The plane elasticity problem for a crack near the curved surface
Lebedeva, M. V.
2018-05-01
The unconventional approach to the plane elasticity problem for a crack near the curved surface is presented. The solution of the problem is considered in the form of the sum of solutions of two auxiliary problems. The first one describes the plane with a crack, whose surfaces are loaded by some unknown self-balanced force p(x). The second problem is dealing with the semi-infinite region with the boundary conditions equal to the difference of boundary conditions of the problem to be sought and the solution of the first problem on the region border. The unknown function p(x) is supposed to be approximated with the sufficient level of accuracy by N order polynomial with complex coefficients. This paper is aimed to determine the critical loads causing the spontaneous growth of cracks. The angles of propagation of the stationary cracks located in the region with a ledge or a cut are found. The influence of length of a crack on the bearing ability of an elastic body with the curved surface is investigated. The effect of a form of the concentrator and orientation of a crack to the fracture load subject to the different combinations of forces acting both on a surface of a crack and at infinity is analysed. The results of this research can be applied for calculation of the durability of thin-walled vessels of pressure, e.g., chemical reactors, in order to ensure their ecological safety.
Relevance of plastic limit loads to reference stress approach for surface cracked cylinder problems
International Nuclear Information System (INIS)
Kim, Yun-Jae; Shim, Do-Jun
2005-01-01
To investigate the relevance of the definition of the reference stress to estimate J and C* for surface crack problems, this paper compares finite element (FE) J and C* results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface cracks and finite internal axial cracks are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (i) a local limit load (ii), a global limit load, (iii) a global limit load determined from the FE limit analysis, and (iv) the optimised reference load. It is found that the reference stress based on a local limit load gives overall excessively conservative estimates of J and C*. Use of a global limit load clearly reduces the conservatism, compared to that of a local limit load, although it can sometimes provide non-conservative estimates of J and C*. The use of the FE global limit load gives overall non-conservative estimates of J and C*. The reference stress based on the optimised reference load gives overall accurate estimates of J and C*, compared to other definitions of the reference stress. Based on the present findings, general guidance on the choice of the reference stress for surface crack problems is given
International Nuclear Information System (INIS)
Yagawa, Genki; Yoshimura, Shinobu; Kanto, Yasuhiro
1998-01-01
This paper describes a probabilistic fracture mechanics (PFM) analysis of aged nuclear reactor pressure vessel (RPV) material. New interpolation formulas are first derived for both embedded elliptical surface cracks and semi-elliptical surface cracks. To investigate effects of transition from embedded crack to surface crack in PFM analyses, one of PFM round-robin problems set by JSME-RC111 committee, i.e. 'aged RPV under normal and upset operating conditions' is solved, employing the interpolation formulas. (author)
Plasticity around an Axial Surface Crack in a Cylindrical Shell
DEFF Research Database (Denmark)
Krenk, Steen
1979-01-01
of the yield zone. The model is used to analyse published test data on surface cracked pressurised pipes. The analysis consists in COD evaluation and estimate of failure as a consequence of plastic instability. A method is proposed which deals with the problem by simultaneous analysis of a number of cracks......This paper presents a plasticity model for deep axial surface cracks in pressurised pipes. The model is used in an investigation of the relative merits of fracture criteria based on COD and plastic instability. Recent investigations have shown that the inconsistency of the singular bending stress...... on the bending stresses is considerable. In the case of surface cracks moments are induced due to the eccentricity of the crack and transverse shear effects should therefore be included. A plasticity model for a rectangular axial surface crack is developed. Like a previous surface crack model by Erdogen...
Directory of Open Access Journals (Sweden)
In-Seok Yoon
2012-01-01
Full Text Available For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.
Transient thermal stress problem for a circumferentially cracked hollow cylinder
Nied, H. F.; Erdogan, F.
1982-01-01
The transient thermal stress problem for a hollow elasticity cylinder containing an internal circumferential edge crack is considered. It is assumed that the problem is axisymmetric with regard to the crack geometry and the loading, and that the inertia effects are negligible. The problem is solved for a cylinder which is suddenly cooled from inside. First the transient temperature and stress distributions in an uncracked cylinder are calculated. By using the equal and opposite of this thermal stress as the crack surface traction in the isothermal cylinder the crack problem is then solved and the stress intensity factor is calculated. The numerical results are obtained as a function of the Fourier number tD/b(2) representing the time for various inner-to-outer radius ratios and relative crack depths, where D and b are respectively the coefficient of diffusivity and the outer radius of the cylinder.
International Nuclear Information System (INIS)
Yagawa, G.; Yoshimura, S.
1999-01-01
This paper describes a probabilistic fracture mechanics (PFM) analysis of aged nuclear reactor pressure vessel (RPV) material. New interpolation formulas of three-dimensional stress intensity factors are presented for both embedded elliptical surface cracks and semi-elliptical surface cracks. To investigate effects of transition from embedded crack to surface crack in PFM analyses, one of the PFM round-robin problems set by JSME-RC111 committee (i.e. aged RPV under normal and upset operating conditions) is solved, employing the interpolation formulas. (orig.)
Fracture Mechanics Analyses for Interface Crack Problems - A Review
Krueger, Ronald; Shivakumar, Kunigal; Raju, Ivatury S.
2013-01-01
Recent developments in fracture mechanics analyses of the interfacial crack problem are reviewed. The intent of the review is to renew the awareness of the oscillatory singularity at the crack tip of a bimaterial interface and the problems that occur when calculating mode mixity using numerical methods such as the finite element method in conjunction with the virtual crack closure technique. Established approaches to overcome the nonconvergence issue of the individual mode strain energy release rates are reviewed. In the recent literature many attempts to overcome the nonconvergence issue have been developed. Among the many approaches found only a few methods hold the promise of providing practical solutions. These are the resin interlayer method, the method that chooses the crack tip element size greater than the oscillation zone, the crack tip element method that is based on plate theory and the crack surface displacement extrapolation method. Each of the methods is validated on a very limited set of simple interface crack problems. However, their utility for a wide range of interfacial crack problems is yet to be established.
Continuum damage mechanics method for fatigue growth of surface cracks
International Nuclear Information System (INIS)
Feng Xiqiao; He Shuyan
1997-01-01
With the background of leak-before-break (LBB) analysis of pressurized vessels and pipes in nuclear plants, the fatigue growth problem of either circumferential or longitudinal semi-elliptical surface cracks subjected to cyclic loading is studied by using a continuum damage mechanics method. The fatigue damage is described by a scalar damage variable. From the damage evolution equation at the crack tip, a crack growth equation similar to famous Paris' formula is derived, which shows the physical meaning of Paris' formula. Thereby, a continuum damage mechanics approach is developed to analyze the configuration evolution of surface cracks during fatigue growth
International Nuclear Information System (INIS)
Huh, Nam Su; Choi, Suhn; Park, Keun Bae; Kim, Jong Min; Choi, Jae Boong; Kim, Young Jin
2008-01-01
The crack-tip stress fields and fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Such a crack interaction effect due to multiple cracks can magnify the fracture mechanics assessment parameters. There are many factors to be considered, for instance the relative distance between adjacent cracks, crack shape and loading condition, to quantify a crack interaction effect on the fracture mechanics assessment parameters. Thus, the current guidance on a crack interaction effect (crack combination rule), including ASME Sec. XI, BS7910, British Energy R6 and API RP579, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates a crack interaction effect by evaluating the elastic stress intensity factor of adjacent surface cracks in a plate along the crack front through detailed 3-dimensional elastic finite element analyses. The effects of the geometric parameters, the relative distance between cracks and the crack shape, on the stress intensity factor are systematically investigated. As for the loading condition, only axial tension is considered. Based on the elastic finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed
International Nuclear Information System (INIS)
Yuuki, R.; Ejima, K.
1991-01-01
In this study, three-dimensional boundary element elastostatic analysis is carried out on various surface crack problems. The present BEM uses a Mindlin's solution as well as a Kelvin's solution as a fundamental solution. So we can obtain accurate solutions for a surface crack just before or after a penetration. The obtained solutions for various shapes of surface cracks are stored as the data base, based on the influence function method. We develop the surface crack extension analysis system using the stress intensity factor data base and also the fatigue crack growth law. Our system seems to be useful especially for the analysis of the surface crack just before or after the penetration and also under the residual stresses
Problems of procedure for studying crack resistance
International Nuclear Information System (INIS)
Babak, A.V.; Uskov, E.I.
1984-01-01
Procedures are developed for studying crack resistance in sintered hot-worked tungsten within 20-2200 deg C. Certain structural properties of the installation for studying high-temperature crack resistance of tungsten are considered. Technological peculiarities of eccentric tensile strength of tungsten specimens and methodical peculiarities of initjation and fixation of initial cracks in specimens of different tungsten alloys are studied
On the behavior of crack surface ligaments
International Nuclear Information System (INIS)
Nilsson, P.; Staahle, P.; Sundin, K.G.
1998-01-01
Small ligaments connecting the fracture surfaces just behind a moving crack front are assumed to exist under certain conditions. The ligaments are rapidly torn as the crack advances. Inelastic straining of such ligaments influences the energy balance in the fracture process. The rapid tearing of a single ligament is studied both numerically and experimentally. An elastic visco-plastic material model is adopted for finite-element calculations. The results show that relatively large amounts of energy are dissipated during the tearing process. Further, the energy needed to tear a ligament increases rapidly with increasing tearing rate. The computed behavior is partly verified in a few preliminary experiments. The implications for slow stable crack tip speeds during dynamic fracture are discussed. (orig.)
On applicability of crack shape characterization rules for multiple in-plane surface cracks
International Nuclear Information System (INIS)
Kim, Jong Min; Choi, Suhn; Park, Keun Bae; Choi, Jae Boong; Huh, Nam Su
2009-01-01
The fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Regarding such an interaction effect, the relative distance between adjacent cracks, crack aspect ratio and loading condition were known to be important factors for multiple cracks, which affects the fracture mechanics assessment parameters. Although several guidance (ASME Sec. XI, BS7910, British Energy R6 and API RP579) on a crack interaction effect (crack combination rule) have been proposed and used for assessing the interaction effect, each guidance provides different rules for combining multiple surface cracks into a single surface crack. Based on the systematic elastic and elastic-plastic finite element analyses, the present study investigated the acceptability of the crack combination rules provided in the existing guidance, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed. To quantify the interaction effect, the elastic stress intensity factor and elastic-plastic J-integral along the crack front were used. As for the loading condition, only axial tension was considered. As a result, BS7910 seems to provide the most relevant crack combination rule for in-plane dual surface cracks, whereas API RP579 provides the most conservative results. In particular, ASME Sec. XI still seems to have some room for a revision to shorten the critical distance between two adjacent cracks for a crack combination. The overall tendency of the elastic-plastic analyses results is identical to that of the elastic analyses results.
Problems of tungsten crack resistance optimization
International Nuclear Information System (INIS)
Babak, A.V.; Uskov, E.I.
1986-01-01
Technically pure and precipitation-hardening tungsten is studied for its crack resistance in the initial and hardened states at the temperatures of 20...2000 deg C. Results of the study are presented. It is shown that hardening of tungsten base alloys in oil from the temperature corresponding to the upper boundary of the temperature region of ductile-brittle transition increases a crack propagation resistance of the studied materias at elevated and high temperatures
The fatigue life and fatigue crack through thickness behavior of a surface cracked plate, 2
International Nuclear Information System (INIS)
Nam, Ki-Woo; Fujibayashi, Shinpei; Ando, Kotoji; Ogura, Nobukazu.
1987-01-01
Most structures have a region where stresses concentrate, and the probability of fatigue crack initiation may be higher than in other parts. Therefore, to improve the reliability of an LBB design, it is necessary to evaluate the growth and through thickness behavior of fatigue cracks in the stress concentration part. In this paper, a fatigue crack growth test at a stress concentration region has been made on 3 % NiCrMo and HT 80 steel. Stress concentration is caused by a fillet on the plate. The main results obtained are as follows : (1) Before cracking through the plate thickness, stress concentration has a remarkable effect on the fatigue crack growth behavior and it flatens the shape of a surface crack. The crack growth behavior can be explained quantatively by using the Newman-Raju equation and the stress resolving method proposed by ASME B and P Code SecXI. (2) The da/dN-ΔK relation obtained in a stress concentration specimen shows good agreement with that obtained in a surface cracked smooth specimen. (3) It is shown that stress concentration caused by a fillet has little effect on the crack growth rate after cracking through the plate thickness. (4) By using the K value based on eq. (1), (2), particular crack growth behavior and the change in crack shape after cracking through thickness can be explained quantatively. (author)
Three-dimensional problems in the theory of cracks
International Nuclear Information System (INIS)
Panasyuk, V.V.; Andrejkiv, A.E.; Stadnik, M.M.
1979-01-01
Review of the main mechanical conceptions and mathematic methods, used in solving of spatial problems of the theory of cracks is given. At that, cases of effects upon a body of force static and cyclic and geometrically variable temperature fields are considered. The main calculation models of the theory of cracks are characterized in detail. Other models, derived from these ones and used in solving the above problems are also mentioned. Analysis and synthesis of the most general mathematic methods of solving three-dimensional problems of the theory of cracks are made. Besides precise methods, approximate ones are also presented, being efficient enough in engineering practice
Comparative study of direct and inverse problems of cracked beams
Directory of Open Access Journals (Sweden)
Mahieddine Chettah
2018-01-01
Full Text Available In recent decades, the analysis and evaluation of the cracked structures were hot spots in several engineering fields and has been the subject of great interest with important and comprehensive surveys covering various methodologies and applications, in order to obtain reliable and effective methods to maintain the safety and performance of structures on a proactive basis. The presence of a crack, not only causes a local variation in the structural parameters (e.g., the stiffness of a beam at its location, but it also has a global effect which affects the overall dynamic behavior of the structure (such as the natural frequencies. For this reason, the dynamic characterization of the cracked structures can be used to detect damage from non-destructive testing. The objective of this paper is to compare the accuracy and ability of two methods to correctly predict the results for both direct problem to find natural frequencies and inverse problem to find crack’s locations and depths of a cracked simply supported beam. Several cases of crack depths and crack locations are investigated. The crack is supposed to remain open. The Euler–Bernoulli beam theory is employed to model the cracked beam and the crack is represented as a rotational spring with a sectional flexibility. In the first method, the transfer matrix method is used; the cracked beam is modeled as two uniform sub-segments connected by a rotational spring located at the cracked section. In the second method which is based on the Rayleigh’s method, the mode shape of the cracked beam is constructed by adding a cubic polynomial function to that of the undamaged beam. By applying the compatibility conditions at crack’s location and the corresponding boundary conditions, the general forms of characteristic equations for this cracked system are obtained. The two methods are then utilized to determine the locations and depths by using any two natural frequencies of a cracked simply
A theoretical model of semi-elliptic surface crack growth
Directory of Open Access Journals (Sweden)
Shi Kaikai
2014-06-01
Full Text Available A theoretical model of semi-elliptic surface crack growth based on the low cycle strain damage accumulation near the crack tip along the cracking direction and the Newman–Raju formula is developed. The crack is regarded as a sharp notch with a small curvature radius and the process zone is assumed to be the size of cyclic plastic zone. The modified Hutchinson, Rice and Rosengren (HRR formulations are used in the presented study. Assuming that the shape of surface crack front is controlled by two critical points: the deepest point and the surface point. The theoretical model is applied to semi-elliptic surface cracked Al 7075-T6 alloy plate under cyclic loading, and five different initial crack shapes are discussed in present study. Good agreement between experimental and theoretical results is obtained.
Martirosyan, A. N.; Davtyan, A. V.; Dinunts, A. S.; Martirosyan, H. A.
2018-04-01
The purpose of this article is to investigate a problem of closing cracks by building up a layer of sediments on surfaces of a crack in an infinite thermoelastic medium in the presence of a flow of fluids with impurities. The statement of the problem of closing geophysical cracks in the presence of a fluid flow is presented with regard to the thermoelastic stress and the influence of the impurity deposition in the liquid on the crack surfaces due to thermal diffusion at the fracture closure. The Wiener–Hopf method yields an analytical solution in the special case without friction. Numerical calculations are performed in this case and the dependence of the crack closure time on the coordinate is plotted. A similar spatial problem is also solved. These results generalize the results of previous studies of geophysical cracks and debris in rocks, where the closure of a crack due to temperature effects is studied without taking the elastic stresses into account.
The initiation of environmentally-assisted cracking in semi-elliptical surface cracks
International Nuclear Information System (INIS)
James, L.A.
1997-01-01
A criterion to predict under what conditions EAC would Initiate In cracks In a high-sulfur steel in contact with low-oxygen water was recently proposed by Wire and U. This EAC Initiation Criterion was developed using transient analyses for the diffusion of sulfides plus experimental test results. The experiments were conducted mainly on compact tension-type specimens with initial crack depths of about 2.54 mm. The present paper expands upon the work of Wire and U by presenting results for significantly deeper initial semi-elliptical surface cracks. In addition, in one specimen, the surface crack penetrated weld-deposited cladding into the high-sulfur steel. The results for the semi-elliptical surface cracks agreed quite well with the EAC Initiation Criterion, and provide confirmation of the applicability of the criterion to crack configurations with more restricted access to water
Surface crack testing - state of technique and trends in development
International Nuclear Information System (INIS)
1991-01-01
This Seminar contains 12 lectures on the following subjects: State of technique in magnetic powder testing (K. Goebbels); Recognisability of faults and probability of faults in surface crack testing (W. Morgner); Requirements for picture processing systems for proving and assessing crack indications (M. Stadthaus); Possibilities and limits of automatic crack recognition in magnetic powder testing (V. Deutsch); Development of equipment for eddy current testing (M. Junger); Signal processing - a way of improving the recognisability of faults in eddy current testing (R. Becker); Methods of testing steel products for surface faults and their practical limits of fault recognisability (D. Thiery); Surface crack testing in pipe manufacture (R. Pawelletz); Surface crack testing in powerstation construction (L. v. Bernus); Trends in automation in surface crack testing (G. Maier); Eddy current testing in engine construction (E. Dickhaut); Eddy current testing in aircraft repair (F. Schur). (orig.) [de
Surface crack detection by magnetic particle inspection
International Nuclear Information System (INIS)
Goebbels, K.
1988-01-01
For ferromagnetic materials magnetic particle inspection is without doubt the most sensitive method to detect surface cracks and the least sensitive method referring to disturbing boundary conditions. Up to now the technique is based on experiments, experience, on empirical facts and on a subjective evaluation. This contribution for the first time presents a concept which allows the objective, reproducible as well as reliable magnetic particle inspection: Modelling of testing based on Maxwell's equations by finite element calculation; objective setting of test-parameters and their surveillance, handling systems, illumination and sensors, image processing and fully automated evaluation. Economy and safety of magnetic particle inspection are strongly improved by this procedure. (orig./HP) [de
On the strong crack-microcrack interaction problem
Gorelik, M.; Chudnovsky, A.
1992-07-01
The problem of the crack-microcrack interaction is examined with special attention given to the iterative procedure described by Chudnovsky and Kachanov (1983), Chudnovsky et al. (1984), and Horii and Nemat-Nasser (1983), which yields erroneous results as the crack tips become closer (i.e., for strong crack interaction). To understand the source of error, the traction distributions along the microcrack line on the n-th step of iteration representing the exact and asymptotic stress fields are compared. It is shown that the asymptotic solution gives a gross overestimation of the actual traction.
Surface-enhanced light olefin yields during steam cracking
Golombok, M.; Kornegoor, M.; Brink, van den P.; Dierickx, J.; Grotenbreg, R.
2000-01-01
Various papers have shown enhanced olefin yields during steam cracking when a catalytic surface is introduced. Our studies reveal that increased light olefin yields during catalytic steam cracking are mainly due to a surface volume effect and not to a traditional catalytic effect. Augmentation of
International Nuclear Information System (INIS)
Podil'chuk, Yu.N.
1995-01-01
An explicit solution of the state thermoelasticity problem is constructed for an infinite transversally isotropic body containing an internal elliptical crack in the isotropy plane. It is assumed that a uniform heat flux is specified at the crack surface and the body is free of external loads. Values of the stress-intensity coefficients depending on the heat flux, the crack dimensions, and the thermoelastic properties of the material are obtained. Note that the analogous problem was considered for an isotropic body. The static thermoelasticity problem for a transversally isotropic body with an internal elliptical crack at whose surface linear temperature variation is specified was solved
Mechanics of curved surfaces, with application to surface-parallel cracks
Martel, Stephen J.
2011-10-01
The surfaces of many bodies are weakened by shallow enigmatic cracks that parallel the surface. A re-formulation of the static equilibrium equations in a curvilinear reference frame shows that a tension perpendicular to a traction-free surface can arise at shallow depths even under the influence of gravity. This condition occurs if σ11k1 + σ22k2 > ρg cosβ, where k1 and k2 are the principal curvatures (negative if convex) at the surface, σ11 and σ22 are tensile (positive) or compressive (negative) stresses parallel to the respective principal curvature arcs, ρ is material density, g is gravitational acceleration, and β is the surface slope. The curvature terms do not appear in equilibrium equations in a Cartesian reference frame. Compression parallel to a convex surface thus can cause subsurface cracks to open. A quantitative test of the relationship above accounts for where sheeting joints (prominent shallow surface-parallel fractures in rock) are abundant and for where they are scarce or absent in the varied topography of Yosemite National Park, resolving key aspects of a classic problem in geology: the formation of sheeting joints. Moreover, since the equilibrium equations are independent of rheology, the relationship above can be applied to delamination or spalling caused by surface-parallel cracks in many materials.
International Nuclear Information System (INIS)
Kim, Jong Min; Huh, Nam Su
2010-01-01
The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components
Relaxation cracking in the process industry, an underestimated problem
Energy Technology Data Exchange (ETDEWEB)
Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)
1998-12-31
Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.
Relaxation cracking in the process industry, an underestimated problem
Energy Technology Data Exchange (ETDEWEB)
Wortel, J.C. van [TNO Institute of Industrial Technology, Apeldoorn (Netherlands)
1999-12-31
Austenitic components, operating between 500 and 750 deg C, can fail within 1 year service while the ordinary mechanical properties after failure are still within the code requirements. The intergranular brittle failures are situated in the welded or cold deformed areas. This type of cracking has many names, showing the uncertainty concerning the mechanism for the (catastrophical) failures. A just finished investigation showed that it is a relaxation crack problem, introduced by manufacturing processes, especially welding and cold rolling. Cracking/failures can be expected after only 0.1- 0.2 % relaxation strain. These low strain values can already be generated during relaxation of the welding stresses. Especially coarse grained `age hardening` materials are susceptible. Stabilising and Postweld Heat Treatments are very effective to avoid relaxation crack problems during operation. After these heat treatments the components can withstand more than 2 % relaxation strain. At temperatures between 500 and 750 deg C relaxation cracking is the predominant factor for the safety and lifetime of welded austenitic components. (orig.) 12 refs.
Periodic Contact and Crack Problems in Plane Elasticity
DEFF Research Database (Denmark)
Krenk, Steen
1976-01-01
By use of singular integral equations it is demonstrated how some periodic contact and crack problems can be solved in closed form. The integral equation in question is the same which is encountered when dealing with mixed boundary conditions on a circle. As analytical evaluation of the solution ...... may be quite complicated attention is drawn to a numerical quadrature method...
Detection of cracks on concrete surfaces by hyperspectral image processing
Santos, Bruno O.; Valença, Jonatas; Júlio, Eduardo
2017-06-01
All large infrastructures worldwide must have a suitable monitoring and maintenance plan, aiming to evaluate their behaviour and predict timely interventions. In the particular case of concrete infrastructures, the detection and characterization of crack patterns is a major indicator of their structural response. In this scope, methods based on image processing have been applied and presented. Usually, methods focus on image binarization followed by applications of mathematical morphology to identify cracks on concrete surface. In most cases, publications are focused on restricted areas of concrete surfaces and in a single crack. On-site, the methods and algorithms have to deal with several factors that interfere with the results, namely dirt and biological colonization. Thus, the automation of a procedure for on-site characterization of crack patterns is of great interest. This advance may result in an effective tool to support maintenance strategies and interventions planning. This paper presents a research based on the analysis and processing of hyper-spectral images for detection and classification of cracks on concrete structures. The objective of the study is to evaluate the applicability of several wavelengths of the electromagnetic spectrum for classification of cracks in concrete surfaces. An image survey considering highly discretized wavelengths between 425 nm and 950 nm was performed on concrete specimens, with bandwidths of 25 nm. The concrete specimens were produced with a crack pattern induced by applying a load with displacement control. The tests were conducted to simulate usual on-site drawbacks. In this context, the surface of the specimen was subjected to biological colonization (leaves and moss). To evaluate the results and enhance crack patterns a clustering method, namely k-means algorithm, is being applied. The research conducted allows to define the suitability of using clustering k-means algorithm combined with hyper-spectral images highly
Shaari, M. S.; Akramin, M. R. M.; Ariffin, A. K.; Abdullah, S.; Kikuchi, M.
2018-02-01
The paper is presenting the fatigue crack growth (FCG) behavior of semi-elliptical surface cracks for API X65 gas pipeline using S-version FEM. A method known as global-local overlay technique was used in this study to predict the fatigue behavior that involve of two separate meshes each specifically for global (geometry) and local (crack). The pre-post program was used to model the global geometry (coarser mesh) known as FAST including the material and boundary conditions. Hence, the local crack (finer mesh) will be defined the exact location and the mesh control accordingly. The local mesh was overlaid along with the global before the numerical computation taken place to solve the engineering problem. The stress intensity factors were computed using the virtual crack closure-integral method (VCCM). The most important results is the behavior of the fatigue crack growth, which contains the crack depth (a), crack length (c) and stress intensity factors (SIF). The correlation between the fatigue crack growth and the SIF shows a good growth for the crack depth (a) and dissimilar for the crack length (c) where stunned behavior was resulted. The S-version FEM will benefiting the user due to the overlay technique where it will shorten the computation process.
International Nuclear Information System (INIS)
Shibata, Katsuyuki; Yokoyama, Norio; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro
1982-12-01
Part-through surface cracks are most frequently observed in the inspection of structural components, and it is one of the important subjects in the assessment of safety to evaluate appropriately the growth of such cracks during the service life of structural components. Due to the complexity of the stress at the front free surface, the crack growth at the surface shows a different behavior from the other part. Besides, an effect of interaction is caused in the growth of multiple surface cracks. These effects should be included in the growth analysis of surface part-through cracks. Authors have carried out a series of fatigue tests on some kinds of pipes with multiple cracks in the inner surface, and subsequently the fatigue test of flat plate specimens, made of Type 304L stainless steel, with a single or double surface cracks was carried out to study the basic characteristics in the growth of multiple surface cracks. Based on the results of the flat plate test. the correction factors for the front free surface (Cs) and interaction (Ci) of surface cracks were derived quantitatively by the following empirical expressions; Cs = 0.824. Ci = (0.227(a/b) 2 (sec(PI X/2) - 1) + 1)sup(1/m). Using these two correction factors, a procedure to predict the growth of surface cracks was developed by applying the crack growth formula to both the thickness and surface directions. Besides, the crack growth predictions based on the procedure of ASME Code Sex. XI, and the above procedure without the correction of the free surface and interactions on the crack growth behaviors were compared with the test results of flat plate specimens. The crack growth behavior predicted by the procedure described in this report showed the best agreement with the test results in respects of the crack growth life and the change in the crack shape. The criteria of the ASME Code did not agree with the test results. (author)
The fatigue life and fatigue-crack-through-thickness behavior of a surface-cracked plate, 3
International Nuclear Information System (INIS)
Nam, Ki-Woo; Matsui, Kentaro; Ando, Kotoji; Ogura, Nobukazu
1989-01-01
The LBB (leak-before-break) design is one of the most important subjects for the evaluation and the assurance of safety in pressure vessels, piping systems, LNG carriers and various other structures. In the LBB design, it is necessary to evaluate precisely the lifetime of steel plate. Furthermore, the change in crack shape that occurs during the propagation after through thickness is of paramount importance. For this reason, in a previous report, the authors proposed a simplified evaluation model for the stress intensity factor after cracking through thickness. Using this model, the crack propagation behavior, crack-opening displacement and crack shape change of surface-cracked smooth specimens and surface-cracked specimens with a stress concentration were evaluated quantitatively. The present study was also done to investigate the fatigue crack propagation behavior of surface cracks subjected to combined tensile and bending stress. Estimation of fatigue crack growth was done using the Newman-Raju formula before through thickness, and using formula (7) and (8) after through thickness. Crack length a r at just through thickness increases with increasing a bending stress. Calculated fatigue crack shape showed very good agreement with experimental one. It was also found that particular crack growth behavior and change in crack shape after cracking through thickness can be explained quantitatively using the K value based on Eqs. (7) and (8). (author)
International Nuclear Information System (INIS)
Kim, Jong Wook; Lee, Gyu Mahn; Jeong, Kyeong Hoon; Kim, Tae Wan; Park, Keun Bae
2001-01-01
As actual cracks found in practical structures are mostly three-dimensional surface cracks, such cracks give rise to the important problem when the structural integrity is evaluated in a viewpoint of fracture mechanics. The case of a semi-elliptical surface crack is more complicated than that of the embedded elliptical crack since the crack front intersects the free surface. Therefore, the exact expression of stress field according to the boundary condition can be the prior process for the structural integrity evaluation . The commercial code, I-DEAS does not provide the family of strain singular element for the cracked-body analysis. This means that the user cannot make use of the pre-processing function of I-DEAS effectively. But I-DEAS has the capability to hold input data in common with computational fracture mechanics program like ABAQUS. Hence, user can construct the optimized analysis method for the generation of input data of program like ABAQUS using the I-DEAS. In the present study, a procedure for the generation of input data for the optimized 3-dimensional computational fracture mechanics is developed as a series of effort to establish the structural integriyt evaluation procedure of SMART reactor vessel assembly. Input data for the finite element analysis are made using the commercial code, I-DEAS program, The stress analysis is performed using the ABAQUS. To demonstrate the validation of the developed procedure in the present sutdy, semi-elliptic surface crack in a half space subjected to uniform tension are solved, and the effects of crack configuration ratio are discussed in detail. The numerical results are presented and compared to those presented by Raju and Newman. Also, we have established the structural integrity evaluation procedure through the 3-D crack modeling
Fully plastic solutions of semi-elliptical surface cracks
International Nuclear Information System (INIS)
Yagawa, Genki; Yoshimura, Shinobu; Kitajima, Yasumi; Ueda, Hiroyoshi.
1990-01-01
Nonlinear finite element analyses of semi-elliptical surface cracks are performed under the fully plastic condition. The power-law hardening materials and the deformation theory of plasticity are assumed. Either the penalty function method or the Uzawa's algorithm is utilized to treat the incompressibility of plastic strains. The local and global J-integral values are obtained using a virtual crack extension technique for plates and cylinders with semi-elliptical surface cracks subjected to uniform tensions. The fully plastic solutions for surface cracked plates are given in the form of polynominals with geometric parameters a/t, a/c and the strain hardening exponent (n). In addition, the effects of curvature on fully plastic solutions are discussed through the comparison between the results of plates and cylinders. (author)
Capillary-induced crack healing between surfaces of nanoscale roughness.
Soylemez, Emrecan; de Boer, Maarten P
2014-10-07
Capillary forces are important in nature (granular materials, insect locomotion) and in technology (disk drives, adhesion). Although well studied in equilibrium state, the dynamics of capillary formation merit further investigation. Here, we show that microcantilever crack healing experiments are a viable experimental technique for investigating the influence of capillary nucleation on crack healing between rough surfaces. The average crack healing velocity, v̅, between clean hydrophilic polycrystalline silicon surfaces of nanoscale roughness is measured. A plot of v̅ versus energy release rate, G, reveals log-linear behavior, while the slope |d[log(v̅)]/dG| decreases with increasing relative humidity. A simplified interface model that accounts for the nucleation time of water bridges by an activated process is developed to gain insight into the crack healing trends. This methodology enables us to gain insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.
The Problem of Scattering by a Mixture of Cracks and Obstacles
Directory of Open Access Journals (Sweden)
Yan Guozheng
2009-01-01
Full Text Available Consider the scattering of an electromagnetic time-harmonic plane wave by an infinite cylinder having an open crack and a bounded domain in as cross section. We assume that the crack is divided into two parts, and one of the two parts is (possibly coated on one side by a material with surface impedance . Different boundary conditions are given on and . Applying potential theory, the problem can be reformulated as a boundary integral system. We obtain the existence and uniqueness of a solution to the system by using Fredholm theory.
The influences of mesh subdivision on nonlinear fracture analysis for surface cracked structures
International Nuclear Information System (INIS)
Shimakawa, T.
1991-01-01
The leak-before-break (LBB) concept can be expected to be applied not only to safety assessment, but also to the rationalization of nuclear power plants. The development of a method to evaluate fracture characteristics is required to establish this concept. The finite element method (FEM) is one of the most useful tools for this evaluation. However, the influence of various factors on the solution is not well understood and the reliability has not been fully verified. In this study, elastic-plastic 3D analyses are performed for two kinds of surface cracked structure, and the influence of mesh design is discussed. The first problem is surface crack growth in a carbon steel plate subjected to tension loading. A crack extension analysis is performed under a generation phase simulation using the crack release technique. Numerical instability of the J-integral solution is observed when the number of elements in the thickness direction of the ligament is reduced to three. The influence of mesh design in the ligament on the solution is discussed. The second problem is a circumferential part-through crack in a carbon steel pipe subjected to a bending moment. Two kinds of mesh design are employed, and a comparison between two sets of results shows that the number of elements on the crack surface also affects the solution as well as the number of elements in the ligament. (author)
The Mathematical Basis of the Inverse Scattering Problem for Cracks from Near-Field Data
Directory of Open Access Journals (Sweden)
Yao Mao
2015-01-01
Full Text Available We consider the acoustic scattering problem from a crack which has Dirichlet boundary condition on one side and impedance boundary condition on the other side. The inverse scattering problem in this paper tries to determine the shape of the crack and the surface impedance coefficient from the near-field measurements of the scattered waves, while the source point is placed on a closed curve. We firstly establish a near-field operator and focus on the operator’s mathematical analysis. Secondly, we obtain a uniqueness theorem for the shape and surface impedance. Finally, by using the operator’s properties and modified linear sampling method, we reconstruct the shape and surface impedance.
Remote detection of stress corrosion cracking: Surface composition and crack detection
Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho
2018-04-01
Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.
lnvestigation of Patch Coatings lnfluence on the Stress lntensity Factor for Surface Cracks
DEFF Research Database (Denmark)
Lambertsen, Søren Heide; Jepsen, Michael S.; Damkilde, Lars
2013-01-01
In this paper, it is investigated how a surface layer of epoxy glue will affect the crack propagation of a surface crack. The intension is to reduce or even stop the crack propagation by means of patch layer coating. When adding a patch layer to the surface with small cracks, the layer will attem...
Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining
Energy Technology Data Exchange (ETDEWEB)
Qiusheng, Y., E-mail: qsyan@gdut.edu.cn; Senkai, C., E-mail: senkite@sina.com; Jisheng, P., E-mail: panjisheng@gdut.edu.cn [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)
2015-03-30
Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.
The elastic-plastic failure assessment diagram of surface cracked structure
International Nuclear Information System (INIS)
Ning, J.; Gao, Q.
1987-01-01
The simplified NLSM is able to calculate the EPFM parameters and failure assessment curve for the surface cracked structure correctly and conveniently. The elastic-plastic failure assessment curve of surface crack is relevant to crack geometry, loading form and material deformation behaviour. It is necessary to construct the EPFM failure assessment curve of the surface crack for the failure assessment of surface cracked structure. (orig./HP)
Ultrasonic phased array with surface acoustic wave for imaging cracks
Directory of Open Access Journals (Sweden)
Yoshikazu Ohara
2017-06-01
Full Text Available To accurately measure crack lengths, we developed a real-time surface imaging method (SAW PA combining an ultrasonic phased array (PA with a surface acoustic wave (SAW. SAW PA using a Rayleigh wave with a high sensitivity to surface defects was implemented for contact testing using a wedge with the third critical angle that allows the Rayleigh wave to be generated. Here, to realize high sensitivity imaging, SAW PA was optimized in terms of the wedge and the imaging area. The improved SAW PA was experimentally demonstrated using a fatigue crack specimen made of an aluminum alloy. For further verification in more realistic specimens, SAW PA was applied to stainless-steel specimens with a fatigue crack and stress corrosion cracks (SCCs. The fatigue crack was visualized with a high signal-to-noise ratio (SNR and its length was measured with a high accuracy of better than 1 mm. The SCCs generated in the heat-affected zones (HAZs of a weld were successfully visualized with a satisfactory SNR, although responses at coarse grains appeared throughout the imaging area. The SCC lengths were accurately measured. The imaging results also precisely showed complicated distributions of SCCs, which were in excellent agreement with the optically observed distributions.
The interaction of pulsed eddy current with metal surface crack for various coils
International Nuclear Information System (INIS)
Yang, H.-C.; Tai, C.-C.
2002-01-01
We study the interaction of pulsed eddy current (PEC) with metal surface cracks using various coils that have different geometric sizes. In the previous work, we have showed that the PEC technique can be used to inspect electrical-discharge-machined (EDM) notches with depth from 0.5 mm to 9 mm. The results showed that the relationship between PEC signals and crack depth is obvious. In this work, we further try a series of coils with different radii, heights, turns and shapes. We will discuss the effects of these coil parameters on the PEC signal. Some other critical problems of PEC measurements such as signal drift that caused by heating effect of coil currents will be studied. We also show more experiments on fatigue cracks to demonstrate the capability of PEC technique for cracks inspection
International Nuclear Information System (INIS)
Tohgo, Keiichiro; Suzuki, Hiromitsu; Shimamura, Yoshinobu; Nakayama, Guen; Hirano, Takashi
2008-01-01
Stress corrosion cracking (SCC) in structural metal materials occurs by initiation and coalescence of micro cracks, subcritical crack propagation and multiple large crack formation or final failure under the combination of materials, stress and corrosive environment. In this paper, a Monte Carlo simulation for the process of SCC has been proposed based on the stochastic properties of micro crack initiation and fracture mechanics concept for crack coalescence and propagation. The emphasis in the model is put on the influence of semi-elliptical surface cracks. Numerical simulations are carried out based on CBB (creviced bent beam) test results of a sensitized stainless steel SUS 304 and the influence of micro crack initiation rate and coalescence condition on the simulation results is discussed. The numerical examples indicate the applicability of the present model to a prediction of the SCC behavior in real structures. (author)
International Nuclear Information System (INIS)
Brocks, W.; Krafka, H.; Mueller, W.; Wobst, K.
1988-01-01
In connection with the problem of the transferability of parameters obtained experimentally with the help of fracture-mechanical test specimens and used for the initiation and the stable propagation of cracks in cases of pulsating stress and of the elasto-plastic behaviour of construction components, a pressure vessel with an inside diameter of 1500 mm, a cylindrical length of 3000 mm and a wall thickness of 40 mm was hydraulically loaded with the help of internal pressure in the first stage, to attain an average crack growth of 1 mm at Δ a ≅, the loading taking place at about 21deg C. This stress-free annealed vessel exhibited an axial semielliptical vibration-induced surface crack about 181 mm long and 20 mm deep, as a test defect, in a welded circular blank made of the steel 20MnMoNi 55. The fractographic analysis of the first stable crack revealed that its growth rate of Δa was highest in the area of transition from the weak to the strong bend of the crack front (55deg m /σ v (average principal stress: σ m , Mises' reference stress: σ v v). A comparison of the experimental with the numerical results from the first stable crack shows that the local stable crack growth Δa cannot be calculated solely with reference to J, because Δa appears to depend essentially on the quotient σ m /σ v . (orig./MM) [de
Induction Thermography for Surface Crack Detection and Depth Determination
Directory of Open Access Journals (Sweden)
Beate Oswald-Tranta
2018-02-01
Full Text Available In the last few years, induction thermography has been established as a non-destructive testing method for localizing surface cracks in metals. The sample to be inspected is heated with a short induced electrical current pulse, and the infrared camera records—during and after the heating pulse—the temperature distribution at the surface. Transforming the temporal temperature development for each pixel to phase information makes not only highly reliable detection of the cracks possible but also allows an estimation of its depth. Finite element simulations were carried out to investigate how the phase contrast depends on parameters such as excitation frequency, pulse duration, material parameters, crack depth, and inclination angle of the crack. From these results, generalized functions for the dependency of the phase difference on all these parameters were derived. These functions can be used as an excellent guideline as to how measurement parameters should be optimized for a given material to be able to detect cracks and estimate their depth. Several experiments on different samples were also carried out, and the results compared with the simulations showed very good agreement.
Surface cracking in proton-irradiated glass
International Nuclear Information System (INIS)
Jensen, T.; Lawn, B.R.; Dalglish, R.L.; Kelly, J.C.
1976-01-01
Some observations are reported of the surface fracture behaviour of soda-lime glass slabs (6mm thick Pilkington float glass) irradiated with 480 kV protons. A simple indentation microfracture technique provided a convenient means of probing the irradiated surface regions. Basically, the technique involves loading a standard Vickers diamond pyramid indenter onto the area of interest such that a well-developed deformation/fracture pattern is generated. (author)
International Nuclear Information System (INIS)
Kamaya, Masayuki; Miyokawa, Eiichi; Kikuchi, Masanori
2011-01-01
When multiple cracks approach one another, the stress intensity factor is likely to change due to the interaction of the stress field. This causes change in growth rate and shape of cracks. In particular, when cracks are in parallel position to the loading direction, the shape of cracks becomes non-planar. In this study, the complex growth of interacting cracks is evaluated by using the S-Version finite element method, in which local detailed finite element mesh (local mesh) is superposed on coarse finite element model (global mesh) representing the global structure. In order to investigate the effect of interaction on the growth behavior, two parallel surface cracks are subjected to cyclic tensile or bending load. It is shown that the smaller crack is shielded by larger crack due to the interaction and stops growing when the difference in size of two cracks is significant. Based on simulations of various conditions, a procedure and criteria for evaluating crack growth for fitness-for-service assessment is proposed. According to the procedure, the interaction is not necessary to be considered in the crack growth prediction when the difference in size of two cracks exceeds the criterion. (author)
... spending time in a rehab facility or getting cognitive-behavioral therapy or other treatments. Right now, there are no medicines to treat a crack addiction. If you smoke crack, talking with a counselor ...
Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology
Allen, P. A.; Wells, D. N.
2013-01-01
No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.
Effect of interaction of embedded crack and free surface on remaining fatigue life
Directory of Open Access Journals (Sweden)
Genshichiro Katsumata
2016-12-01
Full Text Available Embedded crack located near free surface of a component interacts with the free surface. When the distance between the free surface and the embedded crack is short, stress at the crack tip ligament is higher than that at the other area of the cracked section. It can be easily expected that fatigue crack growth is fast, when the embedded crack locates near the free surface. To avoid catastrophic failures caused by fast fatigue crack growth at the crack tip ligament, fitness-for-service (FFS codes provide crack-to-surface proximity rules. The proximity rules are used to determine whether the cracks should be treated as embedded cracks as-is, or transformed to surface cracks. Although the concepts of the proximity rules are the same, the specific criteria and the rules to transform embedded cracks into surface cracks differ amongst FFS codes. This paper focuses on the interaction between an embedded crack and a free surface of a component as well as on its effects on the remaining fatigue lives of embedded cracks using the proximity rules provided by the FFS codes. It is shown that the remaining fatigue lives for the embedded cracks strongly depend on the crack aspect ratio and location from the component free surface. In addition, it can be said that the proximity criteria defined by the API and RSE-M codes give overly conservative remaining lives. On the contrary, the WES and AME codes always give long remaining lives and non-conservative estimations. When the crack aspect ratio is small, ASME code gives non-conservative estimation.
Leise, Tanya L.
2009-08-19
We consider the problem of the dynamic, transient propagation of a semi-infinite, mode I crack in an infinite elastic body with a nonlinear, viscoelastic cohesize zone. Our problem formulation includes boundary conditions that preclude crack face interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation is preceeded by significant crazing in a thin region surrounding the crack tip. We present a combined analytical/numerical solution method that involves reducing the problem to a Dirichlet-to-Neumann map along the crack face plane, resulting in a differo-integral equation relating the displacement and stress along the crack faces and within the cohesive zone. © 2009 Springer Science+Business Media B.V.
Reconsidering the boundary conditions for a dynamic, transient mode I crack problem
Leise, Tanya
2008-11-01
A careful examination of a dynamic mode I crack problem leads to the conclusion that the commonly used boundary conditions do not always hold in the case of an applied crack face loading, so that a modification is required to satisfy the equations. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem that is important during the time interval immediately following the application of crack face loading. We demonstrate why the usual boundary conditions lead to a prediction of crack face interpenetration, and then examine how to modify the boundary condition for a semi-infinite crack with a cohesive zone. Numerical simulations illustrate the resulting approach.
Modification of the ASME code z-factor for circumferential surface crack in nuclear ferritic pipings
International Nuclear Information System (INIS)
Choi, Young Hwan; Chung, Yon Ki; Koh, Wan Young; Lee, Joung Bae
1996-01-01
The purpose of this paper is to modify the ASME Code Z-Factor, which is used in the evaluation of circumferential surface crack in nuclear ferritic pipings. The ASME Code Z-Factor is a load multiplier to compensate plastic load with elasto-plastic load. The current ASME Code Z-Factor underestimates pipe maximum load. In this study, the original SC. TNP method is modified first because the original SC. TNP method has a problem that the maximum allowable load predicted from the original SC. TNP method is slightly higher than that measured from the experiment. Then the new Z-Factor is developed using the modified SC. TNP method. The desirability of both the modified SC. TNP method and the new Z-Factor is examined using the experimental results for the circumferential surface crack in pipings. The results show that (1) the modified SC. TNP method is good for predicting the circumferential surface crack behavior in pipings, and (2) the Z-Factor obtained from the modified SC. TNP method well predicts the behavior of circumferential surface crack in ferritic pipings. 30 refs., 13 figs., 4 tabs. (author)
Constraint of semi-elliptical surface cracks in T and L-joints
International Nuclear Information System (INIS)
Lee, Hyung Yil
2001-01-01
Critical defects in pressure vessels and pipes are generally found in the form of a semi-elliptical surface crack, and the analysis of which is consequently an important problem in engineering fracture mechanics. Furthermore, in addition to the traditional single parameter K or J-integral, the second parameter like T-stress should be measured to quantify the constraint effect. In this work, the validity of the line-spring finite element is investigated by comparing line-spring J-T solutions to the reference 3D finite element J-T solutions. A full 3D-mesh generating program for semi-elliptical surface cracks is employed to provide such reference 3D solutions. Then some structural characteristics of the surface-cracked T and L-joints are studied by mixed mode line-spring finite element. Negative T-stresses observed in T and L-joints indicate the necessity of J-T two parameter approach for analyses of surface-cracked T and L-joints
New specimen design for studying the growth of small fatigue cracks with surface acoustic waves
London, Blair
1985-08-01
The study of small surface fatigue cracks in AISI 4140 quenched and tempered steel by a nondestructive surface acoustic wave technique is summarized. A novel cantilevered bending, plate-type fatigue specimen is described that is compatible with the acoustic method. Small cracks are initiated from a 25-μm deep surface pit produced by an electrospark machine. The importance of studying these cracks which closely approximate naturally occurring fatigue cracks is briefly discussed.
Textural Analysis of Fatique Crack Surfaces: Image Pre-processing
Directory of Open Access Journals (Sweden)
H. Lauschmann
2000-01-01
Full Text Available For the fatique crack history reconstitution, new methods of quantitative microfractography are beeing developed based on the image processing and textural analysis. SEM magnifications between micro- and macrofractography are used. Two image pre-processing operatins were suggested and proved to prepare the crack surface images for analytical treatment: 1. Normalization is used to transform the image to a stationary form. Compared to the generally used equalization, it conserves the shape of brightness distribution and saves the character of the texture. 2. Binarization is used to transform the grayscale image to a system of thick fibres. An objective criterion for the threshold brightness value was found as that resulting into the maximum number of objects. Both methods were succesfully applied together with the following textural analysis.
Fracture Testing with Surface Crack Specimens. [especially the residual tensile strength test
Orange, T. W.
1974-01-01
Recommendations are given for the design, preparation, and static fracture testing of surface crack specimens. The recommendations are preceded by background information including discussions of stress intensity factors, crack opening displacements, and fracture toughness values associated with surface crack specimens. Cyclic load and sustained load tests are discussed briefly.
Reconsidering the boundary conditions for a dynamic, transient mode I crack problem
Leise, Tanya; Walton, Jay; Gorb, Yuliya
2008-01-01
. In particular, a transient compressive stress wave travels along the crack faces, moving outward from the loading region on the crack face. This does not occur in the quasistatic or steady state problems, and is a special feature of the transient dynamic problem
Crack propagation in disordered materials: how to decipher fracture surfaces
Ponson, L.
For a half-century, engineers know how to describe and predict the propagation of a crack in a model elastic homogeneous medium. The case of real materials is much more complex. Indeed, we do not know how to relate their lifetime or their resistance to their microstructure. To achieve such a prediction, understanding the role of the microstructural disorder on the behavior of a crack is determinant. Fracture surfaces represent a promising field of investigation to address this question. From the study of various disordered materials, we propose a statistical description of their roughness and determine to which extent their properties are dependent of the material. We show that fracture surfaces display an anisotropic scale invariant geometry characterized by two universal exponents. Glass ceramics is then studied because its microstructure can be tuned in a controlled manner. Their fracture surfaces display the same general anisotropic properties but with surprisingly low exponents independent of the detail of the ceramics microstructure. This suggests the existence of a second universality class in failure problems. Using finally theoretical tools from out-of-equilibrium statistical physics and fracture mechanics, we relate the statistical properties of fracture surfaces with the mechanisms occurring at the microscopic scale during the failure of a material. In particular, we show that the first class of fracture surfaces results from a failure involving damage processes while the second one results from a perfectly brittle failure. Propagation de fissures dans les matériaux désordonnés : comment déchiffrer les surfaces de rupture. Depuis près d'un demi-siècle, les ingénieurs savent décrire et prévoir la propagation d'une fissure dans un milieu élastique homogène modèle. Le cas des matériaux réels est beaucoup plus complexe. En effet, on ne sait pas relier leur durée de vie ou leur résistance à leur microstructure. Passage obligé avant de telles
Allowing for surface preparation in stress corrosion cracking modelling
International Nuclear Information System (INIS)
Berge, P.; Buisine, D.; Gelpi, A.
1997-01-01
When a 600 alloy component is significantly deformed during installation, by welding, rolling, bending, its stress corrosion cracking in Pressurized Water Nuclear Reactor's primary coolant, is significantly changed by the initial surface treatment. Therefore, the crack initiated time may be reduced by several orders of magnitude for certain surfaces preparations. Allowing for cold working of the surface, for which modelling is proposed, depends less on the degree of cold work then on the depths of the hardened layers. Honing hardens the metal over depths of about one micron for vessel head penetrations, for example, and has little influence on subsequent behaviour after the part deforms. On the other hand, coarser turning treatment produces cold worked layers which can reach several tens of microns and can very significantly reduce the initiation time compared to fine honing. So evaluation after depths of hardening is vital on test pieces for interpreting laboratory results as well as on service components for estimating their service life. Suppression by mechanical or chemical treatment of these layers, after deformation, seems to be the most appropriate solution for reducing over-stressing connected with surface treatment carried out before deformation. (author)
International Nuclear Information System (INIS)
Shim, Do Jun; Son, Beom Goo; Kim, Young Jin; Kim, Yun Jae
2004-01-01
To investigate relevance of the definition of the reference stress to estimate J and C * for surface crack problems, this paper compares FE J and C * results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface crack and finite internal axial crack are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (I) the local limit load, (II) the global limit load, (III) the global limit load determined from the FE limit analysis, and (IV) the optimised reference load. It is found that the reference stress based on the local limit load gives overall excessively conservative estimates of J and C * . Use of the global limit load clearly reduces the conservatism, compared to that of the local limit load, although it can provide sometimes non-conservative estimates of J and C * . The use of the FE global limit load gives overall non-conservative estimates of J and C * . The reference stress based on the optimised reference load gives overall accurate estimates of J and C * , compared to other definitions of the reference stress. Based on the present finding, general guidance on the choice of the reference stress for surface crack problems is given
Characterization of SCC crack tips and surface oxide layers in alloy 600
Energy Technology Data Exchange (ETDEWEB)
Fujii, Katsuhiko; Fukuya, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)
2002-09-01
In order to investigate the mechanism of primary water stress corrosion cracking (SCC), direct observation of microstructures of SCC crack tips and surface oxide layers in alloy 600 were carried out. A focused-ion beam (FIB) micro-processing technique was applied to prepare electron transparent foils including the crack tip and the surface oxide layer without any damage to those microstructures. Transmission electron microscopy and analysis were used to characterize the crack tips and surface oxide layers. Cr-rich oxides and a metal-Ni phase were identified in the crack tips and grain boundaries ahead of the crack tips independent of dissolved hydrogen concentrations. >From the fact that the Cr-rich oxides and metal-Ni phase were observed in the inner surface oxide layer, the same oxidation mechanism as the surface is proposed for the crack tip region and internal oxidation accompanying selective Cr oxidation is suggested as the mechanism. (author)
Discretization and Numerical Solution of a Plane Problem in the Mechanics of Interfacial Cracks
Khoroshun, L. P.
2017-01-01
The Fourier transform is used to reduce the linear plane problem of the tension of a body with an interfacial crack to a system of dual equations for the transformed stresses and, then, to a system of integro-differential equations for the difference of displacements of the crack faces. After discretization, this latter system transforms into a system of algebraic equations for displacements of the crack faces. The effect of the bielastic constant and the number of discretization points on the half-length of the crack faces and the distribution of stresses at the interface is studied
A review and assessment of crack case problems in pressurized systems on the space shuttle
International Nuclear Information System (INIS)
Patin, R.M.; Forman, R.G.; Horiuchi, G.K.
1993-01-01
The principal effort for fracture control during development of the Space Shuttle was concentrated on primary structure, pressure vessels, and the main engines. The real occurrence of crack problems leading to safety-of-flight reviews, however, have been primarily affiliated with pressurized subsystems in the vehicle. The cracking of components in pressurized subsystems has occurred mostly from lack of weld penetration, porosity, and joint design oversight where mode 2 loading accelerated the crack initiation process. This paper provides a synopsis of several crack cases that have occurred, and points out the importance of applying a comprehensive fracture control plan to pressurized systems in space programs
International Nuclear Information System (INIS)
Saario, T.; Paine, J.P.N.
1995-01-01
The most widely used technique for NDE of steam generator tubing is eddy current. This technique can reliably detect cracks grown in sodium hydroxide environment only at depths greater than 50% through wall. However, cracking caused by thiosulphate solutions have been detected and sized at shallower depths. The disparity has been proposed to be caused by the different electric resistance of the crack wall surface films and corrosion products in the cracks formed in different environments. This work was undertaken to clarify the role of surface film electric resistance on the disparity found in eddy current detectability of surface cracks in alloy 600 tubes. The proposed model explaining the above mentioned disparity is the following. The detectability of tightly closed cracks by the eddy current technique depends on the electric resistance of the surface films of the crack walls. The nature and resistance of the films which form on the crack walls during operation depends on the composition of the solution inside the crack and close to the crack location. During cooling down of the steam generator, because of contraction and loss of internal pressurization, the cracks are rather tightly closed so that exchange of electrolyte and thus changes in the film properties become difficult. As a result, the surface condition prevailing at high temperature is preserved. If the environment is such that the films formed on the crack walls under operating conditions have low electric resistance, eddy current technique will fail to indicate these cracks or will underestimate the size of these cracks. However, if the electric resistance of the films is high, a tightly closed crack will resemble an open crack and will be easily indicated and correctly sized by eddy current technique
Neumann and Robin problems in a cracked domain with jump conditions on cracks
Czech Academy of Sciences Publication Activity Database
Medková, Dagmar; Krutitskii, P.
2005-01-01
Roč. 301, č. 1 (2005), s. 99-114 ISSN 0022-247X Institutional research plan: CEZ:AV0Z10190503 Keywords : Laplace equation * crack * single layer potential Subject RIV: BA - General Mathematics Impact factor: 0.579, year: 2005
Energy Technology Data Exchange (ETDEWEB)
Keim, E; Shoepper, A; Fricke, S [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)
1997-09-01
One of the most severe loading conditions of a reactor pressure vessel (rpv) under operation is the loss of coolant accident (LOCA) condition. Cold water is injected through nozzles in the downcomer of the rpv, while the internal pressure may remain at a high level. Complex thermal hydraulic situations occur and the fluid and downcomer temperatures as well as the fluid to wall heat transfer coefficient at the inner surface are highly non-linear. Due to this non-symmetric conditions, the problem is investigated by three-dimensional non-linear finite element analyses, which allow for an accurate assessment of the postulated flaws. Transient heat transfer analyses are carried out to analyze the effect of non-symmetrical cooling of the inner surface of the pressure vessel. In a following uncoupled stress analysis the thermal shock effects for different types of defects, surface flaws and sub-surface flaws are investigated for linear elastic and elastic-plastic material behaviour. The obtained fracture parameters are calculated along the crack fronts. By a fast fracture analysis the fracture parameters at different positions along the crack front are compared to the material resistance. Safety margins are pointed out in an assessment diagram of the fracture parameters and the fracture resistance versus the transient temperature at the crack tip position. (author). 4 refs, 10 figs.
Fracture behavior of short circumferentially surface-cracked pipe
International Nuclear Information System (INIS)
Krishnaswamy, P.; Scott, P.; Mohan, R.
1995-11-01
This topical report summarizes the work performed for the Nuclear Regulatory Comniission's (NRC) research program entitled ''Short Cracks in Piping and Piping Welds'' that specifically focuses on pipes with short, circumferential surface cracks. The following details are provided in this report: (i) material property deteminations, (ii) pipe fracture experiments, (iii) development, modification and validation of fracture analysis methods, and (iv) impact of this work on the ASME Section XI Flaw Evaluation Procedures. The material properties developed and used in the analysis of the experiments are included in this report and have been implemented into the NRC's PIFRAC database. Six full-scale pipe experiments were conducted during this program. The analyses methods reported here fall into three categories (i) limit-load approaches, (ii) design criteria, and (iii) elastic-plastic fracture methods. These methods were evaluated by comparing the analytical predictions with experimental data. The results, using 44 pipe experiments from this and other programs, showed that the SC.TNP1 and DPZP analyses were the most accurate in predicting maximum load. New Z-factors were developed using these methods. These are being considered for updating the ASME Section XI criteria
An interaction analysis of twin surface cracks by the line-spring model
International Nuclear Information System (INIS)
Kim, Y.J.; Yang, W.H.; Choy, Y.S.; Lee, J.S.
1992-01-01
The fracture mechanics analysis of surface cracks is important for the integrity evaluation of flawed structural components. The objective of this paper is to numerically investigate the interaction effect of twin surface cracks in plate and cylindrical geometrie. First the usefulness of the line-spring model is verified by analyzing a single surface crack in a plate, and then the model is extended to twin surface crack in plate and cylindrical geometries. For the case of a finite plate under uniaxial loading, the effect of crack spacing on the stress intensity factor is negligible. However, for the case of a cylinder under moderate internal pressure, a significant increase in stress intensity factor is observed at the deepest point of the surface crack. (orig.)
Dirichlet's problem on a cracked trapezium | Zongo | Global Journal ...
African Journals Online (AJOL)
This paper deals with solving Poisson's equation with conditions on Dirichlet's limits in an isosceles trapezium with two cracks. The large singular finite elements method used gives satisfactory results in all the domain of study. Numerical values obtained are very accurate for the constraint function and its first derivatives ...
Orbiter LH2 Feedline Flowliner Cracking Problem. Version 1.0
Harris, Charles E.; Cragg, Clinton H.; Raju, Ivatury S.; Elliot, Kenny B.; Madaras, Eric I.; Piascik, Robert S.; Halford, Gary R.; Bonacuse, Peter J.; Sutliff, Daniel L.; Bakhle, Milind A.
2005-01-01
In May of 2002, three cracks were found in the downstream flowliner at the gimbal joint in the LH2 feedline at the interface with the Low Pressure Fuel Turbopump (LPFP) of Space Shuttle Main Engine (SSME) #1 of Orbiter OV-104. Subsequent inspections of the feedline flowliners in the other orbiters revealed the existence of 8 additional cracks. No cracks were found in the LO2 feedline flowliners. A solution to the cracking problem was developed and implemented on all orbiters. The solution included weld repair of all detectable cracks and the polishing of all slot edges to remove manufacturing discrepancies that could initiate new cracks. Using the results of a fracture mechanics analysis with a scatter factor of 4 on the predicted fatigue life, the orbiters were cleared for return to flight with a one-flight rationale requiring inspections after each flight. OV-104 flew mission STS-112 and OV-105 flew mission STS-113. The post-flight inspections did not find any cracks in the repaired flowliners. At the request of the Orbiter Program, the NESC conducted an assessment of the Orbiter LH2 Feedline Flowliner cracking problem with a team of subject matter experts from throughout NASA.
a Cost-Effective Method for Crack Detection and Measurement on Concrete Surface
Sarker, M. M.; Ali, T. A.; Abdelfatah, A.; Yehia, S.; Elaksher, A.
2017-11-01
Crack detection and measurement in the surface of concrete structures is currently carried out manually or through Non-Destructive Testing (NDT) such as imaging or scanning. The recent developments in depth (stereo) cameras have presented an opportunity for cost-effective, reliable crack detection and measurement. This study aimed at evaluating the feasibility of the new inexpensive depth camera (ZED) for crack detection and measurement. This depth camera with its lightweight and portable nature produces a 3D data file of the imaged surface. The ZED camera was utilized to image a concrete surface and the 3D file was processed to detect and analyse cracks. This article describes the outcome of the experiment carried out with the ZED camera as well as the processing tools used for crack detection and analysis. Crack properties that were also of interest were length, orientation, and width. The use of the ZED camera allowed for distinction between surface and concrete cracks. The ZED high-resolution capability and point cloud capture technology helped in generating a dense 3D data in low-lighting conditions. The results showed the ability of the ZED camera to capture the crack depth changes between surface (render) cracks, and crack that form in the concrete itself.
A COST-EFFECTIVE METHOD FOR CRACK DETECTION AND MEASUREMENT ON CONCRETE SURFACE
Directory of Open Access Journals (Sweden)
M. M. Sarker
2017-11-01
Full Text Available Crack detection and measurement in the surface of concrete structures is currently carried out manually or through Non-Destructive Testing (NDT such as imaging or scanning. The recent developments in depth (stereo cameras have presented an opportunity for cost-effective, reliable crack detection and measurement. This study aimed at evaluating the feasibility of the new inexpensive depth camera (ZED for crack detection and measurement. This depth camera with its lightweight and portable nature produces a 3D data file of the imaged surface. The ZED camera was utilized to image a concrete surface and the 3D file was processed to detect and analyse cracks. This article describes the outcome of the experiment carried out with the ZED camera as well as the processing tools used for crack detection and analysis. Crack properties that were also of interest were length, orientation, and width. The use of the ZED camera allowed for distinction between surface and concrete cracks. The ZED high-resolution capability and point cloud capture technology helped in generating a dense 3D data in low-lighting conditions. The results showed the ability of the ZED camera to capture the crack depth changes between surface (render cracks, and crack that form in the concrete itself.
Stage I surface crack formation in thermal fatigue: A predictive multi-scale approach
International Nuclear Information System (INIS)
Osterstock, S.; Robertson, C.; Sauzay, M.; Aubin, V.; Degallaix, S.
2010-01-01
A multi-scale numerical model is developed, predicting the formation of stage I cracks, in thermal fatigue loading conditions. The proposed approach comprises 2 distinct calculation steps. Firstly, the number of cycles to micro-crack initiation is determined, in individual grains. The adopted initiation model depends on local stress-strain conditions, relative to sub-grain plasticity, grain orientation and grain deformation incompatibilities. Secondly, 2-4 grains long surface cracks (stage I) is predicted, by accounting for micro-crack coalescence, in 3 dimensions. The method described in this paper is applied to a 500 grains aggregate, loaded in representative thermal fatigue conditions. Preliminary results provide quantitative insight regarding position, density, spacing and orientations of stage I surface cracks and subsequent formation of crack networks. The proposed method is fully deterministic, provided all grain crystallographic orientations and micro-crack linking thresholds are specified. (authors)
The problem of cracking during welding of monel to stainless steel
International Nuclear Information System (INIS)
Ahmed, J.; Hussain, S.W.
1995-01-01
The problems of severe cracking was encountered while welding monel 400 to 316L stainless steel in the structure of a reaction vessel. It was found that the liquation cracking occurred in the grain boundary regions resulting in the visible cracks in the welds. Different types of filler materials were used without much success. Various factors were controlled such as careful cleaning, heat input, distance of electrode from the weld, feeding rate, etc. It was noted that all these factors influenced the cracking behavior but the most critical was found to be the heat input. Cracking was eliminated when the heat input was decreased to the lowest current to maintain the weld pool. After the successful welding it was found that the strength of the weld was close to that of the individual metals. (author)
Fractures on curved surfaces: A classic problem solved
Balcerak, Ernie
2011-11-01
Sheeting joints—large fractures parallel to a curved rock surface—are common in many locations on Earth, such as the iconic Half Dome in Yosemite National Park in California. Explaining how these fractures form has been a classic unsolved problem in geology. Martel solved the problem by reformulating the static equilibrium equations in a curvilinear reference frame. His analysis shows that compression along a curved surface can induce tension perpendicular to the surface, which can cause subsurface cracks to open. He found that the curvature of a rock surface plays a key role in the formation of fractures.
Eddy current technique for detecting and sizing surface cracks in steel components
International Nuclear Information System (INIS)
Cecco, V.S.; Carter, J.R.; Sullivan, S.P.
1995-01-01
Cracking has occurred in pressure vessel nozzles and girth welds due to thermal fatigue. Pipe welds, welds in support structures, and welds in reactor vault liner panels in nuclear facilities have failed because of cracks. Cracking can also occur in turbine rotor bore surfaces due to high cycle fatigue. Dye penetrant, magnetic particle and other surface NDT methods are used to detect cracks but cannot be used for depth sizing. Crack depth can be measured with various NDT methods such as ultrasonic time-of-flight diffraction (TOFD), potential drop, and eddy current. The TOFD technique can be difficult to implement on nozzle welds and is best suited for sizing deep cracks (>5 mm). The conventional eddy current method is easy to implement, but crack sizing is normally limited to shallow cracks ( 2 mm) cracks. Eddy current testing (ET) techniques are readily amenable to remote/automatic inspections. These new probes could augment present magnetic particle (MT) and dye penetrant (PT) testing through provision of reliable defect depth information. Reliable crack sizing permits identification of critical cracks for plant life extension and licensing purposes. In addition, performing PT and MT generates low level radioactive waste in some inspection applications in nuclear facilities. Replacing these techniques with ET for some components will eliminate some of this radioactive waste. (author)
International Nuclear Information System (INIS)
Hettche, L.R.; Rath, B.B.
1982-01-01
The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties
The Effect of the Free Surface on the Singular Stress Field at the Fatigue Crack Front
Directory of Open Access Journals (Sweden)
Oplt Tomáš
2017-11-01
Full Text Available Description of stress singularity in the vicinity of a free surface is presented. Its presence causes the retardation of the fatigue crack growth in that region and fatigue crack is being curved. Numerical model is used to study dependence of the stress singularity exponent on Poisson’s ratio. Estimated values are compared to those already published. Experimentally measured angles of fatigue crack on SENB specimens confirm the relation between Poisson’s ratio and the angle between crack front and free surface.
Ali, Abdulbaset; Hu, Bing; Ramahi, Omar
2015-05-15
This work presents a real life experiment of implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impact in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks and the obtained experimental results showed good crack classification accuracy rates.
Influence of material ductility and crack surface roughness on fracture instability
International Nuclear Information System (INIS)
Khezrzadeh, Hamed; Wnuk, Michael P; Yavari, Arash
2011-01-01
This paper presents a stability analysis for fractal cracks. First, the Westergaard stress functions are proposed for semi-infinite and finite smooth cracks embedded in the stress fields associated with the corresponding self-affine fractal cracks. These new stress functions satisfy all the required boundary conditions and according to Wnuk and Yavari's (2003 Eng. Fract. Mech. 70 1659-74) embedded crack model they are used to derive the stress and displacement fields generated around a fractal crack. These results are then used in conjunction with the final stretch criterion to study the quasi-static stable crack extension, which in ductile materials precedes the global failure. The material resistance curves are determined by solving certain nonlinear differential equations and then employed in predicting the stress levels at the onset of stable crack growth and at the critical point, where a transition to the catastrophic failure occurs. It is shown that the incorporation of the fractal geometry into the crack model, i.e. accounting for the roughness of the crack surfaces, results in (1) higher threshold levels of the material resistance to crack propagation and (2) higher levels of the critical stresses associated with the onset of catastrophic fracture. While the process of quasi-static stable crack growth (SCG) is viewed as a sequence of local instability states, the terminal instability attained at the end of this process is identified with the global instability. The phenomenon of SCG can be used as an early warning sign in fracture detection and prevention.
Surface crack growth in cylindrical hollow specimen subject to tension and torsion
Directory of Open Access Journals (Sweden)
V. Shlyannikov
2015-07-01
Full Text Available The subject for studies is an aluminium cylindrical hollow specimen with external axial and part circumferential semi-elliptical surface crack undergoing fatigue loads. Both the optical microscope measurements and the crack opening displacement (COD method are used to monitor and calculate both crack depth and crack length during the tests. The variation of crack growth behaviour is studied under cyclic axial tension, pure torsion and combined tension+torsion fatigue loading. For the particular surface flaw geometries considered, the elastic and plastic in-plane and out-of-plane constraint parameters, as well as the governing parameter for stress fields in the form of In-integral and plastic stress intensity factor, are obtained as a function of the aspect ratio, dimensionless crack length and crack depth. The combined effect of tension and torsion loading and initial surface flaw orientation on the crack growth for two type of aluminium alloys is made explicit. The experimental and numerical results of the present study provided the opportunity to explore the suggestion that fatigue crack propagation may be governed more strongly by the plastic stress intensity factor rather than the magnitude of the elastic SIFs alone. One advantage of the plastic SIF is its sensitivity to combined loading due to accounting for the plastic properties of the material.
International Nuclear Information System (INIS)
Wu, Szu-Ying; Tsai, Bor-Jiun; Chen, Jien-Jong
2015-01-01
In this study, a 3-D automatic elastic-plastic finite element mesh generator is established to accurately predict the J-integral value of an arbitrary reducer with a constant-depth internal circumferential surface crack under bending and axial force. The contact pairs are used on the crack surfaces to simulate the actual contact behaviors of the crack model under loadings. In order to verify the accuracy of the proposed elastic-plastic finite element model for a reducer with a surface crack, the cracked straight pipe models are generated according to a special modeling procedure for a flawed reducer. The J-integral values along the crack front of surface crack are calculated and compared with the straight pipe models which have been verified in the previous published studies. Based on the comparison of computed results, good agreements are obtained to show the accuracy of present numerical models. More confidence on using the 3-D elastic-plastic finite element analysis for reducers with internal circumferential surface cracks can be thus established in this work
Detection of a Surface-Breaking Crack by Using the Surface Wave of a Laser Ultrasound
International Nuclear Information System (INIS)
Park, Seung-Kyu; Baik, Sung-Hoon; Jung, Hyun-Kyu; Joo, Young-Sang; Cha, Hyung-Ki; Kang, Young-June
2006-01-01
A laser ultrasonic system is a non-contact inspection device with a high spatial resolution and a wide-band spectrum. Also it provides absolute measurements of the moving distance and can be applied to the hard-to access locations with curved or rough surfaces like a nuclear power plant. Several laser ultrasonic techniques are applied for the detection of micro cracks in a nuclear power plant. Also, laser ultrasonic techniques are used to measure the grain size of materials and to detect cracks in railroads and aircrafts. Though the laser ultrasonic inspection system is widely applicable, it is comparatively expensive and it provides a low signal-to-noise ratio when compared to the conventional piezoelectric transducers. Many studies have been carried out to improve the system performance. One of the widely used measurement devices of a ultrasound is the Confocal Fabry-Perot Interferometer(CFPI) with a dynamic stabilizer. The dynamic stabilizer improves the stability of the CFPI by adaptively maintaining the optimum working status at the measuring time of the CFPI. In this paper, we have investigated the detection methods of the depth of a surface-breaking crack by using the surface wave of a laser ultrasound. We have fabricated a laser ultrasonic inspection system on an optical table by using a pulse laser, a CFPI with a dynamic stabilizer and a computer. The computer acquires the laser ultrasound by using a high speed A/D converter with a sampling rate of 1000 MHz. The dynamic stabilizer stabilizes the CFPI by adaptively maintaining it at an optimum status when the laser ultrasound is generated. The computer processes the ultrasonic signal in real time to extract the depth information of a surface-breaking crack. We extracted the depth information from the peak-to-valley values in the time domain and also from the center frequencies of the spectrum in the frequency domain
Analysis of stress intensity factors for surface cracks in pre/post penetration
International Nuclear Information System (INIS)
Miyoshi, Toshiro; Yoshida, Yuichiro
1988-01-01
It is important to evaluate the penetration of surface cracks in a Leak-Before-Break analysis. Because the stress intensity factors for surface cracks in pre/post penetration had not yet been analyzed, the authors carried three-dimensional boundary element analyses in order to obtain them. First, the authors developed the technique of nodal breakdown appropriate for cracks with short ligament length in a two-dimensional boundary element analysis. Next, analyses of stress intensity factor for surface cracks in pre/post penetration were carried out using the technique of nodal breakdown for cracks with short ligament length and the three-dimensional boundary element code BEM 3 D which was designed for a supercomputer. (author)
Regularities in development of surface cracks in low-alloy steel under asymmetric cyclic bending
International Nuclear Information System (INIS)
Letunov, V.I.; Shul'ginov, B.S.; Plundrova, I.; Vajnshtok, V.A.; Kramarenko, I.V.
1985-01-01
Semielliptical cracks in low-alloy 09g2 and 12gn2mfayu steels are studied for regularities of their growth. It is shown that the growth rate of the semielliptical crack at the preset ΔK and R values is higher in the maximally depressed point of the front than in the point on the surface on the specimen under cyclic bending. A decrease of the 1/C parameter with growth of the semielliptical crack is experimentally established being attributed to the increase in difference of ΔK both in maximally depressed point of the crack front (phi=0) and in the point on the specimen surface (phi= π/2). Experiments have proved the correctness of the previously established formulas of stress-intensity factor calculation for semielliptical surface cracks under bending
Crack resistance of pvd coatings : Influence of surface treatment prior to deposition
Zoestbergen, E; de Hosson, J.T.M.
The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack
Effect of a cracked surface of porous silicon on the behaviour of the acoustic signature
Directory of Open Access Journals (Sweden)
Bouhedja Samia
2014-06-01
Full Text Available We study in this work the effect of a crack, located on the porous silicon, Psi, surface on the propagation of Rayleigh waves. We simulate and analyse the acoustic signature V(z according porosity at 142 MHz, to study the microstructure of PSi around the crack.
Modeling of a Curvilinear Planar Crack with a Curvature-Dependent Surface Tension
Zemlyanova, A. Y.; Walton, J. R.
2012-01-01
An approach to modeling fracture incorporating interfacial mechanics is applied to the example of a curvilinear plane strain crack. The classical Neumann boundary condition is augmented with curvature-dependent surface tension. It is shown that the considered model eliminates the integrable crack-tip stress and strain singularities of order 1/2 present in the classical linear fracture mechanics solutions, and also leads to the sharp crack opening that is consistent with empirical observations. Unlike for the case of a straight crack, for a general curvilinear crack some components of the stresses and the derivatives of the displacements may still possess weaker singularities of a logarithmic type. Generalizations of the present study that lead to complete removal of all crack-tip singularities, including logarithmic, are the subject of a future paper. © 2012 Society for Industrial and Applied Mathematics.
Crack path and fracture surface modifications in cement composites
Directory of Open Access Journals (Sweden)
Sajjad Ahmad
2015-10-01
Full Text Available There is a tremendous increase in the use of high strength and high performance self-consolidating cementitious composites due to their superior workability and mechanical strengths. Cement composites are quasi-brittle in nature and possess extremely low tensile strength as compared to their compressive strength. Due to the low tensile strength capacity, cracks develop in cementitious composites due to the drying shrinkage, plastic settlements and/or stress concentrations (due to external restrains and/or applied stresses etc. These cracks developed at the nanoscale may grow rapidly due to the applied stresses and join together to form micro and macro cracks. The growth of cracks from nanoscale to micro and macro scale is very rapid and may lead to sudden failure of the cement composites. The present paper reports the modifications in the crack growth pattern of the high performance cement composites to achieve enhanced ductility and toughness. The objective was accomplished by the incorporation of the micro sized inert particulates in the cement composite matrix. The results indicate that the incorporation of micro sized inert particles acted as the obstacles in the growth of the cracks thus improving the ductility and the energy absorption capacity of the self-consolidating cementitious composites.
Xie, Jing; Xu, Changhang; Chen, Guoming; Huang, Weiping
2018-06-01
Inductive thermography is one kind of infrared thermography (IRT) technique, which is effective in detection of front surface cracks in metal plates. However, rear surface cracks are usually missed due to their weak indications during inductive thermography. Here we propose a novel approach (AET: AE Thermography) to improve the visibility of rear surface cracks during inductive thermography by employing the Autoencoder (AE) algorithm, which is an important block to construct deep learning architectures. We construct an integrated framework for processing the raw inspection data of inductive thermography using the AE algorithm. Through this framework, underlying features of rear surface cracks are efficiently extracted and new clearer images are constructed. Experiments of inductive thermography were conducted on steel specimens to verify the efficacy of the proposed approach. We visually compare the raw thermograms, the empirical orthogonal functions (EOFs) of the prominent component thermography (PCT) technique and the results of AET. We further quantitatively evaluated AET by calculating crack contrast and signal-to-noise ratio (SNR). The results demonstrate that the proposed AET approach can remarkably improve the visibility of rear surface cracks and then improve the capability of inductive thermography in detecting rear surface cracks in metal plates.
Stress fields around a crack lying parallel to a free surface
International Nuclear Information System (INIS)
Higashida, Yutaka; Kamada, K.
1980-12-01
A method of stress analysis for a two dimentional crack, which is subjected to internal gas pressure, and situated parallel to a free surface of a material, is presented. It is based on the concept of continuously distributed edge dislocations of two kinds, i.e. one with Burgers vector normal to the free surface and the other with parallel to it. Stress fields of individual dislocations are chosen so as to satisfy stress free boundary conditions at the free surface, by taking account of image dislocations. Distributions of the both kinds of dislocations in the crack are derived so as to give the internal gas pressure and, at the same time, to satisfy shear stress free boundary condition on the crack surface. Stress fields σsub(xx), σsub(yy) and σsub(xy) in the sub-surface layer are then determined from them. They have square root singularities at the crack-tip. (author)
International Nuclear Information System (INIS)
Hoegberg, K.; Zetterwall, T.
1986-01-01
The ability of detecting surface breaking or near-surface cracks with ultrasonic techniques from the inside of centrifugally cast stainless steel pipes have been investigated by the Swedish Plant Inspectorate (SA) and AaF-Tekniska Roentgencentralen AB (AaF-TRC) on behalf of the Swedish Nuclear Power Inspectorate (SKI) and the Swedish State Power Board (SV). Fifteen specimens from the international Stainless Steel Round Robin Test (SSRRT) were used in this study. All specimens were examined from the cracked side with different ultrasonic probes. The data reported here indicate that a probe with dual elements, low frequency, longitudinal waves and short focus distance can detect almost all of the intended defects with a rather good signal-to-noise ratio. (author)
Lining seam elimination algorithm and surface crack detection in concrete tunnel lining
Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling
2016-11-01
Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.
Stress intensity factor analyses of surface cracks in three-dimensional structures
International Nuclear Information System (INIS)
Miyazaki, Noriyuki; Shibata, Katsuyuki; Watanabe, Takayuki; Tagata, Kazunori.
1983-11-01
The stress intensity factor analyses of surface cracks in various three-dimensional structures were performed using the finite element computer program EPAS-J1. The results obtained by EPAS-J1 were compared with other finite element solutions or results obtained by the simplified estimation methods. Among the simplified estimation methods, the equations proposed by Newman and Raju give the distributions of the stress intensity factor along a crack front, which were compared with the result obtained by EPAS-J1. It was confirmed by comparing the results that EPAS-J1 gives reasonable stress intensity factors of surface cracks in three-dimensional structures. (author)
A study on the ductile fracture of a surface crack, 1
International Nuclear Information System (INIS)
Kikuchi, Masanori; Nishio, Tamaki; Yano, Kazunori; Machida, Kenji; Miyamoto, Hiroshi
1988-01-01
Ductile fracture of surface crack is studied experimentally and numerically. At first, fatigue pre-crack is introduced, and the aspect ratios of the growing fatigue crack are measured. Then the ductile fracture test is carried out and the distributions of SZW and Δa are measured. It is noted that Δa is largest where φ, the angle from surface, is nearly 30deg. J integral distribution is evaluated by the finite element method, and it is shown that the J value is also the largest where φ is nearly 30deg. (author)
International Nuclear Information System (INIS)
Meny, Lucienne.
1979-06-01
Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr
Hauge, Petter
2013-01-01
The objective of the Master Thesis has been to provide an improved method for condition assessment, which will give a better correlation between Condition class and actual Condition of concrete pipes with cracking and/or surface damages. Additionally improvement of the characterization of cracking (SR) and surface (KO) damages was a sub goal.Based on the findings described in my Thesis and my Specialization Project (Hauge 2012), I recommend that the Norwegian condition assessment method based...
An investigation into the change of shape of fatigue cracks initiated at surface flaws
International Nuclear Information System (INIS)
Portch, D.J.
1979-09-01
Surface fatigue cracks found in plant can often be closely approximated in shape by a semi-ellipse. The stress intensity factor range at the deepest part of the surface crack is dependent upon a number of variables, including the crack aspect ratio. In fatigue life analysis, the aspect ratio of a propagating crack is frequently assumed to remain constant, possibly due to the complexity of estimating aspect ratio change on the basis of linear elastic fracture mechanics. This report describes the results of an experimental programme to examine the change of shape of fatigue cracks subjected to uniaxial tensile or bending stresses. The data obtained has been used to modify equations proposed by the author in a previous report to predict the change of aspect ratio of a crack propagating from a known defect. These modified equations, although not including terms to account for the effects of varying mean stress levels or material properties, generally give a good agreement with published experimental results. Crack propagation rate data obtained from the tensile fatigue tests has been used to estimate crack tip stress intensity factors. These are compared with values calculated from published solutions using both the constant geometry assumption and also the shape change equations proposed in this report. Use of these equations gives improved agreement with experiment in most cases. (author)
Assessment of the stability of a surface crack in laminates
Czech Academy of Sciences Publication Activity Database
Hutař, Pavel; Ševčík, Martin; Náhlík, Luboš; Zouhar, Michal; Knésl, Zdeněk
2014-01-01
Roč. 50, č. 1 (2014), s. 9-16 ISSN 0191-5665 R&D Projects: GA ČR(CZ) GAP108/12/1560 Institutional support: RVO:68081723 Keywords : periodically layered composite * interface crack * generalized stress intensity factor * fracture mechanics of interface Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.473, year: 2014
A TESSELLATION MODEL FOR CRACK PATTERNS ON SURFACES
Directory of Open Access Journals (Sweden)
Werner Nagel
2011-05-01
Full Text Available This paper presents a model of random tessellations that reflect several features of crack pattern. There are already several theoretical results derivedwhich indicate that thismodel can be an appropriate referencemodel. Some potential applications are presented in a tentative statistical study.
International Nuclear Information System (INIS)
Lu Yanlin; Zhou Xiao; Qu Jiadi; Dou Yikang; He Yinbiao
2005-01-01
An efficient scheme, 3-D thermal weight function (TWF) method, and a novel numerical technique, multiple virtual crack extension (MVCE) technique, were developed for determination of histories of transient stress intensity factor (SIF) distributions along 3-D crack fronts of a body subjected to thermal shock. The TWF is a universal function, which is dependent only on the crack configuration and body geometry. TWF is independent of time during thermal shock, so the whole history of transient SIF distributions along crack fronts can be directly calculated through integration of the products of TWF and transient temperatures and temperature gradients. The repeated determinations of the distributions of stresses (or displacements) fields for individual time instants are thus avoided in the TWF method. An expression of the basic equation for the 3-D universal weight function method for Mode I in an isotropic elastic body is derived. This equation can also be derived from Bueckner-Rice's 3-D WF formulations in the framework of transformation strain. It can be understood from this equation that the so-called thermal WF is in fact coincident with the mechanical WF except for some constants of elasticity. The details and formulations of the MVCE technique are given for elliptical cracks. The MVCE technique possesses several advantages. The specially selected linearly independent VCE modes can directly be used as shape functions for the interpolation of unknown SIFs. As a result, the coefficient matrix of the final system of equations in the MVCE method is a triple-diagonal matrix and the values of the coefficients on the main diagonal are large. The system of equations has good numerical properties. The number of linearly independent VCE modes that can be introduced in a problem is unlimited. Complex situations in which the SIFs vary dramatically along crack fronts can be numerically well simulated by the MVCE technique. An integrated system of programs for solving the
Directory of Open Access Journals (Sweden)
Gourdin Stéphane
2014-01-01
Full Text Available Aircraft engine manufacturers have to demonstrate that handling surface anomalies in sensitive areas of discs are not critical for in-service life of a component. Currently, the models used consider anomalies as long cracks propagating from the first cycle, which introduces a certain degree of conservatism when calculating the fatigue life of surface flaws. Preliminary studies have shown that the first stages of crack propagation from surface anomalies are responsible for the conservative results. Thus, the aim of the study is to characterize the crack propagation from typical surface anomalies and to establish a new crack growth model, which can account for the micro-propagation stage. To separate the effects of the geometry of the anomalies and the residual stress state after introduction of the surface flaws, two V-type anomalies are studied: scratches and dents. Different studies have shown that the residual stresses beneath the anomalies seem to control the fatigue life of samples exhibiting scratches and dents. In order to monitor the crack micro-propagation, a direct current potential drop technique, coupled with heat tints is used during fatigue tests at elevated temperature. Thermal treatments releasing the residual stresses are also used to decouple the effect of crack morphology and residual stresses.
Wang, Fei; Liu, Junyan; Mohummad, Oliullah; Wang, Yang
2018-04-01
In this paper, truncated-correlation photothermal coherence tomography (TC-PCT) was used as a nondestructive inspection technique to evaluate glass-fiber reinforced polymer (GFRP) composite surface cracks. Chirped-pulsed signal that combines linear frequency modulation and pulse excitation was proposed as an excitation signal to detect GFRP composite surface cracks. The basic principle of TC-PCT and extraction algorithm of the thermal wave signal feature was described. The comparison experiments between lock-in thermography, thermal wave radar imaging and chirped-pulsed photothermal radar for detecting GFRP artificial surface cracks were carried out. Experimental results illustrated that chirped-pulsed photothermal radar has the merits of high signal-to-noise ratio in detecting GFRP composite surface cracks. TC-PCT as a depth-resolved photothermal imaging modality was employed to enable three-dimensional visualization of GFRP composite surface cracks. The results showed that TC-PCT can effectively evaluate the cracks depth of GFRP composite.
Detection of a surface breaking crack by using the centroid variations of laser ultrasonic spectrums
International Nuclear Information System (INIS)
Park, Seung Kyu; Baik, Sung Hoon; Lim, Chang Hwan; Joo, Young Sang; Jung, Hyun Kyu; Cha, Hyung Ki; Kang, Young June
2006-01-01
A laser ultrasonic system is a non-contact inspection device with a wide-band spectrum and a high spatial resolution. It provides absolute measurements of the moving distance and it can be applied to hard-to-access locations including curved or rough surfaces like in a nuclear power plant. In this paper, we have investigated the detection methods of the depth of a surface-breaking crack by using the surface wave of a laser ultrasound. The filtering function of a surface-breaking crack is a kind of a low-pass filter. The higher frequency components are more highly decreased in proportion to the crack depth. Also, the center frequency value of each ultrasound spectrum is decreased in proportion to the crack depth. We extracted the depth information of a surface-breaking crack by observing the centroid variation of the frequency spectrum. We describe the experimental results to detect the crack depth information by using the peak-to-valley values in the time domain and the center frequency values in the frequency domain.
Crack/cocaine users show more family problems than other substance users
Directory of Open Access Journals (Sweden)
Helena Ferreira Moura
2014-07-01
Full Text Available OBJECTIVES:To evaluate family problems among crack/cocaine users compared with alcohol and other substance users.METHODS:A cross-sectional multi-center study selected 741 current adult substance users from outpatient and inpatient Brazilian specialized clinics. Subjects were evaluated with the sixth version of the Addiction Severity Index, and 293 crack users were compared with 126 cocaine snorters and 322 alcohol and other drug users.RESULTS:Cocaine users showed more family problems when compared with other drug users, with no significant difference between routes of administration. These problems included arguing (crack 66.5%, powder cocaine 63.3%, other drugs 50.3%, p= 0.004, having trouble getting along with partners (61.5%×64.6%×48.7%, p= 0.013, and the need for additional childcare services in order to attend treatment (13.3%×10.3%×5.1%, p= 0.002. Additionally, the majority of crack/cocaine users had spent time with relatives in the last month (84.6%×86.5%×76.6%, p= 0.011.CONCLUSIONS:Brazilian treatment programs should enhance family treatment strategies, and childcare services need to be included.
An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems
Teng, Z. H.; Sun, F.; Wu, S. C.; Zhang, Z. B.; Chen, T.; Liao, D. M.
2018-02-01
By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.
The effect of a free surface on fatigue crack behaviour
Czech Academy of Sciences Publication Activity Database
Hutař, Pavel; Náhlík, Luboš; Knésl, Zdeněk
2010-01-01
Roč. 32, č. 8 (2010), s. 1265-1269 ISSN 0142-1123 R&D Projects: GA ČR GA106/09/1954; GA ČR GA101/09/0867 Institutional research plan: CEZ:AV0Z20410507 Keywords : Vertex singularity * Generalized stress intenzity factor * Stress singularity * Fatigue crack * V- notch Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.799, year: 2010
Zemlyanova, A. Y.
2013-03-08
A problem of an interface crack between two semi-planes made out of different materials under an action of an in-plane loading of general tensile-shear type is treated in a semi-analytical manner with the help of Dirichlet-to-Neumann mappings. The boundaries of the crack and the interface between semi-planes are subjected to a curvature-dependent surface tension. The resulting system of six singular integro-differential equations is reduced to the system of three Fredholm equations. It is shown that the introduction of the curvature-dependent surface tension eliminates both classical integrable power singularity of the order 1/2 and an oscillating singularity present in a classical linear elasticity solutions. The numerical results are obtained by solving the original system of singular integro-differential equations by approximating unknown functions with Taylor polynomials. © 2013 The Author.
The Detection of Vertical Cracks in Asphalt Using Seismic Surface Wave Methods
International Nuclear Information System (INIS)
Iodice, M; Muggleton, J; Rustighi, E
2016-01-01
Assessment of the location and of the extension of cracking in road surfaces is important for determining the potential level of deterioration in the road overall and the infrastructure buried beneath it. Damage in a pavement structure is usually initiated in the tarmac layers, making the Rayleigh wave ideally suited for the detection of shallow surface defects. This paper presents an investigation of two surface wave methods to detect and locate top-down cracks in asphalt layers. The aim of the study is to compare the results from the well- established Multichannel Analysis of Surface Waves (MASW) and the more recent Multiple Impact of Surface Waves (MISW) in the presence of a discontinuity and to suggest the best surface wave technique for evaluating the presence and the extension of vertical cracks in roads. The study is conducted through numerical simulations alongside experimental investigations and it considers the cases for which the cracking is internal and external to the deployment of sensors. MISW is found to enhance the visibility of the reflected waves in the frequency wavenumber ( f-k ) spectrum, helping with the detection of the discontinuity. In some cases, by looking at the f-k spectrum obtained with MISW it is possible to extract information regarding the location and the depth of the cracking. (paper)
Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends
International Nuclear Information System (INIS)
Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K.; Martin, P.; Bureau, J.F.
2006-01-01
A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)
Eddy current array probe for detection of surface breaking cracks in the extrados of feeder bends
Energy Technology Data Exchange (ETDEWEB)
Obrutsky, L.S.; Cassidy, R.A.; Chaplin, K. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)]. E-mail: obrutskyl@aecl.ca; Martin, P. [NB Power, Point Lepreau NGS, Point Lepreau, New Brunswick (Canada)]. E-mail: PMartin@nbpower.com; Bureau, J.F. [Zetec, Quebec, Quebec (Canada)]. E-mail: jean-francois.bureau@zetec.com
2006-07-01
A new eddy current array probe has been implemented as a straightforward and promising technique for detection of outer diameter (OD) surface-breaking cracks on the extrados of feeder bends. The design is based on previous work performed at AECL, which had demonstrated that eddy current probes with laterally displaced transmit-receive coils can overcome some of the limitations of inspecting ferritic steel components for surface-breaking cracks. The Feeder Integrity Joint Program-CANDU Owners Group Inc. (FIJP-COG) Non-Destructive Evaluation (NDE) Team members commissioned AECL to work in collaboration with the probe manufacturer ZETEC, to develop a field usable eddy current array probe. The objective was to acquire a technique with the following capabilities: fast scanning non-contact inspection technique for surface breaking discontinuities; full inspection of the bend extrados OD surface in a single scan; ability to inspect first and second bends with similar settings and capabilities; permanent record for future reference; axial and circumferential crack detection in a single scan; capability to detect OD surface-breaking cracks, which can provide additional information to that provided by ultrasonic testing (UT) for flaw characterization, and detection threshold: Surface breaking cracks equivalent to a 0.5 mm deep, 10 mm long EDM notch located on the OD of the bend extrados. This paper discusses the basis for probe design, summarizes the experimental work to evaluate probe capabilities and analyzes the results from the field trial. (author)
Effect of surface treatments on stress corrosion cracking susceptibility of nickel base alloys
International Nuclear Information System (INIS)
Iwanami, Masaru; Kaneda, Junya; Tamako, Hiroaki; Hato, Hisamitsu; Takamoto, Shinichi
2009-01-01
Effect of surface treatment on SCC susceptibility of Ni base alloys was investigated. Cracks were observed in all grinding specimens in a creviced bent beam (CBB) test. On the other hand, no cracks occurred in shot peening (SP), water jet peening (WJP) specimens. It was indicated that these surface treatments effectively reduced the SCC susceptibility of nickel-base alloys. As a result of a residual stress test, the surface of specimens with grinding had high tensile residual stress. However, SP and WJP improved surface residual stress to compressive stress. The depth of the compressive effect of WJP was almost the same as that of SP. However, the surface hardness of WJP specimens differed from that of SP and it was found that WJP had less impact on surface hardening. This difference was consistent with their surface microstructures. The surface of SP specimens had clearly the deformation region, but the surface of WJP specimens was localized. (author)
Surface crack formation on rails at grinding induced martensite white etching layers
DEFF Research Database (Denmark)
Rasmussen, Carsten Jørn; Fæster, Søren; Dhar, Somrita
2017-01-01
The connection between profile grinding of rails, martensite surface layers and crack initiation has been investigated using visual inspection, optical microscopy and 3D X-ray computerized tomography. Newly grinded rails were extracted and found to be covered by a continuous surface layer...... of martensite with varying thickness formed by the grinding process. Worn R350HT and R200 rails were extracted from the Danish rail network as they had transverse bands resembling grinding marks on the running surface. The transverse bands were shown to consist of martensite which had extensive crack formation...... at the martensite/pearlite interface. The cracks in R350HT propagated down into the rail while those in the soft R200 returned to the surface causing only very small shallow spallation. The transverse bands had the same shape, size, orientation, location and periodicity which would be expected from grinding marks...
Cracking Problems and Mechanical Characteristics of PME and BME Ceramic Capacitors
Teverovsky, Alexander
2018-01-01
Most failures in MLCCs are caused by cracking that create shorts between opposite electrodes of the parts. A use of manual soldering makes this problem especially serious for space industry. Experience shows that different lots of ceramic capacitors might have different susceptibility to cracking under manual soldering conditions. This simulates a search of techniques that would allow revealing capacitors that are most robust to soldering-induced stresses. Currently, base metal electrode (BME) capacitors are introduced to high-reliability applications as a replacement of precious metal electrode (PME) parts. Understanding the difference in the susceptibility to cracking between PME and BME capacitors would facilitate this process. This presentation gives a review of mechanical characteristics measured in-situ on MLCCs that includes flexural strength, Vickers hardness, indentation fracture toughness, and the board flex testing and compare characteristics of BME and PME capacitors. A history case related to cracking in PME capacitors that caused flight system malfunctions and mechanisms of failure are considered. Possible qualification tests that would allow evaluation of the resistance of MLCCs to manual soldering are suggested and perspectives related to introduction of BME capacitors discussed.
Importance and role of grain size in free surface cracking prediction of heavy forgings
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhenhua [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Ministry of Education of China, Qinhuangdao 066004 (China); Sun, Shuhua; Wang, Bo [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Shi, Zhongping [Key Laboratory of Advanced Forging & Stamping Technology and Science, Yanshan University, Ministry of Education of China, Qinhuangdao 066004 (China); Fu, Wantang, E-mail: wtfu@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China)
2015-02-11
The importance and role of grain size in predicting surface cracking of heavy forgings were investigated. 18Mn18Cr0.5N steel specimens with four different grain sizes were tensioned between 900 and 1100 °C at a strain rate of 0.1 s{sup −1}. The nucleation sites and crack morphology were analyzed through electron backscatter diffraction analysis, and the fracture morphology was examined using scanning electron microscopy. The nucleation sites were independent of the grain size, and cracks primarily formed at grain boundaries and triple junctions between grains with high Taylor factors. Grains with lower Taylor factors inhibited crack propagation. Strain was found to mainly concentrate near the grain boundaries; thus, a material with a larger grain size cracks more easily because there are fewer grain boundaries. Fine grains can be easily rotated to a lower Taylor factor to further inhibit cracking. The fracture morphology transformed from a brittle to ductile type with a lowering of grain size. At lower temperature, small dimples on the fracture surfaces of specimens with smaller grain sizes were left by single parent grains and the dimple edge was the grain edge. At higher temperature, dimples formed through void coalescence and the dimple edge was the tearing edge. Finally, the relationship between the reduction in area, grain size, and deformation temperature was obtained.
Study on municipal road cracking and surface deformation based on image recognition
Yuan, Haitao; Wang, Shuai; Tan, Jizong
2017-05-01
In recent years, the digital image recognition technology of concrete structure cracks and deformation of binocular vision technology detection of civil engineering structure have made substantial development. As a result, people's understanding of the road engineering structure cracking and surface deformation recognition gives rise to a new situation. For the research on digital image concrete structure cracking and masonry structure surface deformation recognition technology, the key is to break through in the method, and to improve the traditional recognition technology and mode. Only in this way can we continuously improve the security level of the highway, to adapt to the new requirements of the development of new urbanization and modernization. This thesis focuses on and systematically analyzes the digital image road engineering structure cracking and key technologies of surface deformation recognition and its engineering applications. In addition, we change the concrete structure cracking and masonry structure surface deformation recognition pattern, and realize the breakthrough and innovation of the road structure safety testing means and methods.
MacKay, Rebecca A.; Smith, Stephen W.; Shah, Sandeep R.; Piascik, Robert S.
2005-01-01
The shuttle orbiter s reaction control system (RCS) primary thruster serial number 120 was found to contain cracks in the counter bores and relief radius after a chamber repair and rejuvenation was performed in April 2004. Relief radius cracking had been observed in the 1970s and 1980s in seven thrusters prior to flight; however, counter bore cracking had never been seen previously in RCS thrusters. Members of the Materials Super Problem Resolution Team (SPRT) of the NASA Engineering and Safety Center (NESC) conducted a detailed review of the relevant literature and of the documentation from the previous RCS thruster failure analyses. It was concluded that the previous failure analyses lacked sufficient documentation to support the conclusions that stress corrosion cracking or hot-salt cracking was the root cause of the thruster cracking and lacked reliable inspection controls to prevent cracked thrusters from entering the fleet. The NESC team identified and performed new materials characterization and mechanical tests. It was determined that the thruster intergranular cracking was due to hydrogen embrittlement and that the cracking was produced during manufacturing as a result of processing the thrusters with fluoride-containing acids. Testing and characterization demonstrated that appreciable environmental crack propagation does not occur after manufacturing.
Sizing of small surface-breaking tight cracks by using laser-ultrasonics
International Nuclear Information System (INIS)
Ochiai, M.; Miura, T.; Kuroda, H.; Yamamoto, S.; Onodera, T.
2004-01-01
On the nondestructive testing, not only detection but also sizing of crack is desirable because the crack depth is one of the most important parameter to evaluate the impact of the crack to the material, to estimate crack growth and ultimately to predict lifetime of the component. Moreover, accurate measurement of the crack depth optimizes countermeasures and timing of repairs, and eventually reduces total cost for plant maintenance. Laser-ultrasonic is a technique that uses two laser beams; one with a short pulse for the generation of ultrasound and another one, long pulse or continuous, coupled to an optical interferometer for detection. The technique features a large detection bandwidth, which is important for small defect inspection. Another feature of laser-ultrasonics is the remote optical scanning of generation and detection points, which enables to inspect components in narrow space and/or having complex shapes. A purpose of this paper is to describe the performance of a laser-ultrasonic testing (LUT) system on stress corrosion cracking (SCC) inspection. We have developed a new technique for sizing shallow cracks, say 0.5-1.5mm, based on the laser-induced surface wave and its frequency analysis. First, sizing capability of the system will be demonstrated by using an artificial surface-breaking slot having depth of 0-2mm in a stainless steel plate. Evaluated depths show good agreement with the machined slot depths within the accuracy of about a few hundred micrometers. Then, SCCs in a stainless steel plate are examined by using the system. Depth of SCC is evaluated every 0.2mm over the crack aperture length. The evaluated depths are compared with the depths measured by the destructive testing. (author)
International Nuclear Information System (INIS)
Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin; Chang, Yoon Suk; Jhung, Myung Jo; Choi, Young Hwan
2010-01-01
This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H 1 values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading
Energy Technology Data Exchange (ETDEWEB)
Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan University, Suwon (Korea, Republic of); Chang, Yoon Suk [Kyung Hee University, Yongin (Korea, Republic of); Jhung, Myung Jo; Choi, Young Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)
2010-03-15
This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H{sub 1} values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading
Elastoplastic analysis of surface cracks in pressure vessels using slip-line theory
International Nuclear Information System (INIS)
Keskinen, R.P.
1983-01-01
The paper considers the aspects of engineering application of SLF theory to long surface cracks in pressure vessels. Green's upper-bound SLF for a bend specimen with deep wedge-shaped notch of small flank angle is adopted to analyse the remaining ligament of the cracked section. The SLF involves only one unknown variable, i.e., the radius of a circular slip-line arc, which can be evaluated from the equilibrium condition across the ligament. The stress distribution across the ligament is easily computed by Hencky's theorem and the respective stress resultants produce the boundary conditions for the solution of the neighboring elastic material. The elastic solution readily yields the rotation of the crack edges, COA, and it in turn geometrically defines the applied CTOD. Comparison has proved their relation to the stress resultants identical with that following from the customary single plastic hinge model when Tresca's yield condition prevails and the tensile side plastic constraint factor of the hinge model is chosen as 1.7. The SLF approach is demonstrated for an internal circumferential surface crack subjected to thermal gradient and axial load representative of overpressurization and emergency cooling conditions of a pressure vessel. Analytical formulas relating COA and CTOD to applied loading are derived and CTOD-R curve based stable crack propagation is solved iteratively. Generic numerical results are presented for COA and CTOD under arbitrary loading combination. The risk of crack growth initiation appears to increase with the linear dimensions of the pressure vessel, but remains small for a chosen BWR application. For a long axial surface crack the approach agrees with a previous plastic hinge analysis by Ranta-Maunus et al. suggesting instability under certain combinations of thermal gradient and internal pressure. (orig./HP)
Nondestructive estimation of depth of surface opening cracks in concrete beams
International Nuclear Information System (INIS)
Arne, Kevin; In, Chiwon; Kurtis, Kimberly; Kim, Jin-Yeon; Jacobs, Laurence J.
2014-01-01
Concrete is one of the most widely used construction materials and thus assessment of damage in concrete structures is of the utmost importance from both a safety point of view and a financial point of view. Of particular interest are surface opening cracks that extend through the concrete cover, as this can expose the steel reinforcement bars underneath and induce corrosion in them. This corrosion can lead to significant subsequent damage in concrete such as cracking and delamination of the cover concrete as well as rust staining on the surface of concrete. Concrete beams are designed and constructed in such a way to provide crack depths up to around 13 cm. Two different types of measurements are made in-situ to estimate depths of real surface cracks (as opposed to saw-cut notches) after unloading: one based on the impact-echo method and the other one based on the diffuse ultrasonic method. These measurements are compared to the crack depth visually observed on the sides of the beams. Discussions are given as to the advantages and disadvantages of each method
Inhibition of Cracks on the Surface of Cement Mortar Using Estabragh Fibers
Directory of Open Access Journals (Sweden)
Tahereh Soleimani
2013-01-01
Full Text Available The influence of adding Estabragh fibers into the cement composites of mortar on surface cracks and mechanical properties of mortar has been studied at various fiber proportions of 0.25%, 0.5%, and 0.75%. The mortar shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of mortar specimens. Although the Estabragh fibers loss their strength in an alkali environment of cement composites, the ability of Estabragh fibers to bridge on the microcracks in the mortar matrix causes a decrease in the number of cracks and in their width on the surface of the mortar samples in comparison with the plain mortar. However, considering the mechanical properties of specimens such as bending strength and compressive strength, among all fiber proportions, only the specimens with 0.25% of Estabragh fiber performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of mortar. Consequently, by adding 0.25% of Estabragh fibers to the cement mortar, a remarkable inhibition in crack generation on fiber-containing cement composite of mortar is achieved.
A Wireless Monitoring System for Cracks on the Surface of Reactor Containment Buildings.
Zhou, Jianguo; Xu, Yaming; Zhang, Tao
2016-06-14
Structural health monitoring with wireless sensor networks has been increasingly popular in recent years because of the convenience. In this paper, a real-time monitoring system for cracks on the surface of reactor containment buildings is presented. Customized wireless sensor networks platforms are designed and implemented with sensors especially for crack monitoring, which include crackmeters and temperature detectors. Software protocols like route discovery, time synchronization and data transfer are developed to satisfy the requirements of the monitoring system and stay simple at the same time. Simulation tests have been made to evaluate the performance of the system before full scale deployment. The real-life deployment of the crack monitoring system is carried out on the surface of reactor containment building in Daya Bay Nuclear Power Station during the in-service pressure test with 30 wireless sensor nodes.
Yeh, Chun-Ping; Huang, Jiunn-Yuan
2018-04-01
Low-alloy steels used as structural materials in nuclear power plants are subjected to cyclic stresses during power plant operations. As a result, cracks may develop and propagate through the material. The alternating current potential drop technique is used to measure the lengths of cracks in metallic components. The depth of the penetration of the alternating current is assumed to be small compared to the crack length. This assumption allows the adoption of the unfolding technique to simplify the problem to a surface Laplacian field. The numerical modelling of the electric potential and current density distribution prediction model for a compact tension specimen and the unfolded crack model are presented in this paper. The goal of this work is to conduct numerical simulations to reduce deviations occurring in the crack length measurements. Numerical simulations were conducted on AISI 4340 low-alloy steel with different crack lengths to evaluate the electric potential distribution. From the simulated results, an optimised position for voltage measurements in the crack region was proposed.
Simulation of surface cracks measurement in first walls by laser spot array thermography
Energy Technology Data Exchange (ETDEWEB)
Pei, Cuixiang; Qiu, Jinxin; Liu, Haocheng; Chen, Zhenmao, E-mail: chenzm@mail.xjtu.edu.cn
2016-11-01
The inspection of surface cracks in first walls (FW) is very important to ensure the safe operation of the fusion reactors. In this paper, a new laser excited thermography technique with using laser spot array source is proposed for the surface cracks imaging and evaluation in the FW with an intuitive and non-contact measurement method. Instead of imaging a crack by scanning a single laser spot and superimposing the local discontinuity images with the present laser excited thermography methods, it can inspect a relatively large area at one measurement. It does not only simplify the measurement system and data processing procedure, but also provide a faster measurement for FW. In order to investigate the feasibility of this method, a numerical code based on finite element method (FEM) is developed to simulate the heat flow and the effect of the crack geometry on the thermal wave fields. An imaging method based on the gradient of the thermal images is proposed for crack measurement with the laser spot array thermography method.
Standard practice for fracture testing with surface-crack tension specimens
American Society for Testing and Materials. Philadelphia
2003-01-01
1.1 This practice covers the design, preparation, and testing of surface-crack tension (SCT) specimens. It relates specifically to testing under continuously increasing force and excludes cyclic and sustained loadings. The quantity determined is the residual strength of a specimen having a semielliptical or circular-segment fatigue crack in one surface. This value depends on the crack dimensions and the specimen thickness as well as the characteristics of the material. 1.2 Metallic materials that can be tested are not limited by strength, thickness, or toughness. However, tests of thick specimens of tough materials may require a tension test machine of extremely high capacity. The applicability of this practice to nonmetallic materials has not been determined. 1.3 This practice is limited to specimens having a uniform rectangular cross section in the test section. The test section width and length must be large with respect to the crack length. Crack depth and length should be chosen to suit the ultimate pu...
Detection and sizing of inside-surface cracks in reactor pressure vessels
International Nuclear Information System (INIS)
Kamata, Hiroshi; Kanazawa, Katsuo; Satoh, Kunio; Honma, Takashi
1984-01-01
According to the past operational experience of LWRs, most of the defects arising in reactor pressure vessels accompanying operation are cracks occurring in the build up welding of austenitic stainless steel on the internal surfaces. The detection of these cracks has been carried out by ultrasonic flaw detection from outside in BWRs and from inside in PWRs as in-service inspection. However, there are difficulties such as ultrasonic echoes often occur though defects do not exist, and the quantitative evaluation of detected cracks is difficult by this method because of its accuracy. One of the means to reduce the first difficulty is to use eddy current method together to help the judgement, and for overcoming the second, the ultrasonic method catching end peak echo, that catching diffracted waves, eddy current method and electric resistance method were tried and compared. It is desirable to detect cracks in early stage before they reach parent material. The techniques to detect cracks on the internal surfaces of pressure vessels from the inside and to measure the depth are reported in this paper. The methods of flaw detection examined and the instruments used, the experimental method and the results are reported. It was concluded that eddy current method can be used as the backup for ultrasonic remote flaw detection, and the accuracy of depth measurement was the highest in ultrasonic diffraction wave method. (Kako, I.)
International Nuclear Information System (INIS)
Chai Guozhong; Fang Zhimin; Jiang Xianfeng; Li Gan
2004-01-01
This paper presents a comprehensive range of analyses on the interaction of two identical semi-elliptical surface cracks at the internal and external surfaces of a pressurized cylinder. The considered ratios of the crack depth to crack length are b/a=0.25, 0.5, 0.75 and 1.0; the ratios of the crack depth to wall thickness of the cylinder are 2b/t=0.2, 0.4, 0.6, 0.7 and 0.8. Forty crack configurations are analyzed and the stress intensity factors along the crack front are presented. The numerical results show that for 2b/t<0.7, the interaction leads to a decrease in the stress intensity factors for both internal and external surface cracks, compared with a single internal or external surface crack. Thus for fracture analysis of a practical pressurized cylinder with two identical semi-elliptical surface cracks at its internal and external surfaces, a conservative result is obtained by ignoring the interaction
Some problems in calibrating surface contamination meters
International Nuclear Information System (INIS)
Chen Zigen; LI Xingyuan; Shuai Xiaoping.
1984-01-01
It is necessary that instruments are calibrated accurately in order to obtain reliable survey data of surface contamination. Some problems in calibrating surface contamination meters are expounded in this paper. Measurement comparison for beta surface contamination meters is organized within limited scope, thus survey quality is understood, questions are discovered, significance of calibration is expounded further. (Author)
Sub-surface Fatigue Crack Growth at Alumina Inclusions in AISI 52100 Roller Bearings
DEFF Research Database (Denmark)
Cerullo, Michele
2014-01-01
Sub-surface fatigue crack growth at non metallic inclusions is studied in AISI 52100 bearing steel under typical rolling contact loads. A first 2D plane strain finite element analysis is carried out to compute the stress history in the innner race at a characteristic depth, where the Dang Van...... damage factor is highest. Subsequently the stress history is imposed as boundary conditions in a periodic unit cell model, where an alumina inclusion is embedded in a AISI 52100 matrix. Cracks are assumed to grow radially from the inclusion under cyclic loading. The growth is predicted by means...
Directory of Open Access Journals (Sweden)
X. Liu
2018-01-01
Full Text Available In the oil and gas transportation system over long distance, application of high-strength pipeline steels can efficiently reduce construction and operation cost by increasing operational pressure and reducing the pipe wall thickness. Failure assessment is an important issue in the design, construction, and maintenance of the pipelines. The small circumferential surface cracks with constant depth in the welded pipelines are of practical interest. This work provides an engineering estimation procedure based upon the GE/EPRI method to determine the J-integral for the thin-walled pipelines with small constant-depth circumferential surface cracks subject to tension and bending loads. The values of elastic influence functions for stress intensity factor and plastic influence functions for fully plastic J-integral estimation are derived in tabulated forms through a series of three-dimensional finite element calculations for different crack geometries and material properties. To check confidence of the J-estimation solution in practical application, J-integral values obtained from detailed finite element (FE analyses are compared with those estimated from the new influence functions. Excellent agreement of FE results with the proposed J-estimation solutions for both tension and bending loads indicates that the new solutions can be applied for accurate structural integrity assessment of high-strength pipelines with constant-depth circumferential surface cracks.
Enamel cracks evaluation - A method to predict tooth surface damage during the debonding.
Dumbryte, Irma; Jonavicius, Tomas; Linkeviciene, Laura; Linkevicius, Tomas; Peciuliene, Vytaute; Malinauskas, Mangirdas
2015-01-01
The objective of this in vitro study was to evaluate the effect of the enamel cracks on the tooth damage during the debonding. Measurements of the cracks characteristics (visibility, direction, length, and location) were performed utilizing a scanning electron microscopy (SEM) technique and mathematically derived formulas (x=h/30, l=n*x) before and following the removal of mechanically retained metal and ceramic brackets. The likelihood of having greater extent enamel defects was higher for the teeth with pronounced cracks (odds vatios, OR=3.728), increased when the crack was located in more than one zone of the tooth (OR=1.998), and the inclination did not exceed 30-45° (OR=0.505). Using ceramic brackets the risk of greater amount tooth structure defects raised 1.45 times (OR=1.450). Enamel crack showing all these characteristics at the beginning of the orthodontic treatment and the use of ceramic brackets might predispose to higher risk of greater extent tooth surface damage after the debonding by 20.4%.
Laser grooving of surface cracks on hot work tool steel
Directory of Open Access Journals (Sweden)
D. Klobčar
2011-10-01
Full Text Available The paper presents the analysis of laser grooving of 1.2343 tool steel hardened to 46 HRC. The effect of laser power and grooving speed on groove shape (i.e. depth and width, the material removal rate and the purity of produced groove as a measure of groove quality was investigated and analyzed using response surface methodology. Optimal parameters of laser grooving were found, which enables pure grooves suitable for laser welding.
International Nuclear Information System (INIS)
Perko, Janez; Seetharam, Suresh C.; Jacques, Diederik; Mallants, Dirk; Cool, Wim; Vermarien, Elise
2013-01-01
In large cement-based structures such as a near surface disposal facility for radioactive waste voids and cracks are inevitable. However, the pattern and nature of cracks are very difficult to predict reliably. Cracks facilitate preferential water flow through the facility because their saturated hydraulic conductivity is generally higher than the conductivity of the cementitious matrix. Moreover, sorption within the crack is expected to be lower than in the matrix and hence cracks in engineered barriers can act as a bypass for radionuclides. Consequently, understanding the effects of crack characteristics on contaminant fluxes from the facility is of utmost importance in a safety assessment. In this paper we numerically studied radionuclide leaching from a crack-containing cementitious containment system. First, the effect of cracks on radionuclide fluxes is assessed for a single repository component which contains a radionuclide source (i.e. conditioned radwaste). These analyses reveal the influence of cracks on radionuclide release from the source. The second set of calculations deals with the safety assessment results for the planned near-surface disposal facility for low-level radioactive waste in Dessel (Belgium); our focus is on the analysis of total system behaviour in regards to release of radionuclide fluxes from the facility. Simulation results are interpreted through a complementary safety indicator (radiotoxicity flux). We discuss the possible consequences from different scenarios of cracks and voids. (authors)
Surface chemical problems in coal flotation
Taylor, S. R.; Miller, K. J.; Deurbrouck, A. W.
1981-02-01
As the use of coal increases and more fine material is produced by mining and processing, the need for improved methods of coal beneficiation increases. While flotation techniques can help meet these needs, the technique is beset with many problems. These problems involve surface chemical and interfacial properties of the coal-mineral-water slurry systems used in coal flotation. The problems associated with coal flotation include non-selectivity, inefficient reagent utilization, and excessive variablity of results. These problems can be broadely classified as a lack of predictability. The present knowledge of coal flotation is not sufficient, in terms of surface chemical parameters, to allow prediction of the flotation response of a given coal. In this paper, some of the surface chemical properties of coal and coal minerals that need to be defined will be discussed in terms of the problems noted above and their impact on coal cleaning.
Development of a J-estimation scheme for internal circumferential and axial surface cracks in elbows
International Nuclear Information System (INIS)
Mohan, R.; Brust, F.W.; Ghadiali, N.; Wilkowski, G.
1996-06-01
This report summarizes efforts to develop elastic and elastic-plastic fracture mechanics analyses for internal surface cracks in elbows. The analyses involved development of a GE/EPRI type J-estimation scheme which requires an elastic and fully plastic contribution to crack-driving force in terms of the J-integral parameter. The elastic analyses require the development of F-function values to relate the J e term to applied loads. Similarly, the fully plastic analyses require the development of h-functions to relate the J p term to the applied loads. The F- and h-functions were determined from a matrix of finite element analyses. To minimize the cost of the analyses, three-dimensional ABAQUS finite element analyses were compared to a simpler finite element technique called the line-spring method. The line-spring method provides a significant computational savings over the full three-dimensional analysis. The comparison showed excellent agreement between the line-spring and three-dimensional analysis. This experience was consistent with comparisons with circumferential surface-crack analyses in straight pipes during the NRC's Short Cracks in Piping and Piping Welds program
International Nuclear Information System (INIS)
Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M.
1996-12-01
This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed
Energy Technology Data Exchange (ETDEWEB)
Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M. [and others
1996-12-01
This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed.
The influence of surface stress on dislocation emission from sharp and blunt cracks in f.c.c. metals
DEFF Research Database (Denmark)
Schiøtz, Jakob
2000-01-01
We use computer simulations to study the behaviour of atomically sharp and blunted cracks in various fee metals. The simulations use effective medium potentials which contain many-body interactions. We find that when using potentials representing platinum and gold a sharp crack is stable with res......We use computer simulations to study the behaviour of atomically sharp and blunted cracks in various fee metals. The simulations use effective medium potentials which contain many-body interactions. We find that when using potentials representing platinum and gold a sharp crack is stable...... with respect to the emission of a dislocation from the crack tip, whereas for all other metals studied the sharp crack is unstable. This result cannot be explained by existing criteria for the intrinsic ductile/brittle behaviour of crack tips, but is probably caused by surface stresses. When the crack...... is no longer atomically sharp dislocation emission becomes easier in all the studied metals. The effect is relatively strong; the critical stress intensity factor for emission to occur is reduced by up to 20%. This behaviour appears to be caused by the surface stress near the crack tip. The surface stress...
Formation Mechanism of Surface Crack in Low Pressure Casting of A360 Alloy
Liu, Shan-Guang; Cao, Fu-Yang; Ying, Tao; Zhao, Xin-Yi; Liu, Jing-Shun; Shen, Hong-Xian; Guo, Shu; Sun, Jian-Fei
2017-12-01
A surface crack defect is normally found in low pressure castings of Al alloy with a sudden contraction structure. To further understand the formation mechanism of the defect, the mold filling process is simulated by a two-phase flow model. The experimental results indicate that the main reason for the defect deformation is the mismatching between the height of liquid surface in the mold and pressure in the crucible. In the case of filling, a sudden contraction structure with an area ratio smaller than 0.5 is obtained, and the velocity of the liquid front increases dramatically with the influence of inertia. Meanwhile, the pressurizing speed in the crucible remains unchanged, resulting in the pressure not being able to support the height of the liquid level. Then the liquid metal flows back to the crucible and forms a relatively thin layer solidification shell on the mold wall. With the increasing pressure in the crucible, the liquid level rises again, engulfing the shell and leading to a surface crack. As the filling velocity is characterized by the damping oscillations, surface cracks will form at different heights. The results shed light on designing a suitable pressurizing speed for the low pressure casting process.
Effects of surface cracks and strain rate on the tensile behavior of Balmoral Red granite
Directory of Open Access Journals (Sweden)
Mardoukhi Ahmad
2015-01-01
Full Text Available This paper presents an experimental procedure for studying the effects of surface cracks on the mechanical behavior of Balmoral Red granite under dynamic and quasi-static loading. Three different thermal shocks were applied on the surface of the Brazilian Disc test samples by keeping a flame torch at a fixed distance from the sample surface for 10, 30, and 60 seconds. Microscopy clearly shows that the number of the surface cracks increases with the duration of the thermal shock. After the thermal shock, the Brazilian Disc tests were performed using a servohydraulic materials testing machine and a compression Split Hopkinson Pressure Bar (SHPB device. The results show that the tensile strength of the rock decreases and the rate sensitivity of the rock increases as more cracks are introduced to the structure. The DIC analysis of the Brazilian disc tests shows that the fracture of the sample initiates at the center of the samples or slightly closer to the incident bar contact point. This is followed by crushing of the samples at both contact points with the stress bars.
Directory of Open Access Journals (Sweden)
Tai-Cheng Chen
2018-03-01
Full Text Available Austenitic stainless steels are often considered candidate materials for use in hydrogen-containing environments because of their low hydrogen embrittlement susceptibility. In this study, the fatigue crack growth behavior of the solution-annealed and cold-rolled 301, 304L, and 310S austenitic stainless steels was characterized in 0.2 MPa gaseous hydrogen to evaluate the hydrogen-assisted fatigue crack growth and correlate the fatigue crack growth rates with the fracture feature or fracture surface roughness. Regardless of the testing conditions, higher fracture surface roughness could be obtained in a higher stress intensity factor (∆K range and for the counterpart cold-rolled specimen in hydrogen. The accelerated fatigue crack growth of 301 and 304L in hydrogen was accompanied by high fracture surface roughness and was associated with strain-induced martensitic transformation in the plastic zone ahead of the fatigue crack tip.
International Nuclear Information System (INIS)
Lei Yuebao; Fox, Mike J.H.
2011-01-01
A global limit load solution for rectangular surface cracks in plates under combined end force and cross-thickness bending is derived, which allows any combination of positive/negative end force and positive/negative cross-thickness moment. The solution is based on the net-section plastic collapse concept and, therefore, gives limit load values based on the Tresca yielding criterion. Solutions for both cases with and without crack face contact are derived when whole or part of the crack is located in the compressive stress zone. From the solution, particular global limit load solutions for plates with extended surface cracks and through-thickness cracks under the same loading conditions are obtained. The solution is consistent with the limit load solution for surface cracks in plates under combined tension and positive bending due to Goodall and Webster and Lei when both the applied end force and bending moment are positive. The solution reduces to the limit load solution for plain plates under combined end force and cross-thickness bending when the crack vanishes. - Highlights: → A global limit load solution for plates with surface cracks in plates is derived. → Combined positive/negative end force and positive/negative cross-thickness moment are considered. → The solution is based on the net-section plastic collapse concept.
Surface crack behavior in socket weld of nuclear piping under fatigue loading condition
International Nuclear Information System (INIS)
Choi, Y.H.; Kim, J.S.; Choi, S.Y.
2005-01-01
The ASME B and PV Code Sec. III allows the socket weld for the nuclear piping in spite of the weakness on the weld integrity. Recently, the integrity of the socket weld is regarded as a safety concern in nuclear power plants because many failures and leaks have been reported in the socket weld. OPDE (OECD Piping Failure Data Exchange) database lists 108 socket weld failures among 2,399 nuclear piping failure cases during 1970 to 2001. Eleven failures in the socket weld were also reported in Korean NPPs. Many failure cases showed that the root cause of the failure is the fatigue and the gap requirement for the socket weld given in ASME Code was not satisfied. The purpose of this paper is to evaluate the fatigue crack behavior of a surface crack in the socket weld under fatigue loading condition considering the gap effect. Three-dimensional finite element analysis was performed to estimate the fatigue crack behavior of the surface crack. Three types of loading conditions such as the deflection due to vibration, the pressure transient ranging from P=0 to 15.51 MPa, and the thermal transient ranging from T=25 C to 288 C were considered. The results are as follows; 1) The socket weld is susceptible to the vibration where the vibration levels exceed the requirement in the ASME operation and maintenance (OM) Code. 2) The effect of pressure or temperature transient load on the socket weld integrity is not significant. 3) No-gap condition gives very high possibility of the crack initiation at the socket weld under vibration loading condition. 4) For the specific systems having the vibration condition to exceed the requirement in the ASME Code OM and/or the transient loading condition from P=0 and T=25 C to P=15.51 MPa and T=288 C, radiographic examination to examine the gap during the construction stage is recommended. (orig.)
International Nuclear Information System (INIS)
Miyazaki, Noriyuki; Watanabe, Takayuki; Yagawa, Genki.
1982-03-01
A finite element computer program EPAS-J1 was developed to calculate the stress intensity factors of three-dimensional cracks. In the program, the stress intensity factor is determined by the virtual crack extension method together with the distorted elements allocated along the crack front. This program also includes the connection elements based on the Lagrange multiplier concept to connect such different kinds of elements as the solid and shell elements, or the shell and beam elements. For the structure including three-dimensional surface cracks, the solid elements are employed only at the neighborhood of a surface crack, while the remainder of the structure is modeled by the shell or beam elements due to the reason that the crack singularity is very local. Computer storage and computational time can be highly reduced with the application of the above modeling technique for the calculation of the stress intensity factors of the three-dimensional surface cracks, because the three-dimensional solid elements are required only around the crack front. Several numerical analyses were performed by the EPAS-J1 program. At first, the accuracies of the connection element and the virtual crack extension method were confirmed using the simple structures. Compared with other techniques of connecting different kinds of elements such as the tying method or the method using anisotropic plate element, the present connection element is found to provide better results than the others. It is also found that the virtual crack extension method provides the accurate stress intensity factor. Furthermore, the results are also presented for the stress intensity factor analyses of cylinders with longitudinal or circumferential surface cracks using the combination of the various kinds of elements together with the connection elements. (author)
Leise, Tanya L.; Walton, Jay R.; Gorb, Yuliya
2009-01-01
interpenetration, in contrast to the usual mode I boundary conditions that assume all unloaded crack faces are stress-free. The nonlinear viscoelastic cohesive zone behavior is motivated by dynamic fracture in brittle polymers in which crack propagation
X. Liu; Z. X. Lu; Y. Chen; Y. L. Sui; L. H. Dai
2018-01-01
In the oil and gas transportation system over long distance, application of high-strength pipeline steels can efficiently reduce construction and operation cost by increasing operational pressure and reducing the pipe wall thickness. Failure assessment is an important issue in the design, construction, and maintenance of the pipelines. The small circumferential surface cracks with constant depth in the welded pipelines are of practical interest. This work provides an engineering estimation pr...
Directory of Open Access Journals (Sweden)
Istadi Istadi
2011-01-01
Full Text Available The present study deals with effect of reactor temperature and catalyst weight on performance of plastic waste cracking to fuels over modified catalyst waste as well as their optimization. From optimization study, the most operating parameters affected the performance of the catalytic cracking process is reactor temperature followed by catalyst weight. Increasing the reactor temperature improves significantly the cracking performance due to the increasing catalyst activity. The optimal operating conditions of reactor temperature about 550 oC and catalyst weight about 1.25 gram were produced with respect to maximum liquid fuel product yield of 29.67 %. The liquid fuel product consists of gasoline range hydrocarbons (C4-C13 with favorable heating value (44,768 kJ/kg. ©2010 BCREC UNDIP. All rights reserved(Received: 10th July 2010, Revised: 18th September 2010, Accepted: 19th September 2010[How to Cite: I. Istadi, S. Suherman, L. Buchori. (2010. Optimization of Reactor Temperature and Catalyst Weight for Plastic Cracking to Fuels Using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 5(2: 103-111. doi:10.9767/bcrec.5.2.797.103-111][DOI: http://dx.doi.org/10.9767/bcrec.5.2.797.103-111 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/797
Use of local and global limit load solutions for plates with surface cracks under tension
Energy Technology Data Exchange (ETDEWEB)
Lei, Y. [British Energy Generation Ltd, Barnett Way, Bamwood, Gloucester GL4 3RS (United Kingdom)], E-mail: yuebao.lei@british-energy.com
2007-09-15
Some available experimental results for the ductile failure of plates with surface cracks under tension are reviewed. The response of crack driving force, J, and the ligament strain near the local and global limit loads are investigated by performing elastic-perfectly plastic finite element (FE) analysis of a plate with a semi-elliptical crack under tension. The results show that a ligament may survive until the global collapse load is reached when the average ligament strain at the global collapse load, which depends on the uniaxial strain corresponding to the flow stress of the material and the crack geometry, is less than the true fracture strain of the material obtained from uniaxial tension tests. The FE analysis shows that ligament yielding corresponding to the local limit load has little effect on J and the average ligament strain, whereas approach to global collapse corresponds to a sharp increase in both J and the average ligament strain. The prediction of the FE value of J using the reference stress method shows that the global limit load is more relevant to J-estimation than the local one.
Use of local and global limit load solutions for plates with surface cracks under tension
International Nuclear Information System (INIS)
Lei, Y.
2007-01-01
Some available experimental results for the ductile failure of plates with surface cracks under tension are reviewed. The response of crack driving force, J, and the ligament strain near the local and global limit loads are investigated by performing elastic-perfectly plastic finite element (FE) analysis of a plate with a semi-elliptical crack under tension. The results show that a ligament may survive until the global collapse load is reached when the average ligament strain at the global collapse load, which depends on the uniaxial strain corresponding to the flow stress of the material and the crack geometry, is less than the true fracture strain of the material obtained from uniaxial tension tests. The FE analysis shows that ligament yielding corresponding to the local limit load has little effect on J and the average ligament strain, whereas approach to global collapse corresponds to a sharp increase in both J and the average ligament strain. The prediction of the FE value of J using the reference stress method shows that the global limit load is more relevant to J-estimation than the local one
International Nuclear Information System (INIS)
Ihara, Ryohei; Katsuyama, JInya; Onizawa, Kunio; Hashimoto, Tadafumi; Mikami, Yoshiki; Mochizuki, Masahito
2011-01-01
Research highlights: → Residual stress distributions due to welding and machining are evaluated by XRD and FEM. → Residual stress due to machining shows higher tensile stress than welding near the surface. → Crack growth analysis is performed using calculated residual stress. → Crack growth result is affected machining rather than welding. → Machining is an important factor for crack growth. - Abstract: In nuclear power plants, stress corrosion cracking (SCC) has been observed near the weld zone of the core shroud and primary loop recirculation (PLR) pipes made of low-carbon austenitic stainless steel Type 316L. The joining process of pipes usually includes surface machining and welding. Both processes induce residual stresses, and residual stresses are thus important factors in the occurrence and propagation of SCC. In this study, the finite element method (FEM) was used to estimate residual stress distributions generated by butt welding and surface machining. The thermoelastic-plastic analysis was performed for the welding simulation, and the thermo-mechanical coupled analysis based on the Johnson-Cook material model was performed for the surface machining simulation. In addition, a crack growth analysis based on the stress intensity factor (SIF) calculation was performed using the calculated residual stress distributions that are generated by welding and surface machining. The surface machining analysis showed that tensile residual stress due to surface machining only exists approximately 0.2 mm from the machined surface, and the surface residual stress increases with cutting speed. The crack growth analysis showed that the crack depth is affected by both surface machining and welding, and the crack length is more affected by surface machining than by welding.
Paim Kessler, Felix Henrique; Barbosa Terra, Mauro; Faller, Sibele; Ravy Stolf, Anderson; Carolina Peuker, Ana; Benzano, Daniela; Pechansky, Flavio
2012-01-01
The aim of this study was to compare three groups of Brazilian psychoactive substance (PAS) abuse patients (crack cocaine users, cocaine snorters, and non-cocaine PAS users) in terms of psychiatric comorbidities and severity of psychosocial problems. A cross-sectional, multi-center study was conducted at five Brazilian research centers. A total of 738 current PAS abusers seeking specialized treatment (outpatient and inpatient clinics) were assessed using the sixth version of the Addiction Severity Index (ASI-6): 293 patients using crack cocaine were compared with 126 using powder cocaine and 319 using non-cocaine PAS (mostly alcohol and marijuana). Psychiatric comorbidities were assessed in a smaller sample (290 cases), originating from three of the centers, using the Mini International Neuropsychiatric Interview Plus (MINI-Plus). Crack and powder cocaine users were significantly younger than non-cocaine PAS users (31.1 ± 8.1 and 32.9 ± 8.8 vs. 42.4 ± 12, respectively; p antisocial personality disorder (25%) than powder cocaine (9%) and non-cocaine PAS users (9%), even when adjusted for confounding factors (Pr = 2.6; 95% CI 1.10-6.40). According to ASI-6 summary scores, crack users presented a significantly higher rate of occupational, family, and legal problems and reported more illegal and violent activities such as burglary and theft (23%) and threatening or assaulting (32%) than non-cocaine PAS users. Our findings, combined with the recent increase observed in the prevalence of crack use in Brazil, highlight the severity of psychiatric symptoms and psychosocial problems related to this powerful drug and corroborate the already suggested association between crack/cocaine, violence, and legal problems. Treatment programs for crack users should routinely consider the possibility of associated psychiatric comorbidities, such as antisocial personality disorder, which may affect treatment outcomes. Copyright © American Academy of Addiction Psychiatry.
Crack problem in superconducting cylinder with exponential distribution of critical-current density
Zhao, Yufeng; Xu, Chi; Shi, Liang
2018-04-01
The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.
On crack growth in molar teeth from contact on the inclined occlusal surface.
Chai, Herzl
2015-04-01
Extracted human molar teeth are indented by hard balls laid at the central fossa, sectioned, and their interior examined for damage. Contact on the fissured enamel coat generally occurs on three distinct spots. The main forms of damage are radial cracks growing from the DEJ to the occlusal surface and median radial and cylindrical cracks growing from a contact spot to the DEJ. For large balls failure by edge chipping near a cusp apex may occur. The median cracks tend to run unstably to the DEJ upon reaching the middle part of the enamel coat. The corresponding load, PFM, and the load needed to initiate radial cracks at the DEJ, PFR, are taken to signal crown failure. The mean values of PFM and PFR are on the order of 1000N. A conical bilayer model defined by thickness d, inclination angle θ, failure stress σF and toughness KC of the enamel coat is developed to assess crown failure. The analytical predictions for PFR and PFM agree well with the tests. The results indicate that enamel thickness is so designed as to ensure that PFR and PFM just exceed the maximum bite force under normal conditions while the choice of θ seems to reflect a compromise between needs to resist crown failure and break hard food particles. Both PFR and PFM are greatly reduced with reducing d, which points to the danger posed by tooth wear. The analytical expressions for PFR and PFM may also apply to other multi-cusp mammalian or prosthetic molar crowns. Cone cracking, suppressed in the anisotropic tooth enamel, may be an important failure mode in prosthetic crowns. Copyright © 2014 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Bretaudeau, Francois; Gelis, Celine; Cabrera, Justo; Leparoux, Donatienne; Cote, Philippe
2012-01-01
Within the frame of the expertise of the ANDRA file on the project of storage of radioactive wastes in clayey formations, the detection of natural cracks which could locally alter the argillite containment properties is a crucial issue. As some previous studies showed that some cracks exhibiting a low vertical offset could not be detected in clayey formations from the surface, this document reports a study which aimed at assessing the possibility of detection of such a crack by means of seismic methods directly implemented from underground works. It reports a detailed analysis of the seismic imagery problem, the characterization of different areas of the investigated environment, the assessment and validation of various hypotheses by using experimental data obtained in an experimental station and numerical simulations. The potential of each envisaged method (migration, tomography, wave form inversion) is assessed, notably with respect to synthetic seismic data obtained by numerical modelling. Preliminary results are used to size a complete seismic measurement campaign aimed at the characterization of the crack area, and at the assessment of detection limitations of the different methods
Model error assessment of burst capacity models for energy pipelines containing surface cracks
International Nuclear Information System (INIS)
Yan, Zijian; Zhang, Shenwei; Zhou, Wenxing
2014-01-01
This paper develops the probabilistic characteristics of the model errors associated with five well-known burst capacity models/methodologies for pipelines containing longitudinally-oriented external surface cracks, namely the Battelle and CorLAS™ models as well as the failure assessment diagram (FAD) methodologies recommended in the BS 7910 (2005), API RP579 (2007) and R6 (Rev 4, Amendment 10). A total of 112 full-scale burst test data for cracked pipes subjected internal pressure only were collected from the literature. The model error for a given burst capacity model is evaluated based on the ratios of the test to predicted burst pressures for the collected data. Analysis results suggest that the CorLAS™ model is the most accurate model among the five models considered and the Battelle, BS 7910, API RP579 and R6 models are in general conservative; furthermore, the API RP579 and R6 models are markedly more accurate than the Battelle and BS 7910 models. The results will facilitate the development of reliability-based structural integrity management of pipelines. - Highlights: • Model errors for five burst capacity models for pipelines containing surface cracks are characterized. • Basic statistics of the model errors are obtained based on test-to-predicted ratios. • Results will facilitate reliability-based design and assessment of energy pipelines
International Nuclear Information System (INIS)
Fujikawa, Ryosuke; Abe, Shigeki; Nakamura, Takao; Kamaya, Masayuki
2014-01-01
Fatigue life of nuclear facilities tends to be decreased by the influence of reactor coolant, which is called environmental effect. The effect accelerates crack growth rate but the influence for crack initiation is not clarified. This study intends to discuss the environmental effect in crack initiation. The crack length and the number of cracks are measured from the investigation of fatigue test specimens in reactor coolant and air. The behavior of crack initiation is revealed from the measurement of number of cracks, crack sizes and fatigue life. From this study, environmental effect of reactor coolant is considered to influence crack initiation and increase the number of micro crack. It is also estimated that the coalescence of cracks influences the acceleration of crack growth. (author)
A multi-scale approach for near-surface pavement cracking and failure mechanisms
2010-10-31
Nearsurface cracking is one of the predominant distress types in flexible pavements. The occurrence of : nearsurface cracking, also sometimes referred to as topdown cracking, has increased in recent years : with the increased construction of...
International Nuclear Information System (INIS)
Choi, Y.H.; Chung, Y.K.; Park, Y.W.; Lee, J.B.
1997-01-01
The purpose of this study is to develop new Z-factors to evaluate the behavior of a circumferential surface crack in nuclear pipe. Z-factor is a load multiplier used in the Z-factor method, which is one of the ASME Code Sec. XI's recommendations for the estimation of a surface crack in nuclear pipe. It has been reported that the load carrying capacities predicted from the current ASME Code Z-factors, are not well in agreement with the experimental results for nuclear pipes with a surface crack. In this study, new Z-factors for ferritic base metal, ferritic submerged arc welding (SAW) weld metal, austenitic base metal, and austenitic SAW weld metal are obtained by use of the surface crack for thin pipe (SC.TNP) method based on GE/EPRI method. The desirability of both the SC.TNP method and the new Z-factors is examined using the results from 48 pipe fracture experiments for nuclear pipes with a circumferential surface crack. The results show that the SC.TNP method is good for describing the circumferential surface crack behavior and the new Z-factors are well in agreement with the measured Z-factors for both ferritic and austenitic pipes. (orig.)
Erdol, R.; Erdogan, F.
1976-01-01
The elastostatic axisymmetric problem for a long thick-walled cylinder containing a ring-shaped internal or edge crack is considered. Using the standard transform technique the problem is formulated in terms of an integral equation which has a simple Cauchy kernel for the internal crack and a generalized Cauchy kernel for the edge crack as the dominant part. As examples the uniform axial load and the steady-state thermal stress problems have been solved and the related stress intensity factors have been calculated. Among other findings the results show that in the cylinder under uniform axial stress containing an internal crack the stress intensity factor at the inner tip is always greater than that at the outer tip for equal net ligament thicknesses and in the cylinder with an edge crack which is under a state of thermal stress the stress intensity factor is a decreasing function of the crack depth, tending to zero as the crack depth approaches the wall thickness.
Research progress on expansive soil cracks under changing environment.
Shi, Bei-xiao; Zheng, Cheng-feng; Wu, Jin-kun
2014-01-01
Engineering problems shunned previously rise to the surface gradually with the activities of reforming the natural world in depth, the problem of expansive soil crack under the changing environment becoming a control factor of expansive soil slope stability. The problem of expansive soil crack has gradually become a research hotspot, elaborates the occurrence and development of cracks from the basic properties of expansive soil, and points out the role of controlling the crack of expansive soil strength. We summarize the existing research methods and results of expansive soil crack characteristics. Improving crack measurement and calculation method and researching the crack depth measurement, statistical analysis method, crack depth and surface feature relationship will be the future direction.
Validation of surface crack stress intensity factors of a tubular K-joint
International Nuclear Information System (INIS)
Lie, S.T.; Lee, C.K.; Chiew, S.P.; Shao, Y.B.
2005-01-01
Tubular K-joints are encountered widely in offshore structures, and the prediction of damaged joints depends very much on the accuracy of stress intensity factor solutions (SIFs). No parametric equations and very few results have been proposed and published in the literature for estimating the SIFs of any K-joints subjected to complex loading conditions. In this paper, a mesh generation method proposed previously for the Y-joint and T-joint has been extended to the K-joint. This method is realized by dividing the K-joint into several sub-zones with each zone consisting of different types of elements and mesh densities. This method has a distinct advantage of controlling the mesh quality, and most importantly the aspect ratio of the elements along the crack front. When the mesh of all the sub-zones has been generated automatically and completely, they are merged to form the complete model. The two most commonly used methods, namely the J-integral and displacement extrapolation, are used to evaluate the SIF values along the crack front of a typical K-joint. To validate the accuracy of these computed SIFs, a full-scale K-joint specimen was tested to failure under fatigue loading conditions. The standard alternating current potential drop (ACPD) technique was used to monitor the rate of crack propagation of the surface crack located at the hot spot stress region. Using the given material parameters C and m, the experimental SIFs were deduced, and they are found to be in good agreement with the computed SIFs obtained from the generated models. Hence, the proposed finite element models are both efficient and reliable
Elasto-plastic finite element analysis of axial surface crack in PHT piping of 500 MWe PHWR
International Nuclear Information System (INIS)
Chawla, D.S.; Bhate, S.R.; Kushwaha, H.S.; Mahajan, S.C.
1994-01-01
The leak before break (LBB) approach in nuclear piping design envisages demonstrating that the pressurized pipe with a postulated flaw will leak at a detectable rate leading to corrective action well before catastrophic rupture would occur. This requires analysis of cracked pipe to study the crack growth and its stability. This report presents the behaviour of a surface crack in the wall of a thick primary heat transport (PHT) pipe of 500 MWe Indian PHWR. The line spring model (LSM) finite element is used to model the flawed pipe geometry. The variation of crack driving force (J-integral) across the crack front has been presented. The influence of crack geometry factors such as depth, shape, aspect ratio, and loading on peak values of J-integral as well as crack mouth opening displacement has been studied. Several crack shapes have been used to study the shape influence. The results are presented in dimensionless form so as to widen their applicability. The accuracy of the results is validated by comparison with results available in open literature. (author). 47 refs., 8 figs
Energy Technology Data Exchange (ETDEWEB)
Forster, G.A.; Ellingson, W.A.
1996-02-01
The purpose of this effort was to evaluate penetrant methods for their ability to detect surface-breaking cracks in monolithic ceramic materials with an emphasis on detection of cracks generated by machining. There are two basic penetrant types, visible and fluorescent. The visible penetrant method is usually augmented by powder developers and cracks detected can be seen in visible light. Cracks detected by fluorescent penetrant are visible only under ultraviolet light used with or without a developer. The developer is basically a powder that wicks up penetrant from a crack to make it more observable. Although fluorescent penetrants were recommended in the literature survey conducted early in this effort, visible penetrants and two non-standard techniques, a capillary gaseous diffusion method under development at the institute of Chemical Physics in Moscow, and the {open_quotes}statiflux{close_quotes} method which involves use of electrically charged particles, were also investigated. SiAlON ring specimens (1 in. diameter, 3/4 in. wide) which had been subjected to different thermal-shock cycles were used for these tests. The capillary gaseous diffusion method is based on ammonia; the detector is a specially impregnated paper much like litmus paper. As expected, visible dye penetrants offered no detection sensitivity for tight, surface-breaking cracks in ceramics. Although the non-standard statiflux method showed promise on high-crack-density specimens, it was ineffective on limited-crack-density specimens. The fluorescent penetrant method was superior for surface-breaking crack detection, but successful application of this procedure depends greatly on the skill of the user. Two presently available high-sensitivity fluorescent penetrants were then evaluated for detection of microcracks on Si{sub 3}N{sub 4} and SiC from different suppliers. Although 50X optical magnification may be sufficient for many applications, 200X magnification provides excellent delectability.
Detection and description of surface breaking cracks by means of optical sound field visualization
International Nuclear Information System (INIS)
Crostack, H.A.; Krueger, A.
1986-01-01
The authors present an ultrasound testing method for surface-breaking cracks in components. The method is based on large-area imaging of ultrasound by means of an optical receiver system. The receiver system is based on the principle of holographic interferometry. Application of double exposure technique using a double pulse laser and of sensitivity boosting measures allowed to construct a holographic sound field camera (sensitivity threshold: 0.2 nm) which allows large-area sound detection (in the square meter range) without requiring the usual methods for vibrational insulation in contrast to all the other optical interferometric and holographic techniques. (orig./DG) [de
On fatigue crack growth mechanisms of MMC: Reflection on analysis of 'multi surface initiations'
International Nuclear Information System (INIS)
Mkaddem, A.; El Mansori, M.
2009-01-01
This work attempts to examine the mechanisms of fatigue when cracks synergetically initiate in more than one site at the specimen surface. The metal matrix composites (MMC) i.e. silicon carbide particles reinforced aluminium matrix composites (Al/SiC p -MMC), seem to be good candidates to accelerate fatigue failures following multi surface initiations (MSI). Closure effects of MSI mechanisms on the variation of fatigue behaviour are explored for various stress states. Experiments were carried out using non pre-treated and pre-treated specimens. Using an Equivalent Ellipse Method (EEM), it is shown that the aspect of surface finish of specimen plays an important role on crack growth. Scanning Electron Microscope (SEM) inspections have lead to distinguishing the initiation regions from propagation regions and final separation regions. It is also revealed that the total lifetime of specimens is sensitive to heat treatment. Moreover, it is found that the appearance of MSI in cycled materials is more probable at high level of fatigue loads.
International Nuclear Information System (INIS)
Bethge, K.
1989-05-01
Theoretical and experimental investigations of crack growth under thermal and thermomechanical fatigue loading are presented. The experiments were performed with a ferritic reactor pressure vessel steel 20 MnMoNi 5 5 and an austenitic stainless steel X6 CrNi 18 11. A plate containing a semi-elliptical surface crack is heated up to a homogeneous temperature and cyclically cooled down by a jet of cold water. On the basis of linear elastic fracture mechanics stress-intensity factors are calculated with the weight function method. The prediction of crack growth under thermal fatigue loading using data from mechanical fatigue tests is compared with the experimental result. (orig.) [de
Automated detection of cracks on the faying surface within high-load transfer bolted speciments
Wheatley, Gregory; Kollgaard, Jeffrey R.
2003-07-01
Boeing is currently conducting evaluation testing of the Comparative Vacuum Monitoring (CVMTM) system offered by Structural Monitoring Systems, Ltd (SMS). Initial testing has been conducted by SMS, with further test lab validations to be performed at Boeing in Seattle. Testing has been conducted on dog bone type specimens that have been cut at the center line. A notch was cut at one of the bolt holes and a CVM sensor installed on both sides of the plate. The doublers were added and a single line of 4 bolts along the longitudinal center line were used to attach the doubler plates to the dog bone type specimen. In this way, a high load transfer situation exists between the two halves of the dog bone specimen and the doubler plates. The CVM sensors are slightly over 0.004" (0.1mm) in thickness and are installed directly upon the faying surface of the dog bone specimen. Testing was conducted on an Instron 8501 Servohydraulic testing machine at the Department of Mechanical and Materials Engineering, University of Western Australia. The standard laboratory equipment offered by Structural Monitoring Systems, Ltd was used for crack detection. This equipment included the Kvac (vacuum supply) and the Sim8 (flow meter). The Sim8 was electrically connected to the Instron machine so that as soon as a crack was detected, fatigue loading was halted. The aim of the experiment was for CVM to detect a crack on the faying surface of the specimens at a length of 0.050" +/- 0.010". This was accomplished successfully. CVM has been developed on the principle that a small volume maintained at a low vacuum is extremely sensitive to any ingress of air. In addition to the load bearing sensors described above, self-adhesive, elastomeric sensors with fine channels on the adhesive face have been developed. When the sensors have been adhered to the structure under test, these fine channels, and the structure itself, form a manifold of galleries alternately at low vacuum and atmospheric pressure
Simulation of surface crack initiation induced by slip localization and point defects kinetics
International Nuclear Information System (INIS)
Sauzay, Maxime; Liu, Jia; Rachdi, Fatima
2014-01-01
Crack initiation along surface persistent slip bands (PSBs) has been widely observed and modelled. Nevertheless, from our knowledge, no physically-based fracture modelling has been proposed and validated with respect to the numerous recent experimental data showing the strong relationship between extrusion and microcrack initiation. The whole FE modelling accounts for: - localized plastic slip in PSBs; - production and annihilation of vacancies induced by cyclic slip. If temperature is high enough, point defects may diffuse in the surrounding matrix due to large concentration gradients, allowing continuous extrusion growth in agreement with Polak's model. At each cycle, the additional atoms diffusing from the matrix are taken into account by imposing an incremental free dilatation; - brittle fracture at the interfaces between PSBs and their surrounding matrix which is simulated using cohesive zone modelling. Any inverse fitting of parameter is avoided. Only experimental single crystal data are used such as hysteresis loops and resistivity values. Two fracture parameters are required: the {111} surface energy which depends on environment and the cleavage stress which is predicted by the universal binding energy relationship. The predicted extrusion growth curves agree rather well with the experimental data published for copper and the 316L steel. A linear dependence with respect to PSB length, thickness and slip plane angle is predicted in agreement with recent AFM measurement results. Crack initiation simulations predict fairly well the effects of PSB length and environment for copper single and poly-crystals. (authors)
Influence of surface defects on the fatigue crack initiation in pearlitic steel
Directory of Open Access Journals (Sweden)
Toribio Jesús
2014-06-01
Full Text Available Tensile fatigue tests were performed under load control, with constant stress range Δσ on pearlitic steel wires, from the hot rolled bar to the commercial prestressing steel wire (which has undergone seven cold drawing steps. Results show that fatigue cracks in pearlitic steels initiate at the wire surface starting from small defects, whose size decreases with the drawing process. Fatigue cracks created from defects (initiation phase exhibit a fractographic appearance consisting of ductile microtearing events which can be classified as tearing topography surface or TTS, and exhibit a remarkably lower spacing in the prestressing steel wire than in the hot rolled bar. In addition, some S-N tests were performed in both material forms under a stress range of about half the yield strength. In these tests, the main part of the fatigue life corresponds to the propagation stage in the hot rolled bar whereas such a main part of the life is associated with the initiation stage in the case of the prestressing steel wire.
International Nuclear Information System (INIS)
Porter, J.P.
1990-01-01
Advanced NDE inspection techniques capable of detecting small, yet potentially dangerous cracks in turbine blade tenons, blade tie-wire through-holes, trailing edges, and blade root attachment ends have been devised and developed and are now being applied successfully in the field replacing conventional, less-sensitive methods commonly used for crack detection in these blade elements. Under-shroud lateral cracks in tenons are detected ultrasonically by highangle refracted pulse-echo shear wave and 0-degree pitch-catch longitudinal wave methods. Trailing-edge blade cracks and surface-connected cracks in root attachment ends are detected by high frequency eddy current techniques, typically applied remotely using ports in the turbine housing to gain access to the parts under inspection. Cracks emanating from tie-wire holes in blade upper ends are detected by eddy current inspection, which has been found to be a far more effective methods than either magnetic particle or ultrasonic testing for this application. Root attachment ends of side entry blades are inspected volumetrically by ultrasonics, using proprietary coupling techniques that allow examination of heretofore uninspectable regions of blade attachment hooks, known regions of crack initiation. Techniques developed for this collection of applications are described, and the results of actual field inspections are presented and discussed
An investigation on a two-dimensional problem of Mode-I crack in a thermoelastic medium
Kant, Shashi; Gupta, Manushi; Shivay, Om Namha; Mukhopadhyay, Santwana
2018-04-01
In this work, we consider a two-dimensional dynamical problem of an infinite space with finite linear Mode-I crack and employ a recently proposed heat conduction model: an exact heat conduction with a single delay term. The thermoelastic medium is taken to be homogeneous and isotropic. However, the boundary of the crack is subjected to a prescribed temperature and stress distributions. The Fourier and Laplace transform techniques are used to solve the problem. Mathematical modeling of the present problem reduces the solution of the problem into the solution of a system of four dual integral equations. The solution of these equations is equivalent to the solution of the Fredholm's integral equation of the first kind which has been solved by using the regularization method. Inverse Laplace transform is carried out by using the Bellman method, and we obtain the numerical solution for all the physical field variables in the physical domain. Results are shown graphically, and we highlight the effects of the presence of crack in the behavior of thermoelastic interactions inside the medium in the present context, and its results are compared with the results of the thermoelasticity of type-III.
Mankari, Kamal; Acharyya, Swati Ghosh
2017-12-01
We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.
Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing
2012-04-01
An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.
J-integral and limit load analysis of semi-elliptical surface cracks in plates under bending
International Nuclear Information System (INIS)
Lei, Y.
2004-01-01
Systematic detailed linear and non-linear finite element (FE) analyses are performed for semi-elliptical surface cracks in plates under bending. Limit load (moment) solutions are obtained from the FE J results via the reference stress method. The FE results show that the Newman and Raju stress intensity factor equation is reasonably accurate and the Yagawa et al. J solution may significantly under estimate J for bending load. The relationship between J and the limit load is found to be dependent on the ratio a/t and a/c, where a and c are the depth and the half-length of the crack and t is the plate thickness. For a/t≤0.5 with a/c=0.2, J for any position along a crack front can be predicted by the reference stress method using a single limit load value except for the points very close to the plate surface. For all other cases, it can only be approximately estimated by the reference stress method because a limit load value that can satisfy all the FE J solutions along the crack front cannot be found. However, for all the cases examined, the maximum J along the crack front can be well predicted by the reference stress method when a proper global limit load is used. The Goodall and Webster global limit load equation is extended to any crack depth. The limit load data obtained in this paper can be well reproduced by the extended equation
Xu, Changhang; Xie, Jing; Zhang, Wuyang; Kong, Qingzhao; Chen, Guoming; Song, Gangbing
2017-11-23
Vibrothermography often employs a high-power actuator to generate heat on a specimen to reveal damage, however, the high-power actuator brings inconvenience to the application and possibly introduces additional damage to the inspected objects. This study uses a low-power piezoceramic transducer as the actuator of vibrothermography and explores its ability to detect multiple surface cracks in a metal part. Experiments were conducted on a thin aluminum beam with three cracks in different orientations. Detailed analyses of both thermograms and temperature data are presented to validate the proposed vibrothermography method. To further investigate the performance of the proposed vibrothermography method, we experimentally studied the effects of several critical factors, including the amplitude of excitation signal, specimen constraints, relative position between the transducer and cracks (the transducer is mounted on the same or the opposite side with the cracks). The results demonstrate that all cracks can be detected conveniently and simultaneously by using the proposed low-power vibrothermography. We also found that the magnitude of excitation signal and the specimen constraints have a great influence on detection results. Combined with effective data processing methods, such as Fourier transformation employed in this study, the proposed method provides a promising potential to detect multiple cracks on a metal surface in a safe and effective manner.
Delrue, Steven; Aleshin, Vladislav; Truyaert, Kevin; Bou Matar, Olivier; Van Den Abeele, Koen
2018-01-01
Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns an in-depth description of a constitutive model for realistic contacts or cracks that takes into account the roughness of the contact faces and the associated effects of friction and hysteresis. In the crack model, three different contact states can be recognized: contact loss, total sliding and partial slip. Normal (clapping) interactions between the crack faces are implemented using a quadratic stress-displacement relation, whereas tangential (friction) interactions were introduced using the Coulomb friction law for the total sliding case, and the Method of Memory Diagrams (MMD) in case of partial slip. In the present part of the paper, we integrate the developed crack model into finite element software in order to simulate elastic wave propagation in a solid material containing internal contacts or cracks. We therefore implemented the comprehensive crack model in MATLAB® and introduced it in the Structural Mechanics Module of COMSOL Multiphysics®. The potential of the approach for ultrasound based inspection of solids with cracks showing acoustic nonlinearity is demonstrated by means of an example of shear wave propagation in an aluminum sample containing a single crack with rough surfaces and friction. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Song, Tae Kwang; Oh, Chang Kyun; Kim, Yun Jae; Kim, Jong Sung; Jin, Tae Eun
2007-01-01
This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes
International Nuclear Information System (INIS)
Song, Tae Kwang; Kim, Yun Jae; Oh, Chang Kyun; Kim, Jong Sung; Jin, Tae Eun
2007-01-01
This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes
Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness
Soylemez, Emrecan; de Boer, Maarten P.
2017-12-01
Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.
Cracks and nanodroplets produced on tungsten surface samples by dense plasma jets
Ticoş, C. M.; Galaţanu, M.; Galaţanu, A.; Luculescu, C.; Scurtu, A.; Udrea, N.; Ticoş, D.; Dumitru, M.
2018-03-01
Small samples of 12.5 mm in diameter made from pure tungsten were exposed to a dense plasma jet produced by a coaxial plasma gun operated at 2 kJ. The surface of the samples was analyzed using a scanning electron microscope (SEM) before and after applying consecutive plasma shots. Cracks and craters were produced in the surface due to surface tensions during plasma heating. Nanodroplets and micron size droplets could be observed on the samples surface. An energy-dispersive spectroscopy (EDS) analysis revealed that the composition of these droplets coincided with that of the gun electrode material. Four types of samples were prepared by spark plasma sintering from powders with the average particle size ranging from 70 nanometers up to 80 μm. The plasma power load to the sample surface was estimated to be ≈4.7 MJ m-2 s-1/2 per shot. The electron temperature and density in the plasma jet had peak values 17 eV and 1.6 × 1022 m-3, respectively.
Kikuchi, Y.; Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M.; Ueda, Y.
2013-07-01
Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W-Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (˜0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ˜0.3 MJ m-2, while a W-Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ˜0.3 MJ m-2, although surface melting and cracks in the resolidification layer occurred at higher energy density of ˜0.9 MJ m-2. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.
Energy Technology Data Exchange (ETDEWEB)
Kikuchi, Y., E-mail: ykikuchi@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Fukumoto, N.; Nagata, M. [Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Ueda, Y. [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)
2013-07-15
Surface damage of pure tungsten (W), W alloys with 2 wt.% tantalum (W–Ta) and vacuum plasma spray (VPS) W coating on a reduced activation material of ferritic steel (F82H) due to repetitive ELM-like pulsed (∼0.3 ms) deuterium plasma irradiation has been investigated by using a magnetized coaxial plasma gun. Surface cracks appeared on a pure W sample exposed to 10 plasma pulses of ∼0.3 MJ m{sup −2}, while a W–Ta sample did not show surface cracks with similar pulsed plasma irradiation. The energy density threshold for surface cracking was significantly increased by the existence of the alloying element of tantalum. No surface morphology change of a VPS W coated F82H sample was observed under 10 plasma pulses of ∼0.3 MJ m{sup −2}, although surface melting and cracks in the resolidification layer occurred at higher energy density of ∼0.9 MJ m{sup −2}. There was no indication of exfoliation of the W coating from the substrate of F82H after the pulsed plasma exposures.
Mcgowan, J. J.; Smith, C. W.
1976-01-01
The stress intensity factors (SIFs) at the end points of flaws emanating from the corner formed by the intersection of a plate with a hole were determined using stress freezing photoelasticity and a numerical technique known as the Taylor series correction method to extract the SIF values from the photoelastic data. The geometries studied were crack depth to thickness ratios of about 0.2, 0.5, and 0.75; crack depth to crack length ratios of about 1.0 to 2.0; and crack length to hole radius ratios of about 0.5 to 2.0. The SIFs were determined at the intersection of the flaw border with the plate surface (KS) and with the edge of the hole (KH). It is shown that extension of a crack emanating from a corner of intersection of a hole with a plate under monotonically increasing load is not self-similar and that as the flaw depth increases, KH decreases and KS increases. Existing theories and design criteria significantly overestimate the SIF at both the hole and the surface except for shallow flaws at the hole and deep flaws at the surface.
Investigation of Helicopter Longeron Cracks
Newman, John A.; Baughman, James; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
A two-dimensional problem of a mode-I crack in a rotating fibre ...
Indian Academy of Sciences (India)
AHMED E ABOUELREGAL
2018-02-07
Feb 7, 2018 ... Fibre-reinforced; mode-I crack; dual-phase-lag theory; rotation; normal mode analysis. 1. Introduction ... acki [2, 3] rests upon the hypothesis of the Fourier law of .... forcement and rotation on the variations of different field quantities inside ... The principle of balance of linear momentum leads to the following ...
J-integral and limit load analysis of semi-elliptical surface cracks in plates under tension
International Nuclear Information System (INIS)
Lei, Y.
2004-01-01
Systematic detailed non-linear finite element (FE) analyses are described for semi-elliptical surface cracks in plates under tension. Limit load solutions are obtained from the FE J results through the reference stress method. The results show that the type of the relationship between J and the limit load mainly depends on the ratio a/t, where a is the crack depth and t the thickness of the plate. For a/t≤0.5, J for any position along the crack front can be predicted by the reference stress method using a single limit load value, except for the points very close to the plate surface. For a/t=0.8, J can only be approximately estimated because no single limit load value can be found to satisfy all the FE J solutions along the crack front. However, for all cases considered, the maximum J value along the crack front can still be predicted by using the global limit load in the reference stress method. The limit load data obtained from this work can be well predicted by a global limit load equation developed by Goodall and Webster
Zemlyanova, A. Y.
2013-01-01
A problem of an interface crack between two semi-planes made out of different materials under an action of an in-plane loading of general tensile-shear type is treated in a semi-analytical manner with the help of Dirichlet-to-Neumann mappings
National Research Council Canada - National Science Library
Ching, H. K; Liu, C. T; Yen, S. C
2004-01-01
.... For the linear analysis, material compressibility was modeled with Poisson's varying form 0.48 to 0.4999. In addition, with the presence of the crack surface pressure, the J-integral was modified by including an additional line integral...
Directory of Open Access Journals (Sweden)
KharchenkoV.V.
2014-12-01
Full Text Available The results of calculating the stress state of a hollow cylinder with a defect in the form of cracks, which is at the top of the cavity in the elastic-plastic formulation is presented. The calculation results are compared with the results of solving this problem in the elastic formulation vand with the results of solving the problem of the stretching cylinder with a crack.
KharchenkoV.V.; Ban’koS.N.; KobelskyS.V.; KravchenkoV.I.
2014-01-01
The results of calculating the stress state of a hollow cylinder with a defect in the form of cracks, which is at the top of the cavity in the elastic-plastic formulation is presented. The calculation results are compared with the results of solving this problem in the elastic formulation vand with the results of solving the problem of the stretching cylinder with a crack.
International Nuclear Information System (INIS)
Botella, J.; Fernandez, M.T.; Fernandez de Castillo, I.
1998-01-01
The effect of certain different concentrations of Cu, Sn, P and As on the surface cracking of 18-8 austenitic stainless steel hot compressed specimens has been studied, at 1,123 and 1,273 K, in an oxidizing atmosphere (air). A procedure for determining surface cracking has been established, and the cracking factor obtained in this ways is correlated with the chemical composition of the materials at both temperatures. The cracking factors obtained at 1,273 K have been compared with the reduction of area drops obtained by hot tension tests at the same temperature. (Author) 5 refs
International Nuclear Information System (INIS)
Tanaka, Yasuhiro; Umemoto, Tadahiro
1988-01-01
Many techniques have been proposed as countermeasures for the External Stress Corrosion Cracking (ESCC) on austenitic stainless steel piping caused by sea salt particles. However, not one seems perfect. The method proposed here is an expansion of IHSI (Induction Heating Stress Improvement) which has been successfully implemented in many nuclear power plants as a remedy for Intergranular Stress Corrossion Cracking. The proposed method named EIHSI (External IHSI) can make the residual stress compressive on the outer surface of the piping components. In order to confirm the effectiveness of EIHSI, one series of tests were conducted on a weld joint between the pipe flange and the straight pipe. The measured residual stresses and also the results of the cracking test revealed that EIHSI is a superior method to suppress the ESCC. The outline of EIHSI and the verification tests are presented in this paper. (author)
Analysis of anisotropic crack problems using coupled meshless and fractal finite element method
International Nuclear Information System (INIS)
Rao, B N; Rajesh, K N
2010-01-01
This paper presents a coupling technique for integrating the element-free Galerkin method (EFGM) with fractal the finite element method (FFEM) for analyzing homogeneous, anisotropic, and two dimensional linear-elastic cracked structures subjected to mixed-mode (modes I and II) loading conditions. FFEM is adopted for discretization of domain close to the crack tip and EFGM is adopted in the rest of the domain. In the transition region interface elements are employed. The proposed method combines the best features of EFGM and FFEM, in the sense that no structured mesh or special enriched basis functions are necessary and no post-processing (employing any path independent integrals) is needed to determine fracture parameters such as stress intensity factors (SIFs) and T-stress. The numerical results based on all four orthotropic cases show that SIFs and T-stress obtained using the proposed method are in excellent agreement with the reference solutions for the structural and crack geometries considered in the present study.
Ahn, Tae-Ho; Kim, Hong-Gi; Ryou, Jae-Suk
2016-08-04
This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C 12 A₇), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency.
Allen, Phillip A.; Wells, Douglas N.
2013-01-01
No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.
Surface Crack Detection in Prestressed Concrete Cylinder Pipes Using BOTDA Strain Sensors
Directory of Open Access Journals (Sweden)
Zhigang Xu
2017-01-01
Full Text Available Structural deterioration after a period of service can induce the failure of prestressed concrete cylinder pipes (PCCPs, with microcracks in the coating leading to the corrosion of the prestressed wires. In this paper, we propose the use of Brillouin optical time-domain analysis (BOTDA strain sensors for detecting the onset of microcracking in PCCP coating: the BOTDA strain sensors are mounted on the surface of the PCCP, and distributed strain measurements are employed to assess the cracks in the mortar coating and the structural state of the pipe. To validate the feasibility of the proposed approach, experimental investigations were conducted on a prototype PCCP segment, wherein the inner pressure was gradually increased to 1.6 MPa. Two types of BOTDA strain sensors—the steel wire packaged fiber optic sensor and the polyelastic packaged fiber optic sensor—were employed in the experiments. The experimental distributed measurements agreed well with the finite element computations, evidencing that the investigated strain sensors are sensitive to localized deterioration behaviors such as PCCP microcracking.
Cracking and corrosion recovery boiler
Energy Technology Data Exchange (ETDEWEB)
Suik, H. [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)
1998-12-31
The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.
Cracking and corrosion recovery boiler
Energy Technology Data Exchange (ETDEWEB)
Suik, H [Tallinn Technical University, Horizon Pulp and Paper, Tallinn (Estonia)
1999-12-31
The corrosion of heat surfaces and the cracking the drums are the main problems of the recovery boiler. These phenomena have been appeared during long-term operation of boiler `Mitsubishi - 315` erected at 1964. Depth of the crack is depending on the number of shutdowns and on operation time. Corrosion intensity of different heat surfaces is varying depend on the metal temperature and the conditions at place of positioning of tube. The lowest intensity of corrosion is on the bank tubes and the greatest is on the tubes of the second stage superheater and on the tubes at the openings of air ports. (orig.) 5 refs.
Energy Technology Data Exchange (ETDEWEB)
Pecorari, Claudio [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Aeronautical and Vehicle Engineering
2006-03-15
Conventional inspection procedures to detect surface-breaking defects in train axels and thick pipes often employ 45-degree incidence shear vertical (SV) waves as probing tool. Recently obtained theoretical and experimental results indicate that this method is considerably less sensitivity to shallow surface-breaking defects, than the one in which the angle of incidence is selected to be close to the critical angle of the longitudinal wave. This project has confirmed this thesis by experimentally investigating the backscattering of SV waves by surface-breaking cracks as a function o t the angle of incidence. To this end, three cracks of depth approximately equal to 0.3 mm, 0.5 mm and 0.7 were introduced on the surface of steel samples with a thickness of 47 mm. These cracks were insonified with transducers operating at 2.25 MHz, 3.5 MHz, and 5 MHz, which correspond to wavelengths in steel of 1.38 mm, 0.88 mm, and 0.62 mm, respectively. The increase in sensitivity has been assessed in the order of 15 dB.
Influence of Initial Inclined Surface Crack on Estimated Residual Fatigue Lifetime of Railway Axle
Czech Academy of Sciences Publication Activity Database
Náhlík, Luboš; Pokorný, Pavel; Ševčík, Martin; Hutař, Pavel
2016-01-01
Roč. 7, č. 4 (2016), č. článku 1640007. ISSN 1756-9737. [FDM 2016 - International Conference on Fracture and Damage Mechanics /15./. Alicante, 14.09.2016-16.09.2016] R&D Projects: GA MŠk LM2015069; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : inclined crack * railway axle * residual fatigue lifetime * fatigue crack propagation Subject RIV: JL - Materials Fatigue, Friction Mechanics
Energy Technology Data Exchange (ETDEWEB)
Bu, Caixia; Bahr, David A.; Dukes, Catherine A.; Baragiola, Raúl A., E-mail: cb8nw@virginia.edu [Laboratory for Astrophysics and Surface Physics, Materials Science and Engineering, University of Virginia, Charlottesville, VA 22904 (United States)
2016-07-10
Within Saturn's E-ring, dust grains are coated by water vapor co-released with ice grains from the geyser-like eruptions of Enceladus. These ice-coated grains have intrinsic surface potential and interact synergistically with the ions and electrons of Saturn's magnetospheric plasmas. We perform laboratory experiments to investigate the effects of water-ice growth on the surface potential, using amorphous solid water (ASW) films. We estimate the growth of the surface potential to be ∼ 2.5 mV (Earth) yr{sup 1} and 112 mV yr{sup 1} for E-ring grains at ∼4.5 R {sub s} and 3.95 R {sub s} outside Enceladus’s plume, respectively. In addition, our measurements show that the linear relationship between the surface potential and the film thickness, as described in previous studies, has an upper limit, where the film spontaneously cracks above a porosity-dependent critical thickness. Heating of the cracked films with (and without) deposited charge shows that significant positive (and negative) surface potentials are retained at temperatures above 110 K, contrary to the minimal values (roughly zero) for thin, transparent ASW films. The significant surface potentials observed on micron-scale cracked ice films after thermal cycling, (5–20) V, are consistent with Cassini measurements, which indicate a negative charge of up to 5 V for E-ring dust particles at ∼5 R {sub s}. Therefore, the native grain surface potential resulting from water-vapor coating must be included in modeling studies of interactions between E-ring icy surfaces and Saturn's magnetospheric plasma.
Smith, C. W.
1992-01-01
The adaptation of the frozen stress photoelastic method to the determination of the distribution of stress intensity factors in three dimensional problems is briefly reviewed. The method is then applied to several engineering problems of practical significance.
Reflections on the surface energy imbalance problem
Ray Leuning; Eva van Gorsela; William J. Massman; Peter R. Isaac
2012-01-01
The 'energy imbalance problem' in micrometeorology arises because at most flux measurement sites the sum of eddy fluxes of sensible and latent heat (H + λE) is less than the available energy (A). Either eddy fluxes are underestimated or A is overestimated. Reasons for the imbalance are: (1) a failure to satisfy the fundamental assumption of one-...
Surface studies of iridium-alloy grain boundaries associated with weld cracking
International Nuclear Information System (INIS)
Mosley, W.C.
1982-01-01
Plutonium-238 oxide fuel pellets for the General Purpose Heat Source (GPHS) Radioisotopic Thermoelectric Generators to be used on the NASA Galileo Mission to Jupiter and the International Solar Polar Mission are produced and encapsulated in iridium alloy at the Savannah River Plant (SRP). Underbead cracks occasionally occur in the girth weld on the iridium-alloy-clad vent sets in the region where the gas tungsten arc is quenched. Grain-boundary structures and compositions were characterized by scanning electron microscopy/x-ray energy spectroscopy, electron microprobe analysis and scanning Auger microprobe analysis to determine the cause of weld quench area cracking. Results suggest that weld quench area cracking may be caused by gas porosity or liquation in the grain boundaries
Evaluation of cracking in steam generator feedwater piping in pressurized water reactor plants
International Nuclear Information System (INIS)
Goldberg, A.; Streit, R.D.
1981-05-01
Cracking in feedwater piping was detected near the inlet to steam generators in 15 pressurized water reactor plants. Sections with cracks from nine plants are examined with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Using transmission electron microscopy, fatigue striations are observed on replicas of cleaned crack surfaces. Calculations based on the observed striation spacings gave a cyclic stress value of 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses and it is concluded that the overriding factor in the cracking problem was the presence of such undocumented cyclic loads
Minimal surfaces, stratified multivarifolds, and the plateau problem
Thi, Dao Trong; Primrose, E J F; Silver, Ben
1991-01-01
Plateau's problem is a scientific trend in modern mathematics that unites several different problems connected with the study of minimal surfaces. In its simplest version, Plateau's problem is concerned with finding a surface of least area that spans a given fixed one-dimensional contour in three-dimensional space--perhaps the best-known example of such surfaces is provided by soap films. From the mathematical point of view, such films are described as solutions of a second-order partial differential equation, so their behavior is quite complicated and has still not been thoroughly studied. Soap films, or, more generally, interfaces between physical media in equilibrium, arise in many applied problems in chemistry, physics, and also in nature. In applications, one finds not only two-dimensional but also multidimensional minimal surfaces that span fixed closed "contours" in some multidimensional Riemannian space. An exact mathematical statement of the problem of finding a surface of least area or volume requir...
Prediction of surface cracks from thick-walled pressurized vessels with ASME code
International Nuclear Information System (INIS)
Thieme, W.
1983-01-01
The ASME-Code, Section XI, Appendix A 'Analysis of flow indications' is still non-mandatory for the pressure components of nuclear power plants. It is certainly difficult to take realistic account of the many factors influencing crack propagation while making life predictions. The accuracy of the US guideline is analysed, and its possible applications are roughly outlined. (orig./IHOE) [de
Energy Technology Data Exchange (ETDEWEB)
Toyosada, M; Yamaguchi, K; Takeda, K; Watanabe, Y [Kyushu University, Fukuoka (Japan). Faculty of Engineering
1997-10-01
The fatigue test of specimens with a stiffener was carried out to examine the change in aspect ratio (crack depth/length) of fatigue cracks in a stress concentration field and residual stress field. The aspect ratio of surface cracks just after generation can be represented with the single virtual surface crack with the same value as K value at the deepest point considering an interference effect from near cracks. No discontinuous change in K value is found at the deepest point even during growth and combination of cracks on a surface. The change in K value at the deepest point is thus the criterion to represent growth and combination of surface cracks considering the interference effect. The change in aspect ratio of the typical single virtual surface crack linearly decreases with an increase in crack depth. The shape of surface cracks generating and growing in a residual stress field is more flat than that in no residual stress field. In addition, in a residual stress field, surface cracks are longer at the same crack depth, and fatigue lives are shorter. 7 refs., 12 figs.
Investigation of Cracks Found in Helicopter Longerons
Newman, John A.; Baughman, James M.; Wallace, Terryl A.
2009-01-01
Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.
Lamb wave scattering by a surface-breaking crack in a plate
Datta, S. K.; Al-Nassar, Y.; Shah, A. H.
1991-01-01
An NDE method based on finite-element representation and modal expansion has been developed for solving the scattering of Lamb waves in an elastic plate waveguide. This method is very powerful for handling discontinuities of arbitrary shape, weldments of different orientations, canted cracks, etc. The advantage of the method is that it can be used to study the scattering of Lamb waves in anisotropic elastic plates and in multilayered plates as well.
Surface profile evolution and fatigue crack initiation in Sanicro 25 steel at room temperature
Czech Academy of Sciences Publication Activity Database
Polák, Jaroslav; Petráš, Roman; Chai, G.; Škorík, Viktor
2016-01-01
Roč. 658, MAR (2016), s. 221-228 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.30.0063; GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Sanicro 25 steel * Fatigue crack initiation * Persistent slip markings * Extrusions * Intrusions Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 3.094, year: 2016
Sakata, Yoshitaro; Terasaki, Nao; Nonaka, Kazuhiro
2017-05-01
Fine polishing techniques, such as a chemical mechanical polishing treatment, are important techniques in glass substrate manufacturing. However, these techniques may cause micro cracks under the surface of glass substrates because they used mechanical friction. A stress-induced light scattering method (SILSM), which was combined with light scattering method and mechanical stress effects, was proposed for inspecting surfaces to detect polishing-induced micro cracks. However, in the conventional SILSM, samples need to be loaded with physical contact, and the loading point is invisible in transparent materials. Here, we introduced a novel non-contact SILSM using a heating device. A glass substrate was heated first, and then the light scattering intensity of micro cracks was detected by a cooled charge-couple device camera during the natural cooling process. Results clearly showed during the decreasing surface temperature of a glass substrate, appropriate thermal stress is generated for detecting micro cracks by using the SILSM and light scattering intensity from micro cracks changes. We confirmed that non-contact thermal SILSM (T-SILSM) can detect micro cracks under the surface of transparent materials.
Directory of Open Access Journals (Sweden)
Chang-Gi Han
2016-12-01
Full Text Available Austenitic stainless steels (ASSs are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.
Hot Rolling Scrap Reduction through Edge Cracking and Surface Defects Control
Energy Technology Data Exchange (ETDEWEB)
Beaudoin, Armand [Univ. of Illinois, Urbana-Champaign, IL (United States)
2016-05-29
The design of future aircraft must address the combined demands for fuel efficiency, reduced emissions and lower operating costs. One contribution to these goals is weight savings through the development of new alloys and design techniques for airframe structures. This research contributes to the light-weighting through fabrication of monolithic components from advanced aluminum alloys by making a link between alloy processing history and in-service performance. Specifically, this research demonstrates the link between growing cracks with features of the alloy microstructure that follow from thermo-mechanical processing. This is achieved through a computer model of crack deviation. The model is validated against experimental data from production scale aluminum alloy plate, and demonstration of the effect of changes in processing history on crack growth is made. The model is cast in the open-source finite element code WARP3D, which is freely downloadable and well documented. This project provides benefit along several avenues. First, the technical contribution of the computer model offers the materials engineer a critical means of providing guidance both upstream, to process tuning to achieve optimal properties, and downstream, to enhance fault tolerance. Beyond the fuel savings and emissions reduction inherent in the light-weighting of aircraft structures, improved fault tolerance addresses demands for longer inspection intervals over baseline, and a lower life cycle cost.
Energy Technology Data Exchange (ETDEWEB)
Han, Chang Gi; Chang, Yoon Suk [Dept. of Nuclear Engineering, College of Engineering, Kyung Hee University, Yongin (Korea, Republic of); Kim, Jong Sung [Dept. of Mechanical Engineering, Sunchon National University, Sunchon (Korea, Republic of); Kim, Maan Won [Central Research Institute, Korea Hydro and Nuclear Power Company, Daejeon (Korea, Republic of)
2016-12-15
Austenitic stainless steels (ASSs) are widely used for nuclear pipes as they exhibit a good combination of mechanical properties and corrosion resistance. However, high tensile residual stresses may occur in ASS welds because postweld heat treatment is not generally conducted in order to avoid sensitization, which causes a stress corrosion crack. In this study, round robin analyses on stress intensity factors (SIFs) were carried out to examine the appropriateness of structural integrity assessment methods for ASS pipe welds with two types of circumferential cracks. Typical stress profiles were generated from finite element analyses by considering residual stresses and normal operating conditions. Then, SIFs of cracked ASS pipes were determined by analytical equations represented in fitness-for-service assessment codes as well as reference finite element analyses. The discrepancies of estimated SIFs among round robin participants were confirmed due to different assessment procedures and relevant considerations, as well as the mistakes of participants. The effects of uncertainty factors on SIFs were deducted from sensitivity analyses and, based on the similarity and conservatism compared with detailed finite element analysis results, the R6 code, taking into account the applied internal pressure and combination of stress components, was recommended as the optimum procedure for SIF estimation.
Comparison of the Friction-Loss Coefficient for the Gap of Two Contact Surfaces and a Crack
International Nuclear Information System (INIS)
Nam, Ho Yun; Choi, Byoung Hae; Kim, Jong Bum; Lee, Young Bum
2011-01-01
A leak-detection method has been developed by measuring the pressure variation between the inner and outer heat transfer tubes of a double-wall tube steam generator. An experiment was carried out to measure the leak rate in the gap between two surfaces pressed with a hydraulic press in order to simulate the phenomena, and a correlation was determined for the leak rate in a micro gap. However, in the correlation, the gap width and friction coefficient were coupled with the surface roughness, which affects the two parameters. The two parameters were separated using a surface-contact model to develop a correlation for the friction coefficient. The correlation was compared with the existing correlations used for crack analysis. Although the applied ranges of Reynolds numbers were different, the developed correlation for Reynolds numbers of 0.1.0.35 showed similar tendencies to existing correlations used for higher Reynolds numbers
Ultrasonic sizing of fatigue cracks
International Nuclear Information System (INIS)
Burns, D.J.
1983-12-01
Surface and buried fatigue cracks in steel plates have been sized using immersion probes as transmitters-receivers, angled to produce shear waves in the steel. Sizes have been estimated by identifying the ultrasonic waves diffracted from the crack tip and by measuring the time taken for a signal to travel to and from the crack tip. The effects of compression normal to a fatigue crack and of crack front curvature are discussed. Another diffraction technique, developed by UKAEA, Harwell, is reviewed
The effect of couple-stresses on the stress concentration around a moving crack
Directory of Open Access Journals (Sweden)
S. Itou
1981-01-01
Full Text Available The problem of a uniformly propagating finite crack in an infinite medium is solved within the linearized couple-stress theory. The self-equilibrated system of pressure is applied to the crack surfaces. The problem is reduced to dual integral equations and solved by a series-expansion method. The dynamic stress-intensity factor is computed numerically.
Environmental Degradation of Materials: Surface Chemistry Related to Stress Corrosion Cracking
Schwarz, J. A.
1985-01-01
Parallel experiments have been performed in order to develop a comprehensive model for stress cracking (SCC) in structural materials. The central objective is to determine the relationship between the activity and selectivity of the microstructure of structural materials to their dissolution kinetics and experimentally measured SCC kinetics. Zinc was chosen as a prototype metal system. The SCC behavior of two oriented single-crystal disks of zinc in a chromic oxide/sodium sulfate solution (Palmerton solution) were determined. It was found that: (1) the dissolution rate is strongly (hkil)-dependent and proportional to the exposure time in the aggressive environment; and (2) a specific slip system is selectively active to dissolution under applied stress and this slip line controls crack initiation and propagation. As a precursor to potential microgrvity experiments, electrophoretic mobility measurements of zinc particles were obtained in solutions of sodium sulfate (0.0033 M) with concentrations of dissolved oxygen from 2 to 8 ppm. The equilibrium distribution of exposed oriented planes as well as their correlation will determine the particle mobility.
Numerical treatment of free surface problems in ferrohydrodynamics
International Nuclear Information System (INIS)
Lavrova, O; Matthies, G; Mitkova, T; Polevikov, V; Tobiska, L
2006-01-01
The numerical treatment of free surface problems in ferrohydrodynamics is considered. Starting from the general model, special attention is paid to field-surface and flow-surface interactions. Since in some situations these feedback interactions can be partly or even fully neglected, simpler models can be derived. The application of such models to the numerical simulation of dissipative systems, rotary shaft seals, equilibrium shapes of ferrofluid drops, and pattern formation in the normal-field instability of ferrofluid layers is given. Our numerical strategy is able to recover solitary surface patterns which were discovered recently in experiments
Electroreflectance and the problem of studying plasma-surface interactions
International Nuclear Information System (INIS)
Preppernau, B.L.
1995-01-01
A long standing problem in low-temperature plasma discharge physics is to understand in detail the mutual interaction of real exposed surfaces (electrodes) with the reactive plasma environment. In particular, one wishes to discern the influence of these surfaces on the plasma parameters given their contributions from secondary electrons and ions. This paper briefly reviews the known surface interaction processes as well as currently available diagnostics to study the interface between plasmas and surfaces. Next comes a discussion describing the application of plasma-modulated electroreflectance to this research and some potential experimental techniques
International Nuclear Information System (INIS)
Narita, Michiko; Aida, Shigekazu
1998-01-01
A penetration liquid or a slow drying penetration liquid prepared by mixing a penetration liquid and a slow drying liquid is filled to the inside of an artificial crack formed to a member to be detected such as of boiler power generation facilities and nuclear power facilities. A developing liquid is applied to the periphery of the artificial crack on the surface of a member to be detected. As the slow-drying liquid, an oil having a viscosity of 56 is preferably used. Loads are applied repeatedly to the member to be detected, and when a crack is caused to the artificial crack, the permeation liquid penetrates into the crack. The penetration liquid penetrated into the crack is developed by the developing liquid previously coated to the periphery of the artificial crack of the surface of the member to be detected. When a crack is caused, since the crack is developed clearly even if it is a small opening, the crack can be recognized visually reliably. (I.N.)
Directory of Open Access Journals (Sweden)
Pawlicki Jakub
2016-09-01
Full Text Available The paper presents a detailed analysis of the material damaging process due to low-cycle fatigue and subsequent crack growth under thermal shocks and high pressure. Finite Element Method (FEM model of a high pressure (HP by-pass valve body and a steam turbine rotor shaft (used in a coal power plant is presented. The main damaging factor in both cases is fatigue due to cycles of rapid temperature changes. The crack initiation, occurring at a relatively low number of load cycles, depends on alternating or alternating-incremental changes in plastic strains. The crack propagation is determined by the classic fracture mechanics, based on finite element models and the most dangerous case of brittle fracture. This example shows the adaptation of the structure to work in the ultimate conditions of high pressure, thermal shocks and cracking.
International Nuclear Information System (INIS)
Fukuoka, Katsuhiro; Hashimoto, Mitsuo
2009-01-01
The establishment of non-destructive inspection technology for plant structures is necessary, since the occurrence of cracks has been reported in some nuclear power plants. In this research, a uniform eddy current multi-probe to inspect cracks on a curved structure was developed. We designed exciting coils of this probe, considering the shape of the curved structure, so that the eddy current flows uniformly. Pick-up coils were arranged on a flexible printed circuit board to fit on the curved surface shape portion. The detection characteristics for EDM (electrical discharge machining) slits provided on the curved surface shape portion of the specimen were evaluated. The clear signals for the EDM slits provided on the curved surface which had a curvature radius of 25 mm were obtained by this probe. We confirmed that the crack shape could be estimated by detecting the signals from the developed probe. (author)
Chudnovsky, A.; Dolgopolsky, A.; Kachanov, M.
1987-01-01
The elastic interactions of a two-dimensional configuration consisting of a crack with an array of microcracks located near the tip are studied. The general form of the solution is based on the potential representations and approximations of tractions on the microcracks by polynomials. In the second part, the technique is applied to two simple two-dimensional configurations involving one and two microcracks. The problems of stress shielding and stress amplification (the reduction or increase of the effective stress intensity factor due to the presence of microcracks) are discussed, and the refinements introduced by higher order polynomial approximations are illustrated.
Stress corrosion cracking experience in steam generators at Bruce NGS
International Nuclear Information System (INIS)
King, P.J.; Gonzalez, F.; Brown, J.
1993-01-01
In late 1990 and through 1991, units 1 and 2 at the Bruce A Nuclear Generating Station (BNGS-A) experienced a number of steam generator tube leaks. Tube failures were identified by eddy current to be circumferential cracks at U-bend supports on the hot-leg side of the boilers. In late 1991, tubes were removed from these units for failure characterization. Two active failure modes were found: corrosion fatigue in both units 1 and 2 and stress corrosion cracking (SCC) in unit 2. In unit 2, lead was found in deposits, on tubes, and in cracks, and the cracking was mixed-mode: transgranular and intergranular. This convincingly indicated the involvement of lead in the stress corrosion cracking failures. A program of inspection and tube removals was carried out to investigate more fully the extent of the problem. This program found significant cracking only in lead-affected boilers in unit 2, and also revealed a limited extent of non-lead-related intergranular stress corrosion cracking in other boilers and units. Various aspects of the failures and tube examinations are presented in this paper. Included is discussion of the cracking morphology, measured crack size distributions, and chemical analysis of tube surfaces, crack faces, and deposits -- with particular emphasis on lead
Boundary conditions for free surface inlet and outlet problems
Taroni, M.; Breward, C. J. W.; Howell, P. D.; Oliver, J. M.
2012-01-01
We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown
Approximate solutions of some problems of scattering of surface ...
Indian Academy of Sciences (India)
A Choudhary
Abstract. A class of mixed boundary value problems (bvps), occurring in the study of scattering of surface water waves by thin vertical rigid barriers placed in water of finite depth, is examined for their approximate solutions. Two different placings of vertical barriers are analyzed, namely, (i) a partially immersed barrier and.
International Nuclear Information System (INIS)
Goel, V.S.
1985-01-01
This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600
Microstructure Evolution and Surface Cracking Behavior of Superheavy Forgings during Hot Forging
Directory of Open Access Journals (Sweden)
Zhenhua Wang
2018-01-01
Full Text Available In recent years, superheavy forgings that are manufactured from 600 t grade ingots have been applied in the latest generation of nuclear power plants to provide good safety. However, component production is pushing the limits of the current free-forging industry. Large initial grain sizes and a low strain rate are the main factors that contribute to the deformation of superheavy forgings during forging. In this study, 18Mn18Cr0.6N steel with a coarse grain structure was selected as a model material. Hot compression and hot tension tests were conducted at a strain rate of 10−4·s−1. The essential nucleation mechanism of the dynamic recrystallization involved low-angle grain boundary formation and subgrain rotation, which was independent of the original high-angle grain boundary bulging and the presence of twins. Twins were formed during the growth of dynamic recrystallization grains. The grain refinement was not obvious at 1150°C. A lowering of the deformation temperature to 1050°C resulted in a fine grain structure; however, the stress increased significantly. Crack-propagation paths included high-angle grain boundaries, twin boundaries, and the insides of grains, in that order. For superheavy forging, the ingot should have a larger height and a smaller diameter.
Evaluation and Observation of Autogenous Healing Ability of Bond Cracks along Rebar
Directory of Open Access Journals (Sweden)
Choonghyun Kang
2014-04-01
Full Text Available Micro cracks occurring in concrete around tensile rebar is well known latent damage phenomenon. These micro cracks develop, and can be detected after reaching the surface of the concrete. Detection of these cracks before they are fully formed is preferable, but observing the whole crack structure is difficult. Another problem is repairing micro cracks under the concrete surface. The autogenous ability of bond cracks along rebar was evaluated using the air permeability test. Air permeability coefficients were measured before and after tensile loading, and experimental air permeability coefficients became larger near cracks along rebar as a result of tensile loading. Recuring for 28 days after tensile loading made the air permeability coefficients smaller, but this restriction only occurred during water recuring. Observation of crack patterns helped the understanding of change in the air permeability coefficients. Several small cracks along rebar were observed after tensile loading, and most cracks along rebar were not found after water recuring. On the other hand, the crack pattern did not change after air recuring. These results indicate that bond cracks along rebar can be closed by autogenous healing, and cause the air permeability coefficients.
Problems in laser repair welding of polished surfaces
Directory of Open Access Journals (Sweden)
A. Skumavc
2014-10-01
Full Text Available This paper presents problems in laser repair welding of the tools for injection moulding of plastics and light metals. Tools for injection moulding of the car headlamps are highly polished in order to get a desirable quality of the injected part. Different light metals, glasses, elastomers, thermoplastics and thermosetting polymers are injected into the die cavity under high pressures resulting in the surface damages of the tool. Laser welding is the only suitable repair welding technique due to the very limited sputtering during deposition of the filler metal. Overlapping of the welds results in inhomogeneous hardness of the remanufactured surface. Results have shown strong correlation between hardness and surface waviness after final polishing of the repair welded surface.
ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator
International Nuclear Information System (INIS)
Bass, B.R.; Bryson, J.W.
1994-01-01
1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements
Dynamic Eigenvalue Problem of Concrete Slab Road Surface
Pawlak, Urszula; Szczecina, Michał
2017-10-01
The paper presents an analysis of the dynamic eigenvalue problem of concrete slab road surface. A sample concrete slab was modelled using Autodesk Robot Structural Analysis software and calculated with Finite Element Method. The slab was set on a one-parameter elastic subsoil, for which the modulus of elasticity was separately calculated. The eigen frequencies and eigenvectors (as maximal vertical nodal displacements) were presented. On the basis of the results of calculations, some basic recommendations for designers of concrete road surfaces were offered.
Boundary conditions for free surface inlet and outlet problems
Taroni, M.
2012-08-10
We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Shigeaki; Kamata, Akiyuki [Department of Mechanical Engineering, Faculty of Engineering, Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326-8558 (Japan); Watanabe, Tadao, E-mail: skoba@ashitech.ac.j [Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang, 110004 (China)
2010-07-01
The morphology of specimen surface after fatigue fracture was evaluated in connection with grain orientation distribution and grain boundary microstructure to reveal a mechanism of fatigue fracture in nanocrystalline materials. The electrodeposited and sharply {l_brace}001{r_brace} textured Ni -2.0 mass% P alloy with the average grain size of ca. 45 nm and high fractions of low-angle and {Sigma}3 boundaries showed 2 times higher fatigue limit than electrodeposited microcrystalline Ni polycrystal. The surface features of fatigued specimen were classified into two different types of morphologies characterized as brittle fracture at the central area and as ductile fracture at the surrounding area.
Mustapha, S.; Braytee, A.; Ye, L.
2017-04-01
In this study, we focused at the development and verification of a robust framework for surface crack detection in steel pipes using measured vibration responses; with the presence of multiple progressive damage occurring in different locations within the structure. Feature selection, dimensionality reduction, and multi-class support vector machine were established for this purpose. Nine damage cases, at different locations, orientations and length, were introduced into the pipe structure. The pipe was impacted 300 times using an impact hammer, after each damage case, the vibration data were collected using 3 PZT wafers which were installed on the outer surface of the pipe. At first, damage sensitive features were extracted using the frequency response function approach followed by recursive feature elimination for dimensionality reduction. Then, a multi-class support vector machine learning algorithm was employed to train the data and generate a statistical model. Once the model is established, decision values and distances from the hyper-plane were generated for the new collected data using the trained model. This process was repeated on the data collected from each sensor. Overall, using a single sensor for training and testing led to a very high accuracy reaching 98% in the assessment of the 9 damage cases used in this study.
Mitigation strategies for autogenous shrinkage cracking
DEFF Research Database (Denmark)
Bentz, Dale P.; Jensen, Ole Mejlhede
2004-01-01
As the use of high-performance concrete has increased, problems with early-age cracking have become prominent. The reduction in water-to-cement ratio, the incorporation of silica fume, and the increase in binder content of high-performance concretes all contribute to this problem. In this paper......, the fundamental parameters contributing to the autogenous shrinkage and resultant early-age cracking of concrete are presented. Basic characteristics of the cement paste that contribute to or control the autogenous shrinkage response include the surface tension of the pore solution, the geometry of the pore...... of early-age cracking due to autogenous shrinkage. Mitigation strategies discussed in this paper include: the addition of shrinkage-reducing admixtures more commonly used to control drying shrinkage, control of the cement particle size distribution, modification of the mineralogical composition...
The effect of crack propagation mechanism on the fractal dimension of fracture surfaces in steels
Czech Academy of Sciences Publication Activity Database
Dlouhý, Ivo; Strnadel, B.
2008-01-01
Roč. 75, č. 3-4 (2008), s. 726-738 ISSN 0013-7944 R&D Projects: GA ČR(CZ) GA106/06/0646; GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : low-alloyed steel * fracture surface * fractography Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.713, year: 2008
The surface energy, thermal vibrations of dislocation lines and the critical crack extension force
International Nuclear Information System (INIS)
Chiang, Chien.
1979-09-01
The connections between atomic structure and mechanical properties of metals are interested by many physicist and mechanists recently. The authors of this paper try to connect the fracture of materials with the surface energy and dislocation properties, which may be treated with lattice dynamics and electron theory of solids. It shows that to combine the knowledge of solid state physics and fracture mechanics is quite important. (author)
Modeling of crack propagation in strengthened concrete disks
DEFF Research Database (Denmark)
Hansen, Christian Skodborg; Stang, Henrik
2013-01-01
Crack propagation in strengthened concrete disks is a problem that has not yet been addressed properly. To investigate it, a cracked half-infinite disk of concrete is strengthened with a linear elastic material bonded to the surface, and analyzed using two different finite element modeling...... instead of 3D calculations to predict the response of a structure and that it opens up for simpler evaluation of strengthened concrete structures using the finite element method....
Analytical modelling of acoustic emission from buried or surface-breaking cracks under stress
International Nuclear Information System (INIS)
Ben Khalifa, W; Jezzine, K; Hello, G; Grondel, S
2012-01-01
Acoustic emission (AE) is a non-destructive testing method used in various industries (aerospace, petrochemical and pressure-vessel industries in general, power generation, civil engineering, mechanical engineering, etc...) for the examination of large structures subjected to various stresses (e.g. mechanical loading).The energy released by a defect under stress (the AE phenomenon) can propagate as guided waves in thin structures or as surface Rayleigh waves in thick ones. Sensors (possibly permanently) are positioned at various locations on the structure under examination and are assumed to be sensitive to these waves. Then, post-processing tools typically based on signal processing and triangulation algorithms can be used to inverse these data, allowing one to estimate the position of the defect from which emanates the waves measured. The French Atomic Energy Commission is engaged in the development of tools for simulating AE examinations. These tools are based on specific models for the AE sources, for the propagation of guided or Rayleigh waves and for the behaviour of AE sensors. Here, the coupling of a fracture mechanics based model for AE source and surface/guided wave propagation models is achieved through an integral formulation relying on the elastodynamic reciprocity principle. As a first approximation, a simple piston-like model is used to predict the sensitivity of AE sensors. Predictions computed by our simulation tool are compared to results from the literature for validation purpose.
Study on fatigue life evaluation of structural component based on crack growth criterion
International Nuclear Information System (INIS)
Shibata, Katsuyuki
1984-07-01
As one of the practical application of fracture mechanics, fatigue life evaluation method based on crack growth criterion has been diffusing in various field of technology in order to determine the rational and reliable life of structural components. The fatigue life by this method is evaluated based on the fatigue crack growth analysis from defects, while many problems, such as the influence of residual stress on the crack growth behavior, the effect of overloading, and evaluation method for multiple surface cracks, are not sufficiently solved yet. In this paper, the above problems are treated, and based on some exprimental data some simple mehtods for fatigue life evaluation are proposed regarding the above problems. Verification of the proposed methods are shown in the paper by comparing with some experimental results, and the applicability of the proposed method is also examined by the fatigue test of pipes with cracks in the inner surface. (author)
International Nuclear Information System (INIS)
Shiue, R.K.; Chang, C.T.; Young, M.C.; Tsay, L.W.
2004-01-01
The effect of residual thermal stresses on the fatigue crack growth of the laser-surface-annealed AISI 304 stainless steel, especially the effect of stress redistribution ahead of the crack tip was extensively evaluated in the study. Based on the finite element simulation, the longitudinal residual tensile stress field has a width of roughly 20 mm on the laser-irradiated surface and was symmetric with respect to the centerline of the laser-annealed zone (LAZ). Meanwhile, residual compressive stresses distributed over a wide region away from the LAZ. After introducing a notch perpendicular to the LAZ, the distribution of longitudinal residual stresses became unsymmetrical about the centerline of LAZ. High residual compressive stresses exist within a narrow range ahead of notch tip. The improved crack growth resistance of the laser-annealed specimen might be attributed to those induced compressive stresses. As the notch tip passed through the centerline of the LAZ, the residual stress ahead of the notch tip was completely reverted into residual tensile stresses. The existence of unanimous residual tensile stresses ahead of the notch tip was maintained, even if the notch tip extended deeply into the LAZ. Additionally, the presence of the residual tensile stress ahead of the notch tip did not accelerate the fatigue crack growth rate in the compact tension specimen
Ghaffari, Hassanali; Mirhashemi, Amirhossein; Baherimoghadam, Tahereh; Azmi, Amir
2017-01-01
Objectives: This study sought to compare enamel cracks after orthodontic bracket debonding in the surfaces prepared with erbium, chromium: yttrium-scandium-galliumgarnet (Er,Cr:YSGG) laser and the conventional acid-etching technique. Materials and Methods: This in-vitro experimental study was conducted on 60 sound human premolars extracted for orthodontic purposes. The teeth were randomly divided into two groups (n=30). The teeth in group A were etched with 37% phosphoric acid gel, while the teeth in group B were subjected to Er,Cr:YSGG laser irradiation (gold handpiece, MZ8 tip, 50Hz, 4.5W, 60μs, 80% water and 60% air). Orthodontic brackets were bonded to the enamel surfaces and were then debonded in both groups. The samples were inspected under a stereomicroscope at ×38 magnification to assess the number and length of enamel cracks before bonding and after debonding. Independent-samples t-test was used to compare the frequency of enamel cracks in the two groups. Levene’s test was applied to assess the equality of variances. Results: No significant difference was noted in the frequency or length of enamel cracks between the two groups after debonding (P>0.05). Conclusions: Despite the same results of the frequency and length of enamel cracks in the two groups and by considering the side effects of acid-etching (demineralization and formation of white spot lesions), Er,Cr:YSGG laser may be used as an alternative to acid-etching for enamel surface preparation prior to bracket bonding. PMID:29296111
Directory of Open Access Journals (Sweden)
Chunling DU
2012-03-01
Full Text Available In this work the condition of metallic structures are classified based on the acquired sensor data from a surface-mounted piezoelectric sensor/actuator network. The structures are aluminum plates with riveted holes and possible crack damage at these holes. A 400 kHz sine wave burst is used as diagnostic signals. The combination of time-domain S0 waves from received sensor signals is directly used as features and preprocessing is not needed for the dam age detection. Since the time sequence of the extracted S0 has a high dimension, principal component estimation is applied to reduce its dimension before entering NN (neural network training for classification. An LVQ (learning vector quantization NN is used to classify the conditions as healthy or damaged. A number of FEM (finite element modeling results are taken as inputs to the NN for training, since the simulated S0 waves agree well with the experimental results on real plates. The performance of the classification is then validated by using these testing results.
Surface mining machines problems of maintenance and modernization
Rusiński, Eugeniusz; Moczko, Przemysław; Pietrusiak, Damian
2017-01-01
This unique volume imparts practical information on the operation, maintenance, and modernization of heavy performance machines such as lignite mine machines, bucket wheel excavators, and spreaders. Problems of large scale machines (mega machines) are highly specific and not well recognized in the common mechanical engineering environment. Prof. Rusiński and his co-authors identify solutions that increase the durability of these machines as well as discuss methods of failure analysis and technical condition assessment procedures. "Surface Mining Machines: Problems in Maintenance and Modernization" stands as a much-needed guidebook for engineers facing the particular challenges of heavy performance machines and offers a distinct and interesting demonstration of scale-up issues for researchers and scientists from across the fields of machine design and mechanical engineering.
On the n-body problem on surfaces of revolution
Stoica, Cristina
2018-05-01
We explore the n-body problem, n ≥ 3, on a surface of revolution with a general interaction depending on the pairwise geodesic distance. Using the geometric methods of classical mechanics we determine a large set of properties. In particular, we show that Saari's conjecture fails on surfaces of revolution admitting a geodesic circle. We define homographic motions and, using the discrete symmetries, prove that when the masses are equal, they form an invariant manifold. On this manifold the dynamics are reducible to a one-degree of freedom system. We also find that for attractive interactions, regular n-gon shaped relative equilibria with trajectories located on geodesic circles typically experience a pitchfork bifurcation. Some applications are included.
Feasibility of Penetrant Testing on Surface Axial-Radial Cracks of GH4169 Super Alloy Turbine Disk
Directory of Open Access Journals (Sweden)
QIAO Haiyan
2016-12-01
Full Text Available The post emulsifiable and water-washable fluorescent penetrant testing were carried out with ZL-27A and ZL67 respectively. Ultrasonic cleaning by detergent were used for 30 minutes before penetrant. The parts were immersed and drained for 60 minutes. The macroscopic and microscopic characteristics of cracks were researched using the split mirror and scanning electron microscope. The results show that the outgrowth of high temperature oxidation plugs up the forging cracks. Thus the penetrant testing is not effective in detecting this type of cracks.
International Nuclear Information System (INIS)
Kuroyanagi, Toshiyuki
1983-07-01
Based on an idea that surface conditions should be a reflection of interior temperature and interior heat flux variation as inverse as interior conditions has been determined completely by the surface temperature and/on surface heat flux as boundary conditions, a method is presented for determining the surface temperature and the surface heat flux of a solid when the temperature and heat flux at an interior point are a prescribed function of time. The method is developed by the integration of Duhumels' integral which has unknown temperature or unknown heat flux in its integrand. Specific forms of surface condition determination are developed for a sample inverse problem: slab. Ducussing the effect of a degree of avairable informations at an interior point due to damped system and the effect of variation of surface conditions on those formulations, it is shown that those formulations are capable of representing the unknown surface conditions except for small time interval followed by discontinuous change of surface conditions. The small un-resolved time interval is demonstrated by a numerical example. An evaluation method of heat flux at an interior point, which is requested by those formulations, is discussed. (author)
The Growth of Small Corrosion Fatigue Cracks in Alloy 7075
Piascik, Robert S.
2015-01-01
The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.
Crack Tip Parameters for Growing Cracks in Linear Viscoelastic Materials
DEFF Research Database (Denmark)
Brincker, Rune
In this paper the problem of describing the asymptotic fields around a slowly growing crack in a linearly viscoelastic material is considered. It is shown that for plane mixed mode problems the asymptotic fields must be described by 6 parameters: 2 stress intensity factors and 4 deformation...... intensity factors. In the special case of a constant Poisson ratio only 2 deformation intensity factors are needed. Closed form solutions are given both for a slowly growing crack and for a crack that is suddenly arrested at a point at the crack extension path. Two examples are studied; a stress boundary...... value problem, and a displacement boundary value problem. The results show that the stress intensity factors and the displacement intensity factors do not depend explicitly upon the velocity of the crack tip....
Directory of Open Access Journals (Sweden)
Dhiraj Gautam
Full Text Available Outbreaks of foodborne illness attributed to the consumption of Salmonella-tainted cantaloupe have occurred repeatedly, but understanding of the ecology of Salmonella on cantaloupe fruit surfaces is limited. We investigated the interactions between Salmonella enterica Poona, the plant pathogenic bacterium Erwinia tracheiphila, and cantaloupe fruit. Fruit surfaces were inoculated at the natural cracking stage by spreading S. enterica and E. tracheiphila, 20 µl at 107 cfu/ml, independently or together, over a 2×2 cm rind area containing a crack. Microbial and microscopic analyses were performed at 0, 9 and 24 days post inoculation (DPI. Even at 24 DPI (fruit maturity S. enterica was detected on 14% and 40% of the fruit inoculated with S. enterica alone and the two-pathogen mixture, respectively. However, the population of S. enterica declined gradually after initial inoculation. E. tracheiphila, inoculated alone or together with Salmonella, caused watersoaked lesions on cantaloupe fruit; but we could not conclude in this study that S. enterica survival on the fruit surface was enhanced by the presence of those lesions. Of fruit inoculated with E. tracheiphila alone and sampled at 24 DPI, 61% had watersoaked lesions on the surface. In nearly half of those symptomatic fruits the watersoaking extended into the sub-rind mesocarp, and E. tracheiphila was recovered from that tissue in 50% of the symptomatic fruit. In this work, E. tracheiphila internalized through natural cracks on developing fruits. S. enterica was never detected in the fruit interior (ca. 2-3 mm below rind surface under the limited conditions of our experiments, but the possibility that it, or other human pathogens that contaminate fresh produce, might also do so should be investigated under a wider range of conditions and produce types.
Directory of Open Access Journals (Sweden)
Hongfen Gao
2014-01-01
Full Text Available This paper describes the application of the complex variable meshless manifold method (CVMMM to stress intensity factor analyses of structures containing interface cracks between dissimilar materials. A discontinuous function and the near-tip asymptotic displacement functions are added to the CVMMM approximation using the framework of complex variable moving least-squares (CVMLS approximation. This enables the domain to be modeled by CVMMM without explicitly meshing the crack surfaces. The enriched crack-tip functions are chosen as those that span the asymptotic displacement fields for an interfacial crack. The complex stress intensity factors for bimaterial interfacial cracks were numerically evaluated using the method. Good agreement between the numerical results and the reference solutions for benchmark interfacial crack problems is realized.
International Nuclear Information System (INIS)
Sun, Zhen-Qi; Huang, Ming-Hui; Hu, Guo-Huai
2012-01-01
Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.
Crack width monitoring of concrete structures based on smart film
International Nuclear Information System (INIS)
Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2014-01-01
Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge. (paper)
Crack width monitoring of concrete structures based on smart film
Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhang, Xu; Yang, Guang; Qiu, Minfeng
2014-04-01
Due to its direct link to structural security, crack width is thought to be one of the most important parameters reflecting damage conditions of concrete structures. However, the width problem is difficult to solve with the existing structural health monitoring methods. In this paper, crack width monitoring by means of adhering enameled copper wires with different ultimate strains on the surface of structures is proposed, based on smart film crack monitoring put forward by the present authors. The basic idea of the proposed method is related to a proportional relationship between the crack width and ultimate strain of the broken wire. Namely, when a certain width of crack passes through the wire, some low ultimate strain wires will be broken and higher ultimate strain wires may stay non-broken until the crack extends to a larger scale. Detection of the copper wire condition as broken or non-broken may indicate the width of the structural crack. Thereafter, a multi-layered stress transfer model and specimen experiment are performed to quantify the relationship. A practical smart film is then redesigned with this idea and applied to Chongqing Jiangjin Yangtze River Bridge.
International Nuclear Information System (INIS)
Khoroshun, L.P.
1995-01-01
The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero
Stress corrosion cracking mitigation by ultrasound induced cavitation technique
Energy Technology Data Exchange (ETDEWEB)
Fong, C.; Lee, Y.C. [Industrial Technology Research Inst., Taiwan (China); Yeh, T.K. [National Tsing Hua Univ., Taiwan (China)
2014-07-01
Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)
Stress corrosion cracking mitigation by ultrasound induced cavitation technique
International Nuclear Information System (INIS)
Fong, C.; Lee, Y.C.; Yeh, T.K.
2014-01-01
Cavitation is usually considered as a damaging mechanism under erosion corrosion condition. However, if used appropriately, cavitation can be applied as a peening technique for surface stress modification process. The aim of surface stress modification is to alter the stress state of processed surface through direct or indirect thermo-mechanical treatments to reduce cracking problems initiated from surface. Ultrasonic devices are used to generate cavitation bubbles which when collapse will produce high intensity shock waves and high velocity micro-jet streams. The cavitation impact when properly controlled will create plastically deformed compressive layers in nearby surfaces and minimize cracking susceptibility in corrosive environments. This study is to investigate the effectiveness of Ultrasound Induced Cavitation (UIC) technique in surface stress improvement. Ultrasonic cavitation treatment of SS304 stainless steel under pure water is carried out with different controlling parameters. The cavitation impact on SS304 surface is measured in terms of surface roughness, surface strain, hardness, and microstructural characteristics. The in-depth residual stress distribution and crack mitigation effect are also evaluated. Test result indicates ultrasound induced cavitation treatment only has minor effect on surface physical characteristics. The extent of compressive stress produced on top surface exceeds the yield strength and can reach a depth above 150 μm. The maximum surface strain measured is generally below 20%, which is not considered detrimental to accelerate crack initiation. Stress corrosion verification tests show UIC treatment is capable in preventing environmental assisted cracking of stainless steels in severely corrosive conditions. In view of the test results, UIC technique has demonstrated to be a low cost, low contaminating, and effective surface stress improvement technology. (author)
Peng, Yang; Wu, Chao; Zheng, Yifu; Dong, Jun
2017-01-01
Welded joints are prone to fatigue cracking with the existence of welding defects and bending stress. Fracture mechanics is a useful approach in which the fatigue life of the welded joint can be predicted. The key challenge of such predictions using fracture mechanics is how to accurately calculate the stress intensity factor (SIF). An empirical formula for calculating the SIF of welded joints under bending stress was developed by Baik, Yamada and Ishikawa based on the hybrid method. However, when calculating the SIF of a semi-elliptical crack, this study found that the accuracy of the Baik-Yamada formula was poor when comparing the benchmark results, experimental data and numerical results. The reasons for the reduced accuracy of the Baik-Yamada formula were identified and discussed in this paper. Furthermore, a new correction factor was developed and added to the Baik-Yamada formula by using theoretical analysis and numerical regression. Finally, the predictions using the modified Baik-Yamada formula were compared with the benchmark results, experimental data and numerical results. It was found that the accuracy of the modified Baik-Yamada formula was greatly improved. Therefore, it is proposed that this modified formula is used to conveniently and accurately calculate the SIF of semi-elliptical cracks in welded joints under bending stress. PMID:28772527
Investigation of the fatigue crack opening under low cyclic loading
International Nuclear Information System (INIS)
Daunys, M.; Taraskevicius, A.
2003-01-01
Low cycle loading crack opening under various load levels were investigated. Analytical method of the fatigue crack opening investigation was described using relations of crack surface displacements. Calculated results of the crack surface displacement were compared with the experimental results. (author)
Cracking in thin films of colloidal particles on elastomeric substrates
Smith, Michael; Sharp, James
2012-02-01
The drying of thin colloidal films of particles is a common industrial problem (e.g paint drying, ceramic coatings). An often undesirable side effect is the appearance of cracks. As the liquid in a suspension evaporates, particles are forced into contact both with each other and the substrate, forming a fully wetted film. Under carefully controlled conditions the observed cracks grow orthogonal to the drying front, spaced at regular intervals along it. In this work we investigated the role of the substrate in constraining the film. Atomic force microscopy, was used to image the particle arrangements on the top and bottom surfaces of films, dried on liquid and glass substrates. We present convincing evidence that the interface prevents particle rearrangements at the bottom of the film, leading to a mismatch strain between upper and lower surfaces of the film which appears to drive cracking. We show that when the modulus of the substrate becomes comparable to the stresses measured in the films, the crack spacing is significantly altered. We also show that cracks do not form on liquid substrates. These combined experiments highlight the importance of substrate constraint in the crack formation mechanism.[4pt] [1] M.I. Smith, J.S. Sharp, Langmuir 27, 8009 (2011)
The Reflective Cracking in Flexible Pavements
Directory of Open Access Journals (Sweden)
Pais Jorge
2013-07-01
Full Text Available Reflective cracking is a major concern for engineers facing the problem of road maintenance and rehabilitation. The problem appears due to the presence of cracks in the old pavement layers that propagate into the pavement overlay layer when traffic load passes over the cracks and due to the temperature variation. The stress concentration in the overlay just above the existing cracks is responsible for the appearance and crack propagation throughout the overlay. The analysis of the reflective cracking phenomenon is usually made by numerical modeling simulating the presence of cracks in the existing pavement and the stress concentration in the crack tip is assessed to predict either the cracking propagation rate or the expected fatigue life of the overlay. Numerical modeling to study reflective cracking is made by simulating one crack in the existing pavement and the loading is usually applied considering the shear mode of crack opening. Sometimes the simulation considers the mode I of crack opening, mainly when temperature effects are predominant.
Role of hydrogen in stress corrosion cracking
International Nuclear Information System (INIS)
Mehta, M.L.
1981-01-01
Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Zhou, Shiyuan, E-mail: redaple@bit.edu.cn; Sun, Haoyu, E-mail: redaple@bit.edu.cn; Xu, Chunguang, E-mail: redaple@bit.edu.cn; Cao, Xiandong, E-mail: redaple@bit.edu.cn; Cui, Liming, E-mail: redaple@bit.edu.cn; Xiao, Dingguo, E-mail: redaple@bit.edu.cn [School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China NO.5 Zhongguancun South Street, Haidian District, Beijing 100081 (China)
2015-03-31
The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of “energy coefficient” in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.
Solving eigenvalue problems on curved surfaces using the Closest Point Method
Macdonald, Colin B.; Brandman, Jeremy; Ruuth, Steven J.
2011-01-01
defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples
The Contribution of Surface Potential to Diverse Problems in Electrostatics
International Nuclear Information System (INIS)
Horenstein, M
2015-01-01
Electrostatics spans many different subject areas. Some comprise “good electrostatics,” where charge is used for desirable purposes. Such areas include industrial manufacturing, electrophotography, surface modification, precipitators, aerosol control, and MEMS. Other areas comprise “bad electrostatics,” where charge is undesirable. Such areas include hazardous discharges, ESD, health effects, nuisance triboelectrification, particle contamination, and lightning. Conference proceedings such as this one inevitably include papers grouped around these topics. One common thread throughout is the surface potential developed when charge resides on an insulator surface. Often, the charged insulator will be in intimate contact with a ground plane. At other times, the charged insulator will be isolated. In either case, the resulting surface potential is important to such processes as propagating brush discharges, charge along a moving web, electrostatic biasing effects in MEMS, non-contacting voltmeters, field-effect transistor sensors, and the maximum possible charge on a woven fabric. (paper)
The structure of spectral problems and geometry: hyperbolic surfaces in E sup 3
Cieslinski, J L
2003-01-01
Working in the framework of Sym's soliton surfaces approach we point out that some simple assumptions about the structure of linear (spectral) problems of the theory of solitons lead uniquely to the geometry of some special immersions. In this paper we consider general su(2) spectral problems. Under some very weak assumptions they turn out to be associated with hyperbolic surfaces (surfaces of negative Gaussian curvature) immersed in three-dimensional Euclidean space, and especially with the so-called Bianchi surfaces.
Analysis of 3D crack propagation by microfocus computed tomography
International Nuclear Information System (INIS)
Ao Bo; Chen Fuxing; Deng Cuizhen; Zeng Yabin
2014-01-01
The three-point bending test of notched specimens of 2A50 forging aluminum was performed by high frequency fatigue tester, and the surface cracks of different stages were analyzed and contrasted by SEM. The crack was reconstructed by microfocus computed tomography, and its size, position and distribution were visually displayed through 3D visualization. The crack propagation behaviors were researched through gray value and position of crack front of 2D CT images in two adjacent stages, and the results show that crack propagation is irregular. The projection image of crack was obtained if crack of two stages projected onto the reference plane respectively, a significant increase of new crack propagation was observed compared with the previous projection of crack, and the distribution curve of crack front of two stages was displayed. The 3D increment distribution of the crack front propagation was obtained through the 3D crack analysis of two stages. (authors)
On multiple crack detection in beam structures
Energy Technology Data Exchange (ETDEWEB)
Moradi, Shapour; Kargozarfard, Mohammad [Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)
2013-01-15
This study presents an inverse procedure to identify multiple cracks in beams using an evolutionary algorithm. By considering the crack detection procedure as an optimization problem, an objective function can be constructed based on the change of the eigenfrequencies and some strain energy parameters. Each crack is modeled by a rotational spring. The changes in natural frequencies due to the presence of the cracks are related to a damage index vector. Then, the bees algorithm, a swarm-based evolutionary optimization technique, is used to optimize the objective function and find the damage index vector, whose positive components show the number and position of the cracks. A second objective function is also optimized to find the crack depths. Several experimental studies on cracked cantilever beams are conducted to ensure the integrity of the proposed method. The results show that the number of cracks as well as their sizes and locations can be predicted well through this method.
Stress intensity factors of corner cracks in two nozzle-cylinder intersections
International Nuclear Information System (INIS)
Kobayashi, A.S.; Polvanich, N.; Emery, A.F.; Love, W.J.
1977-01-01
In a recent paper, the authors presented the stress-intensity-magnification factors of a quarter-elliptical surface crack in a quarter-infinite solid and a circular crack approaching a reentry corner in a three-quarter infinite solid. These stress-intensity-magnification factors were used together with a curvature-correction factor to estimate the stress-intensity factor of a corner crack at a nozzle-cylinder intersection. Through appropriate superposition of the above stress-intensity-magnification factors, stress-intensity factors for hypothetical corner cracks at a nozzle-cylinder intersection subjected to internal pressure and transient thermal-stress loadings can be obtained. A description of a computer code based on this procedure as well as its applications in analyzing two corner-crack problems at a nozzle-cylinder intersection are discussed in this paper
Analysis of crack opening stresses for center- and edge-crack tension specimens
Directory of Open Access Journals (Sweden)
Tong Di-Hua
2014-04-01
Full Text Available Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displacement equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry dependence.
Crack modeling of rotating blades with cracked hexahedral finite element method
Liu, Chao; Jiang, Dongxiang
2014-06-01
Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.
Pulsed magnetic flux leakage method for hairline crack detection and characterization
Okolo, Chukwunonso K.; Meydan, Turgut
2018-04-01
The Magnetic Flux leakage (MFL) method is a well-established branch of electromagnetic Non-Destructive Testing (NDT), extensively used for evaluating defects both on the surface and far-surface of pipeline structures. However the conventional techniques are not capable of estimating their approximate size, location and orientation, hence an additional transducer is required to provide the extra information needed. This research is aimed at solving the inevitable problem of granular bond separation which occurs during manufacturing, leaving pipeline structures with miniature cracks. It reports on a quantitative approach based on the Pulsed Magnetic Flux Leakage (PMFL) method, for the detection and characterization of the signals produced by tangentially oriented rectangular surface and far-surface hairline cracks. This was achieved through visualization and 3D imaging of the leakage field. The investigation compared finite element numerical simulation with experimental data. Experiments were carried out using a 10mm thick low carbon steel plate containing artificial hairline cracks with various depth sizes, and different features were extracted from the transient signal. The influence of sensor lift-off and pulse width variation on the magnetic field distribution which affects the detection capability of various hairline cracks located at different depths in the specimen is explored. The findings show that the proposed technique can be used to classify both surface and far-surface hairline cracks and can form the basis for an enhanced hairline crack detection and characterization for pipeline health monitoring.
International Nuclear Information System (INIS)
2012-12-01
The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of
Energy Technology Data Exchange (ETDEWEB)
Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)
2014-06-15
Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.
Hughes, Cris E; White, Crystal A
2009-03-01
This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.
Χριστοφάκης, Μιχαήλ Κ.
2014-01-01
Information security is the next big thing in computers society because of the rapidly growing security incidents and the outcomes of those. Hacking and cracking existed even from the start of the eighties decade when there was the first step of the interconnection through the internet between humans. From then and ever after there was a big explosion of such incidents mostly because of the worldwide web which was introduced in the early nineties. Following the huge steps forward of computers...
International Nuclear Information System (INIS)
Park, Jai Hak
2009-01-01
SGBEM(Symmetric Galerkin Boundary Element Method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. In the proposed method, arbitrarily shaped three-dimensional crack problems can be solved by alternating between the crack solution in an infinite body and the finite element solution without a crack. In the previous study, the SGBEM-FEM alternating method was extended further in order to solve elastic-plastic crack problems and to obtain elastic-plastic stress fields. For the elastic-plastic analysis the algorithm developed by Nikishkov et al. is used after modification. In the algorithm, the initial stress method is used to obtain elastic-plastic stress and strain fields. In this paper, elastic-plastic J integrals for three-dimensional cracks are obtained using the method. For that purpose, accurate values of displacement gradients and stresses are necessary on an integration path. In order to improve the accuracy of stress near crack surfaces, coordinate transformation and partitioning of integration domain are used. The coordinate transformation produces a transformation Jacobian, which cancels the singularity of the integrand. Using the developed program, simple three-dimensional crack problems are solved and elastic and elastic-plastic J integrals are obtained. The obtained J integrals are compared with the values obtained using a handbook solution. It is noted that J integrals obtained from the alternating method are close to the values from the handbook
Monitoring crack growth using thermography
International Nuclear Information System (INIS)
Djedjiga, Ait Aouita; Abdeldjalil, Ouahabi
2008-01-01
The purpose of this work is to present a novel strategy for real-time monitoring crack growth of materials. The process is based on the use of thermal data extracted along the horizontal axis of symmetry of single edge notch tension (SENT) specimens, during fatigue tests. These data are exploited using an implemented program to detect in situ the growth of fatigue crack, with the critical size and propagation speed of the crack. This technique has the advantage to be applicable to a wide range of materials regardless of their electrical conductivity and their surface texture. (authors)
Monitoring crack growth by a potential drop method
International Nuclear Information System (INIS)
Tomlinson, J.R.
1978-01-01
A theoretical model has been developed for the surface current flow and potential distribution around a surface breaking crack. This model's predictions have been confirmed in the laboratory and the method applied on site. It proved possible by careful design and rigorous testing to overcome the problems of interference in an electrically noisy environment. The principal weaknesses of the technique are that it is only capable of detecting cracks that break the accessible surface of the component, and that there may be problems with conductive bridging across the crack. On the other hand, the lack of any sophisticated probe in contact with the component makes the method suitable for high temperature use, and, being an electrical method, it is capable of continuous use. The use of a.c., as opposed to d.c., enables lower currents to be used. Given good access to the crack tip, a high sensitivity can be obtained, which enables noise rejection to be achieved with the use of a high threshold. (orig.) [de
International Nuclear Information System (INIS)
Park, Jai Hak; Nikishkov, G. P.
2010-01-01
An SGBEM (symmetric Galerkin boundary element method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. This method can be used to obtain mixed-mode stress intensity factors for planar and nonplanar three-dimensional cracks having an arbitrary shape. For field applications, however, it is necessary to verify the accuracy and consistency of this method. Therefore, in this study, we investigate the effects of several factors on the accuracy of the stress intensity factors obtained using the above mentioned alternating method. The obtained stress intensity factors are compared with the known values provided in handbooks, especially in the case of internal and external circumferential semi-elliptical surface cracks. The results show that the SGBEM-FEM alternating method yields accurate stress intensity factors for three-dimensional cracks, including internal and external circumferential surface cracks and that the method can be used as a robust crack analysis tool for solving field problems
Tensile cracks in creeping solids
International Nuclear Information System (INIS)
Riedel, H.; Rice, J.R.
1979-02-01
The loading parameter determining the stress and strain fields near a crack tip, and thereby the growth of the crack, under creep conditions is discussed. Relevant loading parameters considered are the stress intensity factor K/sub I/, the path-independent integral C*, and the net section stress sigma/sub net/. The material behavior is modelled as elastic-nonlinear viscous where the nonlinear term describes power law creep. At the time t = 0 load is applied to the cracked specimen, and in the first instant the stress distribution is elastic. Subsequently, creep deformation relaxes the initial stress concentration at the crack tip, and creep strains develop rapidly near the crack tip. These processes may be analytically described by self-similar solutions for short times t. Small scale yielding may be defined. In creep problems, this means that elastic strains dominate almost everywhere except in a small creep zone which grows around the crack tip. If crack growth ensues while the creep zone is still small compared with the crack length and the specimen size, the stress intensity factor governs crack growth behavior. If the calculated creep zone becomes larger than the specimen size, the stresses become finally time-independent and the elastic strain rates can be neglected. In this case, the stress field is the same as in the fully-plastic limit of power law hardening plasticity. The loading parameter which determines the near tip fields uniquely is then the path-independent integral C*.K/sub I/ and C* characterize opposite limiting cases. The case applied in a given situation is decided by comparing the creep zone size with the specimen size and the crack length. Besides several methods of estimating the creep zone size, a convenient expression for a characteristic time is derived, which characterizes the transition from small scale yielding to extensive creep of the whole specimen
Assessment of cracking in dissimilar metal welds
International Nuclear Information System (INIS)
Jenssen, Anders; Norrgaard, K.; Lagerstroem, J.; Embring, G.; Tice, D.R.
2001-08-01
During the refueling in 2000, indications were observed by non-destructive testing at four locations in the reactor pressure vessel (RPV) nozzle to safe end weld in Ringhals 4. All indications were confined to the outlet nozzle (hotleg) oriented at 25 deg, a nozzle with documented repair welding. Six boat samples were removed from the four locations, and the samples were subsequently subjected to a metallographic examination. The objectives were to establish the fracture morphology, and if possible the root cause for cracking. The examination revealed that cracks were present at all four boat sample locations and that they all were confined to the weld metal, alloy 182. Cracking extended in the axial direction of the safe-end. There was no evidence of any cracks extending into the RPV-steel, or the stainless steel safe-end. All cracking was interdendritic and significantly branched. Among others, these observations strongly suggested crack propagation mainly was caused by interdendritic stress corrosion cracking. In addition, crack type defects and isolated areas on the fracture surfaces suggested the presence of hot cracking, which would have been formed during fabrication. The reason for crack initiation could not be established based on the boat samples examined. However, increased stress levels due to repair welding, cold work from grinding, and defects produced during fabrication, e. g. hot cracks, may alone or in combination have contributed to crack initiation
Role of damage tolerance and fatigue crack growth in the power generation industry
International Nuclear Information System (INIS)
Coffin, L.F.
1988-01-01
The problem of intergranular stress-corrosion cracking (IGSCC) in boiling water reactor (BWR) piping is discussed and the body of work undertaken in the author's laboratory to solve that problem is described. Particular attention is given to the development of electrical potential crack monitoring techniques and their application to surface crack growth, particularly under conditions approaching those found in service. The important role of water chemistry and its control is described in this context. The concept and description of sensors to monitor in situ the degree of damage containment from intergranular stress-corrosion cracking is then described, with reference to use in piping components and other types of monitoring. Finally, a concept for the life management of structures is described where damage processes are identified and monitored in situ using appropriate sensors to measure the damage rate continuously
Probabilistic modeling of crack networks in thermal fatigue
International Nuclear Information System (INIS)
Malesys, N.
2007-11-01
Thermal superficial crack networks have been detected in mixing zone of cooling system in nuclear power plants. Numerous experimental works have already been led to characterize initiation and propagation of these cracks. The random aspect of initiation led to propose a probabilistic model for the formation and propagation of crack networks in thermal fatigue. In a first part, uniaxial mechanical test were performed on smooth and slightly notched specimens in order to characterize the initiation of multiple cracks, their arrest due to obscuration and the coalescence phenomenon by recovery of amplification stress zones. In a second time, the probabilistic model was established under two assumptions: the continuous cracks initiation on surface, described by a Poisson point process law with threshold, and the shielding phenomenon which prohibits the initiation or the propagation of a crack if this one is in the relaxation stress zone of another existing crack. The crack propagation is assumed to follow a Paris' law based on the computation of stress intensity factors at the top and the bottom of crack. The evolution of multiaxial cracks on the surface can be followed thanks to three quantities: the shielding probability, comparable to a damage variable of the structure, the initiated crack density, representing the total number of cracks per unit surface which can be compared to experimental observations, and the propagating crack density, representing the number per unit surface of active cracks in the network. The crack sizes distribution is also computed by the model allowing an easier comparison with experimental results. (author)
The use of COD and plastic instability in crack propagation and arrest in shells
Erdogan, F.; Ratwani, M.
1974-01-01
The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.
Study on shear transfer analysis of reinforced concrete across a crack
Energy Technology Data Exchange (ETDEWEB)
Endoh, Takao; Katoh, Osamu
1984-11-01
It is a one of the most important problems in the reinforced concrete engineering to clarify the mechanism of shear transfer across cracked concrete planes crossed by reinforcement. By many experimental studies the mechanism of shear transfer across crack surfaces has gradually become clear. And based on those experimental studies, various analytical models of shear transfer have been developed. In this study, the mathematical model presented by M. N. Fardis is adopted and finite element formulation was carried out by the use of developed concrete constitutive law for cracked surface. The numerical result was compared with the experimental ones of Mattock-type push-off tests. Equating the effective range of the cracked bondless zone with the element area where special constitutive law is applied, a satisfying analytical result was obtained.
A study on shear transfer analysis of reinforced concrete across a crack
International Nuclear Information System (INIS)
Endoh, Takao; Katoh, Osamu
1984-01-01
It is a one of the most important problems in the reinforced concrete engineering to clarify the mechanism of shear transfer across cracked concrete planes crossed by reinforcement. By many experimental studies the mechanism of shear transfer across crack surfaces has gradually become clear. And based on those experimental studies, various analytical models of shear transfer have been developed. In this study, the mathematical model presented by M. N. Fardis is adopted and finite element formulation was carried out by the use of developed concrete constitutive law for cracked surface. The numerical result was compared with the experimental ones of Mattock-type push-off tests. Equating the effective range of the cracked bondless zone with the element area where special constitutive law is applied, a satisfying analytical result was obtained. (author)
Energy Technology Data Exchange (ETDEWEB)
Forwood, G F; Lane, M; Taplay, J G
1921-10-07
In cracking and hydrogenating hydrocarbon oils by passing their vapors together with steam over heated carbon derived from shale, wood, peat or other vegetable or animal matter, the gases from the condenser are freed from sulfuretted hydrogen, and preferably also from carbon dioxide, and passed together with oil vapors and steam through the retort. Carbon dioxide may be removed by passage through slaked lime, and sulfuretted hydrogen by means of hydrated oxide of iron. Vapors from high-boiling oils and those from low-boiling oils are passed alternately through the retort, so that carbon deposited from the high-boiling oils is used up during treatment of low-boiling oils.
International Nuclear Information System (INIS)
Kosaki, Akio; Ajima, Tatsuro; Inohara, Yasuto
1999-01-01
The ductile fracture tests of Ductile Cast Iron and Forged Steel under a tensile stress condition were conducted using large-scaled flat test specimens with a surface crack and were evaluated by the J-integral values, in order to propose an evaluation method of initiation of ductile fracture of a cask body with crack by nonlinear-fracture-mechanics. Following results were obtained. 1) 1 -strain relations of Ductile Cast Iron and Forged Steel under the tensile stress condition were obtained, which is necessary for the development of J-integral design curves for evaluating the initiation of ductile fracture of the cask body. 2) In case of Ductile Cast Iron, the experimental J-integral values obtained from strain-gauges showed a good agreement with the linear-elastic-theory by Raju and Newman at room temperature, in both elastic and plastic regions. But, at 70degC in plastic region, the experimental i-integral values showed middle values between those predicted by the linear-elastic-theory and by the non- linear-elastic- theory (based on the fully plastic solution by Yagawa et al.). 3) In case of Forged Steel at both -25degC and room temperature, the experimental i-integral values obtained from strain-gauges showed a good agreement with those predicted by the linear-elastic-theory by Raju and Newman, in the elastic region. In the plastic region, however, the experimental i-integral values fell apart from the curve predicted by the linear-elastic-theory by Raju and Newman, and also approached to those by the non-linear-elastic-theory with increasing strain.(author)
Numerical analysis of interacting cracks in biaxial stress field
International Nuclear Information System (INIS)
Kovac, M.; Cizelj, L.
1999-01-01
The stress corrosion cracks as seen for example in PWR steam generator tubing made of Inconel 600 usually produce highly irregular kinked and branched crack patterns. Crack initialization and propagation depends on stress state underlying the crack pattern. Numerical analysis (such as finite element method) of interacting kinked and branched cracks can provide accurate solutions. This paper discusses the use of general-purpose finite element code ABAQUS for evaluating stress fields at crack tips of interacting complex cracks. The results obtained showed reasonable agreement with the reference solutions and confirmed use of finite elements in such class of problems.(author)
Torsion of cracked nanorods using a nonlocal elasticity model
International Nuclear Information System (INIS)
Loya, J A; Aranda-Ruiz, J; Fernández-Sáez, J
2014-01-01
This paper presents a nonlocal cracked-rod model from which we have analysed the torsional vibrations of a carbon nanotube with a circumferential crack. Several types of boundary conditions, including the consideration of a buckyball at the end of the nanotube, have been studied. The nonlocal Eringen elasticity theory is used to formulate the problem. The cracked rod is modelled by dividing the cracked element into two segments connected by a torsional linear spring whose stiffness is related to the crack severity. The effect of the nonlocal small-scale parameter, crack severity, cracked section position, different boundary conditions and attached mass are examined in this work. (paper)
On the application of cohesive crack modeling in cementitious materials
DEFF Research Database (Denmark)
Stang, Henrik; Olesen, John Forbes; Poulsen, Peter Noe
2007-01-01
typically for multi scale problems such as crack propagation in fiber reinforced composites. Mortar and concrete, however, are multi-scale materials and the question naturally arises, if bridged crack models in fact are more suitable for concrete and mortar as well? In trying to answer this question a model......Cohesive crack models-in particular the Fictitious Crack Model - are applied routinely in the analysis of crack propagation in concrete and mortar. Bridged crack models-where cohesive stresses are assumed to exist together with a stress singularity at the crack tip-on the other hand, are used...
International Nuclear Information System (INIS)
Dedhia, D.D.; Harris, D.O.
1982-06-01
A user-oriented computer program for the evaluation of stress intensity factors for cracks in pipes is presented. Stress intensity factors for semi-elliptical, complete circumferential and long longitudinal cracks can be obtained using this computer program. The code is based on the method of influence functions which makes it possible to treat arbitrary stresses on the plane of the crack. The stresses on the crack plane can be entered as a mathematical or tabulated function. A user's manual is included in this report. Background information is also included
Directory of Open Access Journals (Sweden)
Jialong Wu
2014-01-01
Full Text Available Aiming at the surface defect inspection of carbon fiber reinforced composite, the differential and the direct measurement finite element simulation models of pulsed eddy current flaw detection were built. The principle of differential pulsed eddy current detection was analyzed and the sensitivity of defect detection was compared through two kinds of measurements. The validity of simulation results was demonstrated by experiments. The simulation and experimental results show that the pulsed eddy current detection method based on rectangular differential probe can effectively improve the sensitivity of surface defect detection of carbon fiber reinforced composite material.
Wismans, Luc Johannes Josephus; van Berkum, Eric C.; Bliemer, Michiel C.J.; Viti, F.; Immers, B.; Tampere, C.
2011-01-01
Multi objective optimization of externalities of traffic solving a network design problem in which Dynamic Traffic Management measures are used, is time consuming while heuristics are needed and solving the lower level requires solving the dynamic user equilibrium problem. Use of response surface
Energy analysis of crack-damage interaction
Chudnovsky, A.; Wu, Shaofu
1989-01-01
The energy release rates associated with a main crack propagating into a surrounding damage zone, and a damage zone translation relative to the main crack, as well as an energy of interaction between the two are analyzed. The displacement and stress fields for the crack-damage interaction problem are reconstructed employing a semi-empirical stress analysis and experimental evaluation of the average craze density in the crazed zone.
2D problems of surface growth theory with applications to additive manufacturing
Manzhirov, A. V.; Mikhin, M. N.
2018-04-01
We study 2D problems of surface growth theory of deformable solids and their applications to the analysis of the stress-strain state of AM fabricated products and structures. Statements of the problems are given, and a solution method based on the approaches of the theory of functions of a complex variable is suggested. Computations are carried out for model problems. Qualitative and quantitative results are discussed.
Inelastic analysis of finite length and depth cracked tubes
International Nuclear Information System (INIS)
Reich, M.; Gardner, D.; Prachuktam, S.; Chang, T.Y.
1977-01-01
Steam generator tube failure can at times result in reactor safety problems and subsequent premature reactor shutdown. This paper concerns itself with the prediction of the failure pressures for typical PWR steam generator tubes with longitudinal finite length and finite depth cracks. Only local plastic overload failure is considered since the material is non-notch sensitive. Non-linear finite element analyses are carried out to determine the burst pressures of steam generator tubes containing longitudinal cracks located on the outer surface of the tubes. The non-linearities considered herein include elastic-plastic material behaviour and large deformations. A non-proprietary general purpose non-linear finite element program, NFAP was adopted for the analysis. Due to the asymmetric nature of the cracks, two-dimensional as well as three-dimensional finite element analyses, were performed. The analysis clearly shows that for short cracks axial effects play a significant role. For long cracks, they are not important since two-dimensional conditions predominate and failure is governed by circumferential or hoop stress conditions. (Auth.)
Outcome of Endodontically Treated Cracked Teeth
2016-06-01
directed by: CAPT Te!Ty Webb, D.D.S., M.S. A " cracked tooth" is defined as a thin surface enamel and dentin disruption of unknown depth, and is often...OUTCOME OF ENDODONTICALL Y TREATED CRACKED TEETH by David Michael Dow II, D.D.S. Lieutenant Commander, Dental Corps United States Navy A thesis...copyrighted material in the thesis manuscript titled: "Outcome ofEndodontically Treated Cracked Teeth" is appropriately acknowledged and, beyond
Atluri, S. N.; Nakagaki, M.; Kathiresan, K.
1980-01-01
In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.
Fracture mechanics of piezoelectric solids with interface cracks
Govorukha, Volodymyr; Loboda, Volodymyr; Lapusta, Yuri
2017-01-01
This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks betw...
A numerical study of non-linear crack tip parameters
Directory of Open Access Journals (Sweden)
F.V. Antunes
2015-07-01
Full Text Available Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, different authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle, were investigated. It was demonstrated that: i LEFM concepts are applicable to the problem under study; ii the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; iii the Keff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; iv the analysis of remote compliance is the best numerical parameter to quantify the crack opening level; v without contact there is no effect of stress ratio on crack tip parameters. Therefore it is proved that the crack closure concept is valid.
Subsurface metals fatigue cracking without and with crack tip
Directory of Open Access Journals (Sweden)
Andrey Shanyavskiy
2013-07-01
Full Text Available Very-High-Cycle-Fatigue regime for metals was considered and mechanisms of the subsurface crack origination were introduced. In many metals first step of crack origination takes place with specific area formation because of material pressing and rotation that directed to transition in any volume to material ultra-high-plasticity with nano-structure appearing. Then by the border of the nano-structure takes place volume rotation and fracture surface creates with spherical particles which usually named Fine-Granular-Area. In another case there takes place First-Smooth-Facet occurring in area of origin due to whirls appearing by the one of the slip systems under discussed the same stress-state conditions. Around Fine-Granular-Area or First-Smooth-Facet there plastic zone appeared and, then, subsurface cracking develops by the same manner as for through cracks. In was discussed quantum-mechanical nature of fatigue crack growth in accordance with Yang’s modulus quantization for low level of deformations. New simply equation was considered for describing subsurface cracking in metals out of Fine-Granular-Area or Fist-Smooth-Facet.
Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance
Energy Technology Data Exchange (ETDEWEB)
Yang, Seung Yong; Kim, No Hyu [Korean University of Technology and Education, Cheonan (Korea, Republic of)
2013-04-15
Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.
Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance
International Nuclear Information System (INIS)
Yang, Seung Yong; Kim, No Hyu
2013-01-01
Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.
Hydride effect on crack instability of Zircaloy cladding
Energy Technology Data Exchange (ETDEWEB)
Tseng, Che-Chung, E-mail: cctseng@iner.gov.tw [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Sun, Ming-Hung [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Chao, Ching-Kong [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China)
2014-04-01
Highlights: • Radial hydrides near the crack tip had a significant effect on crack propagation. • For radial hydrides off the crack line vertically, the effect on crack propagation was notably reduced. • The longer hydride platelet resulted in a remarkable effect on crack propagation. • A long split in the radial hydride precipitate would enhance crack propagation. • The presence of circumferential hydride among radial hydrides may play an important role in crack propagation. - Abstract: A methodology was proposed to investigate the effect of hydride on the crack propagation in fuel cladding. The analysis was modeled based on an outside-in crack with radial hydrides located near its crack tip. The finite element method was used in the calculation; both stress intensity factor K{sub I} and J integral were applied to evaluate the crack stability. The parameters employed in the analysis included the location of radial hydride, hydride dimensions, number of hydrides, and the presence of circumferential hydride, etc. According to our study, the effective distance between a radial hydride and the assumed cladding surface crack for the enhancement of crack propagation proved to be no greater than 0.06 mm. For a hydride not on the crack line, it would induce a relatively minor effect on crack propagation if the vertical distance was beyond 0.05 mm. However, a longer hydride precipitate as well as double radial hydrides could have a remarkable effect on crack propagation. A combined effect of radial and circumferential hydrides was also discussed.
Solving eigenvalue problems on curved surfaces using the Closest Point Method
Macdonald, Colin B.
2011-06-01
Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace-Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach. © 2011 Elsevier Inc.
Energy Technology Data Exchange (ETDEWEB)
Schaef, Wolfgang
2011-04-15
Increasing the microstructural resistance of metallic materials to short fatigue crack growth is a major task of today's materials science. In this regard, grain boundaries and precipitates are well known to decelerate short cracks, but a quantitative understanding of the blocking effect is still missing. This is due to the fact that crack deceleration is influenced by many parameters: cyclic load, crack length, distance to obstacles, orientations of grains and obstacles. Even the examination of a huge number of short cracks would not be sufficient to identify the effect of these parameters independently, especially since fatigue crack growth is a 3D problem and investigations of the sub surface orientation of cracks and grain boundaries are scarce. The Focused Ion Beam Microscope (FIB) offers new methods for systematic experiments and 3D-investigation of short fatigue cracks that will help to quantify the microstructural impact on short fatigue crack growth. The ion beam is used to cut micro notches in selected grains on the surface of samples characterised by Electron Backscatter Diffraction (EBSD). Plane fatigue cracks initiate under cyclic loading in defined distances to the grain boundaries. By this technique it is possible for the first time to present quantitative data to describe the effect of grain boundaries on short fatigue cracks in nickel based superalloys (CMSX-4) as well as in mild steels.
New stress intensity factor solutions for an elliptical crack in a plate
International Nuclear Information System (INIS)
Delliou, P.L.; Barthelet, B.
2005-01-01
Crack assessment in engineering structures relies first on accurate evaluation of the stress intensity factors. In recent years, a large work has been conducted in France by the Atomic Energy Commission to develop influence coefficients for surface cracks in pipes. However, the problem of embedded cracks in plates (and pipes) which is also of practical importance has not received so much attention. Presently, solutions for elliptical cracks are available either in infinite solid with a polynomial distribution of normal loading or in plate, but restricted to constant or linearly varying tension. This paper presents the work conducted at EDF R and D to obtain influence coefficients for plates containing an elliptical crack with a wide range of the parameters : relative size (2a/t ratio), shape (a/c ratio) and free surface proximity (a/d ratio where d is the distance from the center of the ellipse to the closest free surface). These coefficients were developed through extensive 3D finite element calculations : 200 geometrical configurations were modeled, each containing from 18000 to 26000 nodes. The limiting case of the tunnel crack (a/c = 0) was also analyzed with 2D finite element calculation (50 geometrical configurations). The accuracy of the results was checked by comparison with analytical solutions for infinite solids and, when possible, with solutions for finite-thickness plates (generally loaded in constant tension). (authors)
DEFF Research Database (Denmark)
Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue
2016-01-01
This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow-density polyethy......This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....
International Nuclear Information System (INIS)
Beavers, J.A.
1992-01-01
Objectives were to evaluate susceptibility of pipeline steel to SCC when coated with coal-tar enamel, fusion-bonded epoxy (FBE), and polyethylene tape coatings. The tests included standard cathodic disbondment tests, potential gradients beneath disbonded coatings, electrochemical measurements, and SCC tests. It was concluded that factors affecting relative SCC susceptibility of pipelines with different coatings are the disbonding resistance of the coating and the ability of the coating to pass cathodic protection (CP) current. FBE coated pipelines would be expected to exhibit good SCC resistance, since the FBE coating had high cathodic disbonding resistance and could pass CP current. Grit blasting at levels used at coating mills may be beneficial or detrimental to SCC susceptibility. Excellent correlation was found between th Almen strip deflection and change in SCC threshold stress. It appears to be beneficial to remove as much mill scale as possible, and a white surface finish probably should also be specified. 50 figs, 10 tabs
Shifrin, Efim I.; Kaptsov, Alexander V.
2018-01-01
An inverse 2D elastostatic problem is considered. It is assumed that an isotropic, linear elastic body can contain a finite number of rectilinear, well-separated cracks. The surfaces of the cracks are assumed to be free of the loads. A method is developed for reconstruction the cracks by means of the applied loads and displacements on the boundary of the body, obtained in a single static test. The method is based on the reciprocity principle, elements of the theory of distributions, and cluster analysis. Numerical examples are considered.
Propagation of stress corrosion cracks in alpha-brasses
Energy Technology Data Exchange (ETDEWEB)
Beggs, Dennis Vinton [Univ. of Illinois, Urbana-Champaign, IL (United States)
1981-01-01
Transgranular and intergranular stress corrosion cracks were investigated in alpha-brasses in a tarnishing ammoniacal solution. Surface observation indicated that the transgranular cracks propagated discontinuously by the sudden appearance of a fine crack extending several microns ahead of the previous crack tip, often associated with the detection of a discrete acoustic emission (AE). By periodically increasing the deflection, crack front markings were produced on the resulting fracture surfaces, showing that the discontinuous propagation of the crack trace was representative of the subsurface cracking. The intergranular crack trace appeared to propagate continuously at a relatively blunt crack tip and was not associated with discrete AE. Under load pulsing tests with a time between pulses, Δt greater than or equal to 3 s, the transgranular fracture surfaces always exhibited crack front markings which corresponded with the applied pulses. The spacing between crack front markings, Δx, decreased linearly with Δt. With Δt less than or equal to 1.5 s, the crack front markings were in a one-to-one correspondence with applied pulses only at relatively long crack lengths. In this case, Δx = Δx* which approached a limiting value of 1 μm. No crack front markings were observed on intergranular fracture surfaces produced during these tests. It is concluded that transgranular cracking occurs by discontinuous mechanical fracture of an embrittled region around the crack tip, while intergranular cracking results from a different mechanism with cracking occurring via the film-rupture mechanism.
Crack path in aeronautical titanium alloy under ultrasonic torsion loading
Directory of Open Access Journals (Sweden)
A. Nikitin
2016-01-01
Full Text Available This paper discusses features of fatigue crack initiation and growth in aeronautical VT3-1 titanium alloy under pure torsion loading in gigacycle regime. Two materials: extruded and forged VT3-1 titanium alloys were studied. Torsion fatigue tests were performed up to fatigue life of 109 cycles. The results of the torsion tests were compared with previously obtained results under fully reversed axial loading on the same alloys. It has been shown that independently on production process as surface as well subsurface crack initiation may appear under ultrasonic torsion loading despite the maximum stress amplitude located at the specimen surface. In the case of surface crack initiation, a scenario of crack initiation and growth is similar to HCF regime except an additional possibility for internal crack branching. In the case of subsurface crack, the initiation site is located below the specimen surface (about 200 μm and is not clearly related to any material flaw. Internal crack initiation is produced by shear stress in maximum shear plane and early crack growth is in Mode II. Crack branching is limited in the case of internal crack initiation compared to surface one. A typical ‘fish-eye’ crack can be observed at the torsion fracture surface, but mechanism of crack initiation seems not to be the same than under axial fatigue loading.
Crack Formation in Grouted Annular Composite
DEFF Research Database (Denmark)
Sørensen, Eigil V.
The objective of the present analysis is to identify the reason for extensive crack formation which occurred during an annulus grouting performance test, to evaluate possible consequences of the cracking, and to recommend measures to be taken in order to avoid similar problems in the future....
Semi-empirical crack tip analysis
Chudnovsky, A.; Ben Ouezdon, M.
1988-01-01
Experimentally observed crack opening displacements are employed as the solution of the multiple crack interaction problem. Then the near and far fields are reconstructed analytically by means of the double layer potential technqiue. Evaluation of the effective stress intensity factor resulting from the interaction of the main crack and its surrounding crazes in addition to the remotely applied load is presented as an illustrative example. It is shown that crazing (as well as microcracking) may constitute an alternative mechanism to Dugdale-Berenblatt models responsible for the cancellation of the singularity at the crack tip.
On governing equations for crack layer propagation
Chudnovsky, A.; Botsis, J.
1988-01-01
Results of analysis on damage distribution of a crack layer, in a model material, supported the self-similarity hypothesis of damage evolution which has been adopted by the crack layer theory. On the basis of measurements of discontinuity density and the double layer potential technique, a solution to the crack damage interaction problem has been developed. Evaluation of the stress intensity factor illustrated the methodology. Analysis of experimental results showed that Arrhenius type constitutive relationship described very well the expansion of the active zone of a crack layer.
An analysis for crack layer stability
Sehanobish, K.; Botsis, J.; Moet, A.; Chudnovsky, A.
1986-01-01
The problem of uncontrolled crack propagation and crack arrest is considered with respect to crack layer (CL) translational stability. CL propagation is determined by the difference between the energy release rate and the amount of energy required for material transformation, and necessary and sufficient conditions for CL instability are derived. CL propagation in polystyrene is studied for two cases. For the case of remotely applied fixed load fatigue, the sufficient condition of instability is shown to be met before the necessary condition, and the necessary condition controls the stability. For the fixed displacement case, neither of the instability conditions are met, and CL propagation remains stable, resulting in crack arrest.
On the path of a crack near a graded interface under large scale yielding
DEFF Research Database (Denmark)
Rashid, M. M.; Tvergaard, Viggo
2003-01-01
The trajectory of a crack lying parallel to a thin graded layer between two plastically dissimilar materials is studied using the exclusion region (ER) theory of fracture. The ER theory is a theoretical framework for surface separation within which a broad range of fracture phenomenologies can...... be represented. In the present study, the direction of crack advance is determined by maximizing the resolved normal-opening force on the near-tip region, whereas separation itself is governed by the intensity of plastic deformation near the tip. A computational study was undertaken using the ER theory....... The special-purpose finite element analysis platform accommodates arbitrary-and a priori unknown-crack trajectories. The model problem considered herein involves two plastically dissimilar, but elastically identical, materials joined by a thin, graded interface layer. The initial crack lies parallel...
Analysis of a bending test on a full-scale PWR hot leg elbow containing a surface crack
Energy Technology Data Exchange (ETDEWEB)
Delliou, P. le [Electricite de France, EDF, 77 - Moret-sur-Loing (France). Dept. MTC; Julisch, P.; Hippelein, K. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt; Bezdikian, G. [Electricite de France, EDF, 92 - Paris la Defense (France). Direction Production Transport
1998-11-01
EDF, in co-operation with Framatome, has conducted a large research programme on the mechanical behaviour of thermally aged cast duplex stainless steel elbows, which are part of the main primary circuit of French PWR. One important task of this programme consisted of testing a full-scale PWR hot leg elbow. The elbow contained a semi-elliptical circumferential notch machined on the outer surface of the intrados as well as casting defects located on the flanks. To simulate the end-of-life condition of the component regarding material toughness, it had undergone a 2400 hours ageing heat treatment at 400 C. The test preparation and execution, as well as the material characterization programme, were committed to MPA. The test was conducted under constant internal pressure and in-plane bending (opening mode) at 200 C. For safety reasons, it took place on an open air-site: the Meppen military test ground. At the maximum applied moment (6000 kN.m), the notch did not initiate. This paper presents the experimental results and the fracture mechanics analysis of the test, based on finite element calculations. (orig.)
Numerical Study of Corrosion Crack Opening
DEFF Research Database (Denmark)
Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan
2008-01-01
is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...... for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...
Prevention of crack initiation in valve bodies under thermal shock
Energy Technology Data Exchange (ETDEWEB)
Delmas, J.; Coppolani, P.
1996-12-01
On site and testing experience has shown that cracking in valves affects mainly the stellite hardfacing on seats and discs but may also be a concern for valve bodies. Metallurgical investigations conducted by EDF laboratories on many damaged valves have shown that most of the damage had either a chemical, manufacturing, or operating origin with a strong correlation between the origins and the type of damage. The chemical defects were either excess ferritic dilution of stellite or excess carburizing. Excess carburizing leads to a too brittle hardfacing which cracks under excessive stresses induced on the seating surfaces, via the stem, by too high operating thrusts. The same conditions can also induce cracks of the seats in the presence, in the hardfacing, of hidden defects generated during the welding process. Reduction of the number of defects results first from controls during manufacturing, mainly in the thickness of stellite. On the other hand, maintenance must be fitted to the type of defect. In-situ lapping may lead to release of cobalt, resulting in contamination of the circuit. Furthermore, it is ineffectual in the case of a crack through the seating surface, as is often found on globe valves. The use of new technologies of valves with removable seats and cobalt-free alloys solves permanently this kind of problem.
Zheng, R.-F.; Wu, T.-H.; Li, X.-Y.; Chen, W.-Q.
2018-06-01
The problem of a penny-shaped crack embedded in an infinite space of transversely isotropic multi-ferroic composite medium is investigated. The crack is assumed to be subjected to uniformly distributed mechanical, electric and magnetic loads applied symmetrically on the upper and lower crack surfaces. The semi-permeable (limited-permeable) electro-magnetic boundary condition is adopted. By virtue of the generalized method of potential theory and the general solutions, the boundary integro-differential equations governing the mode I crack problem, which are of nonlinear nature, are established and solved analytically. Exact and complete coupling magneto-electro-elastic field is obtained in terms of elementary functions. Important parameters in fracture mechanics on the crack plane, e.g., the generalized crack surface displacements, the distributions of generalized stresses at the crack tip, the generalized stress intensity factors and the energy release rate, are explicitly presented. To validate the present solutions, a numerical code by virtue of finite element method is established for 3D crack problems in the framework of magneto-electro-elasticity. To evaluate conveniently the effect of the medium inside the crack, several empirical formulae are developed, based on the numerical results.
Crack shape developments and leak rates for circumferential complex-cracked pipes
Energy Technology Data Exchange (ETDEWEB)
Brickstad, B.; Bergman, M. [SAQ Inspection Ltd., Stockholm (Sweden)
1997-04-01
A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.
Crack characterization for in-service inspection planning
International Nuclear Information System (INIS)
Waale, J.; Ekstroem, P.
1995-12-01
During in-service inspection by non destructive testing the reliability is highly dependent on how the equipment is adjusted to the specific object and to the anticipated crack feature.The crack feature and morphology vary widely between different cracking mechanisms and between material types in which the cracks appear. The major objective of this study was to characterize a number of morphology parameters for common crack mechanism and structure material combinations. Critical morphology parameters are crack orientation, shape, width, surface roughness and branching. The crack parameters were evaluated from failure analyses reported from the nuclear and non-nuclear industry. In addition, a literature review was carried out on crack parameter reports and on failure analysis reports, which were further evaluated. The evaluated crack parameters were plotted and statistically processed in data groups with respect to crack mechanism and material type. The fatigue crack mechanism were classified as mechanical, thermal or corrosion fatigue and stress corrosion crack mechanism as intergranular, transgranular or inter dendritic stress corrosion cracking. Furthermore, some common weld defects were characterized for comparison. The materials were divided into three broad groups, ferritic low alloy steels, stainless steels and nickel base alloys. The results indicate significant differences between crack parameters when comparing data from different crack mechanism/material type combinations. Typical parameter values and scatter were derived for several combinations where the data was sufficient for statistical significance. 10 refs, 105 figs, 14 tabs
Crack characterization for in-service inspection planning
Energy Technology Data Exchange (ETDEWEB)
Waale, J [SAQ Inspection Ltd, Stockholm (Sweden); Ekstroem, P [ABB Atom AB, Vaesteraas (Sweden)
1995-12-01
During in-service inspection by non destructive testing the reliability is highly dependent on how the equipment is adjusted to the specific object and to the anticipated crack feature.The crack feature and morphology vary widely between different cracking mechanisms and between material types in which the cracks appear. The major objective of this study was to characterize a number of morphology parameters for common crack mechanism and structure material combinations. Critical morphology parameters are crack orientation, shape, width, surface roughness and branching. The crack parameters were evaluated from failure analyses reported from the nuclear and non-nuclear industry. In addition, a literature review was carried out on crack parameter reports and on failure analysis reports, which were further evaluated. The evaluated crack parameters were plotted and statistically processed in data groups with respect to crack mechanism and material type. The fatigue crack mechanism were classified as mechanical, thermal or corrosion fatigue and stress corrosion crack mechanism as intergranular, transgranular or inter dendritic stress corrosion cracking. Furthermore, some common weld defects were characterized for comparison. The materials were divided into three broad groups, ferritic low alloy steels, stainless steels and nickel base alloys. The results indicate significant differences between crack parameters when comparing data from different crack mechanism/material type combinations. Typical parameter values and scatter were derived for several combinations where the data was sufficient for statistical significance. 10 refs, 105 figs, 14 tabs.
The analysis of cracked structures
International Nuclear Information System (INIS)
Davidson, I.
1974-01-01
A brief review of the general problem of stable crack systems in many classes of structures, notably reinforced concrete structures, is made. Very simple methods of analysis are derived and some elaboration is described, as well as methods of optimising the calculations. Analytical methods are compared with experiments
Stress-intensity factor equations for cracks in three-dimensional finite bodies
Newman, J. C., Jr.; Raju, I. S.
1981-01-01
Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.
Some problems associated with radiolabeling surface antigens on helminth parasites: a brief review
Energy Technology Data Exchange (ETDEWEB)
Hayunga, E.G. (Division of Tropical Public Health, Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD (USA)); Murrell, K.D. (Agricultural Research Service, Beltsville, MD (USA))
1982-06-01
Recent developments in technology have facilitated substantial advances in the characterization of surface antigens from a wide variety of both normal and neoplastic cells. However, the immunochemistry of parasites has lagged behind. Efforts to apply conventional radiolabeling methods to helminths have not always been successful. Experimental work with Schistosoma mansoni is reviewed to illustrate common problems encountered in surface labeling studies. These findings should provide insight for the future investigation of other helminth species.
Some problems associated with radiolabeling surface antigens on helminth parasites: a brief review
International Nuclear Information System (INIS)
Hayunga, E.G.; Murrell, K.D.
1982-01-01
Recent developments in technology have facilitated substantial advances in the characterization of surface antigens from a wide variety of both normal and neoplastic cells. However, the immunochemistry of parasites has lagged behind. Efforts to apply conventional radiolabeling methods to helminths have not always been successful. Experimental work with Schistosoma mansoni is reviewed to illustrate common problems encountered in surface labeling studies. These findings should provide insight for the future investigation of other helminth species. (Auth.)
Inelastic analysis of finite length and depth cracked tubes
International Nuclear Information System (INIS)
Reich, M.; Gardner, D.; Prachuktam, S.; Chang, T.Y.
1977-01-01
Steam generator tube failure can at times result in reactor safety problems and subsequent premature reactor shutdowns. This paper concerns itself with the prediction of the failure pressures for typical PWR steam generator tubes with longitudinal finite length and finite depth cracks. Only local plastic overload failure is considered since the material is non-notch sensitive. Non-linear finite element analyses are carried out to determine the burst pressures of steam generator tubes containing longitudinal cracks located on the outer surface of the tubes. The non-linearities considered herein include elastic-plastic material behavior and large deformations. A non-proprietary general purpose non-linear finite element program, NFAP was adopted for the analysis. Due to the asymmetric nature of the cracks, two-dimensional, as well as three-dimensional finite element analyses, were performed. The two-dimensional element and its formulations are similar to those of NONSAP. The three-dimensional isoparametric element with elastic-plastic material characteristics together with the large deformation formulations used in NFAP are described in the Report BNL-20684. The numerical accuracy of the program was investigated and checked with known solutions of benchmark problems. In addition to the three-dimensional element which was specifically inserted into NFAP for this problem, other features such as direct pressure inputs for isoparametric elements, automatic load increment adjustments for convergent non-linear solutions, and automatic bandwidth reduction schemes are incorporated into the program thus allowing for a more economical evaluation of three-dimensional inelastic analysis. In summary the analysis clearly shows that for short cracks axial effects play a significant role. For long cracks, they are not important since two-dimensional conditions predominate and failure is governed by circumferential or hoop stress conditions
International Nuclear Information System (INIS)
Tian, Wenxiang; Zhong, Zheng; Li, Yaochen
2016-01-01
A two-dimensional fracture problem of periodically distributed interfacial cracks in multilayered piezomagnetic/piezoelectric composites is studied under in-plane magnetic or electric loading. The magnetic permittivity of the piezoelectric material and the dielectric constant of the piezomagnetic material are considered. A system of singular integral equations of the second kind with a Cauchy kernel is obtained by means of Fourier transform and further solved by using Jacobi polynomials. The problem is solved in the real domain by constructing real fundamental solutions. The primary interfacial fracture mechanic parameters, such as the stress intensity factors (SIFs), the electric displacement intensity factors (EDIFs), the magnetic induction intensity factors (MIIFs) and the energy release rates (ERRs) are then obtained. It is found that a magnetic or electric loading normal to the crack surfaces can lead to a mixture of mode I and mode II type stress singularities at the crack tips. Numerical results show that increasing the thickness of the active layer will favor the crack initiation. Inversely, increasing the thickness of the passive layer will retard the crack initiation. Furthermore, the results indicate that the crack initiation can be inhibited by adjusting the direction of the applied magnetic or electric loading. (paper)
Dislocation model of a subsurface crack
International Nuclear Information System (INIS)
Yang, F.; Li, J.C.
1997-01-01
A dislocation model of a subsurface crack parallel to the surface is presented. For tensile loading, the results agree with those of previous workers except that we studied the crack very close to the surface and found that K II (mode II stress intensity factor) approaches K I (mode I stress intensity factor) to within about 22% (K II =0.78K I ). (Note that K II is zero when the crack is far away from the surface). Using bending theory for such situations, it is found that both stress intensity factors are inversely proportional to the 3/2 power of the distance between the subsurface crack and the free surface. For shear loading, the crack faces overlap each other for the free traction condition. This indicates the failure of the model. However, there was no overlap for tensile loading even though the stresses in front of the crack oscillate somewhat when the crack is very close to the surface. copyright 1997 American Institute of Physics
Microstructural features of environmentally assisted cracking in pipeline steel
International Nuclear Information System (INIS)
Williams, B.W.; Lambert, S.B.; Zhang, X.; Plumtree, A.; Sutherby, R.
2003-01-01
A number of small-scale pipeline specimens containing edge or surface cracks were tested in simulated groundwater (NS4 solution) in an anaerobic environment under cyclic loading conditions. Micrographs of the crack surface showed corrosion fatigue at high frequencies and low R-ratios. Following large amounts of growth (∼200 μm) for those specimens tested at low frequencies, evidence of transgranular quasi-cleavage was detected. Green rust was found to be present at the crack tips and along their flanks. Iron sulfide, resulting from anaerobic sulfate-reducing bacteria and iron carbonate were also present in the NS4 solution during testing. These corrosion products retarded crack growth in the depth direction of surface cracks. Under variable amplitude loadings conditions, the accompanying increased surface crack growth rate can be accounted for by rupture of the green rust film at the crack tip. (author)
Modified Dugdale cracks and Fictitious cracks
DEFF Research Database (Denmark)
Nielsen, Lauge Fuglsang
1998-01-01
A number of theories are presented in the literature on crack mechanics by which the strength of damaged materials can be predicted. Among these are theories based on the well-known Dugdale model of a crack prevented from spreading by self-created constant cohesive flow stressed acting in local...... areas, so-called fictitious cracks, in front of the crack.The Modified Dugdale theory presented in this paper is also based on the concept of Dugdale cracks. Any cohesive stress distribution, however, can be considered in front of the crack. Formally the strength of a material weakened by a modified...... Dugdale crack is the same as if it has been weakened by the well-known Griffith crack, namely sigma_CR = (EG_CR/phi)^1/2 where E and 1 are Young's modulus and crack half-length respectively, and G_CR is the so-called critical energy release rate. The physical significance of G_CR, however, is different...
Probability of crack-initiation and application to NDE
Energy Technology Data Exchange (ETDEWEB)
Prantl, G [Nuclear Safety Inspectorate HSK, (Switzerland)
1988-12-31
Fracture toughness is a property with a certain variability. When a statistical distribution is assumed, the probability of crack initiation may be calculated for a given problem defined by its geometry and the applied stress. Experiments have shown, that cracks which experience a certain small amount of ductile growth can reliably be detected by acoustic emission measurements. The probability of crack detection by AE-techniques may be estimated using this experimental finding and the calculated probability of crack initiation. (author).
Effect of crack-microcracks interaction on energy release rates
Chudnovsky, A.; Wu, Shaofu
1990-01-01
The energy release rates associated with the main crack advancing into its surrounding damage zone, and the damage zone translation relative to the main crack, as well as the energy of interaction between the crack and the damage zone are analyzed. The displacement and stress fields for this crack-damage interaction problem are reconstructed by employing a semi-empirical stress analysis which involves experimental evaluation of the average microcrack density in the damage zone.
The application of surface science in the solution of aircraft materials problems
International Nuclear Information System (INIS)
Arnott, D.R.
1999-01-01
Full text: There is now a tendency for both commercial and military aircraft to be maintained and operated for several decades. Indeed some of our front-line defence aircraft have programme withdrawal lives approaching half a century. This places significant demands on the materials used in engines and airframes. The properties and performance of the materials can degrade with time leading to an increase in the importance of repair and maintenance technologies. As most materials problems start at a surface or an interface, it is not surprising that surface sensitive tools are used to resolve many degradation problems. In some cases, the resolution of problems can lead to life-enhancing improvements for the aircraft. This paper will examine some of the practical issues in the use of surface analytical tools for the examination and resolution of practical aircraft problems. Illustrations will be drawn from the application of surface analysis in the areas of corrosion, fracture and adhesive bonding. Copyright (1999) Australian X-ray Analytical Association Inc
Crack turning in integrally stiffened aircraft structures
Pettit, Richard Glen
Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture
Fatigue cracking in road pavement
Mackiewicz, P.
2018-05-01
The article presents the problem of modelling fatigue phenomena occurring in the road pavement. The example of two selected pavements shows the changes occurring under the influence of the load in different places of the pavement layers. Attention is paid to various values of longitudinal and transverse strains generated at the moment of passing the wheel on the pavement. It was found that the key element in the crack propagation analysis is the method of transferring the load to the pavement by the tire and the strain distribution in the pavement. During the passage of the wheel in the lower layers of the pavement, a complex stress state arises. Then vertical, horizontal and tangent stresses with various values appear. The numerical analyses carried out with the use of finite element methods allowed to assess the strain and stress changes occurring in the process of cracking road pavement. It has been shown that low-thickness pavements are susceptible to fatigue cracks arising "bottom to top", while pavements thicker are susceptible to "top to bottom" cracks. The analysis of the type of stress allowed to determine the cracking mechanism.
Steel weldability. Underbead cold cracking
International Nuclear Information System (INIS)
Marquet, F.; Defourny, J.; Bragard, A.
1977-01-01
The problem of underbead cold cracking has been studied by the implant technique. This approach allows to take into account in a quantitative manner the different factors acting on the cold cracking phenomenon: structure under the weld bead, level of restraint, hydrogen content in the molten metal. The influence of the metallurgical factors depending from the chemical composition of the steel has been examined. It appeared that carbon equivalent is an important factor to explain cold cracking sensitivity but that it is not sufficient to characterize the steel. The results have shown that vanadium may have a deleterious effect on the resistance to cold cracking when the hydrogen content is high and that small silicon additions are beneficient. The influence of the diffusible hydrogen content has been checked and the important action of pre- and postheating has been shown. These treatments allow the hydrogen to escape from the weld before the metal has been damaged. Some inclusions (sulphides) may also decrease the influence of hydrogen. A method based on the implant tests has been proposed which allows to choose and to control safe welding conditions regarding cold cracking
Cracking on anisotropic neutron stars
Setiawan, A. M.; Sulaksono, A.
2017-07-01
We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.
Reactor vessel nozzle cracks: a photoelastic study
International Nuclear Information System (INIS)
Smith, C.W.
1979-01-01
A method consisting of a marriage between the ''frozen stress'' photoelastic approach and the local stress field equations of linear elastic fracture mechanics for estimating stress intensity factor distributions in three dimensional, finite cracked body problems is reviewed and extensions of the method are indicated. The method is then applied to the nuclear reactor vessel nozzle corner crack problem for both Intermediate Test Vessel and Boiling Water Reactor geometries. Results are compared with those of other investigators. 35 refs
Cracking of open traffic rigid pavement
Directory of Open Access Journals (Sweden)
Niken Chatarina
2017-01-01
Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.
Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan
2017-02-01
We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.
Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems
International Nuclear Information System (INIS)
BAER, THOMAS A.; SACKINGER, PHILIP A.; SUBIA, SAMUEL R.
1999-01-01
Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance
A new approach to the problem of bulk-mediated surface diffusion.
Berezhkovskii, Alexander M; Dagdug, Leonardo; Bezrukov, Sergey M
2015-08-28
This paper is devoted to bulk-mediated surface diffusion of a particle which can diffuse both on a flat surface and in the bulk layer above the surface. It is assumed that the particle is on the surface initially (at t = 0) and at time t, while in between it may escape from the surface and come back any number of times. We propose a new approach to the problem, which reduces its solution to that of a two-state problem of the particle transitions between the surface and the bulk layer, focusing on the cumulative residence times spent by the particle in the two states. These times are random variables, the sum of which is equal to the total observation time t. The advantage of the proposed approach is that it allows for a simple exact analytical solution for the double Laplace transform of the conditional probability density of the cumulative residence time spent on the surface by the particle observed for time t. This solution is used to find the Laplace transform of the particle mean square displacement and to analyze the peculiarities of its time behavior over the entire range of time. We also establish a relation between the double Laplace transform of the conditional probability density and the Fourier-Laplace transform of the particle propagator over the surface. The proposed approach treats the cases of both finite and infinite bulk layer thicknesses (where bulk-mediated surface diffusion is normal and anomalous at asymptotically long times, respectively) on equal footing.
Crack detection using image processing
International Nuclear Information System (INIS)
Moustafa, M.A.A
2010-01-01
This thesis contains five main subjects in eight chapters and two appendices. The first subject discus Wiener filter for filtering images. In the second subject, we examine using different methods, as Steepest Descent Algorithm (SDA) and the Wavelet Transformation, to detect and filling the cracks, and it's applications in different areas as Nano technology and Bio-technology. In third subject, we attempt to find 3-D images from 1-D or 2-D images using texture mapping with Open Gl under Visual C ++ language programming. The fourth subject consists of the process of using the image warping methods for finding the depth of 2-D images using affine transformation, bilinear transformation, projective mapping, Mosaic warping and similarity transformation. More details about this subject will be discussed below. The fifth subject, the Bezier curves and surface, will be discussed in details. The methods for creating Bezier curves and surface with unknown distribution, using only control points. At the end of our discussion we will obtain the solid form, using the so called NURBS (Non-Uniform Rational B-Spline); which depends on: the degree of freedom, control points, knots, and an evaluation rule; and is defined as a mathematical representation of 3-D geometry that can accurately describe any shape from a simple 2-D line, circle, arc, or curve to the most complex 3-D organic free-form surface or (solid) which depends on finding the Bezier curve and creating family of curves (surface), then filling in between to obtain the solid form. Another representation for this subject is concerned with building 3D geometric models from physical objects using image-based techniques. The advantage of image techniques is that they require no expensive equipment; we use NURBS, subdivision surface and mesh for finding the depth of any image with one still view or 2D image. The quality of filtering depends on the way the data is incorporated into the model. The data should be treated with
International Nuclear Information System (INIS)
Enos, David; Bryan, Charles R.
2015-01-01
Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function of temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.
Energy Technology Data Exchange (ETDEWEB)
Enos, David; Bryan, Charles R.
2015-10-01
Although the susceptibility of austenitic stainless steels to chloride-induced stress corrosion cracking is well known, uncertainties exist in terms of the environmental conditions that exist on the surface of the storage containers. While a diversity of salts is present in atmospheric aerosols, many of these are not stable when placed onto a heated surface. Given that the surface temperature of any container storing spent nuclear fuel will be well above ambient, it is likely that salts deposited on its surface may decompose or degas. To characterize this effect, relevant single and multi-salt mixtures are being evaluated as a function of temperature and relative humidity to establish the rates of degassing, as well as the likely final salt and brine chemistries that will remain on the canister surface.
... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... 69 KB) "My life was built around getting cocaine and getting high." ©istock.com/ Marjot Stacey is ...
Crack identification for rigid pavements using unmanned aerial vehicles
Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker
2017-09-01
Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.
Identification of cracks in thick beams with a cracked beam element model
Hou, Chuanchuan; Lu, Yong
2016-12-01
The effect of a crack on the vibration of a beam is a classical problem, and various models have been proposed, ranging from the basic stiffness reduction method to the more sophisticated model involving formulation based on the additional flexibility due to a crack. However, in the damage identification or finite element model updating applications, it is still common practice to employ a simple stiffness reduction factor to represent a crack in the identification process, whereas the use of a more realistic crack model is rather limited. In this paper, the issues with the simple stiffness reduction method, particularly concerning thick beams, are highlighted along with a review of several other crack models. A robust finite element model updating procedure is then presented for the detection of cracks in beams. The description of the crack parameters is based on the cracked beam flexibility formulated by means of the fracture mechanics, and it takes into consideration of shear deformation and coupling between translational and longitudinal vibrations, and thus is particularly suitable for thick beams. The identification procedure employs a global searching technique using Genetic Algorithms, and there is no restriction on the location, severity and the number of cracks to be identified. The procedure is verified to yield satisfactory identification for practically any configurations of cracks in a beam.
Fatigue crack growth and fracture behavior of bainitic rail steels.
2011-09-01
"The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...
A New Method Based on TOPSIS and Response Surface Method for MCDM Problems with Interval Numbers
Directory of Open Access Journals (Sweden)
Peng Wang
2015-01-01
Full Text Available As the preference of design maker (DM is always ambiguous, we have to face many multiple criteria decision-making (MCDM problems with interval numbers in our daily life. Though there have been some methods applied to solve this sort of problem, it is always complex to comprehend and sometimes difficult to implement. The calculation processes are always ineffective when a new alternative is added or removed. In view of the weakness like this, this paper presents a new method based on TOPSIS and response surface method (RSM for MCDM problems with interval numbers, RSM-TOPSIS-IN for short. The key point of this approach is the application of deviation degree matrix, which ensures that the DM can get a simple response surface (RS model to rank the alternatives. In order to demonstrate the feasibility and effectiveness of the proposed method, three illustrative MCMD problems with interval numbers are analysed, including (a selection of investment program, (b selection of a right partner, and (c assessment of road transport technologies. The contrast of ranking results shows that the RSM-TOPSIS-IN method is in good agreement with those derived by earlier researchers, indicating it is suitable to solve MCDM problems with interval numbers.
Process and device for magnetic crack testing
International Nuclear Information System (INIS)
Seiler, D.; Meili, E.; Fuchs, E.
1983-01-01
There is a problem of sufficient crack depth discrimination to suppress fault signals or pictures due to unevenness not caused by cracks. To solve this, when magnetising in the preferred direction of adhesion, the effect depending on the direction of the crack, before magnetic powder detection, magnetic powder is blown on, showing the fault and for the comparison of the adhesion effect crack direction characteristics it is blown on parallel to the preferred direction, or if one wants to stress the directional characteristic, it is blown on transversely to the preferred direction. In both cases one blows with the same force, without removing the magnetic powder remnants relevant to faults in the intended crack areas. This strong blowing removes the magnetic powder remnants relevant to interference and not relevant to faults. (orig./HP) [de
Simulation of cracks in tungsten under ITER specific heat loads
International Nuclear Information System (INIS)
Peschany, S.
2006-01-01
The problem of high tritium retention in co-deposited carbon layers on the walls of ITER vacuum chamber motivates investigation of materials for the divertor armour others than carbon fibre composite (CFC). Tungsten is most probable material for CFC replacement as the divertor armour because of high vaporisation temperature and heat conductivity. In the modern ITER design tungsten is a reference material for the divertor cover, except for the separatrix strike point armoured with CFC. As divertor armour, tungsten should withstand severe heat loads at off-normal ITER events like disruptions, ELMs and vertical displacement events. Experiments on tungsten heating with plasma streams and e-beams have shown an intense crack formation at the surface of irradiated sample [ V.I. Tereshin, A.N. Bandura, O.V. Byrka et al. Repetitive plasma loads typical for ITER type-I ELMs: Simulation at QSPA Kh-50.PLASMA 2005. ed. By Sadowski M.J., AIP Conference Proceedings, American Institute of Physics, 2006, V 812, p. 128-135., J. Linke. Private communications.]. The reason for tungsten cracking under severe heat loads is thermo stress. It appears as due to temperature gradient in solid tungsten as in resolidified layer after cooling down. Both thermo stresses are of the same value, but the gradiental stress is compressive and the stress in the resolidified layer is tensile. The last one is most dangerous for crack formation and it was investigated in this work. The thermo stress in tungsten that develops during cooling from the melting temperature down to room temperature is ∼ 8-16 GPa. Tensile strength of tungsten is much lower, < 1 GPa at room temperature, and at high temperatures it drops at least for one order of magnitude. As a consequence, various cracks of different characteristic scales appear at the heated surface of the resolidified layer. For simulation of the cracks in tungsten the numeric code PEGASUS-3D [Pestchanyi and I. Landman. Improvement of the CFC structure to
Koelemeijer, P.J.; Peach, C.J.; Spiers, C.J.
2012-01-01
Rock salt offers an attractive host rock for geological storage applications, because of its naturally low permeability and the ability of excavation-induced cracks to heal by fluid-assisted diffusive mass transfer. However, while diffusive transport rates in bulk NaCl solution are rapid and well
The Children's-Post-Pesticide-Application-Exposure-Study (CPPAES) was conducted to look at the distribution of chlorpyrifos within a home environment for a 2-week period following a routine professional crack-and-crevice application, and to determine the amount of the chlorpyrifo...
A model for crack initiation in the Li-ion battery electrodes
Energy Technology Data Exchange (ETDEWEB)
Panat, Rahul, E-mail: rahul.panat@wsu.edu
2015-12-01
The development of high energy density Lithium-ion batteries is of intense interest due to their application in the electric car and consumer electronics industry. The primary limiter in using high energy density battery electrodes is the cracking of the electrode material due to the severe strain caused by the charging–discharging cycles. In this paper, a linear perturbation model is used to describe the evolution of the electrode surface under stress. The driving force for the surface undulation formation is the reduction in the electrode strain energy. The kinetics of mass transport is described by the surface and volume diffusion. The model predicts that the Si electrode will develop surface undulations of the order of sub-1 μm length scale on the electrode surface, showing a reasonable agreement with experimental results reported in literature. Such surface undulations roughen the anode surface and can form notches that can act as crack initiation sites. It is also shown that this model is applicable when the temperature of the system is not constant and the system is not isolated. The limitations of the model are also discussed. - Highlights: • This work presents a theoretical formulation that predicts crack formation at an electrode surface under a lithiation cycle. • The research provides the critical parameters required to improve the life of the Li-ion batteries. • These research findings can be used to modify the surface structure to minimize crack formation. • The predictions from the model show a reasonable agreement with the experiments. • None of the theoretical literature so far has addressed the crack formation problem addressed in this paper.
Maximal Cohen-Macaulay modules over non-isolated surface singularities and matrix problems
Burban, Igor
2017-01-01
In this article the authors develop a new method to deal with maximal Cohen-Macaulay modules over non-isolated surface singularities. In particular, they give a negative answer on an old question of Schreyer about surface singularities with only countably many indecomposable maximal Cohen-Macaulay modules. Next, the authors prove that the degenerate cusp singularities have tame Cohen-Macaulay representation type. The authors' approach is illustrated on the case of \\mathbb{k} x,y,z/(xyz) as well as several other rings. This study of maximal Cohen-Macaulay modules over non-isolated singularities leads to a new class of problems of linear algebra, which the authors call representations of decorated bunches of chains. They prove that these matrix problems have tame representation type and describe the underlying canonical forms.
Cracked reinforced concrete walls of chimneys, silos and cooling towers as result of using formworks
Directory of Open Access Journals (Sweden)
Maj Marek
2018-01-01
Full Text Available There are presented in this paper some problems connected with reinforced concrete shell objects operation in the aggressive environment and built in method of formworks. Reinforced concrete chimneys, cooling towers, silos and other shells were built for decades. Durability of cracked shells are one of the most important parameters during process of designing, construction and exploitation of shells. Some reasons of appearance of horizontal and vertical cracks as temperature, pressure of stored material, live loads e.g. dynamic character of wind, moisture, influence of construction joints, thermal insulation, chemistry active environmental etc. reduce the carrying capacity of the walls. Formworks, as is occurred recently, are the reason for technological joints with leaking connection, imperfections of flexible formworks slabs and as result can initiate cracks. Cracked surface of this constructions causes decreasing capacity and lower the state of reliability. Horizontal, vertical cracks can caused corrosion of concrete and steel bars, decreasing stiffness of contraction, increasing of deflection and carbonation of concrete cover. Local and global imperfactions of concrete shells are increasing according to greater number of cracks...
Crack embryo formation before crack initiation and growth in high temperature water
International Nuclear Information System (INIS)
Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki
2008-01-01
Crack growth measurements were performed in high temperature water and in air to examine the role of creep on IGSCC growth using cold rolled non-sensitized Type316(UNS S31600), TT690 alloy, MA600 alloy, and Carbon steel (STPT42). In addition, crack initiation tests were performed also in high temperature water and in air using specially designed CT specimen. The obtained major results are as follows: (1) TT690 did crack in intergranularly in hydrogenated high temperature water if material is cold worked in heavily. (2) Cold worked carbon steel also cracked in intergranularly in dearated high temperature water. (3) Intergranular crack growth was recognized on cold worked 316, TT690, MA600, and carbon steel even in air which might be crack embryo of IGSCC. (4) Simple Arrhenius type temperature dependence was observed on IGSCC in high temperature water and creep crack growth in air. This suggested that intergranular crack growth rate was determined by some thermal activated reaction. (5) Vacancy condensation was recognized at just ahead of the crack tips of IGSCC and creep crack of cold worked steel. This showed that IGSCC and creep crack growth was controlled by same mechanism. (6) Clear evidence of vacancies condensation was recognized at just beneath the surface before crack initiation. This proved that crack did initiate as the result of diffusion of vacancies in the solid. And the incubation time seems to be controlled by the required time for the condensation of vacancies to the stress concentrated zone. (7) Diffusion of subsituational atoms was also driven by stress gradient. This is the important knowledge to evaluate the SCC initiation after long term operation in LWR's. Based on the observed results, IGSCC initiation and growth mechanism were proposed considering the diffusion process of cold worked induced vacancies. (author)
An investigation of reheat cracking in the weld heat affected zone of type 347 stainless steel
Phung-On, Isaratat
2007-12-01
Reheat cracking has been a persistent problem for welding of many alloys such as the stabilized stainless steels: Types 321 and 347 as well as Cr-Mo-V steels. Similar problem occurs in Ni-base superalloys termed "strain-age cracking". Cracking occurs during the post weld heat treatment. The HAZ is the most susceptible area due to metallurgical reactions in solid state during both heating and cooling thermal cycle. Many investigations have been conducted to understand the RHC mechanism. There is still no comprehensive mechanism to explain its underlying mechanism. In this study, there were two proposed cracking mechanisms. The first is the formation of a PFZ resulting in local weakening and strain localization. The second is the creep-like grain boundary sliding that causes microvoid formation at the grain boundaries and the triple point junctions. Cracking occurs due to the coalescence of the microvoids that form. In this study, stabilized grade stainless steel, Type 347, was selected for investigation of reheat cracking mechanism due to the simplicity of its microstructure and understanding of its metallurgical behavior. The Gleeble(TM) 3800 system was employed due to its capability for precise control of both thermal and mechanical simulation. Cylindrical samples were subjected to thermal cycles for the HAZ simulation followed by PWHT as the reheat cracking test. "Susceptibility C-curves" were plotted as a function of PWHT temperatures and time to failure at applied stress levels of 70% and 80% yield strength. These C-curves show the possible relationship of the reheat cracking susceptibility and carbide precipitation behavior. To identify the mechanism, the sample shape was modified containing two flat surfaces at the center section. These flat surfaces were electro-polished and subjected to the HAZ simulation followed by the placement of the micro-indentation arrays. Then, the reheat cracking test was performed. The cracking mechanism was identified by tracing
Quenching cracks - formation and possible causes
International Nuclear Information System (INIS)
Macherauch, E.; Mueller, H.; Voehringer, O.
1976-01-01
The most important principles controlling the martensitic hardening of steels containing carbon are presented, and their effects on the cracks formed by tempering are discussed. Micro-crack formation, influenced by any increase in the carbon content, is dependent on the variations of martensitic morphology; this factor is of decisive importance. Apart from micro residual stresses, macro residual stresses become increasingly involved in the crack development. This is dependent on the given content of carbon and increase in the dimensions of the samples. Based on the empirical values gained from experience about cracks formed by tempering and using a schematic diagram, the constructive influences on the propensity to cracks formed by tempering, with regard to materials and processing, are evaluated. Also the effects of thermic, mechanical and chemical after-treatments upon the propensity to tempering cracks are discussed. In conclusion, the problem of the formation of cracks in hardened parts, i.e. the elongation of the cracks under static stress, is treated briefly. (orig.) [de
Shear crack propagation in MBC strengthened concrete beams”
DEFF Research Database (Denmark)
Täljsten, Björn; Blanksvärd, Thomas; Carolin, Anders
2008-01-01
thermal compatibility to the base concrete and are often sensitive to the surface nature and surrounding temperature. By using mineral based composites (MBC) some of these challenges can be overcome. MBC refers here to a cementitious bonding agent and a carbon FRP grid. This paper is a part of an ongoing......Repair and upgrading existing concrete structures using FRPs and an epoxy adhesive as the bonding agent has some disadvantages when it comes to compatibility to the base concrete. Epoxies are often restricted by regulations of use, have low permeability which may create freeze/thaw problems, poor...... study of MBC systems. Emphasis is placed on the cracking behavior of the MBC system used for shear strengthening of RC beams. Traditional foil strain gauges and photometric measurements have been used for monitoring of the cracking behavior. In this study it is shown that the use of mineral based shear...
International Nuclear Information System (INIS)
Grebner, H.
1983-01-01
The quasistatic dissipation of thermically induced cracks in brittle multi-components material with plane boundary areas is studied. The distribution of Eigentension, which is causing the dissipation of cracks, is produced by cooling the composite material from the production temperature to room temperature. Tension distributions, respectively of the fracture-mechanical coefficients were determined by solving of the boundary value problems of the theory of plane thermoelasticity, a based on existence of a plane distortion state, respectively of a plane state of tension. Because of the complicated shape of the free surface one adopted a numerical solution, the finite-element method, to solve the corresponding mixed boundary value problems. (orig.) [de
On the initial condition problem of the time domain PMCHWT surface integral equation
Uysal, Ismail Enes
2017-05-13
Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.
Deep and surface learning in problem-based learning: a review of the literature.
Dolmans, Diana H J M; Loyens, Sofie M M; Marcq, Hélène; Gijbels, David
2016-12-01
In problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested and try to understand what is being studied. This review investigates: (1) the effects of PBL on students' deep and surface approaches to learning, (2) whether and why these effects do differ across (a) the context of the learning environment (single vs. curriculum wide implementation), and (b) study quality. Studies were searched dealing with PBL and students' approaches to learning. Twenty-one studies were included. The results indicate that PBL does enhance deep learning with a small positive average effect size of .11 and a positive effect in eleven of the 21 studies. Four studies show a decrease in deep learning and six studies show no effect. PBL does not seem to have an effect on surface learning as indicated by a very small average effect size (.08) and eleven studies showing no increase in the surface approach. Six studies demonstrate a decrease and four an increase in surface learning. It is concluded that PBL does seem to enhance deep learning and has little effect on surface learning, although more longitudinal research using high quality measurement instruments is needed to support this conclusion with stronger evidence. Differences cannot be explained by the study quality but a curriculum wide implementation of PBL has a more positive impact on the deep approach (effect size .18) compared to an implementation within a single course (effect size of -.05). PBL is assumed to enhance active learning and students' intrinsic motivation, which enhances deep learning. A high perceived workload and assessment that is perceived as not rewarding deep learning are assumed to enhance surface learning.
Stable propagation of interacting crack systems and modeling of damage
International Nuclear Information System (INIS)
Bazant, Z.P.; Tabbara, M.R.
1989-01-01
This paper presents general thermodynamic criteria for the stable states and stable path of structures with an interacting system of cracks. In combination with numerical finite element results for various cracked structure geometries, these criteria indicate that the crack response path of structures may exhibit bifurcations, after which the symmetry of the crack system is broken and some cracks grow preferentially. The problem is of interest for the prediction of ultimate loads, ductility and energy absorption capability of nuclear concrete structures as well as structures made of composites and ceramics
Failure/leakage predictions of concrete structures containing cracks
International Nuclear Information System (INIS)
Pan, Y.C.; Marchertas, A.H.; Kennedy, J.M.
1984-06-01
An approach is presented for studying the cracking and radioactive release of a reactor containment during severe accidents and extreme environments. The cracking of concrete is modeled as the blunt crack. The initiation and propagation of a crack are determined by using the maximum strength and the J-integral criteria. Furthermore, the extent of cracking is related to the leakage calculation by using a model developed by Rizkalla, Lau and Simmonds. Numerical examples are given for a three-point bending problem and a hypothetical case of a concrete containment structure subjected to high internal pressure during an accident
International Nuclear Information System (INIS)
Zheng, X.J.; Metzger, D.R.; Sauve, R.G.
1995-01-01
A fracture criterion based on energy balance is proposed for elasto-plastic cracking at hydrides in zirconium, assuming a finite length of crack advance. The proposed elasto-plastic energy release rate is applied to the crack initiation at hydrides in smooth and notched surfaces, as well as the subsequent delayed hydride cracking (DHC) considering limited crack-tip plasticity. For a smooth or notched surface of an elastic body, the fracture parameter is related to the stress intensity factor for the initiated crack. For DHC, a unique curve relates the non-dimensionalized elasto-plastic energy release rate with the length of crack extension relative to the plastic zone size. This fracture criterion explains experimental observations concerning DHC in a qualitative manner. Quantitative comparison with experiments is made for fracture toughness and DHC tests on specimens containing certain hydride structures; very good agreement is obtained. ((orig.))
Fatigue cracking on a steam generator tube
International Nuclear Information System (INIS)
Boccanfuso, M.; Lothios, J.; Thebault, Y.; Bruyere, B.; Duisabeau, L.; Herms, E.
2015-01-01
A circumferential fatigue crack was observed on a steam generator tube of the unit 2 of the Fessenheim plant. The results of destructive testing and the examination of the fracture surface show that the circumferential crack is linked to a large number of cycles with a very low stress intensity factor. Other aggravating factors like inter-granular corrosion have played a role in the initiating phase of fatigue cracking. The damage has been exacerbated by the lack of support of the tube at the level of the anti-vibration bars. (A.C.)
Eddy current standards - Cracks versus notches
Hagemaier, D. J.; Collingwood, M. R.; Nguyen, K. H.
1992-10-01
Eddy current tests aimed at evaluating cracks and electron-discharge machined (EDM) notches in 7075-T6 aluminum specimens are described. A comparison of the shape and amplitude of recordings made from both transverse and longitudinal scans of small EDM notches and fatigue cracks showd almost identical results. The signal amplitude and phase angle increased with an increase of EDM notch and crak size. It is concluded that equivalent eddy current results obtained from similar-size surface cracks and notches in aluminum can be used to establish a desired sensitivity level for inspection.
TEM observations of crack tip: cavity interactions
International Nuclear Information System (INIS)
Horton, J.A.; Ohr, S.M.; Jesser, W.A.
1981-01-01
Crack tip-cavity interactions have been studied by performing room temperature deformation experiments in a transmission electron microscope on ion-irradiated type 316 stainless steel with small helium containing cavities. Slip dislocations emitted from a crack tip cut, sheared, and thereby elongated cavities without a volume enlargement. As the crack tip approached, a cavity volume enlargement occurred. Instead of the cavities continuing to enlarge until they touch, the walls between the cavities fractured. Fracture surface dimples do not correlate in size or density with these enlarged cavities
Cracks in functionally graded materials
International Nuclear Information System (INIS)
Bahr, H.-A.; Balke, H.; Fett, T.; Hofinger, I.; Kirchhoff, G.; Munz, D.; Neubrand, A.; Semenov, A.S.; Weiss, H.-J.; Yang, Y.Y.
2003-01-01
The weight function method is described to analyze the crack growth behavior in functionally graded materials and in particular materials with a rising crack growth resistance curve. Further, failure of graded thermal barrier coatings (TBCs) under cyclic surface heating by laser irradiation is modeled on the basis of fracture mechanics. The damage of both graded and non-graded TBCs is found to develop in several distinct stages: vertical cracking→delamination→blistering→spalling. This sequence can be understood as an effect of progressive shrinkage due to sintering and high-temperature creep during thermal cycling, which increases the energy-release rate for vertical cracks which subsequently turn into delamination cracks. The results of finite element modeling, taking into account the TBC damage mechanisms, are compatible with experimental data. An increase of interface fracture toughness due to grading and a decrease due to ageing have been measured in a four-point bending test modified by a stiffening layer. Correlation with the damage observed in cyclic heating is discussed. It is explained in which way grading is able to reduce the damage
A probabilistic approach to crack instability
Chudnovsky, A.; Kunin, B.
1989-01-01
A probabilistic model of brittle fracture is examined with reference to two-dimensional problems. The model is illustrated by using experimental data obtained for 25 macroscopically identical specimens made of short-fiber-reinforced composites. It is shown that the model proposed here provides a predictive formalism for the probability distributions of critical crack depth, critical loads, and crack arrest depths. It also provides similarity criteria for small-scale testing.
Role of hydrogen in stress corrosion cracking
International Nuclear Information System (INIS)
Louthan, M.R. Jr.
1975-01-01
Hydrogen embrittlement has been postulated as a cause of stress corrosion cracking in numerous alloy systems. Such an interrelationship is useful in design considerations because it permits the designer and working engineer to relate the literature from both fields to a potential environmental compatibility problem. The role of hydrogen in stress corrosion of high strength steels is described along with techniques for minimizing the susceptibility to hydrogen stress cracking. (U.S.)
A.R. Ansari; B. Hossain; B. Koren (Barry); G.I. Shishkin (Gregori)
2007-01-01
textabstractWe investigate the model problem of flow of a viscous incompressible fluid past a symmetric curved surface when the flow is parallel to its axis. This problem is known to exhibit boundary layers. Also the problem does not have solutions in closed form, it is modelled by boundary-layer
Mesh sensitivity effects on fatigue crack growth by crack-tip blunting and re-sharpening
DEFF Research Database (Denmark)
Tvergaard, Viggo
2007-01-01
remeshing at several stages of the plastic deformation, with studies of the effect of overloads or compressive underloads. Recent published analyses for the first two cycles have shown folding of the crack surface in compression, leading to something that looks like striations. The influence of mesh...... refinement is used to study the possibility of this type of behaviour within the present method. Even with much refined meshes no indication of crack surface folding is found here....
Energy Technology Data Exchange (ETDEWEB)
Ritchie, R.O.; Lankford, J.
1986-01-01
Topics discussed in this volume include crack initiation and stage I growth, microstructure effects, crack closure, environment effects, the role of notches, analytical modeling, fracture mechanics characterization, experimental techniques, and engineering applications. Papers are presented on fatigue crack initiation along slip bands, the effect of microplastic surface deformation on the growth of small cracks, short fatigue crack behavior in relation to three-dimensional aspects and the crack closure effect, the influence of crack depth on crack electrochemistry and fatigue crack growth, and nondamaging notches in fatigue. Consideration is also given to models of small fatigue cracks, short crack theory, assessment of the growth of small flaws from residual strength data, the relevance of short crack behavior to the integrity of major rotating aero engine components, and the relevance of short fatigue crack growth data to the durability and damage tolerance analyses of aircraft.
Curvilinear crack layer propagation
Chudnovsky, Alexander; Chaoui, Kamel; Moet, Abdelsamie
1987-01-01
An account is given of an experiment designed to allow observation of the effect of damage orientation on the direction of crack growth in the case of crack layer propagation, using polystyrene as the model material. The direction of crack advance under a given loading condition is noted to be determined by a competition between the tendency of the crack to maintain its current direction and the tendency to follow the orientation of the crazes at its tip. The orientation of the crazes is, on the other hand, determined by the stress field due to the interaction of the crack, the crazes, and the hole. The changes in craze rotation relative to the crack define the active zone rotation.
Newman, J. C., Jr.; Raju, I. S.
1984-01-01
Stress intensity factor equations are presented for an embedded elliptical crack, a semielliptical surface crack, a quarter elliptical corner crack, a semielliptical surface crack along the bore of a circular hole, and a quarter elliptical corner crack at the edge of a circular hole in finite plates. The plates were subjected to either remote tension or bending loads. The stress intensity factors used to develop these equations were obtained from previous three dimensional finite element analyses of these crack configurations. The equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and, where applicable, hole radius. The ratio of crack depth to plate thickness ranged from 0 to 1, the ratio of crack depth to crack length ranged from 0.2 to 2, and the ratio of hole radius to plate thickness ranged from 0.5 to 2. The effects of plate width on stress intensity variation along the crack front were also included.
Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control
Directory of Open Access Journals (Sweden)
Magdalena Penkała
2018-01-01
Full Text Available Along with house heating and industry, emissions from road traffic (exhaust and tire, brake, car body or road surface abrasions are one of the primary sources of particulate matter (PM in the atmosphere in urban areas. Though numerous regulations and vehicle-control mechanisms have led to a significant decline of PM emissions from vehicle exhaust gases, other sources of PM remain related to road and car abrasion are responsible for non-exhaust emissions. Quantifying these emissions is a hard problem in both laboratory and field conditions. First, we must recognize the physicochemical properties of the PM that is emitted by various non-exhaust sources. In this paper, we underline the problem of information accessibility with regards to the properties and qualities of PM from non-exhaust sources. We also indicate why scarce information is available in order to find the possible solution to this ongoing issue.
Penkov, V. B.; Levina, L. V.; Novikova, O. S.; Shulmin, A. S.
2018-03-01
Herein we propose a methodology for structuring a full parametric analytical solution to problems featuring elastostatic media based on state-of-the-art computing facilities that support computerized algebra. The methodology includes: direct and reverse application of P-Theorem; methods of accounting for physical properties of media; accounting for variable geometrical parameters of bodies, parameters of boundary states, independent parameters of volume forces, and remote stress factors. An efficient tool to address the task is the sustainable method of boundary states originally designed for the purposes of computerized algebra and based on the isomorphism of Hilbertian spaces of internal states and boundary states of bodies. We performed full parametric solutions of basic problems featuring a ball with a nonconcentric spherical cavity, a ball with a near-surface flaw, and an unlimited medium with two spherical cavities.
On the Problem of Determining Aggregation Numbers from Surface Tension Measurements.
Rusanov, Anatoly I
2017-11-07
In view of the recent discovery of variable aggregation numbers in the vicinity of the critical micelle concentration (CMC), the mass-action-law theory of the surface tension isotherm of a micellar solution with variable aggregation numbers is formulated both for nonionic and ionic surfactants. It is shown that the shape of the surface tension isotherm should be concave in the logarithmic scale above the CMC. Considering a change in the isotherm slope at the CMC apparent break point, the problems of determining the aggregation number for nonionic micelles and the degree of counterion binding for ionic micelles are discussed. In case of the aggregation number variability near the CMC, finding the aggregation number above the CMC apparent break point is considered and a computational scheme is elaborated, requiring a higher precision for experiment. Some experimental data from the literature are analyzed, and the method of estimating the degree of counterion binding is improved.
Crack Characterisation for In-service Inspection Planning - An Update
Energy Technology Data Exchange (ETDEWEB)
Waale, Jan [lnspecta Technology AB, Stockholm (Sweden)
2006-05-15
One important factor to optimize the NDT equipment and NDT procedure is to know the characteristics of the specific defects being sought for in each case. Thus, access is necessary to reliable morphology data of defects from all possible degradation mechanisms in all existing materials of the components that are subject to the NDT. In 1994 the Swedish Nuclear Power Inspectorate (SKI) initiated a project for compiling crack morphology data based on systematic studies of cracks that have been observed in different plants (nuclear and non-nuclear) in order to determine typical as well as more extreme values of e.g. orientation, width and surface roughness. Although, a large number of identified cracking incidents was covered by the work it was recognised that further studies were needed to increase the data base, and thereby getting more confidence in the use of different crack characteristic data for NDT development and qualification purposes. That is the major reason why the present work was initiated. A thorough review of the SKI archives was performed aiming to find useful material from the time period between 1994 and today to compile complementary data and produce an update. Furthermore, older material was collected and evaluated. Thus, the data cover cracking found within the time period 1977-2003. In addition, useful material was supplied by the Swedish nuclear power plants. The evaluation and presentation of the results are similar to the 1994 study, with a few exceptions. The base for the evaluation is failure analysis reports, where the crack morphology parameters were measured from photos on cracked surfaces or cross sections through cracks. The resulting data were divided into seven groups depending on the cracking mechanism/material group combination. The data groups are: IGSCC in austenitic stainless steels; IGSCC in nickel base alloys; IDSCC in nickel base weld metal; TGSCC in austenitic stainless steels Thermal fatigue in austenitic stainless steels
Crack Characterisation for In-service Inspection Planning - An Update
International Nuclear Information System (INIS)
Waale, Jan
2006-05-01
One important factor to optimize the NDT equipment and NDT procedure is to know the characteristics of the specific defects being sought for in each case. Thus, access is necessary to reliable morphology data of defects from all possible degradation mechanisms in all existing materials of the components that are subject to the NDT. In 1994 the Swedish Nuclear Power Inspectorate (SKI) initiated a project for compiling crack morphology data based on systematic studies of cracks that have been observed in different plants (nuclear and non-nuclear) in order to determine typical as well as more extreme values of e.g. orientation, width and surface roughness. Although, a large number of identified cracking incidents was covered by the work it was recognised that further studies were needed to increase the data base, and thereby getting more confidence in the use of different crack characteristic data for NDT development and qualification purposes. That is the major reason why the present work was initiated. A thorough review of the SKI archives was performed aiming to find useful material from the time period between 1994 and today to compile complementary data and produce an update. Furthermore, older material was collected and evaluated. Thus, the data cover cracking found within the time period 1977-2003. In addition, useful material was supplied by the Swedish nuclear power plants. The evaluation and presentation of the results are similar to the 1994 study, with a few exceptions. The base for the evaluation is failure analysis reports, where the crack morphology parameters were measured from photos on cracked surfaces or cross sections through cracks. The resulting data were divided into seven groups depending on the cracking mechanism/material group combination. The data groups are: IGSCC in austenitic stainless steels; IGSCC in nickel base alloys; IDSCC in nickel base weld metal; TGSCC in austenitic stainless steels Thermal fatigue in austenitic stainless steels
An optimal control problem by controlling heat source of the surface of tissue
Dhar, 1Rikhiya; Dhar, Ranajit; Dhar, Piyanka
2013-01-01
A distributed optimal control problem for a system described by bio-heat equation for a homogeneous plane tissue is analytically investigated such that a desired temperature of the tissue at a particular point of location of tumour in hyperthermia can be attained at the end of a total time of operation of the process due to induced microwave on the surface of the tissue which is taken as control. Here the temperature of the tissue along the length of the tissue at different times of operation...
Scoping survey of perceived concerns, issues, and problems for near-surface disposal of FUSRAP waste
International Nuclear Information System (INIS)
Robinson, J.E.; Gilbert, T.L.
1982-12-01
This report is a scoping summary of concerns, issues, and perceived problems for near-surface disposal of radioactive waste, based on a survey of the current literature. Near-surface disposal means land burial in or within 15 to 20 m of the earth's surface. It includes shallow land burial (burial in trenches, typically about 6 m deep with a 2-m cap and cover) and some intermediate-depth land burial (e.g., trenches and cap similar to shallow land burial, but placed below 10 to 15 m of clean soil). Proposed solutions to anticipated problems also are discussed. The purpose of the report is to provide a better basis for identifying and evaluating the environmental impacts and related factors that must be analyzed and compared in assessing candidate near-surface disposal sites for FUSRAP waste. FUSRAP wastes are of diverse types, and their classification for regulatory purposes is not yet fixed. Most of it may be characterized as low-activity bulk solid waste, and is similar to mill tailings, but with somewhat lower average specific activity. It may also qualify as Class A segregated waste under the proposed 10 CFR 61 rules, but the parent radionuclides of concern in FUSRAP (primarily U-238 and Th-232) have longer half-lives than do the radionuclides of concern in most low-level waste. Most of the references reviewed deal with low-level waste or mill tailings, since there is as yet very little literature in the public domain on FUSRAP per se
Lazarus, E.
2015-12-01
In the archetypal "tragedy of the commons" narrative, local farmers pasture their cows on the town common. Soon the common becomes crowded with cows, who graze it bare, and the arrangement of open access to a shared resource ultimately fails. The "tragedy" involves social and physical processes, but the denouement depends on who is telling the story. An economist might argue that the system collapses because each farmer always has a rational incentive to graze one more cow. An ecologist might remark that the rate of grass growth is an inherent control on the common's carrying capacity. And a geomorphologist might point out that processes of soil degradation almost always outstrip processes of soil production. Interdisciplinary research into human-environmental systems still tends to favor disciplinary vantages. In the context of Anthropocene grand challenges - including fundamental insight into dynamics of landscape resilience, and what the dominance of human activities means for processes of change and evolution on the Earth's surface - two disciplines in particular have more to talk about than they might think. Here, I use three examples - (1) beach nourishment, (2) upstream/downstream fluvial asymmetry, and (3) current and historical "land grabbing" - to illustrate a range of interconnections between physical Earth-surface science and common-pool resource economics. In many systems, decision-making and social complexity exert stronger controls on landscape expression than do physical geomorphological processes. Conversely, human-environmental research keeps encountering multi-scale, emergent problems of resource use made 'common-pool' by water, nutrient and sediment transport dynamics. Just as Earth-surface research can benefit from decades of work on common-pool resource systems, quantitative Earth-surface science can make essential contributions to efforts addressing complex problems in environmental sustainability.
International Nuclear Information System (INIS)
Smith, E.
1994-01-01
The technological problem of intergranular stress corrosion cracking (IGSCC) of type 304 stainless steel piping in boiling water reactor piping systems, has provided the motivation for the considerable research interest in the integrity of cracked piping systems that are fabricated by ductile materials. IGSCC cracks are able to form at the inner surfaces of pipes. The cracks are circumferential and are able to grow slowly in service by a time dependent environmentally assisted mechanism. From a safety standpoint, it is important to know whether accident condition loadings will drive a part-through IGSCC crack unstably across the pipe thickness by a non-environmentally assisted fracture mechanism, and the resulting through-wall crack then propagate around the pipe circumference leading to a complete pipe severance. A methodology that has been developed to address this problem is a net-section stress methodology. The net-section stress approach for predicting the onset of crack extension in a piping system can give overly conservative predictions because a piping system is built-in at its end points and because crack extension requires some plastic deformation. The present paper is concerned with identifying the role of system pressure on the degree of conservatism, and two effects are important. Firstly, by inducing an axial tensile force at the cracked section, it is shown that the factor of conservatism can be increased. Secondly it is shown that the pressure induced moment at the cracked section behaves no differently to other contributions to this moment, in that all sources are associated with the same limited amount of elastic follow-up. All sources are associated with the same elastic flexibility parameter L*, which depends solely on the flexibility of the system and not on the nature of the loading
Fatigue crack propagation in aluminum-lithium alloys
Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.
1989-01-01
The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.
Delayed hydrogen cracking test design for pressure tubes
International Nuclear Information System (INIS)
Haddad, Roberto; Loberse, Antonio N.; Yawny, Alejandro A.; Riquelme, Pablo
1999-01-01
CANDU nuclear power stations pressure tubes of alloy Zr-2,5 % Nb present a cracking phenomenon known as delayed hydrogen cracking (DHC). This is a brittle fracture of zirconium hydrides that are developed by hydrogen due to aqueous corrosion on the metal surface. This hydrogen diffuses to the crack tip where brittle zirconium hydrides develops and promotes the crack propagation. A direct current potential decay (DCPD) technique has been developed to measure crack propagation rates on compact test (CT) samples machined from a non irradiated pressure tube. Those test samples were hydrogen charged by cathodic polarization in an acid solution and then pre cracked in a fatigue machine. This technique proved to be useful to measure crack propagation rates with at least 1% accuracy for DHC in pressure tubes. (author)
Central configurations of the collinear three-body problem and singular surfaces in the mass space
Energy Technology Data Exchange (ETDEWEB)
Xie, Zhifu, E-mail: zxie@vsu.edu [Department of Mathematics and Computer Science, Virginia State University, Petersburg, VA 23806 (United States)
2011-09-12
This Letter is to provide a new approach to study the phenomena of degeneracy of the number of the collinear central configurations under geometric equivalence. A direct and simple explicit parametric expression of the singular surface H{sub 3} is constructed in the mass space (m{sub 1},m{sub 2},m{sub 3}) element of (R{sup +}){sup 3}. The construction of H{sub 3} is from an inverse respective, that is, by specifying positions for the bodies and then determining the masses that are possible to yield a central configuration. It reveals the relationship between the phenomena of degeneracy and the inverse problem of central configurations. We prove that the number of central configurations is decreased to 3!/2-1=2, m{sub 1}, m{sub 2}, and m{sub 3} are mutually distinct if m element of H{sub 3}. Moreover, we know not only the number of central configurations but also what the nonequivalent central configurations are. -- Highlights: → Provide a new method to study the degeneracy of number of CC. → Results advanced the understanding of number of central configurations. → Singular mass surface H{sub 3} is given by a direct and simple parametric expression. → The proof only requires some basic knowledge of linear algebra. → The method can be applied to some other collinear n-body problem.
Ductile cast irons: microstructure influence on fatigue crack propagation resistance
Directory of Open Access Journals (Sweden)
Mauro Cavallini
2010-07-01
Full Text Available Microstructure influence on fatigue crack propagation resistance in five different ductile cast irons (DCI was investigated. Four ferrite/pearlite volume fractions were considered, performing fatigue crack propagation tests according to ASTM E647 standard (R equals to 0.1, 0.5 and 0.75, respectively. Results were compared with an austempered DCI. Damaging micromechanisms were investigated according to the following procedures: - “traditional” Scanning Electron Microscope (SEM fracture surfaces analysis; - SEM fracture surface analysis with 3D quantitative analysis; - SEM longitudinal crack profile analysis - Light Optical Microscope (LOM transversal crack profile analysis;
Evaluation of creep-fatigue crack growth for large-scale FBR reactor vessel and NDE assessment
Energy Technology Data Exchange (ETDEWEB)
Joo, Young Sang; Kim, Jong Bum; Kim, Seok Hun; Yoo, Bong
2001-03-01
Creep fatigue crack growth contributes to the failure of FRB reactor vessels in high temperature condition. In the design stage of reactor vessel, crack growth evaluation is very important to ensure the structural safety and setup the in-service inspection strategy. In this study, creep-fatigue crack growth evaluation has been performed for the semi-elliptical surface cracks subjected to thermal loading. The thermal stress analysis of a large-scale FBR reactor vessel has been carried out for the load conditions. The distributions of axial, radial, hoop, and Von Mises stresses were obtained for the loading conditions. At the maximum point of the axial and hoop stress, the longitudinal and circumferential surface cracks (i.e. PTS crack, NDE short crack and shallow long crack) were postulated. Using the maximum and minimum values of stresses, the creep-fatigue crack growth of the proposed cracks was simulated. The crack growth rate of circumferential cracks becomes greater than that of longitudinal cracks. The total crack growth of the largest PTS crack is very small after 427 cycles. The structural integrity of a large-scale reactor can be maintained for the plant life. The crack depth growth of the shallow long crack is faster than that of the NDE short crack. In the ISI of the large-scale FBR reactor vessel, the ultrasonic inspection is beneficial to detect the shallow circumferential cracks.
Trifonova, Tatiana; Arakelian, Sergei; Trifonov, Dmitriy; Abrakhin, Sergei
2017-04-01
1. The principal goal of present talk is, to discuss the existing uncertainty and discrepancy between water balance estimation for the area under heavy rain flood, on the one hand from the theoretical approach and reasonable data base due to rainfall going from atmosphere and, on the other hand the real practicle surface water flow parameters measured by some methods and/or fixed by some eye-witness (cf. [1]). The vital item for our discussion is that the last characteristics sometimes may be noticeably grater than the first ones. Our estimations show the grater water mass discharge observation during the events than it could be expected from the rainfall process estimation only [2]. The fact gives us the founding to take into account the groundwater possible contribution to the event. 2. We carried out such analysis, at least, for two catastrophic water events in 2015, i.e. (1) torrential rain and catastrophic floods in Lousiana (USA), June 16-20; (2) Assam flood (India), Aug. 22 - Sept. 8. 3. Groundwater flood of a river terrace discussed e.g. in [3] but in respect when rise of the water table above the land surface occurs coincided with intense rainfall and being as a relatively rare phenomenon. In our hypothesis the principal part of possible groundwater exit to surface is connected with a crack-net system state in earth-crust (including deep layers) as a water transportation system, first, being in variated pressure field for groundwater basin and, second, modified by different reasons ( both suddenly (the Krimsk-city flash flood event, July 2012, Russia) and/or smoothly (the Amur river flood event, Aug.-Sept. 2013, Russia) ). Such reconstruction of 3D crack-net under external reasons (resulting even in local variation of pressures in any crack-section) is a principal item for presented approach. 4. We believe that in some cases the interconnection of floods and preceding earthquakes may occur. The problem discuss by us for certain events ( e.g. in addition to
Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr
International Nuclear Information System (INIS)
Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong
2015-01-01
Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures
Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr
Energy Technology Data Exchange (ETDEWEB)
Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Changhee, E-mail: chlee@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Woo, WanChuck [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Sunhong [Research Institute of Industrial Science & Technology, Hyo-ja-dong, Po-Hang, Kyoung-buk, San 32 (Korea, Republic of)
2015-08-01
Highlights: • Major problem, clad cracking in laser cladding process, was researched. • Residual stress measurements were performed quantitatively by neutron diffraction method along the surface of specimens. • Relationship between the residual stress and crack initiation was showed clearly. • Ceramic particle effect in the metal matrix was showed from the results of residual stress measurements. • Initiation sites of generating clad cracks were specifically studied in MMC coatings. - Abstract: Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures
Environmental effects of high temperature sodium of fatigue crack characteristics
International Nuclear Information System (INIS)
Abe, Hideaki; Takahashi, Kazuo; Ozawa, Kazumasa; Takahashi, Yukio
2004-01-01
In order to study fatigue crack growth characteristics in the components used in liquid sodium, fatigue tests were carried out at 550degC. This is near the system temperature used for sodium coolant in fast breeder reactors (FBRs). The factors influencing fatigue lifetime in sodium compared with that in air were investigated by observation of surface cracks in 316FR steel. Furthermore, the effects of sodium environment on fatigue were investigated based on examining the results of thermal striping tests, etc., obtained up to now. The results of the fatigue tests show that many micro cracks in the shearing direction were produced by the mid-lifetime, and micro cracks connected quickly after that. This is because an oxidation film was not formed, since sodium is of a reductive nature, and strain of the material surface tends to distribute equally. During crack progression there is no oxide formed on broken surfaces. Therefore re-combination between broken surfaces takes place, and crack progression rate falls. Furthermore, in non-propagating crack, the wedge effect by oxide between broken surfaces at the time of compression is small. Therefore, the crack closure angle is small, compression strain generated in the crack tip becomes large, and the crack cannot stop easily. As mentioned above, the main sodium influence on the fatigue characteristics are because of its reductive nature. In summary, in sodium environment, it is hard to form a crack and to get it to grow. Once started, however, it is hard to stop the crack in sodium compared with in the case of the air. (author)
Diffusive boundary layers at the bottom of gaps and cracks
Etzold, Merlin A.; Landel, Julien R.; Dalziel, Stuart B.
2017-11-01
This work is motivated by the chemical decontamination of droplets of chemical warfare agents trapped in the gaps and cracks found in most man-made objects. We consider axial laminar flow within gaps with both straight and angled walls. We study the diffusive mass transfer from a source (e.g. a droplet surface) located at the bottom of the gap. This problem is similar to boundary layers and Graetz-type problems (heat transfer in pipe flow) with the added complication of a non-uniform lateral concentration profile due to the lateral variation of the velocity profile. We present 3D solutions for the diffusive boundary layer and demonstrate that a 2D mean-field model, for which we calculate series and similarity solutions, captures the essential physics. We demonstrate the immediate practical relevance of our findings by comparing decontamination of a droplet located in a gap and on an exposed surface.
An efficient solution to the decoherence enhanced trivial crossing problem in surface hopping
Bai, Xin; Qiu, Jing; Wang, Linjun
2018-03-01
We provide an in-depth investigation of the time interval convergence when both trivial crossing and decoherence corrections are applied to Tully's fewest switches surface hopping (FSSH) algorithm. Using one force-based and one energy-based decoherence strategies as examples, we show decoherence corrections intrinsically enhance the trivial crossing problem. We propose a restricted decoherence (RD) strategy and incorporate it into the self-consistent (SC) fewest switches surface hopping algorithm [L. Wang and O. V. Prezhdo, J. Phys. Chem. Lett. 5, 713 (2014)]. The resulting SC-FSSH-RD approach is applied to general Hamiltonians with different electronic couplings and electron-phonon couplings to mimic charge transport in tens to hundreds of molecules. In all cases, SC-FSSH-RD allows us to use a large time interval of 0.1 fs for convergence and the simulation time is reduced by over one order of magnitude. Both the band and hopping mechanisms of charge transport have been captured perfectly. SC-FSSH-RD makes surface hops in the adiabatic representation and can be implemented in both diabatic and locally diabatic representations for wave function propagation. SC-FSSH-RD can potentially describe general nonadiabatic dynamics of electrons and excitons in organics and other materials.
Crack imaging by pulsed laser spot thermography
International Nuclear Information System (INIS)
Li, T; Almond, D P; Rees, D A S; Weekes, B
2010-01-01
A surface crack close to a spot heated by a laser beam impedes lateral heat flow and produces alterations to the shape of the thermal image of the spot that can be monitored by thermography. A full 3D simulation has been developed to simulate heat flow from a laser heated spot in the proximity of a crack. The modelling provided an understanding of the ways that different parameters affect the thermal images of laser heated spots. It also assisted in the development of an efficient image processing strategy for extracting the scanned cracks. Experimental results show that scanning pulsed laser spot thermography has considerable potential as a remote, non-contact crack imaging technique.
On short cracks that depart from elastoplastic notch tips
Directory of Open Access Journals (Sweden)
Verônica Miquelin Machado
2017-07-01
Full Text Available The behavior of short cracks that depart from elastoplastic notch tips is modeled to estimate the stresses required to initiate and to propagate cracks in notched structural components, and to evaluate the size of tolerable crack-like defects under general loading conditions. This analysis can model both fatigue and environmentally assisted cracking problems; can evaluate notch sensitivity in both cases; and can as well be used to establish design or acceptance criteria for tolerable non-propagating crack-like defects in such cases. The growth of short cracks is assumed driven by the applied stresses and by the stress gradient ahead the notch tip, and supported by the material resistances to crack initiation and to long crack propagation by fatigue or EAC. In the elastoplastic case, the stress gradient ahead of the notch tip is quantified by a J-field to consider the short crack behavior. The tolerable short crack predictions made by this model are evaluated by suitable fatigue and EAC tests of notched specimens specially designed to start nonpropagating cracks from the notch tips, both under elastic and elastoplastic conditions.
International Nuclear Information System (INIS)
Faure, F.; Bocquet, P.; Boudot, R.; Zacharie, G.
1985-01-01
Defects formed, before stress relieving treatment, under the coating of tube plates of steam generators and vessel pipes are cold cracks formed in the segregation zone during surface coating without pre- and postheating of the 2nd layers and eventually of the following coating layers. To solve this problem, the conditions of pre- and post-heating are reinforced and applied to all the coating layers. 13 refs [fr
Chudnovsky, A.
1987-01-01
A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.
Atomistics of crack propagation
International Nuclear Information System (INIS)
Sieradzki, K.; Dienes, G.J.; Paskin, A.; Massoumzadeh, B.
1988-01-01
The molecular dynamic technique is used to investigate static and dynamic aspects of crack extension. The material chosen for this study was the 2D triangular solid with atoms interacting via the Johnson potential. The 2D Johnson solid was chosen for this study since a sharp crack in this material remains stable against dislocation emission up to the critical Griffith load. This behavior allows for a meaningful comparison between the simulation results and continuum energy theorems for crack extension by appropriately defining an effective modulus which accounts for sample size effects and the non-linear elastic behavior of the Johnson solid. Simulation results are presented for the stress fields of moving cracks and these dynamic results are discussed in terms of the dynamic crack propagation theories, of Mott, Eshelby, and Freund
Effects of rust in the crack face on crack detection based on Sonic-IR method
International Nuclear Information System (INIS)
Harai, Y.; Izumi, Y.; Tanabe, H.; Takamatsu, T.; Sakagami, T.
2015-01-01
Sonic-IR, which is based on the thermographic detection of the temperature rise due to frictional heating at the defect faces under ultrasonic excitation, has an advantage in the detection of closed and small defects. However, this method has a lot of nuclear factors relating to heat generation. In this study, effects of rust in the crack faces on the crack detection based on the sonic-IR method is experimentally investigated by using crack specimens. The heat generation by ultrasonic excitation was observed regularly during rust accelerated test using original device. The distribution of temperature change around the crack was changed with the progress of rust. This change in heat generation, it believed to be due to change in the contact state of the crack surface due to rust. As a result, it was found that heat generation by ultrasonic excitation is affected by rust in the crack faces. And it was also found that crack detection can be conducted by sonic-IR even if rust was generated in the crack faces. (author)
Bursting pressure of autofrettaged cylinders with inclined external cracks
International Nuclear Information System (INIS)
Seifi, Rahman; Babalhavaeji, Majid
2012-01-01
Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn’t any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: ► Modified J-Integral can be used for study of autofrettaged cracked cylinders. ► External axial cracks reduce considerably the pressure capacity of cylinders. ► External circumferential cracks have not considerable effects on bursting pressure. ► Autofrettage has contrary effects on external crack in compared with internal crack.
Bursting pressure of autofrettaged cylinders with inclined external cracks
Energy Technology Data Exchange (ETDEWEB)
Seifi, Rahman, E-mail: rseifi@basu.ac.ir [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Babalhavaeji, Majid [Mechanical Engineering Department, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)
2012-01-15
Autofrettaging a pressure vessel improves its pressure capacity. This is reliable if there isn't any crack or other type of flaws. In this paper, the effects of external surface cracks on bursting pressure of autofrettaged cylinders are studied. It is observed that bursting pressure decreases considerably (up to 30%) due to external cracks in the cylinders without autofrettage. This reduction increases for high levels of the applied autofrettage. External axial cracks have more effects than inclined cracks. Comparing experimental and numerical results show that the numerical methods can acceptably predict the bursting pressure of the autofrettaged cracked cylinders. These predictions are valid when the fracture parameter (J-Integral) is calculated from the modified equation that takes into account the effects of residual stresses. - Highlights: Black-Right-Pointing-Pointer Modified J-Integral can be used for study of autofrettaged cracked cylinders. Black-Right-Pointing-Pointer External axial cracks reduce considerably the pressure capacity of cylinders. Black-Right-Pointing-Pointer External circumferential cracks have not considerable effects on bursting pressure. Black-Right-Pointing-Pointer Autofrettage has contrary effects on external crack in compared with internal crack.
Thermal fatigue cracking of austenitic stainless steels
International Nuclear Information System (INIS)
Fissolo, A.
2001-01-01
This report deals with the thermal fatigue cracking of austenitic stainless steels as AISI 316 LN and 304 L. Such damage has been clearly observed for some components used in Fast Breeder reactors (FBR) and Pressure Water Reactor (PWR). In order to investigate thermal fatigue, quasi-structural specimen have been used. In this frame, facilities enforcing temperature variations similar to those found under the operation conditions have been progressively developed. As for components, loading results from impeded dilatation. In the SPLASH facility, the purpose was to establish accurate crack initiation conditions in order to check the relevance of the usual component design methodology. The tested specimen is continuously heated by the passage of an electrical DC current, and submitted to cyclic thermal down shock (up to 1000 deg C/s) by means of periodical spraying of water on two opposite specimen faces. The number of cycles to crack initiation N i is deduced from periodic examinations of the quenched surfaces, by means of optical microscopy. It is considered that initiation occurs when at least one 50μm to 150□m long crack is observed. Additional SPLASH tests were performed for N >> N i , with a view to investigate the evolution of a surface multiple cracking network with the number of cycles N. The CYTHIA test was mainly developed for the purpose of assessing crack growth dynamics of one isolated crack in thermal fatigue conditions. Specimens consist of thick walled tubes with a 1 mm circular groove is spark-machined at the specimen centre. During the test, the external wall of the tube is periodically heated by using a HF induction coil (1 MHz), while its internal wall is permanently cooled by flowing water. Total crack growth is derived from post-mortem examinations, whereby the thermal fatigue final rupture surface is oxidized at the end of the test. The specimen is broken afterwards under mechanical fatigue at room temperature. All the tests confirm that
Crack arrest concepts for failure prevention and life extension. Proceedings
International Nuclear Information System (INIS)
Wiesner, C.S.
1996-01-01
These proceedings contain the thirteen papers presented at a seminar on crack arrest concepts for failure prevention and life extension. They provide a picture of the current position of crack arrest testing, models and applications, discussion of the relevance of recent research to industrial problems, and an assessment of whether the application of crack arrest models provides additional safety. Separate abstracts have been prepared for seven papers of relevance to the nuclear industry and, in particular, reactor pressure vessels. (UK)
Fatigue crack growth in an aluminum alloy-fractographic study
Salam, I.; Muhammad, W.; Ejaz, N.
2016-08-01
A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.
International Nuclear Information System (INIS)
Braun, H.P.
1979-01-01
With the aim of obtaining microstructural information of multi-component materials fracture-mechanical calculations on continuum-mechanical models of fiber composites were performed. There were ideal sections of material permitting the formulation of suitable mixed boundary value problems of static thermoelasticity whose solutions could be obtained by means of appropriate numerical methods from continuum mechanics. As model loads exclusively thermally induced residual stresses were assumed, being of special interest because of the thermomechanically inhomogeneous structure of composite materials on one hand and having got decisive significance for a number of important areas of application as e.g. aero-space industry, reactor technology and chemical apparatus engineering on the other. The results evaluated numerically are exemplarily examined by means of photoelasticity. (orig./IHOE) [de
Stress corrosion cracking and dealloying of copper-gold alloy in iodine vapor
International Nuclear Information System (INIS)
Galvez, M.F.; Bianchi, G.L.; Galvele, J.R.
1993-01-01
The susceptibility to stress corrosion cracking of copper-gold alloy in iodine vapor was studied and the results were analyzed under the scope of the surface mobility stress corrosion cracking mechanism. The copper-gold alloy undergoes stress corrosion cracking in iodine. Copper iodide was responsible of that behavior. The copper-gold alloy shows two processes in parallel: stress corrosion cracking and dealloying. As was predicted by the surface mobility stress corrosion cracking mechanism, the increase in strain rate induces an increase in the crack propagation rate. (Author)
International Nuclear Information System (INIS)
Pan, Y.C.; Kennedy, J.M.
1983-01-01
In assessing the safety of a liquid metal fast breeder reactor (LMFBR), a major concern is that of hot sodium coming into contact with either unprotected concrete or steel-lined concrete equipment cells and containment structures. An aspect of this is the potential of concrete cracking which would significantly influence the safety assessment. Concrete cracking in finite element analysis can be modeled as a blunt crack in which the crack is assumed to be uniformly distributed throughout the area of the element. A blunt crack model based on the energy release rate and the effective strength concepts which was insensitive to the element size was presented by Bazant and Cedolin. Some difficulties were encountered in incorporating their approach into a general purpose finite element code. An approach based on the J-integral to circumvent some of the difficulties was proposed by Pan, Marchertas, and Kennedy. Alternatively, cracking can also be modeled as a sharp crack where the crack surface is treated as the boundary of the finite element mesh. The sharp crack model is adopted by most researchers and its J-integral has been well established. It is desirable to establish the correlation between the J-integrals, or the energy release rates, for the blunt crack model and the sharp crack model so that data obtained from one model can be used on the other
Automatic crack detection method for loaded coal in vibration failure process.
Directory of Open Access Journals (Sweden)
Chengwu Li
Full Text Available In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM. A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.
Topology optimization applied to room acoustic problems and surface acoustic wave devices
DEFF Research Database (Denmark)
Dühring, Maria Bayard; Sigmund, Ole; Jensen, Jakob Søndergaard
can be minimized either by distribution of reflecting material in a design domain along the ceiling or by distribution of absorbing and reflecting material along all the walls for both 2D and 3D problems. It is also shown how the method can be used to design sound barriers. The main part...... in order to optimize more complicated SAW structures such as acoustic horns which focus the SAWs to a small area. [1] M. P. Bendsøe, O. Sigmund, “Topology optimization, theory, methods and applications”, Springer Verlag Berlin Heidelberg New York, 2nd edition, (2003). ISBN 3-540-42992-1. [2] J. S. Jensen......, Berlin, (2000). ISBN 3-540-67232-X. [5] M. M. de Lima Jr and P. V. Santos, “Modulation of photonic structures by surface acoustic waves”, Rep. Prog. Phys., 68 1639-1701 (2005)...
Lauer, J. L.; King, V. W.
1979-01-01
A far-infrared interferometer was converted into an emission microspectrophotometer for surface analysis. To cover the mid-infrared as well as the far-infrared the Mylar beamsplitter was made replaceable by a germanium-coated salt plate, and the Moire fringe counting system used to locate the moveable Michelson mirror was improved to read 0.5 micron of mirror displacement. Digital electronics and a dedicated minicomputer were installed for data collection and processing. The most critical element for the recording of weak emission spectra from small areas was, however, a reflecting microscope objective and phase-locked signal detection with simultaneous referencing to a blackbody source. An application of the technique to lubrication problems is shown.
Constructing Potential Energy Surfaces for Polyatomic Systems: Recent Progress and New Problems
Directory of Open Access Journals (Sweden)
J. Espinosa-Garcia
2012-01-01
Full Text Available Different methods of constructing potential energy surfaces in polyatomic systems are reviewed, with the emphasis put on fitting, interpolation, and analytical (defined by functional forms approaches, based on quantum chemistry electronic structure calculations. The different approaches are reviewed first, followed by a comparison using the benchmark H + CH4 and the H + NH3 gas-phase hydrogen abstraction reactions. Different kinetics and dynamics properties are analyzed for these reactions and compared with the available experimental data, which permits one to estimate the advantages and disadvantages of each method. Finally, we analyze different problems with increasing difficulty in the potential energy construction: spin-orbit coupling, molecular size, and more complicated reactions with several maxima and minima, which test the soundness and general applicability of each method. We conclude that, although the field of small systems, typically atom-diatom, is mature, there still remains much work to be done in the field of polyatomic systems.
Analytic simulation of the Poincare surface of sections for the diamagnetic Kepler problem
International Nuclear Information System (INIS)
Hasegawa, H.; Harada, A.; Okazaki, Y.
1984-01-01
The Poincare surface-of-section analysis which the authors previously reported on the diamagnetic Kepler problem (classical hydrogen atom in a uniform magnetic field) in a transition region from regular to chaotic motions is simulated by an analytic means, by taking intersections of the energy integral and the approximate integral Λ of Solovev to obtain sections of the two separate regions of the motion that exist in the limit of a weak magnetic field (B → 0). The origin of the unique hyperbolic point and the separatrix around which the onset of chaos takes place are thus identified. The invariant tori arising near the full chaos are shown to be simulated by this method but with modified parameter values in the expression Λ. (author)
Analytic simulation of the Poincare surface of sections for the diamagnetic Kepler problem
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, H; Harada, A; Okazaki, Y [Kyoto Univ. (Japan). Dept. of Physics
1984-11-11
The Poincare surface-of-section analysis which the authors previously reported on the diamagnetic Kepler problem (classical hydrogen atom in a uniform magnetic field) in a transition region from regular to chaotic motions is simulated by an analytic means, by taking intersections of the energy integral and the approximate integral ..lambda.. of Solovev to obtain sections of the two separate regions of the motion that exist in the limit of a weak magnetic field (B ..-->.. 0). The origin of the unique hyperbolic point and the separatrix around which the onset of chaos takes place are thus identified. The invariant tori arising near the full chaos are shown to be simulated by this method but with modified parameter values in the expression ..lambda...
Influence of fatigue crack wake length and state of stress on crack closure
Telesman, Jack; Fisher, Douglas M.
1988-01-01
The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.
Koshti, Ajay M.
2018-03-01
Like other NDE methods, eddy current surface crack detectability is determined using probability of detection (POD) demonstration. The POD demonstration involves eddy current testing of surface crack specimens with known crack sizes. Reliably detectable flaw size, denoted by, a90/95 is determined by statistical analysis of POD test data. The surface crack specimens shall be made from a similar material with electrical conductivity close to the part conductivity. A calibration standard with electro-discharged machined (EDM) notches is typically used in eddy current testing for surface crack detection. The calibration standard conductivity shall be within +/- 15% of the part conductivity. This condition is also applicable to the POD demonstration crack set. Here, a case is considered, where conductivity of the crack specimens available for POD testing differs by more than 15% from that of the part to be inspected. Therefore, a direct POD demonstration of reliably detectable flaw size is not applicable. Additional testing is necessary to use the demonstrated POD test data. An approach to estimate the reliably detectable flaw size in eddy current testing for part made from material A using POD crack specimens made from material B with different conductivity is provided. The approach uses additional test data obtained on EDM notch specimens made from materials A and B. EDM notch test data from the two materials is used to create a transfer function between the demonstrated a90/95 size on crack specimens made of material B and the estimated a90/95 size for part made of material A. Two methods are given. For method A, a90/95 crack size for material B is given and POD data is available. Objective of method A is to determine a90/95 crack size for material A using the same relative decision threshold that was used for material B. For method B, target crack size a90/95 for material A is known. Objective is to determine decision threshold for inspecting material A.
Amrani, Salah; Kocaefe, Duygu; Kocaefe, Yasar; Bhattacharyay, Dipankar; Bouazara, Mohamed; Morais, Brigitte
2016-10-01
The objective of this work is to understand the different mechanisms of crack formation in dense anodes used in the aluminum industry. The first approach used is based on the qualitative characterization of the surface cracks and the depth of these cracks. The second approach, which constitutes a quantitative characterization, is carried out by determining the distribution of the crack width along its length as well as the percentage of the surface containing cracks. A qualitative analysis of crack formation was also carried out using 3D tomography. It was observed that mixing and forming conditions have a significant effect on crack formation in green anodes. The devolatilization of pitch during baking causes the formation and propagation of cracks in baked anodes in which large particles control the direction of crack propagation.
Energy Technology Data Exchange (ETDEWEB)
Abthoff, J; Schuster, H D; Gabler, R
1976-11-17
A small cracked-gas generator in a vehicle driven, in particular, by an air combustion engine has been proposed for the economic production of the gases necessary for low toxicity combustion from diesel fuel. This proceeds via catalytic crack-gasification and exploitation of residual heat from exhaust gases. This patent application foresees the insertion of one of the catalysts supporting the cracked-gas reaction in a container through which the reacting mixture for cracked-gas production flows in longitudinal direction. Further, air ducts are embedded in the catalyst through which exhaust gases and fresh air flow in counter direction to the cracked gas flow in the catalyst. The air vents are connected through heat conduction to the catalyst. A cracked gas constituting H/sub 2//CO/CO/sub 2//CH/sub 4/ and H/sub 2/O can be produced from the air-fuel mixture using appropriate catalysts. By the addition of 5 to 25% of cracked gas to the volume of air drawn in by the combustion engine, a more favourable combustion can be achieved compared to that obtained under normal combustion conditions.
Case history of tantalum-weld cracking
International Nuclear Information System (INIS)
Knorovsky, G.A.
1982-01-01
Tantalum welding is normally a routine operation. Of course, the routine involves careful cleaning beforehand, and welding in an atmosphere which excludes reactive gases (O 2 , N 2 , H 2 ). Recently a weld cracking problem was encountered at SNLA despite the fact that normal precautions had been taken. This account reviews what happened, the analytical procedures followed to determine the unusual source of the problem, and the remedy which solved the problem
On multiple crack identification by ultrasonic scanning
Brigante, M.; Sumbatyan, M. A.
2018-04-01
The present work develops an approach which reduces operator equations arising in the engineering problems to the problem of minimizing the discrepancy functional. For this minimization, an algorithm of random global search is proposed, which is allied to some genetic algorithms. The efficiency of the method is demonstrated by the solving problem of simultaneous identification of several linear cracks forming an array in an elastic medium by using the circular Ultrasonic scanning.
Shivakumar, K. N.; Tan, P. W.; Newman, J. C., Jr.
1988-01-01
A three-dimensional virtual crack-closure technique is presented which calculates the strain energy release rates and the stress intensity factors using only nodal forces and displacements from a standard finite element analysis. The technique is an extension of the Rybicki-Kanninen (1977) method, and it assumes that any continuous function can be approximated by a finite number of straight line segments. Results obtained by the method for surface cracked plates with and without notches agree favorably with previous results.
Thermal shock cracking of GSO single crystal
International Nuclear Information System (INIS)
Miyazaki, Noriyuki; Yamamoto, Kazunari; Tamura, Takaharu; Kurashige, Kazuhisa; Ishibashi, Hiroyuki; Susa, Kenzo
1998-01-01
The quantitative estimation of the failure stress of a gadolinium orthosilicate (Gd 2 SiO 5 , hereafter abbreviated as GSO) single crystal due to thermal shock was investigated. A cylindrical test specimen was heated in a silicone oil bath, then subjected to thermal shock by pouring room temperature silicone oil. Cracking occurred during cooling. The heat conduction analysis was performed to obtain temperature distribution in a GSO single crystal at cracking, using the surface temperatures measured in the thermal shock cracking test. Then the thermal stress was calculated using temperature profile of the test specimen obtained from the heat conduction analysis. It is found from the results of the thermal stress analysis and the observation of the cracking in test specimens that the thermal shock cracking occurs in a cleavage plane due to the stress normal to the plane. Three-point bending tests were also performed to examine the relationship between the critical stress for thermal shock cracking and the three-point bending strength obtained from small-sized test specimens. (author)
Stress corrosion cracking of copper canisters
International Nuclear Information System (INIS)
King, Fraser; Newman, Roger
2010-12-01
A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide
Stress corrosion cracking of copper canisters
Energy Technology Data Exchange (ETDEWEB)
King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))
2010-12-15
A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide
On Early Age Crack Formation in FRC Slabs
DEFF Research Database (Denmark)
Olesen, John Forbes; Stang, Henrik
1997-01-01
The problem of early age crack formation in FRC slabs due to restrained temperature and shrinkage deformations, is given an analytical treatment. A model taking into account the ageing properties of the tensile softening curve and the continued development in the temperature and shrinkage...... deformations after crack initiation, is presented. Based on this model a design strategy for FRC slabs is outlined....
The Dugdale solution for two unequal straight cracks weakening
Indian Academy of Sciences (India)
A crack arrest model is proposed for an inﬁnite elastic perfectly-plastic plate weakened by two unequal, quasi-static, collinear straight cracks. The Dugdale model solution is obtained for the above problem when the developed plastic zones are subjected to normal cohesive quadratically varying yield point stress. Employing ...
International Nuclear Information System (INIS)
Besuner, P.M.; Caughey, W.R.
1976-11-01
The finite element (FE) and influence function (IF) methods are compared for a three-dimensional elastic analysis of postulated circular-shaped surface cracks in the feedwater nozzle of a typical boiling water reactor (BWR). These are two of the possible methods for determining stress intensity factors for nozzle corner cracks. The FE method is incorporated in a direct manner. The IF method is used to compute stress intensity factors only when the uncracked stress field (i.e., the stress in the uncracked solid at the locus of the crack to be eventually considered) has been computed previously. Both the IF and FE methods are described in detail and are applied to several test cases chosen for their similarity to the nozzle crack problem and for the availablility of an accurate published result obtained from some recognized third method of solution
Compression cracking of plastic spheres: a high speed photography study
International Nuclear Information System (INIS)
Majzoub, R.; Chaudhri, M.M.
1999-01-01
Failure of brittle spheres under compressive loading, both quasi static and dynamic, is a technologically important problem. However, so far, neither the stress state in a loaded nor the failure process in understood clearly. In fact, because the process of the failure of a loaded sphere is very rapid, it has not been possible to follow it when making static observations. We have, therefore, carried out a high-speed photographic study using framing rates of up to 200,000 frames per second to follow the sequence of events when polished 12.7 mm diameter spheres of acrylic resin are fragmented using a low-velocity impact apparatus. The latter consist of a 5.7 kg hammer, which is allowed to drop on to the test sphere from a height of 1.3 m and the entire event of impact and ensuing fracture is photographed with a rotating mirror camera (C-4). Form numerous impact experiments it has been found that as the impact load increases gradually, plastic flow and flattering of the sphere occurs at the contact region. The size of the flattened region continuous to grow with increasing impact load and when this region becomes sufficiently large, usually one or two cracks initiate at the periphery of the contact rather than in the bulk of the sphere. The surface cracks then grow into the bulk of the sphere at velocities in the range of 600-800 m s/sup -1/. It is interesting to note these crack velocities are the maximum observed velocities in this material, but these are only approx. 0.8 of the Rayleigh wave velocity, which is the theoretically predicted maximum crack velocity in brittle materials. It is argued that in order to cause the catastrophic failure of a solid sphere, it is necessary to cause plasticity in it which then leads to the generation of tensile hoop stresses at the circle of contact between the sphere and platen. (author)
Stress corrosion cracking of titanium alloys
May, R. C.; Beck, F. H.; Fontana, M. G.
1971-01-01
Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.
Inspecting cracks in foam insulation
Cambell, L. W.; Jung, G. K.
1979-01-01
Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.
DEFF Research Database (Denmark)
Thoft-Christensen, Palle
Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed.......Modelling of corrosion cracking of reinforced concrete structures is complicated as a great number of uncertain factors are involved. To get a reliable modelling a physical and mechanical understanding of the process behind corrosion in needed....
DEFF Research Database (Denmark)
Rennison, Betina Wolfgang
2016-01-01
extensive work to raise the proportion of women. This has helped slightly, but women remain underrepresented at the corporate top. Why is this so? What can be done to solve it? This article presents five different types of answers relating to five discursive codes: nature, talent, business, exclusion...... in leadership management, we must become more aware and take advantage of this complexity. We must crack the codes in order to crack the curve....
Fatigue crack growth behavior under cyclic thermal transient stress
International Nuclear Information System (INIS)
Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.
1986-01-01
Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)
Fatigue crack growth behavior under cyclic transient thermal stress
International Nuclear Information System (INIS)
Ueda, Masahiro; Kano, Takashi; Yoshitoshi, Atsushi.
1987-01-01
Thermal fatigue tests were performed using straight pipe specimens subjected to cyclic thermal shocks of liquid sodium, and crack growth behaviors were estimated using striation patterns observed clearly on any crack surface. Crack growth rate under cyclic thermal strain reaches the maximum at one depth, and after that it decreases gradually with crack depth. The peak location of crack growth rate becomes deeper by superposition of constant primary stress. Parallel cracks co-existing in the neighborhood move the peak to shallower location and decrease the maximum crack growth rate. The equivalent stress intensity factor range calculated by Walker's formula is successfully applied to the case of negative stress ratio. Fatigue crack growth rate under cyclic thermal strain agreed well with that under the constant temperature equal to the maximum value in the thermal cycle. Simplified methods for calculating the stress intensity factor and the crack interference factor have been developed. Crack growth behavior under thermal fatigue could be well predicted using numerical analysis results. (author)
Self-repair of cracks in brittle material systems
Dry, Carolyn M.
2016-04-01
One of the most effective uses for self repair is in material systems that crack because the cracks can allow the repair chemical to flow into the crack damage sites in all three dimensions. In order for the repair chemical to stay in the damage site and flow along to all the crack and repair there must be enough chemical to fill the entire crack. The repair chemical must be designed appropriately for the particular crack size and total volume of cracks. In each of the three examples of self repair in crackable brittle systems, the viscosity and chemical makeup and volume of the repair chemicals used is different for each system. Further the chemical delivery system has to be designed for each application also. Test results from self repair of three brittle systems are discussed. In "Self Repair of Concrete Bridges and Infrastructure" two chemicals were used due to different placements in bridges to repair different types of cracks- surface shrinkage and shear cracks, In "Airplane Wings and Fuselage, in Graphite" the composite has very different properties than the concrete bridges. In the graphite for airplane components the chemical also had to survive the high processing temperatures. In this composite the cracks were so definite and deep and thin that the repair chemical could flow easily and repair in all layers of the composite. In "Ceramic/Composite Demonstrating Self Repair" the self repair system not only repaired the broken ceramic but also rebounded the composite to the ceramic layer
Assisted crack tip flipping under Mode I thin sheet tearing
DEFF Research Database (Denmark)
Felter, Christian Lotz; Nielsen, Kim Lau
2017-01-01
Crack tip flipping, where the fracture surface alternates from side to side in roughly 45° shear bands, seems to be an overlooked propagation mode in Mode I thin sheet tearing. In fact, observations of crack tip flipping is rarely found in the literature. Unlike the already established modes...
Strength Behaviour of Fatigue Cracked Lugs (Festigkeitsverhalten von Rissbehafteten Augenstaeben),
1981-01-01
either surface cracks or corner cracks at holes. NASA TN 1)-8244 64 A.F. Grandt Stress intensity factors for some through fracked fastener holes...with Hydropuise L~ngszylinder longitudinal cylinder Druckblversorgung =pressure oil Supply Hydraulikaggregat = hydraulic control unit Fig 7.5 Plan of
SSRI Facilitated Crack Dancing
Directory of Open Access Journals (Sweden)
Ravi Doobay
2017-01-01
Full Text Available Choreoathetoid movement secondary to cocaine use is a well-documented phenomenon better known as “crack dancing.” It consists of uncontrolled writhing movements secondary to excess dopamine from cocaine use. We present a 32-year-old male who had been using cocaine for many years and was recently started on paroxetine, a selective serotonin reuptake inhibitor (SSRI for worsening depression four weeks before presentation. He had been doing cocaine every 2 weeks for the last three years and had never “crack danced” before this episode. The authors have conducted a thorough literature review and cited studies that suggest “crack dancing” is associated with excess dopamine. There has never been a documented case report of an SSRI being linked with “crack dancing.” The authors propose that the excess dopaminergic effect of the SSRI lowered the dopamine threshold for “crack dancing.” There is a communication with the Raphe Nucleus and the Substantia Nigra, which explains how the SSRI increases dopamine levels. This is the first documented case of an SSRI facilitating the “crack dance.”
Natural zeolite bitumen cracking
Energy Technology Data Exchange (ETDEWEB)
Kuznicki, S.M.; McCaffrey, W.C.; Bian, J.; Wangen, E.; Koenig, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering
2006-07-01
A study was conducted to demonstrate how low cost heavy oil upgrading in the field could reduce the need for diluents while lowering the cost for pipelining. Low cost field upgrading could also contribute to lowering contaminant levels. The performance of visbreaking processes could be improved by using disposable cracking agents. In turn, the economics of field upgrading of in-situ derived bitumen would be improved. However, in order to be viable, such agents would have to be far less expensive than current commercial cracking catalysts. A platy natural zeolite was selected for modification and testing due to its unique chemical and morphological properties. A catalyst-bearing oil sand was then heat-treated for 1 hour at 400 degrees C in a sealed microreactor. Under these mild cracking conditions, the catalyst-bearing oil sand produced extractable products of much lower viscosity. The products also contained considerably more gas oil and middle distillates than raw oil sand processed under the same conditions as thermal cracking alone. According to model cracking studies using hexadecane, these modified mineral zeolites may be more active cracking agents than undiluted premium commercial FCC catalyst. These materials hold promise for partial upgrading schemes to reduce solvent requirements in the field. tabs., figs.
Subsurface crack initiation and propagation mechanisms in gigacycle fatigue
International Nuclear Information System (INIS)
Huang Zhiyong; Wagner, Daniele; Bathias, Claude; Paris, Paul C.
2010-01-01
In the very high cycle regime (N f > 10 7 cycles) cracks can nucleate on inclusions, 'supergrains' and pores, which leads to fish-eye propagation around the defect. The initiation from an inclusion or other defect is almost equal to the total crack growth lifetime, perhaps much more than 99% of this lifetime in many cases. Integration of the Paris law allows one to predict the number of cycles to crack initiation. A cyclic plastic zone around the crack exists, and recording the surface temperature of the sample during the test may allow one to follow crack propagation and determine the number of cycles to crack initiation. A thermo-mechanical model has been developed. In this study several fish-eyes from various materials have been observed by scanning electron microscopy, and the fractographic results analyzed as they related to the mechanical and thermo-mechanical models.
Role of plasticity-induced crack closure in fatigue crack growth
Directory of Open Access Journals (Sweden)
Jesús Toribio
2013-07-01
Full Text Available The premature contact of crack surfaces attributable to the near-tip plastic deformations under cyclic loading, which is commonly referred to as plasticity induced crack closure (PICC, has long been focused as supposedly controlling factor of fatigue crack growth (FCG. Nevertheless, when the plane-strain near-tip constraint is approached, PICC lacks of straightforward evidence, so that its significance in FCG, and even the very existence, remain debatable. To add insights into this matter, large-deformation elastoplastic simulations of plane-strain crack under constant amplitude load cycling at different load ranges and ratios, as well as with an overload, have been performed. Modeling visualizes the Laird-Smith conceptual mechanism of FCG by plastic blunting and re-sharpening. Simulation reproduces the experimental trends of FCG concerning the roles of stress intensity factor range and overload, but PICC has never been detected. Near-tip deformation patterns discard the filling-in a crack with material stretched out of the crack plane in the wake behind the tip as supposed PICC origin. Despite the absence of closure, load-deformation curves appear bent, which raises doubts about the trustworthiness of closure assessment from the compliance variation. This demonstrates ambiguities of PICC as a supposedly intrinsic factor of FCG and, by implication, favors the stresses and strains in front of the crack tip as genuine fatigue drivers.
Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography.
Segarra, M S; Shimada, Y; Sadr, A; Sumi, Y; Tagami, J
2017-03-01
The aim of this study was to nondestructively analyze enamel crack behavior on different areas of teeth using 3D swept source-optical coherence tomography (SS-OCT). Ten freshly extracted human teeth of each type on each arch ( n = 80 teeth) were inspected for enamel crack patterns on functional, contact and nonfunctional, or noncontact areas using 3D SS-OCT. The predominant crack pattern for each location on each specimen was noted and analyzed. The OCT observations were validated by direct observations of sectioned specimens under confocal laser scanning microscopy (CLSM). Cracks appeared as bright lines with SS-OCT, with 3 crack patterns identified: Type I - superficial horizontal cracks; Type II - vertically (occluso-gingival) oriented cracks; and Type III - hybrid or complicated cracks, a combination of a Type I and Type III cracks, which may or may not be confluent with each other. Type II cracks were predominant on noncontacting surfaces of incisors and canines and nonfunctional cusps of posterior teeth. Type I and III cracks were predominant on the contacting surfaces of incisors, cusps of canines, and functional cusps of posterior teeth. Cracks originating from the dental-enamel junction and enamel tufts, crack deflections, and the initiation of new cracks within the enamel (internal cracks) were observed as bright areas. CLSM observations corroborated the SS-OCT findings. We found that crack pattern, tooth type, and the location of the crack on the tooth exhibited a strong correlation. We show that the use of 3D SS-OCT permits for the nondestructive 3D imaging and analysis of enamel crack behavior in whole human teeth in vitro. 3D SS-OCT possesses potential for use in clinical studies for the analysis of enamel crack behavior.
Fatigue strength depending on position of cracks for weldments
International Nuclear Information System (INIS)
Lee, Hae Woo; Park, Won Jo
2006-01-01
This is a study of fatigue strength of weld deposits with transverse cracks in plate up to 50 mm thick. It is concerned with the fatigue properties of welds already with transverse cracks. A previous study of transverse crack occurrence, location and microstructure in accordance with welding conditions was published in the Welding Journal (Lee et al., 1998). A fatigue crack develops as a result of stress concentration and extends with each load cycle until fatigue occurs, or until the cyclic loads are transferred to redundant members. The fatigue performance of a member is more dependent on the localized state of stress than the static strength of the base metal or the weld metal. Fatigue specimens were machined to have transverse cracks located on the surface and inside the specimen. Evaluation of fatigue strength depending on location of transverse cracks was then performed. When transverse cracks were propagated in a quarter-or half-circle shape, the specimen broke at low cycle in the presence of a surface crack. However, when the crack was inside the specimen, it propagated in a circular or elliptical shape and the specimen showed high fatigue strength, enough to reach the fatigue limit within tolerance of design stresses
Störmer problem restricted to a spherical surface and the Euler and Lagrange tops
International Nuclear Information System (INIS)
Piña, Eduardo; Cortés, Emilio
2016-01-01
In a recent work, Cortés and Poza (2015 Eur. J. Phys. 36 055009) analysed, in full, the dynamics of a charged particle in the field of a magnetic dipole restricted to a spherical surface with the dipole at its centre. This model can be considered as the classical non-relativistic Störmer problem on a sphere. Here, we started from a Lagrangian approach: we derived the Hamilton equations of motion and observed that in this restricted case the equations can be reduced to quadratures, and they were integrated numerically. From the Hamiltonian function we found, for the polar angle, an equivalent one-dimensional system of a particle in the presence of an effective potential. In the present work we start from a change of variable to the cosine of the polar angle. In terms of this variable we obtain an equation that turns out to be the same as the one of a particle in a quartic potential. Then, we can actually solve the equations of motion for the polar angle using Jacobi elliptic functions, and for the azimuthal angle we use the same integrals which were expressed by Jacobi in terms of theta functions, both in the Euler and Lagrange tops. In this restricted Störmer problem, the student at undergraduate or graduate level will have a good example of an integrable nonlinear physical system in which, after analysis of its complex dynamics, one can obtain an analytical solution by means of some special functions of mathematical physics. Additionally, one discovers that the equations of motion of this restricted case of a charge in a magnetic dipole field have the same mathematical structure as the corresponding equations of other well known integrable classical dynamical systems. (paper)
Stochastic inverse problems: Models and metrics
International Nuclear Information System (INIS)
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-01-01
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds
Stochastic inverse problems: Models and metrics
Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.
2015-03-01
In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.
Energy Technology Data Exchange (ETDEWEB)
Weber, Wilhelm
2010-07-01
Cracks, which trace back to damaging during the manufacturing process, are often the origin of the failure of structures. The collapse of safety-relevant parts results in perilous situations for human beings. Therefore, the fracture mechanical assessment of these structures becomes more important in the dimensioning process. For this purpose numerical tools are required. In presence of cyclic loading conditions fatigue crack propagation is very critical, because crack growth occurs for lower stresses compared to static loadings. Due to the non-linear nature of crack growth an incremental procedure has to be applied for the simulation of crack propagation. Each increment starts with a complete stress analysis including the determination of the fracture mechanical parameters along the crack front. Then, the 3D crack growth criterion is evaluated for the calculation of the crack extension and the kink angle. Finally, the discretization is adjusted to the new crack geometry for the next incremental loop. For the stress analysis the boundary element method (BEM) in terms of the collocation technique is applied. The BEM has been proven as an efficient numerical tool for stress concentration problems. Moreover, the modification of the mesh during the simulation of crack propagation is easier by using boundary elements compared to volume orientated methods. By the application of the adaptive cross approximation the numerical complexity of the stress analysis is reduced significantly. In the framework of the dual discontinuity method the discontinuities of the displacements and the tractions are used directly as primary variables at the crack. Therewith 3D crack surface contact using a penalty formulation is taken into account for the forst time within this work. The simulation of crack growth is implemented in the framework of a predictor-corrector-scheme. This method ensures high accuracy with respect to the location and shape of the numerically determined crack fronts
A consistent partly cracked XFEM element for cohesive crack growth
DEFF Research Database (Denmark)
Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto
2007-01-01
Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able to model equal stresses on both sides of the discontinuity when acting as a crack-tip element. The authors have developed a new partly cracked XFEM element for cohesive crack growth with extra...... enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub-triangle of the cracked element. With the extra enrichments, the crack-tip element becomes...... capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...
A crack growth evaluation method for interacting multiple cracks
International Nuclear Information System (INIS)
Kamaya, Masayuki
2003-01-01
When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e.g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks. (author)
Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.
2017-06-01
During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.
Energy Technology Data Exchange (ETDEWEB)
Wolff, A.; Mehl, D. [biota - Institut fuer Oekologische Forschung und Planung GmbH, Guestrow (Germany); Klitzsch, S. [Landesamt fuer Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern, Guestrow (Germany). Abt. Wasser und Boden
2000-12-01
Due to certain hydrographic situations there are some difficulties in application of the LAWA-directive 'Coding of catchment areas and streams'. In this paper, solutions are shown by means of examples from the federal state of Mecklenburg-Pomerania. Priorities of streams influenced by lakes and the Baltic Sea, branched and linked streams, urban streams and catchment areas without surface run-off were discussed. (orig.) [German] Die Anwendung der LAWA-Richtlinie zur Gebietsbezeichnung und Verschluesselung von Fliessgewaessern stoesst bei Vorliegen bestimmter hydrographischer Konstellationen auf Schwierigkeiten. Anhand von Fallbeispielen aus Mecklenburg-Vorpommern werden Loesungswege zur entsprechenden Problembehandlung aufgezeigt. Wesentliche Schwerpunkte sind daher durchflossene Seen, verzweigte und vernetzte Fliessgewaesser, Fliessgewaesser im staedtischen Bereich, die Problematik der Binnenentwaesserungsgebiete sowie Gewaesser im Ostseerueckstau. (orig.)
Aubry, R.; Oñate, E.; Idelsohn, S. R.
2006-09-01
The method presented in Aubry et al. (Comput Struc 83:1459-1475, 2005) for the solution of an incompressible viscous fluid flow with heat transfer using a fully Lagrangian description of motion is extended to three dimensions (3D) with particular emphasis on mass conservation. A modified fractional step (FS) based on the pressure Schur complement (Turek 1999), and related to the class of algebraic splittings Quarteroni et al. (Comput Methods Appl Mech Eng 188:505-526, 2000), is used and a new advantage of the splittings of the equations compared with the classical FS is highlighted for free surface problems. The temperature is semi-coupled with the displacement, which is the main variable in a Lagrangian description. Comparisons for various mesh Reynolds numbers are performed with the classical FS, an algebraic splitting and a monolithic solution, in order to illustrate the behaviour of the Uzawa operator and the mass conservation. As the classical fractional step is equivalent to one iteration of the Uzawa algorithm performed with a standard Laplacian as a preconditioner, it will behave well only in a Reynold mesh number domain where the preconditioner is efficient. Numerical results are provided to assess the superiority of the modified algebraic splitting to the classical FS.
Liu, Yang
2013-07-01
The computational complexity and memory requirements of multilevel plane wave time domain (PWTD)-accelerated marching-on-in-time (MOT)-based surface integral equation (SIE) solvers scale as O(NtNs(log 2)Ns) and O(Ns 1.5); here N t and Ns denote numbers of temporal and spatial basis functions discretizing the current [Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003]. In the past, serial versions of these solvers have been successfully applied to the analysis of scattering from perfect electrically conducting as well as homogeneous penetrable targets involving up to Ns ≈ 0.5 × 106 and Nt ≈ 10 3. To solve larger problems, parallel PWTD-enhanced MOT solvers are called for. Even though a simple parallelization strategy was demonstrated in the context of electromagnetic compatibility analysis [M. Lu et al., in Proc. IEEE Int. Symp. AP-S, 4, 4212-4215, 2004], by and large, progress in this area has been slow. The lack of progress can be attributed wholesale to difficulties associated with the construction of a scalable PWTD kernel. © 2013 IEEE.
DIRICHLET'S PROBLEM ON A CRACKED TRAPEZIUM
African Journals Online (AJOL)
Ouigou Michel Zongo, LANIBIO, Department of Mathematics, UFR-SEA, University of Ouagadougou, Burkina ..... of u, its first partial derivatives and the module of its gradient are schematized in .... collocation techniques and their application in.
Determination of crack depth in aluminum using eddy currents and GMR sensors
Lopes Ribeiro, A.; Pasadas, D.; Ramos, H. G.; Rocha, T.
2015-03-01
In this paper we use eddy currents to determine the depth of linear cracks in aluminum plates. A constant field probe is used to generate the spatially uniform excitation field and a single axis giant magneto-resistor (GMR) sensor is used to measure the eddy currents magnetic field. Different depths were machined in one aluminum plate with 4 mm of thickness. By scanning those cracks the magnetic field components parallel and perpendicular to the crack's line were measured when the eddy currents were launched perpendicularly to the crack's line. To characterize one crack in a plate of a given thickness and material, the experimental procedure was defined. The plate surface is scanned to detect and locate one crack. The acquired data enables the determination of the crack's length and orientation. A second scanning is performed with the excitation current perpendicular to the crack and the GMR sensing axis perpendicular and parallel to the crack's line.
Zhang, Yuwei; Guo, Zhansheng
2018-03-01
Mechanical degradation, especially fractures in active particles in an electrode, is a major reason why the capacity of lithium-ion batteries fades. This paper proposes a model that couples Li-ion diffusion, stress evolution, and damage mechanics to simulate the growth of central cracks in cathode particles (LiMn2O4) by an extended finite element method by considering the influence of multiple factors. The simulation shows that particles are likely to crack at a high discharge rate, when the particle radius is large, or when the initial central crack is longer. It also shows that the maximum principal tensile stress decreases and cracking becomes more difficult when the influence of crack surface diffusion is considered. The fracturing process occurs according to the following stages: no crack growth, stable crack growth, and unstable crack growth. Changing the charge/discharge strategy before unstable crack growth sets in is beneficial to prevent further capacity fading during electrochemical cycling.
International Nuclear Information System (INIS)
Aaltonen, P.; Bojinov, M.; Helin, M.
2002-01-01
The aim of this literature study has been to evaluate the level of understanding of the role of anionic impurities in environmentally assisted cracking (EAC) of iron- and nickel-based alloys in the coolant conditions of a boiling water reactor (BWR) - type nuclear power plant, mainly under normal water chemistry (NWC). The study has been motivated by a need to find the most relevant experimental approaches that can be applied when looking for correlations between crack growth rate and measurable electrochemical and chemical parameters. Special crack tip chemistry conditions are established, when trace amounts are present in the BWR coolant and become enriched within a crack. Anions may influence both the conductivity and the pH of the coolant within the crack. In addition, they may influence the composition, structure and properties of the oxide films formed on crack walls either directly via adsorption or incorporation or indirectly via the effect of changes in pH within the crack. Based on the proposed mechanisms for EAC, oxide films formed on crack wall surfaces are likely to play a key role in determing the crack growth rate of structural materials. The prediction of the influence of anionic impurities is thus likely to be facilitated by means of understanding their effect on the films on crack walls. One of the most promising approaches to experimentally clarify this influence is based on investigating the electrochemical behaviour of oxide films Fe- and Ni-based materials in high-temperature conditions simulating the special chemistry within a stress corrosion crack. Results from such studies should be compared and combined with ex situ analytical results obtained using modern electron microscopic techniques. In addition to crack growth, currently available electro-chemical techniques should also be applied to find out whether crack initiation can be explained and modelled on the basis of the electrochemical behaviour of oxide films. (orig.)
The phase problem and perspectives of surface X-ray diffraction
International Nuclear Information System (INIS)
Tajiri, Hiroo; Takahashi, Toshio
2009-01-01
The emergence of synchrotron radiation sources has accelerated the application of diffraction techniques to surface sciences. Surface X-ray diffraction has become the state-of-the-art technique for determining ordered structures of atoms on crystal surfaces. We introduce surface X-ray diffraction briefly from the historical point of view and describe the concept that not only determine constellation of surface atoms but also view surface atoms as image. The progress in experimental and theoretical studies of surface X-ray diffraction including crystallographic direct methods is reviewed. (author)
BWR feedwater nozzle and control-rod-drive return line nozzle cracking
International Nuclear Information System (INIS)
Anon.
1981-01-01
In its 1978 Annual Report to Congress, the Nuclear Regulatory Commission identified as an unresolved safety issue the appearance of cracks in feedwater nozzles at boiling-water reactors (BWRs). Later similar cracking, detected in return water lines for control-rod-drive systems at BWRs, was designated Part II of the issue. This article outlines the resolution of these cracking problems
International Nuclear Information System (INIS)
Besuner, P.M.; Caughey, W.R.
1976-11-01
The paper compares the finite element (FE) and influence function (IF) methods for a three-dimensional elastic analysis of postulated circular-shaped surface cracks in the feedwater nozzle of a typical boiling water reactor (BWR). The FE method is incorporated in a direct manner. The nozzle and crack geometry and the complex loading are all included in the model which simulates the structural crack problem. The IF method is used to compute stress intensity factors only when the uncracked stress field (that is, the stress in the uncracked solid at the locus of the crack to be eventually considered) has been computed previously. The IF method evaluates correctly the disturbance of this uncracked stress field caused by the crack by utilizing a method of elastic superposition. Both the IF and FE methods are described in detail in the paper and are applied to several test cases chosen for their similarity to the nozzle crack problem and for the availability of an accurate published result obtained from some recognized third method of solution. Results are given which summarize both the accuracy and the direct computer costs of the two methods
A numerical study of crack interactions under thermo-mechanical load using EFGM
International Nuclear Information System (INIS)
Pant, Mohit; Singh, I. V.; Mishra, B. K.
2011-01-01
In this work, element free Galerkin method (EFGM) has been used to obtain the solution of various edge crack problems under thermo-mechanical loads as it provides a versatile technique to model stationary as well as moving crack problems without re-meshing. Standard diffraction criterion has been modified with multiple crack weight technique to characterize the presence of various cracks in the domain of influence of a particular node. The effect of crack inclination has been studied for single as well as two edge cracks, whereas the cracks interaction has been studied for two edge cracks lying on same as well as opposite edges under plane stress conditions. The values of mode-I and mode-II stress intensity factors have been evaluated by the interaction integral approach
Inhibition of stress corrosion cracking of alloy AA8090 T-8171 by addition of rare earth salts
International Nuclear Information System (INIS)
Davo, B.; Conde, A.; Damborenea, J.J. de
2005-01-01
Aluminium-lithium alloys are suitable for aeronautical purposes because of their good mechanical properties and high damage tolerance. Although these alloys are less susceptible to stress corrosion cracking than conventional alloys, Al-Li-Cu-Mg alloy (8090-T8171) still experiences this problem in a NaCl + H 2 O 2 solution. In this work it has been demonstrated that the addition of 10,000 ppm of CeCl 3 to the medium inhibits the stress corrosion cracking of 8090 alloy by precipitation of cerium oxides/hydroxides. The deposition of these compounds on the alloy surface decreases the pit density and slows the crack growth through the grain boundaries by hindering the anodic dissolution of T phases
Fracture processes and mechanisms of crack growth resistance in human enamel
Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne
2010-07-01
Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.
International Nuclear Information System (INIS)
Mori, Hiroaki; Mochizuki, Masahito; Nishimoto, Kazutoshi; Toyoda, Masao; Katsuyama, Jinya
2007-01-01
In order to make clear the effects of residual stress and hardening on intergranular stress corrosion cracking (IGSCC) behavior in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening, the residual stress and hardness in the butt-joint of pipes as a typical example of the actual structure were estimated and the grain boundary sliding was analyzed from the viewpoint of micro-deformation. On the basis of these results, the mechanism of IGSCC was discussed by the integrated knowledge between metallurgy and mechanics. The relationship between plastic strain and hardness in hard-machined surface near welds was clarified from the experimented relationship and the analysis method by the thermal elastic-plastic analysis. The distributions of hardness and residual stress with the actual surface machining could be simulated. It was made clear that grain boundary sliding occurred in the steel at 561K by a constant strain rate tensile test. From the comparison of grain boundary sliding behavior between solution treated specimen and cold-rolled one, it was found that the grain boundary sliding in cold-rolled one occurs in smaller strain conditions than that in as received one, and the amount of grain boundary sliding in cold-rolled one increases remarkably with increases in rolling reduction. In addition, it was clarified that the grain boundary energy is raised by the grain boundary sliding. On the basis of these results, it was concluded that the cause of IGSCC in the welds of Type 316L low-carbon austenitic stainless steel with surface hardening is the increase in grain boundary energy due to grain boundary sliding induced by residual stress of multi pass welding and surface hardening. (author)
Assessment of cracks in reinforced concrete by means of electrical resistance and image analysis
Pacheco, J.; Šavija, B.; Schlangen, E.; Polder, R.B.
2014-01-01
The durability of cracked reinforced concrete is a serious concern in the construction industry. Cracks represent fast routes for chloride penetration, which can result in reinforcement corrosion. Bending or tapered cracks have the characteristic of being wider at the surface and becoming narrower
International Nuclear Information System (INIS)
Takahashi, Toshio; Terada, Atsuhiko
2006-03-01
In the corrosive process environment of thermochemical hydrogen production Iodine-Sulfur process plant, there is a difficulty in the direct measurement of surface temperature of the structural materials. An inverse problem method can effectively be applied for this problem, which enables estimation of the surface temperature using the temperature data at the inside of structural materials. This paper shows analytical results of steady state temperature distributions in a two-dimensional cylindrical system cooled by impinging jet flow, and clarifies necessary order of multiple-valued function from the viewpoint of engineeringly satisfactory precision. (author)
Characterization of SCC crack tip and hydrogen distribution in alloy 600
Energy Technology Data Exchange (ETDEWEB)
Fujii, Katsuhiko; Nakajima, Nobuo; Fukuya, Koji [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan); Hatano, Yuji [Toyama Univ. (Japan)
2001-09-01
In order to identify the mechanism of primary water stress corrosion cracking (SCC), direct observations of SCC crack tip microstructure and hydrogen distribution in alloy 600 were carried out. A new technique has been developed to prepare electron transparent foils including the crack tip using focused-ion beam (FIB) micro-processing technique. Cr-rich oxide and metal-Ni phase were identified in the crack tip and grain boundary ahead of the crack. >From the fact that similar microstructure was observed in the surface oxide layer, it is suggested that the oxidation mechanism is identical at the crack tip region and the surface. It became clear that the crack tip region and the oxidized grain boundary don't work as strong trapping sites of solute hydrogen under unloaded condition, because a homogeneous hydrogen distribution around the crack tip region was detected by tritium microautoradiography. (author)
International Nuclear Information System (INIS)
Wada, Yoichi; Ishida, Kazushige; Tachibana, Masahiko; Aizawa, Motohiro; Fuse, Motomasa
2007-01-01
Water chemistry in a simulated crack (crack) has been studied to understand the mechanisms of stress corrosion cracking in a boiling water reactor environment. Electrochemical corrosion potential (ECP) in a crack made in an austenite type 304 stainless steel specimen was measured. The ECP distribution along the simulated crack was strongly affected by bulk water chemistry and bulk flow. When oxygen concentration was high in the bulk water, the potential difference between the crack tip and the outside of the crack (ΔE), which must be one motive force for crack growth, was about 0.3V under a stagnant condition. When oxygen was removed from the bulk water, ECP inside and outside the crack became low and uniform and ΔE became small. The outside ECP was also lowered by depositing platinum on the steel specimen surface and adding stoichiometrically excess hydrogen to oxygen to lower ΔE. This was effective only when bulk water did not flow. Under the bulk water flow condition, water-borne oxygen caused an increase in ECP on the untreated surface inside the crack. This also caused a large ΔE. The ΔE effect was confirmed by crack growth rate measurements with a catalyst-treated specimen. Therefore, lowering the bulk oxidant concentration by such measures as hydrazine hydrogen coinjection, which is currently under development, is important for suppressing the crack growth. (author)
Deep and surface learning in problem-based learning: a review of the literature
D.H.J.M. Dolmans (Diana); S.M.M. Loyens (Sofie); Marcq, H. (Hélène); D. Gijbels (David)
2016-01-01
textabstractIn problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested
Deep and surface learning in problem-based learning: a review of the literature
D.H.J.M. Dolmans (Diana); S.M.M. Loyens (Sofie); H. Marcq (Hélène); D. Gijbels (David)
2015-01-01
textabstractIn problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested
A discontinuous finite element approach to cracking in coupled poro-elastic fluid flow models
Wilson, C. R.; Spiegelman, M. W.; Evans, O.; Ulven, O. I.; Sun, W.
2016-12-01
Reaction-driven cracking is a coupled process whereby fluid-induced reactions drive large volume changes in the host rock which produce stresses leading to crack propagation and failure. This in turn generates new surface area and fluid-flow pathways for subsequent reaction in a potentially self-sustaining system. This mechanism has has been proposed for the pervasive serpentinization and carbonation of peridotite, as well as applications to mineral carbon sequestration and hydrocarbon extraction. The key computational issue in this problem is implementing algorithms that adequately model the formation of discrete fractures. Here we present models using a discontinuous finite element method for modeling fracture formation (Radovitsky et al., 2011). Cracks are introduced along facets of the mesh by the relaxation of penalty parameters once a failure criterion is met. It is fully described in the weak form of the equations, requiring no modification of the underlying mesh structure and allowing fluid properties to be easily adjusted along cracked facets. To develop and test the method, we start by implementing the algorithm for the simplified Biot equations for poro-elasticity using the finite element model assembler TerraFERMA. We consider hydro-fracking around a borehole (Grassl et al., 2015), where elevated fluid pressure in the poro-elastic solid causes it to fail radially in tension. We investigate the effects of varying the Biot coefficient and adjusting the fluid transport properties in the vicinity of the crack and compare our results to related dual-graph models (Ulven & Sun, submitted). We discuss issues arising from this method, including the formation of null spaces and appropriate preconditioning and solution strategies. Initial results suggest that this method provides a promising way to incorporate cracking into our reactive fluid flow models and future work aims to integrate the mechanical and chemical aspects of this process.
SQUIRT, Seepage in Reactor Tube Cracks
International Nuclear Information System (INIS)
Paul, D.; Ghadiali, N.; Wilkowski, G.; Rahman, S.; Krishnaswamy, P.
1997-01-01
1 - Description of program or function: The SQUIRT software is designed to perform leakage rate and area of crack opening calculations for through-wall cracks in pipes. The fluid in the piping system is assumed to be water at either subcooled or saturated conditions. The development of the SQUIRT computer model enables licensing authorities and industry users to conduct the leak-rate evaluations for leak-before-break applications in a more efficient manner. 2 - Method of solution: The SQUIRT program uses a modified form of the Henry-Fauske model for the thermal-hydraulics analysis together with Elastic-Plastic Fracture Mechanics using GE/EPRI and LBB.ENG2 methods for crack opening analysis. 3 - Restrictions on the complexity of the problem: Squirt requires 512 KB of conventional memory and an organized structure. Software can only be executed from the main SQUIRT23 directory where the software was installed
International Nuclear Information System (INIS)
Dienes, J.K.
1993-01-01
Although it is possible to simulate the ground blast from a single explosive shot with a simple computer algorithm and appropriate constants, the most commonly used modelling methods do not account for major changes in geology or shot energy because mechanical features such as tectonic stresses, fault structure, microcracking, brittle-ductile transition, and water content are not represented in significant detail. An alternative approach for modelling called Statistical Crack Mechanics is presented in this paper. This method, developed in the seventies as a part of the oil shale program, accounts for crack opening, shear, growth, and coalescence. Numerous photographs and micrographs show that shocked materials tend to involve arrays of planar cracks. The approach described here provides a way to account for microstructure and give a representation of the physical behavior of a material at the microscopic level that can account for phenomena such as permeability, fragmentation, shear banding, and hot-spot formation in explosives
Determined analysis of safety, viability and residual service life on criteria of crack mechanics
International Nuclear Information System (INIS)
Matvienko, Yu.G.
1997-01-01
Unified methods used in analysis of reliability, vulnerability, and residual lifetime of equipment with crack damage are considered, an increase in the desired lifetime is proven in the framework of vulnerability concept that allows crack developing with regard to the given level of reliability. The problem of reliability, vulnerability, and the lifetime is shown to be an interrelated problem. Optimal combination of the strength value, plasticity and resistance to crack developing results from the criteria of reliability and vulnerability based, in turn, on the principles of the mechanics of cracks. Structural features of technical systems can hinder the crack developing and prevent drastic damages of the equipment thus increasing the lifetime
Dynamic response of cracked hexagonal subassembly ducts
International Nuclear Information System (INIS)
Glazik, J.L.; Petroski, H.J.
1979-01-01
The hexagonal subassembly ducts (hexcans) of current Liquid Metal Fast Breeder Reactor (LMFBR) designs are typically made of 20% coldworked Type 316 stainless steel. Prolonged exposure of this initially tough and ductile material to a fast neutron flux at high temperatures can result in severe embrittlement. Under these conditions, the unstable crack propagation of flaws, which may have been introduced during fabrication or transportation of the hexcans, is a problem of interest in LMFBR safety analysis. The abnormal overpressurization resulting from certain interactions within a subassembly, or the rupture of one or more fuel pins, may be sufficient to overload an otherwise subcritical crack in an embrittled hexcan. This paper examines the dynamic elastic response of flawed and unflawed fast reactor subassembly ducts. A plane-strain finite element analysis was performed for ducts containing internal corner cracks, as well as external midflat cracks. Two worst case loading situations were considered: rapid uniform internal pressurization and suddenly applied point loads at opposite midflats. The finite-element code CHILES, which can accomodate the stress singularities that occur at crack tips, was given dynamic capabilities through the inclusion of a consistent mass matrix and step-by-step time integration scheme. The SAP IV code was also employed for eigenvalue analysis and modal response. Although this code does not contain singular elements in its element library, dynamic stress intensity factors were calculated by a technique requiring only ordinary isoparametric quadrilaterals
Automated system for crack detection using infrared thermograph
International Nuclear Information System (INIS)
Starman, Stanislav
2009-01-01
The objective of this study was the development of the automated system for crack detection on square steel bars used in the automotive industry for axle and shaft construction. The automated system for thermographic crack detection uses brief pulsed eddy currents to heat steel components under inspection. Cracks, if present, will disturb the current flow and so generate changes in the temperature profile in the crack area. These changes of temperature are visualized using an infrared camera. The image acquired by the infrared camera is evaluated through an image processing system. The advantages afforded by the system are its inspection time, its excellent flaw detection sensitivity and its ability to detect hidden, subsurface cracks. The automated system consists of four IR cameras (each side of steel bar is evaluated at a time), coil, high frequency generator and control place with computers. The system is a part of the inspection line where the subsurface and surface cracks are searched. If the crack is present, the cracked place is automatically marked. The components without cracks are then deposited apart from defective blocks. The system is fully automated and its ability is to evaluate four meter blocks within 20 seconds. This is the real reason for using this system in real industrial applications. (author)
Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.
Kim, Hyunjun; Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu; Sim, Sung-Han
2017-09-07
Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%.
Numerical analysis for prediction of fatigue crack opening level
International Nuclear Information System (INIS)
Choi, Hyeon Chang
2004-01-01
Finite Element Analysis (FEA) is the most popular numerical method to simulate plasticity-induced fatigue crack closure and can predict fatigue crack closure behavior. Finite element analysis under plane stress state using 4-node isoparametric elements is performed to investigate the detailed closure behavior of fatigue cracks and the numerical results are compared with experimental results. The mesh of constant size elements on the crack surface can not correctly predict the opening level for fatigue crack as shown in the previous works. The crack opening behavior for the size mesh with a linear change shows almost flat stress level after a crack tip has passed by the monotonic plastic zone. The prediction of crack opening level presents a good agreement with published experimental data regardless of stress ratios, which are using the mesh of the elements that are in proportion to the reversed plastic zone size considering the opening stress intensity factors. Numerical interpolation results of finite element analysis can precisely predict the crack opening level. This method shows a good agreement with the experimental data regardless of the stress ratios and kinds of materials
3D characterisation of RCF crack networks
Directory of Open Access Journals (Sweden)
Ahlström Johan
2014-06-01
Full Text Available Rolling contact fatigue (RCF damage is becoming more frequent with increased traffic and loading conditions in the railway industry. Defects which are characterized by a two-lobe darkened surface and a V-shaped surface-breaking crack are often so-called squats. The origination and propagation of squats in railway rails is the topic of many recent studies; the associated crack networks develop with complicated geometry near the surface of rails that is difficult to characterise using most non-destructive methods. The cracks can be examined with repeated metallographic sectioning, but the process is time-consuming and destructive. In order to reduce time, as well as information and material loss, high-resolution and high-energy X-ray imaging of railway rails was done in the current study. Combining the exposures from a range of angles using image analysis, a 3D representation of the complex crack network is achieved. The latter was complemented with metallographic sectioning to determine the accuracy of prediction of the geometrical reconstruction.
Kalghatgi, Suparna Kishore
Real-world surfaces typically have geometric features at a range of spatial scales. At the microscale, opaque surfaces are often characterized by bidirectional reflectance distribution functions (BRDF), which describes how a surface scatters incident light. At the mesoscale, surfaces often exhibit visible texture -- stochastic or patterned arrangements of geometric features that provide visual information about surface properties such as roughness, smoothness, softness, etc. These textures also affect how light is scattered by the surface, but the effects are at a different spatial scale than those captured by the BRDF. Through this research, we investigate how microscale and mesoscale surface properties interact to contribute to overall surface appearance. This behavior is also the cause of the well-known "touch-up problem" in the paint industry, where two regions coated with exactly the same paint, look different in color, gloss and/or texture because of differences in application methods. At first, samples were created by applying latex paint to standard wallboard surfaces. Two application methods- spraying and rolling were used. The BRDF and texture properties of the samples were measured, which revealed differences at both the microscale and mesoscale. This data was then used as input for a physically-based image synthesis algorithm, to generate realistic images of the surfaces under different viewing conditions. In order to understand the factors that govern touch-up visibility, psychophysical tests were conducted using calibrated, digital photographs of the samples as stimuli. Images were presented in pairs and a two alternative forced choice design was used for the experiments. These judgments were then used as data for a Thurstonian scaling analysis to produce psychophysical scales of visibility, which helped determine the effect of paint formulation, application methods, and viewing and illumination conditions on the touch-up problem. The results can be