to become visible at the beginning of the 1980s with the sprouting of the crackings that gave rise to the surface faults "Oriente" and "Poniente". At the present time, the city is being affected by five surface faults that display a preferential NNW-SSE direction, parallel to the regional faulting system "Taxco-San Miguel de Allende". In order to study the SCFP in the city, the first step was to obtain a map of surface faults, by integrating in a GIS field survey and an urban city plan. The following step was to create a map of the current phreatic level decline in city with the information of deep wells and using the "kriging" method in order to obtain a continuous surface. Finally the interferograms maps resulted of an InSAR analysis of 9 SAR images covering the time interval between July 12 of 2003 and May 27 of 2006 were integrated to a GIS. All the maps generated, show how the surface faults divide the city from North to South, in two zones that behave in a different way. The difference of the phreatic level decline between these two zones is 60 m; and the InSAR study revealed that the Western zone practically remains stable, while sinkings between the surface faults "Oriente" and "Universidad Pedagógica" are present, as well as in portions NE and SE of the city, all of these sinkings between 7 and 10 cm/year.

  16. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim [Department of Electro-Optical Engineering and TheIlse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602 (Singapore)

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark line is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.

  17. Microscopic creep models and the interpretation of stress-dip tests during creep

    International Nuclear Information System (INIS)

    Poirier, J.P.

    1976-09-01

    A critical analysis is made of the principal divergent view points concerning stress-dip tests. The raw data are examined and interpreted in the light of various creep models. The following problems are discussed: is the reverse strain anelastic or plastic; is the zero creep rate periodic due to recovery or is it spurious; can the existence or inexistence of an internal stress be deduced from stress-dip tests; can stress-dip tests allow to determine whether glide is jerky or viscous; can the internal stress be measured by stress-dip tests

  18. Nonlinear reflection of a spherically divergent N-wave from a plane surface: Optical interferometry measurements in air

    International Nuclear Information System (INIS)

    Karzova, M.; Yuldashev, P.; Khokhlova, V.; Ollivier, S.; Blanc-Benon, Ph.

    2015-01-01

    Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thin laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime

  19. Nonlinear reflection of a spherically divergent N-wave from a plane surface: Optical interferometry measurements in air

    Energy Technology Data Exchange (ETDEWEB)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France); Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Yuldashev, P.; Khokhlova, V. [Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow (Russian Federation); Ollivier, S.; Blanc-Benon, Ph. [Laboratoire de Mécanique des Fluides et d’Acoustique, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully (France)

    2015-10-28

    Mach stem is a well-known structure typically observed in the process of strong (acoustic Mach numbers greater than 0.4) step-shock waves reflection from a rigid boundary. However, this phenomenon has been much less studied for weak shocks in nonlinear acoustic fields where Mach numbers are in the range from 0.001 to 0.01 and pressure waveforms have more complicated waveforms than step shocks. The goal of this work was to demonstrate experimentally how nonlinear reflection occurs in air for very weak spherically divergent acoustic spark-generated pulses resembling an N-wave. Measurements of reflection patterns were performed using a Mach-Zehnder interferometer. A thin laser beam with sub-millimeter cross-section was used to obtain the time resolution of 0.4 µs, which is 6 times higher than the time resolution of the condenser microphones. Pressure waveforms were reconstructed using the inverse Abel transform applied to the phase of the signal measured by the interferometer. The Mach stem formation was observed experimentally as a result of collision of the incident and reflected shock pulses. It was shown that irregular reflection of the pulse occurred in a dynamic way and the length of the Mach stem increased linearly while the pulse propagated along the surface. Since the front shock of the spark-generated pulse was steeper than the rear shock, irregular type of reflection was observed only for the front shock of the pulse while the rear shock reflection occurred in a regular regime.

  20. Diverging Cohesion?

    DEFF Research Database (Denmark)

    Charron, Nicholas

    2016-01-01

    – which we define here as a combination of impartial bureaucratic practices, corruption and the rule of law – limits, and in some cases reverses the tendency towards greater divergence linked to trade. Countries with high levels of state capacity – that is, those that have greater government effectiveness......, stronger rule of law and lower corruption – experience lower levels of divergence, as they have the mechanisms to counterbalance the strong centripetal forces linked to openness. This claim is tested on countries that have experienced relatively high levels of increases in levels of economic and political......Why do increases in globalisation in the face of European expansion lead to sharp levels of regional divergences in wealth in some countries but not in others? The central crux of this paper is that convergence/divergence trends in European states are conditioned by ‘state capacity’. State capacity...

  1. Creep in buffer clay

    International Nuclear Information System (INIS)

    Pusch, R.; Adey, R.

    1999-12-01

    The study involved characterization of the microstructural arrangement and molecular forcefields in the buffer clay for getting a basis for selecting suitable creep models. It is concluded that the number of particles and wide range of the particle bond spectrum require that stochastical mechanics and thermodynamics will be considered and they are basic to the creep model proposed for predicting creep settlement of the canisters. The influence of the stress level on creep strain of MX-80 clay is not well known but for the buffer creep is approximately proportional to stress. Theoretical considerations suggest a moderate impact for temperatures up to 90 deg C and this is supported by model experiments. It is believed that the assumption of strain being proportional to temperature is conservative. The general performance of the stochastic model can be illustrated in principle by use of visco-elastic rheological models implying a time-related increase in viscosity. The shear-induced creep settlement under constant volume conditions calculated by using the proposed creep model is on the order of 1 mm in ten thousand years and up to a couple of millimeters in one million years. It is much smaller than the consolidation settlement, which is believed to be on the order of 10 mm. The general conclusion is that creep settlement of the canisters is very small and of no significance to the integrity of the buffer itself or of the canisters

  2. Measuring irradiation creep

    International Nuclear Information System (INIS)

    Pelah, I.

    1981-03-01

    Simulation of fusion-neutron induced damage by beams of light ions is discussed. It is suggested that accelerated creep measurements to determine ''end of life'' of materials may be done by the application of thermal treatment and thermal creep measurements. (author)

  3. Creep-Fatigue Failure Diagnosis

    Science.gov (United States)

    Holdsworth, Stuart

    2015-01-01

    Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. PMID:28793676

  4. Creep buckling of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    Because of the characteristics of LMFBR primary piping components (thin-walled, low pressure, high temperature), the designer must guard against creep buckling as a potential failure mode for certain critical regions, such as elbows, where structural flexibility and inelastic response may combine to concentrate deformation and cause instability. The ASME Boiler and Pressure Vessel Code, through its elevated temperature Code Case 1592 (Section III, Division 1) provides design rules for Class 1 components aimed at preventing creep buckling during the design life. A similar set of rules is being developed for Class 2 and 3 components at this time. One of the original concepts behind the creep buckling rules was that the variability in creep properties (especially due to the effects of prior heat treatment), the uncertainty about initial imperfections, and the lack of confirmed accuracy of design analysis meant that conservatism would be difficult to assure. As a result, a factor of ten on service life was required (i.e. analysis must show that, under service conditions that extrapolate the life of the component by ten times, creep buckling does not occur). Two obvious problems with this approach are that: first, the creep behavior must also be extrapolated (since most creep experiments are terminated at a small fraction of the design life, extrapolation of creep data is already an issue, irrespective of the creep buckling question); second the nonlinear creep analysis, which is very nearly prohibitively expensive for design life histograms, becomes even more costly. Analytical results for an aluminum cylindrical shell subjected to axial loads at elevated temperatures are used to examine the supposed equivalence of two types of time-dependent buckling safety factors - a factor of ten on service life and a factor of 1.5 on loading

  5. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil [Sogang Univ., Seoul, (Korea, Republic of); Lee, Jin Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-11-15

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve.

  6. Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep

    International Nuclear Information System (INIS)

    Lim, Dongkyu; Kim, Minsoo; Lee, Hyungyil; Lee, Jin Haeng

    2013-01-01

    Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties onsidering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve

  7. Creep properties of discontinuous fibre composites with partly creeping fibres

    International Nuclear Information System (INIS)

    Bilde-Soerensen, J.B.; Lilholt, H.

    1977-05-01

    In a previous report (RISO-M-1810) the creep properties of discontinuous fibre composites with non-creeping fibres were analyzed. In the present report this analysis is extended to include the case of discontinuous composites with partly creeping fibres. It is shown that the creep properties of the composite at a given strain rate, epsilonsub(c), depend on the creep properties of the matrix at a strain rate higher than epsilonsub(c), and on the creep properties of the fibres at epsilonsub(c). The composite creep law is presented in a form which permits a graphical determination of the composite creep curve. This can be constructed on the basis of the matrix and the fibre creep curves by vector operations in a log epsilon vs. log sigma diagram. The matrix contribution to the creep strength can be evaluated by a simple method. (author)

  8. The influence of grain boundary structure on diffusional creep

    DEFF Research Database (Denmark)

    Thorsen, Peter Anker; Bilde-Sørensen, Jørgen

    1999-01-01

    the deformation caused by deposition of material at (or removal of material from) grain boundaries. The misorientation across the grain boundaries, and hence the character of the boundaries, was measured with the use of electron back-scattering patterns. The deformation behavior of the individual boundaries......A Cu-2wt%Ni-alloy was deformed in tension in the diffusional creep regime (Nabarro-Herring creep). A periodic grid consisting of alumina was deposited on the surface of the creep specimen prior to creep. This makes it possible to separate the deformation caused by grain boundary sliding from...

  9. Metallurgical principles of creep processes

    International Nuclear Information System (INIS)

    Bolton, C.J.

    1977-12-01

    A brief review is presented of current theories of a number of the physical processes which can be involved in deformation and fracture under creep conditions. The processes considered are power law creep, diffusion creep, grain boundary sliding, cavitation and other modes of failure, and creep crack growth. The note concludes with some suggestions for future work. (author)

  10. Seismic Creep, USA Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden rupture associated with an earthquake. It is a usually slow deformation...

  11. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  12. Biaxial Creep Specimen Fabrication

    International Nuclear Information System (INIS)

    JL Bump; RF Luther

    2006-01-01

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments

  13. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  14. Limit analysis via creep

    International Nuclear Information System (INIS)

    Taroco, E.; Feijoo, R.A.

    1981-07-01

    In this paper it is presented a variational method for the limit analysis of an ideal plastic solid. This method has been denominated as Modified Secundary Creep and enables to find the collapse loads through a minimization of a functional and a limit process. Given an ideal plastic material it is shown how to determinate the associated secundary creep constitutive equation. Finally, as an application, it is found the limit load in an pressurized von Mises rigid plastic sphere. (Author) [pt

  15. High-Temperature Creep-Fatigue Behavior of Alloy 617

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2018-02-01

    Full Text Available This paper presents the high-temperature creep-fatigue testing of a Ni-based superalloy of Alloy 617 base metal and weldments at 900 °C. Creep-fatigue tests were conducted with fully reversed axial strain control at a total strain range of 0.6%, 1.2%, and 1.5%, and peak tensile hold time of 60, 180, and 300 s. The effects of different constituents on the combined creep-fatigue endurance such as hold time, strain range, and stress relaxation behavior are discussed. Under all creep-fatigue tests, weldments’ creep-fatigue life was less than base metal. In comparison with the low-cycle fatigue condition, the introduction of hold time decreased the cycle number of both base metal and weldments. Creep-fatigue lifetime in the base metal was continually decreased by increasing the tension hold time, except for weldments under longer hold time (>180 s. In all creep-fatigue tests, intergranular brittle cracks near the crack tip and thick oxide scales at the surface were formed, which were linked to the mixed-mode creep and fatigue cracks. Creep-fatigue interaction in the damage-diagram (D-Diagram (i.e., linear damage summation was evaluated from the experimental results. The linear damage summation was found to be suitable for the current limited test conditions, and one can enclose all the data points within the proposed scatter band.

  16. Creep feeding nursing beef calves.

    Science.gov (United States)

    Lardy, Gregory P; Maddock, Travis D

    2007-03-01

    Creep feeding can be used to increase calf weaning weights. However, the gain efficiency of free-choice, energy-based creep feeds is relatively poor. Generally, limit-feeding, high-protein creep feeds are more efficient, and gains may be similar to those produced by creep feeds offered free choice. Creep feeding can increase total organic matter intake and improve the overall energy status of the animal. Creep-fed calves tend to acclimate to the feedlot more smoothly than unsupplemented calves. Furthermore, provision of a high-starch creep feed may have a positive influence on subsequent carcass quality traits. Creep feeding can be applied to numerous environmental situations to maximize calf performance; however, beef cattle producers should consider their individual situations carefully before making the decision to creep feed.

  17. Nanoindentation creep versus bulk compressive creep of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Akhtar, R; Watts, D C

    2012-11-01

    To evaluate nanoindentation as an experimental tool for characterizing the viscoelastic time-dependent creep of resin-composites and to compare the resulting parameters with those obtained by bulk compressive creep. Ten dental resin-composites: five conventional, three bulk-fill and two flowable were investigated using both nanoindentation creep and bulk compressive creep methods. For nano creep, disc specimens (15mm×2mm) were prepared from each material by first injecting the resin-composite paste into metallic molds. Specimens were irradiated from top and bottom surfaces in multiple overlapping points to ensure optimal polymerization using a visible light curing unit with output irradiance of 650mW/cm(2). Specimens then were mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. Following grinding and polishing, specimens were stored in distilled water at 37°C for 24h. Using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius), the nano creep was measured at a maximum load of 10mN and the creep recovery was determined when each specimen was unloaded to 1mN. For bulk compressive creep, stainless steel split molds (4mm×6mm) were used to prepare cylindrical specimens which were thoroughly irradiated at 650mW/cm(2) from multiple directions and stored in distilled water at 37°C for 24h. Specimens were loaded (20MPa) for 2h and unloaded for 2h. One-way ANOVA, Levene's test for homogeneity of variance and the Bonferroni post hoc test (all at p≤0.05), plus regression plots, were used for statistical analysis. Dependent on the type of resin-composite material and the loading/unloading parameters, nanoindentation creep ranged from 29.58nm to 90.99nm and permanent set ranged from 8.96nm to 30.65nm. Bulk compressive creep ranged from 0.47% to 1.24% and permanent set ranged from 0.09% to 0.38%. There was a significant (p=0.001) strong positive non-linear correlation (r(2)=0.97) between bulk

  18. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-01

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified. PMID:29337867

  19. Tensile and Creep Testing of Sanicro 25 Using Miniature Specimens.

    Science.gov (United States)

    Dymáček, Petr; Jarý, Milan; Dobeš, Ferdinand; Kloc, Luboš

    2018-01-16

    Tensile and creep properties of new austenitic steel Sanicro 25 at room temperature and operating temperature 700 °C were investigated by testing on miniature specimens. The results were correlated with testing on conventional specimens. Very good agreement of results was obtained, namely in yield and ultimate strength, as well as short-term creep properties. Although the creep rupture time was found to be systematically shorter and creep ductility lower in the miniature test, the minimum creep rates were comparable. The analysis of the fracture surfaces revealed similar ductile fracture morphology for both specimen geometries. One exception was found in a small area near the miniature specimen edge that was cut by electro discharge machining, where an influence of the steel fracture behavior at elevated temperature was identified.

  20. Micro creep mechanisms of tungsten

    International Nuclear Information System (INIS)

    Levoy, R.; Hugon, I.; Burlet, H.; Baillin, X.; Guetaz, L.

    2000-01-01

    Due to its high melting point (3410 deg C), tungsten offers good mechanical properties at elevated temperatures for several applications in non-oxidizing environment. The creep behavior of tungsten is well known between 1200 and 2500 deg C and 10 -3 to 10 -1 strain. However, in some applications when dimensional stability of components is required, these strains are excessive and it is necessary to know the creep behavior of the material for micro-strains (between 10 -4 and 10 -6 ). Methods and devices used to measure creep micro-strains are presented, and creep equations (Norton and Chaboche laws) were developed for wrought, annealed and recrystallized tungsten. The main results obtained on tungsten under low stresses are: stress exponent 1, symmetry of micro-strains in creep-tension and creep-compression, inverse creep (threshold stress), etc. TEM, SEM and EBSD studies allow interpretation of the micro-creep mechanism of tungsten under low stresses and low temperature (∼0.3 K) like the Harper-Dorn creep. In Harper-Dorn creep, micro-strains are associated with the density and the distribution of dislocations existing in the crystals before creep. At 975 deg C, the initial dislocation structure moves differently whether or not a stress is applied. To improve the micro-creep behavior of tungsten, a heat treatment is proposed to create the optimum dislocation structure. (authors)

  1. Experimental evaluation of the interaction effect between plastic and creep deformation

    International Nuclear Information System (INIS)

    Ikegami, K.; Niitsu, Y.

    1985-01-01

    An experimental study of plasticity-creep interaction effects is reported. The combined stress tests are performed on thin wall tubular specimens of SUS 304 stainless steel at room temperature and high temperature (600 0 C). The plastic behaviors subsequent to creep pre-strain and creep behaviors subsequent to plastic pre-strain are obtained for loading along straight stress paths with a corner. The inelastic behaviors including both plastic and creep deformations are experimentally investigated. The interaction effects between plastic and creep deformations are quantitatively estimated with the equi-plastic strain surface. (author)

  2. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1978-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a mininum strength heat is also shown to provide adequate predictions. The viability of using consistent properties (either actual or those of a minimum heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations

  3. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1979-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a minimum strength heat is also shown to provide reasonable predictions. The viability of using consistent properties (either actual or those of a minimum strength heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations. 12 refs

  4. Transient effects in friction fractal asperity creep

    CERN Document Server

    Goedecke, Andreas

    2013-01-01

    Transient friction effects determine the behavior of a wide class of mechatronic systems. Classic examples are squealing brakes, stiction in robotic arms, or stick-slip in linear drives. To properly design and understand mechatronic systems of this type, good quantitative models of transient friction effects are of primary interest. The theory developed in this book approaches this problem bottom-up, by deriving the behavior of macroscopic friction surfaces from the microscopic surface physics. The model is based on two assumptions: First, rough surfaces are inherently fractal, exhibiting roughness on a wide range of scales. Second, transient friction effects are caused by creep enlargement of the real area of contact between two bodies. This work demonstrates the results of extensive Finite Element analyses of the creep behavior of surface asperities, and proposes a generalized multi-scale area iteration for calculating the time-dependent real contact between two bodies. The toolset is then demonstrated both...

  5. Creep of timber joints

    NARCIS (Netherlands)

    Van de Kuilen, J.W.G.

    2008-01-01

    A creep analysis has been performed on nailed, toothed-plates and split-ring joints in a varying uncontrolled climate. The load levels varied between 30% and 50% of the average ultimate short term strength of these joints, tested in accordance with ISO 6891. The climate in which the tests were

  6. Analysis of indentation creep

    Science.gov (United States)

    Don S. Stone; Joseph E. Jakes; Jonathan Puthoff; Abdelmageed A. Elmustafa

    2010-01-01

    Finite element analysis is used to simulate cone indentation creep in materials across a wide range of hardness, strain rate sensitivity, and work-hardening exponent. Modeling reveals that the commonly held assumption of the hardness strain rate sensitivity (mΗ) equaling the flow stress strain rate sensitivity (mσ...

  7. Creep buckling of shell structures

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Hagihara, Seiya

    2015-01-01

    The present article contains a review of the literatures on the creep buckling of shell structures published from late 1950's to recent years. In this article, the creep buckling studies on circular cylindrical shells, spherical shells, partial cylindrical shells and other shells are reviewed in addition to creep buckling criteria. Creep buckling is categorized into two types. One is the creep buckling due to quasi-static instability, in which the critical time for creep buckling is determined by tracing a creep deformation versus time curve. The other is the creep buckling due to kinetic instability, in which the critical time can be determined by examining the shape of total potential energy in the vicinity of a quasi-static equilibrium state. Bifurcation buckling and snap-through buckling during creep deformation belong to this type of creep buckling. A few detailed descriptions are given to the bifurcation and snap-through type of creep buckling based on the present authors' works. (author)

  8. Strength and life under creeping

    International Nuclear Information System (INIS)

    Pospishil, B.

    1982-01-01

    Certain examples of the application of the Lepin modified creep model, which are of interest from technical viewpoint, are presented. Mathematical solution of the dependence of strength limit at elevated temperatures on creep characteristics is obtained. Tensile test at elevated temperatures is a particular case of creep or relaxation and both strength limit and conventional yield strength at elevated temperatures are completely determined by parameters of state equations during creep. The equation of fracture summing during creep is confirmed not only by the experiment data when stresses change sporadically, but also by good reflection of durability curve using the system of equations. The system presented on the basis of parameters of the equations obtained on any part of durability curve, permits to forecast the following parameters of creep: strain, strain rate, life time, strain in the process of fracture. Tensile test at elevated temperature is advisable as an addition when determining creep curves (time-strain curves) [ru

  9. Irradiation creep models - an overview

    International Nuclear Information System (INIS)

    Matthews, J.R.; Finnis, M.W.

    1988-01-01

    The modelling of irradiation creep is now highly developed but many of the basic processes underlying the models are poorly understood. A brief introduction is given to the theory of cascade interactions, point defect clustering and dislocation climb. The range of simple irradiation creep models is reviewed including: preferred nucleation of interstitial loops; preferred absorption of point defects by dislocations favourably orientated to an applied stress; various climb-enhanced glide and recovery mechanisms, and creep driven by internal stresses produced by irradiation growth. A range of special topics is discussed including: cascade effects; creep transients; structural and induced anisotropy; and the effect of impurities. The interplay between swelling and growth with thermal and irradiation creep is emphasized. A discussion is given on how irradiation creep theory should best be developed to assist the interpretation of irradiation creep observations and the requirements of reactor designers. (orig.)

  10. Creep behaviour and creep mechanisms of normal and healing ligaments

    Science.gov (United States)

    Thornton, Gail Marilyn

    Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep

  11. The effect of creep cavitation on the fatigue life under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Nam, S.W.

    1995-01-01

    Low cycle fatigue tests have been carried out with three different materials (1Cr-Mo-V steel, 12Cr-Mo-V steel and 304 stainless steel) for the investigation of the effect of surface roughness on the fatigue life. To see the effect systematically, we have chosen those materials which may or may not form grain boundary cavities.Test results show that the continuous fatigue life of 1Cr-Mo-V steel and aged 304 stainless steel with a rough surface is decreased compared with that of the specimens with a smooth surface. These two alloys are found to have no grain boundary cavities formed under creep-fatigue test conditions. On the contrary, the fatigue life of 12Cr-Mo-V steel and solutionized 304 stainless steel in which grain boundary cavities are formed under creep-fatigue test conditions is not influenced by the states of surface roughness.The characteristic test results strongly confirm that the fatigue life of the specimen under creep-fatigue interaction, during which creep cavities are forming, may be controlled by the cavity nucleation and growth processes rather than the process of surface crack initiation. ((orig.))

  12. Sequential creep-fatigue interaction in austenitic stainless steel type 316L-SPH

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Mottot, M.; Petrequin, P.

    1986-01-01

    Influence of a prior creep or fatigue exposure on subsequent fatigue or creep properties of stainless steel type 316 L SPH has been investigated. The results obtained are used to verify the validity of time and cycle fraction rule and to obtain information on the effect of very long intermittent hold times on low cycle fatigue properties, as well as on transitory loads occurring during normal service of some structural components of LMFBR reactors. Creep and fatigue tests have been carried out at 600 0 C and under conditions yielding equal or different fatigue saturation and creep stresses. Prior creep damage levels introduced range from primary to tertiary creep, whilst those of fatigue span from 20 to 70 percent of fatigue life. In both creep-fatigue and fatigue-creep sequences in the absence of a permanent prior damage (cavitation or cracking) the subsequent resistance of 316 L-SPH to fatigue or creep is unchanged, if not improved. Thin foils prepared from the specimens confirmed these observations and showed that the dislocation substructure developed during the first mode of testing is quickly replaced by that of the second mode. Grain boundary cavitation does not occur in 316 L-SPH during creep exposures to well beyond the apparent end of secondary stage and as a result prior creep exposures up to approximately 80% of rupture life do not affect fatigue properties. Conversely, significant surface cracks were found in the prior fatigue tested specimens after above about 50% life. In the presence of such cracks the subsequent creep damage was localized at the tip of the main crack and the remaining creep life was found to be usually proportional to the effective specimen cross section. Creep and fatigue sequential damage are not necessarily additive and this type of loadings are in general less severe than the repeated creep-fatigue cycling. 17 refs.

  13. Creep and creep-rupture behavior of Alloy 718

    International Nuclear Information System (INIS)

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760 degree C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A ''master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs

  14. Description of Concrete Creep under Time-Varying Stress Using Parallel Creep Curve

    OpenAIRE

    Park, Yeong-Seong; Lee, Yong-Hak; Lee, Youngwhan

    2016-01-01

    An incremental format of creep model was presented to take account of the development of concrete creep due to loading at different ages. The formulation was attained by introducing a horizontal parallel assumption of creep curves and combining it with the vertical parallel creep curve of the rate of creep method to remedy the disadvantage of the rate of creep method that significantly underestimates the amount of creep strain, regardless of its simple format. Two creep curves were combined b...

  15. Continuous observation of cavity growth and coalescence by creep-fatigue tests in SEM

    International Nuclear Information System (INIS)

    Arai, Masayuki; Ogata, Takashi; Nitta, Akito

    1995-01-01

    Structural components operating at high temperatures in power plants are subjected to interaction of thermal fatigue and creep which results in creep-fatigue damage. In evaluating the life of those components, it is important to understand microscopic damage evolution under creep-fatigue conditions. In this study, static creep and creep-fatigue tests with tensile holdtime were conducted on SUS304 stainless steel by using a high-temperature fatigue machine combined with a scanning electron microscope (SEM), and cavity growth and coalescence behaviors on surface grain boundaries were observed continuously by the SEM. Quantitative analysis of creep cavity growth based on the observation was made for comparison with theoretical growth models. As a result, it was found that grain boundary cavities nucleate at random and grow preferentially on grain boundaries in a direction almost normal to the stress axis. Under the creep condition, the cavities grow monotonously on grain boundaries while they remain the elliptical shape. On the other hand, under the creep-fatigue condition the cavities grow with an effect of local strain distribution around the grain boundary due to cyclic loading and the micro cracks of one grain-boundary length were formed by coalescence of the cavities. Also, cavity nucleation and growth rates for creep-fatigue were more rapid than those for static creep and the constrained cavity growth model coincided well with the experimental data for creep. (author)

  16. Bioinspired synthesis of a soft-nanofilament-based coating consisting of polysilsesquioxanes/polyamine and its divergent surface control.

    Science.gov (United States)

    Yuan, Jian-Jun; Kimitsuka, Nobuo; Jin, Ren-Hua

    2013-04-24

    The synthesis of polysilsesquioxanes coating with controllable one-dimensional nanostructure on substrates remains a major long-term challenge by conventional solution-phase method. The hydrolytic polycondensation of organosilanes in solution normally produces a mixture of incomplete cages, ladderlike, and network structures, resulting in the poor control of the formation of specific nanostructure. This paper describes a simple aqueous process to synthesize nanofilament-based coatings of polysilsesquioxanes possessing various organo-functional groups (for example, thiol, methyl, phenyl, vinyl, and epoxy). We utilized a self-assembled nanostructured polyamine layer as a biomimetically catalytic scaffold/template to direct the formation of one-dimensional nanofilament of polysilsesquioxanes by temporally and spatially controlled hydrolytic polycondensation of organosilane. The surface nanostructure and morphology of polysilsesquioxane coating could be modulated by changing hydrolysis and condensation reaction conditions, and the orientation of nanofilaments of polysilsesquioxanes on substrates could be controlled by simply adjusting the self-assembly conditions of polyamine layer. The nanostructure and polyamine@polysilsesquioxane hybrid composition of nanofilament-based coatings were examined by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The template role of nanostructured polyamine layer for the formation of polysilsesquioxane nanofilament was confirmed by combining thin film X-ray diffraction (XRD) and XPS measurements. Moreover, these nanotextured coatings with various organo-functional groups could be changed into superhydrophobic surfaces after surface modification with fluorocarbon molecule.

  17. Simulation of irradiation creep

    International Nuclear Information System (INIS)

    Reiley, T.C.; Jung, P.

    1977-01-01

    The results to date in the area of radiation enhanced deformation using beams of light ions to simulate fast neutron displacement damage are reviewed. A comparison is made between these results and those of in-reactor experiments. Particular attention is given to the displacement rate calculations for light ions and the electronic energy losses and their effect on the displacement cross section. Differences in the displacement processes for light ions and neutrons which may effect the irradiation creep process are discussed. The experimental constraints and potential problem areas associated with these experiments are compared to the advantages of simulation. Support experiments on the effect of thickness on thermal creep are presented. A brief description of the experiments in progress is presented for the following laboratories: HEDL, NRL, ORNL, PNL, U. of Lowell/MIT in the United States, AERE Harwell in the United Kingdom, CEN Saclay in France, GRK Karlsruhe and KFA Julich in West Germany

  18. Creep in sodium

    International Nuclear Information System (INIS)

    Charnock, W.; Cordwell, J.E.

    1978-03-01

    Available information on the creep of austenitic, ferritic and Alloy-800 type steels in liquid sodium is critically reviewed. Creep properties of stainless steels can be affected by element transfer and corrosion. At reactor structural component temperatures environmental effects are likely to be less important than changes due to thermal ageing. At high clad temperatures (700 0 C) decarburisation may cause the loss of strength and ductility in unstabilised steels while cavity formation may cause embrittlement in stabilised steels. The properties of Alloy 800 are, in some experiments, found to deteriorate while in others they are enhanced. This may be a consequence of the metallurgical complexity of the material or arise from the nature of the various techniques employed. Low alloy ferritic steels tend to decarburise in sodium at temperatures greater than 500 0 C and this leads to loss of strength and an increase in ductility. High alloy ferritics are immune to this effect and appear to be able to tolerate a degree of carburisation. Although intergranular cracking may be enhanced in liquid sodium the mechanical consequences are not significant and evidence for the existence of an embrittlement effect not associated with element transfer or corrosion is weak. Stress and strain may enhance element transfer at crack tips. However in real cracks the gettering or supply action of the crack faces conditions the chemistry of the cracks in sodium and protects the crack tip from element transfer. Thus creep crack extension rates should be independent of changes in bulk coolant chemistry. (author)

  19. Prediction of creep-fatigue life by use of creep rupture ductility

    International Nuclear Information System (INIS)

    Yamaguchi, Koji; Suzuki, Naoyuki; Ijima, Kiyoshi; Kanazawa, Kenji

    1985-01-01

    It was clarified that tension strain hold reduced creep-fatigue life of many engineering materials in different degrees depending on material, temperature and test duration. However the reduction in the life due to holding for various durations could be correlated to the fraction of intergranular facets on fracture surfaces which was considered to be an index of the damage introduced during strain hold. This fraction of intergranular facets by creep-fatigue failure exhibited a direct relation to the creep rupture ductility of the material tested at the same temperature and for the same creep-fatigue life-time. From these results an empirical equation has been derived as follow; (Δ sub(epsilonsub(i)))/Dsub(c).(N sub(h sup(α))) = C, where Δ sub(epsilonsub(i)) is inelastic strain range, Dsub(c) is the creep rupture ductility for the same duration as creep-fatigue life time, Nsub(h) is the creep-fatigue life under tension strain hold conditions, and α and C are constants depending on the material and testing temperature. From the equation the life prediction is possible for a given inelastic strain range Δ sub(epsilonsub(i)) if the constants α and C, and Dsub(c) are known. The value of α was found to be 0.62 and 0.74 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.69 for 1 1/4Cr-1/2Mo steel at 600 0 C. The value of C was found to be 0.50 and 0.59 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.49 for 1 1/4Cr-1/2Mo steel at 600 0 C. The creep rupture ductility Dsub(c) is available in the NRIM Creep Data Sheets up to 10 5 h for multi-heats of many kinds of heat resistant alloys. (author)

  20. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  1. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... to the creep strength of composites. The advantage of combined analyses of several data sets is emphasized and illustrated for some experimental data. The analyses show that it is possible to derive creep equations for the (in situ) properties of the fibres. The experiments treated include model systems...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  2. Numerical algorithms in secondary creep

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Taroco, E.

    1980-01-01

    The problem of stationary creep is presented as well as its variational formulation, when weak constraints are established, capable of assuring one single solution. A second, so-called elasto-creep problem, is further analysed, together with its variational formulation. It is shown that its stationary solution coincides with that of the stationary creep and the advantages of this formulation with respect to the former one is emphasized. Some numerical applications showing the efficiency of the method propesed are finally presented [pt

  3. Creep analysis of orthotropic shells

    International Nuclear Information System (INIS)

    Mehra, V.K.; Ghosh, A.

    1975-01-01

    A method of creep analysis of orthotropic cylindrical shells subjected to axisymmetric loads has been developed. A general study of creep behaviour of cylindrical shells subjected to a uniform internal pressure has been conducted for a wide range of values of anisotropy coefficients and creep law exponent. Analysis includes determination of stress re-distribution, strain rates, stationary state stresses. Application of reference stress technique has been extended to analysis of shells. (author)

  4. Thermal ratcheting and creep damage

    International Nuclear Information System (INIS)

    Clement, G.; Cousseran, P.; Roche, R.L.

    1983-01-01

    Several proposals have been made to assist adesigners with thermal ratcheting in the creep range, the more known has been made by O'DONNELL and POROWSKY. Unfortunately these methods are not validated by experiments, and they take only inelastic distortion into consideration as creep effects. The aim of the work presented here is to correct these deficiencies - in providing an experimental basis to ratcheting analysis rules in the creep range, - in considering the effect of cyclic straining (like cyclic thermal stresses) on the time to rupture by creep. Experimental tests have been performed on austenitic stainless steel at 650 0 C for the first item. Results of these tests and results available in the open literature have been used to built a practical rule of ratcheting analysis. This rule giving a conservative value of the creep distortion, is based on the concept of effective primary stress which is an amplification of the primary stress really applied. Concerning the second point (time to rupture), it was necessary to obtain real creep rupture and not instability. According to the proposal of Pr LECKIE, tests were performed on specimens made out of copper, and of aluminium alloys at temperatures between 150 0 C and 300 0 C. With such materials creep rupture is obtained without necking. Experimental tests show that cyclic straining reduces the time to creep rupture under load controlled stress. Caution must be given to the designer: cyclic thermal stress can lead to premature creep rupture. (orig./GL)

  5. Creep of high temperature composites

    International Nuclear Information System (INIS)

    Sadananda, K.; Feng, C.R.

    1993-01-01

    High temperature creep deformation of composites is examined. Creep of composites depends on the interplay of many factors. One of the basic issues in the design of the creep resistant composites is the ability to predict their creep behavior from the knowledge of the creep behavior of the individual components. In this report, the existing theoretical models based on continuum mechanics principles are reviewed. These models are evaluated using extensive experimental data on molydisilicide-silicon carbide composites obtained by the authors. The analysis shows that the rule of mixture based on isostrain and isostress provides two limiting bounds wherein all other theoretical predictions fall. For molydisilicide composites, the creep is predominantly governed by the creep of the majority phase, i.e. the matrix with fibers deforming elastically. The role of back stresses both on creep rates and activation energies are shown to be minimum. Kinetics of creep in MoSi 2 is shown to be controlled by the process of dislocation glide with climb involving the diffusion of Mo atoms

  6. An Approach for Impression Creep of Lead Free Microelectronic Solders

    Science.gov (United States)

    Anastasio, Onofrio A.

    2002-06-01

    Currently, the microelectronics industry is transitioning from lead-containing to lead-free solders in response to legislation in the EU and Japan. Before an alternative alloy can be designated as a replacement for current Pb-Sn extensive testing must be accomplished. One major characteristic of the alloy that must be considered is creep. Traditionally, creep testing requires numerous samples and a long tin, which thwarts the generation of comprehensive creep databases for difficult to prepare samples such as microelectronic solder joints. However, a relatively new technique, impression creep enables us to rapidly generate creep data. This test uses a cylindrical punch with a flat end to make an impression on the surface of a specimen under constant load. The steady state velocity of the indenter is found to have the same stress and temperature dependence as the conventional unidirectional creep test using bulk specimens. This thesis examines impression creep tests of eutectic Sn-Ag. A testing program and apparatus was developed constructed based on a servo hydraulic test frame. The apparatus is capable of a load resolution of 0.01N with a stability of plus/minus 0.1N, and a displacement resolution of 0.05 microns with a stability of plus/minus 0.1 microns. Samples of eutectic Sn-Ag solder were reflowed to develop the microstructure used in microelectronic packaging. Creep tests were conducted at various stresses and temperatures and showed that coarse microstructures creep more rapidly than the microstructures in the tested regime.

  7. Experimental study on creep-fatigue interaction behavior of GH4133B superalloy

    International Nuclear Information System (INIS)

    Hu Dianyin; Wang Rongqiao

    2009-01-01

    The creep-fatigue tests have been conducted with nickel-based superalloy GH4133B at 600 deg. C in three cases of type loading to study the creep-fatigue behavior of the alloy and the loading history effect on the creep-fatigue damage. Since the conventional linear cumulative damage rule failed in evaluating the creep-fatigue life based on experimental data, a continuous non-linear model proposed by Mao et al. was employed to describe the creep-fatigue interaction. The creep-fatigue damage in the cases of continuous cyclic creep loading (CF) and prior fatigue followed by creep loading (F + C) was larger than unity and smaller than unity when the type loading was prior creep followed by fatigue loading (C + F). Scanning electron microscope (SEM) analyses of the fracture surface showed that the cracks initiated from the specimen surface and the fracture modes in different loading history were different. The crack mode at CF loading depended on the cyclic period. In the case of F + C loading, the primary fracture mode was transgranular, and in the condition where the type of waveform was C + F, the fracture mode was of mixed transgranular and intergranular type. In addition, the origin of the history effect on creep-fatigue interaction was explained by the SEM observations.

  8. Creep failure of a spray drier

    CSIR Research Space (South Africa)

    Carter, P

    1998-06-01

    Full Text Available , and creep. The calculations pointed to creep, and no positive metallurgic or physical evidence was discovered to support any of the hypotheses. However, the compression stresses implied that creep deformation could have occurred without inducing discernible...

  9. Creep properties of Hastelloy X in a carburizing helium environment

    International Nuclear Information System (INIS)

    Nakanishi, T.; Kawakami, H.

    1982-01-01

    In this work, we investigate the environmental effect on the creep behavior of Hastelloy X at 900 0 C in helium and air. Since helium coolant in HTGR is expected to be carburizing and very weakly oxidizing for most metals, testings were focused on the effect of carburizing and slight oxidation. Carburization decreases secondary creep strain rate and delays tertiary creep initiation. On the other hand, the crack growth rate on the specimen surface is enhanced due to very weak oxidation in helium, therefore the tertiary creep strain rate becomes larger than that in air. The rupture time of Hastelloy X was shorter in helium when compared with in air. Stress versus rupture time curves for both environments do not deviate with each other during up to 5000 hours test, and a ratio of rupture stress in helium to that in air was about 0.9

  10. Tensile cracks in creeping solids

    International Nuclear Information System (INIS)

    Riedel, H.; Rice, J.R.

    1979-02-01

    The loading parameter determining the stress and strain fields near a crack tip, and thereby the growth of the crack, under creep conditions is discussed. Relevant loading parameters considered are the stress intensity factor K/sub I/, the path-independent integral C*, and the net section stress sigma/sub net/. The material behavior is modelled as elastic-nonlinear viscous where the nonlinear term describes power law creep. At the time t = 0 load is applied to the cracked specimen, and in the first instant the stress distribution is elastic. Subsequently, creep deformation relaxes the initial stress concentration at the crack tip, and creep strains develop rapidly near the crack tip. These processes may be analytically described by self-similar solutions for short times t. Small scale yielding may be defined. In creep problems, this means that elastic strains dominate almost everywhere except in a small creep zone which grows around the crack tip. If crack growth ensues while the creep zone is still small compared with the crack length and the specimen size, the stress intensity factor governs crack growth behavior. If the calculated creep zone becomes larger than the specimen size, the stresses become finally time-independent and the elastic strain rates can be neglected. In this case, the stress field is the same as in the fully-plastic limit of power law hardening plasticity. The loading parameter which determines the near tip fields uniquely is then the path-independent integral C*.K/sub I/ and C* characterize opposite limiting cases. The case applied in a given situation is decided by comparing the creep zone size with the specimen size and the crack length. Besides several methods of estimating the creep zone size, a convenient expression for a characteristic time is derived, which characterizes the transition from small scale yielding to extensive creep of the whole specimen

  11. Ultrasonic creeping wave test technique for dissimilar metal weld

    International Nuclear Information System (INIS)

    Yuan Jianzhong; Shang Junmin; Yan Zhi; Yuan Guanghua; Zhang Guofeng

    2009-01-01

    To solve the problem encountered in the defect inspection of the surface and near-surface of dissimilar metal weld effectively, a new ultrasonic creeping wave test technique is developed. In this paper, the test technique and its experimental verification are mainly described. The verification results show that linear defect, which is similar to the defect found in liquid penetrant test, on the surface and near-surface of dissimilar metal weld can be detected effectively, by using ultrasonic creeping wave test technique. And the depth, length and height of the defect can be determined easily. The effective covering depth of ultrasonic creeping wave test technique will reach 0-9 mm. Meanwhile, the planar defect, with equivalent area more than 3 mm 2 , existed in welds can be detected efficiently. So, accurate measurement, which self height dimension of planar defect is above 2 mm, will be realized. (authors)

  12. Creep Measurement Video Extensometer

    Science.gov (United States)

    Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John

    2011-01-01

    Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.

  13. Vortex pinning and creep experiments

    International Nuclear Information System (INIS)

    Kes, P.H.

    1991-01-01

    A brief review of basic flux-pinning and flux-creep ingredients and a selection of experimental results on high-temperature-superconductivity compounds is presented. Emphasis is put on recent results and on those properties which are central to the emerging understanding of the flux-pinning and flux-creep mechanisms of these fascinating materials

  14. Nanogranular origin of concrete creep.

    Science.gov (United States)

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  15. Creep buckling analysis of shells

    International Nuclear Information System (INIS)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    The current study was conducted in an effort to determine the degree of conservatism or lack of conservatism in current ASME design rules concerning time-dependent (creep) buckling. In the course of this investigation, certain observations were made concerning the numerical solution of creep buckling problems. It was demonstrated that a nonlinear finite element code could be used to solve the time-dependent buckling problem. A direct method of solution was presented which proved to be computationally efficient and provided answers which agreed very well with available analytical solutions. It was observed that the calculated buckling times could vary widely for small errors in computed displacements. The presence of high creep strain rates contributed to the prediction of early buckling times when calculated during the primary creep stage. The predicted time estimates were found to increase with time until the secondary stage was reached and the estimates approached the critical times predicted without primary creep. It can be concluded, therefore, that for most nuclear piping components, whose primary creep stage is small compared to the secondary stage, the effect of primary creep is negligible and can be omitted from the calculations. In an evaluation of the past and current ASME design rules for time-dependent, load controlled buckling, it was concluded that current use of design load safety factors is not equivalent to a safety factor of ten on service life for low creep exponents

  16. Thermal ratcheting and creep damage

    International Nuclear Information System (INIS)

    Clement, G.; Cousseran, P.; Roche, R.L.

    1983-08-01

    Creep is a cause of deformation; it may also result in rupture in time. Although LMFBR structures are not heavily loaded, they are subjected to large thermal transients. Can structure lifetime be shortened by such transients. Several proposals have been made to assist adesigners with thermal ratcheting in the creep range. Unfortunately these methods are not validated by experiments, and they take only inelastic distorsion into consideration as creep effects. The aim of the work presented here is to correct these deficiencies in providing an experimental basis to ratcheting analysis rules in the creep range, and in considering the effect of cyclic straining (like cyclic thermal stresses) on the time to rupture by creep. Experimental tests have been performed on austenitic stainless steel at 650 0 C for the first item. Results of these tests and results available in the open literature have been used to built a practical rule of ratcheting analysis. This rule giving a conservative value of the creep distortion, is based on the concept of effective primary stress which is an amplification of the primary stress really applied. Concerning the second point (time to rupture), it was necessary to obtain real creep rupture and not instability. According to the proposal of Pr LECKIE, tests were performed on specimen made out of copper, and of aluminium alloys at temperatures between 150 0 C and 300 0 C. With such materials creep rupture is obtained without necking. Experimental tests show that cyclic straining reduces the time to creep rupture under load controlled stress. Caution must be given to the designer: cyclic thermal stress can lead to premature creep rupture

  17. Reassembling Surveillance Creep

    DEFF Research Database (Denmark)

    Bøge, Ask Risom; Lauritsen, Peter

    2017-01-01

    We live in societies in which surveillance technologies are constantly introduced, are transformed, and spread to new practices for new purposes. How and why does this happen? In other words, why does surveillance “creep”? This question has received little attention either in theoretical developm......We live in societies in which surveillance technologies are constantly introduced, are transformed, and spread to new practices for new purposes. How and why does this happen? In other words, why does surveillance “creep”? This question has received little attention either in theoretical...... development or in empirical analyses. Accordingly, this article contributes to this special issue on the usefulness of Actor-Network Theory (ANT) by suggesting that ANT can advance our understanding of ‘surveillance creep’. Based on ANT’s model of translation and a historical study of the Danish DNA database......, we argue that surveillance creep involves reassembling the relations in surveillance networks between heterogeneous actors such as the watchers, the watched, laws, and technologies. Second, surveillance creeps only when these heterogeneous actors are adequately interested and aligned. However...

  18. Regenerative heat treatments for the extension of the creep life of the superalloy IN-738

    International Nuclear Information System (INIS)

    Stevens, R.A.; Flewitt, P.E.J.

    1979-01-01

    Uniaxial creep tests have been performed on the cast nickel-base superalloy IN-738 at 1023K and 1123K. Microstructural damage occurring during creep has been characterised using transmission electron microscopy of surface and extraction replicas. Considerable coarsening of the γ' precipitates occurs during creep causing a progressive loss of creep strength. Intermediate heat treatment of interrupted specimens regenerates a microstructure similar to the original, and on re-testing significant creep life extensions are observed. These heat treatments do not completely recover the creep life due to the development of grain boundary cavitation. Additional heat treatments were performed under a superimposed hydrostatic pressure of 138 MPa to remove these cavities. (orig.) [de

  19. Stress Distribution in Layered Elastic Creeping Array with a Vertical Cylindrical Shaft

    Directory of Open Access Journals (Sweden)

    Bobyleva Tatiana

    2017-01-01

    Full Text Available Construction should be taking into account the influence of time factor on the stability of the structures. In the paper hereditary creep and homogenization theories are used to determine stresses in the layered elastic creeping array with a vertical shaft. Volterra correspondence principle was applied. As a result, the reduction of a time-dependent elastic creeping problem to a corresponding elastic problem became possible. The method proposes a way to determine average (effective elastic creeping properties and homogenized stress field from known properties of the layers’ components. Creep kernels are of a convolution type and are taken in the exponential form. The problem of heterogeneous elastic creeping environment is reduced to a problem of homogeneous transversely isotropic medium. Different boundary conditions on the cylindrical shaft’s surface were considered. An analytical solution was obtained. These explicit expressions can be useful for the necessary calculations in the construction practice.

  20. Negative creep in nickel base superalloys

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John

    2004-01-01

    Negative creep describes the time dependent contraction of a material as opposed to the elongation seen for a material experiencing normal creep behavior. Negative creep occurs because of solid state transformations that results in lattice contractions. For most applications negative creep will h...

  1. Mechanisms of transient radiation-induced creep

    International Nuclear Information System (INIS)

    Pyatiletov, Yu.S.

    1981-01-01

    Radiation-induced creep at the transient stage is investigated for metals. The situation, when several possible creep mechanisms operate simultaneously is studied. Among them revealed are those which give the main contribution and determine thereby the creep behaviour. The time dependence of creep rate and its relation to the smelling rate is obtained. The results satisfactorily agree with the available experimental data [ru

  2. Modeling Creep Processes in Aging Polymers

    Science.gov (United States)

    Olali, N. V.; Voitovich, L. V.; Zazimko, N. N.; Malezhik, M. P.

    2016-03-01

    The photoelastic method is generalized to creep in hereditary aging materials. Optical-creep curves and mechanical-creep or optical-relaxation curves are used to interpret fringe patterns. For materials with constant Poisson's ratio, it is sufficient to use mechanical- or optical-creep curves for this purpose

  3. Lattice continuum and diffusional creep.

    Science.gov (United States)

    Mesarovic, Sinisa Dj

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  4. Multiaxial creep-fatigue rules

    International Nuclear Information System (INIS)

    Spindler, M.W.; Hales, R.; Ainsworth, R.A.

    1997-01-01

    Within the UK, a comprehensive procedure, called R5, is used to assess the high temperature response of structures. One part of R5 deals with creep-fatigue initiation, and in this paper we describe developments in this part of R5 to cover multiaxial stress states. To assess creep-fatigue, damage is written as the linear sum of fatigue and creep components. Fatigue is assessed using Miner's law with the total endurance split into initiation and growth cycles. Initiation is assessed by entering the curve of initiation cycles vs strain range using a Tresca equivalent strain range. Growth is assessed by entering the curve of growth cycles vs strain range using a Rankine equivalent strain range. The number of allowable cycles is obtained by summing the initiation and growth cycles. In this way the problem of defining an equivalent strain range applicable over a range of endurance is avoided. Creep damage is calculated using ductility exhaustion methods. In this paper we address two aspects; first, the nature of stress relaxation and, hence, accumulated creep strain in multiaxial stress fields; secondly, the effect of multiaxial stress on creep ductility. The effect of multiaxial stress state on creep ductility has been examined using experimental data and mechanistic models. Good agreement is demonstrated between an empirical description of test data and a cavity growth model, provided a simple nucleation criterion is included. A simple scaling factor is applied to uniaxial creep ductility, defined as a function of stress state. The factor is independent of the cavity growth mechanisms and yields a value of equivalent strain which can be conveniently used in determining creep damage by ductility exhaustion. (author). 14 refs, 4 figs

  5. Creep in electronic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  6. Numerical description of creep of highly creep resistant alloys

    International Nuclear Information System (INIS)

    Preussler, T.

    1991-01-01

    Fatigue tests have been performed with a series of highly creep resistant materials for gas turbines and related applications for gaining better creep data up to long-term behaviour. The investigations were performed with selected individual materials in the area of the main applications down to strains and stresses relevant to design, and have attained trial durations of 25000 to 60000 h. In continuing former research, creep equations for a selection of characterizing individual materials have been improved and partly newly developed on the basis of a differentiated evaluation. Concerning the single materials, there are: one melt each of the materials IN-738 LC, IN-939, IN-100, FSX-414 and Inconel 617. The applied differentiated evaluation is based on the elastoplastical behaviour from the hot-drawing test, the creep behaviour from the non interrupted or the interrupted fatigue test, and the contraction behaviour from the annealing test. The creep equations developed describe the high temperature deformation behaviour taking into account primary, secondary and partly the tertiary creep dependent of temperature, stress and time. These equations are valid for the whole application area of the respective material. (orig./MM) [de

  7. String perturbation theory diverges

    International Nuclear Information System (INIS)

    Gross, D.J.; Periwal, V.

    1988-01-01

    We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence

  8. Plasticity and creep of metals

    CERN Document Server

    Rusinko, Andrew

    2011-01-01

    Here is a systematic presentation of the postulates, theorems and principles of mathematical theories of plasticity and creep in metals, and their applications. Special attention is paid to analysis of the advantages and shortcomings of the classical theories.

  9. Microstructure-based assessment of creep rupture behaviour of cast-forged P91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Chandan, E-mail: chandanpy.1989@gmail.com [Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667 (India); Mahapatra, M.M. [School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Odisha 751013 (India); Kumar, Pradeep; Vidyrathy, R.S. [Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttrakhand 247667 (India); Srivastava, A. [Senior Engineer, HEEP Section, BHEL Haridwar (India)

    2017-05-17

    The work presented in this study was performed with the intent to characterize the microstructure evolution for short term creep exposure of cast-forged P91 steel. The short-term creep test was performed at temperature range of 620–650 °C and stresses ranging from 120 to 200 MPa. To characterize the sample after creep exposure, field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDS), optical microscope and micro-hardness testing were utilized. Creep tests were performed on round creep specimens. For low temperature service condition, longer creep life was obtained. The fracture surface of creep ruptured specimen were characterized by using the FESEM. The transgranular fracture mode was noticed in all the tests condition. The creep rupture life was found to be decreased with increase in applied stress. The maximum rupture life was measured about to be 3329.28 h for the sample exposed at 620 °C for 120 MPa. A negligible microstructural change was measured in gripping area compared to the gauge area (necking area) of crept sample. The laves phase formation was also noticed along the grain boundaries for creep exposure life of 3329.28 h.

  10. Microstructure-based assessment of creep rupture behaviour of cast-forged P91 steel

    International Nuclear Information System (INIS)

    Pandey, Chandan; Mahapatra, M.M.; Kumar, Pradeep; Vidyrathy, R.S.; Srivastava, A.

    2017-01-01

    The work presented in this study was performed with the intent to characterize the microstructure evolution for short term creep exposure of cast-forged P91 steel. The short-term creep test was performed at temperature range of 620–650 °C and stresses ranging from 120 to 200 MPa. To characterize the sample after creep exposure, field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDS), optical microscope and micro-hardness testing were utilized. Creep tests were performed on round creep specimens. For low temperature service condition, longer creep life was obtained. The fracture surface of creep ruptured specimen were characterized by using the FESEM. The transgranular fracture mode was noticed in all the tests condition. The creep rupture life was found to be decreased with increase in applied stress. The maximum rupture life was measured about to be 3329.28 h for the sample exposed at 620 °C for 120 MPa. A negligible microstructural change was measured in gripping area compared to the gauge area (necking area) of crept sample. The laves phase formation was also noticed along the grain boundaries for creep exposure life of 3329.28 h.

  11. Mechanisms of unsteady shallow creep on major crustal faults

    Science.gov (United States)

    Jiang, J.; Fialko, Y. A.

    2017-12-01

    A number of active crustal faults are associated with geodetically detectable shallow creep, while other faults appear to be locked all the way to the surface over the interseismic period. Faults that exhibit shallow creep also often host episodic accelerated creep events. Examples include the Ismetpasa segment of the North Anatolian Fault (NAF) in Turkey and the Southern San Andreas and Superstition Hills (SHF) faults in Southern California. Recent geodetic observations indicate that shallow creep events can involve large fault sections (tens of km long) and persist throughout different stages of a seismic cycle. A traditional interpretation of shallow creep in terms of a velocity-strengthening (VS) layer atop the seismogenic velocity-weakening (VW) zone fails to explain episodic creep events. Wei et al. (2013) proposed that such events can be due to a thin VW layer within the VS shallow crust, implying rather special structural and lithologic conditions. We explore the rheologic controls on aseismic episodic slip and its implications for seismic faulting in the framework of laboratory rate-and-state friction. Observations of co-, post- and inter-seismic slip from the NAF and SHF are used to infer depth-dependent frictional properties in a 2D fault model. In particular, creep events with displacements on the order of millimeters and periods of months are reproduced in a model having monotonic depth variations in rate-and-state parameters. Such a model includes a velocity-neutral (VN) layer sandwiched between the surface layer with VS frictional properties, constrained by observed postseismic afterslip, and a deeper VW layer that largely controls the recurrence of major earthquakes. With the presence of the VN layer, the amount of surface-breaching coseismic slip critically depends on how dynamic weakening varies with depth in the seismogenic layer. Observations of limited surface slip during prior events on the NAF and SHF suggest that coseismic fault weakening is

  12. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    Science.gov (United States)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  13. Comparative study on the high-temperature tensile and creep properties of Alloy 617 base and weld metals

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Hong, Sung Deok; Kim, Yong Wan; Kim, Seon Jin; Park, Jae Young; Ekaputra, I. M. W.

    2013-01-01

    This paper presents a comparative investigation on the high-temperature tensile and creep properties of Alloy 617 base metal (BM) and weld metal (WM) fabricated by a gas tungsten arc weld process. The WM had higher yield strength and lower ultimate tensile strength than the BM does; however, its elongation was significantly lower than that of the BM. The creep curve of the BM and WM was somewhat different from that of typical heat-resistance steel, and did not show a textbook creep. The WM exhibited a longer creep rupture life, lower creep rate, and lower rupture ductility than the BM. However, as the creep rupture time reached approximately 36,800 h, the creep life of the WM was expected to be almost similar to that of the BM; and after 36,800 h, its creep life was expected to be worse than the BM. Loner creep tests is needed to investigate the long-term creep life of the WM. The creep failure mode of the BM and WM was obviously an intergranular cracking of the cavity formation and growth mechanisms, although it was more evident in the WM. The BM had a more ductile fracture surface than the WM

  14. Study of creep of Ti-6Al-4V alloy using plasma immersion ion implantation (PIII)

    International Nuclear Information System (INIS)

    Zepka, Susana; Yogi, Lucila Mayumi; Silva, Maria Margareth da; Reis, Danieli Aparecida Pereira; Moura Neto, Carlos de; Oliveira, Vinicius Souza de; Ueda, Mario

    2010-01-01

    This study aims to investigate the creep resistance of the Ti-6Al-4V alloy after surface modification by plasma immersion ion implantation (PIII). For the PIII treatment it was used nitrogen gas (ion implantation) to the formation of plasma, the material was treated for 100 minutes. After PIII treatment the samples were analyzed using the techniques of X-ray diffraction, spectrometry energy dispersive X-ray and atomic force microscopy. The creep tests were realized at 600°C, at constant load of 250 and 319 MPa. After the creep tests the samples were analyzed by optical microscopy and scanning electron microscopy. By chemical analysis by X-ray and EDS it is possible to determinate the Ti 2 N on the surface. Through the study of the creep curves it is observed an increasing in creep resistance of the alloy after PIII treatment. (author)

  15. Irradiation creep lifetime analysis on first wall structure materials for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Bing; Peng, Lei, E-mail: penglei@ustc.edu.cn; Zhang, Xiansheng; Shi, Jingyi; Zhan, Jie

    2017-05-15

    Fusion reactor first wall services on the conditions of high surface heat flux and intense neutron irradiation. For China Fusion Engineering Test Reactor (CFETR) with high duty time factor, it is important to analyze the irradiation effect on the creep lifetime of the main candidate structure materials for first wall, i.e. ferritic/martensitic steel, austenite steel and oxide dispersion strengthened steel. The allowable irradiation creep lifetime was evaluated with Larson-Miller Parameter (LMP) model and finite element method. The results show that the allowable irradiation creep lifetime decreases with increasing of surface heat flux, first wall thickness and inlet coolant temperature. For the current CFETR conceptual design, the lifetime is not limited by thermal creep or irradiation creep, which indicated the room for design parameters optimization.

  16. Prediction of long-term creep curves

    International Nuclear Information System (INIS)

    Oikawa, Hiroshi; Maruyama, Kouichi

    1992-01-01

    This paper aims at discussing how to predict long-term irradiation enhanced creep properties from short-term tests. The predictive method based on the θ concept was examined by using creep data of ferritic steels. The method was successful in predicting creep curves including the tertiary creep stage as well as rupture lifetimes. Some material constants involved in the method are insensitive to the irradiation environment, and their values obtained in thermal creep are applicable to irradiation enhanced creep. The creep mechanisms of most engineering materials definitely change at the athermal yield stress in the non-creep regime. One should be aware that short-term tests must be carried out at stresses lower than the athermal yield stress in order to predict the creep behavior of structural components correctly. (orig.)

  17. Structural impact of creep in tungsten monoblock divertor target at 20 MW/m2

    Directory of Open Access Journals (Sweden)

    Muyuan Li

    2018-01-01

    Full Text Available In order to increase erosion lifetime of the divertor target, in the 2nd design phase of R&D work package ‘Divertor’ for European DEMO, armor thickness of tungsten monoblock divertor target is increased from 5 mm to 8 mm. By increasing armor thickness, surface temperature increases nearly linearly, which makes effect of creep no longer negligible at slow transients of 20 MW/m2. In this work, structural impact of creep in tungsten monoblock divertor target is for the first time quantitatively analyzed with the aid of finite element method. The numerical simulations have revealed that creep results in an increase of inelastic strain accumulation. With increasing armor thickness, tensile surface stress along x-axis (the longer edge at the plasma-facing surface of tungsten monoblock reduces, while surface stress along z-axis (axial direction of the cooling tube changes from tensile to compressive. Creep will accelerate this change. With increasing grain size, creep strain accumulation at loading surface increases due to higher creep rates, while plastic strain accumulation decreases. Creep can mitigate the risk of deep cracking by reducing the driving force for crack opening, and has a positive impact for preventing the contact between the upper parts of neighboring monoblocks in high heat flux tests.

  18. Investigation of creep rupture properties in air and He environments of alloy 617 at 800 °C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Gon, E-mail: wgkim@kaeri.re.k [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ekaputra, I.M.W.; Park, Jae-Young [Pukyong National University, Busan 608-739 (Korea, Republic of); Kim, Min-Hwan; Kim, Yong-Wan [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2016-09-15

    Creep rupture properties for Alloy 617 were investigated by a series of creep tests under different applied stresses in air and He environments at 800 °C. The creep rupture time in air and He environments exhibited almost similar life in a short rupture time. However, when the creep rupture time reaches above 3000 h, the creep life in the He environment reduced compared with those of the air environment. The creep strain rate in the He environment was a little faster than that in the air environment above 3000 h. The reduction of creep life in the He environment was due to the difference of various microstructure features such as the carbide depleted zone, oxidation structures, surface cracking, voids below the surface, and voids in the matrix in air and He environments. Alloy 617 followed Norton’s power law and the Monkman–Grant relationship well. As the stress decreased, the creep ductility decreased slightly. The thickness of the outer and internal oxide layers presented the trend of a parabolic increase with an increase in creep rupture time in both the air and He environments. The thickness in the He environment was found to be thicker than in the air environment, although pure helium gas of 99.999% was used in the present investigation. The differences in the oxide-layer thickness caused detrimental effects on the creep resistance, even in a low oxygen-containing He agent.

  19. Investigation of creep rupture properties in air and He environments of alloy 617 at 800 °C

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Ekaputra, I.M.W.; Park, Jae-Young; Kim, Min-Hwan; Kim, Yong-Wan

    2016-01-01

    Creep rupture properties for Alloy 617 were investigated by a series of creep tests under different applied stresses in air and He environments at 800 °C. The creep rupture time in air and He environments exhibited almost similar life in a short rupture time. However, when the creep rupture time reaches above 3000 h, the creep life in the He environment reduced compared with those of the air environment. The creep strain rate in the He environment was a little faster than that in the air environment above 3000 h. The reduction of creep life in the He environment was due to the difference of various microstructure features such as the carbide depleted zone, oxidation structures, surface cracking, voids below the surface, and voids in the matrix in air and He environments. Alloy 617 followed Norton’s power law and the Monkman–Grant relationship well. As the stress decreased, the creep ductility decreased slightly. The thickness of the outer and internal oxide layers presented the trend of a parabolic increase with an increase in creep rupture time in both the air and He environments. The thickness in the He environment was found to be thicker than in the air environment, although pure helium gas of 99.999% was used in the present investigation. The differences in the oxide-layer thickness caused detrimental effects on the creep resistance, even in a low oxygen-containing He agent.

  20. Creep Deformation and Fracture Processes in OF and OFP Copper

    International Nuclear Information System (INIS)

    Bowyer, William H.

    2004-10-01

    with observed values for both OF and OFP materials in the power law breakdown regime. Creep lives of OF specimens containing 6ppm sulphur and tested in the power law regime are also close to predicted values. This suggests that it may be possible to predict creep lives using a physical model without the need for specimens to be tested to failure. The fracture model has been used to predict the life of OF material containing 6ppm sulphur under repository like conditions of 50MPa and 100 deg C as 20,000 years. The life of OFP is expected to be somewhat longer than the life for OF material. The factor of improvement has not been estimated at this stage. Segregation of sulphur to grain boundaries is responsible for the transition in fracture mode from ductile to brittle on OF material containing 10ppm sulphur. This is consistent with predictions from the model when it is assumed that the segregation leads to a reduction in surface energy of 50 to 65%. The effect of sulphur segregation is expected to be sensitive to grain size. The grain size of the test materials was 50μm. It is estimated that an increase in grain size to 100μm might cause the embrittling mechanism to occur in material having 6ppm sulphur

  1. Creep Behavior of Poly(lactic acid Based Biocomposites

    Directory of Open Access Journals (Sweden)

    Marco Morreale

    2017-04-01

    Full Text Available Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C. The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric.

  2. Creep Behavior of Poly(lactic acid) Based Biocomposites.

    Science.gov (United States)

    Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo

    2017-04-08

    Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric.

  3. Microprestress - solidification theory for aging and drying creep of concrete

    DEFF Research Database (Denmark)

    Bazant, Zdenek P.; Hauggaard-Nielsen, Anders Boe; Baweja, Sandeep

    1996-01-01

    A new physical theory for the effects of long-term aging and drying on concrete creep is proposed. The previously proposed solidification theory, in which aging is explained and modeled by the volume growth (into the pores of hardened Portland cement paste) of a nonaging viscoelastic constituent...... external load or the macroscopic continuum deformation of concrete can cause only very small changes of the microprestress, such that the response to load is determined by tangential linearization. Relaxation of the microprestress causes the tangential viscosity to increase, which reduces long-term creep....... A decrease of relative humidity in the pores causes (due to changes of capillary tension, surface tension and disjoining pressure) a large increase in the microprestress, which in turn reduces tangential viscosity and thus increases the creep rate. This explains the drying effect (Pickett effect...

  4. The direct Flow parametric Proof of Gauss' Divergence Theorem revisited

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    The standard proof of the divergence theorem in undergraduate calculus courses covers the theorem for static domains between two graph surfaces. We show that within first year undergraduate curriculum, the flow proof of the dynamic version of the divergence theorem - which is usually considered...... we apply the key instrumental concepts and verify the various steps towards this alternative proof of the divergence theorem....

  5. Datalogger for the creep laboratory

    International Nuclear Information System (INIS)

    Sambasivan, S.I.; Karthikeyan, T.V.; Chowdhary, D.M.; Anantharaman, P.N.

    1989-01-01

    The creep laboratory, MDL/ICGAR is a facility to study the creep properties of materials which are of interest to the fast reactor programme. The creep test is conducted over a few days to several months and years depending on the test variables employed. In these tests the creep strain and creep rate as a function of time are studied while the load and temperature are kept constant. The datalogger automates the process of recording the strain information as a function of time and also monitors the temperature throughout the test. The system handles 126 temperature channels and 42 strain channels from 27 machines. The temperature inputs are from the thermocouples and for cold junction compensation RTD's are used. An extensometer with a linear variable differential transformer (LVDT) or Super Linear Variable Capacitor (SLVC) form the set up to measure strain. The data logger consists of a front end analog input sub-system (AISS), a 8085 based Data Acquisition System (DAS) communicating to a microcomputer with CP/M operating system. The system responds to the user through the console and outputs of a dot matrix printer. The system, running a real time executive, also allows for on line enabling or disabling of a channel, printing of data, examining the current status and value, setting and getting time etc. (author)

  6. The Patchwork Divergence Theorem

    OpenAIRE

    Dray, Tevian; Hellaby, Charles

    1994-01-01

    The divergence theorem in its usual form applies only to suitably smooth vector fields. For vector fields which are merely piecewise smooth, as is natural at a boundary between regions with different physical properties, one must patch together the divergence theorem applied separately in each region. We give an elegant derivation of the resulting "patchwork divergence theorem" which is independent of the metric signature in either region, and which is thus valid if the signature changes. (PA...

  7. Divergent Cumulative Cultural Evolution

    OpenAIRE

    Marriott, Chris; Chebib, Jobran

    2016-01-01

    Divergent cumulative cultural evolution occurs when the cultural evolutionary trajectory diverges from the biological evolutionary trajectory. We consider the conditions under which divergent cumulative cultural evolution can occur. We hypothesize that two conditions are necessary. First that genetic and cultural information are stored separately in the agent. Second cultural information must be transferred horizontally between agents of different generations. We implement a model with these ...

  8. Creep Behaviour of Modified Mar-247 Superalloy

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-06-01

    Full Text Available The paper presents the results of analysis of creep behaviour in short term creep tests of cast MAR-247 nickel-based superalloy samples made using various modification techniques and heat treatment. The accelerated creep tests were performed under temperature of 982 °C and the axial stresses of σ = 150 MPa (variant I and 200 MPa (variant II. The creep behaviour was analysed based on: creep durability (creep rupture life, steady-state creep rate and morphological parameters of macro- and microstructure. It was observed that the grain size determines the creep durability in case of test conditions used in variant I, durability of coarse-grained samples was significantly higher.

  9. Creep crack growth in phosphorus alloyed oxygen free copper

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Rui; Seitisleam, Facredin (Swerea KIMAB (Sweden)); Sandstroem, Rolf; Jin, Lai-Zhe (Materials Science and Engineering, Royal Inst. of Technology (Sweden))

    2011-01-15

    Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial

  10. Creep crack growth in phosphorus alloyed oxygen free copper

    International Nuclear Information System (INIS)

    Wu, Rui; Seitisleam, Facredin; Sandstroem, Rolf; Jin, Lai-Zhe

    2011-01-01

    Using standard compact tension (CT) specimens taken from a pierce and draw cylinder, creep crack growth (CCG) has been studied in phosphorus-alloyed oxygen-free copper (Cu-OFP) parent metal at 22, 75, 175, and 215 deg C. Pre- and post-test metallography are performed. At higher temperatures the rupture time of CCG is shorter by a factor up of 65 than that of uniaxial at same stress/reference stress. At 175 and 215 deg C, crack does grow by creep about 10 mm before final instantaneous failure. In contrast, there is hardly any visible crack growth at 22 and 75 deg C. The tests were interrupted after 5000 to 13000 hours. For ruptured tests at 175 and 215 deg C, strongly elongated and deformed grains are observed adjacent to crack. Extensive and intergranular creep cavities and microcracks are found several mm around crack. For interrupted tests at 22 and 75 deg C, strongly elongated and deformed grains, creep cavities, as well as microcracks are observed close to crack tip. Surface cracks from both sides have initiated and grown about 45 deg to the load direction towards inside. For the interrupted tests, hardness adjacent to crack tip has more than doubled because of work hardening, or heavy deformation. This is consistent with large crack tip opening. The true strain at the crack tip is estimated to 10 and 4 for the tests at 22 and 75 deg C, respectively. The stress state behind the crack tip has been modelled with FEM. Stress relaxation after loading has also been taken into account. A model for the creep damage based on the creep strain rate has been formulated that can describe the uniaxial creep rupture data without fitting parameters. Based on the formulation for the creep damage, a model for the crack propagation has been set up. When the creep damage has reached the value unity in front of the crack tip, the crack is assumed to propagate. Taking multiaxial effects into account the observed life times of the CT specimens can be well described. The multiaxial

  11. Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys

    International Nuclear Information System (INIS)

    Sgobba, S.; Kuenzi, H.U.; Ilschner, B.

    1993-01-01

    Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.)

  12. Some aspects of anelastic and microplastic creep of pure Al and two Al-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sgobba, S. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Kuenzi, H.U. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland)); Ilschner, B. (Lab. de Metallurgie Mecanique, Dept. des Materiaux, Ecole Polytechnique Federale de Lausanne (Switzerland))

    1993-11-01

    Anelastic creep of pure Al, commercial Al-Cu and a binary Al-Cu alloy has been measured at room temperature by means of a high resolution laser interferometer. The irreversible component of the deformation was also quantified from measurements of the anelastic creep recovery. The dependence of the deformation-time curves on thermal treatment and cold work is analyzed. The mechanisms responsible for the room temperature anelastic creep are discussed. Materials loaded below their elastic limit can present either a pure anelastic behavior (commercial Al-Cu) or additional viscoelastic creep (pure Al, high purity Al-Cu). For commercial Al-Cu, the presence of an irreversible deformation appears to be mainly related to the state of the surface. A viscoelastic after effect has been measured for this alloy after a Cu-electroplating treatment. As a typical result for room temperature creep, the irreversible deformation depends logarithmically on load time. (orig.).

  13. Fluid Creep and Over-resuscitation.

    Science.gov (United States)

    Saffle, Jeffrey R

    2016-10-01

    Fluid creep is the term applied to a burn resuscitation, which requires more fluid than predicted by standard formulas. Fluid creep is common today and is linked to several serious edema-related complications. Increased fluid requirements may accompany the appropriate resuscitation of massive injuries but dangerous fluid creep is also caused by overly permissive fluid infusion and the lack of colloid supplementation. Several strategies for recognizing and treating fluid creep are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Influence of variations in creep curve on creep behavior of a high-temperature structure

    International Nuclear Information System (INIS)

    Hada, Kazuhiko

    1986-01-01

    It is one of the key issues for a high-temperature structural design guideline to evaluate the influence of variations in creep curve on the creep behavior of a high-temperature structure. In the present paper, a comparative evaluation was made to clarify such influence. Additional consideration was given to the influence of the relationship between creep rupture life and minimum creep rate, i.e., the Monkman-Grant's relationship, on the creep damage evaluation. The consideration suggested that the Monkman-Grant's relationship be taken into account in evaluating the creep damage behavior, especially the creep damage variations. However, it was clarified that the application of the creep damage evaluation rule of ASME B and P.V. Code Case N-47 to the ''standard case'' which was predicted from the average creep property would predict the creep damage on the safe side. (orig./GL)

  15. Design of creep machine and creep specimen chamber for carrying out creep tests in flowing liquid sodium

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in; Laha, K.; Sakthy, S.; Mathew, M.D.; Jayakumar, T.

    2014-02-15

    Highlights: • Design of a lever type creep machine for carrying out creep test in flowing sodium. • Leveling of lever during creep was achieved by automated movement of fulcrum. • Design of creep chamber for providing constant sodium flow rate across creep specimen. • Minimum use of bellow in chamber for sodium containment and mechanical isolation. • Mini-lever mechanism to counter balance load reduction on specimen due to bellow stiffness. - Abstract: A creep testing system has been designed, fabricated, installed and validated for carrying out creep tests in flowing liquid sodium. The testing system consists of two sections namely creep testing machine and an environmental chamber. The testing system has the ability of (i) applying tensile load to the test specimen through a lever, (ii) monitoring continuously the creep elongation and (iii) allowing sodium to flow around the creep specimen at constant velocity. The annular space between the creep specimen and the environmental chamber has been suitably designed to maintain constant sodium flow velocity. Primary and secondary bellows are employed in the environmental chamber to (i) mechanically isolate the creep specimen, (ii) prevent the flowing sodium in contact with air and (iii) maintain an argon gas cover to the leaking sodium if any from primary bellow, with a provision to an alarm get activated by a spark plug. The lever-horizontality during creep test has been maintained by automatically lifting up the fulcrum instead of lowering down the pull rod as conventionally used. A mini lever mechanism has been incorporated in the load train to counter balance the load reduction on specimen from the changing stiffness of the bellows. The validation of the testing system has been established by carrying out creep tests on 316L(N) stainless steel at 873 K over a wide stress range and comparing the results with those obtained in air by employing the developed and conventional creep testing machines.

  16. Effects of pre-creep on the dislocations of 316LN Austenite stainless steel

    Science.gov (United States)

    Pei, Hai-xiang; Hui, Jun; Hua, Hou; Feng, Zai-xin; Xu, Xiao-long

    2017-09-01

    The 316LN Austenite stainless steels (316LNASS) were pre-creep treated, the evolution of microstructure were investigated. The samples were pre-creep at 593 K and from 500 to 2000 h at 873 K with a stress in the range of 20 to 150 MPa, Then the evolution of microstructure and precipitation were investigated by optical microscope (OM), and transmission electron microscope (TEM). The results show that the crystal surface slipping resulted in dislocations and original dislocations decomposition during the pre-creep process, and generate quadrilateral or hexagonal dislocation network was obviously. The sub-grain boundary gradually became narrow with the increasing of pre-creep treatment time and temperature. When the pre-creep temperature was 593 K and 873 K, dislocation network gradually disappear with the increasing of pre-creep time and load. When the pre-creep temperature was 873 K under 120 MPa, and the treatment time was 2000 h, the hexagonal dislocation network (HDN) would completely disappeared. When the pre-creep temperature was 593 K under 20 MPa, and the treatment time was 500 h, the quadrilateral dislocation network (QDN) would completely disappeared.

  17. Finite element simulation for creep crack growth

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.

    1992-01-01

    A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)

  18. Creep behavior under internal pressure of zirconium alloy cladding oxidized in steam at high temperature

    International Nuclear Information System (INIS)

    Chosson, Raphael

    2014-01-01

    During hypothetical Loss-Of-Coolant-Accident (LOCA) scenarios, zirconium alloy fuel cladding tubes creep under internal pressure and are oxidized on their outer surface at high temperature (HT). Claddings become stratified materials: zirconia and oxygen-stabilized α phase, called α(O), are formed on the outer surface of the cladding whereas the inner part remains in the β domain. The strengthening effect of oxidation on the cladding creep behavior under internal pressure has been highlighted at HT. In order to model this effect, the creep behavior of each layer had to be determined. This study focused on the characterization of the creep behavior of the α(O) phase at HT, through axial creep tests performed under vacuum on model materials, containing from 2 to 7 wt.% of oxygen and representative of the α(O) phase. For the first time, two creep flow regimes have been observed in this phase. Underlying physical mechanisms and relevant microstructural parameters have been discussed for each regime. The strengthening effect due to oxygen on the α(O) phase creep behavior at HT has been quantified and creep flow equations have been identified. A ductile to brittle transition criterion has been also suggested as a function of temperature and oxygen content. Relevance of the creep flow equations for each layer, identified in this study or from the literature, has been discussed. Then, a finite element model, describing the oxidized cladding as a stratified material, has been built. Based on this model, a fraction of the experimental strengthening during creep is predicted. (author) [fr

  19. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Ma, Qihang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Shang, Lihong [Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5 (Canada); Gao, Ye [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)

    2016-07-18

    Creep-fatigue experiments have been conducted in nickel-based superalloy GH720Li at an elevated temperature of 650 °C with a stress ratio of 0.1, based on which, different dwell times at the maximum loading were applied to investigate the effect of dwell time on the creep-fatigue behaviors. The tested specimens were cut from the rim region of an actual turbine disc in the hoop direction. The grain size and precipitates of the GH720Li superalloy were examined through scanning electronic microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses. Experimental data shows creep-fatigue lifetime decreases as the dwell time prolongs. Further, different scattering was observed in the creep-fatigue lifetime at different dwell times. Then a probabilistic model based on the applied mechanical work density (AMWD), with a linear heteroscedastic function that evaluates the non-constant deviation in the creep-fatigue lifetime, was formulated to describe the dependence of creep-fatigue lifetime on the dwell time. Finally, the possible microscopic mechanism of the creep-fatigue behavior has been discussed by SEM with EDS on the fracture surfaces.

  20. On infrared divergences

    International Nuclear Information System (INIS)

    Parisi, G.

    1979-01-01

    The structure of infrared divergences is studied in superrenormalizable interactions. It is conjectured that there is an extension of the Bogoliubov-Parasiuk-Hepp theorem which copes also with infrared divergences. The consequences of this conjecture on the singularities of the Borel transform in a massless asymptotic free field theory are discussed. The application of these ideas to gauge theories is briefly discussed. (Auth.)

  1. Point defects and the creep of metals

    International Nuclear Information System (INIS)

    Nichols, F.A.

    1976-01-01

    Basic concepts felt to be important in diffusion-controlled creep of metals are reviewed and it is suggested that such creep is controlled by edge-dislocation climb under a rather wide range of conditions. The effect of a damage-producing flux on such creep processes is explored. It is shown that processes such as Herring-Nabarro creep are unaffected by irradiation. Evidence is presented for a climb-plus-glide mechanism of radiation creep for stresses above unirradiated yield or flow stresses. At lower stresses a preferential dislocation loop nucleation model is suggested

  2. Photooxidation Behavior of a LDPE/Clay Nanocomposite Monitored through Creep Measurements

    Directory of Open Access Journals (Sweden)

    Francesco Paolo La Mantia

    2017-07-01

    Full Text Available Creep behavior of polymer nanocomposites has not been extensively investigated so far, especially when its effects are combined with those due to photooxidation, which are usually studied in completely independent ways. In this work, the photooxidation behavior of a low density polyethylene/organomodified clay nanocomposite system was monitored by measuring the creep curves obtained while subjecting the sample to the combined action of temperature, tensile stress, and UV radiation. The creep curves of the irradiated samples were found to be lower than those of the non-irradiated ones and progressively diverging, because of the formation of branching and cross-linking due to photooxidation. This was further proved by the decrease of the melt index and the increase of the intrinsic viscosity; at the same time, the formation of carbonyl groups was observed. This behavior was more observable in the nanocomposite sample, because of its faster photooxidation kinetics.

  3. Creep of ice: further studies

    International Nuclear Information System (INIS)

    Heard, H.C.; Durham, W.B.; Kirby, S.H.

    1987-01-01

    Detailed studies have been done of ice creep as related to the icy satellites, Ganymede and Callisto. Included were: (1) the flow of high-pressure water ices II, III, and V, and (2) frictional sliding of ice I sub h. Work was also begun on the study of the effects of impurities on the flow of ice. Test results are summarized

  4. Thermal creep of Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Murty, K.L.; Clevinger, G.S.; Papazoglou, T.P.

    1977-01-01

    Data on the hoop creep characteristics of Zircaloy tubing were collected at temperatures between 600 F and 800 F, and at stress levels ranging from 10 ksi to 25 ksi using internal pressurization tests. At low driving forces, exposures as long as 2000 hours were found insufficient to establish steady state creep. The experimental data at temperatures of 650 F to 800 F correlate well with an exponential stress dependence, and the activation energy for creep was found to be in excellent agreement with that for self-diffusion. The range of stresses and temperatures is too small to study the overall effect of these variables on the activation energy for creep. The experimental steady state creep-rates and those predicted from the creep equation used agree within a factor of 1.3. These correlations imply that the mechanism for hoop creep of Zircaloy-4 cladding is characterized by an activation energy of approximately 60 kcal/mole and an activation area of about 20b 3 . In addition, the exponential stress dependence implies that the activation area for creep is stress-independent. These results suggest that the climb of edge dislocations is the rate controlling mechanism for creep of Zircaloy-4. The transient creep regime was also analysed on the premise that primary creep is directly related to the rate of dispersal of dislocation entanglements by climb. (Auth.)

  5. Acoustic signal analysis in the creeping discharge

    International Nuclear Information System (INIS)

    Nakamiya, T; Sonoda, Y; Tsuda, R; Ebihara, K; Ikegami, T

    2008-01-01

    We have previously succeeded in measuring the acoustic signal due to the dielectric barrier discharge and discriminating the dominant frequency components of the acoustic signal. The dominant frequency components appear over 20kHz of acoustic signal by the dielectric barrier discharge. Recently surface discharge control technology has been focused from practical applications such as ozonizer, NO X reactors, light source or display. The fundamental experiments are carried to examine the creeping discharge using the acoustic signal. When the high voltage (6kV, f = 10kHz) is applied to the electrode, the discharge current flows and the acoustic sound is generated. The current, voltage waveforms of creeping discharge and the sound signal detected by the condenser microphone are stored in the digital memory scope. In this scheme, Continuous Wavelet Transform (CWT) is applied to discriminate the acoustic sound of the micro discharge and the dominant frequency components are studied. CWT results of sound signal show the frequency spectrum of wideband up to 100kHz. In addition, the energy distributions of acoustic signal are examined by CWT

  6. Ratchetting in the creep range

    International Nuclear Information System (INIS)

    Ponter, A.R.S.; Cocks, A.C.F.; Clement, G.; Roche, R.; Corradi, L.; Franchi, A.

    1985-01-01

    This report attempts to present a ''State of the Art'' of this problem from three contracting and complementary points of view which reflect separate traditions within the discipline of structural analysis. Part I gives a brief summary of the essential elements of the three constitutive parts and a set of conclusions and recommendations are then formulated. Part II is an attempt by a group at CEA Saclay, France, to distil from available experimental data a set of rules expressed in terms of the stress classifications of the ASME codes, which will ensure the prevention of excessive creep ratchetting. The resulting stresses to an effective (or reference) stress and the creep assessment is then made in terms of the creep produced by the effective stress. They aim at analytical procedures for LMFBR components that operate in the creep region and are subject to considerable thermal transients. Part III by Ponter and Cocks of the University of Leicester is a theoretical study of the problem using bounding and other approximate techniques. The problem is studied in a sequence of increasingly complex problems commencing with an isothermal structure subjected to constant load and terminating in a structure subjected to arbitrary cyclic thermal loading. The results are expressed in terms of a reference stress derived from a plastic shakedown solution, and a reference history of temperature. These techniques are capable of providing assessment of the creep deformation of a structure when the plastic shakedown properties of the structures are known. The particular circumstances which occur in a LMFBR are emphasized. Part IV by Corradi and Franchi discusses the methods by which finite element solution may be calculated. These are surveyed with particular reference to the numerical problems involved and the relationship between computational procedure and the form of the constitutive equation. 162 refs

  7. Compaction creep of sands due to time-dependent grain failure : Effects of chemical environment, applied stress, and grain size

    NARCIS (Netherlands)

    Brzesowsky, R. H.; Hangx, S. J. T.|info:eu-repo/dai/nl/30483579X; Brantut, N.; Spiers, C. J.|info:eu-repo/dai/nl/304829323

    2014-01-01

    Time-dependent brittle creep plays a role in controlling compaction of sands and sandstones under upper crustal conditions, influencing phenomena such as production-induced reservoir compaction, surface subsidence, and induced seismicity. Brittle creep also plays a role in determining the mechanical

  8. Low stress creep of stainless steel

    International Nuclear Information System (INIS)

    Crossland, I.G.; Clay, B.D.; Baker, C.

    1976-06-01

    The creep of 20%Cr, 25%Ni, Nb stainless steel has been examined at temperatures from 675 to 775 0 C at sheer stressed below 13 MPa and grain sizes from 6 to 20μm. The results have indicated that the initial creep rates were linearly dependent upon stress but with a threshold stress below which no creep occurred, i.e. Bingham behaviour; in addition, the creep activation energy at small strains was substantially lower than the lattice self-diffusion value and the initial creep rates were approximately related to the grain size through an inverse cube relation. It has been concluded that at low strains (approaching the initial elastic deflection) the creep mechanism was probably that of grain boundary diffusion creep (Coble, 1963) and this is further supported by the close agreement between the observed and theoretically predicted creep rate values. Steady-state creep rates were not observed; initially the creep rates fell rapidly with strain after which a more gradual decrease occurred. Whilst the creep rate - stress relationship continued to be of a Bingham form, the progressive reduction in creep rate with strain was found to be mainly attributable to an increase in the effective viscosity, threshold stress effects being generally of secondary importance. A model has been proposed which explains the initial creep rates as being due to Cable creep with elastic accommodation at grain boundary particles. At higher strains grain boundary collapse caused by vacancy sinking is accommodated at precipitate particles by plastic deformation of the adjacent matrix material. (author)

  9. Quantum skew divergence

    Energy Technology Data Exchange (ETDEWEB)

    Audenaert, Koenraad M. R., E-mail: koenraad.audenaert@rhul.ac.uk [Department of Mathematics, Royal Holloway University of London, Egham TW20 0EX, United Kingdom and Department of Physics and Astronomy, University of Ghent, S9, Krijgslaan 281, B-9000 Ghent (Belgium)

    2014-11-15

    In this paper, we study the quantum generalisation of the skew divergence, which is a dissimilarity measure between distributions introduced by Lee in the context of natural language processing. We provide an in-depth study of the quantum skew divergence, including its relation to other state distinguishability measures. Finally, we present a number of important applications: new continuity inequalities for the quantum Jensen-Shannon divergence and the Holevo information, and a new and short proof of Bravyi's Small Incremental Mixing conjecture.

  10. High temperature creep properties and microstructural examinations of P92 welds

    Energy Technology Data Exchange (ETDEWEB)

    Kalck, Charlotte; Giroux, Pierre-Francois [CEA Saclay, DEN/DANS/DMN/SRMA, Gif-sur-Yvette (France); MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux; Fournier, Benjamin; Barcelo, Francoise; Dalle, France; Ivan, Tournie [CEA Saclay, DEN/DANS/DMN/SRMA, Gif-sur-Yvette (France); Laurent, Forest [CEA Saclay, DEN/DANS/DM2S/LTA, Gif-sur-Yvette (France); Gourgues-Lorenzon, Anne-Francoise [MINES ParisTech, UMR CNRS, Evry (France). Centre des Materiaux

    2010-07-01

    The present study deals with the creep properties of welded joints made of P92 steels. The purpose is to determine the weakest zone at 550 C under various load levels (160-240 MPa) and to investigate the evolution of the microstructure during creep. The study of the fracture surfaces and the microstructural examination of welded joints prior to and after creep tests allow to investigate damage development. Ductile fracture occurs in the heat affected zone, more precisely, in the intercritical area, together with pronounced necking. Observation of the necking area shows many cavities and cracks. (orig.)

  11. Variational divergence in wave scattering theory with Kirchhoffean trial functions

    Science.gov (United States)

    Bird, J. F.

    1986-01-01

    In a recent study of variational improvement of the Kirchhoff approximation for electromagnetic scattering by rough surfaces, a key ingredient in the variational principle was found to diverge for important configurations (e.g., backscatter) if the polarization had any vertical component. The cause and a cure of this divergence are discussed here. The divergence is demonstrated to occur for arbitrary perfectly conducting scatterers and its universal characterstics are determined, by means of a general divergence criterion that is derived. A variational cure for the divergence is prescribed, and it is tested successfully on a standard scattering model.

  12. Radiation effects on time-dependent deformation: Creep and growth

    International Nuclear Information System (INIS)

    Simonen, E.P.

    1989-03-01

    Observations of irradiation creep strain as well as irradiation growth strain and related microstructures are reviewed and compared to mechanisms for radiation effects on time-dependent deformation. Composition, microstructure, stress and temperature affect irradiation creep less than thermal creep. Irradiation creep rates can often dominate thermal creep rates, particularly at low temperatures and low stresses. Irradiation creep mechanisms are classified in two general categories: (1) stress-induced preferential absorption and (2) climb-glide. In the former, creep results from dislocation climb, whereas in the latter, creep results from dislocation glide. The effects of irradiation creep on failure modes in nuclear environments are discussed. 53 refs., 18 figs., 1 tab

  13. Magnetothermoelastic creep analysis of functionally graded cylinders

    International Nuclear Information System (INIS)

    Loghman, A.; Ghorbanpour Arani, A.; Amir, S.; Vajedi, A.

    2010-01-01

    This paper describes time-dependent creep stress redistribution analysis of a thick-walled FGM cylinder placed in uniform magnetic and temperature fields and subjected to an internal pressure. The material creep, magnetic and mechanical properties through the radial graded direction are assumed to obey the simple power law variation. Total strains are assumed to be the sum of elastic, thermal and creep strains. Creep strains are time, temperature and stress dependent. Using equations of equilibrium, stress-strain and strain-displacement a differential equation, containing creep strains, for displacement is obtained. Ignoring creep strains in this differential equation a closed form solution for the displacement and initial magnetothermoelastic stresses at zero time is presented. Initial magnetothermoelastic stresses are illustrated for different material properties. Using Prandtl-Reuss relation in conjunction with the above differential equation and the Norton's law for the material uniaxial creep constitutive model, the radial displacement rate is obtained and then the radial and circumferential creep stress rates are calculated. Creep stress rates are plotted against dimensionless radius for different material properties. Using creep stress rates, stress redistributions are calculated iteratively using magnetothermoelastic stresses as initial values for stress redistributions. It has been found that radial stress redistributions are not significant for different material properties, however major redistributions occur for circumferential and effective stresses.

  14. Neutron irradiation creep in stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuele, Wolfgang (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy)); Hausen, Hermann (Commission of the European Union, Institute for Advanced Materials, I-21020 Ispra (Vatican City State, Holy See) (Italy))

    1994-09-01

    Irradiation creep elongations were measured in the HFR at Petten on AMCR steels, on 316 CE-reference steels, and on US-316 and US-PCA steels varying the irradiation temperature between 300 C and 500 C and the stress between 25 and 300 MPa. At the beginning of an irradiation a type of primary'' creep stage is observed for doses up to 3-5 dpa after which dose the secondary'' creep stage begins. The primary'' creep strain decreases in cold-worked steel materials with decreasing stress and decreasing irradiation temperature achieving also negative creep strains depending also on the pre-treatment of the materials. These primary'' creep strains are mainly attributed to volume changes due to the formation of radiation-induced phases, e.g. to the formation of [alpha]-ferrite below about 400 C and of carbides below about 700 C, and not to irradiation creep. The secondary'' creep stage is found for doses larger than 3 to 5 dpa and is attributed mainly to irradiation creep. The irradiation creep rate is almost independent of the irradiation temperature (Q[sub irr]=0.132 eV) and linearly dependent on the stress. The total creep elongations normalized to about 8 dpa are equal for almost every type of steel irradiated in the HFR at Petten or in ORR or in EBR II. The negative creep elongations are more pronounced in PCA- and in AMCR-steels and for this reason the total creep elongation is slightly smaller at 8 dpa for these two steels than for the other steels. ((orig.))

  15. Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100

    Science.gov (United States)

    Wan, Quanhe; Quesnel, David J.

    2013-03-01

    The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.

  16. Diffusive intergranular cavity growth in creep in tension and torsion

    International Nuclear Information System (INIS)

    Stanzl, S.E.; Argon, A.S.; Tschegg, E.K.

    1983-01-01

    Creep experiments were performed at 500 C in tension and torsion on high conductivity copper tubes with a uniform initial coverage of implanted water vapor bubbles on all grain boundaries. No significant differences were found in the times to fracture over a wide stress range when the results were correlated according to the maximum principal tensile stress in the two fields. The results indicate that the cavities grow in a crack-like mode but at one tenth the rate predicted from the theoretical model of Pharr and Nix. This difference is attributed partly to load shedding from boundaries normal to the maximum principal tensile stress to slanted boundaries, and partly to a lack of knowledge about th surface diffusion constant. The results indicate further that the contribution to intergranular cavity growth by power-law creep in negligible in comparison to the contribution by diffusional flow. Complementary tension and torsion experiments performed in initially uncavitated samples results in shorter creep lives in torsion than in tension due to more effective cavity nucleation in the former. The times to fracture in both of these cases obey Monkman and Grant's law, indicating the presence of constraints on growth by the lagging deformations by power-law creep in the surroundings of the cavitating isolated grain facets

  17. Influence of flowing sodium on creep deformation and rupture behaviour of 316L(N) austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, S., E-mail: sravi@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Laha, K.; Mathew, M.D. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Vijayaraghavan, S.; Shanmugavel, M.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2012-08-15

    The influence of flowing sodium on creep deformation and rupture behaviour of AISI 316L(N) austenitic stainless steel has been investigated at 873 K over a stress range of 235-305 MPa. The results were compared with those obtained from testing in air environment. The steady state creep rates of the material were not influenced appreciably by the testing environments. The time to onset of tertiary stage of creep deformation was delayed in sodium environment. The creep-rupture lives of the material increased in sodium environment, which became more pronounced at lower applied stresses. The increase in rupture life of the material in flowing sodium was accompanied by an increase in rupture ductility. The creep damage on specimen surface as well as inside the specimen was less in specimen tested in sodium. SEM fractographic investigation revealed predominantly transgranular dimple failure for the specimen tested in sodium, whereas predominantly intergranular creep failure was observed in the air tested specimens. Almost no oxidation was observed in the specimens creep tested in the sodium environment. Absence of oxidation and less creep damage cavitation extended the secondary state in liquid sodium tests and lead to increase in creep rupture life and ductility of the material as compared to in air.

  18. High-Temperature Creep Behaviour and Positive Effect on Straightening Deformation of Q345c Continuous Casting Slab

    Science.gov (United States)

    Guo, Long; Zhang, Xingzhong

    2018-03-01

    Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.

  19. Influence of Hold Time and Stress Ratio on Cyclic Creep Properties Under Controlled Tension Loading Cycles of Grade 91 Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung; Ekaputra, I Made Wicaksana; Kim, Seon Jin

    2017-01-01

    Influences of hold time and stress ratio on cyclic creep properties of Grade 91 steel were systemically investigated using a wide range of cyclic creep tests, which were performed with hold times (HTs) of 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, and 30 minutes and stress ratios (R) of 0.5, 0.8, 0.85, 0.90, and 0.95 under tension loading cycles at 600°C. Under the influence of HT, the rupture time increased to HT = 5 minutes at R = 0.90 and R = 0.95, but there was no influence at R = 0.50, 0.80, and 0.85. The creep rate was constant regardless of an increase in the HT, except for the case of HT = 5 minutes at R = 0.90 and R = 0.95. Under the influence of stress ratio, the rupture time increased with an increase in the stress ratio, but the creep rate decreased. The cyclic creep led to a reduction in the rupture time and an acceleration in the creep rate compared with the case of monotonic creep. Cyclic creep was found to depend dominantly on the stress ratio rather than on the HT. Fracture surfaces displayed transgranular fractures resulting from microvoid coalescence, and the amount of microvoids increased with an increase in the stress ratio. Enhanced coarsening of the precipitates in the cyclic creep test specimens was found under all conditions

  20. Development of nondestructive evaluation of creep-fatigue damage in SUS316 stainless steel

    International Nuclear Information System (INIS)

    Shoji, Tetsuo; Kawahara, Tetsuji; Awano, Masakazu; Sato, Yasumoto

    1999-01-01

    Creep-fatigue is a fatal failure mode of high temperature structural materials. It is recognized that the law of linear damage, according to which creep-fatigue damage is expressed by the sum of the creep damage and the fatigue damage, is inadequate to evaluate creep-fatigue damage. This is due to the fact that the law of linear damage does not include the effect of interaction between the creep damage and the fatigue damage. Consequently, development of direct measurement of damage accumulation on the sample of interest is required for plant life evaluation. In this study, the induced current focusing potential drop (ICFPD) technique was used to evaluate the depth of small surface cracks in SUS316FR stainless steel which was subjected to creep-fatigue damage. It is shown that the potential drop increased during the micro-crack initiation and propagation. Correspondingly, the ICFPD technique applied to estimate micro-crack depth changes was used to accurately evaluate the residual life of creep-fatigue damaged structural materials. (author)

  1. Creep damage behaviour of modified 9Cr-1Mo steel weld joints

    International Nuclear Information System (INIS)

    Sakthivel, T.; Laha, K.; Vasudevan, M.; Panneer Selvi, S.

    2016-01-01

    Creep deformation and rupture behaviour of modified 9Cr-1Mo steel weld joints fabricated by single-pass activated TIG (A-TIG) and shielded metal arc welding (SMAW) processes have been investigated at 923 K over a stress range of 50 to 110 MPa after post weld heat treatment (PWHT). The weld joints exhibited significantly lower creep rupture lives than the base metal at lower applied stresses. Creep rupture location of the weld joints were found to occur in the ICHAZ. An extensive localized creep deformation, coarsening of M 23 C 6 precipitates in the ICHAZ with creep exposure led to the premature type IV failure of the joints. The coarsening of M 23 C 6 precipitates was extensive in the mid-section of the ICHAZ than the sub-surface of the joints, and was more predominant in the SMAW joint. While A-TIG weld joint exhibited reduced creep cavitation and coarsening of M 23 C 6 precipitates due to lower deformation constraints by adjacent regions in the ICHAZ. Hence, A-TIG weld joint exhibited higher creep rupture life than the SMAW joint. (author)

  2. Cumulative fatigue and creep-fatigue damage at 3500C on recrystallized zircaloy 4

    International Nuclear Information System (INIS)

    Brun, G.; Pelchat, J.; Floze, J.C.; Galimberti, M.

    1985-06-01

    An experimental programme undertaken by C.E.A., E.D.F. and FRAGEMA with the aim of characterizing the fatigue and creep fatigue behaviour of zircaloy-4 following annealing treatments (recrystallized, stress-delived) is in progress. The results given below concern only recrystallized material. Cyclic properties, low-cycle fatigue curves and creep behaviour laws under stresses have been established. Sequential tests of pure fatigue and creep-fatigue were performed. The cumulative life fractions at fracture depend on the sequence of leading, stress history and number of cycles of prestressing. The MINER's rule appears to be conservative with regard to a low-high loading sequence whereas it is not for the reverse high-low loading sequences. Fatigue and creep damage are not interchangeable. Pre-creep improves the fatigue resistance. Pre-fatigue improves the creep strength as long as the beneficial effect of cyclic hardening overcomes the damaging effect of surface cracking. The introduction of a tension hold time into the fatigue cycle slightly increases cyclic hardening and reduces the number of cycles to failure. For hold times of less than one hour, the sum of fatigue and creep life fractions is closed to one

  3. A study on creep properties of laminated rubber bearings. Pt. 1. Creep properties and numerical simulations of thick rubber bearings

    International Nuclear Information System (INIS)

    Matsuda, Akihiro; Yabana, Shuichi

    2000-01-01

    In this report, to evaluate creep properties and effects of creep deformation on mechanical properties of thick rubber bearings for three-dimensional isolation system, we show results of compression creep test for rubber bearings of various rubber materials and shapes and development of numerical simulation method. Creep properties of thick rubber bearings were obtained from compression creep tests. The creep strain shows steady creep that have logarithmic relationships between strain and time and accelerated creep that have linear relationships. We make numerical model of a rubber material with nonlinear viscoelastic constitutional equations. Mechanical properties after creep loading test are simulated with enough accuracy. (author)

  4. Creep in commercially pure metals

    International Nuclear Information System (INIS)

    Nabarro, F.R.N.

    2006-01-01

    The creep of commercially pure polycrystalline metals under constant stress has four stages: a virtually instantaneous extension, decelerating Andrade β creep, almost steady-state Andrade κ creep, and an acceleration towards failure. Little is known about the first stage, and the fourth stage has been extensively reviewed elsewhere. The limited experimental evidence on the physical mechanism of the second stage is reviewed and a critical discussion is given of various theories of this stage. The dependence of strain rate on stress in the third, steady-state, period seems to fall into two regimes, a power law with an exponent of about 4-5, and a rather closely exponential law. The limits of the parameters within which a simple theory of the exponential dependence can be expected to be valid are discussed, and found to be compatible with experiments. Theories of the power-law dependence are discussed, and, appear to be unconvincing. The theoretical models do not relate closely to the metallographic and other physical observations. In view of the weakness of theory, experiments which may indicate the physical processes dominant in steady-state creep are reviewed. It is usually not clear whether they pertain to the power-law or the exponential regime. While the theories all assume that most of the deformation occurs homogeneously within the grains, most experimental observations point strongly to a large deformation at or close to the grain boundaries. However, a detailed study of dislocation processes in a single grain of polycrystalline foil strained in the electron microscope shows that most of the observed strain can be accounted for by the motion of single dislocations through the subgrain structure. There is no clear reconciliation of these two sets of observations. Grain-boundary sliding cannot occur without intragranular deformation. One or other process may dominate the overall deformation; the geometrically dominant process may not be the rate

  5. Influences of cyclic deformation on creep property and creep-fatigue life prediction considering them

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    2009-01-01

    Evaluation of creep-fatigue is essential in design and life management of high-temperature components in power generation plants. Cyclic deformation may alter creep property of the materials and its consideration may improve predictability of creep-fatigue failure life. To understand them, creep tests were conducted for the materials subjected to cyclic loading and their creep rupture and deformation behaviors were compared with those of as-received materials. Both 316FR and modified 9Cr-1Mo steel were tested. (1) Creep rupture time and elongation generally tend to decrease with cyclic loading in both materials, and especially elongation of 316FR drastically decreases by being cyclically deformed. (2) Amount of primary creep deformation decreases by cyclic loading and the ways to improve its predictability were developed. (3) Use of creep rupture ductility after cyclic deformation, instead of that of as-received material, brought about clear improvement of life prediction in a modified ductility exhaustion approach. (author)

  6. Influence of reference stress formulae on creep and creep-fatigue crack initiation and growth prediction in plate components

    Energy Technology Data Exchange (ETDEWEB)

    Wasmer, K., E-mail: kilian.wasmer@empa.c [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nikbin, K.M.; Webster, G.A. [Department of Mechanical Engineering, Imperial College London, London SW7 2BX (United Kingdom)

    2010-08-15

    Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 {sup o}C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C* and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C*. Several formulae exist for calculating the reference stress depending on whether it is based on a 'global' or a 'local' collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the 'global' reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to -1.0 is to cause an acceleration in the early stage of cracking.

  7. Influence of reference stress formulae on creep and creep-fatigue crack initiation and growth prediction in plate components

    International Nuclear Information System (INIS)

    Wasmer, K.; Nikbin, K.M.; Webster, G.A.

    2010-01-01

    Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 o C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C* and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C*. Several formulae exist for calculating the reference stress depending on whether it is based on a 'global' or a 'local' collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the 'global' reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to -1.0 is to cause an acceleration in the early stage of cracking.

  8. Room temperature creep in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deibler, Lisa Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Characterization and Performance

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  9. Creep of parylene-C film

    KAUST Repository

    Lin, Jeffrey Chun-Hui

    2011-06-01

    The glass transition temperature of as-deposited parylene-C is first measured to be 50°C with a ramping-temperature-dependent modulus experiment. The creep behavior of parylene-C film in the primary and secondary creep region is then investigated below and above this glass transition temperature using a dynamic mechanical analysis (DMA) machine Q800 from TA instruments at 8 different temperatures: 10, 25, 40, 60, 80, 100, 120 and 150°C. The Burger\\'s model, which is the combined Maxwell model and Kelvin-Voigt model, fits well with our primary and secondary creep data. Accordingly, the results show that there\\'s little or no creep below the glass transition temperature. Above the glass transition temperature, the primary creep and creep rate increases with the temperature, with a retardation time constant around 6 minutes. © 2011 IEEE.

  10. Creep Strength of Discontinuous Fibre Composites

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker

    1974-01-01

    relation between stress and strain rate. Expressions for the interface stress, the creep velocity profile adjacent to the fibres and the creep strength of the composite are derived. Previous results for the creep strength, sc = aVfs0 ( \\frac[( Î )\\dot] [( Î )\\dot] 0 )1/nr1 + 1/n c=Vf001n1+1n in which[( Î...... )\\dot] is the composite creep rate,V f is the fibre volume fraction,sgr 0,epsi 0 andn are the constants in the matrix creep law. The creep strength coefficient agr is found to be very weakly dependent onV f and practically independent ofn whenn is greater than about 6....

  11. Flexural creep behaviour of jute polypropylene composites

    Science.gov (United States)

    Chandekar, Harichandra; Chaudhari, Vikas

    2016-09-01

    Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.

  12. Creep rupture behavior of unidirectional advanced composites

    Science.gov (United States)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  13. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  14. Creep effects in diffusion bonding of oxygen-free copper

    CERN Document Server

    Moilanen, Antti

    Diffusion is the transport of atoms or particles through the surrounding material. Various microstructural changes in metals are based on the diffusion phenomena. In solid metals the diffusion is closely related to crystallographic defects. In single-component metals the dominant mechanism of diffusion is the vacancy mechanism. Diffusion bonding is a direct technological application of diffusion. It is an advanced solidstate joining process in which the surfaces of two components are brought to contact with each other and heated under a pressing load in a controlled environment. During the process, the contact surfaces are bonded by atomic diffusion across the interface and as a result, one solid piece is formed. The condition of high temperature and low applied stress combined with relatively long process duration enables the creep effects to take place in bonded metals. Furthermore, creep causes unwanted permanent deformations in the bonded components. Some authors suggest that there could be a threshold fo...

  15. Tensile creep of beta phase zircaloy-2

    International Nuclear Information System (INIS)

    Burton, B.; Reynolds, G.L.; Barnes, J.P.

    1977-08-01

    The tensile creep and creep rupture properties of beta-phase zircaloy-2 are studied under vacuum in the temperature and stress range 1300-1550 K and 0.5-2 MN/m 2 . The new results are compared with previously reported uniaxial and biaxial data. A small but systematic difference is noted between the uniaxial and biaxial creep data and reasons for this discrepancy are discussed. (author)

  16. Viscoelastic creep of high-temperature concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  17. Influence of stress on creep deformation properties of 9-12Cr ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, K.; Sawada, K.; Kushima, H. [National Institute for Materials Science (Japan)

    2008-07-01

    Creep deformation property of 9-12Cr ferritic creep resistant steels was investigated. With decrease in stress, a magnitude of creep strain at the onset of accelerating creep stage decreased from about 2% in the short-term to less than 1% in the longterm. A time to 1% total strain was observed in the transient creep stage in the short term regime, however, it shifted to the accelerating creep stage in the long-term regime. Life fraction of the times to 1% creep strain and 1% total strain tended to increase with decrease in stress. Difference in stress dependence of the minimum creep rate was observed in the high- and low-stress regimes with a boundary condition of 50% of 0.2% offset yield stress. Stress dependence of the minimum creep rate in the high stress regime was equivalent to a strain rate dependence of the flow stress evaluated by tensile test, and a magnitude of stress exponent, n, in the high stress regime decreased with increase in temperature from 20 at 550 C to 10 at 700 C. On the other hand, n value in the low stress regime was about 5, and creep deformation in the low stress regime was considered to be controlled by dislocation climb. Creep rupture life was accurately predicted by a region splitting method by considering a change in stress dependence of creep deformation. (orig.)

  18. Eccentric pressurized tube for measuring creep rupture

    International Nuclear Information System (INIS)

    Schwab, P.R.

    1981-01-01

    Creep rupture is a long term failure mode in structural materials that occurs at high temperatures and moderate stress levels. The deterioration of the material preceding rupture, termed creep damage, manifests itself in the formation of small cavities on grain boundaries. To measure creep damage, sometimes uniaxial tests are performed, sometimes density measurements are made, and sometimes the grain boundary cavities are measured by microscopy techniques. The purpose of the present research is to explore a new method of measuring creep rupture, which involves measuring the curvature of eccentric pressurized tubes. Theoretical investigations as well as the design, construction, and operation of an experimental apparatus are included in this research

  19. Low stress creep behaviour of zirconium

    International Nuclear Information System (INIS)

    Prasad, N.

    1989-01-01

    Creep behaviour of alpha zirconium of grain size varying between 16 and 55 μm has been investigated in the temperature range 813 to 1003K at stresses upto 5.5 MNm -2 using high sensitive spring specimen geometry. Creep experiments on specimens of 50 μm grain size revealed a transition from lattice diffusion controlled viscous creep at temperatures greater than 940K to grain boundary diffusion controlled viscous creep at lower temperatures. Tests conducted on either side of the transition suggest the dominance of Nabarro-Herring and Coble creep processes respectively. Evidence for power-law creep has been observed in practically all the creep tests. Based on the experimental data obtained in the present study and those recently reported by Novotny et al (1985), Langdon creep mechanism maps have bee n constructed at 873 and 973K. With the help of these maps for zirconium and those published for titanium the low stress creep behaviour of zirconium and titanium are compared. (author). 22 refs., 11 figs., 3 tabs

  20. Muscle Activity Adaptations to Spinal Tissue Creep in the Presence of Muscle Fatigue

    Science.gov (United States)

    Nougarou, François

    2016-01-01

    Aim The aim of this study was to identify adaptations in muscle activity distribution to spinal tissue creep in presence of muscle fatigue. Methods Twenty-three healthy participants performed a fatigue task before and after 30 minutes of passive spinal tissue deformation in flexion. Right and left erector spinae activity was recorded using large-arrays surface electromyography (EMG). To characterize muscle activity distribution, dispersion was used. During the fatigue task, EMG amplitude root mean square (RMS), median frequency and dispersion in x- and y-axis were compared before and after spinal creep. Results Important fatigue-related changes in EMG median frequency were observed during muscle fatigue. Median frequency values showed a significant main creep effect, with lower median frequency values on the left side under the creep condition (p≤0.0001). A significant main creep effect on RMS values was also observed as RMS values were higher after creep deformation on the right side (p = 0.014); a similar tendency, although not significant, was observed on the left side (p = 0.06). A significant creep effects for x-axis dispersion values was observed, with higher dispersion values following the deformation protocol on the left side (p≤0.001). Regarding y-axis dispersion values, a significant creep x fatigue interaction effect was observed on the left side (p = 0.016); a similar tendency, although not significant, was observed on the right side (p = 0.08). Conclusion Combined muscle fatigue and creep deformation of spinal tissues led to changes in muscle activity amplitude, frequency domain and distribution. PMID:26866911

  1. Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test.

    Science.gov (United States)

    Chuang, Shu-Fen; Lin, Shih-Yun; Wei, Pal-Jen; Han, Chang-Fu; Lin, Jen-Fin; Chang, Hsien-Chang

    2015-07-16

    Dentin is the main supporting structure of teeth, but its mechanical properties may be adversely affected by pathological demineralization. The purposes of this study were to develop a quantitative approach to characterize the viscoelastic properties of dentin after de- and re-mineralization, and to examine the elastic properties using a nanoindentation creep test. Dentin specimens were prepared to receive both micro- and nano-indentation tests at wet and dry states. These tests were repeatedly performed after demineralization (1% citric acid for 3 days) and remineralization (artificial saliva immersion for 28 days). The nanoindentation test was executed in a creep mode, and the resulting displacement-time responses were disintegrated into primary (transient) and secondary (viscous) creep. The structural changes and mineral densities of dentin were also examined under SEM and microCT, respectively. The results showed that demineralization removed superficial minerals of dentin to the depth of 400 μm, and affected its micro- and nano-hardness, especially in the hydrate state. Remineralization only repaired the minerals at the surface layer, and partially recovered the nanohardness. Both the primary the secondary creep increased in the demineralized dentin, while the hydration further enhanced creep deformation of untreated and remineralized dentin. Remineralization reduced the primary creep of dentin, but did not effectively increase the viscosity. In conclusion, water plasticization increases the transient and viscous creep strains of demineralized dentin and reduces load sustainability. The nanoindentation creep test is capable of analyzing the elastic and viscoelastic properties of dentin, and reveals crucial information about creep responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Development status und future possibilities for martensitic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Hald, J. [Technical Univ. Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering

    2010-07-01

    In the last four decades new stronger modified 9%Cr martensitic creep resistant steels have been introduced in power plants, which has enabled increases in maximum achievable steam conditions from the previous 250 bar and 540-560 C up to the values of 300 bar and 600-620 C currently being introduced all over the world. In order to further increase the steam parameters of steel based power plants up to a target value of 650 C/325 bar it is necessary to double the creep strength of the martensitic steels. At the same time the resistance against steam oxidation must be improved by an increase of the chromium content in the steels from 9% to 12%. However, so far all attempts to make stronger 12%Cr steels have led to breakdowns in long-term creep strength. Significant progress has been achieved in the understanding of microstructure stability of the martensitic 9-12%Cr steels: Observed microstructure instabilities in 11-12%Cr steels are explained by Z-phase precipitation, which dissolves fine MN nitrides. Improved understanding of effects of B and N on long-term creep properties has formed the basis of a series of new stronger 9%Cr test alloys with improved creep strength. In parallel 9%Cr test steels with low C content show very promising behavior in long-term tests. However, the 9%Cr steels must be surface coated to protect against steam oxidation at high temperature applications above 620%C. A possibility to use fine Z-phases for strengthening of the martensitic steels has been identified, and this opens a new pathway for development of stable strong 12%Cr steels. There are still good prospects for the realization of a 325 bar / 650 C steam power plant all based on steel. (orig.)

  3. Study of oxide layers in creep of Ti alloy

    International Nuclear Information System (INIS)

    Reis, D.A.P.; Moura Neto, C.; Machado, J.P.B.; Martins, G.V.; Barboza, M.J.R.

    2009-01-01

    The present study is about the effect of oxide layers in creep of Ti-6Al-4V alloy, in different atmospheres (air, nitrogen and argon). Ti-6Al-4V alloy was treated during 24 hours in a thermal treatment furnace at 600°C in different atmospheres (argon, nitrogen and air). The samples were analyzed by High Resolution X-Ray Diffraction, Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM) and microhardness test. The polished samples of Ti-6Al-4V alloy were treated during 24 hours at 600°C and the oxidation behavior in each case using argon, nitrogen and air atmospheres was observed. The oxidation was more aggressive in air atmosphere, forming TiO 2 film in the surface. The oxidation produced a weight gain through the oxide layer growth and hardening by oxygen dissolution. Ti-6Al-4V alloy specimens also were produced in order to test them in creep, at 250 MPa and 600 deg C, with argon, nitrogen and air atmospheres. When the Ti-6Al-4V alloy was tested under argon and nitrogen atmospheres oxidation effects are smaller and the behavior of the creep curves shows that the creep life time was better in atmospheres not so oxidant. It is observed a decreasing of steady state creep in function of the oxidation process reduction. It is shown that, for the Ti-6Al-4V alloy, their useful life is strongly affected by the atmosphere that is submitted, on account of the oxidation suffered by the material. (author)

  4. Development of an accelerated creep testing procedure for geosynthetics.

    Science.gov (United States)

    1997-09-01

    The report presents a procedure for predicting creep strains of geosynthetics using creep tests at elevated temperatures. Creep testing equipment was constructed and tests were performed on two types of geosynthetics: High Density Polyethylene (HDPE)...

  5. Study on the creep constitutive equation of Hastelloy X, (1)

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Mutoh, Yasushi

    1983-01-01

    A creep constitutive equation of Hastelloy X was obtained from available experimental data. A sensitivity analysis of this creep constitutive equation was carried out. As the result, the following were revealed: (i) Variations in creep behavior with creep constitutive equation are not small. (ii) In a simpler stress change pattern, variations in creep behavior are similar to those in the corresponding fundamental creep characteristics (creep strain curve, stress relaxation curve, etc.). (iii) Cumulative creep damage estimated in accordance with ASME Boiler and Pressure Vessel Code Case N-47 from a stress history predicted by ''the standard creep constitutive equation'' which predicts the average behavior of creep strain curve data is not thought to be on the safe side on account of uncertainties in creep damage caused by variations in creep strain curve. (author)

  6. Model for transient creep of southeastern New Mexico rock salt

    International Nuclear Information System (INIS)

    Herrmann, W.; Wawersik, W.R.; Lauson, H.S.

    1980-11-01

    In a previous analysis, existing experimental data pertaining to creep tests on rock salt from the Salado formation of S.E. New Mexico were fitted to an exponential transient creep law. While very early time portions of creep strain histories were not fitted very well for tests at low temperatures and stresses, initial creep rates in particular generally being underestimated, the exponential creep law has the property that the transient creep strain approaches a finite limit with time, and is therefore desirable from a creep modelling point of view. In this report, an analysis of transient creep is made. It is found that exponential transient creep can be related to steady-state creep through a universal creep curve. The resultant description is convenient for creep analyses where very early time behavior is not important

  7. Evaluation procedure of creep-fatigue defect growth in high temperature condition and application

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2003-12-01

    This study proposed the evaluation procedure of creep-fatigue defect growth on the high-temperature cylindrical structure applicable to the KALIMER, which is developed by KAERI. Parameters used in creep defect growth and the evaluation codes with these parameters were analyzed. In UK, the evaluation procedure of defect initiation and growth were proposed with R5/R6 code. In Japan, simple evauation method was proposed by JNC. In France, RCC-MR A16 code which was evaluation procedure of the creep-fatigue defect initiation and growth related to leak before break was developed, and equations related to load conditions were modified lately. As an application example, the creep-fatigue defect growth on circumferential semi-elliptical surface defect in high temperature cylindrical structure was evaluated by RCC-MR A16

  8. Creep collapse of thick-walled heat transfer tube subjected to external pressure at high temperature

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Kaji, Yoshiyuki; Terunuma, Isao; Nekoya, Shin-ichi; Miyamoto, Yoshiaki

    1994-09-01

    A series of creep collapse tests of thick-walled heat transfer tube were examined experimentally and analytically to confirm an analytical method for creep deformation behavior of a heat transfer tube of an intermediate heat exchanger (IHX) at a depressurization accident of secondary cooling system of HTTR (High Temperature Engineering Test Reactor). The tests were carried out using thick-walled heat transfer tubes made of Hastelloy XR at 950degC in helium gas environment. The predictions of creep collapse time obtained by a general purpose FEM-code ABAQUS were in good agreement with the experimental results. A lot of cracks were observed on the outer surface of the test tubes after the creep collapse. However, the cracks did not pass through the tube wall and, therefore, the leak tightness was maintained regardless of a collapse deformation for all tubes tested. (author)

  9. Creep deformation behavior of weld metal and heat affected zone on 316FR steel thick plate welded joint

    International Nuclear Information System (INIS)

    Hongo, Hiromichi; Yamazaki, Masayoshi; Watanabe, Takashi; Kinugawa, Junichi; Tanabe, Tatsuhiko; Monma, Yoshio; Nakazawa, Takanori

    1999-01-01

    Using hot-rolled 316FR stainless plate (50 mm thick) and 16Cr-8Ni-2Mo filler wire, a narrow-gap welded joint was prepared by GTAW (gas tungsten arc welding) process. In addition to conventional round bar specimens of base metals and weld metal, full-thickness joint specimens were prepared for creep test. Creep tests were conducted at 550degC in order to examine creep deformation and rupture behavior in the weld metal of the welded joint. Creep strain distribution on the surface of the joint specimen was measured by moire interferometry. In the welded joint, creep strength of the weld metal zone apart from the surface was larger than that in the vicinity of the surface due to repeating heat cycles during welding. Creep strain and creep rate within the HAZ adjacent to the weld metal zone were smaller than those within the base metal zone. Creep rate of the weld metal zone in the welded joint was smaller than that of the weld metal specimen due to the restraint of the hardened HAZ adjacent to the zone. The full-thickness welded joint specimens showed longer lives than weld metal specimens, though the lives of the latter was shorter than those of the base metal (undermatching). In the full-thickness welded joint specimen, crack started from the last pass layer of the weld metal zone and fracture occurred at the zone. From the results mentioned above, in order to evaluate the creep properties of the welded joint correctly, it is necessary to conduct the creep test using the full-thickness welded joint specimen which includes the weakest zones of the weld metal, the front and back sides of the plate. (author)

  10. Creep properties of a thermally grown alumina

    Energy Technology Data Exchange (ETDEWEB)

    Kang, K.J. [Department of Mechanical Engineering, Chonnam National University, Kwangju 500-757 (Korea, Republic of)], E-mail: kjkang@chonnam.ac.kr; Mercer, C. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States)

    2008-04-15

    A unique test system has been developed to measure creep properties of actual thermally grown oxides (TGO) formed on a metal foil. The thickness of TGO, load and displacement can be monitored in situ at high temperature. Two batches of FeCrAlY alloys which differ from each other in contents of yttrium and titanium were selected as the {alpha}-Al{sub 2}O{sub 3} TGO forming materials. The creep tests were performed on {alpha}-Al{sub 2}O{sub 3} of thickness 1-4 {mu}m, thermally grown at 1200 deg. C in air. The strength of the substrate was found to be negligible, provided that the TGO and substrate thickness satisfy: h{sub TGO} > 1 {mu}m and H{sub sub} {<=} 400 {mu}m. The steady-state creep results for all four TGO thicknesses obtained on batch I reside within a narrow range, characterized by a parabolic creep relation. It is nevertheless clear that the steady-state creep rates vary with TGO thickness: decreasing as the thickness increases. For batch II, the steady-state creep rates are higher and now influenced more significantly by TGO thickness. In comparison with previous results of the creep properties for bulk polycrystalline {alpha}-Al{sub 2}O{sub 3} at a grain size of {approx}2 {mu}m, the creep rates for the TGO were apparently higher, but both were significantly affected by yttrium content. The higher creep rate and dependency on the TGO thickness led to a hypothesis that the deformation of the TGO under tensile stress at high temperature was not a result of typical creep mechanisms such as diffusion of vacancies or intra-granular motion of dislocations, but a result of inter-grain growth of TGO. Results also indicate that the amount of yttrium may influence the growth strain as well as the creep rate.

  11. The prediction of creep damage in Type 347 weld metal: part II creep fatigue tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In part I of this paper the rupture strength and creep ductility data for a Type 347 weld metal were fitted to provide the material properties that are used to calculate creep damage. Part II of this paper examines whether the time fraction approach or the ductility exhaustion approach gives the better predictions of creep damage in creep-fatigue tests on the same Type 347 weld metal. In addition, a new creep damage model, which was developed by removing some of the simplifying assumptions that are made in the ductility exhaustion approach, was used. This new creep damage model is a function of the strain rate, stress and temperature and was derived from creep and constant strain rate test data using a reverse modelling technique (see part I of this paper). It is shown that the new creep damage model gives better predictions of creep damage in the creep-fatigue tests than the time fraction and the ductility exhaustion approaches

  12. Creep and creep recovery of concrete subjected to triaxial compressive stresses at elevated temperature

    International Nuclear Information System (INIS)

    Ohnuma, Hiroshi; Abe, Hirotoshi

    1979-01-01

    In order to design rationally the vessels made of prestressed concrete for nuclear power stations and to improve the accuracy of high temperature creep analysis, the Central Research Institute of Electric Power Industry had carried out the proving experiments with scale models. In order to improve the accuracy of analysis, it is important to grasp the creep behavior of the concrete subjected to triaxial compressive stresses at high temperature as the basic property of concrete, because actual prestressed concrete vessels are in such conditions. In this paper, the triaxial compression creep test at 60 deg. C using the concrete specimens with same mixing ratio as the scale models is reported. The compressive strength of the concrete at the age of 28 days was 406 kg/cm 2 , and the age of the concrete at the time of loading was 63 days. Creep and creep recovery were measured for 5 months and 2 months, respectively. The creep of concrete due to uniaxial compression increased with temperature rise, and the creep strain at 60 deg. C was 2.54 times as much as that at 20 deg. C. The effective Poisson's ratio in triaxial compression creep was 0.15 on the average, based on the creep strain due to uniaxial compression at 60 deg. C. The creep recovery rate in high temperature, triaxial compression creep was 33% on the average. (Kako, I.)

  13. Converging or Diverging Lens?

    Science.gov (United States)

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  14. Creep of Li2O

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Arthur, B.; Lui, Y.Y.

    1985-01-01

    The objective of this effort was to obtain data on the performance of lithium ceramic materials during fast neutron irradiation in support of solid breeder blanket designs. Li 2 O has been observed to swell (greater than or equal to 4%) under fast reactor irradiation. Fortunately, Li 2 O deforms at low temperatures so that swelling strains may be internally accommodated. Laboratory creep experiments were conducted between 500 to 700 0 C in order to provide data for structural analysis of in-reactor experiments and blanket design studies. A densification model agreed with most of the available data

  15. Creep of Li2O

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Liu, Y.Y.; Arthur, B.

    1984-11-01

    The tritium breeding material with the highest lithium atom density, Li 2 O has been observed to incur significant swelling (>4%) under fast reactor irradiation. Such swelling, if unrestrained leads to either unacceptable, induced-strains in adjacent structural material or undesirable design compromises. Fortunately, however, Li 2 O deforms at low temperatures so that swelling strains may be internally accommodated. Laboratory dilational creep experiments were conducted on unirradiated Li 2 O between 500 and 700 0 C in order to provide data for structural analysis of in-reactor experiments and blanket design studies. A densification model agreed with most of the available data

  16. Ion divergence in magnetically insulated diodes

    International Nuclear Information System (INIS)

    Slutz, S.A.; Lemke, R.W.; Pointon, T.D.; Desjarlais, M.P.; Johnson, D.J.; Mehlhorn, T.A.; Filuk, A.; Bailey, J.

    1995-01-01

    Magnetically insulated ion diodes are being developed to drive inertial confinement fusion. Ion beam microdivergence must be reduced to achieve the very high beam intensities required to achieve this goal. Three-dimensional particle-in-cell simulations indicate that instability induced fluctuations can produce significant ion divergence during acceleration. These simulations exhibit a fast growing mode early in time, which has been identified as the diocotron instability. The divergence generated by this mode is modest due to the relatively high frequency (>1GHz). Later, a low-frequency low-phase-velocity instability develops. This instability couples effectively to the ions, since the frequency is approximately the reciprocal of the ion transit time, and can generate unacceptably large ion divergences (>30 mrad). Linear stability theory reveals that this mode requires perturbations parallel to the applied magnetic field and is related to the modified two stream instability. Measurements of ion density fluctuations and energy-momentum correlations have confirmed that instabilities develop in ion diodes and contribute to the ion divergence. In addition, spectroscopic measurements indicate that the ions have a significant transverse temperature very close to the emission surface. Passive lithium fluoride (LiF) anodes have larger transverse beam temperatures than laser irradiated active sources. Calculations of source divergence expected from the roughness of LiF surfaces and the possible removal of this layer is presented

  17. Significance of primary irradiation creep in graphite

    CSIR Research Space (South Africa)

    Erasmus, C

    2013-05-01

    Full Text Available Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux...

  18. Measurement of soil creep by inclinometer

    Science.gov (United States)

    Robert R. Ziemer

    1977-01-01

    Abstract - Continued inclinometer measurements at borehole sites installed in 1964 in northern California suggest that previously reported rates of soil creep are excessively high. Upon analysis of 35 access casings located in forested and grassland sites, no consistent direction of soil movement could be detected. In addition, no significant rate of soil creep could...

  19. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  20. Creep of parylene-C film

    KAUST Repository

    Lin, Jeffrey Chun-Hui; Deng, Peigang; Lam, Gilbert; Lu, Bo; Lee, Yi-Kuen; Tai, Yu-Chong

    2011-01-01

    The glass transition temperature of as-deposited parylene-C is first measured to be 50°C with a ramping-temperature-dependent modulus experiment. The creep behavior of parylene-C film in the primary and secondary creep region is then investigated

  1. A phenomenological theory of transient creep

    International Nuclear Information System (INIS)

    Ajaja, O.; Ardell, A.J.

    1979-01-01

    A new creep theory is proposed which takes into account the strain generated during the annihilation of dislocations. This contribution is found to be very significant when recovery is appreciable, and is mainly responsible for the decreasing creep rate associated with the normal primary creep of class II materials. The theory provides excellent semiquantitative rationalization for the types of creep curves presented in the preceding paper. In particular, the theory predicts a change in the shape of the primary creep curve from normal to inverted as recovery becomes less important, i.e. as the applied stress and/or temperature decrease(s). It also predicts a minimum creep rate under certain circumstances, hence pseudo-tertiary behaviour. These different types of creep curves are predicted even though the net dislocation density decreases monotonically with time in all cases. Qualitative rationalization is presented for the inverted transient which always follows a stress drop in class II materials, as well as for the inverted primary and sigmoidal creep behaviour of class I solid solutions. (author)

  2. Creep of titanium--silicon alloys

    International Nuclear Information System (INIS)

    Paton, N.E.; Mahoney, M.W.

    1976-01-01

    Operative creep mechanisms in laboratory melts of Ti-5Zr-0.5Si and Ti-5Zr-0.5Si have been investigated as a function of microstructure, creep stress, and temperature. From creep rate data and transmission electron microscopy results, it has been shown that an important creep strengthening mechanism at 811 0 K in Si-bearing Ti alloys is clustering of solute atoms on dislocations. All of the alloys investigated showed anomalously high apparent activation energies and areas for creep and a high exponent (n) in the Dorn equation. In addition, the effect of heat treatment was investigated and it is shown that the highest creep strength was obtained by using a heat treatment which retained the maximum amount of silicon in solution. This is consistent with the proposed creep strengthening mechanism. An investigation of the creep behavior of several other Si containing alloys including two commercial alloys, Ti-11 and IMI-685 indicated similar results. 12 fig., 6 tables

  3. Towards self-healing creep resistant steels

    NARCIS (Netherlands)

    Van der Zwaag, S.; Zhang, S.; Fang, H.; Bruck, E.; Van Dijk, N.H.

    2016-01-01

    We report the main findings of our work on the behaviour of binary Fe-Cu and Fe-Au model alloys designed to explore routes to create new creep resistant steels having an in-built ability to autonomously fill creep induced porosity at grain boundaries. The alloying elements were selected on the basis

  4. Image-based creep-fatigue damage mechanism investigation of Alloy 617 at 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Fraaz; Dahire, Sonam; Liu, Yongming, E-mail: yongming.liu@asu.edu

    2017-01-02

    Alloy 617 is a primary candidate material to be used in the next generation of nuclear power plants. Structural materials for these plants are expected to undergo creep and fatigue at temperatures as high as 950 °C. This study uses a hybrid-control creep-fatigue loading profile, as opposed to the traditional strain-controlled loading, to generate creep dominated failure. Qualitative and quantitative image analysis through SEM, EDS, and EBSD, is used to show that hybrid control testing is capable of producing creep dominated failure and that time fraction approach is not a valid indicator of creep or fatigue dominated damage. The focus of image analysis is on surface fatigue cracks and internal creep voids. A creep-fatigue damage interaction diagram based on these micro-scale features is plotted. It is shown that the classical time fraction approach suggested by the ASME code does not agree with the experimental findings and has a poor correlation with observed microscale damage features. A new definition of creep damage fraction based on an effective hold time is found to correlate well with the micro-scale image analysis.

  5. Growth Kinetics of Laves Phase and Its Effect on Creep Rupture Behavior in 9Cr Heat Resistant Steel

    Institute of Scientific and Technical Information of China (English)

    Zhi-xin XIA; Chuan-yang WANG; Chen LEI; Yun-ting LAI; Yan-fen ZHAO; Lu ZHANG

    2016-01-01

    The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission elec-tron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe2 (W,Mo) Laves phase has formed during creep with 200 MPa applied stress at 883 K for 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase.

  6. Creep equations for gas turbine materials

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Preussler, T.

    1988-01-01

    The long-term high-temperature deformation behaviour of typical gas turbine materials can be described on the basis of a differentiated evaluation which takes the results from thermal tension tests, short-term creep tests with continuous extension measurement, long-term creep tests with discontinuous extension measurement as well as annealing tests with contraction measurement into account. By this, especially the 'negative creeping' can be controlled. Equations were developed for individual materials of the type IN-738 LC, IN-939, IN-100 and FSX-414, which describe the high-temperature deformation behaviour with consideration to the primary and secondary creeping and partly the tertiary creeping. The equations are valid in the entire application-relevant range, i.e. up to 100 000 h in the case of industrial turbine materials. (orig.) [de

  7. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  8. Deformation mechanisms in cyclic creep and fatigue

    International Nuclear Information System (INIS)

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  9. Assessment of concrete creep and shrinkage

    International Nuclear Information System (INIS)

    Trivedi, Neha; Singh, R.K.

    2012-01-01

    B-3 model prediction of concrete creep and shrinkage strains on cylindrical specimen and BARC Containment test model (BARCOM) are presented. Experimental shrinkage strain is shown to be in agreement with B-3 model predictions for cylindrical specimen and BARCOM. Creep strain in cylindrical specimen is found to be in agreement with B-3 model. In BARCOM for wall cast in different pores, creep strain is in agreement with B-3 model in hoop direction however in longitudinal direction, observed creep strain in higher than B-3 model. For dome structure cast in a single pour, experimental creep strain shows confirmity with B-3 model both in hoop and longitudinal directions. The study on concrete aging and average longitudinal shrinkage strain is carried out. (author)

  10. Creep lifetime assessements of ferritic pipeline welds

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Goodall, I.W.; Miller, D.A.

    1995-01-01

    The low alloy ferritic steam pipework in Advanced Gas Cooled reactor (AGR) power stations operates at temperatures in the creep range. An inspection strategy for continued operation of the pipework has been developed based on estimation of the creep rupture life of pipework weldments and fracture mechanics for demonstrating acceptance of defects. This strategy is described in outline. The estimation of creep rupture life is described in more detail. Validation for the approach is illustrated by comparison with pressure vessel tests and with metallographic examination of components removed from service. The fracture mechanics methods are also described. It is shown that the amount of creep crack growth is dependent on the life fraction at which the assessment is made; crack growth being rapid as the creep rupture life is approached. (author). 3 refs., 5 figs., 1 tab

  11. Analysis of localized damage in creep rupture

    International Nuclear Information System (INIS)

    Wang Zhengdong; Wu Dongdi

    1992-01-01

    Continuum Damage Mechanics studies the effect of distributed defects, whereas the failure of engineering structures is usually caused by local damage. In this paper, an analysis of localized damage in creep rupture is carried out. The material tested is a 2 1/4Cr-1Mo pressure vessel steel and the material constants necessary for damage analysis are evaluated. Notched specimens are used to reflect localized damage in creep rupture and the amount of damage is measured using DCPD method. Through FEM computation, stress components and effective stress in the region of notch root are evaluated and it is found that the von Mises effective stress can represent the damage effective stress in the analysis of localized creep damage. It is possible to develop a method for the assessment of safety of pressure vessels under creep through localized creep damage analysis. (orig.)

  12. Creep and relaxation behavior of Inconel-617

    International Nuclear Information System (INIS)

    Osthoff, W.; Ennis, P.J.; Nickel, H.; Schuster, H.

    1984-01-01

    The static and dynamic creep behavior of Inconel alloy 617 has been determined in constant load creep tests, relaxation tests, and stress reduction tests in the temperature range 1023 to 1273 K. The results have been interpreted using the internal stress concept: The dependence of the internal stress on the applied stress and test temperature was determined. In a few experiments, the influence of cold deformation prior to the creep test on the magnitude of the internal stress was also investigated. It was found that the experimentally observed relaxation behavior could be more satisfactorily described using the Norton creep equation modified by incorporation of the internal stress than by the conventional Norton creep equation

  13. Documentation for the viscoplastic and creep program

    DEFF Research Database (Denmark)

    Bellini, Anna

    2004-01-01

    of this workpackage is to simulate creep behavior of aluminum cast samples subjected to high temperature. In this document a two-state variables unified model is applied in order to simulate creep behavior and time-dependent metallurgical changes. The fundamental assumption of the unified theory is that creep...... is run using the material data obtained through the mentioned experimental study. The results obtained for the simulation of tensile tests and of creep tests are compared with experimental curves, showing a good agreement. Moreover, the document describes the results obtained during the first...... is quite stable and convergence can be reached also with big time steps. Keywords: Viscoplasticity, creep, unified constitutive model, aluminum, high temperature....

  14. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  15. Creep collapse of TAPS fuel cladding

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Anand, A.K.

    1975-01-01

    Densification of UO 2 can cause axial gaps between fuel pelets and cladding in unsupported (internally) at these regions. An analysis is carried out regarding the possibility of creep collapse in these regions. The analysis is based on Timoshenko's theory of collapse. At various times during the residence of fuel in reactor following parameters are calculated : (1) inelastic collapse of perfectly circular tubes (2) plastic instability in oval tubes (3) effect of creep on ovality. Creep is considered to be a non-linear combination of the following : (a) thermal creep (b) intresenic creep (c) stress aided radiation enhanced (d) stress free growth (4) Critical pressure ratio. The results obtained are compared with G.E. predictions. The results do not predict collapse of TAPS fuel cladding for five year residence time. (author)

  16. Local divergence and curvature divergence in first order optics

    Science.gov (United States)

    Mafusire, Cosmas; Krüger, Tjaart P. J.

    2018-06-01

    The far-field divergence of a light beam propagating through a first order optical system is presented as a square root of the sum of the squares of the local divergence and the curvature divergence. The local divergence is defined as the ratio of the beam parameter product to the beam width whilst the curvature divergence is a ratio of the space-angular moment also to the beam width. It is established that the beam’s focusing parameter can be defined as a ratio of the local divergence to the curvature divergence. The relationships between the two divergences and other second moment-based beam parameters are presented. Their various mathematical properties are presented such as their evolution through first order systems. The efficacy of the model in the analysis of high power continuous wave laser-based welding systems is briefly discussed.

  17. Analysis of Current HT9 Creep Correlations and Modification

    International Nuclear Information System (INIS)

    Lee, Cheol Min; Sohn, Dongseong; Cheon, Jin Sik

    2014-01-01

    It has high thermal conductivity, high mechanical strength and low irradiation induced swelling. However high temperature creep of HT9 has always been a life limiting factor. Above 600 .deg. C, the dislocation density in HT9 is decreased and the M 23 C 6 precipitates coarsen, these processes are accelerated if there is irradiation. Finally microstructural changes at high temperature lead to lower creep strength and large creep strain. For HT9 to be used as a future cladding, creep behavior of the HT9 should be predicted accurately based on the physical understanding of the creep phenomenon. Most of the creep correlations are composed of irradiation creep and thermal creep terms. However, it is certain that in-pile thermal creep and out-of-pile thermal creep are different because of the microstructure changes induced from neutron irradiation. To explain creep behavior more accurately, thermal creep contributions other than neutron irradiation should be discriminated in a creep correlation. To perform this work, existing HT9 creep correlations are analyzed, and the results are used to develop more accurate thermal creep correlation. Then, the differences between in-pile thermal creep and out-of-pile thermal creep are examined

  18. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  19. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  20. Wide-scale population sampling identifies three phylogenetic races of basin wildrye and low-level genetic admixture with creeping wildrye

    Science.gov (United States)

    C. Mae Culumber; Steven R. Larson; Thomas A. Jones; Kevin B. Jensen

    2013-01-01

    Basin wildrye [Leymus cinereus (Scribn. & Merr.) Á. Löve] and creeping wildrye [Leymus triticoides (Buckley) Pilg.] are outcrossing perennial grasses native to western North America. These divergent species are generally adapted to different habitats but can form fertile hybrids. Cultivars of both species are used in agriculture and conservation, but little is...

  1. Prediction of the creep properties of discontinuous fibre composites from the matrix creep law

    International Nuclear Information System (INIS)

    Bilde-Soerensen, J.B.; Boecker Pedersen, O.; Lilholt, H.

    1975-02-01

    Existing theories for predicting the creep properties of discontinuous fibre composites with non-creeping fibres from matrix creep properties, originally based on a power law, are extended to include an exponential law, and in principle a general matrixlaw. An analysis shows that the composite creep curve can be obtained by a simple displacement of the matrix creep curve in a log sigma vs. log epsilon diagram. This principle, that each point on the matrix curve has a corresponding point on the composite curve,is given a physical interpretation. The direction of displacement is such that the transition from a power law toan exponential law occurs at a lower strain rate for the composite than for the unreinforced matrix. This emphasizes the importance of the exponential creep range in the creep of fibre composites. The combined use of matrix and composite data may allow the creep phenomenon to be studied over a larger range of strain rates than otherwise possible. A method for constructing generalized composite creep diagrams is suggested. Creep properties predicted from matrix data by the present analysis are compared with experimental data from the literature. (author)

  2. Deformation by grain boundary sliding and slip creep versus diffusional creep

    International Nuclear Information System (INIS)

    Ruano, O A; Sherby, O D; Wadsworth, J.

    1998-01-01

    A review is presented of the debates between the present authors and other investigators regarding the possible role of diffusional creep in the plastic flow of polycrystalline metals at low stresses. These debates are recorded in eleven papers over the past seventeen years. ln these papers it has been shown that the creep rates of materials in the so-called diffusional creep region are almost always higher than those predicted by the diffusional creep theory. Additionally, the predictions of grain size effects and stress exponents from diffusional creep theory are often not found in the experimental data. Finally, denuded zones have been universally considered to be direct evidence for diffusional creep; but, those reported in the literature are shown to be found only under conditions where a high stress exponent is observed. Also, the locations of the denuded zones do not match those predicted. Alternative mechanisms are described in which diffusion-controlled dislocation creep and/or grain boundary sliding are the dominant deformation processes in low-stress creep. It is proposed that denuded zones are formed by stress-directed grain boundary migration with the precipitates dissolving in the moving grain boundaries. The above observations have led us to the conclusion that grain boundary sliding and slip creep are in fact the principal mechanisms for observations of plastic flow in the so-called diffusional creep regions

  3. Convergence from divergence

    Science.gov (United States)

    Costin, Ovidiu; Dunne, Gerald V.

    2018-01-01

    We show how to convert divergent series, which typically occur in many applications in physics, into rapidly convergent inverse factorial series. This can be interpreted physically as a novel resummation of perturbative series. Being convergent, these new series allow rigorous extrapolation from an asymptotic region with a large parameter, to the opposite region where the parameter is small. We illustrate the method with various physical examples, and discuss how these convergent series relate to standard methods such as Borel summation, and also how they incorporate the physical Stokes phenomenon. We comment on the relation of these results to Dyson’s physical argument for the divergence of perturbation theory. This approach also leads naturally to a wide class of relations between bosonic and fermionic partition functions, and Klein-Gordon and Dirac determinants.

  4. Computational models for residual creep life prediction of power plant components

    International Nuclear Information System (INIS)

    Grewal, G.S.; Singh, A.K.; Ramamoortry, M.

    2006-01-01

    All high temperature - high pressure power plant components are prone to irreversible visco-plastic deformation by the phenomenon of creep. The steady state creep response as well as the total creep life of a material is related to the operational component temperature through, respectively, the exponential and inverse exponential relationships. Minor increases in the component temperature can thus have serious consequences as far as the creep life and dimensional stability of a plant component are concerned. In high temperature steam tubing in power plants, one mechanism by which a significant temperature rise can occur is by the growth of a thermally insulating oxide film on its steam side surface. In the present paper, an elegantly simple and computationally efficient technique is presented for predicting the residual creep life of steel components subjected to continual steam side oxide film growth. Similarly, fabrication of high temperature power plant components involves extensive use of welding as the fabrication process of choice. Naturally, issues related to the creep life of weldments have to be seriously addressed for safe and continual operation of the welded plant component. Unfortunately, a typical weldment in an engineering structure is a zone of complex microstructural gradation comprising of a number of distinct sub-zones with distinct meso-scale and micro-scale morphology of the phases and (even) chemistry and its creep life prediction presents considerable challenges. The present paper presents a stochastic algorithm, which can be' used for developing experimental creep-cavitation intensity versus residual life correlations for welded structures. Apart from estimates of the residual life in a mean field sense, the model can be used for predicting the reliability of the plant component in a rigorous probabilistic setting. (author)

  5. Regularization of divergent integrals

    OpenAIRE

    Felder, Giovanni; Kazhdan, David

    2016-01-01

    We study the Hadamard finite part of divergent integrals of differential forms with singularities on submanifolds. We give formulae for the dependence of the finite part on the choice of regularization and express them in terms of a suitable local residue map. The cases where the submanifold is a complex hypersurface in a complex manifold and where it is a boundary component of a manifold with boundary, arising in string perturbation theory, are treated in more detail.

  6. Contribution of dislocation creep to the radiational creep of materials

    International Nuclear Information System (INIS)

    Borodin, V.A.; Ryazanov, A.I.

    1986-01-01

    The authors propose a model of the orientational dependences of the preferences of discrete linear dislocations in which the influence of the external load on the step concentration at the dislocations is taken into account. The use of this model, taking into account the mechanism of stress-induced anisotropy of the elastic interaction between point defects and dislocations, not only permits a correct qualitative explanation of the dependence of the rate of radiational creep on the basic irradiation parameters (dose, stress, temperature) but also allows approximate quantitative agreement with experimental results to be obtained. At sufficiently high stress, the theory predicts conditions of the formation of an ensemble of dislocational loops with a specific direction of the Burgers vector

  7. Recent advances in modelling creep crack growth

    International Nuclear Information System (INIS)

    Riedel, H.

    1988-08-01

    At the time of the previous International Conference on Fracture, the C* integral had long been recognized as a promising load parameter for correlating crack growth rates in creep-ductile materials. The measured crack growth rates as a function of C* and of the temperature could be understood on the basis of micromechanical models. The distinction between C*-controlled and K I -controlled creep crack growth had been clarified and first attempts had been made to describe creep crack growth in the transient regime between elastic behavior and steady-state creep. This paper describes the progress in describing transient crack growth including the effect of primary creep. The effect of crack-tip geometry changes by blunting and by crack growth on the crack-tip fields and on the validity of C* is analyzed by idealizing the growing-crack geometry by a sharp notch and using recent solutions for the notch-tip fields. A few new three-dimensional calculations of C* are cited and important theoretical points are emphasized regarding the three-dimensional fields at crack tips. Finally, creep crack growth is described by continuum-damage models for which similarity solutions can be obtained. Crack growth under small-scale creep conditions turns out to be difficult to understand. Slightly different models yield very different crack growth rates. (orig.) With 4 figs

  8. Creep behavior evaluation of welded joint

    International Nuclear Information System (INIS)

    Susei, Shuzo; Matsui, Shigetomo; Mori, Eisuke; Shimizu, Shigeki; Satoh, Keisuke.

    1980-01-01

    In the creep design of high temperature structural elements, it is necessary to grasp the creep performance of joints as a whole, paying attention to the essential lack of uniformity between the material qualities of parent metals and welds. In this study, the factors controlling the creep performance of butt welded joints were investigated theoretically, when they were subjected to lateral tension and longitudinal tension. It was clarified that the rupture time in the case of laterally pulled joints was determined by the ratio of the creep rupture times of weld metals and parent metals, and the rupture time in the case of longitudinally pulled joints was determined by the ratio of the creep rupture times and the ratio of the creep strain rates of weld metals and parent metals. Moreover, when the joints of the former ratio less than 1 and the latter ratio larger than 1 were investigated experimentally, the rupture time in the case of laterally pulled joints was affected by the relative thickness, and when the relative thickness was large, the theoretical and the experimental values coincided, but the relative thickness was small, the theoretical values gave the evaluation on safe side as compared with the experimental values due to the effect of restricting deformation. In the case of longitudinally pulled joints, the theoretical and the experimental values coincided relatively well. The diagram of classifying the creep performance of welded joints was proposed. (Kako, I.)

  9. A simple model for indentation creep

    Science.gov (United States)

    Ginder, Ryan S.; Nix, William D.; Pharr, George M.

    2018-03-01

    A simple model for indentation creep is developed that allows one to directly convert creep parameters measured in indentation tests to those observed in uniaxial tests through simple closed-form relationships. The model is based on the expansion of a spherical cavity in a power law creeping material modified to account for indentation loading in a manner similar to that developed by Johnson for elastic-plastic indentation (Johnson, 1970). Although only approximate in nature, the simple mathematical form of the new model makes it useful for general estimation purposes or in the development of other deformation models in which a simple closed-form expression for the indentation creep rate is desirable. Comparison to a more rigorous analysis which uses finite element simulation for numerical evaluation shows that the new model predicts uniaxial creep rates within a factor of 2.5, and usually much better than this, for materials creeping with stress exponents in the range 1 ≤ n ≤ 7. The predictive capabilities of the model are evaluated by comparing it to the more rigorous analysis and several sets of experimental data in which both the indentation and uniaxial creep behavior have been measured independently.

  10. Advances in the assessment of creep data

    Energy Technology Data Exchange (ETDEWEB)

    Holdsworth, S.R.

    2010-07-01

    Many of the classical models representing the creep and rupture behaviour of metals were developed prior to and during the 1950s and 1960s, and their subsequent exploitation, in particular for the assessment of large creep property datasets, was initially limited by the capability of the analytical tools available at the time. The formation of ECCC (the European Creep Collaborative Committee) in 1991, with a main objective of providing reliable peer reviewed long-time creep property values for European Design and Product Standards, led to the development of rigorous assessment procedures such as PD6605 and DESA incorporating post assessment tests to verify: physical realism, effectiveness of model-fit within the range of the source experimental data, and extrapolation credibility. The first ECCC assessment recommendations published in 1996 undoubtedly provided a catalyst for others to exploit the availability of low cost, powerful desktop computers to develop rigorous methodologies for the physically realistic analysis of uniaxial and multi-axial data for the reliable and accurate characterisation of creep strain, and rupture strength and ductility properties. More recent improvements in data assessment methodologies have been driven by the need to effectively model the creep deformation and rupture characteristics of the complex new generation alloys and fabrications being designed to cater for the continually evolving requirements of modern advanced power plant. These advances in the assessment of creep data are reviewed. (orig.)

  11. Advanced nondestructive evaluation for creep damage

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    As a result of operation at elevated temperatures, power plant components experience creep. Changes in metallurgical structure and microscopic cracking occur after periods of operation and lead to component failure. In order to detect the presence of creep and avoid creep-related failures, EPRI has just initiated a five year program entitled Advanced NDE for Creep Damage (RP 1856-7). The objective of this program is to develop NDE methods for detection and characterization of microscopic creep damage. Several NDE methods will be initially evaluated to determine their potential for detecting and characterizing such damage. These NDE methods include ultrasonics, eddy current, Barkhausen, positron annihilation, and thermal-wave imaging. A prototype system will be developed and tested for commercial applications in a follow-on project, utilizing characteristics of the best NDE method for creep detection. A brief description of the project and results of a theoretical investigation, to determine feasibility of ultrasonic NDE method, for detection of creep damage are presented

  12. Trunk proprioception adaptations to creep deformation.

    Science.gov (United States)

    Abboud, Jacques; Rousseau, Benjamin; Descarreaux, Martin

    2018-01-01

    This study aimed at identifying the short-term effect of creep deformation on the trunk repositioning sense. Twenty healthy participants performed two different trunk-repositioning tasks (20° and 30° trunk extension) before and after a prolonged static full trunk flexion of 20 min in order to induce spinal tissue creep. Trunk repositioning error variables, trunk movement time and erector spinae muscle activity were computed and compared between the pre- and post-creep conditions. During the pre-creep condition, significant increases in trunk repositioning errors, as well as trunk movement time, were observed in 30° trunk extension in comparison to 20°. During the post-creep condition, trunk repositioning errors variables were significantly increased only when performing a 20° trunk extension. Erector spinae muscle activity increased in the post-creep condition, while it remained unchanged between trunk repositioning tasks. Trunk repositioning sense seems to be altered in the presence of creep deformation, especially in a small range of motion. Reduction of proprioception acuity may increase the risk of spinal instability, which is closely related to the risk of low back pain or injury.

  13. Irradiation creep of dispersion strengthened copper alloy

    International Nuclear Information System (INIS)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-01-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al 2 O 3 , is very similar to the GlidCop trademark alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10 21 n/cm 2 (E>0.1 MeV), which corresponds to ∼3-5 dpa. The irradiation temperature ranged from 60-90 degrees C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of ±0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as ∼2 x 10 -9 s -1 . These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys

  14. Irradiation creep of dispersion strengthened copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A. [and others

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  15. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  16. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  17. Simulation of creep test on 316FR stainless steel in sodium environment at 550degC

    International Nuclear Information System (INIS)

    Satmoko, A.; Asayama, Tai

    1999-04-01

    In sodium environment, material 316FR stainless steel risks to suffer from carburization. In this study, an analysis using a Fortran program is conducted to evaluate the carbon influence on the creep behavior of 316FR based on experimental results from uni-axial creep test that had been performed at temperature 550degC in sodium environment simulating Fast Breeder Reactor condition. As performed in experiments, two parts are distinguished. At first, elastic-plastic behavior is used to simulate the fact that just before the beginning of creep test, specimen suffers from load or stress much higher than initial yield stress. In second part, creep condition occurs in which the applied load is kept constant. The plastic component should be included, since stresses increase due to section area reduction. For this reason, elastic-plastic-creep behavior is considered. Through time carbon penetration occurs and its concentration is evaluated empirically. This carburization phenomena are assumed to affect in increasing yield stress, decreasing creep strain rate, and increasing creep rupture strength of material. The model is capable of simulating creep test in sodium environment. Material near from surface risks to be carburized. Its material properties change leading to non-uniform distribution of stresses. Those layers of material suffer from stress concentration, and are subject to damage. By introducing a damage criteria, crack initialization can thus be predicted. And even, crack growth can be evaluated. For high stress levels, tensile strength criterion is more important than creep damage criterion. But in low stress levels, the latter gives more influence in fracture. Under high stress, time to rupture of a specimen in sodium environment is shorter than in air. But for stresses lower than 26 kgf/mm 2 , the time to rupture of creep in sodium environment is the same or little longer than in air. Quantitatively, the carburization effect at 550degC is not important. This

  18. The creep analysis of shell structures using generalised models

    International Nuclear Information System (INIS)

    Boyle, J.T.; Spence, J.

    1981-01-01

    In this paper a new, more complete estimate of the accuracy of the stationary creep model is given for the general case through the evaluation of exact and approximate energy surfaces. In addition, the stationary model is extended to include more general non-stationary (combined elastic-creep) behaviour and to include the possibility of material deterioration through damage. The resulting models are then compared to existing exact solutions for several shell structures - e.g. a thin pressurised cylinder, a curved pipe in bending and an S-bellows under axial extension with large deflections. In each case very good agreement is obtained. Although requiring similar computing effort, so that the same solution techniques can be utilised, the calculation times are shown to be significantly reduced using the generalised approach. In conclusion, it has been demonstrated that a new simple mechanical model of a thin shell in creep, with or without material deterioration can be constructed; the model is assessed in detail and successfully compared to existing solutions. (orig./HP)

  19. Correlation of Creep Behavior of Domal Salts

    International Nuclear Information System (INIS)

    Munson, D.E.

    1999-01-01

    The experimentally determined creep responses of a number of domal salts have been reported in, the literature. Some of these creep results were obtained using standard (conventional) creep tests. However, more typically, the creep data have come from multistage creep tests, where the number of specimens available for testing was small. An incremental test uses abrupt changes in stress and temperature to produce several time increments (stages) of different creep conditions. Clearly, the ability to analyze these limited data and to correlate them with each other could be of considerable potential value in establishing the mechanical characteristics of salt domes, both generally and specifically. In any analysis, it is necessary to have a framework of rules to provide consistency. The basis for the framework is the Multimechanism-Deformation (M-D) constitutive model. This model utilizes considerable general knowledge of material creep deformation to supplement specific knowledge of the material response of salt. Because the creep of salt is controlled by just a few micromechanical mechanisms, regardless of the origin of the salt, certain of the material parameters are values that can be considered universal to salt. Actual data analysis utilizes the methodology developed for the Waste Isolation Pilot Plant (WIPP) program, and the response of a bedded pure WIPP salt as the baseline for comparison of the domal salts. Creep data from Weeks Island, Bryan Mound, West Hackberry, Bayou Choctaw, and Big Hill salt domes, which are all sites of Strategic Petroleum Reserve (SPR) storage caverns, were analyzed, as were data from the Avery Island, Moss Bluff, and Jennings salt domes. The analysis permits the parameter value sets for the domal salts to be determined in terms of the M-D model with various degrees of completeness. In turn this permits detailed numerical calculations simulating cavern response. Where the set is incomplete because of the sparse database, reasonable

  20. Creep of granulated loose-fill insulation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    This report presents a proposal for a standardised method for creep tests and the necessary theoretical framework that can be used to describe creep of a granulated loose-fill material. Furthermore results from a round robin test are shown. The round robin test was carried out in collaboration...... with SP-Building Physics in Sweden and VTT Building Technology in Finland. For the round robin test a cellulosic fibre insulation material was used. The proposed standardised method for creep tests and theories are limited to cases when the granulated loose-fill material is exposed to a constant...

  1. Compressive creep of silicon nitride

    International Nuclear Information System (INIS)

    Silva, C.R.M. da; Melo, F.C.L. de; Cairo, C.A.; Piorino Neto, F.

    1990-01-01

    Silicon nitride samples were formed by pressureless sintering process, using neodymium oxide and a mixture of neodymium oxide and yttrio oxide as sintering aids. The short term compressive creep behaviour was evaluated over a stress range of 50-300 MPa and temperature range 1200 - 1350 0 C. Post-sintering heat treatments in nitrogen with a stepwise decremental variation of temperature were performed in some samples and microstructural analysis by X-ray diffraction and transmission electron microscopy showed that the secondary crystalline phase which form from the remnant glass are dependent upon composition and percentage of aditives. Stress exponent values near to unity were obtained for materials with low glass content suggesting grain boundary diffusion accommodation processes. Cavitation will thereby become prevalent with increase in stress, temperature and decrease in the degree of crystallization of the grain boundary phase. (author) [pt

  2. Demonstration of creep during filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Bugge, Thomas Vistisen; Kirchheiner, Anders Løvenbalk

    The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found...... that the production of filtrate also depends on the characteristic time for the filter cake solids to deform. This is formulated in the Terzaghi-Voigt model in which a secondary consolidation is introduced. The secondary consolidation may be visualized by plots of the relative cake deformation (U) v.s. the square...... root of time. Even more clearly it is demonstrated by plotting the liquid pressure at the cake piston interface v.s. the relative deformation (to be shown). The phenomenon of a secondary consolidation processes is in short called creep. Provided that the secondary consolidation rate is of the same...

  3. Modelling of cladding creep collapse

    International Nuclear Information System (INIS)

    Koundy, V.; Forgeron, T.; Hivroz, J.

    1993-01-01

    The effects of the initial ovality and pressure level on the collapse time of Zircaloy-4 tubing subjected to uniform external pressure were examined experimentally and analytically. Experiments were performed on end closed tubes with two metallurgical states: stress relieved and recrystallized. Numerical simulations were accomplished with a specific computer program based on an analytical approach and the calculated results were compared with the experimental ones. As a comparison, the finite element method is also partially examined in this analysis. Numerical collapse times are in good agreement with regard to experimental results in the case of stress relieved structure. They seem to be too conservative in the case of a recrystallized metallurgical state and the use of the anisotropic option ameliorates numerical results. Sensibility of numerical solutions to the formulation of primary creep laws are presented

  4. Creep at very low rates

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2002-02-01

    Full Text Available stream_source_info nabarro_2002.pdf.txt stream_content_type text/plain stream_size 31615 Content-Encoding ISO-8859-1 stream_name nabarro_2002.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Creep at Very Low Rates F... to the necessary condition: vol. 29, p. 1285. 10. J.E. Harris, R.B. Jones, G.W. Greenwood, and M.J. Ward: J. Aust.L/b . m/2psp [5] Inst. Met., 1969, vol. 14, p. 154. 11. G.B. Gibbs: Mem. Sci. Rev. Met., 1965, vol. 62, p. 781.Even if this condition is satisfied, H...

  5. Creep and fatigue of alloy 800 in helium

    International Nuclear Information System (INIS)

    Cook, R.H.

    1975-01-01

    Proposals for use of Alloy 800 as a H.T.R. boiler material have prompted studies of its creep and high temperature fatigue properties in impure helium with comparative tests in air. In impure helium, as expected in a H.T.R., reactions of potential importance are selective oxidation (of chromium, aluminium and titanium) and possibly carburisation from carbon monoxide or methane. In air, general oxidation will occur, possibly accompanied by nitridation. The effects of these reactions will depend on specimen geometry and the nature of the deformation. Two important possibilities are: (i) that environment affects the structure and properties of a surface zone of material undegoing uniform deformation (this may modify creep rate and crack nucleation); and (ii) that environment affects behaviour of a small region (e.g. at the root of a notch or ahead of a crack) in a specimen undergoing non-uniform deformation (this will modify crack growth and hence rupture life or fatigue endurance). This paper summarises experimental work demonstrating an influence of the above reactions on mechanical properties of austenitic steels and nickel-based alloys, drawing examples where possible from the limited data available on Alloy 800. Whilst nitridation and carburisation may simply increase creep resistance at the expense of ductility (and possibly of fatigue resistance), the effects of oxidation are complex. A high oxygen pressures (as in air) oxygen may reduce creep and fatigue resistance by promoting cavitation but formation of oxide in cracks can reduce their propagation rate. At low oxygen pressures, as expected in H.T.R. helium, oxygen enhanced cavitation is less likely, but selective oxidation along grain boundaries can sometimes assist crack nucleation. (author)

  6. Creep of plain weave polymer matrix composites

    Science.gov (United States)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  7. Concrete creep and thermal stresses:new creep models and their effects on stress development

    OpenAIRE

    Westman, Gustaf

    1999-01-01

    This thesis deals with the problem of creep in concrete and its influence on thermal stress development. New test frames were developed for creep of high performance concrete and for measurements of thermal stress development. Tests were performed on both normal strength and high performance concretes. Two new models for concrete creep are proposed. Firstly, a viscoelastic model, the triple power law, is supplemented with two additional functions for an improved modelling of the early age cre...

  8. Influence of creep ductility on creep-fatigue behaviour of 20%Cr/25%Ni/Nb stainless steel

    International Nuclear Information System (INIS)

    Gladwin, D.; Miller, D.A.

    1985-01-01

    The influence of creep ductility on creep-fatigue endurance of 20%Cr/25%Ni/Nb stainless steel has been examined. In order to induce different creep ductilities in the 20/25/Nb stainless steel, three different thermo-mechanical routes were employed. These resulted in a range of ductilities (3-36%) being obtained at the strain rates of interest. Strain controlled slow-fast creep-fatigue cycles were used with strain rates of 10 -6 s -1 , 10 -7 s -1 in tension and 10 -3 s -1 in compression. It was found that creep ductility strongly influenced the creep-fatigue endurance of the 20/25/Nb stainless steel. When failure was creep dominated endurance was found to be directly proportional to the creep ductility. A ductility exhaustion model has been used to successfully predict creep-fatigue endurance when failure was creep dominated. (author)

  9. Creep strength and rupture ductility of creep strength enhanced ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kushima, Hideaki; Sawada, Kota; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength and rupture ductility of Creep Strength Enhanced Ferritic (CSEF) steels were investigated from a viewpoint of stress dependence in comparison with conventional low alloy ferritic creep resistant steels. Inflection of stress vs. time to rupture curve was observed at 50% of 0.2% offset yield stress for both CSEF and conventional ferritic steels. Creep rupture ductility tends to decrease with increase in creep exposure time, however, those of conventional low alloy steels indicate increase in the long-term. Creep rupture ductility of the ASME Grades 92 and 122 steels indicates drastic decrease with decrease in stress at 50% of 0.2% offset yield stress. Stress dependence of creep rupture ductility of the ASME Grades 92 and 122 steels is well described by stress ratio to 0.2% offset yield stress, regardless of temperature. Drop of creep rupture ductility is caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, and remarkable drop of creep rupture ductility of CSEF steels should be derived from those stabilized microstructure. (orig.)

  10. Creep Aging Behavior Characterization of 2219 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2016-06-01

    Full Text Available In order to characterize the creep behaviors of 2219 aluminum alloy at different temperatures and stress levels, a RWS-50 Electronic Creep Testing Machine (Zhuhai SUST Electrical Equipment Company, Zhuhai, China was used for creep experiment at temperatures of 353~458 k and experimental stresses of 130~170 MPa. It was discovered that this alloy displayed classical creep curve characteristics in its creep behaviors within the experimental parameters, and its creep value increased with temperature and stress. Based on the creep equation of hyperbolic sine function, regression analysis was conducted of experimental data to calculate stress exponent, creep activation energy, and other related variables, and a 2219 aluminum alloy creep constitutive equation was established. Results of further analysis of the creep mechanism of the alloy at different temperatures indicated that the creep mechanism of 2219 aluminum alloy differed at different temperatures; and creek characteristics were presented in three stages at different temperatures, i.e., the grain boundary sliding creep mechanism at a low temperature stage (T < 373 K, the dislocation glide creep mechanism at a medium temperature stage (373 K ≤ T < 418 K, and the dislocation climb creep mechanism at a high temperature stage (T ≥ 418 K. By comparative analysis of the fitting results and experiment data, they were found to be in agreement with the experimental data, revealing that the established creep constitutive equation is suitable for different temperatures and stresses.

  11. Modelling of creep hysteresis in ferroelectrics

    Science.gov (United States)

    He, Xuan; Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2018-05-01

    In the current paper, a macroscopic model is proposed to simulate the hysteretic dynamics of ferroelectric ceramics with creep phenomenon incorporated. The creep phenomenon in the hysteretic dynamics is attributed to the rate-dependent characteristic of the polarisation switching processes induced in the materials. A non-convex Helmholtz free energy based on Landau theory is proposed to model the switching dynamics. The governing equation of single-crystal model is formulated by applying the Euler-Lagrange equation. The polycrystalline model is obtained by combining the single crystal dynamics with a density function which is constructed to model the weighted contributions of different grains with different principle axis orientations. In addition, numerical simulations of hysteretic dynamics with creep phenomenon are presented. Comparison of the numerical results and their experimental counterparts is also presented. It is shown that the creep phenomenon is captured precisely, validating the capability of the proposed model in a range of its potential applications.

  12. Transitional Thermal Creep of Early Age Concrete

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars; Freiesleben Hansen, Per

    1999-01-01

    Couplings between creep of hardened concrete and temperature/water effects are well-known. Both the level and the gradients in time of temperature or water content influence the creep properties. In early age concrete the internal drying and the heat development due to hydration increase the effect...... of these couplings. The purpose of this work is to set up a mathematical model for creep of concrete which includes the transitional thermal effect. The model govern both early age concrete and hardened concrete. The development of the material properties in the model are assumed to depend on the hydration process...... termed the microprestresses, which reduces the stiffness of the concrete and increase the creep rate. The aging material is modelled in an incremental way reflecting the hydration process in which new layers of cement gel solidifies in a stress free state and add stiffness to the material. Analysis...

  13. Implications of Jeffreys-Lomnitz Transient Creep

    Science.gov (United States)

    Strick, Ellis

    1984-01-01

    In 1958 Jeffreys proposed a power law generalization of the logarithmic transient creep earlier attributed to Lomnitz. Although Jeffreys' power law form was admittedly defective in that it became unbounded at infinite time, he did apply it to the viscoelastic behavior of the earth-moon system. Since then it has been successfully applied by many investigators to mantle rehology and Chandler wobble. Experimental seismic studies indicate that most rock types exhibit the almost constant Q behavior which Lomnitz showed to be associated with his logarithmic creep. In this paper, we study not only the Q behavior related to Jeffreys' power law creep but also other mechanical properties such as a precise spring-dashpot ladder network realization are developed. In addition, a very simple physically realizable modification of this ladder network leads to a boundedness at long times of Jeffreys' creep in a manner which does not affect his successful application at finite times.

  14. Creep-fatigue of low cobalt superalloys

    Science.gov (United States)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  15. Numerical treatment of creep crack growth

    International Nuclear Information System (INIS)

    Kienzler, R.; Hollstein, T.

    1990-06-01

    To accomplish the safety analysis and to predict the lifetime of high-termpature components with flaws, several concepts have been proposed to correlate creep-crack initiation and growth with fracture mechanics parameters. The concepts of stress-intensity factor K, reference stress σ ref , line integral C * , and others will be discussed. Among them, the C * -integral concept seems to have the widest range of applicability, if large creep zones develop and steady state creep conditions can be assumed. The numerical evaluation of C * by the virtual crack extension method is described. The methods are demonstrated by two- and three-dimensional finite element simulations including creep crack growth. As for ductile fracture experiments, plane stress and plane strain simulations are bounds to the three-dimensional simulations which agree well with corresponding experiments. (orig.)

  16. Irradiation creep in simple binary alloys

    International Nuclear Information System (INIS)

    Nagakawa, J.; Sethi, V.K.; Turner, A.P.L.

    1981-07-01

    Creep enhancement during 21-MeV deuteron irradiation was examined at 350 0 C for two simple binary alloys with representative microstructures, i.e., solid-solution (Ni - 4 at. % Si) and precipitation-hardened (Ni - 12.8 at. % Al) alloys. Coherent precipitates were found to be very effective in suppressing irradiation-enhanced creep. Si solute atoms depressed irradiation creep moderately and caused irradiation hardening via radiation-induced segregation. The stress-dependence of irradiation creep in Ni - 4 at. % Si should a transition, which seems to reflect a change of mechanism from dislocation climb due to stress-induced preferential absorption (SIPA) to climb-controlled dislocation glide enhanced by irradiation

  17. Creep of UO2 at 25000C

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1977-01-01

    Until an improved high temperature relationship is available, the previously derived low temperature relationship is a reasonable means for predicting the creep rates of UO 2 at 2500 0 C. The activation energy determined for creep at 2500 0 C is at least two times larger than that measured previously at the lower temperature. Stress induced grain growth under uniaxial compression at high temperatures in UO 2 results in preferential growth of grains having a cube axis closely aligned with the stress axis

  18. Dislocation density changes in nickel under creep

    International Nuclear Information System (INIS)

    Moiseeva, I.V.; Okrainets, P.N.; Pishchak, V.K.

    1984-01-01

    Variation in dislocation density was studied in the process of nickel creep p at t=900 deg c and σ=2 kgf/mm 2 . The dislocation structure was studied independently by the X-ray technique and transmission electron-microscopy. The e two methods show good conformity of results by comparison. It is concluded that independent determination of dislocation density under creep is possible us sing the X-ray technique

  19. Numerically and experimentally analysis of creep

    International Nuclear Information System (INIS)

    Fontanive, J.A.

    1982-11-01

    The problems of creep in concrete are analyzed experimentally and numerically, comparing with classical methods and suggesting a numerical procedure for the solution of these problems. Firstly, fundamentals of viscoelasticity and its application to concrete behaviour representation are presented. Then the theories of Dischinger and Arutyunyan are studied, and a computing numerical solutions are compared in several examples. Finally, experiences on creep and relaxation are described, and its result are analyzed. Some coments on possible future developments are included. (Author) [pt

  20. Thermal creep force: analysis and application

    OpenAIRE

    Wolfe, David M.

    2016-01-01

    Approved for public release; distribution is unlimited The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force, in particular, has been subject to differing interpretations of the direction in which it acts and its order of magnitude. A horizontal vane radiometer design is provided, which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kin...

  1. Critical view on the creep modelling procedures

    Czech Academy of Sciences Publication Activity Database

    Kloc, Luboš

    2015-01-01

    Roč. 128, č. 4 (2015), s. 540-542 ISSN 0587-4246. [ISPMA 2014 - International Symposium on Physics of Materials /13./. Praha, 31.08.2014-04.09.2014] R&D Projects: GA MPO FR-TI4/406 Institutional support: RVO:68081723 Keywords : Creep * Creep deformation * Grain boundaries * Phase structure * Strain rate Subject RIV: JJ - Other Materials Impact factor: 0.525, year: 2015

  2. Divergent Perturbation Series

    International Nuclear Information System (INIS)

    Suslov, I.M.

    2005-01-01

    Various perturbation series are factorially divergent. The behavior of their high-order terms can be determined by Lipatov's method, which involves the use of instanton configurations of appropriate functional integrals. When the Lipatov asymptotic form is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series, which can be resummed to solve various strong-coupling problems in a certain approximation. This approach is demonstrated by determining the Gell-Mann-Low functions in φ 4 theory, QED, and QCD with arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic form are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes are described both for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. Higher order corrections to the Lipatov asymptotic form are discussed

  3. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Mengjia; Xu, Jijin, E-mail: xujijin_1979@sjtu.edu.cn; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-12-30

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  4. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    International Nuclear Information System (INIS)

    Xu, Mengjia; Xu, Jijin; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-01-01

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  5. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  6. Creep buckling problems in fast reactor components

    International Nuclear Information System (INIS)

    Ramesh, R.; Damodaran, S.P.; Chellapandi, P.; Chetal, S.C.; Bhoje, S.B.

    1995-01-01

    Creep buckling analyses for two important components of 500 M We Prototype Fast Breeder Reactor (PFBR), viz. Intermediate Heat Exchanger (IHX) and Inner Vessel (IV), are reported. The INCA code of CASTEM system is used for the large displacement elasto-plastic-creep analysis of IHX shell. As a first step, INCA is validated for a typical benchmark problem dealing with the creep buckling of a tube under external pressure. Prediction of INCA is also compared with the results obtained using Hoff's theory. For IV, considering the prohibitively high computational cost for the actual analysis, a simplified analysis which involves only large displacement elastoplastic buckling analysis is performed using isochronous stress strain curve approach. From both of these analysis is performed using isochronous stress strain curve approach. From both of these analysis, it has been inferred that creep buckling failure mode is not of great concern in the design of PFBR components. It has also been concluded from the analysis that Creep Cross Over Curve given in RCC-MR is applicable for creep buckling failure mode also. (author). 8 refs., 9 figs., 1 tab

  7. Creep analysis of silicone for podiatry applications.

    Science.gov (United States)

    Janeiro-Arocas, Julia; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Naya, Salvador; López-Canosa, Adrián; Heredia-García, Nicolás; Artiaga, Ramón

    2016-10-01

    This work shows an effective methodology to characterize the creep-recovery behavior of silicones before their application in podiatry. The aim is to characterize, model and compare the creep-recovery properties of different types of silicone used in podiatry orthotics. Creep-recovery phenomena of silicones used in podiatry orthotics is characterized by dynamic mechanical analysis (DMA). Silicones provided by Herbitas are compared by observing their viscoelastic properties by Functional Data Analysis (FDA) and nonlinear regression. The relationship between strain and time is modeled by fixed and mixed effects nonlinear regression to compare easily and intuitively podiatry silicones. Functional ANOVA and Kohlrausch-Willians-Watts (KWW) model with fixed and mixed effects allows us to compare different silicones observing the values of fitting parameters and their physical meaning. The differences between silicones are related to the variations of breadth of creep-recovery time distribution and instantaneous deformation-permanent strain. Nevertheless, the mean creep-relaxation time is the same for all the studied silicones. Silicones used in palliative orthoses have higher instantaneous deformation-permanent strain and narrower creep-recovery distribution. The proposed methodology based on DMA, FDA and nonlinear regression is an useful tool to characterize and choose the proper silicone for each podiatry application according to their viscoelastic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Review of recent irradiation-creep results

    International Nuclear Information System (INIS)

    Coghlan, W.A.

    1982-05-01

    Materials deform faster under stress in the presence of irradiation by a process known as irradiation creep. This phenomenon is important to reactor design and has been the subject of a large number of experimental and theoretical investigations. The purpose of this work is to review the recent experimental results to obtain a summary of these results and to determine those research areas that require additional information. The investigations have been classified into four subgroups based on the different experimental methods used. These four are: (1) irradiation creep using stress relaxation methods, (2) creep measurements using pressurized tubes, (3) irradiation creep from constant applied load, and (4) irradiation creep experiments using accelerated particles. The similarity and the differences of the results from these methods are discussed and a summary of important results and suggested areas for research is presented. In brief, the important results relate to the dependence of creep on swelling, temperature, stress state and alloying additions. In each of these areas new results have been presented and new questions have arisen which require further research to answer. 65 references

  9. Factors influencing creep model equation selection

    International Nuclear Information System (INIS)

    Holdsworth, S.R.; Askins, M.; Baker, A.; Gariboldi, E.; Holmstroem, S.; Klenk, A.; Ringel, M.; Merckling, G.; Sandstrom, R.; Schwienheer, M.; Spigarelli, S.

    2008-01-01

    During the course of the EU-funded Advanced-Creep Thematic Network, ECCC-WG1 reviewed the applicability and effectiveness of a range of model equations to represent the accumulation of creep strain in various engineering alloys. In addition to considering the experience of network members, the ability of several models to describe the deformation characteristics of large single and multi-cast collations of ε(t,T,σ) creep curves have been evaluated in an intensive assessment inter-comparison activity involving three steels, 21/4 CrMo (P22), 9CrMoVNb (Steel-91) and 18Cr13NiMo (Type-316). The choice of the most appropriate creep model equation for a given application depends not only on the high-temperature deformation characteristics of the material under consideration, but also on the characteristics of the dataset, the number of casts for which creep curves are available and on the strain regime for which an analytical representation is required. The paper focuses on the factors which can influence creep model selection and model-fitting approach for multi-source, multi-cast datasets

  10. Study on sand particles creep model and open pit mine landslide mechanism caused by sand fatigue liquefaction

    Science.gov (United States)

    Du, Dong-Ning; Wang, Lai-Gui; Zhang, Xiang-Dong; Zhang, Shu-Kun

    2017-06-01

    The sand particles in the sand - rock composite slope of the open pit mine occurs creep deformation and fatigue liquefaction under the action of vehicle load vibration and hydraulic gradient, which causes landslide geological disasters and it destroys the surface environment. To reveal the mechanism, a mechanics model based on the model considering the soil structural change with a new “plastic hinge” element is developed, to improve its constitutive and creep curve equations. Data from sand creep experiments are used to identify the parameters in the model and to validate the model. The results show that the mechanical model can describe the rotation progress between the sand particles, disclose the negative acceleration creep deformation stage during the third phase, and require fewer parameters while maintaining accuracy. It provides a new creep model considering rotation to analyze sand creep mechanism, which provides a theoretical basis for revealing the open pit mine landslide mechanism induced by creep deformation and fatigue liquefaction of sandy soil.

  11. Creep avalanches on San Andreas Fault and their underlying mechanism from 19 years of InSAR and seismicity

    Science.gov (United States)

    Khoshmanesh, M.; Shirzaei, M.

    2017-12-01

    Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep determines the earthquake potential, while its temporal evolution, known as slow slip events (SSE), may trigger earthquakes. Although the conditions promoting fault creep are well-established, the mechanism for initiating self-sustaining and sometimes cyclic creep events is enigmatic. Here we investigate a time series of 19 years of surface deformation measured by radar interferometry between 1992 and 2011 along the Central San Andreas Fault (CSAF) to constrain the temporal evolution of creep. We show that the creep rate along the CSAF has a sporadic behavior, quantified with a Gumbel-like probability distribution characterized by longer tail toward the extreme positive rates, which is signature of burst-like creep dynamics. Defining creep avalanches as clusters of isolated creep with rates exceeding the shearing rate of tectonic plates, we investigate the statistical properties of their size and length. We show that, similar to the frequency-magnitude distribution of seismic events, the distribution of potency estimated for creep avalanches along the CSAF follows a power law, dictated by the distribution of their along-strike lengths. We further show that an ensemble of concurrent creep avalanches which aseismically rupture isolated fault compartments form the semi-periodic SSEs observed along the CSAF. Using a rate and state friction model, we show that normal stress is temporally variable on the fault, and support this using seismic observations. We propose that, through a self-sustaining fault-valve behavior, compaction induced elevation of pore pressure within hydraulically isolated fault compartments, and subsequent frictional dilation is the cause for the observed episodic SSEs. We further suggest that the 2004 Parkfield Mw6 earthquake may have been triggered by the SSE on adjacent creeping segment, which increased Coulomb

  12. Creep behaviour of a polymer-based underground support liner

    Science.gov (United States)

    Guner, Dogukan; Ozturk, Hasan

    2017-09-01

    All underground excavations (tunnels, mines, caverns, etc.) need a form of support to ensure that excavations remain safe and stable for the designed service lifetime. In the last decade, a new support material, thin spray-on liner (TSL) has started to take place of traditional underground surface supports of bolts and shotcrete. TSLs are generally cement, latex, polymer-based and also reactive or non-reactive, multi-component materials applied to the rock surface with a layer of few millimeter thickness. They have the advantages of low volume, logistics, rapid application and low operating cost. The majority of current TSLs are two-part products that are mixed on site before spraying onto excavation rock surfaces. Contrary to the traditional brittle supports, the high plastic behaviour of TSLs make them to distribute the loads on larger lining area. In literature, there is a very limited information exist on the creep behavior of TSLs. In this study, the creep behavior of a polymer-based TSL was investigated. For this purpose, 7-day cured dogbone TSL specimens were tested under room temperature and humidity conditions according to ASTM-D2990 creep testing standard. A range of dead weights (80, 60, 40, and 20 % of the tensile strength) were applied up to 1500 hours. As a result of this study, the time-dependent strain behavior of a TSL was presented for different constant load conditions. Moreover, a new equation was derived to estimate tensile failure time of the TSL for a given loading condition. If the tensile stress acting on the TSL is known, the effective permanent support time of the TSL can be estimated by the proposed relationship.

  13. Study on the creep constitutive equation of Hastelloy X, (1)

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Mutoh, Yasushi

    1983-01-01

    In order to carry out the structural design of high temperature pipings, intermediate heat exchangers and isolating valves for a multipurpose high temperature gas-cooled reactor, in which coolant temperature reaches 1000 deg C, the creep characteristics of Hastelloy X used as the heat resistant material must be clarified. In addition to usual creep rupture life and the time to reach a specified creep strain, the dependence of creep strain curves on time, temperature and stress must be determined and expressed with equations. Therefore, using the creep data of Hastelloy X given in the literatures, the creep constitutive equation was made. Since the creep strain curves under the same test condition were different according to heats, the sensitivity analysis of the creep constitutive equation was performed. The form of the creep constitutive equation was determined to be Garofalo type. The result of the sensitivity analysis is reported. (Kako, I.)

  14. Theoretical treatment of embrittlement by inert gas under creep conditions

    International Nuclear Information System (INIS)

    Beere, W.

    1980-01-01

    Cavities situated on grain boundaries can grow at high temperature under the action of an applied stress. Grain boundary diffusion, surface diffusion, plastic growth, vacancy source control or geometric creep constraint processes may control the rate of cavity growth. The growth mechanisms are compared for the particular application of an irradiated austenitic stainless steel. The calculated growth rates are compared with out of pile measurements of time to fracture of pre-irradiated steel. The comparison is based on the assumption that bubbles nucleate during the initial part of the post irradiation test. The larger bubbles are suitable cavity nuclei and grow. (author)

  15. The Greenville Fault: preliminary estimates of its long-term creep rate and seismic potential

    Science.gov (United States)

    Lienkaemper, James J.; Barry, Robert G.; Smith, Forrest E.; Mello, Joseph D.; McFarland, Forrest S.

    2013-01-01

    Once assumed locked, we show that the northern third of the Greenville fault (GF) creeps at 2 mm/yr, based on 47 yr of trilateration net data. This northern GF creep rate equals its 11-ka slip rate, suggesting a low strain accumulation rate. In 1980, the GF, easternmost strand of the San Andreas fault system east of San Francisco Bay, produced a Mw5.8 earthquake with a 6-km surface rupture and dextral slip growing to ≥2 cm on cracks over a few weeks. Trilateration shows a 10-cm post-1980 transient slip ending in 1984. Analysis of 2000-2012 crustal velocities on continuous global positioning system stations, allows creep rates of ~2 mm/yr on the northern GF, 0-1 mm/yr on the central GF, and ~0 mm/yr on its southern third. Modeled depth ranges of creep along the GF allow 5-25% aseismic release. Greater locking in the southern two thirds of the GF is consistent with paleoseismic evidence there for large late Holocene ruptures. Because the GF lacks large (>1 km) discontinuities likely to arrest higher (~1 m) slip ruptures, we expect full-length (54-km) ruptures to occur that include the northern creeping zone. We estimate sufficient strain accumulation on the entire GF to produce Mw6.9 earthquakes with a mean recurrence of ~575 yr. While the creeping 16-km northern part has the potential to produce a Mw6.2 event in 240 yr, it may rupture in both moderate (1980) and large events. These two-dimensional-model estimates of creep rate along the southern GF need verification with small aperture surveys.

  16. A creep life assessment method for boiler pipes using small punch creep test

    International Nuclear Information System (INIS)

    Izaki, Toru; Kobayashi, Toshimi; Kusumoto, Junichi; Kanaya, Akihiro

    2009-01-01

    The small punch creep (SPC) test is considered as a highly useful method for creep life assessment for high temperature plant components. SPC uses miniature-sized specimens and does not cause any serious sampling damages, and its assessment accuracy is at a high level. However, in applying the SPC test to the residual creep life assessment of the boiler in service, there are some issues to be studied. In order to apply SPC test to the residual creep life assessment of the 2.25Cr-1Mo steel boiler pipe, the relationship between uniaxial creep stress and the SPC test load has been studied. The virgin material, pre-crept, weldment and service aged samples of 2.25Cr-1Mo steel were tested. It was confirmed that the relationship between uniaxial creep stress and the SPC test load at the same rupture time can be described as a single straight line independent of test conditions and materials. Therefore a life assessment is possible by using SPC test in place of uniaxial creep tests. The creep life assessment using SPC was applied to actual thermal power plant components which are in service.

  17. Creep theories compared by means of high sensitivity tensile creep data

    International Nuclear Information System (INIS)

    Salim, A.

    1987-01-01

    Commonly used creep theories include time-hardening, strain-hardening and Rabotnov's modified strain-hardening. In the paper they are examined by using high sensitivity tensile creep data produced on 1% CrMoV steel at a temperatue of 565 0 C. A special creep machine designed and developed by the author is briefly described and is compared with other existing machines. Tensile creep data reported cover a stress range of 100-260 MN m -2 ; four variable-creep tests each in duplicate are also reported. Test durations are limited to 3000 h, or failure, whichever occurs earlier. The strain-hardening theory and Rabotnov's modified strain-hardening theory are found to give good prediction of creep strain under variable stress conditions. The time-hardening theory shows a relatively poor agreement and considerably underestimates the accumulated inelastic strain under increasing stress condition. This discrepancy increases with the increased stress rate. The theories failed to predict the variable stress results towards the later part of the test where tertiary effects were significant. The use of creep equations which could account for creep strain at higher stress levels seems to improve the situation considerably. Under conditions of variable stress, it is suggested that a theory based on continuous damage mechanics concepts might give a better prediction. (author)

  18. Distribution of creep in the northern San Francisco Bay Area illuminated by repeating earthquakes and InSAR

    Science.gov (United States)

    Funning, G.; Shakibay Senobari, N.; Swiatlowski, J. L.

    2017-12-01

    Surface observations of fault creep in the region north of San Francisco Bay are sporadic. While there are long-standing instances of creep-affected infrastructure on the Maacama and Bartlett Springs faults, the lateral and depth extents of creep on these and other faults in the region remain a question. Here, we supplement this sparse existing observation set with additional information from repeating earthquake sequences (REs) and InSAR, to illuminate, and significantly improve our knowledge of, creep across the region. Repeating earthquakes have long been considered indicators of creep on faults. We present the results of an extensive similarity search through over 600,000 archived waveforms from 43,000 events using a fast algorithm; from this we can identify 39 periodic repeating sequences and over 80 nonperiodic repeated event groups. We compare these with decadal line-of-sight velocity measurements made by applying the StaMPS time series InSAR code to ERS and Envisat data covering the region, that can be used to identify surface creep on faults. On the Rodgers Creek, Maacama and Bartlett Springs faults, both InSAR and REs show corroborating evidence for creep at locations where it was previously inferred. The REs additionally provide information on its depth extent. On the Maacama fault, we find REs extending almost to the southern limit of the mapped fault trace, south of Cloverdale, suggesting that creep may be pervasive on the fault. We can also identify structural complexity both in the stepover region with the Rodgers Creek fault, and in the northern segment of the fault close to Willits, potentially indicating parallel and/or down-dip branching creeping structures in both locations. REs on the Bartlett Springs fault indicate creep that extends across the full down-dip width of the brittle fault; here the proximity of InSAR creep rate estimates and a shallow RE sequence may permit a calibration of the RE `creepmeter', allowing us to estimate creep rates

  19. Divergent Geophysical Evolution of Vesta and Ceres

    Science.gov (United States)

    Raymond, C. A.; Ermakov, A.; Castillo, J. C.; Fu, R. R.; McSween, H. Y., Jr.; McCord, T. B.; Park, R. S.; Russell, C. T.; De Sanctis, M. C.; Jaumann, R.; Konopliv, A. S.

    2017-12-01

    The Dawn mission explored two massive protoplanets in the main asteroid belt, Vesta and Ceres, that are fossils from the earliest epoch of solar system formation. Dawn's data provide evidence that these bodies formed very early, within the first few million years after CAIs, yet they followed divergent evolutionary paths. Vesta formed globally homogeneous distribution of minerals across the surface indicates that Ceres' interior experienced pervasive alteration. Topography and morphology of the surface reveals smoother, apparently resurfaced areas, generally at lower elevation, and rougher areas with greater relief. Local morphology such as crater floor deposits, isolated mountains, and enigmatic bright areas indicate recently active processes on Ceres, likely driven by brine cryovolcanism. Causes of the divergent evolution of these bodies include their accretionary environment, timing of accretion and size. Acknowledgements: Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  20. Flow over convergent and divergent wall riblets

    Energy Technology Data Exchange (ETDEWEB)

    Koeltzsch, K.; Dinkelacker, A.; Grundmann, R. [Institut fuer Luft- und Raumfahrttechnik, Technische Universitaet Dresden, 36460 Merkers (Germany)

    2002-08-01

    Fast swimming sharks have small riblets on their skin, which are assumed to improve the swimming performance of the fish. Fluid dynamic experiments in water as well as in air confirm this assumption. With riblet surfaces as compared to smooth surfaces, drag reductions up to about 10% were measured. The overall riblet pattern on sharks shows parallel riblets directed from head to tail, but besides this overall pattern fast swimming sharks have also small areas with converging riblets and others with diverging riblets. In the present study the velocity field over convergent and divergent riblet patterns is investigated by hot-wire measurements in turbulent pipe flow. Significant changes in the near wall velocity field were found. (orig.)

  1. Pinning and creep in superconductors

    International Nuclear Information System (INIS)

    Ovchinnikov, Yu.N.

    1994-01-01

    All superconductors can be separated into two large groups: type I and type II. The behaviour of these two groups in a magnetic field is quite different. The superconductors of type I, in a strong magnetic field, enter the intermediate state. Phenomenological picture of this state was given by Landau. The type II superconductors, in strong magnetic fields, form the mixed state (or Shubnikov phase). The microscopic picture of the mixed state was given by Abrikosov on the basis of Ginzburg-Landau equations. In ideal homogeneous superconductors the free energy is not changed if all the vortex structure is shifted on some distance u. The transport current will be proportional, therefore, to the electric field E. All the real superconductors, however, are inhomogeneous. Inhomogeneities interact with vortex lattice and pin it. In this new state the transport current below some critical value does not lead to the motion of the flux lattice and to the energy dissipation. The value of critical current strongly depends on the type of inhomogeneities, on the value of magnetic field and on temperature. In new layered superconductors, the critical current depends also on the orientation of the magnetic field B with respect to the layer planes. Temperature and quantum fluctuations lead to the transition between different metastable states in superconductors with current. As a result, the vortex lattice slowly moves (creep phenomenon). Below we will briefly discuss all these phenomena. (orig.)

  2. Creep behavior in interlaminar shear of a Hi-Nicalon™/SiC–B4C composite at 1200 °C in air and in steam

    International Nuclear Information System (INIS)

    Ruggles-Wrenn, M.B.; Pope, M.T.; Zens, T.W.

    2014-01-01

    Creep behavior in interlaminar shear of a non-oxide ceramic composite with a multilayered matrix was investigated at 1200 °C in laboratory air and in steam environment. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated Hi-Nicalon™ fibers woven in a five-harness-satin weave. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. The interlaminar shear properties were measured. The creep behavior was examined for interlaminar shear stresses in the 16–22 MPa range. Primary and secondary creep regimes were observed in all tests conducted in air and in steam. In air and in steam, creep run-out defined as 100 h at creep stress was achieved at 16 MPa. Similar creep strains were accumulated in air and in steam. Furthermore, creep strain rates and creep lifetimes were only moderately affected by the presence of steam. The retained properties of all specimens that achieved run-out were characterized. Composite microstructure, as well as damage and failure mechanisms were investigated. The tested specimens were also examined using electron probe microanalysis (EPMA) with wavelength dispersive spectroscopy (WDS). Analysis of the fracture surfaces revealed significant surface oxidation, but only trace amounts of boron and carbon. Cross sectional analysis showed increasing boron concentration in the specimen interior

  3. Validation of statistical models for creep rupture by parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65, Fisher Ave., Rugby, Warks CV22 5HW (United Kingdom)

    2012-01-15

    Statistical analysis is an efficient method for the optimisation of any candidate mathematical model of creep rupture data, and for the comparative ranking of competing models. However, when a series of candidate models has been examined and the best of the series has been identified, there is no statistical criterion to determine whether a yet more accurate model might be devised. Hence there remains some uncertainty that the best of any series examined is sufficiently accurate to be considered reliable as a basis for extrapolation. This paper proposes that models should be validated primarily by parametric graphical comparison to rupture data and rupture gradient data. It proposes that no mathematical model should be considered reliable for extrapolation unless the visible divergence between model and data is so small as to leave no apparent scope for further reduction. This study is based on the data for a 12% Cr alloy steel used in BS PD6605:1998 to exemplify its recommended statistical analysis procedure. The models considered in this paper include a) a relatively simple model, b) the PD6605 recommended model and c) a more accurate model of somewhat greater complexity. - Highlights: Black-Right-Pointing-Pointer The paper discusses the validation of creep rupture models derived from statistical analysis. Black-Right-Pointing-Pointer It demonstrates that models can be satisfactorily validated by a visual-graphic comparison of models to data. Black-Right-Pointing-Pointer The method proposed utilises test data both as conventional rupture stress and as rupture stress gradient. Black-Right-Pointing-Pointer The approach is shown to be more reliable than a well-established and widely used method (BS PD6605).

  4. The investigation of expanded polystyrene creep behaviour

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey

    2017-01-01

    Full Text Available The results obtained in long-term testing under constant compressive stress of the cut from the Slabs EPS 50/100 and EPS 150 with the density ranging from 15 to 24 kg/m3, which were manufactured by the same manufacturer by foaming EPS solid granules (beads in closed volume. The creep strain of the above described specimens was used as a criterion for estimating the deformability of the EPS slabs under long-term compressive stress. It was measured using special stands EN 1606, maintaining constant stress during the fixed time interval tn=122 days. Creep strains were determined by the methods described in EN 1606 for constant stress σc=0.35σ10% (compressive stress σ10% was determined in accordance with EN 826:2013. The long-term compressive stress measurement error did not exceed 1 %, while the creep strain measurement error was not larger than 0,005 mm. The tests were conducted at the ambient temperature of (23±2°С and relative humidity of (50±5 %.The long-term constant compressive load σc=0.35σ10%. The method of mathematical and statistical experimental design optimization models taking into account the thickness of specimens is proposed to determine the creep compliance Ic (tn the creep strain εc (tn and predictive point estimate of creep strain εc (T. Graphical interpretation of the abstained models is also presented. It should be noted that the abstained equations may be used in practice for estimating the creep strains at time tn=122 days and predictive estimates of εc (T for the load time of 10 years.

  5. Creep and creep fatigue crack behavior of 1Cr- and 9Cr-steels

    International Nuclear Information System (INIS)

    Maile, K.; Klenk, A.; Schellenberg, G.; Granacher, J.; Tramer, M.

    2000-01-01

    A large database for creep crack initiation and propagation under constant load conditions is available on conventional power plant steels of types 1%Cr and 12%Cr. Modern plants are often used in the medium and peak load regime, thus the dominant loading situation in high temperature components is creep fatigue. For life assessment data about crack initiation and growth under creep fatigue loading are required. These characteristics can not be substituted by pure fatigue or creep crack data. Therefore, a comprehensive test programme was started to investigate the creep fatigue crack behaviour of a 1%CrMoNiV turbine rotor steel (30CrMoNiV 4 11) at 550 C and a new 9%CrMoVNb pipe steel (type P 9 1) at 600 C. DENT-specimen with 15 and 60 mm thickness as well as side grooved CT-specimen with 25 and 50 mm thickness have been tested to determine possible influences of geometry and thus to check the transferability of the data to components. The creep fatigue crack growth results of tests with dwell times between t H = 0,32h and 10 h lie in the scatterbands given by creep crack growth results. Nevertheless a higher crack growth rate under creep fatigue conditions can be stated. An increase in crack growth rate due to creep fatigue is clearly visible. Loading situations with frequencies higher than 1.10 -4 Hz should be not assessed with pure creep crack results or sufficient safety margins have to be applied. (orig.)

  6. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions

    Science.gov (United States)

    Radchenko, V. P.; Saushkin, M. N.; Tsvetkov, V. V.

    2016-05-01

    This paper describes the effect of thermal exposure (high-temperature exposure) ( T = 675°C) on the residual creep stress relaxation in a surface hardened solid cylindrical sample made of ZhS6UVI alloy. The analysis is carried out with the use of experimental data for residual stresses after micro-shot peening and exposures to temperatures equal to T = 675°C during 50, 150, and 300 h. The paper presents the technique for solving the boundary-value creep problem for the hardened cylindrical sample with the initial stress-strain state under the condition of thermal exposure. The uniaxial experimental creep curves obtained under constant stresses of 500, 530, 570, and 600 MPa are used to construct the models describing the primary and secondary stages of creep. The calculated and experimental data for the longitudinal (axial) tensor components of residual stresses are compared, and their satisfactory agreement is determined.

  7. Evaluation of hot hardness, creep, fatigue and fracture properties of zirconia ceramics by an indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ganguly, C.; Upadhyaya, D.D.

    1996-01-01

    Zirconia ceramics have wide range engineering applications at room and elevated temperatures. For understanding the mechanical behaviour, the indentation technique was adapted for quick evaluation of hot hardness, creep, fatigue and fracture properties. A Vicker's diamond indentor with 10 N load was employed for hot hardness and creep measurement up to 1300 deg. The fatigue data were evaluated at room temperature by repeated indentation with a constant load (10-2500N) at the same location for a dwell time of 5s until it resulted in the formation of a lateral chip on the sample surface. Thus, the number of cycles for chip formation at a specific indentation load was obtained. The fracture toughness was evaluated at room temperature with a load of 300N using a Vicker's diamond indentor. The results of hot hardness, creep, fatigue, and fracture data ol 3Y-TZP and Mg-PSZ are discussed along with their microstructural features. (authors)

  8. Uniaxial and Multiaxial Creep Testing of Copper

    International Nuclear Information System (INIS)

    Auerkari, Pertti; Holmstroem, Stefan; Veivo, Juha; Salonen, Jorma; Nenonen, Pertti; Laukkanen, Anssi

    2003-12-01

    Multiaxial (compact tension, CT) creep testing has been performed for copper with 79 ppm phosphorus and 60 ppm oxygen. The test load levels were selected according to results from preceding uniaxial creep testing and FE analysis of the CT specimens. Interrupted testing was used for metallographic inspection of the specimens for creep damage. After 7,900 h and 10,300 h of testing at 150 deg C and 46 MPa (reference stress), inspected CT specimens showed cavity indications with a low maximum density ( 2 ) and a typical maximum dimension of less than about 1 μm near the notch tip. From previous experience on creep cavitation damage, the expected minimum life to crack initiation at the notch tip would be at least 40,000 hours, but could be considerably longer because the cavity indications are suspected to originate at least partly from precipitates in specimen preparation. The interrupted testing of CT specimens also showed a 'segregation zone' along some grain boundaries, mainly near the notch tip. This zone appears to contain more P and O than the surrounding matrix, but less than the narrow grain boundary films that are already present in the as-new material. The zone is readily etched and shows a relatively sharp edge towards the matrix without an obvious phase boundary. Using converted multiaxial (CT) testing results, the predicted isothermal uniaxial creep life at 150 deg C/46 MPa is about 1,900 years. The corresponding creep life directly predicted from uniaxial data is 3,100 years, when estimated from a parametric best fit expression according to PD6605. Although the two results are satisfactorily within a factor of two in time, the uncertainties in the extended extrapolations remain large. Further testing is recommended, with at least two creep enhancing factors present. Such testing could include notched creep testing at 120-180 deg C in a corrosive environment, and notched model vessel creep testing at elevated pressure. It is also recommended that longer

  9. Predicting creep rupture from early strain data

    International Nuclear Information System (INIS)

    Holmstroem, Stefan; Auerkari, Pertti

    2009-01-01

    To extend creep life modelling from classical rupture modelling, a robust and effective parametric strain model has been developed. The model can reproduce with good accuracy all parts of the creep curve, economically utilising the available rupture models. The resulting combined model can also be used to predict rupture from the available strain data, and to further improve the rupture models. The methodology can utilise unfailed specimen data for life assessment at lower stress levels than what is possible from rupture data alone. Master curves for creep strain and rupture have been produced for oxygen-free phosphorus-doped (OFP) copper with a maximum testing time of 51,000 h. Values of time to specific strain at given stress (40-165 MPa) and temperature (125-350 deg. C) were fitted to the models in the strain range of 0.1-38%. With typical inhomogeneous multi-batch creep data, the combined strain and rupture modelling involves the steps of investigation of the data quality, extraction of elastic and creep strain response, rupture modelling, data set balancing and creep strain modelling. Finally, the master curves for strain and rupture are tested and validated for overall fitting efficiency. With the Wilshire equation as the basis for the rupture model, the strain model applies classical parametric principles with an Arrhenius type of thermal activation and a power law type of stress dependence for the strain rate. The strain model also assumes that the processes of primary and secondary creep can be reasonably correlated. The rupture model represents a clear improvement over previous models in the range of the test data. The creep strain information from interrupted and running tests were assessed together with the rupture data investigating the possibility of rupture model improvement towards lower stress levels by inverse utilisation of the combined rupture based strain model. The developed creep strain model together with the improved rupture model is

  10. Unified creep-plasticity model for halite

    International Nuclear Information System (INIS)

    Krieg, R.D.

    1980-11-01

    There are two national energy programs which are considering caverns in geological salt (NaCl) as a storage repository. One is the disposal of nuclear wastes and the other is the storage of oil. Both short-time and long-time structural deformations and stresses must be predictable for these applications. At 300K, the nominal initial temperature for both applications, the salt is at 0.28 of the melting temperature and exhibits a significant time dependent behavior. A constitutive model has been developed which describes the behavior observed in an extensive set of triaxial creep tests. Analysis of these tests showed that a single deformation mechanism seems to be operative over the stress and temperature range of interest so that the secondary creep data can be represented by a power of the stress over the entire test range. This simple behavior allowed a new unified creep-plasticity model to be applied with some confidence. The resulting model recognizes no inherent difference between plastic and creep strains yet models the total inelastic strain reasonably well including primary and secondary creep and reverse loadings. A multiaxial formulation is applied with a back stress. A Bauschinger effect is exhibited as a consequence and is present regardless of the time scale over which the loading is applied. The model would be interpreted as kinematic hardening in the sense of classical plasticity. Comparisons are made between test data and model behavior

  11. Irradiation creep in zirconium single crystals

    International Nuclear Information System (INIS)

    MacEwen, S.R.; Fidleris, V.

    1976-07-01

    Two identical single crystals of crystal bar zirconium have been creep tested in reactor. Both specimens were preirradiated at low stress to a dose of about 4 x 10 23 n/m 2 (E > 1 MeV), and were then loaded to 25 MPa. The first specimen was loaded with reactor at full power, the second during a shutdown. The loading strain for both crystals was more than an order of magnitude smaller than that observed when an identical unirradiated crystal was loaded to the same stress. Both crystals exhibited periods of primary creep, after which their creep rates reached nearly constant values when the reactor was at power. During shutdowns the creep rates decreased rapidly with time. Electron microscopy revealed that the irradiation damage consisted of prismatic dislocation loops, approximately 13.5 nm in diameter. Cleared channels, identified as lying on (1010) planes, were also observed. The results are discussed in terms of the current theories for flux enhanced creep in the light of the microstructures observed. (author)

  12. Sources of Variation in Creep Testing

    Science.gov (United States)

    Loewenthal, William S.; Ellis, David L.

    2011-01-01

    Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.

  13. Quadratic divergences and dimensional regularisation

    International Nuclear Information System (INIS)

    Jack, I.; Jones, D.R.T.

    1990-01-01

    We present a detailed analysis of quadratic and quartic divergences in dimensionally regulated renormalisable theories. We perform explicit three-loop calculations for a general theory of scalars and fermions. We find that the higher-order quartic divergences are related to the lower-order ones by the renormalisation group β-functions. (orig.)

  14. Non Newtonian gravity creeping flow

    International Nuclear Information System (INIS)

    Gratton, J.; Mahajan, S.M.; Minotti, F.

    1988-11-01

    We derive the governing equations for creeping gravity currents of non Newtonian liquids having a power law rheology, using a lubrication approximation. We consider unidirectional and axisymmetric currents. The equations differ from those for Newtonian liquids, being nonlinear in the spatial derivative of the thickness of the current. However, many solutions are closely analogous to those for Newtonian rheology; in particular the spreading relations can also be expressed as power laws of time, with exponents that depend on the rheological index. Similarity solutions for currents whose volume varies as a power of time are obtained. For the spread of a constant volume of liquid, analytic solutions are found. We also derive solutions of the waiting-time type, as well as the ones describing steady flows from a constant source to a sink. General travelling wave solutions are given, and analytic formulae for a simple case are derived. A phase plane formalism, that allows the systematic derivation of self similar solutions, is introduced. The application of the Boltzmann transform is briefly discussed. Present results are closely analogous to those for Newtonian liquids; all the solutions obtained here have their counterparts in Newtonian flows. This happens because the power law rheology, like the Newtonian constitutive relation, involves a single dimensional parameter. Thus one finds similarity solutions whenever the analogous Newtonian problem is self similar. Although the spreading relations are rheology-dependent, in most cases the dependence is rather weak. The present results may be of interest for geophysics since the lithosphere deforms according to an average power law rheology. (author). 17 refs

  15. Development of evaluation technique of high temperature creep characteristics by small punch-creep test method (I)

    International Nuclear Information System (INIS)

    Baek, Seung Se; Na, Sung Hun; Yu, Hyo Sun; Na, Eui Gyun

    2001-01-01

    In this study, a Small Punch Creep(SP-Creep) test using miniaturized specimen(10 x 10 x 0.5mm) is described to develop the new creep test method for high temperature structural materials. The SP-Creep test is applied to 2.25Cr-1Mo(STBA24) steel which is widely used as boiler tube material. The test temperatures applied for the creep deformation of miniaturized specimens are between 550∼600 .deg. C. The SP-Creep curves depend definitely on applied load and creep temperature, and show the three stages of creep behavior like in conventional uniaxial tensile creep curves. The load exponent of miniaturized specimen decrease with increasing test temperature, and its behavior is similar to stress exponent behavior of uniaxial creep test. The creep activation energy obtained from the relationship between SP-Creep rate and test temperature decreases as the applied load increases. A predicting equation of SP-Creep rate for 2.25Cr-1Mo steel is suggested, and a good agreement between experimental and calculated data has been found

  16. Influence of creep and cyclic oxidation in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Philipp; Baeker, Martin; Roesler, Joachim [Technische Univ. Braunschweig (Germany). Inst. fuer Werkstoffe

    2012-01-15

    The lifetime of thermal barrier coating systems is limited by cracks close to the interfaces, causing delamination. To study the failure mechanisms, a simplified model system is analysed which consists of a bond-coat bulk material, a thermally grown oxide, and an yttria-stabilised zirconia topcoat. The stresses in the model system are calculated using a finite element model which covers the simulation of full thermal cycles, creep in all layers, and the anisotropic oxidation during dwelling. Creep in the oxide and the thermal barrier coating is varied with the use of different creep parameter sets. The influence of creep in the bondcoat is analysed by using two different bond-coat materials: fast creeping Fecralloy and slow creeping oxide dispersion strengthened MA956. It is shown that creep in the bondcoat influences the lifetime of the coatings. Furthermore, a fast creeping thermally grown oxide benefits the lifetime of the coating system. (orig.)

  17. Effect of microstructure on light ion irradiation creep in nickel

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Simonen, E.P.; Bradley, E.R.; Stang, R.G.

    1983-01-01

    The concept of inhomogeneous slip or localized deformation is introduced to account for a weak dependence of irradiation creep on initial microstructure. Specimens of pure nickel (Ni) with three different microstructures were irradiated at 473 K with 15-17 MeV deuterons in the Pacific Northwest Laboratory (PNL) light ion irradiation creep apparatus. A dispersed barrier model for Climb-Glide (CG) creep was unable to account for the observed creep rates and creep strains. The weak dependence on microstructure was consistent with the Stress Induced Preferential Absorption (SIPA) creep mechanism but a high stress enhanced bias had to be assumed to account for the creep rates. Also, SIPA was unable to account for the observed creep strains. The CG and SIPA modeling utilized rate theory calculations of point defect fluxes and transmission electron microscopy for sink sizes and densities. (orig.)

  18. Creep Properties of Walikukun (Schouthenia ovata Timber Beams

    Directory of Open Access Journals (Sweden)

    Ali Awaludin

    2016-09-01

    Full Text Available This study presents an evaluation of creep constants of Walikukun (Schoutheniaovata timber beams when rheological model of four solid elements, which is obtained byassembling Kelvin and Maxwell bodies in parallel configuration, was adopted. Creep behaviorobtained by this method was further discussed and compared with creep behavior developedusing phenomenological model of the previous study. Creep data of previous study was deformationmeasurement of Walikukun beams having cross-section of 15 mm by 20 mm with a clearspan of 550 mm loaded for three weeks period under two different room conditions: with andwithout Air Conditioner. Creep behavior given by both four solid elements model and phenomenological(in this case are power functions had good agreement during the period of creepmeasurement, but they give different prediction of creep factor beyond this period. The powerfunction of phenomenological model could give a reasonable creep prediction, while for the foursolid elements model a necessary modification is required to adjust its long-term creep behavior.

  19. Effect of loading rate on creep of phosphorous doped copper

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Oestling, Henrik C.M.; Sandstroem, Rolf (Swerea KIMAB (Sweden))

    2011-12-15

    Creep testing of copper intended for nuclear waste disposal has been performed on continuous creep tests machines at a temperature of 75 deg C. The loading time has been varied from 1 hour to 6 months. The rupture strain including both loading and creep strains does not differ from traditional dead weight lever creep test rigs. The loading strain increases with increasing loading time, at the expense of the creep strain. The time dependence of the creep strain has been modelled taking athermal plastic deformation and creep into account. During loading the contribution to the strain from the athermal plastic deformation dominates until the stress is close to the constant load level. When the constant load has been reached there is no more athermal strain and all of the strain comes from creep

  20. The assessment of creep-fatigue initiation and crack growth

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.

    1991-01-01

    An outline of Nuclear Electric's Assessment Procedure for the High Temperature Response of Structures ('R5') for creep-fatigue initiation and crack growth is given. A unified approach is adopted for both regimes. For initiation, total damage is described in terms of separate creep and fatigue components. Ductility exhaustion is used for estimating creep damage whilst continuous cycling endurance data are used to evaluate the fatigue damage term. Evidence supporting this approach is given through the successful prediction of creep-fatigue endurances for a range of materials, cycle types, dwell period times, etc. Creep-fatigue crack growth is similarly described in terms of separated creep and fatigue components. Crack growth rates for each component are characterised in terms of fracture mechanics parameters. It is shown that creep crack growth rates can be rationalised on a ductility basis. Creep-fatigue interactions are accommodated in the cyclic growth component through the use of materials coefficients which depend on dwell time. (orig.)

  1. Effects of microstructure on light ion irradiation creep in nickel

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Simonen, E.P.; Bradley, E.R.; Stang, R.G.

    1982-10-01

    The concept of inhomogeneous slip or localized deformation is introduced to account for a weak dependence of irradiation creep on initial microstructure. Specimens of pure Ni with three different microstructures were irradiated at 473 0 K with 15 to 17 MeV deuterons in the PNL light ion irradiation creep apparatus. A dispersed barrier model for climb-glide creep was unable to account for the observed creep rates and creep strains. The weak dependence on microstructure was consistent with the SIPA creep mechanism but a high stress enhanced bias had to be assumed to account for the creep rates. Also, SIPA was unable to account for the observed creep strains. The modeling utilized rate theory calculations of point defect fluxes and transmission electron microscopy for sink sizes and densities

  2. Diffusion creep and its inhibition in a stainless steel

    International Nuclear Information System (INIS)

    Crossland, I.G.; Clay, B.D.

    1977-01-01

    The creep of 20% Cr, 25% Ni, Nb stainless steel was examined at low stresses and temperatures around 0.55 T/sub m/. The initial creep behaviour was consistent with the Coble theory of grain boundary diffusion creep; however, steady state creep was not observed and the creep rates quickly fell below the Coble theoretical values although they still remained greater than the Herring--Nabarro predictions. This reduction in creep rate was attributable to an increase in the effective viscosity of the steel rather than to any change in threshold stress. A model is proposed which explains the initial creep rates as being due to Coble creep with elastic accommodation at grain boundary particles. At higher strains grain boundary collapse caused by vacancy sinking is accommodated at precipitate particles by plastic deformation of the adjacent matrix material. 11 figures

  3. Using UAVSAR to Estimate Creep Along the Superstition Hills Fault, Southern California

    Science.gov (United States)

    Donnellan, A.; Parker, J. W.; Pierce, M.; Wang, J.

    2012-12-01

    UAVSAR data were first acquired over the Salton Trough region, just north of the Mexican border in October 2009. Second passes of data were acquired on 12 and 13 April 2010, about one week following the 5 April 2010 M 7.2 El Mayor - Cucapah earthquake. The earthquake resulted in creep on several faults north of the main rupture, including the Yuha, Imperial, and Superstition Hills faults. The UAVSAR platform acquires data about every six meters in swaths about 15 km wide. Tropospheric effects and residual aircraft motion contribute to error in the estimation of surface deformation in the Repeat Pass Interferometry products. The Superstition Hills fault shows clearly in the associated radar interferogram; however, error in the data product makes it difficult to infer deformation from long profiles that cross the fault. Using the QuakeSim InSAR Profile tool we extracted line of site profiles on either side of the fault delineated in the interferogram. We were able to remove much of the correlated error by differencing profiles 250 m on either side of the fault. The result shows right-lateral creep of 1.5±.4 mm along the northern 7 km of the fault in the interferogram. The amount of creep abruptly changes to 8.4±.4 mm of right lateral creep along at least 9 km of the fault covered in the image to the south. The transition occurs within less than 100 m along the fault. We also extracted 2 km long line of site profiles perpendicular to this section of the fault. Averaging these profiles shows a step across the fault of 14.9±.3 mm with greater creep on the order of 20 mm on the northern two profiles and lower creep of about 10 mm on the southern two profiles. Nearby GPS stations P503 and P493 are consistent with this result. They also confirm that the creep event occurred at the time of the El Mayor - Cucapah earthquake. By removing regional deformation resulting from the main rupture we were able to invert for the depth of creep from the surface. Results indicate

  4. Creep damage evaluation of low alloy steel weld joint by small punch creep testing

    International Nuclear Information System (INIS)

    Nishioka, Tomoya; Sawaragi, Yoshiatsu; Uemura, Hiromi

    2013-01-01

    The effect of sampling location on SPC (Small Punch Creep) tests were investigated for weld joints to establish evaluation method of Type IV creep behavior. The SPC specimen shape was 10mm diameter and 0.5mm thick round disc prepared from weld joints of 2.25Cr-1Mo low alloy steel. It was found that the center of SPC specimen should be 2mm apart from the weld interface as the recommended sampling location. Creep damage was imposed for large weld joint specimens by axial creep loading at 620degC, 52MPa with the interrupted time fraction of 0.34, 0.45, 0.64 and 0.82.SPC samples were prepared from those damaged specimens following the recommended way described in this paper. Among the various SPC tests conducted, good relationships were found for the test condition of 625degC, 200N. Namely, good relationships were obtained both between minimum deflection rate and creep life fraction, and between rupture time and creep life fraction. Consequently, creep life assessment of Type IV fracture by SPC tests could be well conducted using the sampling location and the test condition recommended in this paper. (author)

  5. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    Directory of Open Access Journals (Sweden)

    YE Wenming

    2016-08-01

    Full Text Available A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calculate the deformation response of high temperature component under a given load curve, finally the creep rupture life was determined according to the change trend of the responsive curve.The method was verified by durable test of TC11 titanium alloy notched specimens under 500 ℃, and was compared with the three creep rupture life prediction methods based on the small deformation analysis. Results show that the proposed method can accurately predict the high temperature creep response and long-term life of TC11 notched specimens, and the accuracy is better than that of the methods based on the average effective stress of notch ligament, the bone point stress and the fracture strain of the key point, which are all based on small deformation finite element analysis.

  6. Viscoelastic characterization of carbon fiber-epoxy composites by creep and creep rupture tests

    International Nuclear Information System (INIS)

    Farina, Luis Claudio

    2009-01-01

    One of the main requirements for the use of fiber-reinforced polymer matrix composites in structural applications is the evaluation of their behavior during service life. The warranties of the integrity of these structural components demand a study of the time dependent behavior of these materials due to viscoelastic response of the polymeric matrix and of the countless possibilities of design configurations. In the present study, creep and creep rupture test in stress were performed in specimens of unidirectional carbon fiber-reinforced epoxy composites with fibers orientations of 60 degree and 90 degree, at temperatures of 25 and 70 degree C. The aim is the viscoelastic characterization of the material through the creep curves to some levels of constant tension during periods of 1000 h, the attainment of the creep rupture envelope by the creep rupture curves and the determination of the transition of the linear for non-linear behavior through isochronous curves. In addition, comparisons of creep compliance curves with a viscoelastic behavior prediction model based on Schapery equation were also performed. For the test, a modification was verified in the behavior of the material, regarding the resistance, stiffness and deformation, demonstrating that these properties were affected for the time and tension level, especially in work temperature above the ambient. The prediction model was capable to represent the creep behavior, however the determination of the equations terms should be considered, besides the variation of these with the applied tension and the elapsed time of test. (author)

  7. Creep fracture mechanics analysis for through-wall cracked pipes under widespread creep condition

    International Nuclear Information System (INIS)

    Huh, Nam Su; Kim, Yun Jae; Kim, Young Jin

    2003-01-01

    This paper compares engineering estimation schemes of C * and creep COD for circumferential and axial through-wall cracked pipes at elevated temperatures with detailed 3-D elastic-creep finite element results. Engineering estimation schemes included the GE/EPRI method, the reference stress method where reference stress is defined based on the plastic limit load and the enhanced reference stress method where the reference stress is defined based on the optimized reference load. Systematic investigations are made not only on the effect of creep-deformation behaviour on C * and creep COD, but also on effects of the crack location, the pipe geometry, the crack length and the loading mode. Comparison of the FE results with engineering estimations provides that for idealized power law creep, estimated C * and COD rate results from the GE/EPRI method agree best with FE results. For general creep-deformation laws where either primary or tertiary creep is important and thus the GE/EPRI method is hard to apply, on the other hand, the enhanced reference stress method provides more accurate and robust estimations for C * and COD rate than the reference stress method

  8. Post- and interseismic deformation due to both localized and distributed creep at depth (Invited)

    Science.gov (United States)

    Hetland, E. A.; Zhang, G.; Hines, T.

    2013-12-01

    There are two end-member representations of the ductile lithosphere (i.e., the lower crust and uppermost mantle) commonly used in models of post- and interseismic deformation around strike-slip faults: either (1) laterally homogeneous ductile layers, with sharp contrasts in rheological properties between the layers, in which creep is distributed; or (2) discrete extensions of the fault at depth in which creep is fully localized. The most realistic representation of the ductile lithosphere on earthquake cycle time scales likely falls between these two end-members. Researchers have considered both distributed and localized creep when interpreting post- and interseismic deformation, although the two mechanisms are most commonly treated separately, with the localized creep often approximated by kinematic slip on planar faults. There are a few noteworthy models that considered the feedback between both distributed and localized creep, although those models were largely constrained to 2D geometries of infinite length faults. The thickness of shear zones in the ductile lithosphere may be comparable to the locking depth of the fault, and the existence of a deep shear zone does not preclude the possibility that some distributed creep occurs in the surrounding lithosphere. Furthermore, variations in rheology, including both rheological models and their parameters, may be more subtle than the discrete contrasts typically assumed. In this presentation, we consider models of postseismic deformation following a finite length, strike-slip fault, as well as models of interseismic deformation around an infinite length strike-slip fault. Both sets of models are capable of localized and distributed creep at depth, and use Maxwell viscoelasticity. We show that the horizontal surface velocities during the early postseismic period are most sensitive to the viscosity of the shear zone; however during much of the interseismic period the shear zone is not apparent from the surface

  9. Creep fatigue design of FBR components

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1997-01-01

    This paper deals with the characteristic features of Fast Breeder Reactor (FBR) with reference to creep fatigue, current creep fatigue design approach in compliance with RCCMR (1987) design code, material data, effects of weldments and neutron irradiation, material constitutive models employed, structural analysis and further R and D required for achieving maturity in creep fatigue design of FBR components. For the analysis reported in this paper, material constitutive models developed based on ORNIb (Oak Ridge National Laboratory) and Chaboche viscoplastic theories are employed to demonstrate the potential of FBR components for higher plant temperatures and/or longer life. The results are presented for the studies carried out towards life prediction of Prototype Fast Breeder Reactor (PFBR) components. (author). 24 refs, 8 figs, 5 tabs

  10. Accelerated diffusion controlled creep of polycrystalline materials. Communication 1. Model of diffusion controlled creep acceleration

    International Nuclear Information System (INIS)

    Smirnova, E.S.; Chuvil'deev, V.N.

    1998-01-01

    The model is suggested which describes the influence of large-angle grain boundary migration on a diffusion controlled creep rate in polycrystalline materials (Coble creep). The model is based on the concept about changing the value of migrating boundary free volume when introducing dislocations distributed over the grain bulk into this boundary. Expressions are obtained to calculate the grain boundary diffusion coefficient under conditions of boundary migration and the parameter, which characterized the value of Coble creep acceleration. A comparison is made between calculated and experimental data for Cd, Co and Fe

  11. EFAM ETM-CREEP 03 - the engineering flaw assessment method for creep

    International Nuclear Information System (INIS)

    Landes, J.D.; Schwalbe, K.H.

    2002-01-01

    EFAM ETM-CREEP is a document that describes the GKSS procedure for estimating residual lives for structural components that contain crack-like defects and operating in a high temperature regime where they undergo creep deformation. It uses the traditional parameters C t and C * and the ETM parameters δ 5 and δ 5 to characterize the crack extension rates. It relies on input from EFAM ETM 97 for calculating these parameters and from EFAM GTP-CREEP 02 to provide the material property data for crack extension rates and fracture toughness data. (orig.) [de

  12. Metallographic approach to the damage of austenitic stainless steels under plastic fatigue or under creep: description and physical interpretation of fatigue-creep-oxidation interactions

    International Nuclear Information System (INIS)

    Levaillant, Christophe

    1984-01-01

    This research thesis reports the study of interactions between fatigue, creep and oxidation in austenitic stainless steels which are to be used in the construction of fast breeder reactors. This study is addressed by means of low cycle plastic fatigue test with imposed strain, performed at 600 C with tensile relaxation hold times which may reach 24 hours. Continuous fatigue tests (without hold time) and pure creep tests have also been performed to define 'pure' fatigue damages and 'pure' creep damages. Two grades of Z3 CND 17-13 steel have been studied. Thus fracture mechanisms, crack initiation and propagation, and crack kinetic propagation have been studied. Metallographic measurements of damage have been performed. Damage types have been identified: propagation of cracks initiated at the surface, and intergranular de-cohesion within the material. An approximate modelling is proposed, as well as a critical comparison of various published models of fatigue-creep interaction. In order to predict structure lifetime, a new test methodology is proposed, based on experimental results

  13. Research on high-temperature compression and creep behavior of porous Cu–Ni–Cr alloy for molten carbonate fuel cell anodes

    Directory of Open Access Journals (Sweden)

    Li W.

    2015-06-01

    Full Text Available The effect of porosity on high temperature compression and creep behavior of porous Cu alloy for the new molten carbonate fuel cell anodes was examined. Optical microscopy and scanning electron microscopy were used to investigate and analyze the details of the microstructure and surface deformation. Compression creep tests were utilized to evaluate the mechanical properties of the alloy at 650 °C. The compression strength, elastic modulus, and yield stress all increased with the decrease in porosity. Under the same creep stress, the materials with higher porosity exhibited inferior creep resistance and higher steadystate creep rate. The creep behavior has been classified in terms of two stages. The first stage relates to grain rearrangement which results from the destruction of large pores by the applied load. In the second stage, small pores are collapsed by a subsequent sintering process under the load. The main deformation mechanism consists in that several deformation bands generate sequentially under the perpendicular loading, and in these deformation bands the pores are deformed by flattering and collapsing sequentially. On the other hand, the shape of a pore has a severe influence on the creep resistance of the material, i.e. every increase of pore size corresponds to a decrease in creep resistance.

  14. Experimental investigation on low cycle fatigue and creep-fatigue interaction of DZ125 in different dwell time at elevated temperatures

    International Nuclear Information System (INIS)

    Shi Duoqi; Liu Jinlong; Yang Xiaoguang; Qi Hongyu; Wang Jingke

    2010-01-01

    Research highlights: → This paper has researched creep-fatigue interaction of directionally solidified superalloy DZ125 with different dwell time at high temperature combined with micro-mechanism by experiment. → The results indicated that the life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. - Abstract: The low cycle fatigue (LCF) and creep-fatigue tests have been conducted with directionally solidified nickel-based superalloy DZ125 at 850 and 980 deg. C to study the creep-fatigue interaction behavior of alloy with different dwell time. On the average, the life of creep-fatigue tests are about 70% less than the life of LCF tests under the same strain range at 850 deg. C. The life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. Scanning electron microscope (SEM) analyses of the fracture revealed that the fracture modes were influenced by different way of loading. In case of LCF, the primary fracture mode was transgranular, while in case of creep-fatigue, the primary fracture mode was mixed with transgranular and intergranular. There were also obvious different morphologies of surface crack between LCF and creep-fatigue.

  15. Crack Tip Creep Deformation Behavior in Transversely Isotropic Materials

    International Nuclear Information System (INIS)

    Ma, Young Wha; Yoon, Kee Bong

    2009-01-01

    Theoretical mechanics analysis and finite element simulation were performed to investigate creep deformation behavior at the crack tip of transversely isotropic materials under small scale creep (SCC) conditions. Mechanical behavior of material was assumed as an elastic-2 nd creep, which elastic modulus ( E ), Poisson's ratio (v ) and creep stress exponent ( n ) were isotropic and creep coefficient was only transversely isotropic. Based on the mechanics analysis for material behavior, a constitutive equation for transversely isotropic creep behavior was formulated and an equivalent creep coefficient was proposed under plain strain conditions. Creep deformation behavior at the crack tip was investigated through the finite element analysis. The results of the finite element analysis showed that creep deformation in transversely isotropic materials is dominant at the rear of the crack-tip. This result was more obvious when a load was applied to principal axis of anisotropy. Based on the results of the mechanics analysis and the finite element simulation, a corrected estimation scheme of the creep zone size was proposed in order to evaluate the creep deformation behavior at the crack tip of transversely isotropic creeping materials

  16. Creep behavior of UO2 above 20000C

    International Nuclear Information System (INIS)

    Slagle, O.D.

    1978-01-01

    A series of high temperature creep measurements were made for UO 2 in the temperature range from 2000 0 C to the melting temperature. The effects of temperature, stress and accrued strain on the creep rate have been measured. The results indicate that additional creep mechanisms are being activated at the higher temperatures

  17. Plastic creep flow processes in fracture at elevated temperatures

    International Nuclear Information System (INIS)

    Rice, J.R.

    1979-01-01

    Recent theoretical developments on fracture at elevated temperature in the presence of overall plastic (dislocation) creep are discussed. Two topics are considered: stress fields at tips of macroscopic cracks in creeping solids; and diffusive growth of microscopic grain boundary cavities in creeping solids

  18. Steady-state creep of discontinuous fibre composites

    International Nuclear Information System (INIS)

    Boecker Pedersen, O.

    1975-07-01

    A review is given of the relevant literature on creep of composites, including a presentation of existing models for the steady-state creep of composites containing aligned discontinuous fibres where creep of the matrix and fibres is assumed to follow a power law. A model is suggested for predicting the composite creep law from a matrix creep law given in a general form, in the case where the fibres do not creep. The composite creep law predicted by this model is compared with those predicted by previous models, when these are extended to comprise a general matrix creep law. Experimentally, pure copper and composites consisting of aligned discontinuous tungsten fibres in a copper matrix were creep tested at a temperature of 500 deg C. The results indicate a relatively low stress sensitivity of the steady-state creep-rate for pure copper and relatively high stress sensitivity for the composites. This may be explained by the creep models based upon a general matrix creep law. A quantitative prediction shows promising agreement with the present experimental results. (author)

  19. Modelling of creep damage development in ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.

  20. Irradiation creep due to SIPA-induced growth

    International Nuclear Information System (INIS)

    Woo, C.H.

    1980-01-01

    An additional contribution to irradiation creep resulting from the stress-induced preferred adsorption (SIPA) effect is described - SIPA-induced growth (SIG). The mechanism of SIG is discussed and an expression for its contribution to irradiation creep developed. It is shown that SIG is very significant in comparison with SIPA. Enhancement of creep by swelling may also occur. (U.K.)

  1. influence of relative humidity on tensile and compressive creep

    African Journals Online (AJOL)

    HOD

    creep specimens were cured in a fog room at 99% RH and 20 oC until the beginning of the tests in the controlled environment creep rooms. To eliminate the influence of stress level and age of loading, a uniform stress of 12.26MPa was used for the three compressive creep tests and the specimens were all loaded at the.

  2. Modelling of creep damage development in ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, R [Swedish Institute for Metals Research, Stockholm (Sweden)

    1999-12-31

    The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.

  3. Influence of relative humidity on tensile and compressive creep of ...

    African Journals Online (AJOL)

    This paper presents an experimental study on the influence of ambient relative humidity on tensile creep of plain concrete amended with Ground Granulated Blast - furnace Slag and compares it with its influence on compressive creep. Tensile and compressive creep tests were carried out on concrete specimens of 34.49 ...

  4. The direct Flow parametric Proof of Gauss' Divergence Theorem revisited

    OpenAIRE

    Markvorsen, Steen

    2006-01-01

    The standard proof of the divergence theorem in undergraduate calculus courses covers the theorem for static domains between two graph surfaces. We show that within first year undergraduate curriculum, the flow proof of the dynamic version of the divergence theorem - which is usually considered only much later in more advanced math courses - is comprehensible with only a little extension of the first year curriculum. Moreover, it is more intuitive than the static proof. We support this intuit...

  5. Radiation creep of graphite. An introduction

    Energy Technology Data Exchange (ETDEWEB)

    Blackstone, R [Commission of the European Communities, Petten (Netherlands). Joint Nuclear Research Center

    1977-03-01

    Graphite, a class of materials with many unique and unusual properties, shows a remarkably high creep ductility under irradiation. As this behaviour compensates to some extent some of the more worrying radiation effects, such as dimensional changes and their strong temperature dependence, it is a property of large technological interest. There are various ways of observing and measuring in-pile creep of graphite, varying in degree of sophistication and in cost, in accuracy and in the type of data that is generated. This paper attempts to review briefly the various experimental methods, and the knowledge generated so far. An indication is given of the areas in which further knowledge is wanted.

  6. Radiation creep of graphite. An introduction

    International Nuclear Information System (INIS)

    Blackstone, R.

    1977-01-01

    Graphite, a class of materials with many unique and unusual properties, shows a remarkably high creep ductility under irradiation. As this behavior compensates to some extent some of the more worrying radiation effects, such as dimensional changes and their strong temperature dependence, it is a property of large technological interest. There are various ways of observing and measuring in-pile creep of graphite, varying in degree of sophistication and in cost, in accuracy and in the type of data that is generated. This paper attempts to review briefly the various experimental methods, and the knowledge generated so far. An indication is given of the areas in which further knowledge is wanted

  7. Radiation creep of graphite. An introduction

    International Nuclear Information System (INIS)

    Blackstone, R.

    1977-01-01

    Graphite, a class of materials with many unique and unusual properties, shows a remarkably high creep ductility under irradiation. As this behaviour compensates to some extent some of the more worrying radiation effects, such as dimensional changes and their strong temperature dependence, it is a property of large technological interest. There are various ways of observing and measuring in-pile creep of graphite, varying in degree of sophistication and in cost, in accuracy and in the type of data that is generated. This paper attempts to review briefly the various experimental methods, and the knowledge generated so far. An indication is given of the areas in which further knowledge is wanted. (Auth.)

  8. Radiometric study of creep in ingot rolling

    International Nuclear Information System (INIS)

    Kubicek, P.; Zamyslovsky, Z.; Uherek, J.

    The radiometric study of creep during ingot rolling performed in the rolling mill of the Vitkovice Iron and Steel Works and the first results are described. Selected sites in 3 to 8 ton ingots were labelled with 2 to 3.7x10 5 Bq of 60 Co and after rolling into blocks, the transposition of the labelled sites of the ingots was investigated. The results indicate creep during rolling, local extension in certain sites under study and help to determine the inevitable bottom crop incurred in the forming. Finally, the requirements put on the radiometric apparatus for the next stages of technological research are presented. (author)

  9. A stochastic approach to anelastic creep

    International Nuclear Information System (INIS)

    Venkataraman, G.

    1976-01-01

    Anelastic creep or the time-dependent yielding or a material subjected to external stresses has been found to be of great importantance in technology in the recent years, particularly in engineering structures including nuclear reactors wherein structural members may be under stress. The physics aspects underlying this phenomenon is dealt with in detail. The basics of time-dependent elasticity, constitutive relation, network models, constitutive equation in the frequency domain and its mearurements, and stochastic approach to creep are discussed. (K.B.)

  10. Elastic-plastic-creep analysis of shells

    International Nuclear Information System (INIS)

    Pai, D.H.

    1979-01-01

    This paper presents the recent experience of a designer/fabricator of nuclear heat transport components in the area of elastic-plastic-creep analysis of shell-like structures. A brief historical perspective is first given to highlight the evolution leading to the present industry practice. The ASME elevated temperature design criteria will be discussed followed by examples of actual computations performed to support the design/analysis and fabrication of a breeder reactor component in which a substantial amount of elastic-plastic-creep analysis was performed. Mathematical challenges encountered by the design analyst in these problems will be highlighted. Developmental needs and future trends will then be given

  11. Creep and shrinkage of Mo(Ni)

    International Nuclear Information System (INIS)

    Kaysser, W.A.; Hofmann-Amtenbrink, M.; Petzow, G.

    1984-01-01

    To avoid some of the errors inherent in a quantitative interpretation of shrinkage of powder compacts as Mo-Ni, other experiments were looked for, where the influence of Ni on the material transport properties of Mo could be measured semi-quantitatively during heating up to temperature and subsequent isothermal annealing. The bending of thin Mo foils under small loads was found to be an experimental arrangement, where variations in stress, in Ni-concentration and in intrinsic material properties could be realized. The results of these creep experiments will be compared in a qualitative sense with sintering experiments in Mo-Ni done under similar conditions as the creep experiments

  12. A method of creep damage summation based on accumulated strain for the assessment of creep-fatigue endurance

    International Nuclear Information System (INIS)

    Hales, R.

    1983-01-01

    A method of combining long term creep data with relatively short term mechanical behaviour to provide an estimate of creep-fatigue endurance is presented. It is proposed that the creep-fatigue effect in high temperature cyclic deformation is governed by a difference in strain rate around the cycle and the associated variation in ductility with strain rate. (author)

  13. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    Science.gov (United States)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  14. Linear energy divergences in Coulomb gauge QCD

    OpenAIRE

    Andrasi, A.

    2011-01-01

    The structure of linear energy divergences is analysed on the example of one graph to 3-loop order. Such dangerous divergences do cancel when all graphs are added, but next to leading divergences do not cancel out.

  15. Creep testing and creep loading experiments on friction stir welds in copper at 75 deg C

    International Nuclear Information System (INIS)

    Andersson, Henrik C.M.; Seitisleam, Facredin; Sandstroem, Rolf

    2007-08-01

    Specimens cut from friction stir welds in copper canisters for nuclear waste have been used for creep experiments at 75 deg C. The specimens were taken from a cross-weld position as well as heat affected zone and weld metal. The parent metal specimens exhibited longer creep lives than the weld specimens by a factor of three in time. They in turn were longer than those for the crossweld and HAZ specimens by an order of magnitude. The creep exponent was in the interval 50 to 69 implying that the material was well inside the power-law breakdown regime. The ductility properties expressed as reduction in area were not significantly different and all the rupture specimens demonstrated values exceeding 80%. Experiments were also carried out on the loading procedure of a creep test. Similar parent metal specimens and test conditions were used and the results show that the loading method has a large influence on the strain response of the specimen

  16. Creep cavity and carbide studies during creep of a 12%CrMoV-steel

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Henrik; Storesund, J.; Seitisleam, F.

    1997-03-01

    Uniaxial creep tests of a X20CrMoV 12 1 steel has been carried out. The work was performed as a follow-up on earlier investigations on a similar steel with lower creep ductility. A comparison with this previous work is included. Both interrupted and rupture tests were performed and studies were made of cavity formation processes and carbide transformations. The creep curves could be reproduced using an analytical model. No secondary creep was observed. Cavities were found to form already at a strain of 1%. The cavity density, mean diameter and cavitated area fraction were found to have a linear relationship with the strain for strains up to about 10%. The mean carbide diameter was observed to be a function of time at temperature. A small decrease in carbide density with strain was detected 12 refs, 28 figs, 6 tabs

  17. Creep testing and creep loading experiments on friction stir welds in copper at 75 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Henrik C.M.; Seitisleam, Facredin; Sandstroem, Rolf [Corrosion an d Metals Research Institute, Stockholm (Sweden)

    2007-08-15

    Specimens cut from friction stir welds in copper canisters for nuclear waste have been used for creep experiments at 75 deg C. The specimens were taken from a cross-weld position as well as heat affected zone and weld metal. The parent metal specimens exhibited longer creep lives than the weld specimens by a factor of three in time. They in turn were longer than those for the crossweld and HAZ specimens by an order of magnitude. The creep exponent was in the interval 50 to 69 implying that the material was well inside the power-law breakdown regime. The ductility properties expressed as reduction in area were not significantly different and all the rupture specimens demonstrated values exceeding 80%. Experiments were also carried out on the loading procedure of a creep test. Similar parent metal specimens and test conditions were used and the results show that the loading method has a large influence on the strain response of the specimen.

  18. Damage development - effects of multiaxial loads on creep pore formation and fatigue damage in typical power plant steels. Final report

    International Nuclear Information System (INIS)

    Lenk, P.; Proft, D.; Kussmaul, A.; Fischer, R.

    2000-01-01

    The influence of multiaxial stress on creep pore formation in the steels 14MoV6-3 10CrMo9-10 and X10CrMoVNb9-1 was investigated on the basis of internal pressure experiments on smooth and notched hollow cylinders. In some cases, additional axial forces were applied in order to reproduce component-relevant multiaxial stresses. Local elongation during loading was investigated and analyzed using applied HT-DMS. When different strain levels had been reached, the samples were removed, analyzed, and characterized with regard to different damage parameters. It was found that no interdependence between the surface damage pattern and the deep damage pattern can be derived across the wall thickness if no information on the load state is available. Parallel to the experiments, inelastic FEA were carried out using the ABAQUS program system. The creep law of Graham and Walles was used for calculating flow and creep via a user-defined subroutine CREEP. The parameters of the creep law could be identified by adaptation to monoaxial creep tests [de

  19. A coupled creep plasticity model for residual stress relaxation of a shot-peened nickel-based superalloy

    Science.gov (United States)

    Buchanan, Dennis J.; John, Reji; Brockman, Robert A.; Rosenberger, Andrew H.

    2010-01-01

    Shot peening is a commonly used surface treatment process that imparts compressive residual stresses into the surface of metal components. Compressive residual stresses retard initiation and growth of fatigue cracks. During component loading history, shot-peened residual stresses may change due to thermal exposure, creep, and cyclic loading. In these instances, taking full credit for compressive residual stresses would result in a nonconservative life prediction. This article describes a methodical approach for characterizing and modeling residual stress relaxation under elevated temperature loading, near and above the monotonic yield strength of INI 00. The model incorporates the dominant creep deformation mechanism, coupling between the creep and plasticity models, and effects of prior plastic strain to simulate surface treatment deformation.

  20. Creep properties and microstructure of the new wrought austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vlasak, T.; Hakl, J.; Novak, P. [SVUM a.s., Prague (Czech Republic); Vyrostkova, A. [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Materials Research

    2010-07-01

    The contribution is oriented on the new wrought austenitic steel BGA4 (Cr23Ni15Mn6Cu3W1.5NbVMo) developed by the British Corus Company. Our main aim is to present creep properties studied in SVUM a.s. Prague during COST 536 programme. The dependencies of the creep strength, strength for specific creep strain and minimum creep strain rate were evaluated on the basis of long term creep tests carried out at temperature interval (625; 725) C. Important part of a paper is metallographic analysis. (orig.)

  1. Factors influencing the creep strength of hot pressed beryllium

    International Nuclear Information System (INIS)

    Webster, D.; Crooks, D.D.

    1975-01-01

    The parameters controlling the creep strength of hot pressed beryllium block have been determined. Creep strength was improved by a high initial dislocation density, a coarse grain size, and a low impurity content. The impurities most detrimental to creep strength were found to be aluminum, magnesium, and silicon. A uniform distribution of BeO was found to give creep strength which was inferior to a grain boundary distribution. The creep strength of very high purity, hot isostatically pressed beryllium was found to compare favorably with that of other more commonly used high temperature metals

  2. Concrete creep at transient temperature: constitutive law and mechanism

    International Nuclear Information System (INIS)

    Chern, J.C.; Bazant, Z.P.; Marchertas, A.H.

    1985-01-01

    A constitutive law which describes the transient thermal creep of concrete is presented. Moisture and temperature are two major parameters in this constitutive law. Aside from load, creep, cracking, and thermal (shrinkage) strains, stress-induced hygrothermal strains are also included in the analysis. The theory agrees with most types of test data which include basic creep, thermal expansion, shrinkage, swelling, creep at cyclic heating or drying, and creep at heating under compression or bending. Examples are given to demonstrate agreement between the theory and the experimental data. 15 refs., 6 figs

  3. A Creep Model for High-Density Snow

    Science.gov (United States)

    2017-04-01

    proportionality, Q = activation energy (Cal/mol), R = the ideal gas constant (1.985 Cal/mol K), and T = absolute temperature in Kelvin. Applying this, I...modifies Mellor and Smith’s creep model for dense snow to conform to the more general creep power law form (Glen’s creep law for ice is a special case of...this power law ). The present study used this general form as the basis for developing two creep models: one to describe the pri- mary creep and

  4. Effect of dose on creep and recovery of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O; Charlesby, A; Stannett, V T

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150/sup 0/C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle.

  5. Effect of dose on creep and recovery of polyethylene

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Charlesby, A.; Stannett, V.T.

    1987-01-01

    The effect of high energy radiation on polyethylene is to crosslink it, and connect it into an elastic network above the melting point. In this paper the creep and recovery properties of a stabilized polyethylene subjected to doses from 100 to 870 kGy are measured at 150 0 C. Two cycles are measured - Creep I + Recovery I, and Creep II + Recovery II -mainly over periods of 20 min. The creep or recovery behaviour falls into three steps - immediate, fast and slow, and data are given for these steps together with the time parameter. The first cycle includes a non-recoverable creep which is almost absent in the second cycle. (author)

  6. Creep and creep-recovery of a thermoplastic resin and composite

    Science.gov (United States)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  7. Creep-rupture Behaviors of a Diffusionally Aluminized Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Sah, Injin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Sung Hwan; Jang, Chang Heui [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    In light of the surface reaction, a sufficient Cr content in the matrix leads to an external chromia (Cr{sub 2}O{sub 3}) layer on the surface with the occurrence of internal oxides (Al{sub 2}O{sub 3}) into the matrix. It is well known that the internal oxides will reduce the effective cross-sectional area and/or be a notch under the loading condition. Thus, there have been extensive efforts to improve the oxidation resistance by imposing an aluminized layer (βNiAl or γ-Ni{sub 3}Al) for Ni-Cr alloys. In particular, the extensively formed carbide free zone below the affected substrate will reduce the creep-rupture strengths because the inter-granular carbides present along the grain boundaries effectively impede the grain boundary sliding under high-temperature tensile loading conditions.

  8. Boiling flow through diverging microchannel

    Indian Academy of Sciences (India)

    such systems, for small pressure drop penalty and with good flow stability. .... ied the effect of divergence angle on mean and transient pressure/temperature distribution and .... supplying a fixed voltage and current using a power source meter.

  9. Plasticity - a limiting case of creep

    International Nuclear Information System (INIS)

    Cords, H.; Kleist, G.; Zimmermann, R.

    1986-11-01

    The present work is an attempt to develop further the so-called unified theory for viscoplastic constitutive equations as used for metals or metal alloys. Typically, in similar approaches creep strains and plastic strains are derived from one common stress-strain relationship for inelastic strain rates employing an internal stress function as a back stress. Some novel concepts concerning the definition of the internal stress, plastic yielding and material hardening have been introduced, formulated mathematically and tested for correspondence with a standard type of materials behaviour. As a result of the investigations a system of simultaneous differential equations is defined which has been used to elaborate a common view on a number of different material effects observed in creep and plasticity i.e. normal and inverted primary creep, recoverable creep, incubation time and anelasticity in stress reduction, negative stress relaxation, plastic yielding, perfect plasticity, negative strain rate sensitivity, serrated flow, strain hardening in monotonic and cyclic loading. The theoretical approach is mainly based on a lateral contraction movement not following rigidly the longitudinal extension of the material specimen by a prescribed constant value of Poisson's ratio as usual, but following the axial extension in a process of drag which allows for retardation and which simultaneously impedes the longitudinal straining. (orig.) [de

  10. timber joists subjected to creep-rupture

    African Journals Online (AJOL)

    user

    Developed non-linear regression models for prediction of safety ... In (3), A, B, C and D are model parameters. ... material parameters. q is given as a function of creep exponent ... Table 1: Stochastic models of the basic design variables. S/No.

  11. Nanoindentation creep behavior of human enamel.

    Science.gov (United States)

    He, Li-Hong; Swain, Michael V

    2009-11-01

    In this study, the indentation creep behavior of human enamel was investigated with a nanoindentation system and a Berkovich indenter at a force of 250 mN with one-step loading and unloading method. A constant hold period of 900 s was incorporated into each test at the maximum load as well at 5 mN minimum load during unloading. The indentation creep at the maximum load and creep recovery at the minimum load was described with a double exponential function and compared with other classic viscoelastic models (Debye/Maxwell and Kohlrausch-Williams-Watts). Indentation creep rate sensitivity, m, of human enamel was measured for the first time with a value of approximately 0.012. Enamel displayed both viscoelastic and viscoplastic behavior similar to that of bone. These results indicate that, associated with entrapment of particulates between teeth under functional loading and sliding wear conditions, the enamel may inelastically deform but recover upon its release. This behavior may be important in explaining the excellent wear resistance, antifatigue, and crack resistant abilities of natural tooth structure. (c) 2008 Wiley Periodicals, Inc.

  12. Constant structure creep experiments on aluminium

    Czech Academy of Sciences Publication Activity Database

    Milička, Karel

    2011-01-01

    Roč. 49, č. 5 (2011), s. 307-318 ISSN 0023-432X R&D Projects: GA AV ČR IAA2041203 Institutional research plan: CEZ:AV0Z20410507 Keywords : mechanical properties * high temperature deformation * creep * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.451, year: 2011

  13. Design and analysis of multiaxial creep tests

    International Nuclear Information System (INIS)

    Mallett, R.H.; Dhalla, A.K.; Yocolano, J.T.

    1974-01-01

    A procedure is described for presenting the complete data as obtained from tests of thin-walled tubular creep test specimens. Thereafter, a procedure for processing the data is presented. The processed data is based in part upon results of detailed inelastic finite element analyses performed to determine uniform and constant stress quantities and effective gage lengths. (U.S.)

  14. Toughening and creep in multiphase intermetallics through ...

    Indian Academy of Sciences (India)

    It has however often been the case that the process of ductilisation or toughening has also led to a decrease in high temperature properties, especially creep. In this paper we describe approaches to the ductilisation of two different classes of intermetallic alloys through alloying to introduce beneficial, second phase effects.

  15. Creep properties of aluminium processed by ECAP

    Czech Academy of Sciences Publication Activity Database

    Král, Petr; Dvořák, Jiří; Jäger, Aleš; Kvapilová, Marie; Horita, Z.; Sklenička, Václav

    2016-01-01

    Roč. 54, č. 6 (2016), s. 441-451 ISSN 0023-432X R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 ; RVO:68378271 Keywords : equal channel angular pressing (ECAP) * aluminium * ultrafine-grained microstructure * creep Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) Impact factor: 0.366, year: 2016

  16. Investigations on creep and creep fatigue crack behaviour for component assessment

    International Nuclear Information System (INIS)

    Gengenbach, T.; Klenk, A.; Maile, K.

    2004-01-01

    There are various methods to assess crack initiation and crack growth behaviour of components under creep and creep fatigue loading. The programme system HT-Riss has been developed to support calculations aimed to determine the behaviour of a crack under creep or creep-fatigue loading using methods based on stress-intensity factor K (e.g. the Two-Criteria-Diagram) or C*-Integral. This paper describes the steps which have to be performed to assess crack initiation and growth of a component using this programme system. First the size of the maximum initial defect in a specimen or in a component has to be estimated and the necessary fracture mechanics parameters have to be determined. Then the time for creep crack initiation and creep crack growth is calculated. Using these values a prediction of life time and necessary inspection intervals is possible. For exemplification the crack assessment of a component-like specimen and a component is shown. (orig.)

  17. Atmospheric horizontal divergence and diffusion

    International Nuclear Information System (INIS)

    Castans, M.

    1981-01-01

    The action of horizontal divergence on diffusion near the ground is established through.a very simple flow model. The shape of the well-known Pasquill-Gifford-Turner curves, that apparently take account in some way of divergence, is justified. The possibility of explaining the discre--pancies between the conventional straight line model and experimental results, mainly under low-wind-speed satable conditions, is considered. Some hints for further research are made. (auth.)

  18. Uniaxial creep behavior of V-4Cr-4Ti alloy

    International Nuclear Information System (INIS)

    Natesan, K.; Soppet, W.K.; Purohit, A.

    2002-01-01

    We are undertaking a systematic study at Argonne National Laboratory to evaluate the uniaxial creep behavior of V-Cr-Ti alloys in a vacuum environment as a function of temperature in the range of 650-800 deg. C and at applied stress levels of 75-380 MPa. Creep strain in the specimens is measured by a linear-variable-differential transducer, which is attached between the fixed and movable pull rods of the creep assembly. Strain is measured at sufficiently frequent intervals during testing to define the creep strain/time curve. A linear least-squares analysis function is used to ensure consistent extraction of minimum creep rate, onset of tertiary creep and creep strain at the onset of tertiary creep. Creep test data, obtained at 650, 700, 725 and 800 deg. C, showed power-law creep behavior. Extensive analysis of the tested specimens is conducted to establish hardness profiles, oxygen content and microstructural characteristics. The data are also quantified by the Larson-Miller approach, and correlations are developed to relate time to rupture, onset of tertiary creep, times for 1% and 2% strain, exposure temperature and applied stress

  19. A study on the creep characteristics of simulated DUPIC fuel

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Ryu, H. J.; Kim, H. S.; Song, K. C.; Yang, M. S.; Na, S.

    2001-09-01

    Compression creep test was performed using simulated DUPIC fuel in the temperature range from 1773 to 1973 K under the stress range of 21 - 60 MPa. Creep rate and the activation energy were obtained. The activation energy for creep was 649.35 - 675.94 kJ/mol at the low stress region, where creep mechanism was controlled by diffusion. On the other hand, the activation energy at high stress region was 750.68 - 792.18 kJ/mol, where creep mechanism was controlled by dislocation motion. The activation energy for dislocation creep was higher than that for diffusion creep. The activation energy of reference simulated DUPIC fuel was higher than that of UO2

  20. Irradiation-induced creep in graphite: a review

    International Nuclear Information System (INIS)

    Price, R.J.

    1981-08-01

    Data on irradiation-induced creep in graphite published since 1972 are reviewed. Sources include restrained shrinkage tests conducted at Petten, the Netherlands, tensile creep experiments with continuous strain registration at Petten and Grenoble, France, and controlled load tests with out-of-reactor strain measurement performed at Oak Ridge National Laboratory, Petten, and in the United Kingdom. The data provide reasonable confirmation of the linear viscoelastic creep model with a recoverable transient strain component followed by a steady-state strain component, except that the steady-state creep coefficient must be treated as a function of neutron fluence and is higher for tensile loading than for compressive loading. The total transient creep strain is approximately equal to the preceding elastic strain. No temperature dependence of the transient creep parameters has been demonstrated. The initial steady-state creep coefficient is inversely proportional to the unirradiated Young modulus

  1. Creep behaviour of heat resistant steels. Pt. 2

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Oehl, M.

    1993-01-01

    Creep data scatter bands of steels 2.25 Cr-1 Mo and 12 Cr-1 Mo-0.3 V were evaluated with the aid of model functions based on time temperature parameters. From the times to reach given strain values, mean isostrain curves in the stress time diagramme were calculated and therefrom, mean creep curves were derived. On this basis, creep equations were established, which include primary-, secondary- and tertiary-creep and are valid in the main range of application of each steel. Further, mean stress strain curves from hot tensile tests were used to describe the initial plastic strain in the creep equations. The values calculated with the established creep equations agreed relatively well with the correspondent original scatter band values from the creep tests. (orig.) [de

  2. Design and implementation of wormlike creeping mobile robot for EAST remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang, E-mail: zhangqiang@iim.ac.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Department of Automation, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhou, Ling [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wang, Zengfu, E-mail: zfwang@ustc.edu.cn [Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Department of Automation, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2017-05-15

    Highlights: • Wormlike creeping robot walking on the V-shaped circular slot in EAST fusion vessel. • Mobile platform to carry equipments or assist manipulators for maintenance tasks. • Chain structure design with n(n ≥ 2) creeping units each of which has three segments. • Creeping gait planning to construct a multi-axis coordinating control scheme. • Evaluation and verification of basic motion performance and mechanical properties. - Abstract: Maintenance for nuclear fusion vessel is crucial, yet it faces great difficulty due to the complex internal physical and geometric conditions. Since the limitation on inherent strength, load, size, etc, a manipulator robot can only complete very limited tasks. Robotic arm systems for remote operation such as JET and MPD can carry certain tools to complete a variety of operating tasks, but it is difficult to achieve the system which is very complex. Therefore, if the inherent idea of using a single robot to complete the specified functions can change, it is possible to make the problems simpler and easier to solve by adding auxiliary robots working together with the robotic arm systems to complete the assigned tasks. Under the above background, based on the deeply analyzing and refining the functional requirements of the vessel operation robot, proceeding from the perspective of ability to move and carry a certain operating device, this paper presents a wormlike creeping mobile robot walking on the V-shaped circular slot inside a nuclear fusion vessel such as EAST (Experimental Advanced Superconducting Tokamak). We have designed and implemented the principle prototype of the robot which has chain structure with n (n ≥2) creeping units. Each creeping unit is of three-part structure, which consists of fore segment, mid segment and back segment connected by bidirectional universal joint. The fore and back segments stretch the paws to contact the surface of V-shaped slot, while the mid segment realizes the overall

  3. Design and implementation of wormlike creeping mobile robot for EAST remote maintenance system

    International Nuclear Information System (INIS)

    Zhang, Qiang; Zhou, Ling; Wang, Zengfu

    2017-01-01

    Highlights: • Wormlike creeping robot walking on the V-shaped circular slot in EAST fusion vessel. • Mobile platform to carry equipments or assist manipulators for maintenance tasks. • Chain structure design with n(n ≥ 2) creeping units each of which has three segments. • Creeping gait planning to construct a multi-axis coordinating control scheme. • Evaluation and verification of basic motion performance and mechanical properties. - Abstract: Maintenance for nuclear fusion vessel is crucial, yet it faces great difficulty due to the complex internal physical and geometric conditions. Since the limitation on inherent strength, load, size, etc, a manipulator robot can only complete very limited tasks. Robotic arm systems for remote operation such as JET and MPD can carry certain tools to complete a variety of operating tasks, but it is difficult to achieve the system which is very complex. Therefore, if the inherent idea of using a single robot to complete the specified functions can change, it is possible to make the problems simpler and easier to solve by adding auxiliary robots working together with the robotic arm systems to complete the assigned tasks. Under the above background, based on the deeply analyzing and refining the functional requirements of the vessel operation robot, proceeding from the perspective of ability to move and carry a certain operating device, this paper presents a wormlike creeping mobile robot walking on the V-shaped circular slot inside a nuclear fusion vessel such as EAST (Experimental Advanced Superconducting Tokamak). We have designed and implemented the principle prototype of the robot which has chain structure with n (n ≥2) creeping units. Each creeping unit is of three-part structure, which consists of fore segment, mid segment and back segment connected by bidirectional universal joint. The fore and back segments stretch the paws to contact the surface of V-shaped slot, while the mid segment realizes the overall

  4. The microstructure and creep behavior of cold rolled udimet 188 sheet.

    Science.gov (United States)

    Boehlert, C J; Longanbach, S C

    2011-06-01

    Udimet 188 was subjected to thermomechanical processing (TMP) in an attempt to understand the effects of cold-rolling deformation on the microstructure and tensile-creep behavior. Commercially available sheet was cold rolled to varying amounts of deformation (between 5-35% reduction in sheet thickness) followed by a solution treatment at 1,464 K (1,191 °C) for 1 h and subsequent air cooling. This sequence was repeated four times to induce a high-volume fraction of low-energy grain boundaries. The resultant microstructure was characterized using electron backscattered diffraction. The effect of the TMP treatment on the high-temperature [1,033-1,088 K (760-815 °C)] creep behavior was evaluated. The measured creep stress exponents (6.0-6.8) suggested that dislocation creep was dominant at 1,033 K (760 °C) for stresses ranging between 100-220 MPa. For stresses ranging between 25-100 MPa at 1,033 K (760 °C), the stress exponents (2.3-2.8) suggested grain boundary sliding was dominant. A significant amount of grain boundary cracking was observed both on the surface and subsurface of deformed samples. To assess the mechanisms of crack nucleation, in situ scanning electron microscopy was performed during the elevated-temperature tensile-creep deformation. Cracking occurred preferentially along general high-angle grain boundaries (GHAB) and less than 25% of the cracks were found on low-angle grain boundaries (LAB) and coincident site lattice boundaries (CSLB). Creep rupture experiments were performed at T = 1,088 K (815 °C) and σ = 165 MPa and the greatest average time-to-rupture was exhibited by the TMP sheet with the greatest fraction of LAB+CSLB. However, a clear correlation was not exhibited between the grain boundary character distribution and the minimum creep rates. The findings of this work suggest that although grain boundary engineering may be possible for this alloy, simply relating the fraction of grain boundary types to the creep resistance is not

  5. Limit sets and global dynamic for 2-D divergence-free vector fields

    International Nuclear Information System (INIS)

    Marzougui, H.

    2004-08-01

    T. Ma and S. Wang studied the global structure of regular divergence-free vector fields on compact surfaces with or without boundary. This paper extends their study to the general case of divergence-free vector fields (regular or not) on closed surfaces and gives as a consequence a simple proof of their results. (author)

  6. A study on stress analysis of small punch-creep test and its experimental correlations with uniaxial-creep test

    International Nuclear Information System (INIS)

    Lee, Song In; Baek, Seoung Se; Kwon, Il Hyun; Yu, Hyo Sun

    2002-01-01

    A basic research was performed to ensure the usefulness of Small Punch-creep(SP-creep) test for residual life evaluation of heat resistant components effectively. This paper presents analytical results of initial stress and strain distributions in SP specimen caused by constant loading for SP-creep test and its experimental correlations with uniaxial creep(Ten-creep) test on 9CrlMoVNb steel. It was shown that the initial maximum equivalent stress, σ eq · max from FE analysis was correlated with steady-state equivalent creep strain rate, ε qf-ss , rupture time, t r , activation energy, Q and Larson-Miller parameter, LMP during SP-creep deformation. The simple correlation laws, σ SP - σ TEN , P SP -σ TEN and Q SP -Q TEN adopted to established a quantitative correlation between SP-creep and Ten-creep test data. Especially, the activation energy obtained from SP-creep test is linearly related to that from Ten-creep test at 650 deg. C as follows : Q SP-P =1.37 Q TEN , Q SP-σ =1.53 Q TEN

  7. Phenomenological approach to precise creep life prediction by means of quantitative evaluation of strain rate acceleration in secondary creep

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Miyano, Takaya

    2010-01-01

    A method of creep life prediction by means of Strain-Acceleration-Parameter (SAP), α, is presented. The authors show that the shape of creep curve can be characterized by SAP that reflects magnitude of strain-rate change in secondary creep. The SAP-values, α are evaluated on magnesium-aluminium solution hardened alloys. Reconstruction of creep curves by combinations of SAP and minimum-creep rates are successfully performed, and the curves reasonably agree with experiments. The advantage of the proposed method is that the required parameters evaluated from individual creep curves are directly connected with the minimum creep rate. The predicted times-to-failure agree well with that obtained by experiments, and possibility of precise life time prediction by SAP is pronounced.

  8. Modelling of degradation processes in creep resistant steels through accelerated creep tests after long-term isothermal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Sklenicka, V.; Kucharova, K.; Svoboda, M.; Kroupa, A.; Kloc, L. [Academy of Sciences of the Czech Republic, Brno (Czech Republic). Inst. of Physics of Materials; Cmakal, J. [UJP PRAHA a.s., Praha-Zbraslav (Czech Republic)

    2010-07-01

    Creep behaviour and degradation of creep properties of creep resistant materials are phenomena of major practical relevance, often limiting the lives of components and structures designed to operate for long periods under stress at elevated and/or high temperatures. Since life expectancy is, in reality, based on the ability of the material to retain its high-temperature creep strength for the projected designed life, methods of creep properties assessment based on microstructural evolution in the material during creep rather than simple parametric extrapolation of short-term creep tests are necessary. In this paper we will try to further clarify the creep-strength degradation of selected advanced creep resistant steels. In order to accelerate some microstructural changes and thus to simulate degradation processes in long-term service, isothermal ageing at 650 C for 10 000 h was applied to P91 and P23 steels in their as-received states. The accelerated tensile creep tests were performed at temperature 600 C in argon atmosphere on all steels both in the as-received state and after long-term isothermal ageing, in an effort to obtain a more complete description of the role of microstructural stability in high temperature creep of these steels. Creep tests were followed by microstructural investigations by means of both transmission and scanning electron microscopy and by the thermodynamic calculations. The applicability of the accelerated creep tests was verified by the theoretical modelling of the phase equilibria at different temperatures. It is suggested that under restructed oxidation due to argon atmosphere microstructural instability is the main detrimental process in the long-term degradation of the creep rupture strength of these steels. (orig.)

  9. New considerations on variability of creep rupture data and life prediction

    International Nuclear Information System (INIS)

    Kim, Seon Jin; Jeong, Won Taek; Kong, Yu Sik

    2009-01-01

    This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and 700 .deg. C elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in thee creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time and state steady creep rate on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model.

  10. New Considerations on Variability of Creep Rupture Data and Life Prediction

    International Nuclear Information System (INIS)

    Jung, Won Taek; Kong, Yu Sik; Kim, Seon Jin

    2009-01-01

    This paper deals with the variability analysis of short term creep rupture test data based on the previous creep rupture tests and the possibility of the creep life prediction. From creep tests performed by constant uniaxial stresses at 600, 650 and 700 .deg. C elevated temperature, in order to investigate the variability of short-term creep rupture data, the creep curves were analyzed for normalized creep strain divided by initial strain. There are some variability in the creep rupture data. And, the difference between general creep curves and normalized creep curves were obtained. The effects of the creep rupture time (RT) and steady state creep rate (SSCR) on the Weibull distribution parameters were investigated. There were good relation between normal Weibull parameters and normalized Weibull parameters. Finally, the predicted creep life were compared with the Monkman-Grant model

  11. String loop divergences and effective lagrangians

    International Nuclear Information System (INIS)

    Fischler, W.; Klebanov, I.; Susskind, L.

    1988-01-01

    We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory, with a covariant cosmological term implied by the counting of string coupling constants. We find an inconsistency between the two. This might be a problem in eliminating divergences from the bosonic string. (orig.)

  12. Creep testing of nodular iron at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Aasa; Andersson-Oestling, Henrik C.M.; Seitisleam, Facredin; Wu, Rui; Sandstroem, Rolf (Swerea KIMAB AB, Stockholm (Sweden))

    2010-12-15

    The creep strain at room temperature, 100 and 125 deg C has been investigated for the ferritic nodular cast iron insert intended for use as the load-bearing part of canisters for long term disposal of spent nuclear fuel. The microstructure consisted of ferrite, graphite nodules of different sizes, compacted graphite and pearlite. Creep tests have been performed for up to 41,000 h. The specimens were cut out from material taken from two genuine inserts, I30 and I55. After creep testing, the specimens from the 100 deg C tests were hardness tested and a metallographic examination was performed. Creep strains at all temperatures appear to be logarithmic, and accumulation of creep strain diminishes with time. The time dependence of the creep strain is consistent to the W-model for primary creep. During the loading plastic strains up to 1% appeared. The maximum recorded creep strain after the loading phase was 0.025%. This makes the creep strains technically insignificant. Acoustic emission recordings during the loading of the room temperature tests showed no sounds or other evidence of microcracking during the loading phase. There is no evidence that the hardness or the graphite microstructure changed during the creep tests

  13. Influence of phosphorus on the creep ductility of copper

    International Nuclear Information System (INIS)

    Sandström, Rolf; Wu, Rui

    2013-01-01

    Around 1990 it was discovered that pure copper could have extra low creep ductility in the temperature interval 180–250 °C. The material was intended for use in canisters for nuclear waste disposal. Although extra low creep ductility was not observed much below 180 °C and the temperature in the canister will never exceed 100 °C, it was feared that the creep ductility could reach low values at lower temperatures after long term exposure. If 50 ppm phosphorus was added to the copper the low creep ductility disappeared. A creep cavitation model is presented that can quantitatively describe the cavitation behaviour in uniaxial and multiaxial creep tests as well as the observed creep ductility for copper with and without phosphorus. A so-called double ledge model has been introduced that demonstrates why the nucleation rate of creep cavities is often proportional to the creep rate. The phosphorus agglomerates at the grain boundaries and limits their local deformation and thereby reduces the formation and growth of cavities. This explains why extra low creep ductility does not occur in phosphorus alloyed copper

  14. Loading History Effect on Creep Deformation of Rock

    Directory of Open Access Journals (Sweden)

    Wendong Yang

    2018-06-01

    Full Text Available The creep characteristics of rocks are very important for assessing the long-term stability of rock engineering structures. Two loading methods are commonly used in creep tests: single-step loading and multi-step loading. The multi-step loading method avoids the discrete influence of rock specimens on creep deformation and is relatively time-efficient. It has been widely accepted by researchers in the area of creep testing. However, in the process of multi-step loading, later deformation is affected by earlier loading. This is a key problem in considering the effects of loading history. Therefore, we intend to analyze the deformation laws of rock under multi-step loading and propose a method to correct the disturbance of the preceding load. Based on multi-step loading creep tests, the memory effect of creep deformation caused by loading history is discussed in this paper. A time-affected correction method for the creep strains under multi-step loading is proposed. From this correction method, the creep deformation under single-step loading can be estimated by the super-position of creeps obtained by the dissolution of a multistep creep. We compare the time-affected correction method to the coordinate translation method without considering loading history. The results show that the former results are more consistent with the experimental results. The coordinate translation method produces a large error which should be avoided.

  15. Irradiation creep, stress relaxation and a mechanical equation of state

    International Nuclear Information System (INIS)

    Foster, J.P.

    1976-01-01

    Irradiation creep and stress relaxation data are available from the United Kingdom for 20 percent CW M316, 20 percent CW FV 548 and FHT PE16 using pure torsion in the absence of swelling at 300 0 C. Irradiation creep models were used to calculate the relaxation and permanent deflection of the stress relaxation tests. Two relationships between irradiation creep and stress relaxation were assessed by comparing the measured and calculated stress relaxation and permanent deflection. The results show that for M316 and FV548, the stress relaxation and deflection may be calculated using irradiation creep models when the stress rate term arising from the irradiation creep model is set equal to zero. In the case of PE16, the inability to calculate the stress relaxation and permanent deflection from the irradiation creep data was attributed to differences in creep behavior arising from lot-to-lot variations in alloying elements and impurity content. A modification of the FV548 and PE16 irradiation creep coefficients was necessary in order to calculate the stress relaxation and deflection. The modifications in FV548 and PE16 irradiation creep properties reduces the large variation in the transient or incubation parameter predicted by irradiation creep tests for M316, FV548 and PE16

  16. Vertebral deformity arising from an accelerated "creep" mechanism.

    Science.gov (United States)

    Luo, Jin; Pollintine, Phillip; Gomm, Edward; Dolan, Patricia; Adams, Michael A

    2012-09-01

    Vertebral deformities often occur in patients who recall no trauma, and display no evident fracture on radiographs. We hypothesise that vertebral deformity can occur by a gradual creep mechanism which is accelerated following minor damage. "Creep" is continuous deformation under constant load. Forty-five thoracolumbar spine motion segments were tested from cadavers aged 42-92 years. Vertebral body areal BMD was measured using DXA. Specimens were compressed at 1 kN for 30 min, while creep in each vertebral body was measured using an optical MacReflex system. After 30 min recovery, each specimen was subjected to a controlled overload event which caused minor damage to one of its vertebrae. The creep test was then repeated. Vertebral body creep was measurable in specimens with BMD Creep was greater anteriorly than posteriorly (p creep by 800 % (anteriorly), 1,000 % (centrally) and 600 % (posteriorly). In 34 vertebrae with complete before-and-after data, anterior wedging occurring during the 1st creep test averaged 0.07° (STD 0.17°), and in the 2nd test (after minor damage) it averaged 0.79° (STD 1.03°). The increase was highly significant (P creep test was proportional to the severity of damage, as quantified by specimen height loss during the overload event (r (2) = 0.51, p creep to such an extent that it makes a substantial contribution to vertebral deformity.

  17. Semantic search during divergent thinking.

    Science.gov (United States)

    Hass, Richard W

    2017-09-01

    Divergent thinking, as a method of examining creative cognition, has not been adequately analyzed in the context of modern cognitive theories. This article casts divergent thinking responding in the context of theories of memory search. First, it was argued that divergent thinking tasks are similar to semantic fluency tasks, but are more constrained, and less well structured. Next, response time distributions from 54 participants were analyzed for temporal and semantic clustering. Participants responded to two prompts from the alternative uses test: uses for a brick and uses for a bottle, for two minutes each. Participants' cumulative response curves were negatively accelerating, in line with theories of search of associative memory. However, results of analyses of semantic and temporal clustering suggested that clustering is less evident in alternative uses responding compared to semantic fluency tasks. This suggests either that divergent thinking responding does not involve an exhaustive search through a clustered memory trace, but rather that the process is more exploratory, yielding fewer overall responses that tend to drift away from close associates of the divergent thinking prompt. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Creep of Posidonia Shale at Elevated Pressure and Temperature

    Science.gov (United States)

    Rybacki, E.; Herrmann, J.; Wirth, R.; Dresen, G.

    2017-12-01

    The economic production of gas and oil from shales requires repeated hydraulic fracturing operations to stimulate these tight reservoir rocks. Besides simple depletion, the often observed decay of production rate with time may arise from creep-induced fracture closure. We examined experimentally the creep behavior of an immature carbonate-rich Posidonia shale, subjected to constant stress conditions at temperatures between 50 and 200 °C and confining pressures of 50-200 MPa, simulating elevated in situ depth conditions. Samples showed transient creep in the semibrittle regime with high deformation rates at high differential stress, high temperature and low confinement. Strain was mainly accommodated by deformation of the weak organic matter and phyllosilicates and by pore space reduction. The primary decelerating creep phase observed at relatively low stress can be described by an empirical power law relation between strain and time, where the fitted parameters vary with temperature, pressure and stress. Our results suggest that healing of hydraulic fractures at low stresses by creep-induced proppant embedment is unlikely within a creep period of several years. At higher differential stress, as may be expected in situ at contact areas due to stress concentrations, the shale showed secondary creep, followed by tertiary creep until failure. In this regime, microcrack propagation and coalescence may be assisted by stress corrosion. Secondary creep rates were also described by a power law, predicting faster fracture closure rates than for primary creep, likely contributing to production rate decline. Comparison of our data with published primary creep data on other shales suggests that the long-term creep behavior of shales can be correlated with their brittleness estimated from composition. Low creep strain is supported by a high fraction of strong minerals that can build up a load-bearing framework.

  19. Creep of fissile ceramic materials under neutron irradiation

    International Nuclear Information System (INIS)

    Brucklacher, D.

    1975-01-01

    Theoretical estimation of the irradiation-induced creep rate of U0 2 by a modification of the Nabarro-Herring model for diffusional creep resulted in a creep rate range between about 6 x 10 -6 to 8 x 10 -5 h -1 for a fission rate of 1 x 10 14 f/cm 3 s and a stress of 2 kgf/mm 2 . Accordingly, the creep rate is enhanced by irradiation at temperatures below 1000 0 to 1200 0 C. It is essentially due to the 'thermal rods' along the fission fragment tracks. Therefore, irradiation-induced creep rates should depend only slightly on temperature and must be markedly lower for carbide and nitride fuel. In-reactor creep experiments on UO 2 were performed at fuel temperatures between 250 0 to 850 0 C. At burnups between 0.3 to 3% the steady-state compressive creep rates are proportional to stress (0 to 4 kgf/mm 2 ) and to fission rate (1 x 10 13 to 2 x 10 14 f/cm 3 s), and are in the range estimated before. The increase in the creep rate with increasing temperature is low and corresponds to an apparent activation energy of only 5200 cal/mol. At burnups above 3 to 4% the stress exponent of the irradiation-induced creep rate increased from n = 1 to n = 1.5. Creep measurements on UO 2 to 15 wt-%Pu0 2 (mechanically mixed, sintered density 86% TD) showed the same temperature dependence as UO 2 below 700 0 C. However, the creep rates were higher by a factor of about 20 compared to fully dense UO 2 . This difference may be explained by assuming a high 'effective' porosity. In-pile creep tests on some UN samples resulted in creep rates that were lower by an order of magnitude than for UO 2 under comparable conditions. (author)

  20. Analytical investigation of the applicability of simplified ratchetting and creep-fatigue rules to a nozzle-to-sphere geometry

    International Nuclear Information System (INIS)

    Gwaltney, R.C.

    1982-01-01

    This paper presents an analysis of a nozzle-to-spherical-shell attachment and explores the applicability of simplified ratchetting and creep-fatigue rules to this attachment. A five-cycle inelastic analysis and creep-fatigue damage evaluation was carried out on this component. An elastic analysis also was done to provide input parameters required to apply the various rules and procedures of simplified analysis methods. Ten lines, or critical sections, were chosen for postprocessing to determine the ratchetting strain and creep-fatigue damage at both the inside and outside surfaces. At many of the 20 surface points analyzed, the inelastic analysis results did not develop a constant or decreasing pattern for the incremental strain or damage even after 5 cycles were analyzed. Failure to develop a constant or decreasing pattern was especially prevalent for creep damage. The results of the detailed inelastic analyses at the ten critical sections are compared with the results of elastic evaluations of ratchetting and creep-fatigue damage calculated according to American Society of Mechanical Engineers Boiler and Pressure Vessel Code Case N-47-13

  1. Microstructures of beta-silicon carbide after irradiation creep deformation at elevated temperatures

    International Nuclear Information System (INIS)

    Katoh, Yutai; Kondo, Sosuke; Snead, Lance L.

    2008-01-01

    Microstructures of silicon carbide were examined by transmission electron microscopy (TEM) after creep deformation under neutron irradiation. Thin strip specimens of polycrystalline and monocrystalline, chemically vapor-deposited, beta-phase silicon carbide were irradiated in the high flux isotope reactor to 0.7-4.2 dpa at nominal temperatures of 640-1080 deg. C in an elastically pre-strained bend stress relaxation configuration with the initial stress of ∼100 MPa. Irradiation creep caused permanent strains of 0.6 to 2.3 x 10 -4 . Tensile-loaded near-surface portions of the crept specimens were examined by TEM. The main microstructural features observed were dislocation loops in all samples, and appeared similar to those observed in samples irradiated in non-stressed conditions. Slight but statistically significant anisotropy in dislocation loop microstructure was observed in one irradiation condition, and accounted for at least a fraction of the creep strain derived from the stress relaxation. The estimated total volume of loops accounted for 10-45% of the estimated total swelling. The results imply that the early irradiation creep deformation of SiC observed in this work was driven by anisotropic evolutions of extrinsic dislocation loops and matrix defects with undetectable sizes

  2. A FACSIMILE code for calculating void swelling and creep, with vacancy loops present: version VS4

    International Nuclear Information System (INIS)

    Windsor, M.E.; Bullough, R.; Wood, M.H.

    1981-10-01

    This FACSIMILE code calculates void swelling and creep of irradiated materials, taking into account the effects of cavities, interstitial loops, vacancy loops, dislocation network and either grain boundaries or foil surfaces. The creep calculations are based on SIPA theory (stress induced preferred absorption), with no preferred nucleation. Either interactive or non-interactive options are available for the sink strength equations, but rate limitation is not incorporated. FACSIMILE is a computer program for solving simultaneous differential equations, and this VS4 code is one of a series of codes for calculating void swelling using increasingly complex theories. Other reports describing the VS1 and VS2 codes explain their use under control of the TSO system of the Harwell IBM 3033 computer, and explain the basic organization of the codes as required for use by FACSIMILE. The creep theory assumes that the material is under a constant uniaxial tensile stress during the irradiation. Three directions are considered for network parameters relative to the direction of the stress, and two directions for interstitial and vacancy loops. To give a full picture of these various contributions to the total creep, a large set of output parameter values are printed for each demanded dose value via a FORTRAN subroutine. (author)

  3. Engineering C-integral estimates for generalised creep behaviour and finite element validation

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Kim, Jin-Su; Huh, Nam-Su; Kim, Young-Jin

    2002-01-01

    This paper proposes an engineering method to estimate the creep C-integral for realistic creep laws to assess defective components operating at elevated temperatures. The proposed estimation method is mainly for the steady-state C * -integral, but a suggestion is also given for estimating the transient C(t)-integral. The reference stress approach is the basis of the proposed equation, but an enhancement in terms of accuracy is made through the definition of the reference stress. The proposed estimation equations are compared with extensive elastic-creep FE results employing various creep-deformation constitutive laws for six different geometries, including two-dimensional, axi-symmetric and three-dimensional geometries. Overall good agreement between the proposed method and the FE results provides confidence in the use of the proposed method for defect assessment of components at elevated temperatures. Moreover, it is shown that for surface cracks the proposed method can be used to estimate C * at any location along the crack front

  4. Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongming [Arizona State Univ., Tempe, AZ (United States). School for Engineering of Matter, Transport and Energy; Oskay, Caglar [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2017-04-30

    This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage is directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of

  5. Creep rupture strength and creep behavior of low-activation martensitic OPTIFER alloys. Final report

    International Nuclear Information System (INIS)

    Schirra, M.; Falkenstein, A.; Heger, S.; Lapena, J.

    2001-07-01

    The creep rupture strength and creep experiments performed on low-activation OPTIFER alloys in the temperature range of 450-700 C shall be summarized in the present report. Together with the reference alloy of the type 9.5Cr1W-Mn-V-Ta, W-free variants (+Ge) with a more favorable activation and decay behavior shall be studied. Their smaller strength values are compensated by far better toughness characteristics. Of each development line, several batches of slightly varying chemical composition have been investigated over service lives of up to 40,000 h. Apart from the impact of a reference thermal treatment at a hardening temperature of 1075 C and an annealing temperature of 750 C, the influence of reduced hardening temperatures (up to 950 C) has been determined. A long-term use at increased temperatures (max. 550 C-20,000 h) produces an aging effect with strength being decreased in the annealed state. To determine this aging effect quantitatively, creep rupture experiments have been performed using specimens that were subjected to variable types of T/t annealing (550 -650 C, 330-5000 h). Based on all test results, minimum values for the 1% time-strain limit and creep rupture in the T range of 400-600 C can be given as design curves for 20,000 h. The minimum creep rates obtained from the creep curves recorded as a function of the experimental stress yield the stress exponent n (n=Norton) for the individual test temperatures. Creep behavior as a function of the test temperature yields the values for the effective activation energy of creeping Q K . The influence of a preceding temperature transient up to 800 C (≤Ac 1b ) or 840 C (>Ac 1b ) with subsequent creep rupture tests at 500 C and 550 C, respectively, shall be described. The results obtained for the OPTIFER alloys shall be compared with the results achieved for the Japanese 2% W-containing F82H-mod. alloy. (orig.) [de

  6. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.

    Science.gov (United States)

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A

    2012-05-22

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain.

  7. Hyperreal Numbers for Infinite Divergent Series

    OpenAIRE

    Bartlett, Jonathan

    2018-01-01

    Treating divergent series properly has been an ongoing issue in mathematics. However, many of the problems in divergent series stem from the fact that divergent series were discovered prior to having a number system which could handle them. The infinities that resulted from divergent series led to contradictions within the real number system, but these contradictions are largely alleviated with the hyperreal number system. Hyperreal numbers provide a framework for dealing with divergent serie...

  8. Radiation-induced creep and swelling

    International Nuclear Information System (INIS)

    Heald, P.T.

    1977-01-01

    The physical basis for radiation induced creep and swelling is reviewed. The interactions between the point defects and dislocations are recalled since these interactions are ultimately responsible for the observable deformation phenomena. Both the size misfit interaction and the induced inhomogeneity interaction are considered since the former gives rise to irradiation swelling while the latter, which depends on both internal and external stresses, results in irradiation creep. The defect kinetics leading to the deformation processes are discussed in terms of chemical rate theory. The rate equations for the spatially averaged interstitial and vacancy concentrations are expressed in terms of the microstructural sink strengths and the solution of these equations leads to general expressions for the deformation rates

  9. Creep consolidation of nuclear depository backfill materials

    International Nuclear Information System (INIS)

    Butcher, B.M.

    1980-10-01

    Evaluation of the effects of backfilling nuclear waste repository rooms is an important aspect of waste repository design. Consolidation of the porous backfill takes place as the room closes with time, causing the supporting stress exerted by the backfill against the intact rock to increase. Estimation of the rate of backfill consolidation is required for closure rate predictions and should be possible if the creep law for the solid constituent is known. A simple theory describing consolidation with a spherical void model is derived to illustrate this relationship. Although the present form of the theory assumes a homogeneous isotropic incompressible material atypical of most rocks, it may be applicable to rock salt, which exhibits considerable plasticity under confined pressure. Application of the theory is illustrated assuming a simple steady-state creep law, to show that the consolidation rate depends on the externally applied stress, temperature, and porosity

  10. Boundary element method for modelling creep behaviour

    International Nuclear Information System (INIS)

    Zarina Masood; Shah Nor Basri; Abdel Majid Hamouda; Prithvi Raj Arora

    2002-01-01

    A two dimensional initial strain direct boundary element method is proposed to numerically model the creep behaviour. The boundary of the body is discretized into quadratic element and the domain into quadratic quadrilaterals. The variables are also assumed to have a quadratic variation over the elements. The boundary integral equation is solved for each boundary node and assembled into a matrix. This matrix is solved by Gauss elimination with partial pivoting to obtain the variables on the boundary and in the interior. Due to the time-dependent nature of creep, the solution has to be derived over increments of time. Automatic time incrementation technique and backward Euler method for updating the variables are implemented to assure stability and accuracy of results. A flowchart of the solution strategy is also presented. (Author)

  11. Creep rupture behavior of Stirling engine materials

    Science.gov (United States)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  12. Creep fatigue damage under multiaxial conditions

    International Nuclear Information System (INIS)

    Lobitz, D.W.; Nickell, R.E.

    1977-01-01

    When structural components are subjected to severe cyclic loading conditions with intermittent periods of sustained loading at elevated temperature, the designer must guard against a failure mode caused by the interaction of time-dependent and time-independent deformation. This phenomena is referred to as creep-fatigue interaction. The most elementary form of interaction theory (called linear damage summation) is now embodied in the ASME Boiler and Pressure Vessel Code. In recent years, a competitor for the linear damage summation theory has emerged, called strainrange partitioning. This procedure is based upon the visualization of the cyclic strain in a uniaxial creep-fatigue test as a hysteresis loop, with the inelastic strains in the loop counter-balanced in one of two ways. The two theories are compared and contrasted in terms of ease of use, possible inconsistencies, and component life prediction. Future work to further test the damage theories is recommended

  13. Ultrasonic study of elastic creep in piezoceramics.

    Science.gov (United States)

    Tsaplev, V M; Konovalov, R S

    2017-11-01

    Ultrasonic method and experimental setup for study the elastic creep of piezoelectric materials are described. The results of experimental studies of time behavior of the Young's modulus and the internal friction are presented as well as the longitudinal and transversal piezomoduli and the electromechanical coupling factor. Four compositions of piezoelectric ceramics both soft and hard, based on BaTiO 3 and PZT, were compressed for a long time (0÷10 7 s) by significant static loads (0÷120MPa). The possible physical mechanisms that cause the creep are briefly considered. The concept of a spectrum of activation energies of the corresponding processes is introduced. The upper and the lower boundaries of the relaxation times spectrum were measured and corresponding activation energies were found. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Chained Kullback-Leibler Divergences

    Science.gov (United States)

    Pavlichin, Dmitri S.; Weissman, Tsachy

    2017-01-01

    We define and characterize the “chained” Kullback-Leibler divergence minw D(p‖w) + D(w‖q) minimized over all intermediate distributions w and the analogous k-fold chained K-L divergence min D(p‖wk−1) + … + D(w2‖w1) + D(w1‖q) minimized over the entire path (w1,…,wk−1). This quantity arises in a large deviations analysis of a Markov chain on the set of types – the Wright-Fisher model of neutral genetic drift: a population with allele distribution q produces offspring with allele distribution w, which then produce offspring with allele distribution p, and so on. The chained divergences enjoy some of the same properties as the K-L divergence (like joint convexity in the arguments) and appear in k-step versions of some of the same settings as the K-L divergence (like information projections and a conditional limit theorem). We further characterize the optimal k-step “path” of distributions appearing in the definition and apply our findings in a large deviations analysis of the Wright-Fisher process. We make a connection to information geometry via the previously studied continuum limit, where the number of steps tends to infinity, and the limiting path is a geodesic in the Fisher information metric. Finally, we offer a thermodynamic interpretation of the chained divergence (as the rate of operation of an appropriately defined Maxwell’s demon) and we state some natural extensions and applications (a k-step mutual information and k-step maximum likelihood inference). We release code for computing the objects we study. PMID:29130024

  15. Diagnosis of bearing creep in wind turbine gearboxes

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Liu, Zhenyan; Hilmisson, Reynir

    2016-01-01

    One of the most wide spread gearbox topologies in the wind energy sector consists of a slow rotating planetary stage, an intermediate speed parallel stage and finally a high speed parallel stage driving the generator rotor. The shafts of the two latter stages are supported by ball or roller...... bearings where their outer races are fixed to the gearbox and their inner races rotate at the corresponding shaft speed. Bearing inner race defects are frequently encountered in gearboxes leading to either replacement of the whole unit or exchange of the shaft or bearing where feasible. The present work...... deals with the evaluation of the development of an inner race defect from surface pitting to race axial crack resulting in excessive rotational looseness, also referred to as bearing creep. It is shown that an inner race defect can be identified efficiently at an early stage by employing well known...

  16. Finite element analysis of nonlinear creeping flows

    International Nuclear Information System (INIS)

    Loula, A.F.D.; Guerreiro, J.N.C.

    1988-12-01

    Steady-state creep problems with monotone constitutive laws are studied. Finite element approximations are constructed based on mixed Petrov-Galerkin formulations for constrained problems. Stability, convergence and a priori error estimates are proved for equal-order discontinuous stress and continuous velocity interpolations. Numerical results are presented confirming the rates of convergence predicted in the analysis and the good performance of this formulation. (author) [pt

  17. Mechanism of creep in stainless steel

    International Nuclear Information System (INIS)

    Monteiro, S.N.; Silveira, T.L.

    In the present work the creep criterions to identify the deformation mechanisms through the exponent of the strain rate versus stress relationship are presented. When applied to several stainless steels these criterions show an apparent contradiction for the proper mechanism acting at Σ/D above 10 9 /cm 2 . Microstructural aspects interfering in different manners with the fracture of these steels could be a reason for rationalizing the contradictory behavior. This is discussed in suggested deformation maps for the steels investigated [pt

  18. Long term creep behavior of concrete

    International Nuclear Information System (INIS)

    Kennedy, T.W.

    1975-01-01

    This report presents the findings of an experimental investigation to evaluate the long term creep behavior of concrete subjected to sustained uniaxial loads for an extended period of time at 75 0 F. The factors investigated were (1) curing time (90, 183, and 365 days); (2) curing history (as-cast and air-dried); and (3) uniaxial stress (600 and 2400 psi). The experimental investigation applied uniaxial compressive loads to cylindrical concrete specimens and measured strains with vibrating wire strain gages that were cast in the concrete specimen along the axial and radial axes. Specimens cured for 90 days prior to loading were subjected to a sustained load for a period of one year, at which time the loads were removed; the specimens which were cured for 183 or 365 days, however, were not unloaded and have been under load for 5 and 4.5 years, respectively. The effect of each of the above factors on the instantaneous and creep behavior is discussed and the long term creep behavior of the specimens cured for 183 or 365 days is evaluated. The findings of these evaluations are summarized. (17 figures, 10 tables) (U.S.)

  19. Experimental studies of fiber concrete creep

    Directory of Open Access Journals (Sweden)

    Korneeva Irina

    2017-01-01

    Full Text Available The results of two-stage experimental studies of the strength and deformation characteristics of fibrous concrete reinforced with steel fiber. In the experiments we used steel fiber with bent ends, which practically does not form "hedgehogs", which allows to achieve an even distribution of the fiber by volume. At the first stage, the cube and prismatic strength, deformability at central compression, a number of special characteristics are determined: water absorption, frost resistance, abrasion; the optimal percentage of fiber reinforcement and the maximum size of the coarse aggregate fraction were selected. Fiber reinforcement led to an increase in the strength of concrete at compression by 1,35 times and an increase in the tensile strength at bending by 3,4 times. At the second stage, the creep of fibrous concrete and plain concrete of similar composition at different stress levels was researched. Creep curves are plotted. It is shown that the use of fiber reinforcement leads to a decrease in creep strain by 21 to 30 percent, depending on the stress level.

  20. Creep Deformation by Dislocation Movement in Waspaloy.

    Science.gov (United States)

    Whittaker, Mark; Harrison, Will; Deen, Christopher; Rae, Cathie; Williams, Steve

    2017-01-12

    Creep tests of the polycrystalline nickel alloy Waspaloy have been conducted at Swansea University, for varying stress conditions at 700 °C. Investigation through use of Transmission Electron Microscopy at Cambridge University has examined the dislocation networks formed under these conditions, with particular attention paid to comparing tests performed above and below the yield stress. This paper highlights how the dislocation structures vary throughout creep and proposes a dislocation mechanism theory for creep in Waspaloy. Activation energies are calculated through approaches developed in the use of the recently formulated Wilshire Equations, and are found to differ above and below the yield stress. Low activation energies are found to be related to dislocation interaction with γ' precipitates below the yield stress. However, significantly increased dislocation densities at stresses above yield cause an increase in the activation energy values as forest hardening becomes the primary mechanism controlling dislocation movement. It is proposed that the activation energy change is related to the stress increment provided by work hardening, as can be observed from Ti, Ni and steel results.

  1. Magnetic field annealing for improved creep resistance

    Science.gov (United States)

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  2. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  3. Experimental verification of creep analyses for prestressed concrete reactor vessels

    International Nuclear Information System (INIS)

    Aoyagi, Y.; Abe, H.; Ohnuma, H.

    1977-01-01

    The authors proposed a new method of creep analysis based on the theory of strain hardening, which assumes that accumulated creep at a given time influences the creep after that. This method was applied to calculate step-by-step the behaviors of uniaxial creep of concrete under variable temperatures and stresses, creep in reinforced concrete specimens and the behaviors of prestressed concrete beams under themal gradients. The experimental and calculated results agreed fairly well. Further, this method was incorporated in the finite element creep analysis for the prestressed concrete hollow cylinder and the full scale model. The calculated strain changes with time pursued closely those obtained by experiments. The above led to the conclusion that from the viewpoint of both accuracy and computation time the strain hardening method proposed by the authors may be judged advantageous for practical usages

  4. Creep properties of 20% cold-worked Hastelloy XR

    International Nuclear Information System (INIS)

    Kurata, Y.

    1996-01-01

    The creep properties of Hastelloy XR, in solution-treated and in 20% cold-worked conditions, were studied at 800, 900 and 1000 C. At 800 C, the steady-state creep rate and rupture ductility decrease, while rupture life increases after cold work to 20%. Although the steady-state creep rate and ductility also decrease at 900 C, the beneficial effect on rupture life disappears. Cold work to 20% enhan ces creep resistance of this alloy at 800 and 900 C due to a high density of dislocations introduced by the cold work. Rupture life of the 20% cold-worked alloy becomes shorter and the steady-state creep rate larger at 1000 C during creep of the 20% cold-worked alloy. It is emphasized that these cold work effects should be taken into consideration in design and operation of high-temperature structural components of high-temperature gas-cooled reactors. (orig.)

  5. Capsule development and utilization for material irradiation tests; study on the in-pile creep measuring method of zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong; Lee, Byung Kee; Lee, Jong Jea; Kim, Chang Sik; Kim, B. Hun; Cho, I. Sik [Sunmoon University, Asan (Korea)

    2002-02-01

    The final objective of this project is to obtain a design and fabrication technology of an in-pile creep test machine of zirconium alloys. First, design concepts of the in-pile creep test machines of various foreign countries were reviewed and a preliminary design of the equipment was carried. Second, the mock-up of the in-pile creep test machine was fabricated based on the preliminary design. The mock-up consisted of upper and lower grips, a yoke, a pressure chamber including a bellows, a push rod and LVDT. Each part was made of 304 L stainless steel. The average surface roughness of the parts was 1.0-14.7 {mu}m. The mock-up precisely determined an extension of a specimen by gas pressure. Finally, in-pile creep capsule was designed, fabricated and modified. High pure aluminum blocks were put in the capsule. Considering heat transfer coefficients of helium and nitrogen gases, the cooling efficiency is about 4 .deg. C at the condition of 300 .deg. C creep test. Yield strength, ultimate tensile strength and elongation at 300 .deg. C were 335 MPa, 591 MPa, 19.8%, respectively. which were lower than the values at room temperature, 353 MPa, 740 MPa, 12.5%. This study gave an important technology related to design, fabrication and performance tests of the in-pile creep test machine, which is applied to the fabrication of a special capsule and also used for the fundamental data for the fabrication of various in-pile creep capsules. 6 refs., 45 figs., 5 tabs. (Author)

  6. The creep and intergranular cracking behavior of Ni-Cr-Fe-C alloys in 360 degree C water

    International Nuclear Information System (INIS)

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-01-01

    Mechanical testing of controlled-purity Ni-xCr-9Fe-yC alloys at 360 C revealed an environmental enhancement in IG cracking and time-dependent deformation in high purity and primary water over that exhibited in argon. Dimples on the IG facets indicate a creep void nucleation and growth failure mode. IG cracking was primarily located at the interior of the specimen and not necessarily linked to direct contact with the environment. Controlled potential CERT experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen is detrimental to the mechanical properties. It is proposed that the environment, through the presence of hydrogen, enhances IG cracking by enhancing the matrix dislocation mobility. This is based on observations that dislocation-controlled creep controls the IG cracking of controlled-purity Ni-xCr-9Fe-yC in argon at 360 C and grain boundary cavitation and sliding results that show the environmental enhancement of the creep rate is primarily due to an increase in matrix plastic deformation. However, controlled potential CLT experiments did not exhibit a change in the creep rate as the applied potential decreased. While this does not clearly support hydrogen assisted creep, the material may already be saturated with hydrogen at these applied potentials and thus no effect was realized. Chromium and carbon decrease the IG cracking in high purity and primary water by increasing the creep resistance. The surface film does not play a significant role in the creep or IG cracking behavior under the conditions investigated

  7. Long‐term creep rates on the Hayward Fault: evidence for controls on the size and frequency of large earthquakes

    Science.gov (United States)

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Bilham, Roger; Ponce, David A.; Boatwright, John; Caskey, S. John

    2012-01-01

    The Hayward fault (HF) in California exhibits large (Mw 6.5–7.1) earthquakes with short recurrence times (161±65 yr), probably kept short by a 26%–78% aseismic release rate (including postseismic). Its interseismic release rate varies locally over time, as we infer from many decades of surface creep data. Earliest estimates of creep rate, primarily from infrequent surveys of offset cultural features, revealed distinct spatial variation in rates along the fault, but no detectable temporal variation. Since the 1989 Mw 6.9 Loma Prieta earthquake (LPE), monitoring on 32 alinement arrays and 5 creepmeters has greatly improved the spatial and temporal resolution of creep rate. We now identify significant temporal variations, mostly associated with local and regional earthquakes. The largest rate change was a 6‐yr cessation of creep along a 5‐km length near the south end of the HF, attributed to a regional stress drop from the LPE, ending in 1996 with a 2‐cm creep event. North of there near Union City starting in 1991, rates apparently increased by 25% above pre‐LPE levels on a 16‐km‐long reach of the fault. Near Oakland in 2007 an Mw 4.2 earthquake initiated a 1–2 cm creep event extending 10–15 km along the fault. Using new better‐constrained long‐term creep rates, we updated earlier estimates of depth to locking along the HF. The locking depths outline a single, ∼50‐km‐long locked or retarded patch with the potential for an Mw∼6.8 event equaling the 1868 HF earthquake. We propose that this inferred patch regulates the size and frequency of large earthquakes on HF.

  8. Analysis of Simple Creep Stress Calculation Methods for Creep Life Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jun Min; Lee, Han Sang; Kim, Yun Jae [Korea Univ., Daejeon (Korea, Republic of)

    2017-08-15

    Creep analysis takes much more time than elastic or elastic-plastic analysis. In this study, we conducted elastic and elastic-plastic analysis and compared the results with creep analysis results. In the elastic analysis, we used primary stress, which can be classified by the Mα-tangent method and stress intensities recommended in the ASME code. In the elastic-plastic analysis, we calculated the parameters recommended in the R5 code. For the FE models, a bending load, uniaxial load, and biaxial load were applied to the cross shaped welded plate, and a bending load and internal pressure were applied to the elbow pipe. To investigate the element size sensitivity, we conducted FE analysis for various element sizes for the cases where bending load was applied to the cross shaped welded plate. There was no significant difference between the creep.

  9. Degradation of mechanical properties of CrMo creep resistant steel operating under conditions of creep

    Directory of Open Access Journals (Sweden)

    J. Michel

    2012-01-01

    Full Text Available Mechanical properties of a steam tube made of CrMo creep resistant steel are analysed in this contribution after up to 2,6•105 hours service life in creep conditions at temperature 530 °C and calculated stress level in the tube wall 46,5 MPa. During service life there were in the steel gradual micro structure changes, fi rst pearlite spheroidization, precipitation, coaugulation and precipitate coarsening. Nevertheless the strength and deformation properties of the steel (Re, Rm, A5, Z, and the resistance to brittle fracture and the creep strength limit, were near to unchanged after 2,1•105 hours in service. The steam tube is now in service more than 2,6•105 h.

  10. Creep behavior of materials for high-temperature reactor application

    International Nuclear Information System (INIS)

    Schneider, K.; Hartnagel, W.; Iischner, B.; Schepp, P.

    1984-01-01

    Materials for high-temperature gas-cooled reactor (HTGR) application are selected according to their creep behavior. For two alloys--Incoloy-800 used for the live steam tubing of the thorium high-temperature reactor and Inconel-617 evaluated for tubings in advanced HTGRs--creep curves are measured and described by equations. A microstructural interpretation is given. An essential result is that nonstable microstructures determine the creep behavior

  11. A new method for measuring creep-strain

    International Nuclear Information System (INIS)

    Joas, H.D.

    2001-01-01

    To realise a safe and economic operation of components undergoing creep damage, sometimes a theoretical and an experimental evaluation is necessary. The discussed Creep-Replica-Method is a new possibility to estimate the creep-strain due to the real loading conditions of a component during a certain time of operation which gives a chance to assess the integrity, the consumed life and the possible repairing of a component. (Author)

  12. Creep and shrinkage of concrete according to Eurocode 2

    Directory of Open Access Journals (Sweden)

    Milićević Ivan M.

    2017-01-01

    Full Text Available This paper presents the procedure for calculation of creep coefficient and shrinkage strain according to Eurocode 2 (SRPS EN 1992-1-1:2004. The calculated values of final creep coefficient and shrinkage strain, for the usual design conditions, are given in Annexes. The influence of key parameters on final creep coefficient and shrinkage strain is analyzed and the comparison between their final values calculated according to Eurocode 2 and BAB 87 is presented.

  13. Application of regression analysis to creep of space shuttle materials

    International Nuclear Information System (INIS)

    Rummler, D.R.

    1975-01-01

    Metallic heat shields for Space Shuttle thermal protection systems must operate for many flight cycles at high temperatures in low-pressure air and use thin-gage (less than or equal to 0.65 mm) sheet. Available creep data for thin sheet under those conditions are inadequate. To assess the effects of oxygen partial pressure and sheet thickness on creep behavior and to develop constitutive creep equations for small sets of data, regression techniques are applied and discussed

  14. Control of Early Age Concrete. Phase 3: Creep in Concrete

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars; Hansen, Per Freiesleben

    1997-01-01

    The mechanical properties of the "Road Directorate Concrete" at early ages are studied. Creep in tension at 24 and 72 maturity hours are measured on dogbone shaped specimens. The development of tensile modulus of elasticity and strength are measured with a method developed here. The results...... are compared to compression values and splitting strengths. It is found that the properties of creep in tension are similar to the properties in compression. Further the influence form temperature on creep is found to be significant....

  15. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  16. Comparison of creep of the cement pastes included fly ash

    Directory of Open Access Journals (Sweden)

    Padevět Pavel

    2017-01-01

    Full Text Available The paper is devoted to comparison of creep of cement pastes containing fly ash admixture. The size of creep in time depends on the amount of components of the cement paste. Attention is paid to the content of classical fly ash in cement paste and its impact on the size of creep. The moisture of cement pastes is distinguished because it significantly affects the rheological properties of the material.

  17. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    International Nuclear Information System (INIS)

    Bowyer, William H.

    2006-05-01

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage

  18. Multi-axial Creep and the LICON Methodology for Accelerated Creep Testing

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, William H. [Meadow End Farm, Farnham (United Kingdom)

    2006-05-15

    The copper-Iron canister for disposal of nuclear waste in the Swedish Programme has a design life exceeding 100,000 years. Whilst the operating temperature (100 deg C max.) and operating stress (50 MPa max.) are modest, the very long design life does require that the likely creep performance of the canister should be investigated. Many studies have been carried out by SKB but these have all involved very short duration tests at relatively high stresses. The process of predicting canister creep life by extrapolation of data from such tests has been challenged for two main reasons. The first is that the deformation and failure mechanisms in the tests employed are different from the mechanism expected under service conditions and the second is that the extrapolation is extreme. It has been recognised that there is usually scope for some increase in test temperatures and stresses which will accelerate the development of creep damage without compromising the use of extrapolation for life prediction. Cane demonstrated that in steels designed for high temperature and pressure applications, conditions of multi-axial stressing could lead to increases or decreases in the rate of damage accumulation without changing the damage mechanism. This provided a third method for accelerating creep testing which has been implemented as the LICON method. This report aims to explain the background to the LICON method and its application to the case of the copper canister. It seems likely that the method could be used to improve our knowledge of the creep resistance of the copper canister. Multiplication factors that may be achieved by the technique could be increased by attention to specimen design but an extensive and targeted programme of data collection on creep of copper would still be needed to implement the method to best advantage.

  19. Fatigue and creep-fatigue in sodium of 316 1 stainless steel

    International Nuclear Information System (INIS)

    Ardellier, A.

    1982-01-01

    Equipment and results obtained on type 316 L stainless stee1 at 450 0 C and 600 0 C with low-cycle fatique and creep fatigue tests are described. Comparison with runs in air on type 316 L stainless steel shows a better low-cycle fatigue behavior in a sodium environment. This beneficial effect can be attributed to the low oxygen content which limits the surface oxidazation

  20. Ratchetting and creep-fatigue evaluation for nozzle-to-cylinder intersection

    International Nuclear Information System (INIS)

    Barsoum, R.S.; Loomis, R.W.; Stewart, B.D.

    1976-01-01

    The study is part of an analytical investigation on the applicability of the simplified ratchetting and creep-fatigue rules to LMFBR component geometry. Both the detailed inelastic rules and the simplified elastic rules are applied to the results obtained from a three-dimensional finite element analysis of the nozzle-to-cylinder intersection. The results of both evaluations are compared at several locations on the surface, and an assessment of the degree of conservatism of the simplified methods is discussed

  1. Creep behaviour of modified 9Cr-1Mo ferritic steel

    International Nuclear Information System (INIS)

    Choudhary, B.K.; Isaac Samuel, E.

    2011-01-01

    Creep deformation and fracture behaviour of indigenously developed modified 9Cr-1Mo steel for steam generator (SG) tube application has been examined at 823, 848 and 873 K. Creep tests were performed on flat creep specimens machined from normalised and tempered SG tubes at stresses ranging from 125 to 275 MPa. The stress dependence of minimum creep rate obeyed Norton's power law. Similarly, the rupture life dependence on stress obeyed a power law. The fracture mode remained transgranular at all test conditions examined. The analysis of creep data indicated that the steel obey Monkman-Grant and modified Monkman-Grant relationships and display high creep damage tolerance factor. The tertiary creep was examined in terms of the variations of time to onset of tertiary creep with rupture life, and a recently proposed concept of time to reach Monkman-Grant ductility, and its relationship with rupture life that depends only on damage tolerance factor. SG tube steel exhibited creep-rupture strength comparable to those reported in literature and specified in the nuclear design code RCC-MR.

  2. Creep of sandwich beams with metallic foam cores

    International Nuclear Information System (INIS)

    Kesler, O.; Crews, L.K.; Gibson, L.J.

    2003-01-01

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis

  3. Creep of sandwich beams with metallic foam cores

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, O.; Crews, L.K.; Gibson, L.J

    2003-01-20

    The steady state creep deflection rates of sandwich beams with metallic foam cores were measured and compared with analytical and numerical predictions of the creep behavior. The deflection rate depends on the geometry of the sandwich beam, the creep behavior of the foam core and the loading conditions (stress state, temperature). Although there was a considerable scatter in the creep data (both of the foams and of the sandwich beams made using them), the data for the sandwich beams were fairly well described by the analysis.

  4. Intergranular creep of oriented bi-crystals of aluminium

    International Nuclear Information System (INIS)

    Biscondi, Michel

    1971-01-01

    This research thesis reports the study of the nature of intergranular creep, and of relationships between structure and creep ability of some grain boundaries. After having explained why bi-crystals are interesting for this kind of study, the author defines experimental conditions and describes measurement methods. He reports the study of the influence of external factors (time, test temperature, applied stress) on intergranular creep. He shows that grain boundary structure has a determining influence of the grain boundary ability to intergranular creep. The author discusses the obtained results and makes some propositions for the interpretation of the observed phenomenon

  5. Long-term creep test with finite elements

    International Nuclear Information System (INIS)

    Argyris, J.H.; Szimmat, J.; Willam, K.J.

    1975-01-01

    Following a presentation of concrete creep, a brief summary of the direct and incremental calculation methods for long-term creep behaviour is given. In addition, a survey on the methods of the inner state variables is given which, on the one hand, gives a uniform framework for the various formulations of concrete creep, and on the other hand leads to a computable calculation method. Two examples on long-term creep behaviour illustrate the application field of the calculation method. (orig./LH) [de

  6. Creep behavior of Ti3Al-Nb intermetallic alloys

    International Nuclear Information System (INIS)

    Yu, T.H.; Yue, W.J.; Koo, C.H.

    1997-01-01

    It is well known that Ti 3 Al-Nb alloys are potential materials for aerospace applications. The creep property is an important consideration when materials are used at high temperature. In this article, the effect of microstructure of Ti-25Al-10Nb alloy on the creep property was investigated, and the creep property of Ti-25Al-10Nb alloy modified by small addition of silicon 0.2 at.% or carbon 0.1 at.% was observed. The alloy with the addition of molybdenum to replace part of niobium 2 at.% was also studied. The experimental results show that the furnace-cooled Ti-25Al-10Nb alloy has superior creep resistance to the air-cooled Ti-25Al-10Nb alloy at 200 MPa, but exhibits poor creep resistance at 250 MPa or above. Small addition of silicon to the Ti-25Al-10Nb alloy may increase creep resistance. Small addition of carbon to the Ti-25Al-10Nb alloy may reduce creep resistance but raise rupture strain. Molybdenum is the most effective alloying element to increase creep resistance for the Ti-25Al-10Nb alloy. The creep mechanism of Ti-25Al-10Nb alloy is governed by dislocation climb. (orig.)

  7. Creep characteristics of precipitation hardened carbon free martensitic alloys

    International Nuclear Information System (INIS)

    Muneki, S.; Igarashi, M.; Abe, F.

    2000-01-01

    A new attempt has been demonstrated using carbon free Fe-Ni-Co martensitic alloys strengthened by Laves phase such as Fe 2 W or Fe 2 Mo to achieve homogeneous creep deformation at high temperatures under low stress levels. Creep behavior of the alloys is found to be completely different from that of the conventional high-Cr ferritic steels. The alloys exhibit gradual change in the creep rate with strain both in the transient and acceleration creep regions, and give a larger strain for the minimum creep rate. In these alloys the creep deformation takes place very homogeneously and no heterogeneous creep deformation is enhanced even at low stress levels. The minimum creep rates of the Fe-Ni-Co alloys at 700 C are found to be much lower than that of the conventional steel, which is due to fine dispersion strengthening useful even at 700 C in these alloys. It is thus concluded that the Fe-Ni-Co martensite strengthened by Laves phase is very useful to increase the creep resistance at elevated temperatures over 650 C. (orig.)

  8. microstructure change in 12 % Cr steel during creep

    International Nuclear Information System (INIS)

    Winatapura, D. S.; Panjaitan, E.; Arslan, A.; Sulistioso, G.S.

    1998-01-01

    The microstructure change in steel containing of 12% Cr or DIN X20CrMoV 12 1 during creep has been studied by means of optical microscopy and Transmission Electron Microscope (TEM). The creep testing at 650 o C was conducted under constant load of 650 Mpa. The heat treatment of the specimen before creep testing was austenization, followed by tempering for 2 hours. The obtained microstructure was tempered martensitic. This microstructure consisted of the martensite laths, and distributed randomly in the matrix. During tempering, chromium carbide particles of Cr 7 C 6 less than 0,2 μmin-size were precipitated on or and in the subgrain and lath martensite grain boundary. During creep testing those particles transformed and precipitated as chrome carbide precipitates of Cr 23 C 6 . At the secondary creep stage, the void formation occurred, and then it developed into the creep cracks. At tertiary creep stage for 3554 hours, the specimen was failure. The creep cracks were informs of transgranular and intergranular modes which propagated almost perpendicular to the stress axis. From this observation, it is suggested that tempering caused the ductility of martensitic microstructure, which increased the creep resistant or Cr 12% steel

  9. An analysis of irradiation creep in nuclear graphites

    International Nuclear Information System (INIS)

    Neighbour, G.B.; Hacker, P.J.

    2002-01-01

    Nuclear graphite under load shows remarkably high creep ductility with neutron irradiation, well in excess of any strain experienced in un-irradiated graphite (and additional to any dimensional changes that would occur without stress). As this behaviour compensates, to some extent, some other irradiation effects such as thermal shutdown stresses, it is an important property. This paper briefly reviews the approach to irradiation creep in the UK, described by the UK Creep Law. It then offers an alternative analysis of irradiation creep applicable to most situations, including HTR systems, using AGR moderator graphite as an example, to high values of neutron fluence, applied stress and radiolytic weight loss. (authors)

  10. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  11. Nondestructive evaluation of creep-fatigue damage: an interim report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described

  12. A Study of the Creep Effect in Loudspeaker Suspension

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Thorborg, Knud; Tinggaard, Carsten

    2008-01-01

    This paper investigates the creep effect, the visco elastic behaviour of loudspeaker suspension parts, which can be observed as an increase in displacement far below the resonance frequency. The creep effect means that the suspension cannot be modelled as a simple spring. The need for an accurate...... creep model is even larger as the validity of loudspeaker models are now sought extended far into the nonlinear domain of the loudspeaker. Different creep models are investigated and implemented both in simple lumped parameter models as well as time domain non-linear models, the simulation results...

  13. Creep of trabecular bone from the human proximal tibia.

    Science.gov (United States)

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L; McKittrick, Joanna

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Creep fracture and creep-fatigue fracture in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Suresh, S.

    1993-01-01

    This paper summarizes recent advances in the areas of subcritical crack growth in ceramics subjected to static and cyclic loads at elevated temperatures. Attention is devoted to the specific role of pre-existing and in-situ-formed glass films in influencing creep fracture and creep-fatigue fracture. Experimental results on the effects of cyclic frequency and load ratio, along with detailed transmission electron microscopy of crack-tip and crack-wake damage are highlighted. Some general conclusions are drawn about the dependence of high-temperature damage tolerance on interfacial glass films and about the susceptibility of ceramic materials to cyclic fatigue fracture

  15. Creep and creep rupture properties of cladding tube (type 316) in high temperature sodium

    International Nuclear Information System (INIS)

    Atsumo, H.

    1977-01-01

    The thin walled small sized seamless AISI 316 steel tubes, which are designated to be domestically used as the fuel cladding tube for sodium cooled fast breeder reactors in Japan, are irradiated in the following sodium of high temperature in the range of 370 deg. C to 700 deg. C, and receive gradually increased internal pressure caused by the fission produced gas generating from the nuclear fuel burn-up inside the cladding tube. Consequently, the creep behavior of fuel cladding tubes under a high temperature sodium environment is an important problem which must be determined and clarified together with their characteristic features under irradiation and in air. In relation to the creep performance of fuel cladding tubes made of AISI 316 steel and other comparable austenitic stainless steels, hardly any studies are found that are made systematically to examine the effect of sodium with sodium purity as parameter or any comparative studies with in-air data at various different temperatures. The present research work was aimed to obtain certain basic design data relating to in-sodium creep performance of the domestic made fuel cladding tubes for fast breeder reactors, and also to gain further date as considered necessary under several sodium conditions. That is, together with establishment of the technology for tensile creep test and internal pressure creep rupture test in flowing sodium of high temperature, a series of tests and studies were performed on the trial made cladding tubes of AISI Type-316 steel. In the first place, two kinds of purity conditions of sodium, close to the actual reactor-operating condition, (oxygen concentration of 10 ppm and 5 ppm respectively) were established, and then uniaxial tensile creep test and rupture test under various temperatures were performed and the resulting data were compared and evaluated against the in-air data. Then, secondly, an internal pressure creep rupture test was conducted under a single purity sodium environment

  16. Interaction of irradiation creep and swelling in the creep disappearance regime

    International Nuclear Information System (INIS)

    Garner, F.A.; Toloczko, M.B.

    1992-01-01

    The objective of this effort is to determine the relationship between applied stresses and irradiation-induced dimensional changes in structural metals for fusion applications. Reanalysis of an earlier data set derived from irradiation of long creep tubes in EBR-II at 550 C has shown that the creep-swelling coupling coefficient is relatively independent of temperature at ∼0.6 x 10 -2 MPa -1 , but falls with increases in the swelling rate, especially at high stress levels. The action of stress-affected swelling and carbide precipitation exert different influences on the derivation of this coefficient

  17. Creep-fatigue monitoring system for header ligaments of fossil power plants

    International Nuclear Information System (INIS)

    Chen, K.L.; Deardorf, A.F.; Copeland, J.F.; Pflasterer, R.; Beckerdite, G.

    1993-01-01

    The cracking of headers (primary and secondary superheater outlet, and reheater outlet headers) at ligament locations is an important issue for fossil power plants. A model for crack initiation and growth has been developed, based on creep-fatigue damage mechanisms. This cracking model is included in a creep-fatigue monitoring system to assess header structural integrity under high temperature operating conditions. The following principal activities are required to achieve this goal: (1) the development of transfer functions and (2) the development of a ligament cracking model. The first task is to develop stress transfer functions to convert measured (monitored) temperatures, pressures and flow rates into stresses to be used to compute damage. Elastic three-dimensional finite element analyses were performed to study transient thermal stress behavior. The sustained pressure stress redistribution due to high temperature creep was studied by nonlinear finite element analyses. The preceding results are used to derive Green's functions and pressure stress gradient transfer functions for monitoring at the juncture of the tube with the header inner surface, and for crack growth at the ligaments. The virtual crack closure method is applied to derive a stress intensity factor K solution for a corner crack at the tube/header juncture. Similarly, using the reference stress method, the steady state creep crack growth parameter C * is derived for a header corner crack. The C * solution for a small corner crack in a header can be inserted directed into the available C t solution, along with K to provide the complete transient creep solution

  18. Creep-fatigue of High Temperature Materials for VHTR: Effect of Cyclic Loading and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Celine Cabet; L. Carroll; R. Wright; R. Madland

    2011-05-01

    Alloy 617 is the one of the leading candidate materials for Intermediate Heat eXchangers (IHX) of a Very High Temperature Reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Furthermore, the anticipated IHX operating temperature, up to 950°C, is in the range of creep so that creep-fatigue interaction, which can significantly increase the fatigue crack growth, may be one of the primary IHX damage modes. To address the needs for Alloy 617 codification and licensing, a significant creep-fatigue testing program is underway at Idaho National Laboratory. Strain controlled LCF tests including hold times up to 1800s at maximum tensile strain were conducted at total strain range of 0.3% and 0.6% in air at 950°C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The creep-fatigue tests resulted in failure times up to 1000 hrs. Fatigue resistance was significantly decreased when a hold time was added at peak stress and when the total strain was increased. The fracture mode also changed from transgranular to intergranular with introduction of a tensile hold. Changes in the microstructure were methodically characterized. A combined effect of temperature, cyclic and static loading and environment was evidenced in the targeted operating conditions of the IHX. This paper This paper reviews the data previously published by Carroll and co-workers in references 10 and 11 focusing on the role of inelastic strain accumulation and of oxidation in the initiation and propagation of surface fatigue cracks.

  19. Talc-bearing serpentinite and the creeping section of the San Andreas fault.

    Science.gov (United States)

    Moore, Diane E; Rymer, Michael J

    2007-08-16

    The section of the San Andreas fault located between Cholame Valley and San Juan Bautista in central California creeps at a rate as high as 28 mm yr(-1) (ref. 1), and it is also the segment that yields the best evidence for being a weak fault embedded in a strong crust. Serpentinized ultramafic rocks have been associated with creeping faults in central and northern California, and serpentinite is commonly invoked as the cause of the creep and the low strength of this section of the San Andreas fault. However, the frictional strengths of serpentine minerals are too high to satisfy the limitations on fault strength, and these minerals also have the potential for unstable slip under some conditions. Here we report the discovery of talc in cuttings of serpentinite collected from the probable active trace of the San Andreas fault that was intersected during drilling of the San Andreas Fault Observatory at Depth (SAFOD) main hole in 2005. We infer that the talc is forming as a result of the reaction of serpentine minerals with silica-saturated hydrothermal fluids that migrate up the fault zone, and the talc commonly occurs in sheared serpentinite. This discovery is significant, as the frictional strength of talc at elevated temperatures is sufficiently low to meet the constraints on the shear strength of the fault, and its inherently stable sliding behaviour is consistent with fault creep. Talc may therefore provide the connection between serpentinite and creep in the San Andreas fault, if shear at depth can become localized along a talc-rich principal-slip surface within serpentinite entrained in the fault zone.

  20. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    International Nuclear Information System (INIS)

    Asayama, Tai; Tachibana, Yukio

    2007-01-01

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  1. Biaxial creep behavior of ribbed GCFR cladding at 6500C in nominally pure helium (99.99%)

    International Nuclear Information System (INIS)

    Yaggee, F.L.; Purohit, A.; Grajek, W.J.; Peoppel, R.B.

    1977-11-01

    Biaxial creep-rupture tests were conducted on 12 prototypic GCFR fuel-cladding specimens at 650 0 C and a nominal hoop stress of 241.3 MPa. All test specimens were fabricated from 20% cold-worked Type 316 stainless steel tubes that were ribbed on the outer surface by mechanical grinding or electro-chemical etching. Test variables included specimen length and the presence or absence of weld-reinforcing end collars. Test results have indicated that, compared with data on smooth specimens, ribbing has no detrimental effect on creep-rupture lifetime. Specimens fabricated from tubes ribbed by electrochemical etching exhibit a significantly shorter creep-rupture lifetime and a higher secondary (steady-state) creep rate than specimens fabricated from tubes ribbed by mechanical grinding. Specimen length does not strongly affect creep-rupture lifetime, but the presence of an end collar does exhibit a significant influence on both the axial strain profile and the ratio of maximum diametral strain at the failure site to average diametral strain away from the failure site. The ribs do not inhibit the propagation of fissure or rupture failures

  2. Biaxial creep behavior of ribbed GCFR cladding at 650/sup 0/C in nominally pure helium (99. 99%)

    Energy Technology Data Exchange (ETDEWEB)

    Yaggee, F. L.; Purohit, A.; Grajek, W. J.; Peoppel, R. B.

    1977-11-01

    Biaxial creep-rupture tests were conducted on 12 prototypic GCFR fuel-cladding specimens at 650/sup 0/C and a nominal hoop stress of 241.3 MPa. All test specimens were fabricated from 20% cold-worked Type 316 stainless steel tubes that were ribbed on the outer surface by mechanical grinding or electro-chemical etching. Test variables included specimen length and the presence or absence of weld-reinforcing end collars. Test results have indicated that, compared with data on smooth specimens, ribbing has no detrimental effect on creep-rupture lifetime. Specimens fabricated from tubes ribbed by electrochemical etching exhibit a significantly shorter creep-rupture lifetime and a higher secondary (steady-state) creep rate than specimens fabricated from tubes ribbed by mechanical grinding. Specimen length does not strongly affect creep-rupture lifetime, but the presence of an end collar does exhibit a significant influence on both the axial strain profile and the ratio of maximum diametral strain at the failure site to average diametral strain away from the failure site. The ribs do not inhibit the propagation of fissure or rupture failures.

  3. Sand-mediated divergence between shallow reef communities on ...

    African Journals Online (AJOL)

    Sand-mediated divergence between shallow reef communities on horizontal and vertical substrata in the western Indian Ocean. SN Porter, GM Branch, KJ Sink. Abstract. Distinctions are rarely made between vertical and horizontal surfaces when assessing reef community composition, yet physical differences are expected ...

  4. Evaluation of the creep cavitation behavior in Grade 91 steels

    International Nuclear Information System (INIS)

    Siefert, J.A.; Parker, J.D.

    2016-01-01

    Even in properly processed Grade 91 steel, the long term performance and creep rupture strength of base metal is below that predicted from a simple extrapolation of short term data. One of the mechanisms responsible for this reduction in strength is the development of creep voids. Importantly, nucleation, growth and inter linkage of voids under long term creep conditions also results in a significant loss of creep ductility. Thus, elongations to rupture of around 5% in 100,000 h are now considered normal for creep tests on many tempered martensitic steels. Similarly, creep damage development in the heat affected zones of welds results in low ductility cracking at times below the minimum expected life of base metal. In all cases, the relatively brittle behavior is directly a consequence of creep void development. Indeed, the results of component root cause analysis have shown that crack development in Grade 91 steel in-service components is also a result of the formation of creep voids. The present paper examines background on the nucleation and development of creep voids in 9%Cr type martensitic steels, presents information regarding methods which allow proper characterization of the creep voids and discusses factors affecting creep fracture behavior in tempered martensitic steels. It is apparent that the maximum zone of cavitation observed in Grade 91 steel welds occurred in a region in the heat affected zone which is ∼750 μm in width. This region corresponds to the band where the peak temperature during welding is in the range of ∼1150–920 °C.The cavity density in this band was over about 700 voids/mm"2 at an estimated creep life fraction of ∼99%. - Highlights: • The present paper examines background on the nucleation and development of creep voids in 9%Cr type martensitic steels. • Information regarding methods which allow proper characterization of the creep voids is also presented. • Factors affecting creep fracture behavior in tempered

  5. Creep of trabecular bone from the human proximal tibia

    Energy Technology Data Exchange (ETDEWEB)

    Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Zin, Carolyn [Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Chang, Neil; Cory, Esther; Chen, Peter [Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); D’Lima, Darryl [Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA 92037 (United States); Sah, Robert L. [Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); McKittrick, Joanna [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2 h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. - Highlights: • Compressive creep tests of human trabecular bone across the tibia were performed. • The creep rate was found to be inversely proportional to the density of the samples. • μ-computed tomography before and after testing identified regions of deformation. • Bending of the trabeculae was found to be the main deformation mode.

  6. Reliability assessment of creep rupture life for Gr. 91 steel

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Park, Jae-Young; Kim, Seon-Jin; Jang, Jinsung

    2013-01-01

    Highlights: • Statistical analysis of a number of creep rupture data based on Z parameter. • Determination of the constant C in LM parameter and long-term creep life prediction. • Generation of random variables for Z s and Z cr by Monte-Carlo simulation in a SCRI model. • Examples for design application were reasonably drawn from the viewpoints of reliability. - Abstract: This paper presents reliability assessment of the long-term creep life of Gr. 91 steel, which is a major structural material for high temperature structural components of Generation-IV reactor systems. A number of creep rupture data for Gr. 91 steel were collected through literature surveys, and the long-term creep life was predicted by Larson–Miller parameter. A “Z parameter” method was used to describe the magnitude of the deviation of the creep rupture data to a master curve. A “Service Condition-creep Rupture property Interference (SCRI) model” based on the Z parameter was used to simultaneously consider the scattering of the creep rupture data of materials and the fluctuations of service conditions in reliability assessment. A statistical analysis of the creep rupture data was conducted by the Z parameter. To carry out the SCRI model, a number of random variables for Z s describing service conditions and Z cr describing the dispersion of the creep rupture data were generated using a Monte-Carlo simulation technique. As examples for application, the creep rupture life under a certain service conditions of Gr. 91 steel was reasonably drawn from the viewpoints of reliability

  7. Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B{sub 4}C)

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Ali [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Abdollahi, Alireza, E-mail: alirezaabdollahi1366@gmail.com [Faculty of Materials & Manufacturing Processes, Malek-e-Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Biukani, Hootan [Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-11-25

    In the current research, aluminum based hybrid composite reinforced with boron carbide (B{sub 4}C) and carbon nanotubes (CNTs) was produced by powder metallurgy method. creep behavior, wear resistance, surface roughness, and hardness of the samples were investigated. To prepare the samples, Al 5083 powder was milled with boron carbide particles and carbon nanotubes using planetary ball mill under argon atmosphere with ball-to-powder weight ratio of 10:1 for 5 h. Afterwards, the milled powders were formed by hot press process at 380{sup °}C and then were sintered at 585{sup °}C under argon atmosphere for 2 h. There was shown to be an increase in hardness values of composite with an increase in B{sub 4}C content. The micrograph of worn surfaces indicate a delamination mechanism due to the presence of CNTs and abrasion mechanism in composite containing 10 vol.%B{sub 4}C. Moreover, it was shown that increasing B{sub 4}C content increases the wear resistance by 3 times under a load of 20 N and 10 times under a load of 10 N compared to CNTs-reinforced composite. surface roughness of the composite containing 5 vol.%CNT has shown to be more than other samples. The results of creep test showed that adding carbon nanotubes increases creep rate of Al 5083 alloy; however, adding B{sub 4}C decreases its creep rate. - Highlights: • Al 5083/(CNTs + B{sub 4}C) hybrid composite was produced by powder metallurgy method. • Creep behavior, wear resistance, surface roughness, and Hardness of samples were investigated. • Addition of CNTs to Al 5083 matrix reduces alloy hardness, wear resistance and creep strength. • By addition of B{sub 4}C and composite hybridization, creep strength and wear resistance increased. • Surface roughness of Al-5 vol.%CNT has shown to be more than other samples.

  8. Creep and Creep Crack Growth Behaviors for SMAW Weldments of Gr. 91 Steel

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Park, Ji Yeon; Hong, Sung Deok; Kim, Yong Wan; Park, Jae Young

    2010-01-01

    High Cr ferritic resistance steels with tempered martensite microstructures posses enhanced creep strength at the elevated temperatures. Those steels as represented by a modified 9Cr-1Mo steel (ASME Grade 91, hereafter Gr.91) are regarded as main structural materials of sodium-cooled fast reactors (SFR) and reactor pressure vessel materials of very high temperature reactors (VHTR). The SFR and VHTR systems are designed during long-term duration reaching 60 years at elevated temperatures and often subjected to non-uniform stress and temperature distribution during service. These conditions may generate localized creep damage and propagate the cracks and ultimately may cause a fracture. A significant portion of its life is spent in crack propagation. Therefore, a creep crack growth rate (CCGR) due to creep damage should be assessed for both the base metal (BM) and welded metal (WM). Enough CCGR data for them should be provided for assessing their structural integrities. However, their CCGR data for the Gr. 91 steels is still insufficient. In this study, the CCGR for the BM and the WM of the Gr. 91 steel was comparatively investigated. A series of the CCG tests were conducted under different applied loads for the BM and the WM at 600 .deg. C. The CCGR was characterized in terms of the C parameter, and their CCG behavior were compared, respectively

  9. Contribution on creep polygonization study in crystals. Creep of single crystalline silver chloride and sodium chloride

    International Nuclear Information System (INIS)

    Pontikis, Vassilis

    1977-01-01

    Subgrain formation and their influence on plastic behavior of materials has been studied in the case of single crystals of silver chloride and sodium chloride crept at high temperature (T > 0.5 T melting ). It is shown that the creep rate ε is a function of the mean subgrain diameter d. For secondary creep ε ∝ d k with k = 2 for NaCl and AgCl. During secondary creep, the substructure changes continuously: sub-boundaries migrate and sub-grains rotate. We find that sub-boundaries migration accounts for 35 pc of the total strain and that subgrain misorientation θ increases linearly with strain ε: θ ∝ 0.14 ε. The stability of permanent creep seems related to the power that the substructure is able to dissipate. The possible subgrain formation mechanisms are examined. It is shown that subgrain formation is closely related to the geometrical conditions of deformation and to the heterogeneities of this later. (author) [fr

  10. Tests on creep and influence of creep on strength of concrete under multiaxial stresses

    International Nuclear Information System (INIS)

    Lanig, N.; Stoeckl, S.; Kupfer, H.

    1988-12-01

    Long-time tests of three-axially loaded, sealed cylindrical specimens d = 15 cm, h = 40 cm, were carried out. The 20-cm-cube strength of the concrete was app. 45 N/mm 2 . The creep stresses were chosen in the following ranges: 0,3 ≤ σ c /β c ≤ 2,1; 0 ≤ σ r /σ l ≤ 1,0. The creep coefficients obtained were clearly depending on the multi-axial stress conditions. The creep coefficients for a t = 2 years loading were reaching app. 1 for σ l /β c = 0,3 and app. 3 for σ l /β c = 2,1, when the test evaluation was based on the initial deformations meausred after 1 minute. For σ l /β c = 2,1 the creep coefficients obtained were about 4 times as large, proceeding form calculated elastic deformations. Further evaluations concerned the Young's modulus E, Poisson's ratio μ, the bulk modulus K and the shear modulus G. The preceding permanent load leads to an increase in the Young's modulus of the concrete in longitudinal direction of the specimen up to about 4 times the value of not preloaded comparative specimens. (orig.) [de

  11. Correlation of creep rate with microstructural changes during high temperature creep

    Science.gov (United States)

    Young, C. T.; Sommers, B. R.; Lytton, J. L.

    1977-01-01

    Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten.

  12. Boron effects on creep rupture strength of W containing advanced ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Mito, N.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    The creep strength in ferritic creep resistant steels is increased by boron addition. However, the strengthening mechanisms have not yet been studied. This study clarifies the strengthening mechanism of 9% chromium steels with 10{proportional_to}100ppm boron and 0.5{proportional_to}2.0mass% tungsten in the laboratory. The strengthening effect of simultaneous addition of boron and tungsten was analyzed by hardenability, room-temperature strength and creep tests at 650 C. Changes in the microstructure as a result of the addition of boron and tungsten were also examined by optical microscope and transmission electron microscope (TEM). In addition, Alpha-ray Track Etching (ATE) method was used to detect the boron distribution and analyze the mechanisms change in the mechanical properties. Boron addition did not affect room-temperature strength, however, simultaneous addition of boron and tungsten increased room-temperature and high-temperature strength. According to ATE analysis, boron exists at the grain boundary. Therefore, synergistic effects of boron and tungsten on the creep strength suggest the tungsten precipitates stabilization by boron at the grain boundary. (orig.)

  13. The transverse creep deformation and failure characteristics of SCS-6/Ti-6Al-4V metal matrix composites at 482 C

    International Nuclear Information System (INIS)

    Eggleston, M.R.; Ritter, A.M.

    1995-01-01

    While continuous fiber, unidirectional composites are primarily evaluated for their longitudinal properties, the behavior transverse to the fibers often limits their application. In this study, the tensile and creep behaviors of SCS-6/Ti-6Al-4V composites in the transverse direction at 482 C were evaluated. Creep tests were performed in air and argon environments over the stress range of 103 to 276 MPa. The composite was less creep resistant than the matrix when tested at stress values larger than 150 MPa. Below 150 MPa, the composite was ore creep resistant than the unreinforced matrix. Failure of the composite occurred by the ductile propagation of racks emanating from separated fiber interfaces. The environment in which the test was performed affected the creep behavior. At 103 MPa, the creep rate in argon was 4 times slower than the creep rate in air. The SCS-6 silicon-carbide fiber's graphite coating oxidized in the air environment and encouraged the separation of the fiber-matrix interface. However, at high stress levels, the difference in behavior between air- and argon-tested specimens was small. At these stresses, separation of the interface occurred during the initial loading of the composite and the subsequent degradation of the interface did not affect the creep behavior. Finally, the enrichment of the composite's surface by molybdenum during fabrication resulted in an alloyed surface layer that failed in a brittle fashion during specimen elongation. Although this embrittled layer did not appear to degrade the properties of the composite, the existence of a similar layer on a composite with a more brittle matrix might be very detrimental

  14. The extrapolation of creep rupture data by PD6605 - An independent case study

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65 Fisher Avenue, Rugby, Warks CV22 5HW (United Kingdom)

    2011-04-15

    The worked example presented in BSI document PD6605-1:1998, to illustrate the selection, validation and extrapolation of a creep rupture model using statistical analysis, was independently examined. Alternative rupture models were formulated and analysed by the same statistical methods, and were shown to represent the test data more accurately than the original model. Median rupture lives extrapolated from the original and alternative models were found to diverge widely under some conditions of practical interest. The tests prescribed in PD6605 and employed to validate the original model were applied to the better of the alternative models. But the tests were unable to discriminate between the two, demonstrating that these tests fail to ensure reliability in extrapolation. The difficulties of determining when a model is sufficiently reliable for use in extrapolation are discussed and some proposals are made.

  15. Creep and stress rupture behaviour of zircaloy-2 and Zr-2.5% Nb alloy tubes at 573 K

    International Nuclear Information System (INIS)

    Laha, K.; Bhanu Sankara Rao, K.; Chandravathi, K.S.; Mannan, S.L.

    1992-01-01

    Zirconium alloys are extensively used for coolant tubes of pressurised heavy water reactors. The choice of these materials is based on their good corrosion resistance in water, low capture cross section for thermal neutrons and good mechanical properties. In this paper the results of an investigation performed on the creep and rupture behaviour of indigenously produced zircaloy-2 and Zr-2.5% Nb alloy are presented. Samples for creep testing were cut longitudinally from finished pressure tubes. Creep rupture tests were carried out in air under constant load conditions at 300 C employing five stress levels in the range 300-360 MPa. Zr-2.5% Nb alloy displayed higher rupture lives at all stress levels compared to zircaloy-2. Steady state creep rate of Zr-2.5%Nb was lower than that zircaloy-2 at identical stress levels. In the stress range of the experiments, the dependence of the steady state creep rate (ε s ) on applied stress (σ) for both the alloys could be represented by a power law, ε s =A σ n The stress sensitivity (n) for Zr-2.5% Nb was lower than that of zircaloy-2. For both the alloys the time to creep rupture t r was found related to the steady state creep rate through the modified Monkman-Grant relation (ε s ) α . t r = constant. Similar value of α was obtained for both the materials. Zr-2.5%Nb exhibited higher ductility (% elongation to rupture) compared to zircaloy-2 at stress levels ≥ 320 MPa. At lower stresses significant difference in ductility was not noticed. Percentage reduction in area was lower in Zr-2.5%Nb at all stress levels indicating better resistance for necking. The time for onset of tertiary was longer for Zr-2.5% Nb alloy. The proportion of life spent by Zr-2.5% Nb in steady state creep regime was higher compared to that of zircaloy-2. Metallographic investigations on longitudinal sections in both the alloys showed large number of intragranular pores close to the fracture surface. A few number of cracks which are characteristic of

  16. On Hölder Projective Divergences

    KAUST Repository

    Nielsen, Frank

    2017-03-16

    We describe a framework to build distances by measuring the tightness of inequalities and introduce the notion of proper statistical divergences and improper pseudo-divergences. We then consider the Holder ordinary and reverse inequalities and present two novel classes of Holder divergences and pseudo-divergences that both encapsulate the special case of the Cauchy-Schwarz divergence. We report closed-form formulas for those statistical dissimilarities when considering distributions belonging to the same exponential family provided that the natural parameter space is a cone (e.g., multivariate Gaussians) or affine (e.g., categorical distributions). Those new classes of Holder distances are invariant to rescaling and thus do not require distributions to be normalized. Finally, we show how to compute statistical Holder centroids with respect to those divergences and carry out center-based clustering toy experiments on a set of Gaussian distributions which demonstrate empirically that symmetrized Holder divergences outperform the symmetric Cauchy-Schwarz divergence.

  17. On Hölder Projective Divergences

    KAUST Repository

    Nielsen, Frank; Sun, Ke; Marchand-Maillet, Stephane

    2017-01-01

    We describe a framework to build distances by measuring the tightness of inequalities and introduce the notion of proper statistical divergences and improper pseudo-divergences. We then consider the Holder ordinary and reverse inequalities and present two novel classes of Holder divergences and pseudo-divergences that both encapsulate the special case of the Cauchy-Schwarz divergence. We report closed-form formulas for those statistical dissimilarities when considering distributions belonging to the same exponential family provided that the natural parameter space is a cone (e.g., multivariate Gaussians) or affine (e.g., categorical distributions). Those new classes of Holder distances are invariant to rescaling and thus do not require distributions to be normalized. Finally, we show how to compute statistical Holder centroids with respect to those divergences and carry out center-based clustering toy experiments on a set of Gaussian distributions which demonstrate empirically that symmetrized Holder divergences outperform the symmetric Cauchy-Schwarz divergence.

  18. Gradual failure of structures in creep conditions

    International Nuclear Information System (INIS)

    Chrzanowski, M.; Latus, P.

    1993-01-01

    The most characteristic feature of progressive material deterioration in creep conditions Is its time-dependence. In structures this process comprises of three stages: 1. Incubation of a macroscopic defect at the time of First Crack Appearance (FCA); 2. Propagation of a macro-crack throughout the structural member at the Time of Member Failure (TMF); 3. Propagation of failure of consecutive structure members, leading to the Final Structure Collapse (FSC). The importance of a full analysis of a structure which comprises all above stages has been demonstrated previously. Corresponding times are denoted as t 1 , t 2 , t 3 respectively. Depending on many factors, like material properties, loading and supports, the ratio of t 1 /t 2 and t 2 /t 3 may vary significantly, and thus exhibiting a safety margin connected with damage propagation throughout the structure. However, the full analysis becomes very sophisticated since creep and damage evolutions law are often nonlinear ones, and analysis should include changing geometry of a structure. It was was found that the failure propagation in analysed structures appeared to be very sensitive to structures geometry and loading. The time ratio t 1 /t 3 depends on redundancy k (higher the redundancy lower the ratio), but structures collapse by local mechanisms. These mechanisms can be different depending on k. More decisive than redundancy is an overall configuration of loads and structure geometry because of different mechanism of final failure. So far, no general conclusion can be drawn, but the whole analysis resembles that of limit analysis for structures made of ideally plastic or elastic-plastic materials. Nevertheless it Is evident that full analysis of structures in creep conditions can significantly enhance the structures life-time expectation

  19. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials

    Science.gov (United States)

    Hangx, Suzanne; Spiers, Christopher

    2014-05-01

    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  20. Study of irradiation creep of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    Thin-wall tubing was produced from the 832665 (500 kg) heat of V-4 wt.% Cr-4 wt.% Ti to study its irradiation creep behavior. The specimens, in the form of pressurized capsules, were irradiated in Advanced Test Reactor and High Flux Isotope Reactor experiments (ATR-A1 and HFIR RB-12J, respectively). The ATR-A1 irradiation has been completed and specimens from it will soon be available for postirradiation examination. The RB-12J irradiation is not yet complete.

  1. Revisiting Creeping Competences in the EU

    DEFF Research Database (Denmark)

    Citi, Manuele

    2014-01-01

    case where secondary legislation was employed to extend a formal treaty-based competence (civilian research and technology policy) to an area that, for historical and strategic reasons, has always been a policy monopoly of national governments: research and technology development policy for security...... and defence. Through the analysis of a large pool of documentary data, I elaborate a set of linked hypotheses about the empirical dynamics of creeping competences, and show how the theory of incomplete contracting is best suited to explain this phenomenon....

  2. Creep-fatigue damage under multiaxial conditions

    International Nuclear Information System (INIS)

    Lobitz, D.W.; Nickell, R.E.

    1977-02-01

    ASME Code rules for design against creep-fatigue damage for Class 1 nuclear components operating at elevated temperatures are currently being studied by ASME working groups and task forces with a view toward major modification. In addition, the design rules being developed for Class 2 and Class 3 components would be affected by any major modifications of Class 1 Rules. The report represents an attempt to evaluate the differences between two competing procedures--linear damage summation and strainrange partitioning--for multiaxial stress conditions. A modified version of strainrange partitioning is also developed to alleviate some limitations on nonproportional loading

  3. Jojoba could stop the desert creep

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-25

    The Sahara desert is estimated to be expanding at a rate of 5km a year. The Sudanese government is experimenting with jojoba in six different regions as the bush has the potential to stop this ''desert creep''. The plant, a native to Mexico, is long known for its resistance to drought and for the versatile liquid wax that can be extracted from its seeds. It is estimated that one hectare of mature plants could produce 3000 kg of oil, currently selling at $50 per litre, and so earn valuable foreign currency.

  4. Tracing Thermal Creep Through Granular Media

    Science.gov (United States)

    Steinpilz, Tobias; Teiser, Jens; Koester, Marc; Schywek, Mathias; Wurm, Gerhard

    2017-08-01

    A temperature gradient within a granular medium at low ambient pressure drives a gas flow through the medium by thermal creep. We measured the resulting air flow for a sample of glass beads with particle diameters between 290 μ m and 420 μ m for random close packing. Ambient pressure was varied between 1 Pa and 1000 Pa. The gas flow was quantified by means of tracer particles during parabolic flights. The flow varies systematically with pressure between 0.2 cm/s and 6 cm/s. The measured flow velocities are in quantitative agreement to model calculations that treat the granular medium as a collection of linear capillaries.

  5. Changes in creep of polymethylmetacrylate after irradiation

    International Nuclear Information System (INIS)

    Peschanskaya, N.N.; Smolyanskij, A.S.; Suvorova, V.Yu.

    1992-01-01

    A study was made on PMMA, irradiated by different doses of 60 Co γ-radiation in vacuum under creep during compression. It is shown that occurence of tendency to failure at +20 degC is observed at doses of D > 100 kGy (> 10 Mrad), whereas sufficient decrease of deformation before failure takes place at D > 350 kGy. Peculiarities of behaviour of irradiated and nonirradiated PMMA under compression and tension were correlated. It is noted that critical irradiation doses may differ sufficiently for different loading conditions, deformation and longevity characteristics

  6. Contributions to robust methods of creep analysis

    International Nuclear Information System (INIS)

    Penny, B.K.

    1991-01-01

    Robust methods for the predictions of deformations and lifetimes of components operating in the creep range are presented. The ingredients used for this are well-tried numerical techniques combined with the concepts of continuum damage and so-called reference stresses. The methods described are derived in order to obtain the maximum benefit during the early stages of design where broad assessments of the influences of material choice, loadings and geometry need to be made quickly and with economical use of computers. It is also intended that the same methods will be of value during operation if estimates of damage or if exercises in life extension or inspection timing are required. (orig.)

  7. Genetic Divergence in Sugarcane Genotypes

    OpenAIRE

    Tahir, Mohammad; Rahman, Hidayatur; Gul, Rahmani; Ali, Amjad; Khalid, Muhammad

    2012-01-01

    To assess genetic divergence of sugarcane germplasm, an experiment comprising 25 sugarcane genotypes was conducted at Sugar Crops Research Institute (SCRI), Mardan, Khyber Pakhtunkhwa, Pakistan, in quadruple lattice design during 2008-09. Among the 14 parameters evaluated, majority exhibited significant differences while some showed nonsignificant mean squares. The initial correlation matrix revealed medium to high correlations. Principal Component Analysis (PCA) showed that there were two pr...

  8. Computer recognition of divergences in Feynman graphs

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, J

    1973-05-01

    The program described recognizes whether or not a graph is divergent. It determines the kind of the divergences found: vacuum polarizations, electron self energies and vertices. it does not consider infrared divergences. The programming language used is REDUCE. A LISP version is also available. The nature of the divergences and their counter terms was extensively used to write down this program, therefore it is limited to the case of quantum electrodynamics. (auth)

  9. Pinning and creep in high-Tc superconductors

    International Nuclear Information System (INIS)

    Ovchinnikov, Yu.N.; Ivlev, B.I.

    1992-01-01

    The angular and magnetic field dependence of a critical current parallel to the layers in the layered superconductors is studied. The critical current value is found for a superconductor with strong pinning centers. Quantum flux creep in sufficiently perfect layered high-Tc superconductors is discussed. The cross-over temperature between activated and quantum creep is found. (orig.)

  10. Study of the creep of lime-stabilised zirconia

    International Nuclear Information System (INIS)

    Saint-Jacques, Robert G.

    1971-09-01

    This research thesis reports the study of creep of stabilised zirconia containing between 13 and 20 per cent of lime, at temperatures between 1.200 and 1.400 C, and under compression stresses between 500 and 4.000 pounds by square inch. Specimens are polycrystalline with an average grain diameter between 7 and 29 microns. The author notably shows that the creep rate of lime-stabilised zirconia is directly proportional to the applied stress, and that the creep apparent activation energy is close to activation energy of volume self-diffusion of calcium and zirconium in lime-stabilised zirconia. Results of creep tests show that, in the studied conditions, the creep rate is directly proportional to the inverse of the grain average diameter, and this is in compliance with the Gifkins and Snowden theory of creep by sliding at grain boundaries. The author also shows that the creep rate of the lime stabilised zirconia varies with lime content, and reaches a maximum when zirconia contains about 15 per cent of lime. Lower creep rates obtained for higher and lower lime contents are explained [fr

  11. Complex finite element sensitivity method for creep analysis

    International Nuclear Information System (INIS)

    Gomez-Farias, Armando; Montoya, Arturo; Millwater, Harry

    2015-01-01

    The complex finite element method (ZFEM) has been extended to perform sensitivity analysis for mechanical and structural systems undergoing creep deformation. ZFEM uses a complex finite element formulation to provide shape, material, and loading derivatives of the system response, providing an insight into the essential factors which control the behavior of the system as a function of time. A complex variable-based quadrilateral user element (UEL) subroutine implementing the power law creep constitutive formulation was incorporated within the Abaqus commercial finite element software. The results of the complex finite element computations were verified by comparing them to the reference solution for the steady-state creep problem of a thick-walled cylinder in the power law creep range. A practical application of the ZFEM implementation to creep deformation analysis is the calculation of the skeletal point of a notched bar test from a single ZFEM run. In contrast, the standard finite element procedure requires multiple runs. The value of the skeletal point is that it identifies the location where the stress state is accurate, regardless of the certainty of the creep material properties. - Highlights: • A novel finite element sensitivity method (ZFEM) for creep was introduced. • ZFEM has the capability to calculate accurate partial derivatives. • ZFEM can be used for identification of the skeletal point of creep structures. • ZFEM can be easily implemented in a commercial software, e.g. Abaqus. • ZFEM results were shown to be in excellent agreement with analytical solutions

  12. Creep mechanisms and constitutive relations in pure metals

    International Nuclear Information System (INIS)

    Nix, W.D.

    1979-01-01

    The mechanisms of creep of pure metals is briefly reviewed and divided into two parts: steady state flow mechanisms, and non-steady state flow mechanisms and constitutive relations. Creep by diffusional flow is now reasonably well understood, with theory and experiment in good agreement. The closely related phenomenon of Harper--Dorn creep can also be understood in terms of diffusion between dislocations. Power law creep involves the climb of edge disloctions controlled by lattice self diffusion. Theoretical treatments of this process invariably give a power law exponent of 3. This natural creep law is compared with the data for FCC and BCC metals. It is suggested that diffusion controlled climb is the controlling process in BCC metals at very high temperatures. Stacking fault energy effects may preclude the possibility that creep is controlled entirely by lattice self diffusion in some FCC metals. The subject of power law breakdown is presented as a natural consequence of the transition to low temperature flow phenomena. The role of core diffusion in this transition is briefly discussed. The mechanisms are presented by which pure metals creep at elevated temperatures. While most of this review deals with the mechanisms of steady state flow, some discussion is devoted to creep flow under non-steady state conditions. This topic is discussed in connection with the development of constitutive equations for describing plastic flow in metals

  13. Correct Interpretation of Creep Rates: A Case Study of Cu

    Czech Academy of Sciences Publication Activity Database

    Blum, W.; Dvořák, Jiří; Král, Petr; Eisenlohr, P.; Sklenička, V.

    2015-01-01

    Roč. 31, č. 11 (2015), s. 1065-1068 ISSN 1005-0302 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Cu * Creep * Minimum creep rate * Activation energy * Stress exponent Subject RIV: JJ - Other Materials Impact factor: 2.267, year: 2015

  14. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    Science.gov (United States)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  15. Analysis of stress and deformation in non-stationary creep

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Taroco, E.; Guerreiro, J.N.C.

    1980-12-01

    A variational method and its algorithm are presented; they permit the analysis of stress and deformation in non-stationary creep. This algorithm is applied to an infinite cylinder submitted to an internal pressure. The solution obtained is compared with the solution of non-stationary creep problems [pt

  16. Creep strength and ductility of 9 to 12% chromium steels

    DEFF Research Database (Denmark)

    Hald, John

    2004-01-01

    The present paper focuses in on long-term creep properties of parent material of the new 9-12%Cr creep resistant steels, P91, E911 and P92 developed for use in advanced ultrasupercritical power plants. These steels have been at the center of activities in the ECCC Working Group 3A (WG3A) "Ferriti...

  17. Accelerated Creep Testing of High Strength Aramid Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  18. Irradiation creep performance of graphite relevant for pebble bed HTRs

    International Nuclear Information System (INIS)

    Kleist, G.; O'Connor, M.F.

    1980-01-01

    Irradiation - induced creep in the core reflector component graphite of high temperature reactors is of primary importance to the core designer since it provides a mechanism for the relief of internal stresses arising from differential Wigner shrinkage and thermal expansion. The experimental determination of the extent of this creep for conditions relevant to the reactor is thus imperative

  19. New results in the limit analysis by secondary modified creep

    International Nuclear Information System (INIS)

    Feijoo, R.A.; Taroco, E.; Zouain, N.

    1982-03-01

    Two methods for computing upper and lower bounds of colapse loads are proposed by means of generalized creep constitutive relations. The actual material behaviour is rigid-perfectly plastic and the techniques here analized consist in the substitution of this material by a fictitious one which presents steady state creep response. Some analytical examples are also presented. (Author) [pt

  20. Microstructure Evolution During Creep of Cold Worked Austenitic Stainless Steel

    Science.gov (United States)

    Krishan Yadav, Hari; Ballal, A. R.; Thawre, M. M.; Vijayanand, V. D.

    2018-04-01

    The 14Cr–15Ni austenitic stainless steel (SS) with additions of Ti, Si, and P has been developed for their superior creep strength and better resistance to void swelling during service as nuclear fuel clad and wrapper material. Cold working induces defects such as dislocations that interact with point defects generated by neutron irradiation and facilitates recombination to make the material more resistant to void swelling. In present investigation, creep properties of the SS in mill annealed condition (CW0) and 40 % cold worked (CW4) condition were studied. D9I stainless steel was solution treated at 1333 K for 30 minutes followed by cold rolling. Uniaxial creep tests were performed at 973 K for various stress levels ranging from 175-225 MPa. CW4 samples exhibited better creep resistance as compared to CW0 samples. During creep exposure, cold worked material exhibited phenomena of recovery and recrystallization wherein new strain free grains were observed with lesser dislocation network. In contrast CW0 samples showed no signs of recovery and recrystallization after creep exposure. Partial recrystallization on creep exposure led to higher drop in hardness in cold worked sample as compared to that in mill annealed sample. Accelerated precipitation of carbides at the grain boundaries was observed during creep exposure and this phenomenon was more pronounced in cold worked sample.

  1. Irradiation creep experiments on fusion reactor candidate structural materials

    International Nuclear Information System (INIS)

    Hausen, H.; Cundy, M.R.; Schuele, W.

    1991-01-01

    Irradiation creep rates were determined for annealed and cold-worked AMCR- and 316-type steel alloys in the high flux reactor at Petten, for various irradiation temperatures, stresses and for neutron doses up to 4 dpa. Primary creep elongations were found in all annealed materials. A negative creep elongation was found in cold-worked materials for stresses equal to or below about 100 MPa. An increase of the negative creep elongation is found for decreasing irradiation temperatures and decreasing applied stresses. The stress exponent of the irradiation creep rate in annealed and cold-worked AMCR alloys is n = 1.85 and n = 1.1, respectively. The creep rates of cold-worked AMCR alloys are almost temperature independent over the range investigated (573-693 K). The results obtained in the HFR at Petten are compared with those obtained in ORR and EBR II. The smallest creep rates are found for cold-worked materials of AMCR- and US-PCA-type at Petten which are about a factor two smaller than the creep rates obtained of US-316 at Petten or for US-PCA at ORR or for 316L at EBR II. The scatter band factor for US-PCA, 316L, US-316 irradiated in ORR and EBR II is about 1.5 after a temperature and damage rate normalization

  2. The role of cobalt on the creep of Waspaloy

    Science.gov (United States)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  3. Theory of void swelling, irradiation creep and growth

    International Nuclear Information System (INIS)

    Wood, M.H.; Bullough, R.; Hayns, M.R.

    Recent progress in our understanding of the fundamental mechanisms involved in swelling, creep and growth of materials subjected to irradiation is reviewed. The topics discussed are: the sink types and their strengths in the lossy continuum; swelling and void distribution analysis, including recent work on void nucleation; and, irradiation creep and growth of zirconium and zircaloy are taken as an example

  4. Physical hydrodynamic propulsion model study on creeping viscous

    Indian Academy of Sciences (India)

    The present investigation focusses on a mathematical study of creeping viscous flow induced by metachronal wave propagation in a horizontal ciliated tube containing porous media. Creeping flow limitations are imposed, i.e. inertial forces are small compared to viscous forces and therefore a very low Reynolds number (Re ...

  5. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.

    Science.gov (United States)

    Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S

    2013-12-01

    Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns.

  6. Power series like relation of power law and coupled creep ...

    African Journals Online (AJOL)

    When a solid deforms at high temperature its microstructure may in some sense be altered- holes and cracks may nucleate and grow inside the solid by various mechanism controlled by diffusion and by power law creep or by a combination of these mechanisms. Considering a coupled diffusion power law creep mechanism ...

  7. Cavitation contributes substantially to tensile creep in silicon nitride

    International Nuclear Information System (INIS)

    Luecke, W.E.; Wiederhorn, S.M.; Hockey, B.J.; Krause, R.F. Jr.; Long, G.G.

    1995-01-01

    During tensile creep of a hot isostatically pressed (HIPed) silicon nitride, the volume fraction of cavities increases linearly with strain; these cavities produce nearly all of the measured strain. In contrast, compressive creep in the same stress and temperature range produces very little cavitation. A stress exponent that increases with stress (var-epsilon ∝ σ n , 2 < n < 7) characterizes the tensile creep response, while the compressive creep response exhibits a stress dependence of unity. Furthermore, under the same stress and temperature, the material creeps nearly 100 times faster in tension than in compression. Transmission electron microscopy (TEM) indicates that the cavities formed during tensile creep occur in pockets of residual crystalline silicate phase located at silicon nitride multigrain junctions. Small-angle X-ray scattering (SAXS) from crept material quantifies the size distribution of cavities observed in TEM and demonstrates that cavity addition, rather than cavity growth, dominates the cavitation process. These observations are in accord with a model for creep based on the deformation of granular materials in which the microstructure must dilate for individual grains t slide past one another. During tensile creep the silicon nitride grains remain rigid; cavitation in the multigrain junctions allows the silicate to flow from cavities to surrounding silicate pockets, allowing the dilation of the microstructure and deformation of the material. Silicon nitride grain boundary sliding accommodates this expansion and leads to extension of the specimen. In compression, where cavitation is suppressed, deformation occurs by solution-reprecipitation of silicon nitride

  8. Some numerical approaches of creep, thermal shock, damage

    Indian Academy of Sciences (India)

    Creep can be satisfactorily described by a kinematic hardening, and exhibits different creep rates in tension and compression. Concerning the thermal shock of materials, the numerical approach depends whether or not the material is able to develop a sprayed out damage, leading to micro- or macro-cracking. Finally ...

  9. Drag reduction and improvement of material transport in creeping films

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M.; Rund, A.; Aksel, N. [University of Bayreuth, Department of Applied Mechanics and Fluid Dynamics, Bayreuth (Germany)

    2006-01-01

    It is widely accepted that for bodies in turbulent flows a reduction of skin friction can be reached if the surface of the body is provided with small ridges aligned in the local flow direction. This surprising and counterintuitive phenomenon is called the shark-skin effect, motivated from the dermal surface morphology of sharks. In the present article we examine the possibility of resistance reduction due to a rippled surface topography in Stokes flow. We especially analyse the influence of wall riblets perpendicular to the flow direction on the mean transport velocity in gravity-driven creeping film flows following the idea that eddies generated in the valleys of the riblets act like fluid roller bearings and hence may reduce drag. Using a theoretical treatment of the Stokes equations with complex function theory, parameter studies with varying flow rate, bottom amplitude and bottom shape are presented. For the given bottom shapes the maximum enhancement of transport velocity is found by optimising the film thickness. (orig.)

  10. Genetic divergence of tomato subsamples

    Directory of Open Access Journals (Sweden)

    André Pugnal Mattedi

    2014-02-01

    Full Text Available Understanding the genetic variability of a species is crucial for the progress of a genetic breeding program and requires characterization and evaluation of germplasm. This study aimed to characterize and evaluate 101 tomato subsamples of the Salad group (fresh market and two commercial controls, one of the Salad group (cv. Fanny and another of the Santa Cruz group (cv. Santa Clara. Four experiments were conducted in a randomized block design with three replications and five plants per plot. The joint analysis of variance was performed and characteristics with significant complex interaction between control and experiment were excluded. Subsequently, the multicollinearity diagnostic test was carried out and characteristics that contributed to severe multicollinearity were excluded. The relative importance of each characteristics for genetic divergence was calculated by the Singh's method (Singh, 1981, and the less important ones were excluded according to Garcia (1998. Results showed large genetic divergence among the subsamples for morphological, agronomic and organoleptic characteristics, indicating potential for genetic improvement. The characteristics total soluble solids, mean number of good fruits per plant, endocarp thickness, mean mass of marketable fruit per plant, total acidity, mean number of unmarketable fruit per plant, internode diameter, internode length, main stem thickness and leaf width contributed little to the genetic divergence between the subsamples and may be excluded in future studies.

  11. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    Science.gov (United States)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  12. Creep curve formularization at 950degC for Hastelloy XR

    International Nuclear Information System (INIS)

    Kaji, Yoshiyuki; Muto, Yasushi

    1991-03-01

    Creep tests under constant stress were conducted on a nickel-base heat-resistant alloy, Hastelloy XR, in air at 950degC. Minimum creep strain rate, time to the onset of tertiary creep and time to rupture were obtained as a function of applied stress. Then, a creep constitutive equation was made based on the Garofalo formula for primary and secondary creep and based on the Kachanov-Rabotnov formula for tertiary creep, which could represent fairly well the experimental creep deformation curves under the constant stress conditions. The creep deformation under the constant load condition corresponding to the stress increment was analysed using the creep constitutive equation and strain hardening law. Then the calculated creep strain showed slightly higher value than the experimental creep strain, and the calculated life was shorter than the experimental one. (author)

  13. Irradiation creep by climb-enables glide of dislocations resulting from preferred absorption of point defects

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, L K [Oak Ridge National Lab., TN (USA)

    1979-04-01

    A mechanism of irradiation creep arising from the climb-enabled glide of dislocations due to stress-induced preferred absorption of radiation-produced point defects is proposed. This creep component is here termed preferred absorption glide, PAG. PAG-creep operates in addition to the previously studied components of creep from climb by stress-induced preferred absorption, (SI) PA-creep, and the climb-enabled glide due to excess absorption of interstitials on dislocations during swelling, I-creep. A formulation of the various climb and climb-enabled glide processes which includes earlier results is presented. PAG-creep is comparable in magnitude to PA-creep in the parameter range of applications. While the PSA-creep rate and the I-creep rate are linear in stress, the PAG-creep rate is quadratic in stress and thus dominates at high stresses.

  14. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    International Nuclear Information System (INIS)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-01-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150–230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε-dot min ) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test

  15. Large scale multi-zone creep finite element modelling of a main steam line branch intersection

    International Nuclear Information System (INIS)

    Payten, Warwick

    2006-01-01

    A number of papers detail the non-linear creep finite element analysis of branch pieces. Predominately these models have incorporated only a single material zone representing the parent material. Multi-zone models incorporating weld material and heat affected zones have primarily been two-dimensional analyses, in part due to the large number of elements required to adequately represent all of the zones. This paper describes a non-linear creep analysis of a main steam line branch intersection using creep properties to represent the parent metal, weld metal, and heat affected zone (HAZ), the stress redistribution over 100,000 h is examined. The results show that the redistribution leads to a complex stress state, particularly at the heat affected zone. Although, there is damage on the external surface of the branch piece as expected, the results indicate that the damage would be more widespread through extensive sections of the heat affected zone. This would appear to indicate that the time between damage indications on the surface using techniques such as replication and full thickness damage may be more limited then previously expected

  16. Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels

    Science.gov (United States)

    Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.

    2018-05-01

    Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.

  17. Spray-coated carbon nanotube carpets for creeping reduction of conducting polymer based artificial muscles

    Science.gov (United States)

    Simaite, Aiva; Delagarde, Aude; Tondu, Bertrand; Souères, Philippe; Flahaut, Emmanuel; Bergaud, Christian

    2017-01-01

    During cyclic actuation, conducting polymer based artificial muscles are often creeping from the initial movement range. One of the likely reasons of such behaviour is unbalanced charging during conducting polymer oxidation and reduction. To improve the actuation reversibility and subsequently the long time performance of ionic actuators, we suggest using spray-coated carbon nanotube (CNT) carpets on the surface of the conducting polymer electrodes. We show that carbon nanotubes facilitate a conducting polymer redox reaction and improve its reversibility. Consequently, in the long term, charge accumulation in the polymer film is avoided leading to a significantly improved lifetime performance during cycling actuation. To our knowledge, it is the first time a simple solution to an actuator creeping problem has been suggested.

  18. Creep deformation and rupture behavior of type 304/308 stainless steel structural weldments

    International Nuclear Information System (INIS)

    McAfee, W.J.; Richardson, M.; Sartory, W.K.

    1977-01-01

    The creep deformation and rupture of type 304/308 stainless steel structural weldments at 593 0 C (1100 0 F) was experimentally investigated to study the comparative behavior of the base metal and weld metal constituents. The tests were conducted in support of ORNL's program to develop high-temperature structural design methods applicable to liquid-metal fast breeder reactor (LMFBR) system components that operate in the creep range. The specimens used were thin-walled, right circular cylinders capped with either flat or hemispherical heads and tested under internal gas pressure. Circumferential welds were located in different regions of the cylinder or head and, with one exception, were geometrically duplicated by all base metal regions in companion specimens. Results are presented on the comparative deformation and rupture behavior of selected points in the base metal and weldment regions of the different specimens and on the overall surface strains for selected specimens

  19. Experimental research on creep characteristics of Nansha soft soil.

    Science.gov (United States)

    Luo, Qingzi; Chen, Xiaoping

    2014-01-01

    A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility (Ca/Cc) is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.

  20. Irradiation creep induced anisotropy in a/2 dislocation populations

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1984-05-01

    The contribution of anisotropy in Burgers vector distribution to irradiation creep behavior has been largely ignored in irradiation creep models. However, findings on Frank loops suggest that it may be very important. Procedures are defined to identify the orientations of a/2 Burgers vectors for dislocations in face-centered cubic crystals. By means of these procedures the anisotropy in Burgers vector populations was determined for three Nimonic PE16 pressurized tube specimens irradiated under stress. Considerable anisotropy in Burgers vector population develops during irradiation creep. It is inferred that dislocation motion during irradiation creep is restricted primarily to a climb of a/2 dislocations on 100 planes. Effect of these results on irradiation creep modeling and deformation induced irradiation growth is considered