WorldWideScience

Sample records for surface convection granulation

  1. Solar Surface Convection

    Directory of Open Access Journals (Sweden)

    Nordlund Åke

    2009-04-01

    Full Text Available We review the properties of solar convection that are directly observable at the solar surface, and discuss the relevant underlying physics, concentrating mostly on a range of depths from the temperature minimum down to about 20 Mm below the visible solar surface.The properties of convection at the main energy carrying (granular scales are tightly constrained by observations, in particular by the detailed shapes of photospheric spectral lines and the topology (time- and length-scales, flow velocities, etc. of the up- and downflows. Current supercomputer models match these constraints very closely, which lends credence to the models, and allows robust conclusions to be drawn from analysis of the model properties.At larger scales the properties of the convective velocity field at the solar surface are strongly influenced by constraints from mass conservation, with amplitudes of larger scale horizontal motions decreasing roughly in inverse proportion to the scale of the motion. To a large extent, the apparent presence of distinct (meso- and supergranulation scales is a result of the folding of this spectrum with the effective “filters” corresponding to various observational techniques. Convective motions on successively larger scales advect patterns created by convection on smaller scales; this includes patterns of magnetic field, which thus have an approximately self-similar structure at scales larger than granulation.Radiative-hydrodynamical simulations of solar surface convection can be used as 2D/3D time-dependent models of the solar atmosphere to predict the emergent spectrum. In general, the resulting detailed spectral line profiles agree spectacularly well with observations without invoking any micro- and macroturbulence parameters due to the presence of convective velocities and atmosphere inhomogeneities. One of the most noteworthy results has been a significant reduction in recent years in the derived solar C, N, and O abundances with

  2. Granulation in red giants: observations by the Kepler mission and three-dimensional convection simulations

    NARCIS (Netherlands)

    Mathur, S.; Hekker, S.; Trampedach, R.; Ballot, J.; Kallinger, T.; Buzasi, D.; Garcia, R.A.; Huber, D.; Jimenez, A.; Mosser, B.; Bedding, T.R.; Elsworth, Y.; Regulo, C.; Stello, D.; Chaplin, W.J.; de Ridder, J.; Hale, S.J.; Kinemuchi, K.; Kjeldsen, H.; Mullally, F.; Thompson, S.E.

    2011-01-01

    The granulation pattern that we observe on the surface of the Sun is due to hot plasma rising to the photosphere where it cools down and descends back into the interior at the edges of granules. This is the visible manifestation of convection taking place in the outer part of the solar convection

  3. Solar Surface Magneto-Convection

    Directory of Open Access Journals (Sweden)

    Robert F. Stein

    2012-07-01

    Full Text Available We review the properties of solar magneto-convection in the top half of the convection zones scale heights (from 20 Mm below the visible surface to the surface, and then through the photosphere to the temperature minimum. Convection is a highly non-linear and non-local process, so it is best studied by numerical simulations. We focus on simulations that include sufficient detailed physics so that their results can be quantitatively compared with observations. The solar surface is covered with magnetic features with spatial sizes ranging from unobservably small to hundreds of megameters. Three orders of magnitude more magnetic flux emerges in the quiet Sun than emerges in active regions. In this review we focus mainly on the properties of the quiet Sun magnetic field. The Sun’s magnetic field is produced by dynamo action throughout the convection zone, primarily by stretching and twisting in the turbulent downflows. Diverging convective upflows and magnetic buoyancy carry magnetic flux toward the surface and sweep the field into the surrounding downflow lanes where the field is dragged downward. The result is a hierarchy of undulating magnetic Ω- and U-loops of different sizes. New magnetic flux first appears at the surface in a mixed polarity random pattern and then collects into isolated unipolar regions due to underlying larger scale magnetic structures. Rising magnetic structures are not coherent, but develop a filamentary structure. Emerging magnetic flux alters the convection properties, producing larger, darker granules. Strong field concentrations inhibit transverse plasma motions and, as a result, reduce convective heat transport toward the surface which cools. Being cooler, these magnetic field concentrations have a shorter scale height and become evacuated. The field becomes further compressed and can reach strengths in balance with the surrounding gas pressure. Because of their small internal density, photons escape from deeper in

  4. Height-dependent Velocity Structure of Photospheric Convection in Granules and Intergranular Lanes with Hinode /SOT

    Energy Technology Data Exchange (ETDEWEB)

    Oba, T. [Department of Space and Astronautical Science/SOKENDAI (The Graduate University for Advanced Studies), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Iida, Y. [Department of Science and Technology/Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337 (Japan); Shimizu, T., E-mail: oba.takayoshi@ac.jaxa.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2017-02-10

    The solar photosphere is the visible surface of the Sun, where many bright granules, surrounded by narrow dark intergranular lanes, are observed everywhere. The granular pattern is a manifestation of convective motion at the photospheric level, but its velocity structure in the height direction is poorly understood observationally. Applying bisector analysis to a photospheric spectral line recorded by the Hinode Solar Optical Telescope, we derived the velocity structure of the convective motion in granular regions and intergranular lanes separately. The amplitude of motion of the convective material decreases from 0.65 to 0.40 km s{sup −1} as the material rises in granules, whereas the amplitude of motion increases from 0.30 to 0.50 km s{sup −1} as it descends in intergranular lanes. These values are significantly larger than those obtained in previous studies using bisector analysis. The acceleration of descending materials with depth is not predicted from the convectively stable condition in a stratified atmosphere. Such convective instability can be developed more efficiently by radiative cooling and/or a gas pressure gradient, which can control the dynamical behavior of convective material in intergranular lanes. Our analysis demonstrated that bisector analysis is a useful method for investigating the long-term dynamic behavior of convective material when a large number of pixels is available. In addition, one example is the temporal evolution of granular fragmentation, in which downflowing material develops gradually from a higher layer downward.

  5. Topology of convection beneath the solar surface

    International Nuclear Information System (INIS)

    Stein, R.F.; Nordlund, A.

    1989-01-01

    It is shown that the topology of convection beneath the solar surface is dominated by effects of stratification. Convection in a strongly stratified medium has: (1) gentle expanding structureless warm upflows and (2) strong converging filamentary cool downdrafts. The horizontal flow topology is cellular, with a hierarchy of cell sizes. The small density scale height in the surface layers forces the formation of the solar granulation, which is a shallow surface phenomenon. Deeper layers support successively larger cells. The downflows of small cells close to the surface merge into filamentary downdrafts of larger cells at greater depths, and this process is likely to continue through most of the convection zone. Radiative cooling at the surface provides the entropy-deficient material which drives the circulation. 13 refs

  6. Amylolytic hydrolysis of native starch granules affected by granule surface area.

    Science.gov (United States)

    Kim, J C; Kong, B W; Kim, M J; Lee, S H

    2008-11-01

    Initial stage of hydrolysis of native starch granules with various amylolytic enzymes, alpha-amylase from Bacillus subtilis, glucoamylase I (GA-I) and II (GA-II) from Aspergillus niger, and beta-amylase from sweet potato showed that the reaction was apparently affected by a specific surface area of the starch granules. The ratios of the reciprocal of initial velocity of each amylolytic hydrolysis for native potato and maize starch to that for rice with the amylolytic enzymes were nearly equivalent to the ratio of surface area per mass of the 2 starch granules to that of rice, that is, 6.94 and 2.25, respectively. Thus, the reciprocal of initial velocity of each enzymatic hydrolysis as expressed in a Lineweaver-Burk plot was a linear function of the reciprocal of surface area for each starch granule. As a result, it is concluded that amylolytic hydrolysis of native starch granules is governed by the specific surface area, not by the mass concentration, of each granule.

  7. Possibility of monitoring granulation by analyzing the amount of hydroxypropylcellulose, a binder on the surface of granules, using ToF-SIMS.

    Science.gov (United States)

    Furudate, Takeaki; Kurasako, Yuta; Takata, Eriko; Morishita, Taku; Miwa, Akio; Suzuki, Rei; Terada, Katsuhide

    2015-11-30

    The purpose of this study was to clarify the mechanism responsible for high-shear wet granulation using time-of-flight secondary ion mass spectrometry (ToF-SIMS), which can be used for surface chemical mapping. A total of 15 kinds of granules, including hydroxypropylcellulose (HPC) as a binder, were obtained in a model formulation using different granulation conditions, such as the amount of sprayed water and the granulation time. Surface chemical mapping of these granules was then performed using a ToF-SIMS analysis, which distinguishes each component by detecting the specific mass-to-charge ratio (m/z). As a result, we found that HPC got to appear on the surface of granule with proceeding wet granulation. By considering this result, we concluded that the distributions of HPC might be closely related to the progress of granule consolidation and growth in wet granulation. Therefore, the progress of granulation can likely be understood by measuring the content of HPC on the granule surface. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Investigation of Compost Fertilizer Granulation Parameters Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Y Ghasemi

    2015-03-01

    Full Text Available Nowadays compost fertilizers are suitable alternative to chemical fertilizers, due to the threats for human health and agriculture products. The most important problems for applying the compost fertilizer in the farm are: transportation (high volume, high moisture content, spreading problem, impurity such as dust and storage. To solve the problems mentioned, pressing process such as converting the compost to pellets and granules are suggested. In this research the effects of some granulation parameters on the percent of useful granules in a laboratory scale rotating drum was evaluated. The percentage of useful granules decreased by increasing the granulation time and increased by increasing the percentage of drum filling. The optimal conditions for granules production was achieved at drum rotational speed of 40.38 rpm, granulation time of 15 min, drum filling of 10% and molasse percentage of 40.97. According to these conditions, the response for useful granule was estimated as 81.6% with R2 of 0.924.

  9. Internal structure of normal maize starch granules revealed by chemical surface gelatinization.

    Science.gov (United States)

    Pan, D D; Jane, J I

    2000-01-01

    Normal maize starch was fractionated into two sizes: large granules with diameters more than 5 microns and small granules with diameters less than 5 microns. The large granules were surface gelatinized by treating them with an aqueous LiCl solution (13 M) at 22-23 degrees C. Surface-gelatinized remaining granules were obtained by mechanical blending, and gelatinized surface starch was obtained by grinding with a mortar and a pestle. Starches of different granular sizes and radial locations, obtained after different degrees of surface gelatinization, were subjected to scanning electron microscopy, iodine potentiometric titration, gel-permeation chromatography, and amylopectin branch chain length analysis. Results showed that the remaining granules had a rough surface with a lamella structure. Amylose was more concentrated at the periphery than at the core of the granule. Amylopectin had longer long B-chains at the core than at the periphery of the granule. Greater proportions of the long B-chains were present at the core than at the periphery of the granule.

  10. Reynolds analogy for subcooled surface boiling under forced convection

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1982-01-01

    For the case of subcooled surface boiling under forced convection the analytic expression of analogy between the heat transfer and carry pulse (Reynolds analogy) is derived. It is concluded that the obtained dependence creates the basis for solution of a series of problems of surface boiling physics. On the basis of the performed analysis the method of coordinate calculation of the origin of intensive vapour generation is developed and the formula for calculation of the broken-off-bubble radius under forced convection is derived [ru

  11. MHD Natural Convection with Convective Surface Boundary Condition over a Flat Plate

    Directory of Open Access Journals (Sweden)

    Mohammad M. Rashidi

    2014-01-01

    Full Text Available We apply the one parameter continuous group method to investigate similarity solutions of magnetohydrodynamic (MHD heat and mass transfer flow of a steady viscous incompressible fluid over a flat plate. By using the one parameter group method, similarity transformations and corresponding similarity representations are presented. A convective boundary condition is applied instead of the usual boundary conditions of constant surface temperature or constant heat flux. In addition it is assumed that viscosity, thermal conductivity, and concentration diffusivity vary linearly. Our study indicates that a similarity solution is possible if the convective heat transfer related to the hot fluid on the lower surface of the plate is directly proportional to (x--1/2 where x- is the distance from the leading edge of the solid surface. Numerical solutions of the ordinary differential equations are obtained by the Keller Box method for different values of the controlling parameters associated with the problem.

  12. Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors

    DEFF Research Database (Denmark)

    Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.

    2012-01-01

    This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....

  13. Characterization of wet granulation process parameters using response surface methodology. 1. Top-spray fluidized bed.

    Science.gov (United States)

    Lipps, D M; Sakr, A M

    1994-07-01

    Randomized full-factorial designs (3(2)) were used to investigate the effects of processing conditions in the top-spray fluidized bed (TSFB) on the granulation of acetaminophen powder (USP) using 5% polyvinylpyrrolidone (w/w) as the binder. Measured granule properties included the following: mean size and size distribution, specific surface area, bulk density, tapped density, flow rate through an orifice, angle of repose, residual moisture content, and percent overs (> 2 mm). The granules were then compressed (500, 1000, 1500 lbs) into tablets (9-mm shallow concave) using an instrumented rotary press and analyzed for both physical properties and drug-release characteristics. All experimental batches were run in triplicate to reduce the possibility of erroneous results and to increase the confidence in the resulting empirical relationships derived using response-surface methodology. Measured responses were then related to process parameters using two-factor and three-factor linear, interactions, and quadratic regression models. These models were used to generate three-dimensional response surfaces for use in the final analyses. Coefficients of determination (R2) ranging from 0.08 to 0.81 were obtained, indicating that only a portion of the variation in the data could be explained by the changes in process parameter settings during granulation and tableting. The best overall model fits were observed for mean granule size, size distribution, bulk density, tapped density, percent drug dissolution, tablet disintegration time, and tablet friability.

  14. Air Cushion Convection Inhibiting Icing of Self-Cleaning Surfaces.

    Science.gov (United States)

    Yang, Qin; Luo, Zhuangzhu; Jiang, Faming; Luo, Yimin; Tan, Sheng; Lu, Zhibin; Zhang, Zhaozhu; Liu, Weimin

    2016-10-26

    Anti-icing surfaces/interfaces are of considerable importance in various engineering fields under natural freezing environment. Although superhydrophobic self-cleaning surfaces show good anti-icing potentials, promotion of these surfaces in engineering applications seems to enter a "bottleneck" stage. One of the key issues is the intrinsic relationship between superhydrophobicity and icephobicity is unclear, and the dynamic action mechanism of "air cushion" (a key internal factor for superhydrophobicity) on icing suppression was largely ignored. Here we report that icing inhibition (i.e., icing-delay) of self-cleaning surfaces is mainly ascribed to air cushion and its convection. We experimentally found air cushion on the porous self-cleaning coating under vacuum environments and on the water/ice-coating interface at low temperatures. The icing-delay performances of porous self-cleaning surfaces compared with bare substrate, up to 10-40 min under 0 to ∼-4 °C environments close to freezing rain, have been accurately real-time recorded by a novel synergy method including high-speed photography and strain sensing voltage. Based on the experimental results, we innovatively propose a physical model of "air cushion convection inhibiting icing", which envisages both the static action of trapped air pocket without air flow and dynamic action of air cushion convection. Gibbs free energy of water droplets increased with the entropy of air derived from heat and mass transfer between warmer air underneath water droplets and colder surrounding air, resulting in remarkable ice nucleation delay. Only when air cushion convection disappears can ice nucleation be triggered on suitable Gibbs free energy conditions. The fundamental understanding of air cushion on anti-icing is an important step toward designing optimal anti-icing surfaces for practical engineering application.

  15. Surface modified zeolite-based granulates for the sustained release of diclofenac sodium.

    Science.gov (United States)

    Serri, Carla; de Gennaro, Bruno; Quagliariello, Vincenzo; Iaffaioli, Rosario Vincenzo; De Rosa, Giuseppe; Catalanotti, Lilia; Biondi, Marco; Mayol, Laura

    2017-03-01

    In this study, a granulate for the oral controlled delivery of diclofenac sodium (DS), an anionic sparingly soluble nonsteroidal anti-inflammatory drug, has been realized by wet granulation, using a surface modified natural zeolite (SMNZ) as an excipient. The surface modification of the zeolite has been achieved by means of a cationic surfactant, so as to allow the loading of DS through ionic interaction and bestow a control over the drug release mechanism. The granules possessed a satisfactory dosage uniformity, a flowability suitable for an oral dosage form manufacturing, along with a sustained drug release up to 9h, driven by both ion exchange and transport kinetics. Furthermore, the obtained granulate did not elicit a significant cytotoxicity and could also induce a prolonged anti-inflammatory effect on RAW264.7 cells. Taking also into account that natural zeolites are generally abundant and economic, SMNZ can be considered as an attracting alternative excipient for the production of granules with sustained release features. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. [Optimization of one-step pelletization technology of Fuke IV granules with response surface methodology].

    Science.gov (United States)

    Liu, Dan; He, Feng-Jun; Liu, Chang-Long; Liu, Jun-Chao; Wu, Yun; Wang, Zhen-Zhong; Xiao, Wei

    2016-01-01

    To optimize the one-step pelletization technology of Fuke IV (FKIV) granules by response surface methodology. With the qualified rate of granules as evaluation indexes, 6 factors affecting one-step pelletization technology were investigated, significant levels of each factor were evaluated and the primal influential factors were determined by Plackett-Burman experimental design. According to the Plackett-Burman experimental design, the qualified rates of granules, moisture capacity and angle of repose as the evaluation indexes, Box-Behnken design with three levels and three factors was established for quadratic regression fitting of the models. Then the experimental results were optimized by Response Optimizer. The best process conditions were determined as follows: the extract relative density of 1.20, inlet air temperature of 88 ℃, and atomization pressure of 0.28 MPa. FKIV granules were prepared by the optimized experimental scheme. The determined qualified rate, moisture capacity and angle of response were 93.65%, 3.76% and 23.19° respectively for the granules, basically similar to the predicted values, indicating that the optimal process conditions were in line with the manufacturing requirements. Copyright© by the Chinese Pharmaceutical Association.

  17. Momentum and heat transfer of an upper-convected Maxwell fluid over a moving surface with convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Iqbal, Z., E-mail: zahidiqbal_qau@yahoo.com [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Mustafa, M. [Research Centre for Modeling and Simulation, National University of Sciences and Technology, Sector H-12, Islamabad 44000 (Pakistan); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Boundary layer flow of an upper-convected Maxwell (UCM) fluid over a moving surface. Black-Right-Pointing-Pointer Convective boundary conditions have been used. Black-Right-Pointing-Pointer Series solutions are obtained by homotopy analysis method (HAM). Black-Right-Pointing-Pointer Graphical results for various interesting parametric values. - Abstract: This study discusses the flow and heat transfer in an upper-convected Maxwell (UCM) fluid over a moving surface in the presence of a free stream velocity. The convective boundary conditions have been handled. Similarly transformations are invoked to convert the partial differential equations governing the steady flow of a Maxwell fluid into an ordinary differential system. This system is solved by a homotopic approach. The effects of influential parameters such as Deborah number ({beta}), Prandtl number (Pr), Eckert number (Ec), suction parameter (S) and ratio ({lambda}) have been thoroughly examined.

  18. Receiving and use of streams of monodisperse ice granules for cleaning and deactivation of surfaces

    Science.gov (United States)

    Boukharov, A.; Balashov, A.; Timohin, A.; Ivanov, A.; Holin, B.

    2017-11-01

    The most generally useful methods for cleaning and processing of surfaces are the sand-jets and shot blasting jets. Installations of this kind are used for cleaning of corrosion surfaces, the oil-dirt deposits, paint coatings. However the use of these installations follows to high investment and operational expenditure, larger risk of operators disease, the negative affect for a environment. These problems can be solved with the use of new cleaning method through application of mono-disperse (identical by the size and the form) ice granules of 300 - 1000 microns, accelerated by air stream in the nozzle device to the speed of 10 - 100 m/s. In view of the extreme complexity of the receiving such particles by means of cooling and the subsequent freezing of water drops are necessary additional experimental researches. For study of thermal processes of receiving mono-disperse ice granules the experimental installation was created and experiments on deactivation and cleaning of surfaces with pollution of various types are made. Experiments showed that by means of a stream of the accelerated ice granules it is rather successfully possible to delete oil-dirt deposits, outdated paint coats and rust. Besides, efficient deactivation of radioactive surfaces is possible. The coefficient deactivation of γ activity is highest.

  19. The utilization of surface free-energy parameters for the selection of a suitable binder in fluidized bed granulation.

    Science.gov (United States)

    Planinsek, O; Pisek, R; Trojak, A; Srcic, S

    2000-10-10

    Surface free energy was determined for model substances pentoxyfilline, acyclovir, lactose and binding agents (that were used in the granulation process) hydroxypropilmethyl cellulose (HPMC) and polyvinylpyrrolidone (PVP) were determined by contact angle measurements. The methods of Wu, Good-van Oss and Della Volpe were used for solid-surface free-energy calculation. Spreading coefficients (S) were calculated and correlated with granulate properties. Granulates consisted of model drug and binding agent, and were produced in fluid bed granulator Glatt powder coater granulator GPCG1 by means of spraying the colloidal solution of binder on the model substance. Granules contained either 5% or 10% binder. Inverse granules, however, were also produced by spraying the model drug (i.e. pentoxyfilline and lactose) on the binding agent (HPMC, PVP). Particle size distribution, friability, true density, bulk density and tapped density of the granulates were determined. Although many different parameters influence the granule properties, it has been found that the interactions between the drug and the binder play a very important role. Spreading coefficients were found to be in good correlation with the friability of granulates. Positive spreading coefficient values of the binder over the model substance correlate well with the low friability of the granules containing lower amount of binder, i.e. 5%. In the group of the same binder, the spreading coefficient values decrease from pentoxyfilline over lactose to acyclovir. Friability results show that, for the system under consideration, PVP offers certain advantages over the grade of HPMC employed. The increase of the binder amount from 5 to 10% resulted in more friable granulates. Lower work of cohesion of the binder (PVP and HPMC) than the work of adhesion between binder and the model substances is considered responsible for the higher friability of the granules. The inverse granulation process, where the suspension of the

  20. Bubble size in surface boiling with forced convection

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1985-01-01

    Mechanisms of heat supply and removal were analyzed to obtain formula for calculating maximal bubble diameter for ''growth-condensation'' cycle in surface boiling with forced convection. Effect of some conditional parameters on the maximal bubble diameter was analyzed. Pressure (0.147-17.7 MPa), rate (0.2-9.15 m/s), subcooling (3-62 K), heat flux density (0.38-8.53 MW/m 2 ) configuration and geometrical sizes of the channel were considered. It was shown that change of heat flux density on channel wall affects slightly the diameter. Bubble size reduces at 0.1-2 MPa especially with pressure increase correlation of calculation results with experimental data shows a good agreement

  1. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  2. Moist Orographic Convection: Physical Mechanisms and Links to Surface-Exchange Processes

    Directory of Open Access Journals (Sweden)

    Daniel J. Kirshbaum

    2018-02-01

    Full Text Available This paper reviews the current understanding of moist orographic convection and its regulation by surface-exchange processes. Such convection tends to develop when and where moist instability coincides with sufficient terrain-induced ascent to locally overcome convective inhibition. The terrain-induced ascent can be owing to mechanical (airflow over or around an obstacle and/or thermal (differential heating over sloping terrain forcing. For the former, the location of convective initiation depends on the dynamical flow regime. In “unblocked” flows that ascend the barrier, the convection tends to initiate over the windward slopes, while in “blocked” flows that detour around the barrier, the convection tends to initiate upstream and/or downstream of the high terrain where impinging flows split and rejoin, respectively. Processes that destabilize the upstream flow for mechanically forced moist convection include large-scale moistening and ascent, positive surface sensible and latent heat fluxes, and differential advection in baroclinic zones. For thermally forced flows, convective initiation is driven by thermally direct circulations with sharp updrafts over or downwind of the mountain crest (daytime or foot (nighttime. Along with the larger-scale background flow, local evapotranspiration and transport of moisture, as well as thermodynamic heterogeneities over the complex terrain, regulate moist instability in such events. Longstanding limitations in the quantitative understanding of related processes, including both convective preconditioning and initiation, must be overcome to improve the prediction of this convection, and its collective effects, in weather and climate models.

  3. Link between convection and meridional gradient of sea surface ...

    Indian Academy of Sciences (India)

    A sensitivity analysis showed that the corresponding threshold for was 29°C. We hypothesise that the excess heating (∼1° C above the threshold for deep convection)required in the northern bay to trigger convection is because this excess in SST is what is required to establish the critical SST gradient.

  4. Probability distribution of surface wind speed induced by convective adjustment on Venus

    Science.gov (United States)

    Yamamoto, Masaru

    2017-03-01

    The influence of convective adjustment on the spatial structure of Venusian surface wind and probability distribution of its wind speed is investigated using an idealized weather research and forecasting model. When the initially uniform wind is much weaker than the convective wind, patches of both prograde and retrograde winds with scales of a few kilometers are formed during active convective adjustment. After the active convective adjustment, because the small-scale convective cells and their related vertical momentum fluxes dissipate quickly, the large-scale (>4 km) prograde and retrograde wind patches remain on the surface and in the longitude-height cross-section. This suggests the coexistence of local prograde and retrograde flows, which may correspond to those observed by Pioneer Venus below 10 km altitude. The probability distributions of surface wind speed V during the convective adjustment have a similar form in different simulations, with a sharp peak around ∼0.1 m s-1 and a bulge developing on the flank of the probability distribution. This flank bulge is associated with the most active convection, which has a probability distribution with a peak at the wind speed 1.5-times greater than the Weibull fitting parameter c during the convective adjustment. The Weibull distribution P(> V) (= exp[-(V/c)k]) with best-estimate coefficients of Lorenz (2016) is reproduced during convective adjustments induced by a potential energy of ∼7 × 107 J m-2, which is calculated from the difference in total potential energy between initially unstable and neutral states. The maximum vertical convective heat flux magnitude is proportional to the potential energy of the convective adjustment in the experiments with the initial unstable-layer thickness altered. The present work suggests that convective adjustment is a promising process for producing the wind structure with occasionally generating surface winds of ∼1 m s-1 and retrograde wind patches.

  5. Magneto-convection.

    Science.gov (United States)

    Stein, Robert F

    2012-07-13

    Convection is the transport of energy by bulk mass motions. Magnetic fields alter convection via the Lorentz force, while convection moves the fields via the curl(v×B) term in the induction equation. Recent ground-based and satellite telescopes have increased our knowledge of the solar magnetic fields on a wide range of spatial and temporal scales. Magneto-convection modelling has also greatly improved recently as computers become more powerful. Three-dimensional simulations with radiative transfer and non-ideal equations of state are being performed. Flux emergence from the convection zone through the visible surface (and into the chromosphere and corona) has been modelled. Local, convectively driven dynamo action has been studied. The alteration in the appearance of granules and the formation of pores and sunspots has been investigated. Magneto-convection calculations have improved our ability to interpret solar observations, especially the inversion of Stokes spectra to obtain the magnetic field and the use of helioseismology to determine the subsurface structure of the Sun.

  6. [Optimization of one-step pelletization technology of Jiuwei Xifeng granules by response surface methodology].

    Science.gov (United States)

    Wang, Xiu-hai; Yang, Xu-fang; Fan, Ye-wen; Zhang, Yan-jun; Xu, Zhong-kun; Yang, Lin-yong; Wang, Zhen-zhong; Xiao, Wei

    2014-12-01

    Using the qualified rates of particles as the evaluation indexes, the impact tactors of one-step pelletization technology of Jiuwei Xifeng granules were selected from six factors by the Plackett-Burman experimental design and the levels of non-significant factors were identified. According to the Plackett-Burman experimental design, choosing the qualified rates of particles and angle of repose as the evaluation indexes, three levels of the three factors were selected by Box-Behnken of central composite design to optimize the experimental. The best conditions were as follows: the fluid extract was sprayed with frequency of 29 r . min-1, inlet air temperature was 90 °C, the frequency of fan was 34 Hz. Under the response surface methodology optimized scheme, the average experimental results are similar to the predicted values, and surface methodology could be used in the optimization of one-step pelletization for Chinese materia medica.

  7. Link between convection and meridional gradient of sea surface ...

    Indian Academy of Sciences (India)

    . Resolution. URL. SST. TMI ... In this paper, we use satellite data for SST and rainfall to show that there exists a strong relationship between convec- tion and the meridional gradient of SST in the bay. We show that convection sets in within a ...

  8. A Comparison of Granules Produced by High-Shear and Fluidized-Bed Granulation Methods

    OpenAIRE

    Morin, Garett; Briens, Lauren

    2014-01-01

    Placebo granules were manufactured by both wet high-shear and fluidized-bed techniques. The granules were compared based on size, shape, surface morphology, and a variety of different flowability measurements. This comparison showed that granule formation and growth were different, with induction growth for high-shear granulation and steady growth for fluidized-bed granulation. Final granules from high-shear granulation were more spherical and dense compared with the irregular granules from f...

  9. Study of heat-moisture treatment of potato starch granules by chemical surface gelatinization.

    Science.gov (United States)

    Bartz, Josiane; da Rosa Zavareze, Elessandra; Dias, Alvaro Renato Guerra

    2017-08-01

    Native potato starch was subjected to heat-moisture treatment (HMT) at 12%, 15%, 18%, 21%, and 24% of moisture content at 110 °C for 1 h, and the effects on morphology, structure, and thermal and physicochemical properties were investigated. To reveal the internal structure, 30% and 50% of the granular surface were removed by chemical surface gelatinization in concentrated LiCl solution. At moisture contents of 12% and 15%, HTM reduced the gelatinization temperatures and relative crystallinity of the starches, while at moisture contents of 21% and 24 % both increased. The alterations on morphology, X-ray pattern, physicochemical properties, and increase of amylose content were more intense with the increase of moisture content of HMT. The removal of granular layers showed that the changes promoted by HMT occur throughout the whole granule and were pronounced at the core or peripheral region, depending of the moisture content applied during HMT. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Convection and segregation in a flat rotating sandbox

    Science.gov (United States)

    Rietz, Frank; Stannarius, Ralf

    2012-01-01

    A flat box, almost completely filled with a mixture of granulate, is rotated slowly about its horizontal central axis. In this experiment, a regular vortex flow of the granular material is observed in the cell plane. These vortex structures have a superficial analogy to convection rolls in dissipative structures of ordinary liquids. Whereas in the latter, the origin of the convection can often be attributed to gradients e.g. of densities or surface tensions, there is no trivial explanation at present for the convection of the granulate in the rotating container. Despite the simplicity of the experiment, the underlying mechanisms for convection and segregation are difficult to extract. Here, we present a comprehensive experimental study of the patterns under various experimental conditions and propose a mechanism for the convection.

  11. Effect of the granulation process on nitrofurantoin granule characteristics.

    Science.gov (United States)

    Arnaud, P; Brossard, D; Chaumeil, J C

    1998-01-01

    We studied four granulation methods on the same quantitative and qualitative formula: wet massing by forced agglomeration (Lödige) and free agglomeration (Glatt); and dry massing by slugging and roller compaction technique. Three different particle sizes of nitrofurantoin (bioinequivalent drug) were used. The nitrofurantoin particle size has a very low influence on the physical characteristics of the granules. The granulating process influenced the binding of the particles. Granules processed using the wet granulating method were harder than those made by dry process. Lödige granules were more bonded than Glatt granules. Granules prepared by dry massing presented broken particles. The surface area and the porosity of Glatt granules were the most important parameters. Dissolution studies must be effected to make a correlation between the physical results and the dissolution rates. It is necessary to effect a new validation and a comparison of the results when a new granulating apparatus is used.

  12. Contrasting variations in the surface layer structure between the convective and non-convective periods in the summer monsoon season for Bangalore location during PRWONAM

    Science.gov (United States)

    Reddy, N. Narendra; Rao, Kusuma G.

    2018-01-01

    An attempt has been made here to examine the contrasting variations in mean surface layer parameters including surface fluxes, and in surface layer stability between the convective and non-convective periods in the southwest monsoon season for the Bangalore experiment location (12.54° N, 77.22° E). The micrometeorological measurements analysed during 2009 and 2010 are from the instrumentation network established during the programme, "Prediction of Regional Weather using Observational meso-Network and Atmospheric Modelling (PRWONAM)". The Short Wave (SW) radiative flux at the surface is observed to be respectively at 799 ± 188 Wm-2 (772 ± 195 Wm-2) and 436 ± 113 Wm-2 (257 ± 101 Wm-2) at 12:00 LT (Local Time, UTC+05:30) during the non-convective and convective periods in 2009 (2010). The significant difference in SW radiative flux is due to the difference of cloud cover between the non-convective and convective periods. This significant reduction of 515 W m-2 at 12:00 LT in SW radiative flux caused maximum cooling in skin temperature (air temperature) by 6.2 °C (3.8 °C) at 12:00 LT (18:30 LT) from 30.8 ± 3.9 °C (27.1 ± 1.4 °C) in the non-convective period. The impact of convection on soil temperature is observed up to 0.2 m deep. The diurnal amplitudes in composites of air temperature are 8.4 °C (8.4 °C) and 5.7 °C (4.7 °C) during the non-convective and convective periods respectively in 2009 (2010); and the amplitudes in relative humidity are 41.5% (39.7%) and 29% (22.8%). Low wind speeds prevailed 63.4% of the time, all through the day and night, in the monsoon season. The diurnal variations in wind speed during the convective period showed higher variability than in non-convective period. The momentum flux varied in accordance with the strength of the wind speed during the monsoon seasons of both the years 2009 and 2010. The peak sensible heat flux in the convective period is noted to be smaller than that in the non-convective period by 128 W m-2

  13. Interaction Between Surface Heat Budgets, Sea Surface Temperature and Deep Convection in the Tropical Western Pacific

    Science.gov (United States)

    Chou, Shu-Hsien; Chou, Ming-Dah; Lin, Po-Hsiung; Starr, David OC. (Technical Monitor)

    2002-01-01

    The surface heat budgets, sea surface temperature (SST), clouds and winds in the tropical western Pacific are analyzed and compared for the periods April-June 1998 and 1999. The spring of 1998 is in the later phase of a strong El Nino, whereas the spring of 1999 is in a period of a La Nina. The surface shortwave (SW) and longwave (LW) radiative fluxes are retrieved from Japanese Geostationary Meteorological Satellite radiance measurements, while the surface turbulent fluxes (latent and sensible heat) are derived from SSM/I-Inferred surface air humidity and winds. The SST and sea-air temperature differences are taken from NCEP/NCAR reanalysis. Deep convection is inferred from the outgoing longwave radiation of NOAA's polar-orbiting satellites. The longitudinal shift in maximum SST, deep convection and winds during El Nino and La Nina have a large impact on the spatial distribution of surface heating. Changes in clouds between these two periods have a large impact on the monthly-mean radiative heating, exceeding 60 W m(exp -2) over large oceanic regions. Similarly, the differences in wind speeds and SST have a large impact on the latent cooling, exceeding 40 W m(exp -2) over large oceanic areas. However, the maximum impacts on radiative and latent heat fluxes occur in different regions. The regions of maximum impact on radiative fluxes coincide with the regions of maximum change in clouds, whereas regions of maximum impact on turbulent heat fluxes coincide with the regions of maximum change in trade winds. The time-evolution of SST in relation to that of surface heat fluxes and winds are investigated and compared between the two El Nino and La Nina periods. In regions where wind speeds (or wind stresses) are large, the change in SST agrees well with the change in the net surface heating, indicating a deep ocean mixed layer associated with strong trade winds. On the other hand, in regions where radiative fluxes are large, the change in SST does not agree well with the

  14. Markov properties of solar granulation

    Science.gov (United States)

    Asensio Ramos, A.

    2009-01-01

    Aims: We estimate the minimum length on which solar granulation can be considered to be a Markovian process. Methods: We measure the variation in the bright difference between two pixels in images of the solar granulation for different distances between the pixels. This scale-dependent data is empirically analyzed to find the minimum scale on which the process can be considered Markovian. Results: The results suggest that the solar granulation can be considered to be a Markovian process on scales longer than r_M=300-500 km. On longer length scales, solar images can be considered to be a Markovian stochastic process that consists of structures of size r_M. Smaller structures exhibit correlations on many scales simultaneously yet cannot be described by a hierarchical cascade in scales. An analysis of the longitudinal magnetic-flux density indicates that it cannot be a Markov process on any scale. Conclusions: The results presented in this paper constitute a stringent test for the realism of numerical magneto-hydrodynamical simulations of solar magneto-convection. In future exhaustive analyse, the non-Markovian properties of the magnetic flux density on all analyzed scales might help us to understand the physical mechanism generating the field that we detect in the solar surface.

  15. Near-surface physics during convection affecting air-water gas transfer

    Science.gov (United States)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-05-01

    The gas flux at the water surface is affected by physical processes including turbulence from wind shear, microscale wave breaking, large-scale breaking, and convection due to heat loss at the surface. The main route in the parameterizations of the gas flux has been to use the wind speed as a proxy for the gas flux velocity, indirectly taking into account the dependency of the wind shear and the wave processes. The interest in the contributions from convection processes has increased as the gas flux from inland waters (with typically lower wind and sheltered conditions) now is believed to play a substantial role in the air-water gas flux budget. The gas flux is enhanced by convection through the mixing of the mixed layer as well as by decreasing the diffusive boundary layer thickness. The direct numerical simulations performed in this study are shown to be a valuable tool to enhance the understanding of this flow configuration often present in nature.

  16. A comparison of granules produced by high-shear and fluidized-bed granulation methods.

    Science.gov (United States)

    Morin, Garett; Briens, Lauren

    2014-08-01

    Placebo granules were manufactured by both wet high-shear and fluidized-bed techniques. The granules were compared based on size, shape, surface morphology, and a variety of different flowability measurements. This comparison showed that granule formation and growth were different, with induction growth for high-shear granulation and steady growth for fluidized-bed granulation. Final granules from high-shear granulation were more spherical and dense compared with the irregular granules from fluidized-bed granulation. The high-shear granules demonstrated better overall flow properties.

  17. Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern

    Science.gov (United States)

    Fuchs, L.; Becker, T. W.

    2017-12-01

    How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface

  18. The connection between stellar granulation and oscillation as seen by the Kepler mission

    NARCIS (Netherlands)

    Kallinger, T.; De Ridder, J.; Hekker, S.; Mathur, S.; Mosser, B.; Gruberbauer, M.; García, R.A.; Karoff, C.; Ballot, J.

    2014-01-01

    Context. The long and almost continuous observations by Kepler show clear evidence of a granulation background signal in a large sample of stars, which is interpreted as the surface manifestation of convection. It has been shown that its characteristic timescale and rms intensity fluctuation scale

  19. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    Science.gov (United States)

    Bhattacharya, J.; Hanasoge, S. M.; Antia, H. M.

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the ``surface term.'' The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3D flows, can be reduced to an effective ``quiet-Sun'' wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  20. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    International Nuclear Information System (INIS)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M.

    2015-01-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection

  1. The effect of near-surface convection on oscillation frequencies of stars

    Science.gov (United States)

    Hanasoge, Shravan

    2015-08-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modelled frequencies, a phenomenon referred to as the “surface term”. The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modelling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelength (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3-D flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt-Väisäla frequency and Lamb frequency. We derive the modified wave equation and relations for the appropriate averaging of three dimensional flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from three dimensional numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies, and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  2. Granulation in a main-sequence F-type star

    Science.gov (United States)

    Nelson, G. D.

    1980-01-01

    The modal approach developed by Nelson and Musman (1977) is used to investigate convection in an F-type main-sequence star (effective temperature of 7300 K, g = 10,000 cm per sec per sec). The convective velocities and intensity contrasts are found to be larger than in the sun. Even though the convective flux is less than 1% of the total flux at a mean optical depth of unity, the spectral-energy distribution is strongly reddened as a result of the fluctuating opacity. This has important implications in the conversion scale from observed colors to effective temperature. The scale of the surface granulation is expected to be in the range 1000-5000 km. Calculations of the combined H-He I and He II convection zones support the prediction of Toomre et al. (1976) that the stable region between the zones is well mixed

  3. Granulator Selection

    Energy Technology Data Exchange (ETDEWEB)

    Gould, T H; Armantrout, G

    1999-08-02

    Following our detailed review of the granulation reports and additional conversations with process and development personnel, we have reached a consensus position regarding granulator selection. At this time, we recommend going forward with implementation of the tumbling granulator approach (GEMCO) based on our assessment of the tested granulation techniques using the established criteria. The basis for this selection is summarized in the following sections, followed by our recommendations for proceeding with implementation of the tumbling granulation approach. All five granulation technologies produced granulated products that can be made into acceptable sintered pucks. A possible exception is the product from the fluidized bed granulator. This material has been more difficult to press into uniform pucks without subsequent cracking of the puck during the sintering cycle for the pucks in this series of tests. This problem may be an artifact of the conditions of the particular granulation demonstration run involved, but earlier results have also been mixed. All granulators made acceptable granulated feed from the standpoint of transfer and press feeding, though the roller compactor and fluidized bed products were dustier than the rest. There was also differentiation among the granulators in the operational areas of (1) potential for process upset, (2) plant implementation and operational complexity, and (3) maintenance concerns. These considerations will be discussed further in the next section. Note that concerns also exist regarding the extension of the granulation processes to powders containing actinides. Only the method that involves tumbling and moisture addition has been tested with uranium, and in that instance, significant differences were found in the granulation behavior of the powders.

  4. Thermo capillary and buoyancy convection in a fluid locally heated on its free surface; Convection thermocapillaire et thermogravitaire dans un fluide chauffe localement sur sa surface libre

    Energy Technology Data Exchange (ETDEWEB)

    Favre, E.

    1997-09-26

    coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas which drastically changes the heat and mass transfer across the liquid layer. Two experiments were considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow appears as petals or rays when the aspect ratio. The lateral confinement selects the azimuthal wavelength. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be `weak`, even for the largest values of the Marangoni number (Ma = 1.3 10{sup 5}). In the case of mercury, the thermo-capillary effect is reduced to zero to impurities at the surface which have special trajectories we describe and compare to a simpler experiment. Only the buoyancy forces induce a unstationary, weakly turbulent flow as soon as the heating power exceeds 4W (Ra = 4.5 10{sup 3}, calculated with h = 1 mm). The past part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number and the buoyancy force with the help of the literature. Results concerning heat transfer, in particular the exponent of the law Nusselt number vs. heating power, were compared with available data. (author) 115 refs.

  5. Effect of surface radiation on natural convection in an asymmetrically heated channel-chimney system

    Science.gov (United States)

    Nasri, Zied; Derouich, Youssef; Laatar, Ali Hatem; Balti, Jalloul

    2018-05-01

    In this paper, a more realistic numerical approach that takes into account the effect of surface radiation on the laminar air flow induced by natural convection in a channel-chimney system asymmetrically heated at uniform heat flux is used. The aim is to enrich the results given in Nasri et al. (Int J Therm Sci 90:122-134, 2015) by varying all the geometric parameters of the system and by taking into account the effect of surface radiation on the flows. The numerical results are first validated against experimental and numerical data available in the literature. The computations have allowed the determination of optimal configurations that maximize the mass flow rate and the convective heat transfer and minimize the heated wall temperatures. The analysis of the temperature fields with the streamlines and the pressure fields has helped to explain the effects of surface radiation and of the different thermo-geometrical parameters on the system performances to improve the mass flow rate and the heat transfer with respect to the simple channel. It is shown that the thermal performance of the channel-chimney system in terms of lower heated wall temperatures is little affected by the surface radiation. At the end, simple correlation equations have been proposed for quickly and easily predict the optimal configurations as well as the corresponding enhancement rates of the induced mass flow rate and the convective heat transfer.

  6. Heat transfer tests under forced convection conditions with high wettable heater surface

    Energy Technology Data Exchange (ETDEWEB)

    Mitsutake, Toru; Morooka, Shin-ichi; Miura, Shigeru; Akiba, Miyuki; Sato, Hisaki; Shirakawa, Ken-etsu; Oosato, Tetsuo; Yamamoto, Seiji [Toshiba Co., Kanagawa (Japan)

    2002-07-01

    Under forced convection and atmospheric pressure conditions, heat transfer tests were performed using the annulus channel of a heater rod with highly wettable surface. Improvement of boiling heat transfer requires that the cooling liquid can contact the heating surface, or a high-wettability heating surface, even if a vapor bubble layer is generated on the surface. >From this point of view, high-wettable heating surface was studied. As oxide semiconductor-coated materials are highly-wettable, we made a TiO{sub 2} coated heater rod. TiO{sub 2} coated surface has a high-wettability, in terms of contact angle and Leidenfrost temperature. The boiling curve was measured with and without TiO coated surface. The results showed difference between with and without TiO{sub 2} coating. TiO{sub 2} coating rod showed lower boiling onset heat flux, wider nucleate boiling region and higher critical heat flux than without coating. In summary, high wettablity heater surface produced higher boiling heat transfer characteristics under forced convection conditions. (author)

  7. Influence of convection at outer ceramic surfaces on the characterization of thermoelectric modules by impedance spectroscopy

    Science.gov (United States)

    Beltrán-Pitarch, Braulio; García-Cañadas, Jorge

    2018-02-01

    Impedance spectroscopy is a useful method for the characterization of thermoelectric (TE) modules. It can determine with high accuracy the module's dimensionless figure of merit (zT) as well as the average TE properties of the module's thermoelements. Interpretation of impedance results requires the use of a theoretical model (equivalent circuit), which provides the desired device parameters after a fitting is performed to the experimental results. Here, we extend the currently available equivalent circuit, only valid for adiabatic conditions, to account for the effect of convection at the outer surface of the module ceramic plates, which is the part of the device where convection is more prominent. This is performed by solving the heat equation in the frequency domain including convection heat losses. As a result, a new element (convection resistance) appears in the developed equivalent circuit, which starts to influence at mid-low frequencies, causing a decrease of the typically observed semicircle in the impedance spectrum. If this effect is not taken into account, an underestimation of the zT occurs when measurements are performed under room conditions. The theoretical model is validated by experimental measurements performed in a commercial module with and without vacuum. Interestingly, the use of the new equivalent circuit allows the determination of the convection heat transfer coefficient (h), if the module's Seebeck coefficient is known, and an impedance measurement in vacuum is performed, opening up the possibility to develop TE modules as h sensors. On the other hand, if h is known, all the properties of the module (zT, ohmic (internal) resistance, average Seebeck coefficient and average thermal conductivity of the thermoelements and thermal conductivity of the ceramics) can be obtained from one impedance measurement in vacuum and another measurement under room conditions.

  8. Variability in stellar granulation and convective blueshift with spectral type and magnetic activity . II. From young to old main-sequence K-G-F stars

    Science.gov (United States)

    Meunier, N.; Mignon, L.; Lagrange, A.-M.

    2017-11-01

    Context. The inhibition of small-scale convection in the Sun dominates the long-term radial velocity (RV) variability: it therefore has a critical effect on light exoplanet detectability using RV techniques. Aims: We here extend our previous analysis of stellar convective blueshift and its dependence on magnetic activity to a larger sample of stars in order to extend the Teff range, to study the impact of other stellar properties, and finally to improve the comparison between observed RV jitter and expected RV variations. Methods: We estimate a differential velocity shift for Fe and Ti lines of different depths and derive an absolute convective blueshift using the Sun as a reference for a sample of 360 F7-K4 stars with different properties (age, Teff, metallicity). Results: We confirm the strong variation in convective blueshift with Teff and its dependence on (as shown in the line list in Paper I) activity level. Although we do not observe a significant effect of age or cyclic activity, stars with a higher metallicity tend to have a lower convective blueshift, with a larger effect than expected from numerical simulations. Finally, we estimate that for 71% of the stars in our sample the RV and Log R' _HK variations are compatible with the effect of activity on convection, as observed in the solar case, while for the other stars, other sources (such as binarity or companions) must be invoked to explain the large RV variations. We also confirm a relationship between Log R' _HK and metallicity, which may affect discussions of the possible relationship between metallicity and exoplanets, as RV surveys are biased toward low Log R' _HK and possibly toward high-metallicity stars. Conclusions: We conclude that activity and metallicity strongly affect the small-scale convection levels in stars in the F7-K4 range, with a lower amplitude for the lower mass stars and a larger amplitude for low-metallicity stars. Full Table A.1 is only available at the CDS via anonymous ftp to

  9. Empirical mapping of the convective heat transfer coefficients with local hot spots on highly conductive surfaces

    Directory of Open Access Journals (Sweden)

    Tekelioğlu Murat

    2017-01-01

    Full Text Available An experimental method was proposed to assess the natural and forced convective heat transfer coefficients on highly conductive bodies. Experiments were performed at air velocities of 0m/s, 4.0m/s, and 5.4m/s, and comparisons were made between the current results and available literature. These experiments were extended to arbitrary-shape bodies. External flow conditions were maintained throughout. In the proposed method, in determination of the surface convective heat transfer coefficients, flow condition is immaterial, i.e., either laminar or turbulent. With the present method, it was aimed to acquire the local heat transfer coefficients on any arbitrary conductive shape. This method was intended to be implemented by the heat transfer engineer to identify the local heat transfer rates with local hot spots. Finally, after analyzing the proposed experimental results, appropriate decisions can be made to control the amount of the convective heat transfer off the surface. Limited mass transport was quantified on the cooled plate.

  10. Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface

    Directory of Open Access Journals (Sweden)

    Muhammad Qasim

    2013-01-01

    Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.

  11. The role of subsurface flows in solar surface convection: modeling the spectrum of supergranular and larger scale flows

    Energy Technology Data Exchange (ETDEWEB)

    Lord, J. W.; Rast, M. P. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States); Cameron, R. H. [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rempel, M. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307 (United States); Roudier, T., E-mail: mark.rast@lasp.colorado.edu [Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, Centre national de la recherche scientifique (CNRS), F-31400 Toulouse (France)

    2014-09-20

    We model the solar horizontal velocity power spectrum at scales larger than granulation using a two-component approximation to the mass continuity equation. The model takes four times the density scale height as the integral (driving) scale of the vertical motions at each depth. Scales larger than this decay with height from the deeper layers. Those smaller are assumed to follow a Kolmogorov turbulent cascade, with the total power in the vertical convective motions matching that required to transport the solar luminosity in a mixing length formulation. These model components are validated using large-scale radiative hydrodynamic simulations. We reach two primary conclusions. (1) The model predicts significantly more power at low wavenumbers than is observed in the solar photospheric horizontal velocity spectrum. (2) Ionization plays a minor role in shaping the observed solar velocity spectrum by reducing convective amplitudes in the regions of partial helium ionization. The excess low wavenumber power is also seen in the fully nonlinear three-dimensional radiative hydrodynamic simulations employing a realistic equation of state. This adds to other recent evidence suggesting that the amplitudes of large-scale convective motions in the Sun are significantly lower than expected. Employing the same feature tracking algorithm used with observational data on the simulation output, we show that the observed low wavenumber power can be reproduced in hydrodynamic models if the amplitudes of large-scale modes in the deep layers are artificially reduced. Since the large-scale modes have reduced amplitudes, modes on the scale of supergranulation and smaller remain important to convective heat flux even in the deep layers, suggesting that small-scale convective correlations are maintained through the bulk of the solar convection zone.

  12. [Optimization of one-step pelletization technology of Biqiu granules by Plackett-Burman design and Box-Behnken response surface methodology].

    Science.gov (United States)

    Zhang, Yan-jun; Liu, Li-li; Hu, Jun-hua; Wu, Yun; Chao, En-xiang; Xiao, Wei

    2015-11-01

    First with the qualified rate of granules as the evaluation index, significant influencing factors were firstly screened by Plackett-Burman design. Then, with the qualified rate and moisture content as the evaluation indexes, significant factors that affect one-step pelletization technology were further optimized by Box-Behnken design; experimental data were imitated by multiple regression and second-order polynomial equation; and response surface method was used for predictive analysis of optimal technology. The best conditions were as follows: inlet air temperature of 85 degrees C, sample introduction speed of 33 r x min(-1), density of concrete 1. 10. One-step pelletization technology of Biqiu granules by Plackett-Burman design and Box-Behnken response surface methodology was stable and feasible with good predictability, which provided reliable basis for the industrialized production of Biqiu granules.

  13. DYNAMICS OF TURBULENT CONVECTION AND CONVECTIVE OVERSHOOT IN A MODERATE-MASS STAR

    Energy Technology Data Exchange (ETDEWEB)

    Kitiashvili, I. N.; Mansour, N. N.; Wray, A. A. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Kosovichev, A. G., E-mail: irina.n.kitiashvili@nasa.gov [New Jersey Institute of Technology, Newark, NJ 07102 (United States)

    2016-04-10

    We present results of realistic three-dimensional (3D) radiative hydrodynamic simulations of the outer layers of a moderate-mass star (1.47 M {sub ⊙}), including the full convection zone, the overshoot region, and the top layers of the radiative zone. The simulation results show that the surface granulation has a broad range of scales, from 2 to 12 Mm, and that large granules are organized in well-defined clusters, consisting of several granules. Comparison of the mean structure profiles from 3D simulations with the corresponding one-dimensional (1D) standard stellar model shows an increase of the stellar radius by ∼800 km, as well as significant changes in the thermodynamic structure and turbulent properties of the ionization zones. Convective downdrafts in the intergranular lanes between granulation clusters reach speeds of more than 20 km s{sup −1}, penetrate through the whole convection zone, hit the radiative zone, and form an 8 Mm thick overshoot layer. Contrary to semi-empirical overshooting models, our results show that the 3D dynamic overshoot region consists of two layers: a nearly adiabatic extension of the convection zone and a deeper layer of enhanced subadiabatic stratification. This layer is formed because of heating caused by the braking of the overshooting convective plumes. This effect has to be taken into account in stellar modeling and the interpretation of asteroseismology data. In particular, we demonstrate that the deviations of the mean structure of the 3D model from the 1D standard model of the same mass and composition are qualitatively similar to the deviations for the Sun found by helioseismology.

  14. MHD natural convection from a heated vertical wavy surface with variable viscosity and thermal conductivity

    International Nuclear Information System (INIS)

    Choudhury, M.; Hazarika, G.C.; Sibanda, P.

    2013-01-01

    We investigate the effects of temperature dependent viscosity and thermal conductivity on natural convection flow of a viscous incompressible electrically conducting fluid along a vertical wavy surface. The flow is permeated by uniform transverse magnetic field. The fluid viscosity and thermal conductivity are assumed to vary as inverse linear functions of temperature. The coupled non-linear systems of partial differential equations are solved using the finite difference method. The effects of variable viscosity parameter, variable thermal conductivity parameter and magnetic parameter on the flow field and the heat transfer characteristics are discussed and shown graphically. (author)

  15. Covalent-display of an active chimeric-recombinant tissue plasminogen activator on polyhydroxybutyrate granules surface.

    Science.gov (United States)

    Hafizi, Akram; Malboobi, Mohamad Ali; Jalali-Javaran, Mokhtar; Maliga, Pal; Alizadeh, Houshang

    2017-11-01

    To develop a deliberately engineered expression and purification system for an active chimeric-recombinant tissue plasminogen activator (crtPA) using co-expression with polyhydroxybutyrate (PHB) operon genes. Fusion of crtPA with PhaC-synthase simplified the purification steps through crtPA sedimentation with PHB particles. Moreover, the covalently immobilized crtPA was biologically active as shown in a chromogenic assay. Upon WELQut-protease activity, the released single-chain crtPA converted to the two-chain form which produced a pattern of bands with approx. MW of 32 and 11 kDa in addition to the full length crtPA. Fusion of crtPA with PhaC-synthase not only simplifies purification from the bacterial host lysate, but also co-expression of PHB operon genes creates an oxidative environment, thereby reducing the inclusion body formation possibility. The isolated crtPA-PHB granules exhibited crtPA serine protease activity. Thus, fusion with the PhaC protein could be used as a scaffold for covalent displaying of functional disulfide-rich proteins.

  16. Unsteady free convection from a sphere in a porous medium with variable surface temperature

    International Nuclear Information System (INIS)

    Rahimi, Asghar Baradaran

    2011-01-01

    All works on natural convection around a sphere in porous media, except the transient work of Nakayama and Koyama and Nguyen and Paik which are for body of arbitrary geometric configuration, have been conducted only for constant temperature or constant heat flux on its surface. In this paper a transient free convection flow around a sphere with variable surface temperature and embedded in a porous medium has been considered. The temperature of the sphere is suddenly raised and subsequently maintained at values that vary with position on surface. This situation is specially encountered when nuclear wastes, for example, are buried in earth. The method of asymptotic expansions is applied for small Rayleigh numbers up to the second-order of approximation and then a finite-difference scheme is used to solve the problem numerically for finite values of Rayleigh numbers. Transient and steady-state flow and temperature patterns around the sphere are discussed in details and a comparison between numerical and analytical results has been presented. (author)

  17. Convection and surface tension profiles for aqueous droplet under microwave radiation

    Science.gov (United States)

    Kanazawa, Yushin; Asada, Masahiro; Asakuma, Yusuke; Honda, Itsuro; Phan, Chi; Parmar, Harisinh; Pareek, Vishnu; Evans, Geoffrey

    2014-08-01

    Application of microwave irradiation for chemical processes, such as emulsification and polymerization, has been reported [1,2]. Surfactant free emulsion can be produced with the help of microwave irradiation. Surface tension is an important property for the industrial process such as foaming/defoaming, wetting/dewetting and flotation. Similarly, the interfacial tension plays crucial role in separation and mixing process of two immiscible liquids, which are important unit operations of the fundamental chemical engineering. In practice, surface and interfacial tensions are often altered by introducing surfactants. In our previous research [3,4], specific property for surface tension of water droplet with salt under microwave radiation was found. For example, lower surface tension after the radiation was measured. The formation of nano-bubble will explain this behavior. Normally, the surface tension of aqueous solution increases with the salt concentration because cation and anion collect water molecule more strongly as a solvation. However, the exact mechanism of surface tension reduction by microwave radiation is not clear. We tried not only measurement of surface tension but also convection in the droplet during microwave radiation. This study investigates the influence of microwave on surface tension of aqueous solution. Moreover, relation between the concentration, temperature and droplet shape, which are related with surface tension.

  18. Mitotic Events in Cerebellar Granule Progenitor Cells that Expand Cerebellar Surface Area Are Critical for Normal Cerebellar Cortical Lamination in Mice

    OpenAIRE

    Chang, Joshua C.; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-01-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereological principles. We demonstrate that during the proliferative phase of the external granule layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The ...

  19. Streaming potential revisited: the influence of convection on the surface conductivity.

    Science.gov (United States)

    Saini, Rakesh; Garg, Abhinandan; Barz, Dominik P J

    2014-09-16

    Electrokinetic phenomena play an important role in the electrical characterization of surfaces. In terms of planar or porous substrates, streaming potential and/or streaming current measurements can be used to determine the zeta potential of the substrates in contact with aqueous electrolytes. In this work, we perform electrical impedance spectroscopy measurements to infer the electrical resistance in a microchannel with the same conditions as for a streaming potential experiment. Novel correlations are derived to relate the streaming current and streaming potential to the Reynolds number of the channel flow. Our results not only quantify the influence of surface conductivity, and here especially the contribution of the stagnant layer, but also reveal that channel resistance and therefore zeta potential are influenced by the flow in the case of low ionic strengths. We conclude that convection can have a significant impact on the electrical double layer configuration which is reflected by changes in the surfaces conductivity.

  20. Dissipation on Steady MHD Marangoni Convection Flow over a Flat Surface with Suction and Injection

    Directory of Open Access Journals (Sweden)

    S. Mohammed Ibrahim

    2013-01-01

    Full Text Available The combined effects of radiation and mass transfer on a steady MHD two-dimensional Marangoni convection flow over a flat surface in presence of Joule heating and viscous dissipation under influence of suction and injection is studied numerically. The general governing partial differential equations are transformed into a set of nonlinear ordinary differential equations by using unique similarity transformation. Numerical solutions of the similarity equations are obtained using the Runge-Kutta method along with shooting technique. The effects of governing parameters on velocity, temperature, and concentration as well as interface velocity, the surface temperature gradient, and the surface concentration gradient were presented in graphical and tabular forms. Comparisons with previously published work are performed and the results are found to be in excellent agreement.

  1. Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhongliang; Zhang, Xinghua; Wang, Hongyan; Meng, Sheng; Cheng, Shuiyuan [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Pingleyuan 100, Beijing 100022 (China)

    2007-07-15

    Surface hydrophilicity has a strong influence on frost nucleation according to phase transition theory. To study this effect, a close observation of frost formation and deposition processes on a vertical plate was made under free convection conditions. The formation and shape variation of frost crystals during the initial period are described and the frost thickness variation with time on both hydrophobic and plain copper cold surfaces are presented. The various influencing factors are discussed in depth. The mechanism of surface hydrophilicity influence on frost formation was analyzed theoretically. This revealed that increasing the contact angle can increase the potential barrier and restrain crystal nucleation and growth and thus frost deposition. The experimental results show that the initial water drops formed on a hydrophobic surface are smaller and remain in the liquid state for a longer time compared with ones formed on a plain copper surface. It is also observed that the frost layer deposited on a hydrophobic surface is loose and weak. Though the hydrophobic surface can retard frost formation to a certain extent and causes a looser frost layer, our experimental results show that it does not depress the growth of the frost layer. (author)

  2. Unsteady convection flow and heat transfer over a vertical stretching surface.

    Science.gov (United States)

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  3. Fouling of roughened stainless steel surfaces during convective heat transfer to aqueous solutions

    International Nuclear Information System (INIS)

    Herz, A.; Malayeri, M.R.; Mueller-Steinhagen, H.

    2008-01-01

    The deterioration of heat transfer performance due to fouling is the prime cause for higher energy consumption and inefficiency in many industrial heat exchangers such as those in power plants, refineries, food and dairy industries. Fouling is also a very complex process in which many geometrical, physical and operating parameters are involved with poorly understood interaction. Among them, the surface roughness is an important surface characteristic that would greatly influence crystallisation fouling mechanisms and hence deposition morphology and stickability to the surface. In this work, the effect of the surface roughness of AISI 304 BA stainless steel surfaces on fouling of an aqueous solution with inverse solubility behaviour has been investigated under convective heat transfer. Several experiments have been performed on roughened surfaces ranging from 0.18 to 1.55 μm for different bulk concentrations and heat fluxes. The EDTA titration method was used to measure the concentration of the calcium sulphate salt in order to maintain it at constant value during each fouling run. Experimental results show that the heat transfer coefficient of very rough surfaces (1.55 μm) decreases more rapidly than that of 0.54 μm. Several facts contribute to this behaviour notably (1) increased of primary heterogeneous nucleation rate on the surfaces; (2) reduction of local shear stress in the valleys and (3) reduced removal rate of the crystals from the surfaces where the roughness elements protrude out of the viscous sub-layer. The results also show linear and proportional variation of the fouling rate and heat flux within the range of operating conditions. In addition, the deposition process in terms of fouling rate could only be affected at lower surface contact angles. Such results would particularly be of interest for new surface treatment technologies which aim at altering the surface texture

  4. Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea (INCOMPASS)

    Science.gov (United States)

    Turner, A. G.; Bhat, G. S.; Evans, J. G.; Madan, R.; Marsham, J. H.; Martin, G.; Mitra, A. K.; Mrudula, G.; Parker, D. J.; Pattnaik, S.; Rajagopal, E. N.; Taylor, C.; Tripathi, S. N.

    2016-12-01

    INCOMPASS will build on a field and aircraft measurement campaign from the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. This presentation will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles together with detailed

  5. Impact of surface texture on natural convection boundary layer of nanofluid

    Directory of Open Access Journals (Sweden)

    Mehmood Ahmer

    2018-01-01

    Full Text Available Heat transfer characteristics are investigated in natural convection flow of water-based nanofluid near a vertical rough wall. The analysis considers five different nanoparticles: silver, copper, alumina, magnetite, and silica. The concentration has been limited between 0-20% for all types of nanoparticle. The governing equations are modeled using the Boussinesq approximation and Tiwari and Das models are utilized to represent the nanofluid. The analysis examines the effects of nanoparticle volume fraction, type of nanofluid, and the wavy surface geometry parameter on the skin friction and Nusselt number. It is observed that for a given nanofluid the skin friction and Nusselt number can be maximized via an appropriate tuning of the wavy surface geometry parameter along with the selection of suitable nanoparticle. Particular to this study cooper is observed to be more productive towards the flow and heat transfer enhancement. In total the metallic oxides are found to be less beneficial as compared to the pure metals.

  6. Nanofluidic transport over a curved surface with viscous dissipation and convective mass flux

    Energy Technology Data Exchange (ETDEWEB)

    Mehmood, Zaffar; Iqbal, Z.; Azhar, Ehtsham; Maraj, E.N. [HITEC Univ., Taxila (Pakistan). Dept. of Mathematics

    2017-06-01

    This article is a numerical investigation of boundary layer flow of nanofluid over a bended stretching surface. The study is carried out by considering convective mass flux condition. Contribution of viscous dissipation is taken into the account along with thermal radiation. Suitable similarity transformations are employed to simplify the system of nonlinear partial differential equations into a system of nonlinear ordinary differential equations. Computational results are extracted by means of a shooting method embedded with a Runge-Kutta Fehlberg technique. Key findings include that velocity is a decreasing function of curvature parameter K. Moreover, Nusselt number decreases with increase in curvature of the stretching surface while skin friction and Sherwood number enhance with increase in K.

  7. Natural convection - radiation interaction in boundary layer flow over horizontal surfaces

    International Nuclear Information System (INIS)

    Ali, M.M.; Chen, T.S.; Armaly, B.F.

    1982-01-01

    A numerical model is developed for natural convection-radiation interaction in the boundary layer over a semi-infinite horizontal flat plate with one hot and one cold surface. The fluid is assumed to be gray, to emit, absorb, be nonscattering, and constant with a density variation in the vertical direction, which induces a buoyancy force. Two-dimensional, boundary-layer equations are defined, and the radiative heat flux is simplified using a Rosseland approximation. Conservation equations are transformed into a system of nonlinear ordinary differential equations which can be solved simultaneously with a Runge-Kutta integration scheme, along with the Newton-Raphson shooting technique. The thermal radiation is found to enhance the wall shear stress and the surface heat transfer rate on both the hot and cold sides

  8. Roll compaction/dry granulation: comparison between roll mill and oscillating granulator in dry granulation.

    Science.gov (United States)

    Sakwanichol, Jarunee; Puttipipatkhachorn, Satit; Ingenerf, Gernot; Kleinebudde, Peter

    2012-01-01

    Different experimental factorial designs were employed to evaluate granule properties obtained from oscillating granulator and roll mill. Four oscillating-granulator parameters were varied, i.e. rotor speed, oscillating angle, aperture of mesh screen and rotor type. Six roll-mill parameters that were throughput, speed ratio in both first and second stages, gap between roll pair in both stages and roll-surface texture were also investigated. Afterwards, the granule properties obtained from two milling types with similar median particle size were compared. All milling parameters in both milling types affected significantly the median particle size, size distribution and amount of fine particles (P rotor types of oscillating granulator on fines. Only three milling parameters influenced significantly the flowability (P < 0.05). These were the throughput and the gap size in the first stage of roll mill and the sieve size of oscillating granulator. In comparison between milling types, the differences of granule properties were not practically relevant. However, the roll mill had much higher capacity than the oscillating granulator about seven times, resulting in improving energy savings per unit of product. Consequently, the roll mill can be applied instead of oscillating granulator for roll compaction/dry granulation technique.

  9. Human arachnoid granulations Part I: a technique for quantifying area and distribution on the superior surface of the cerebral cortex

    Directory of Open Access Journals (Sweden)

    Holman David W

    2007-07-01

    Full Text Available Abstract Background The arachnoid granulations (AGs are herniations of the arachnoid membrane into the dural venous sinuses on the surface of the brain. Previous morphological studies of AGs have been limited in scope and only one has mentioned surface area measurements. The purpose of this study was to investigate the topographic distribution of AGs on the superior surface of the cerebral cortex. Methods En face images were taken of the superior surface of 35 formalin-fixed human brains. AGs were manually identified using Adobe Photoshop, with a pixel location containing an AG defined as 'positive'. A set of 25 standard fiducial points was marked on each hemisphere for a total of 50 points on each image. The points were connected on each hemisphere to create a segmented image. A standard template was created for each hemisphere by calculating the average position of the 25 fiducial points from all brains. Each segmented image was mapped to the standard template using a linear transformation. A topographic distribution map was produced by calculating the proportion of AG positive images at each pixel in the standard template. The AG surface area was calculated for each hemisphere and for the total brain superior surface. To adjust for different brain sizes, the proportional involvement of AGs was calculated by dividing the AG area by the total area. Results The total brain average surface area of AGs was 78.53 ± 13.13 mm2 (n = 35 and average AG proportional involvement was 57.71 × 10-4 ± 7.65 × 10-4. Regression analysis confirmed the reproducibility of AG identification between independent researchers with r2 = 0.97. The surface AGs were localized in the parasagittal planes that coincide with the region of the lateral lacunae. Conclusion The data obtained on the spatial distribution and en face surface area of AGs will be used in an in vitro model of CSF outflow. With an increase in the number of samples, this analysis technique can be used

  10. Numerical study for nanofluid flow due to a nonlinear curved stretching surface with convective heat and mass conditions

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available This article presents the simultaneous effects of convective heat and mass conditions in boundary-layer flow of nanoliquid due to a nonlinear curved stretching surface. A nonlinear curved stretching surface is used to generate the flow. Thermophoretic diffusion and random motion features are also incorporated. Convective heat and mass conditions are imposed at boundary. Suitable variables are utilized to convert the nonlinear partial differential system into nonlinear ordinary differential system. The obtained nonlinear systems are solved numerically through shooting technique. Plots are displayed in order to explore the role of physical flow variables on the solutions. The skin-friction coefficient and local Nusselt and Sherwood numbers are computed and examined. Our findings indicate that the local Nusselt and Sherwood numbers are reduced for larger values of thermophoresis parameter. Keywords: Nonlinear curved stretching surface, Nanoparticles, Convective heat and mass conditions, Numerical solution

  11. The diffusion mechanism and convective transport in the formation of surface anomalies of RADON-222 generated at depth

    International Nuclear Information System (INIS)

    Pereira, E.B.; Hamza, V.M.

    1982-01-01

    A preliminar study on the importance of a thermally-activated convective transport of radon is made in order to explain radon anomalies at surface generated at great depth. It is theoretically shown that convective currents should be of the order of 10 μm/s or larger to explain such anomalies. The influence of surface temperature changes on the convective transport is also discussed. Seasonal changes in temperature typical of climates such as that of southern Brazil can develop thermal inversion layers at depths up to 20 metres. The optimum period of the year for the employment of surface emanometric techniques is during the second and the third months after the winter peak when the thermal inversion barriers are less intense. (Author) [pt

  12. A theory for natural convection turbulent boundary layers next to heated vertical surfaces

    International Nuclear Information System (INIS)

    George, W.K. Jr.; Capp, S.P.

    1979-01-01

    The turbulent natural convection boundary layer next to a heated vertical surface is analyzed by classical scaling arguments. It is shown that the fully developed turbulent boundary layer must be treated in two parts: and outer region consisting of most of the boundary layer in which viscous and conduction terms are negligible and an inner region in which the mean convection terms are negligible. The inner layer is identified as a constant heat flux layer. A similarity analysis yields universal profiles for velocity and temperature in the outer and constant heat flux layers. An asymptotic matching of these profiles in an intermediate layer (the buoyant sublayer) yields analytical expressions for the buoyant sublayer profiles. Asymptotic heat transfer and friction laws are obtained for the fully developed boundary layers. Finally, conductive and thermo-viscous sublayers characterized by a linear variation of velocity and temperature are shown to exist at the wall. All predictions are seen to be in excellent agreement with the abundant experimental data. (author)

  13. Developments in convective heat transfer models featuring seamless and selected detail surfaces, employing electroless plating

    Science.gov (United States)

    Stalmach, C. J., Jr.

    1975-01-01

    Several model/instrument concepts employing electroless metallic skin were considered for improvement of surface condition, accuracy, and cost of contoured-geometry convective heat transfer models. A plated semi-infinite slab approach was chosen for development and evaluation in a hypersonic wind tunnel. The plated slab model consists of an epoxy casting containing fine constantan wires accurately placed at specified surface locations. An electroless alloy was deposited on the plastic surface that provides a hard, uniformly thick, seamless skin. The chosen alloy forms a high-output thermocouple junction with each exposed constantan wire, providing means of determining heat transfer during tunnel testing of the model. A selective electroless plating procedure was used to deposit scaled heatshield tiles on the lower surface of a 0.0175-scale shuttle orbiter model. Twenty-five percent of the tiles were randomly selected and plated to a height of 0.001-inch. The purpose was to assess the heating effects of surface roughness simulating misalignment of tiles that may occur during manufacture of the spacecraft.

  14. Surface area of lactose and lactose granulates on consolidation and compaction

    NARCIS (Netherlands)

    Riepma, Klaas Alouis

    1993-01-01

    This dissertation discusses the effect of short time storage at different conditions on the strength and the specific BET surface area of lactose tablets. In addition, some aspects are studied of the consolidation and compaction properties of crystalline lactose fractions in heterogeneous systems.

  15. Conduction-radiation effects on periodic magnetohydrodynamic natural convection boundary layer flow along a vertical surface

    International Nuclear Information System (INIS)

    Siddiqa, Sadia; Hossain, M.A.; Gorla, Rama Subba Reddy

    2012-01-01

    The problem of magnetohydrodynamic natural convection periodic boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed. Here, magnetic field is considered in the transverse direction and taken as a sinusoidal function of x-bar. In the analysis radiative heat flux is examined by assuming optically thick radiation limit. Attempt is being made to obtain the solutions valid for liquid metals by taking Pr d and the surface temperature parameter, θw, on the numerical values thus obtained for local skin friction coefficient and local Nusselt number coefficient as well as on the streamlines and isotherm lines are shown graphically for large values of X. (authors)

  16. Surface area of lactose and lactose granulates on consolidation and compaction

    OpenAIRE

    Riepma, Klaas Alouis

    1993-01-01

    This dissertation discusses the effect of short time storage at different conditions on the strength and the specific BET surface area of lactose tablets. In addition, some aspects are studied of the consolidation and compaction properties of crystalline lactose fractions in heterogeneous systems. The crystalline lactose types used are: a-lactose monohydrate, anhydrous a-lactose, crystalline B-lactose and roller dried B-lactose. ... Zie: Summary

  17. Utilizing CLASIC observations and multiscale models to study the impact of improved Land surface representation on modeling cloud- convection

    Energy Technology Data Exchange (ETDEWEB)

    Niyogi, Devdutta S. [Purdue

    2013-06-07

    The CLASIC experiment was conducted over the US southern great plains (SGP) in June 2007 with an objective to lead an enhanced understanding of the cumulus convection particularly as it relates to land surface conditions. This project was design to help assist with understanding the overall improvement of land atmosphere convection initiation representation of which is important for global and regional models. The study helped address one of the critical documented deficiency in the models central to the ARM objectives for cumulus convection initiation and particularly under summer time conditions. This project was guided by the scientific question building on the CLASIC theme questions: What is the effect of improved land surface representation on the ability of coupled models to simulate cumulus and convection initiation? The focus was on the US Southern Great Plains region. Since the CLASIC period was anomalously wet the strategy has been to use other periods and domains to develop the comparative assessment for the CLASIC data period, and to understand the mechanisms of the anomalous wet conditions on the tropical systems and convection over land. The data periods include the IHOP 2002 field experiment that was over roughly same domain as the CLASIC in the SGP, and some of the DOE funded Ameriflux datasets.

  18. Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system.

    Science.gov (United States)

    Chen, Michael Y; Hoffer, Alan; Morrison, Paul F; Hamilton, John F; Hughes, Jeffrey; Schlageter, Kurt S; Lee, Jeongwu; Kelly, Brandon R; Oldfield, Edward H

    2005-08-01

    Achieving distribution of gene-carrying vectors is a major barrier to the clinical application of gene therapy. Because of the blood-brain barrier, the distribution of genetic vectors to the central nervous system (CNS) is even more challenging than delivery to other tissues. Direct intraparenchymal microinfusion, a minimally invasive technique, uses bulk flow (convection) to distribute suspensions of macromolecules widely through the extracellular space (convection-enhanced delivery [CED]). Although acute injection into solid tissue is often used for delivery of oligonucleotides, viruses, and liposomes, and there is preliminary evidence that certain of these large particles can spread through the interstitial space of the brain by the use of convection, the use of CED for distribution of viruses in the brain has not been systematically examined. That is the goal of this study. Investigators used a rodent model to examine the influence of size, osmolarity of buffering solutions, and surface coating on the volumetric distribution of virus-sized nanoparticles and viruses (adeno-associated viruses and adenoviruses) in the gray matter of the brain. The results demonstrate that channels in the extracellular space of gray matter in the brain are large enough to accommodate virus-sized particles and that the surface characteristics are critical determinants for distribution of viruses in the brain by convection. These results indicate that convective distribution can be used to distribute therapeutic viral vectors in the CNS.

  19. Effect of the surface thermal radiation on turbulent natural convection in tall cavities of facade elements

    Energy Technology Data Exchange (ETDEWEB)

    Xaman, J.P.; Flores, J.J. [Centro Nacional de Investigacion y Desarrollo Tecnologico, CENIDET-DGEST-SEP, Departamento de Ingenieria Mecanica-Termica, Cuernavaca, Morelos (Mexico); Hinojosa, J.F.; Cabanillas, R.E. [Universidad de Sonora, Departamento de Ingenieria Quimica y Metalurgia, Hermosillo, Sonora (Mexico)

    2008-12-15

    The effect of the surface thermal radiation in tall cavities with turbulent natural convection regime was analyzed and quantified numerically. The parameters considered were: the Rayleigh number 10{sup 9}-10{sup 12}, the aspect ratio 20, 40 and 80 and the emmisivity 0.0-1.0. The percentage contribution of the radiative surface to the total heat transfer has a maximum value of 15.19% (Ra=10{sup 9}, A=20) with emissivity equal to 1.0 and a minimum of 0.5% (Ra=10{sup 12}, A=80) with {epsilon}*=0.2. The average radiative Nusselt number for a fixed emissivity is independent of the Rayleigh number, but for a fixed Rayleigh number diminishes with the increase of the aspect ratio. The results indicate that the surface thermal radiation does not modify significantly the flow pattern in the cavity, just negligible effects in the bottom and top of the cavity were observed. Two different temperature patterns were observed a conductive regime Ra=10{sup 9} and a boundary layer regime Ra=10{sup 12}. (orig.)

  20. Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Chang, Te-Wei; Wang, Xinhao; Mahigir, Amirreza; Veronis, Georgios; Liu, Gang Logan; Gartia, Manas Ranjan

    2017-08-25

    Many single-molecule (SM) label-free techniques such as scanning probe microscopies (SPM) and magnetic force spectroscopies (MFS) provide high resolution surface topography information, but lack chemical information. Typical surface enhanced Raman spectroscopy (SERS) systems provide chemical information on the analytes, but lack spatial resolution. In addition, a challenge in SERS sensors is to bring analytes into the so-called "hot spots" (locations where the enhancement of electromagnetic field amplitude is larger than 10 3 ). Previously described methods of fluid transport around hot spots like thermophoresis, thermodiffusion/Soret effect, and electrothermoplasmonic flow are either too weak or detrimental in bringing new molecules to hot spots. Herein, we combined the resonant plasmonic enhancement and photonic nanojet enhancemnet of local electric field on nonplanar SERS structures, to construct a stable, high-resolution, and below diffraction limit platform for single molecule label-free detection. In addition, we utilize Marangoni convection (mass transfer due to surface tension gradient) to bring new analytes into the hotspot. An enhancement factor of ∼3.6 × 10 10 was obtained in the proposed system. Rhodamine-6G (R6G) detection of up to a concentration of 10 -12 M, an improvement of two orders of magnitude, was achieved using the nanojet effect. The proposed system could provide a simple, high throughput SERS system for single molecule analysis at high spatial resolution.

  1. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    Energy Technology Data Exchange (ETDEWEB)

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  2. Similarity Solution for Combined Free-Forced Convection Past a Vertical Porous Plate in a Porous Medium with a Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    Garg P.

    2016-12-01

    Full Text Available This paper studies the mathematical implications of the two dimensional viscous steady laminar combined free-forced convective flow of an incompressible fluid over a semi infinite fixed vertical porous plate embedded in a porous medium. It is assumed that the left surface of the plate is heated by convection from a hot fluid which is at a temperature higher than the temperature of the fluid on the right surface of the vertical plate. To achieve numerical consistency for the problem under consideration, the governing non linear partial differential equations are first transformed into a system of ordinary differential equations using a similarity variable and then solved numerically under conditions admitting similarity solutions. The effects of the physical parameters of both the incompressible fluid and the vertical plate on the dimensionless velocity and temperature profiles are studied and analysed and the results are depicted both graphically and in a tabular form. Finally, algebraic expressions and the numerical values are obtained for the local skin-friction coefficient and the local Nusselt number.

  3. Endogenic Origin of Ceres' Surface as an Outcome of Mobile-Lid Convection

    Science.gov (United States)

    Castillo, J. C.; Choukroun, M.; Hodyss, R. P.; Johnson, P. V.; Raymond, C. A.; Rivkin, A.

    2011-12-01

    Until recently, the interest generated by large wet asteroids was primarily due to their status of protoplanets, i.e., their intermediate stage between planetesimals and fully-developed planets [1]. This picture changed a few years ago, when it was suggested that these objects contain a lot of free water [2]. Such an idea was recently substantiated by the detection of ice and organics at the surface of large outer main belt asteroids (24 Themis and 65 Cybele) [3, 4]. This discovery sheds a new light on these asteroids, which now represent astrobiological targets accessible within NASA's Discovery program. Ceres' place in this picture is especially compelling as ground-based observations have shown that that object bears on its surface materials that are formed in alkaline hydrothermal environments [5], and it is the third planetary body on which carbonates have been detected. Large wet asteroids are akin to medium-sized outer planet satellites in terms of global internal structure and geophysical processes, but they benefit from far more heat [6]. Icy satellites are subject to tidal heating, supplied in the deep interior (in most cases), with an intensity function of the time-dependent dynamical state of these objects. The main heat source available at asteroids is solar energy, a permanent source that has been increasing with time. The contrast in surface temperature between the two classes of objects implies very different settings for endogenic and geological activity. Indeed the contrast in viscosity across icy satellite icy shells is at least ten orders of magnitude, while that contrast is only three to five orders of magnitude in the case of asteroids. This results preferentially in stagnant-lid convection in the former situation. On the other hand, we have demonstrated that Ceres could be subject to mobile-lid convection for at least part of its history [7]. Whether this regime is occurring nowadays depends on a number of unconstrained parameters. However

  4. Surface-associated proteins of wheat starch granules: suitability of wheat starch for celiac patients.

    Science.gov (United States)

    Kasarda, Donald D; Dupont, Frances M; Vensel, William H; Altenbach, Susan B; Lopez, Rocio; Tanaka, Charlene K; Hurkman, William J

    2008-11-12

    Wheat starch is used to make baked products for celiac patients in several European countries but is avoided in the United States because of uncertainty about the amounts of associated grain storage (gluten) proteins. People with celiac disease (CD) must avoid wheat, rye, and barley proteins and products that contain them. These proteins are capable of initiating damage to the absorptive lining of the small intestine in CD patients, apparently as a consequence of undesirable interactions with the innate and adaptive immune systems. In this study, starch surface-associated proteins were extracted from four commercial wheat starches, fractionated by high-performance liquid chromatography and gel electrophoresis, and identified by tandem mass spectrometry analysis. More than 150 proteins were identified, many of which (for example, histones, purothionins, and glutenins) had not been recognized previously as starch-associated. The commercial starches were analyzed by the R-5 enzyme-linked immunosorbent assay method to estimate the amount of harmful gluten protein present. One of these starches had a low gluten content of 7 ppm and actually fell within the range proposed as a new Codex Alimentarius Standard for naturally gluten-free foods (maximum 20 ppm). This low level of gluten indicates that the starch should be especially suitable for use by celiac patients, although wheat starches with levels up to 100 ppm are deemed safe in the proposed Codex standards.

  5. Rapid induction of therapeutic hypothermia using convective-immersion surface cooling: safety, efficacy and outcomes.

    Science.gov (United States)

    Howes, Daniel; Ohley, William; Dorian, Paul; Klock, Cathy; Freedman, Robert; Schock, Robert; Krizanac, Danica; Holzer, Michael

    2010-04-01

    Therapeutic hypothermia has become an accepted part of post-resuscitation care. Efforts to shorten the time from return of spontaneous circulation to target temperature have led to the exploration of different cooling techniques. Convective-immersion uses a continuous shower of 2 degrees C water to rapidly induce hypothermia. The primary purpose of this multi-center trial was to evaluate the feasibility and speed of convective-immersion cooling in the clinical environment. The secondary goal was to examine the impact of rapid hypothermia induction on patient outcome. 24 post-cardiac arrest patients from 3 centers were enrolled in the study; 22 agreed to participate until the 6-month evaluations were completed. The median rate of cooling was 3.0 degrees C/h. Cooling times were shorter than reported in previous studies. The median time to cool the patients to target temperature (<34 degrees C) was 37 min (range 14-81 min); and only 27 min in a subset of patients sedated with propofol. Survival was excellent, with 68% surviving to 6 months; 87% of survivors were living independently at 6 months. Conductive-immersion surface cooling using the ThermoSuit System is a rapid, effective method of inducing therapeutic hypothermia. Although the study was not designed to demonstrate impact on outcomes, survival and neurologic function were superior to those previously reported, suggesting comparative studies should be undertaken. Shortening the delay from return of spontaneous circulation to hypothermic target temperature may significantly improve survival and neurologic outcome and warrants further study. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Ground-based PIV and numerical flow visualization results from the Surface Tension Driven Convection Experiment

    Science.gov (United States)

    Pline, Alexander D.; Werner, Mark P.; Hsieh, Kwang-Chung

    1991-01-01

    The Surface Tension Driven Convection Experiment (STDCE) is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the United States Microgravity Laboratory-1 (USML-1) Spacelab mission planned for June, 1992. One of the components of data collected during the experiment is a video record of the flow field. This qualitative data is then quantified using an all electric, two dimensional Particle Image Velocimetry (PIV) technique called Particle Displacement Tracking (PDT), which uses a simple space domain particle tracking algorithm. Results using the ground based STDCE hardware, with a radiant flux heating mode, and the PDT system are compared to numerical solutions obtained by solving the axisymmetric Navier Stokes equations with a deformable free surface. The PDT technique is successful in producing a velocity vector field and corresponding stream function from the raw video data which satisfactorily represents the physical flow. A numerical program is used to compute the velocity field and corresponding stream function under identical conditions. Both the PDT system and numerical results were compared to a streak photograph, used as a benchmark, with good correlation.

  7. Vortex rings and the solar granulation

    Science.gov (United States)

    Arendt, Steve

    1994-01-01

    Observations indicate that solar granules have the flow topology of updraft vortex loops. We interpret granule behavior in terms of the mutual and self-interactions of such loops. In particular, the expansion phase that granules commonly undergo is explained by the self-expansion of a vortex ring in a stratified fluid. For a range of granular parameters, we find that the expansion velocity of a vortex ring varies from 0.7 to 1.5 times the maximum surface flow velocity, in agreement with granule observations. We also present speculation on the nature of granule fragmentation.

  8. [Air drying process of granules and characteristics of their structure].

    Science.gov (United States)

    Li, Zhi-Hua; Zhang, Yu-Rong; Wang, Xiao-Chang

    2011-08-01

    Filamentous granules were cultivated using a sequencing batch reactor. The yellowish bacteria dominated granules, black fungi dominated granules and Microthrix parvicella dominated white smooth granules occurred in the reactor on the day 18, 23 and 27 respectively. Distribution of surface related free water and capillary water were analysis using air drying method. It was found that the surface related free water in the black and white filamentous granules was 79% and 83%, respectively, and that in the conventional bacteria granules were 64%, suggesting that the surface area opening ratio of surface and porosity decreased in the order of white, black and yellowish granules. According to the air drying rate in different phases of granules, it can be inferred that the white and black filamentous granules could rapidly exchange the substrates on the surface and consequently prone to be big and loose, which discourages the stability of granules. Additionally, the section image showed that filamentous granules were more porous than the black bacteria granules. Filamentous granules exhibited encouraging COD and nitrogen removal efficiencies. The black and white filamentous granules showed higher bioactivity with the oxygen up-take rate (SOUR) of 1.29 and 1.26 fold of the conventional yellowish granules.

  9. In situ immobilized lipase on the surface of intracellular polyhydroxybutyrate granules: preparation, characterization, and its promising use for the synthesis of fatty acid alkyl esters.

    Science.gov (United States)

    Yang, Taek Ho; Kwon, Min-A; Lee, Ji Young; Choi, Ji-Eun; Oh, Joon Young; Song, Jae Kwang

    2015-12-01

    Photobacterium lipolyticum M37 lipase (LipM37) was immobilized on the surface of intracellular polyhydroxybutyrate (PHB) granules in Escherichia coli. LipM37 was genetically fused to Cupriavidus necator PHA synthase (PhaC Cn ), and the engineered PHB operon containing the lip M37 -phaC Cn successfully mediated the accumulation of PHB granules (85 wt.%) inside E. coli cells. The PHB granules were isolated from the crude cell extract, and the immobilized LipM37 was comparable with the free form of LipM37 except for a favorable increase in thermostability. The immobilized LipM37 was used to synthesize oleic acid methyl ester (biodiesel) and oleic acid dodecyl ester (wax ester), and yielded 98.0 % conversion in esterification of oleic acid and dodecanol. It was suggested that the LipM37-PhaCCn fusion protein successfully exhibited bifunctional activities in E. coli and that in situ immobilization of lipase to the intracellular PHB could be a promising approach for expanding the biocatalytic toolbox for industrial chemical synthesis.

  10. Heat transfer in a couple stress fluid over a continuous moving surface with internal hat generation and convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics; Iqbal, Zahid [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Qasim, Muhammad [COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan). Dept. of Mathematics; Aldossary, Omar M. [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics

    2012-05-15

    This investigation reports the boundary layer flow and heat transfer characteristics in a couple stress fluid flow over a continuos moving surface with a parallel free stream. The effects of heat generation in the presence of convective boundary conditions are also investigated. Series solutions for the velocity and temperature distributions are obtained by the homotopy analysis method (HAM). Convergence of obtained series solutions are analyzed. The results are obtained and discussed through graphs for physical parameters of interest. (orig.)

  11. Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid

    Directory of Open Access Journals (Sweden)

    Ishak Anuar

    2011-01-01

    Full Text Available Abstract The problem of a steady boundary layer shear flow over a stretching/shrinking sheet in a nanofluid is studied numerically. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg method with shooting technique. Two types of nanofluids, namely, Cu-water and Ag-water are used. The effects of nanoparticle volume fraction, the type of nanoparticles, the convective parameter, and the thermal conductivity on the heat transfer characteristics are discussed. It is found that the heat transfer rate at the surface increases with increasing nanoparticle volume fraction while it decreases with the convective parameter. Moreover, the heat transfer rate at the surface of Cu-water nanofluid is higher than that at the surface of Ag-water nanofluid even though the thermal conductivity of Ag is higher than that of Cu.

  12. A GRID OF THREE-DIMENSIONAL STELLAR ATMOSPHERE MODELS OF SOLAR METALLICITY. I. GENERAL PROPERTIES, GRANULATION, AND ATMOSPHERIC EXPANSION

    International Nuclear Information System (INIS)

    Trampedach, Regner; Asplund, Martin; Collet, Remo; Nordlund, Åke; Stein, Robert F.

    2013-01-01

    Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters, covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.

  13. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules.

    Science.gov (United States)

    Nielsen, Morten M; Bozonnet, Sophie; Seo, Eun-Seong; Mótyán, János A; Andersen, Joakim M; Dilokpimol, Adiphol; Abou Hachem, Maher; Gyémánt, Gyöngyi; Naested, Henrik; Kandra, Lili; Sigurskjold, Bent W; Svensson, Birte

    2009-08-18

    Some polysaccharide processing enzymes possess secondary carbohydrate binding sites situated on the surface far from the active site. In barley alpha-amylase 1 (AMY1), two such sites, SBS1 and SBS2, are found on the catalytic (beta/alpha)(8)-barrel and the noncatalytic C-terminal domain, respectively. Site-directed mutagenesis of Trp(278) and Trp(279), stacking onto adjacent ligand glucosyl residues at SBS1, and of Tyr(380) and His(395), making numerous ligand contacts at SBS2, suggested that SBS1 and SBS2 act synergistically in degradation of starch granules. While SBS1 makes the major contribution to binding and hydrolysis of starch granules, SBS2 exhibits a higher affinity for the starch mimic beta-cyclodextrin. Compared to that of wild-type AMY1, the K(d) of starch granule binding by the SBS1 W278A, W279A, and W278A/W279A mutants thus increased 15-35 times; furthermore, the k(cat)/K(m) of W278A/W279A was 2%, whereas both affinity and activity for Y380A at SBS2 were 10% of the wild-type values. Dual site double and triple SBS1/SBS2 substitutions eliminated binding to starch granules, and the k(cat)/K(m) of W278A/W279A/Y380A AMY1 was only 0.4% of the wild-type value. Surface plasmon resonance analysis of mutants showed that beta-cyclodextrin binds to SBS2 and SBS1 with K(d,1) and K(d,2) values of 0.07 and 1.40 mM, respectively. A model that accounts for the observed synergy in starch hydrolysis, where SBS1 and SBS2 bind ordered and free alpha-glucan chains, respectively, thus targeting the enzyme to single alpha-glucan chains accessible for hydrolysis, is proposed. SBS1 and SBS2 also influence the kinetics of hydrolysis for amylose and maltooligosaccharides, the degree of multiple attack on amylose, and subsite binding energies.

  14. Link between convection and meridional gradient of sea surface temperature in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Shankar, D.; Shetye, S.R.; Joseph, P.V.

    over central bay followed the SST difference between the northern and southern bay (Delta T) exceeding 0.75 degC in 28 cases. There was no instance of Delta T exceeding this threshold without a burst in convection. There were, however, five instances...

  15. Sublimation pit distribution indicates convection cell surface velocities of ∼10 cm per year in Sputnik Planitia, Pluto

    Science.gov (United States)

    Buhler, Peter B.; Ingersoll, Andrew P.

    2018-01-01

    The ∼106 km2 Sputnik Planitia, Pluto is the upper surface of a vast basin of nitrogen ice. Cellular landforms in Sputnik Planitia with areas in the range of a few × 102-103 km2 are likely the surface manifestation of convective overturn in the nitrogen ice. The cells have sublimation pits on them, with smaller pits near their centers and larger pits near their edges. We map pits on seven cells and find that the pit radii increase by between 2.1 ± 0.4 × 10-3 and 5.9 ± 0.8 × 10-3 m m-1 away from the cell center, depending on the cell. This is a lower bound on the size increase because of the finite resolution of the data. Accounting for resolution yields upper bounds on the size vs. distance distribution of between 4.2 ± 0.2 × 10-3 and 23.4 ± 1.5 × 10-3 m m-1. We then use an analytic model to calculate that pit radii grow via sublimation at a rate of 3.6-0.6+2.1 ×10-4 m yr-1, which allows us to convert the pit size vs. distance distribution into a pit age vs. distance distribution. This yields surface velocities between 1.5-0.2+1.0 and 6.2-1.4+3.4 cm yr-1 for the slowest cell and surface velocities between 8.1-1.0+5.5 and 17.9-5.1+8.9 cm yr-1 for the fastest cell. These convection rates imply that the surface ages at the edge of cells reach ∼4.2-8.9 × 105 yr. The rates are comparable to rates of ∼6 cm yr-1 that were previously obtained from modeling of the convective overturn in Sputnik Planitia (McKinnon et al., 2016). Finally, we investigate the surface rheology of the convection cells and estimate that the minimum ice viscosity necessary to support the geometry of the observed pits is of order 1016-1017 Pa s, based on the argument that pits would relax away before growing to their observed radii of several hundred meters if the viscosity were lower than this value.

  16. Ficolin-1 is present in a highly mobilizable subset of human neutrophil granules and associates with the cell surface after stimulation with fMLP

    DEFF Research Database (Denmark)

    Rørvig, Sara; Honoré, Christian Le Fèvre; Larsson, Lars-Inge

    2009-01-01

    . Immunohistochemistry and subcellular fractionation demonstrated that ficolin-1 is primarily localized in gelatinase granules but also in highly exocytosable gelatinase-poor granules, not described previously. Ficolin-1 is released from neutrophil granules by stimulation with fMLP or PMA, and the majority becomes...

  17. Decreased surface expression of the δ subunit of the GABAA receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Zhang, Nianhui; Peng, Zechun; Tong, Xiaoping; Lindemeyer, A Kerstin; Cetina, Yliana; Huang, Christine S; Olsen, Richard W; Otis, Thomas S; Houser, Carolyn R

    2017-11-01

    While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABA A receptors (GABA A Rs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABA A R, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABA A Rs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with

  18. Shallow to Deep Convection Transition over a Heterogeneous Land Surface Using the Land Model Coupled Large-Eddy Simulation

    Science.gov (United States)

    Lee, J.; Zhang, Y.; Klein, S. A.

    2017-12-01

    The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to

  19. Rayleigh-Bénard-Marangoni convection in a weakly non-Boussinesq fluid layer with a deformable surface

    Science.gov (United States)

    Lyubimov, D. V.; Lyubimova, T. P.; Lobov, N. I.; Alexander, J. I. D.

    2018-02-01

    The influence of surface deformations on the Rayleigh-Bénard-Marangoni instability of a uniform layer of a non-Boussinesq fluid heated from below is investigated. In particular, the stability of the conductive state of a horizontal fluid layer with a deformable surface, a flat isothermal rigid lower boundary, and a convective heat transfer condition at the upper free surface is considered. The fluid is assumed to be isothermally incompressible. In contrast to the Boussinesq approximation, density variations are accounted for in the continuity equation and in the buoyancy and inertial terms of the momentum equations. Two different types of temperature dependence of the density are considered: linear and exponential. The longwave instability is studied analytically, and instability to perturbations with finite wavenumber is examined numerically. It is found that there is a decrease in stability of the system with respect to the onset of longwave Marangoni convection. This result could not be obtained within the framework of the conventional Boussinesq approximation. It is also shown that at Ma = 0 the critical Rayleigh number increases with Ga (the ratio of gravity to viscous forces or Galileo number). At some value of Ga, the Rayleigh-Bénard instability vanishes. This stabilization occurs for each of the density equations of state. At small values of Ga and when deformation of the free surface is important, it is shown that there are significant differences in stability behavior as compared to results obtained using the Boussinesq approximation.

  20. Natural convection with evaporation in a vertical cylindrical cavity under the effect of temperature-dependent surface tension

    Science.gov (United States)

    Kozhevnikov, Danil A.; Sheremet, Mikhail A.

    2018-01-01

    The effect of surface tension on laminar natural convection in a vertical cylindrical cavity filled with a weak evaporating liquid has been analyzed numerically. The cylindrical enclosure is insulated at the bottom, heated by a constant heat flux from the side, and cooled by a non-uniform evaporative heat flux from the top free surface having temperature-dependent surface tension. Governing equations with corresponding boundary conditions formulated in dimensionless stream function, vorticity, and temperature have been solved by finite difference method of the second-order accuracy. The influence of Rayleigh number, Marangoni number, and aspect ratio on the liquid flow and heat transfer has been studied. Obtained results have revealed that the heat transfer rate at free surface decreases with Marangoni number and increases with Rayleigh number, while the average temperature inside the cavity has an opposite behavior; namely, it growths with Marangoni number and reduces with Rayleigh number.

  1. Stellar granulation as the source of high-frequency flicker in Kepler light curves

    Energy Technology Data Exchange (ETDEWEB)

    Cranmer, Steven R.; Saar, Steven H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bastien, Fabienne A.; Stassun, Keivan G. [Department of Physics and Astronomy, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States)

    2014-02-01

    A large fraction of cool, low-mass stars exhibit brightness fluctuations that arise from a combination of convective granulation, acoustic oscillations, magnetic activity, and stellar rotation. Much of the short-timescale variability takes the form of stochastic noise, whose presence may limit the progress of extrasolar planet detection and characterization. In order to lay the groundwork for extracting useful information from these quasi-random signals, we focus on the origin of the granulation-driven component of the variability. We apply existing theoretical scaling relations to predict the star-integrated variability amplitudes for 508 stars with photometric light curves measured by the Kepler mission. We also derive an empirical correction factor that aims to account for the suppression of convection in F-dwarf stars with magnetic activity and shallow convection zones. So that we can make predictions of specific observational quantities, we performed Monte Carlo simulations of granulation light curves using a Lorentzian power spectrum. These simulations allowed us to reproduce the so-called flicker floor (i.e., a lower bound in the relationship between the full light-curve range and power in short-timescale fluctuations) that was found in the Kepler data. The Monte Carlo model also enabled us to convert the modeled fluctuation variance into a flicker amplitude directly comparable with observations. When the magnetic suppression factor described above is applied, the model reproduces the observed correlation between stellar surface gravity and flicker amplitude. Observationally validated models like these provide new and complementary evidence for a possible impact of magnetic activity on the properties of near-surface convection.

  2. Stellar granulation as the source of high-frequency flicker in Kepler light curves

    International Nuclear Information System (INIS)

    Cranmer, Steven R.; Saar, Steven H.; Bastien, Fabienne A.; Stassun, Keivan G.

    2014-01-01

    A large fraction of cool, low-mass stars exhibit brightness fluctuations that arise from a combination of convective granulation, acoustic oscillations, magnetic activity, and stellar rotation. Much of the short-timescale variability takes the form of stochastic noise, whose presence may limit the progress of extrasolar planet detection and characterization. In order to lay the groundwork for extracting useful information from these quasi-random signals, we focus on the origin of the granulation-driven component of the variability. We apply existing theoretical scaling relations to predict the star-integrated variability amplitudes for 508 stars with photometric light curves measured by the Kepler mission. We also derive an empirical correction factor that aims to account for the suppression of convection in F-dwarf stars with magnetic activity and shallow convection zones. So that we can make predictions of specific observational quantities, we performed Monte Carlo simulations of granulation light curves using a Lorentzian power spectrum. These simulations allowed us to reproduce the so-called flicker floor (i.e., a lower bound in the relationship between the full light-curve range and power in short-timescale fluctuations) that was found in the Kepler data. The Monte Carlo model also enabled us to convert the modeled fluctuation variance into a flicker amplitude directly comparable with observations. When the magnetic suppression factor described above is applied, the model reproduces the observed correlation between stellar surface gravity and flicker amplitude. Observationally validated models like these provide new and complementary evidence for a possible impact of magnetic activity on the properties of near-surface convection.

  3. DETECTION OF VORTEX TUBES IN SOLAR GRANULATION FROM OBSERVATIONS WITH SUNRISE

    International Nuclear Information System (INIS)

    Steiner, O.; Franz, M.; Bello Gonzalez, N.; Nutto, Ch.; Rezaei, R.; Schmidt, W.; Martinez Pillet, V.; Bonet Navarro, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Knoelker, M.

    2010-01-01

    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.

  4. Impact of Convection on Surface Fluxes Observed During LASP/DYNAMO 2011

    Science.gov (United States)

    2014-12-01

    a heat sink and a source of water vapor. Such cooling effects bring the second controlling process: convective-scale downdrafts that bring down...conducted in the vicinity of overcast conditions and a few small showers . Again, this flight was made nearly collocated with the R/V Revelle. Twenty... showers in the vicinity of Diego Garcia. The P-3 operated in the vicinity of Diego Garcia completing 11 LL. Further analysis occurred on the four LL

  5. The Behavior of Surface Wind and Thermodynamic Fields in the Presence of Deep Convection.

    Science.gov (United States)

    1981-05-01

    c’xc.: t :’" r 9 , ’ rp" -200- 0 100 6r 0 0 oo w0 -201- 0 30 July 1979 0 Confours Every t 30 x 16 see:’ 2000 CDT 0 0 0 ), km * Light Rain * Heav Rain0...of thunder- storms and squall lines. Ann. Rev. Earth Planet . Sci., 7, 117-161. Malkus, J., 1949: Effects of wind shear on some aspects of convection

  6. Effects of thermophoresis and variable properties on mixed convection along a vertical wavy surface in a fluid saturated porous medium

    Directory of Open Access Journals (Sweden)

    Darbhasayanam Srinivasacharya

    2016-06-01

    Full Text Available This paper investigates the influence of thermophoresis on mixed convection heat and mass transfer flow over a vertical wavy surface in a porous medium with variable properties, namely variable viscosity and variable thermal conductivity. The effect of wavy surface is incorporated into non-dimensional equations by using suitable transformations and then transformed into non-linear ordinary differential equations by employing the similarity transformations and then solved numerically. The transport process of flow, heat and mass transfer in the boundary layer for aiding and opposing flow cases is discussed. The structure of flow, temperature and concentration fields in the Darcy porous media are more pronounced by complex interactions among variable viscosity, variable thermal conductivity, mixed convective parameter, thermophoresis and amplitude of the wavy surface. Increasing thermophoresis parameter enhances velocity profile, concentration distribution and Sherwood number while reduces Nusselt number. As increase in variable viscosity, temperature and concentration distributions are enhanced while velocity profile, Nusselt number and Sherwood numbers are reduced. This study finds applications in aerosol Technology, space technology and processes involving high temperatures.

  7. Slag melt granulation and factors affecting the quality of Granulated slag

    Directory of Open Access Journals (Sweden)

    Володимир Петрович Кравченко

    2015-10-01

    Full Text Available An analysis of the state of slags recycling in foreign countries was carried out. A modern principle was put forward in the article: blast furnace is an apparatus for manufacturing of two basic types of products : cast iron and slag. Granulation, as the primary recycling of slag melt fixes the structure with certain properties at rapid cooling. An analysis of the existing methods of granulation was carried out and factors influencing the quality of granular slag were determined, as well as the ways of obtaining granular slag with the required physical and mechanical characteristics. The main factors of granulated slags quality, employed for manufacturing of binding materials are chemical composition and the structure of fine granulated particles. All wet methods of granulation are characterized by high humidity of granulated slag, its value reaching 24,5%, due to increase in granules’ porosity. Real options for reducing humidity of granulated slag may include: development of the process of granulation, ensuring manufacturing of products with increased density and low content of fine fractions, dehydration of slag in high bunkers and stacks at sufficient soaking time and slag blowdown with a stream moving downwards. Using mechanical granulators and gaseous energy carriers (air for melt’s dispersion is an efficient way of reducing water consumption for granulation (semi-dry or dry methods of granulation. It also makes it possible to reduce r consumption of water, supplied for granulation from 3,0 to 0,7-1,5m3/min. Application of air blast for melt’s dispersion influences its fractional composition and grain shape in the slag: the content of the fraction less than 1,25mm reduces to 49,1%, as compared to conventional 92,8%. The content of spherical grains is with tough surface is 33%, it promoting reduction of residual humidity of granulated slag. Thus, application of air blast for granulation of slags is an efficient way of obtaining high

  8. Darcy–Forchheimer Three-Dimensional Flow of Williamson Nanofluid over a Convectively Heated Nonlinear Stretching Surface

    Science.gov (United States)

    Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed

    2017-09-01

    The present study elaborates three-dimensional flow of Williamson nanoliquid over a nonlinear stretchable surface. Fluid flow obeys Darcy–Forchheimer porous medium. A bidirectional nonlinear stretching surface generates the flow. Convective surface condition of heat transfer is taken into consideration. Further the zero nanoparticles mass flux condition is imposed at the boundary. Effects of thermophoresis and Brownian diffusion are considered. Assumption of boundary layer has been employed in the problem formulation. Convergent series solutions for the nonlinear governing system are established through the optimal homotopy analysis method (OHAM). Graphs have been sketched in order to analyze that how the velocity, temperature and concentration distributions are affected by distinct emerging flow parameters. Skin friction coefficients and local Nusselt number are also computed and discussed.

  9. A Survey of Sludge Granulation Theories Under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Jalal Shayegan

    2011-01-01

    Full Text Available This paper surveys the different theories developed on anaerobic sludge granulation. The theories are generally categorized as physical, microbial, and thermodynamic approaches. In the physical approach to the granulation process, granulation is described by such physical conditions of the reactor as upflow velocity of gas and liquid streams, suspended solids in the effluent flow, and excess sludge removal. Microbial theories are based on the properties of specific organisms and on granule properties (granule structure and its microbiology. The thermodynamic approach studies such factors as hydrophobia, electrophoretic mobility, effective energy in granule adhesion process, and effect of proton transferring activities on bacterial membrane surfaces.

  10. Mitotic events in cerebellar granule progenitor cells that expand cerebellar surface area are critical for normal cerebellar cortical lamination in mice.

    Science.gov (United States)

    Chang, Joshua C; Leung, Mark; Gokozan, Hamza Numan; Gygli, Patrick Edwin; Catacutan, Fay Patsy; Czeisler, Catherine; Otero, José Javier

    2015-03-01

    Late embryonic and postnatal cerebellar folial surface area expansion promotes cerebellar cortical cytoarchitectural lamination. We developed a streamlined sampling scheme to generate unbiased estimates of murine cerebellar surface area and volume using stereologic principles. We demonstrate that, during the proliferative phase of the external granular layer (EGL) and folial surface area expansion, EGL thickness does not change and thus is a topological proxy for progenitor self-renewal. The topological constraints indicate that, during proliferative phases, migration out of the EGL is balanced by self-renewal. Progenitor self-renewal must, therefore, include mitotic events yielding 2 cells in the same layer to increase surface area (β events) and mitotic events yielding 2 cells, with 1 cell in a superficial layer and 1 cell in a deeper layer (α events). As the cerebellum grows, therefore, β events lie upstream of α events. Using a mathematical model constrained by the measurements of volume and surface area, we could quantify intermitotic times for β events on a per-cell basis in postnatal mouse cerebellum. Furthermore, we found that loss of CCNA2, which decreases EGL proliferation and secondarily induces cerebellar cortical dyslamination, shows preserved α-type events. Thus, CCNA2-null cerebellar granule progenitor cells are capable of self-renewal of the EGL stem cell niche; this is concordant with prior findings of extensive apoptosis in CCNA2-null mice. Similar methodologies may provide another layer of depth to the interpretation of results from stereologic studies.

  11. Twin screw wet granulation: Binder delivery.

    Science.gov (United States)

    Saleh, Mohammed F; Dhenge, Ranjit M; Cartwright, James J; Hounslow, Michael J; Salman, Agba D

    2015-06-20

    The effects of three ways of binder delivery into the twin screw granulator (TSG) on the residence time, torque, properties of granules (size, shape, strength) and binder distribution were studied. The binder distribution was visualised through the transparent barrel using high speed imaging as well as quantified using offline technique. Furthermore, the effect of binder delivery and the change of screw configuration (conveying elements only and conveying elements with kneading elements) on the surface velocity of granules across the screw channel were investigated using particle image velocimetry (PIV). The binder was delivered in three ways; all solid binder incorporated with powder mixture, 50% of solid binder mixed with powder mixture and 50% mixed with water, all the solid binder dissolved in water. Incorporation of all solid binder with powder mixture resulted in the relatively longer residence time and higher torque, narrower granule size distribution, more spherical granules, weaker big-sized granules, stronger small-sized granules and better binder distribution compared to that in other two ways. The surface velocity of granules showed variation from one screw to another as a result of uneven liquid distribution as well as shown a reduction while introducing the kneading elements into the screw configuration. Copyright © 2015. Published by Elsevier B.V.

  12. The relation between granule size, granule stickiness, and torque in the high-shear granulation process

    NARCIS (Netherlands)

    Bouwman, A.M.; Henstra, M.J.; Hegge, J.J.M.E.; Zhang, Z.; Ingram, A.; Seville, J.P.K.; Frijlink, H.W.

    2005-01-01

    Purpose. To investigate the background of the observed relationship between measured torque and granule size in high-shear granulation processes. Methods. Torque was measured during the granulation process; the behavior of individual wet granules during compaction was investigated using

  13. Variations of Cloud and Radiative Properties of Boundary-layer and Deep Convective Systems with Sea Surface Temperature Anomalies

    Science.gov (United States)

    Xu, Kuan-Man

    2010-01-01

    Gridded monthly-mean satellite data contain compositing information from different cloud system types and clear-sky environments. To isolate the variations of cloud physical properties of an individual cloud system type with its environment, orbital data are needed. In this study, we will analyze the variations of cloud and radiative properties of boundary-layer clouds and deep convective cloud systems with sea surface temperature (SST) anomalies. We use Terra-CERES (Clouds and the Earth s Radiant Energy System) Level 2 data to classify distinct cloud objects defined by cloud-system types (deep convection, boundary-layer cumulus, stratocumulus and overcast clouds), sizes, geographic locations, and matched large-scale environments. This analysis method identifies a cloud object as a contiguous region of the Earth with a single dominant cloud-system type. It determines the shape and size of the cloud object from the satellite data and the cloud-system selection criteria. The statistical properties of the identified cloud objects are analyzed in terms of probability density functions (PDFs) of a single property or joint PDFs between two properties. The SST anomalies are defined as the differences from five-year annual-cycle means. Individual cloud objects are sorted into one of five equal size subsets, with the matched SST anomalies ranging from the most negative to the most positive values, for a given size category of deep convective cloud objects, boundary-layer cumulus, stratocumulus and overcast cloud objects. The PDFs of cloud and radiative properties for deep convective cloud objects (between 30 S and 30 N) are found to largely similar among the five SST anomaly subsets except for the lowest SST anomaly subset. The different characteristics from this SST anomaly subset may be related to some cloud objects resulting from equatorward movement of extratropical cloud systems. This result holds true for all three different size categories (measured by equivalent

  14. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Directory of Open Access Journals (Sweden)

    K. G. McNaughton

    2007-06-01

    Full Text Available We report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976, but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection".

    We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL to collapse our spectra. For the horizontal velocity spectra this scale is (zi εo2/3, where zi is inversion height and εo is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z εo2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow.

    We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2. That is, the lengths of the thermal structures depend on both the lengths of the

  15. Novel compaction techniques with pellet-containing granules.

    Science.gov (United States)

    Pan, Xin; Chen, Meiwan; Han, Ke; Peng, Xinsheng; Wen, Xinguo; Chen, Bao; Wang, Jin; Li, Ge; Wu, Chuanbin

    2010-08-01

    The purpose of this investigation was to introduce a new concept of admixing coated pellets with excipients to obtain a segregation-free combination of pellet-containing granules and cushioning granules during mixing and compression. Acrylic polymeric-coated pellets were granulated by centrifugal granulation method with excipients; then, the pellet-containing granules were compacted into tablets with the cushioning granules, which were prepared in mixer or fluidized bed-granulator. Tablets were also made in a traditional method by directly compressing the mixtures of coated pellets and cushioning granules for control. Drug-release profiles, weights and drug content of tables were tested to compare this new method with the traditional method. The granulation process changed the surface morphology of coated pellets from smooth to rough and increased the angle of repose of pellets to close to that of the cushioning granules. Weight and drug content RSD values of tablets prepared by pellet-containing granules were much lower than those of tablets prepared by coated pellets. The similarity factor f(2) values for drug-release profiles of tablets prepared from pellet-containing granules and the original coated pellets were above 50 when microcrystalline cellulose (MCC), Polyplasdone(R) XL (PVPP), and lactose were used as granulating excipients. The granulation process could roughen the surface of coated pellets and increase the angle of repose and uniformity of the mixture with cushioning granules. Compared with the tablets directly compressed from coated pellets, the tablets prepared by pellet-containing granules showed improved uniformity in both weight and drug content. The granulation and compression processes did not significantly influence the drug-release behavior of coated pellets, and the enteric dissolution was retained.

  16. Linear instabilities of a planar liquid sheet in a static electric field for intermediate relaxation and convection of surface charges

    Science.gov (United States)

    Yoshinaga, Takao

    2018-04-01

    Linear temporal instabilities of a two-dimensional planar liquid sheet in a static electric field are investigated when the relaxation and convection of surface electric charges are considered. Both viscous sheet liquid and inviscid surrounding liquid are placed between two parallel sheath walls, on which an external electric field is imposed. In particular, effects of the electric Peclet number {Pe} (charge relaxation time/convection time) and the electric Euler number Λ (electric pressure/liquid inertial) on the instabilities are emphasized for the symmetric and antisymmetric deformations of the sheet. It is found that the unstable mode is composed of the aerodynamic and electric modes, which are merged with each other for the symmetric deformation and separated for the antisymmetric deformation. For the symmetric deformation, the combined mode is more destabilized with the decrease of {Pe} and the increase of Λ. On the other hand, for the antisymmetric deformation, the electric mode is more destabilized and the aerodynamic mode is left unchanged with the decrease of {Pe}, while the electric mode is more destabilized but the aerodynamic mode is more stabilized with the increase of Λ. It is also found for both symmetric and antisymmetric deformations that the instabilities are most suppressed when {σ }R≃ 1/{ε }P ({σ }R: conductivity ratio of the surrounding to the sheet liquid, {ε }P: permittivity ratio of the sheet to the surrounding liquid), whose trend of the instabilities is more enhanced with the decrease of {Pe} except for vanishingly small {Pe}.

  17. Natural convection of nanofluid in a wavy cavity in the presence of magnetic field on variable heat surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Javaherdeh, Korosh; Moslemi, Mehdi; Shahbazi, Mona [University of Guilan, Rasht (Iran, Islamic Republic of)

    2017-04-15

    A numerical analysis has been performed to investigate the laminar natural convection heat characteristics in a wavy cavity filled with CuO/water nanofluid. One of the sinusoidal walls (BC) is at the volatile high temperature and the opposite wavy surface is at a stable low temperature and the two other walls are considered flat and insulated while the uniform magnetic field is considered. Performing the analysis, the governing equations are given in terms of the stream function-vorticity formulation. In order to solve the nondimensionalized equations, discretizing with second-order accurate central difference method is performed then the successive under relaxation method with appropriate boundary conditions is considered. To validate the numerical model, various comparisons with previously published studies have been conducted and the results are in a good agreement. The main objective is to survey the effects of the Rayleigh number, Hartmann number, and nanoparticles volume fraction on the fluid flow and heat transfer characteristics. The results are illustrated in contours of stream function, constant temperature, and Nusselt number. The results show that the presence of the magnetic field the local Nusselt number decreases at the hot wall. Moreover, the enhancement in the heat transfer performance increases with an increasing nanoparticle concentration. However, for all values of Rayleigh number, the presence of nanoparticles leads to significant enhancement in heat transfer and the increase of Rayleigh number causes the heat transfer mechanism to change from conduction to convection.

  18. THE STUDY OF THE KINETIC OF NATURAL ZEOLITE GRANULES GROWTH AT DIFFERENT WAYS OF GRANULATION

    Directory of Open Access Journals (Sweden)

    Rybachuk VD

    2016-12-01

    Full Text Available Introduction. Active substances and excipients used in the manufacture of medicines in tablet form, in most cases, have poor technological properties. This fact determines the need for prior granulation of mass before compression. Granulators of various sizes and designs, running on different modes, made the formation, growth and consolidation of the powder particles that lead to obtain pellets of different shapes and sizes. From the literature it is known that granulation leads to two forms of granules: isodiametric and nonisodiametric. The first group of particles forms has globular shape with a smooth surface and the proportion in which the length, thickness and height are about the same. They are usually made by fluidized bed granulation, spray drying, pelletizing and granulation in dragee pan. Granules of nonisodiametric form in which length is several times the width and height are made mostly by extrusion and compacting. The geometrical parameters of obtained granules are affected by the properties of raw materials, the granulation modes, type and amount of added humidifier and so on. The shape and size of granules, from a technological point of view, are the key factors that contribute, except organoleptic characteristics of the product, its technological properties such as particle size distribution, bulk volume, the ability of the material to shrinkage, porosity, fluidity, mechanical strength and so on. Properly selected for specific conditions granulation method is able to provide the finished product with the specified technological parameters depending on the needs. The aim of this work was to study the effect of granulation method and its conditions on the kinetics of growth of the natural zeolite granules and some quality characteristics of obtained granules. Material & methods. As objects of study served the natural zeolite pellets produced using 3%, 5%, 7% and 10% potato starch paste and solution of polyvinylpyrrolidone (PVP

  19. Computation of coupled surface radiation and natural convection in an inclined form cavity

    International Nuclear Information System (INIS)

    Amraqui, Samir; Mezrhab, Ahmed; Abid, Cherifa

    2011-01-01

    The present paper is concerned with computation of the radiation-natural convection interactions in an inclined form cavity. The cavity contains two symmetrically identical isothermal blocks and is vented by two opening located in a vertical median axis at the top and the bottom parts of the cavity. Calculations are made by using a finite volume method and an efficient numerical procedure is introduced for calculating the view factors, with shadow effects included. Effects of Rayleigh number Ra and inclination angle φ are investigated for Pr = 0.71 in presence and in absence of the radiation exchange. Results are reported in terms of isotherms, streamlines, local and average Nusselt numbers and mass flow rate. In light of the obtained results, we can conclude that the heat transfer decreases with increasing φ. In addition, the increase of Ra and the taking into account of the radiation exchange produce a considerable increase in the heat transfer.

  20. Numerical simulations of conjugate convection combined with surface thermal radiation using an Immersed-Boundary Method

    International Nuclear Information System (INIS)

    Favre, F.; Colomer, G.; Lehmkuhl, O.; Oliva, A.

    2016-01-01

    Dynamic and thermal interaction problems involving fluids and solids were studied through a finite volume-based Navier-Stokes solver, combined with immersed-boundary techniques and the net radiation method. Source terms were included in the momentum and energy equations to enforce the non-slip condition and the conjugate boundary condition including the radiative heat exchange. Code validation was performed through the simulation of two cases from the literature: conjugate natural convection in a square cavity with a conducting side wall; and a cubical cavity with conducting walls and a heat source. The accuracy of the methodology and the validation of the inclusion of moving bodies into the simulation was performed via a theoretical case (paper)

  1. Effect of partial slip and chemical reaction on convection of a viscoelastic fluid over a stretching surface with Cattaneo-Christov heat flux model

    Science.gov (United States)

    Eswaramoorthi, S.; Bhuvaneswari, M.; Sivasankaran, S.; Niranjan, H.; Rajan, S.

    2017-11-01

    This article explores the effect of homogeneous-heterogeneous chemical reaction and partial slipon convective flow of a viscoelastic fluid with Cattaneo-Christov heat flux modelin the presence of suction/injection and convective boundary condition. The governing system of non-linear partial differential equations arereformed into ordinary differential equations with the help of similarity variables and then they are solved using homotopy analysis method. It is found that the surface heat transfer rate enhances on increasing the thermal relaxation time parameter and the surface mass transfer rate improved by increasing the slip parameter and homogeneous chemical reaction parameter.

  2. Human platelet glycoprotein Ia. One component is only expressed on the surface of activated platelets and may be a granule constituent

    International Nuclear Information System (INIS)

    Bienz, D.; Clemetson, K.J.

    1989-01-01

    Glycoprotein Ia (GP Ia) is a relatively minor component of human blood platelets thought to be a receptor involved in collagen-induced platelet activation. However, some difficulties exist with the definition of this glycoprotein. The expression of GP Ia on resting (prostacyclin analogue-treated) and thrombin-activated platelets was compared by surface labeling with 125 I-lactoperoxidase. Intact platelets or platelets solubilized in sodium dodecyl sulfate were labeled with periodate/[ 3 H]NaBH 4 . Analysis on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels showed that GP Ia is very poorly labeled in resting platelets. After activation a new spot (GP Ia*) appears with the same relative molecular mass as GP Ia under reducing conditions. GP Ia and Ia* can be clearly separated by two-dimensional nonreduced/reduced gel electrophoresis. Therefore, two glycoproteins which have been termed GP Ia exist in platelets with similar molecular weight and pI under reducing conditions. One of these (GP Ia*) is only surface-labeled when platelets are activated, indicating that it is only exposed on the surface of activated platelets. Supernatant from activated platelets contains this glycoprotein as well as other granule components. This glycoprotein is missing in platelets from two patients with collagen-response defects

  3. Granulation of fine powder

    Science.gov (United States)

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  4. A comparison of solute migration in a test granulation dried by fluidization and other methods.

    Science.gov (United States)

    Travers, D N

    1975-07-01

    The intragranular migration of sodium chloride in granules made by the wet massing of heavy kaolin B.P. with salt solution has been studied in batches dried by fluidization and a vacuum tumbling method. The larger granules from the fluidized batch exhibited considerable intragranular variation with the outer crust containing over twice the average salt concentration. Solute loss from this layer by abrasion on prolonged fluidization was slight but the dust eluted from the dryer had a salt content above average. Analysis of sieved fractions of the dust showed that this enrichment was concentrated in the fine material passing a 53 mum mesh. The vacuum dried granules had less migration and were less resistant to crushing than those dried by fluidization. The dust produced had a salt content only slightly greater than the average composition and the overall solute content of the sized fractions were all close to this average. The same system was used to study intergranular migration in a fixed bed when the granules were dried by infrared radiation, by microwave radiation, by convection from air and in a vacuum. The greatest migration occurred in samples dried by infrared radiation and the maximum solute concentration was near the middle of the bed. The air dried granules had less migration and the maximum concentration was in the surface layer. The granules dried in a vacuum and by microwave radiation were fairly uniform in composition throughout the bed. The above results are explained on the basis of the capillary theory of drying together with the modifying influence of the drying method on the probable heat and mass transfer rates.

  5. A CloudSat cloud object partitioning technique and assessment and integration of deep convective anvil sensitivities to sea surface temperature

    Science.gov (United States)

    Igel, Matthew R.; Drager, Aryeh J.; van den Heever, Susan C.

    2014-09-01

    A cloud object partitioning algorithm is developed to provide a widely useful database of deep convective clouds. It takes contiguous CloudSat cloudy regions and identifies various length scales of clouds from a tropical, oceanic subset of data. The methodology identifies a level above which anvil characteristics become important by analyzing the cloud object shape. Below this level in what is termed the pedestal region, convective cores are identified based on reflectivity maxima. Identifying these regions allows for the assessment of length scales of the anvil and pedestal of deep convective clouds. Cloud objects are also appended with certain environmental quantities from European Centre for Medium-Range Weather Forecasts. Simple geospatial and temporal assessments show that the cloud object technique agrees with standard observations of local frequency of deep convective cloudiness. Deep convective clouds over tropical oceans play important roles in Earth's climate system. The newly developed data set is used to evaluate the response of tropical, deep convective clouds to sea surface temperature (SST). Several previously proposed responses are examined: the Fixed Anvil Temperature Hypothesis, the Iris Hypothesis, and the Thermostat Hypothesis. When the data are analyzed per cloud object, increasing SST is found to be associated with increased anvil thickness, decreased anvil width, and cooler cloud top temperatures. Implications for the corresponding hypotheses are discussed. A new response suggesting that the base temperature of deep convective anvils remains approximately constant with increasing SSTs is introduced. These cloud dependencies on SST are integrated to form a more comprehensive theory for deep convective anvil responses to SST.

  6. Soret and Dufour Effects on Natural Convection Flow Past a Vertical Surface in a Porous Medium with Variable Viscosity

    Directory of Open Access Journals (Sweden)

    M. B. K. Moorthy

    2012-01-01

    Full Text Available The heat and mass transfer characteristics of natural convection about a vertical surface embedded in a saturated porous medium subject to variable viscosity are numerically analyzed, by taking into account the diffusion-thermo (Dufour and thermal-diffusion (Soret effects. The governing equations of continuity, momentum, energy, and concentrations are transformed into nonlinear ordinary differential equations, using similarity transformations, and then solved by using Runge-Kutta-Gill method along with shooting technique. The parameters of the problem are variable viscosity, buoyancy ratio, Lewis number, Prandtl number, Dufour effect, Soret effect, and Schmidt number. The velocity, temperature, and concentration distributions are presented graphically. The Nusselt number and Sherwood number are also derived and discussed numerically.

  7. MHD Convective Flow of Jeffrey Fluid Due to a Curved Stretching Surface with Homogeneous-Heterogeneous Reactions.

    Directory of Open Access Journals (Sweden)

    Maria Imtiaz

    Full Text Available This paper looks at the flow of Jeffrey fluid due to a curved stretching sheet. Effect of homogeneous-heterogeneous reactions is considered. An electrically conducting fluid in the presence of applied magnetic field is considered. Convective boundary conditions model the heat transfer analysis. Transformation method reduces the governing nonlinear partial differential equations into the ordinary differential equations. Convergence of the obtained series solutions is explicitly discussed. Characteristics of sundry parameters on the velocity, temperature and concentration profiles are analyzed by plotting graphs. Computations for pressure, skin friction coefficient and surface heat transfer rate are presented and examined. It is noted that fluid velocity and temperature through curvature parameter are enhanced. Increasing values of Biot number correspond to the enhancement in temperature and Nusselt number.

  8. Group method analysis of mixed convection stagnation-point flow of non-Newtonian nanofluid over a vertical stretching surface

    Science.gov (United States)

    Nabwey, Hossam A.; Boumazgour, Mohamed; Rashad, A. M.

    2017-07-01

    The group method analysis is applied to study the steady mixed convection stagnation-point flow of a non-Newtonian nanofluid towards a vertical stretching surface. The model utilized for the nanofluid incorporates the Brownian motion and thermophoresis effects. Applying the one-parameter transformation group which reduces the number of independent variables by one and thus, the system of governing partial differential equations has been converted to a set of nonlinear ordinary differential equations, and these equations are then computed numerically using the implicit finite-difference scheme. Comparison with previously published studies is executed and the results are found to be in excellent agreement. Results for the velocity, temperature, and the nanoparticle volume fraction profiles as well as the local skin-friction coefficient and local Nusselt number are presented in graphical and tabular forms, and discussed for different values of the governing parameters to show interesting features of the solutions.

  9. APPLICATION OF GRANULATION TECHNOLOGY IN VARIOUS INDUSTRIES

    Directory of Open Access Journals (Sweden)

    B. V. YEGOROV

    2017-10-01

    Full Text Available Science and practice proved the high efficiency of granulated mixed fodders. This article presents an overview of granulation technologies for various industries. This article discusses the application of granulation technologies in various industries. The processes of granulation are mass technological processes currently used in a wide range of industries: feed industry, food industry, pharmaceutical industry, fertilizer production, polyethylene, metal production, mining, etc. A wide range of different materials are granulated, including chemicals, iron ore, mixed fodder, and much more. Granulation is a process of pressing or shaping a material in the form of granulesGranulation is widely used in the production of pigments, dyes, synthetic detergents, catalysts, plastics, soot, chemical reagents, etc. The use of granular raw materials in the metallurgical industry helps not only to mechanize processes, but also to increase their intensity by increasing the contact surface of interacting media. Granular fertilizers retain their properties for a long time. In the mining industry, granulation processes are used at the stage of preparation and enrichment of raw materials and release of the finished product.  Particular attention is paid to the feed industry. Granulation allows to ensure stable homogeneity, to improve sanitary and hygienic parameters, to increase nutritional value, to increase the storage period, improve the physical properties. However, despite all the advantages, the existing granulation production lines have a relatively high productivity and, at the same time, a high energy intensity. In this regard, this article proposes a technology for improving the granulation of mixed fodders. According to a preliminary literary review, It should be concluded that improving the technology of the granulation process for feed production is a topical issue in the feed industry today. The development of technology for improving the

  10. Coupled thermo-capillary and buoyancy convection in a liquid layer locally heated on its free surface

    International Nuclear Information System (INIS)

    Favre, E.

    1997-01-01

    Coupled buoyancy and thermo-capillary convection lead to a convective motion of the interface liquid/gas, which changes drastically the heat and mass transfer across the liquid layer. Two experiments are considered, depending on the fluid: oil or mercury. The liquid is set in a cooled cylindrical vessel, and heated by a heat flux across the center of the free surface. The basic flow, in the case of oil, is a torus. When the heat parameter increases, a stationary flow looking like petals or rays appears when the aspect ratio length/depth is small, and like concentric rings in the case of large values of the aspect ratio. The lateral confinement selects the azimuthal length wave. In the case of petals-like flow, a sub-critical Hopf bifurcation is underlined. The turbulence is found to be 'weak', even for the largest values of the Marangoni number (Ma ≅ 1.3 * 10 5 ). In the case of mercury, the thermo-capillary effect is reduced to zero, due to impurities at the surface, which have special trajectories we describe and compare to a simpler experiment. The only buoyancy forces induces an un-stationary, weakly turbulent flow as soon as the heating power exceeds 4 W (≅ 4.5 * 10 3 , calculated with h = 1 mm). The last part concerns the analysis of the effect on the flow of the boundary conditions, the geometry, the Prandtl number, the buoyancy force, with the help of the literature. Results concerning heat transfer, especially the exponent of the law Nusselt number vs. heating power, are compared with available data. (author) [fr

  11. The INCOMPASS project field and modelling campaign: Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea

    Science.gov (United States)

    Turner, Andrew; Bhat, Ganapati; Evans, Jonathan; Madan, Ranju; Marsham, John; Martin, Gill; Mitra, Ashis; Mrudula, Gm; Parker, Douglas; Pattnaik, Sandeep; Rajagopal, En; Taylor, Christopher; Tripathi, Sachchida

    2017-04-01

    The INCOMPASS project uses data from a field and aircraft measurement campaign during the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. Here we will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles from aircraft data. We

  12. Metallicity effect on stellar granulation detected from oscillating red giants in open clusters

    Science.gov (United States)

    Corsaro, E.; Mathur, S.; García, R. A.; Gaulme, P.; Pinsonneault, M.; Stassun, K.; Stello, D.; Tayar, J.; Trampedach, R.; Jiang, C.; Nitschelm, C.; Salabert, D.

    2017-08-01

    Context. The effect of metallicity on the granulation activity in stars, and hence on the convective motions in general, is still poorly understood. Available spectroscopic parameters from the updated APOGEE-Kepler catalog, coupled with high-precision photometric observations from NASA's Kepler mission spanning more than four years of observation, make oscillating red giant stars in open clusters crucial testbeds. Aims: We aim to determine the role of metallicity on the stellar granulation activity by discriminating its effect from that of different stellar properties such as surface gravity, mass, and temperature. We analyze 60 known red giant stars belonging to the open clusters NGC 6791, NGC 6819, and NGC 6811, spanning a metallicity range from [Fe/H] ≃ - 0.09 to 0.32. The parameters describing the granulation activity of these stars and their frequency of maximum oscillation power, νmax, are studied while taking into account different masses, metallicities, and stellar evolutionary stages. We derive new scaling relations for the granulation activity, re-calibrate existing ones, and identify the best scaling relations from the available set of observations. Methods: We adopted the Bayesian code Diamonds for the analysis of the background signal in the Fourier spectra of the stars. We performed a Bayesian parameter estimation and model comparison to test the different model hypotheses proposed in this work and in the literature. Results: Metallicity causes a statistically significant change in the amplitude of the granulation activity, with a dependency stronger than that induced by both stellar mass and surface gravity. We also find that the metallicity has a significant impact on the corresponding time scales of the phenomenon. The effect of metallicity on the time scale is stronger than that of mass. Conclusions: A higher metallicity increases the amplitude of granulation and meso-granulation signals and slows down their characteristic time scales toward

  13. Influence of the convective surface transfer coefficients on the Heat, Air, and Moisture (HAM) building performance

    DEFF Research Database (Denmark)

    Steskens, Paul Wilhelmus Maria Hermanus; Janssen, Hans; Rode, Carsten

    2009-01-01

    Current models to predict heat, air and moisture (HAM) conditions in buildings assume constant boundary conditions for the temperature and relative humidity of the neighbouring air and for the surface heat and moisture transfer coefficients. These assumptions may introduce errors in the predicted...... influence on the predicted hygrothermal conditions at the surface of a building component and on the heat and vapour exchange with the indoor environment....

  14. Investigating the Properties of Granulation in the Red Giants Observed by Kepler

    DEFF Research Database (Denmark)

    Mathur, S.; Hekker, S.; Trampedach, R.

    2012-01-01

    More than 1000 red giants have been observed by NASA/Kepler mission during a nearly continuous period of ˜ 13 months. The resulting high-frequency resolution (<0.03 μHz) allows us to study the granulation parameters of these stars. The granulation pattern results from the convection motions leadi...

  15. Investigating the Properties of Granulation in the Red Giants Observed by Kepler

    NARCIS (Netherlands)

    Mathur, S.; Hekker, S.; Trampedach, R.; Ballot, J.; Kallinger, T.; Buzasi, D.; García, R.A.; Huber, D.; Jiménez, A.; Mosser, B.; Bedding, T.R.; Elsworth, Y.; Régulo, C.; Stello, D.; Chaplin, W.J.; De Ridder, J.; Hale, S.J.; Kinemuchi, K.; Kjeldsen, H.; Mullally, F.; Thompson, S.E.

    2012-01-01

    More than 1000 red giants have been observed by NASA/Kepler mission during a nearly continuous period of ˜ 13 months. The resulting high-frequency resolution (< 0.03 μHz) allows us to study the granulation parameters of these stars. The granulation pattern results from the convection motions leading

  16. In silico modeling of in situ fluidized bed melt granulation.

    Science.gov (United States)

    Aleksić, Ivana; Duriš, Jelena; Ilić, Ilija; Ibrić, Svetlana; Parojčić, Jelena; Srčič, Stanko

    2014-05-15

    Fluidized bed melt granulation has recently been recognized as a promising technique with numerous advantages over conventional granulation techniques. The aim of this study was to evaluate the possibility of using response surface methodology and artificial neural networks for optimizing in situ fluidized bed melt granulation and to compare them with regard to modeling ability and predictability. The experiments were organized in line with the Box-Behnken design. The influence of binder content, binder particle size, and granulation time on granule properties was evaluated. In addition to the response surface analysis, a multilayer perceptron neural network was applied for data modeling. It was found that in situ fluidized bed melt granulation can be used for production of spherical granules with good flowability. Binder particle size had the most pronounced influence on granule size and shape, suggesting the importance of this parameter in achieving desired granule properties. It was found that binder content can be a critical factor for the width of granule size distribution and yield when immersion and layering is the dominant agglomeration mechanism. The results obtained indicate that both in silico techniques can be useful tools in defining the design space and optimization of in situ fluidized bed melt granulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Convective heater

    Science.gov (United States)

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  18. Boiling of a Liquid on Microstructured Surfaces Under Free-Convection Conditions

    Science.gov (United States)

    Shchelchkov, A. V.; Popov, I. A.; Zubkov, N. N.

    2016-09-01

    The authors have shown the possibilities of replacing complex and expensive technologies of manufacture of nanorough, microrough, and porous materials for boiling surfaces by a simple and resource-saving technique of mechanical treatment of surfaces: by the strain-cutting method. It has been established that the maximum levels of heat-transfer intensification (as high as four to six times) during the boiling of distilled water and increase (of six times) in the critical heat fluxes are inherent in surfaces obtained by the strain-cutting method with three-dimensional microfinning with spacings of width 120-180 μm at a height of fins of 340-570 μm and their longitudinal spacing of 240-400 μm.

  19. Anaerobic sludge granulation

    NARCIS (Netherlands)

    Hulshoff Pol, L.W.; Castro Lopes, de S.I.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades
    This paper reviews different theories on anaerobic sludge granulation in UASB-reactors that have been proposed during the past two decades. The initial

  20. Combined natural convection and surface radiation in the annular region between a volumetrically heated inner tube and a finite conducting outer tube

    International Nuclear Information System (INIS)

    Gianoulakis, S.; Klein, D.E.

    1993-01-01

    Buoyancy-driven natural-convection heat transfer in enclosures has been the subject of considerable research with applications to electronic packaging, solar collectors, and shipping containers for spent nuclear fuel. A numerical study has been carried out to predict combined natural-convection and radiation heat transfer in the annular region between concentric tubes. The inner tube was volumetrically heated. Both tubes were of finite conductance. The surfaces of the annular region were diffuse and gray. The gas in the annulus was assumed to be nonparticipating. A newly developed hybrid finite element finite difference method was used for the study. This method combines finite element discretization of geometries with finite difference discretized solution procedures for the governing differential equations. This study examined the effects of surface radiative properties and material conductivities on the temperature and velocity fields and on local heat transfer rates. Fluid Raleigh numbers ranging from 10 3 to 10 7 , ratios of solid to fluid region thermal conductivities ranging from 10 to 10 4 , and surface total hemispherical emissivities ranging from 0.0 to 1.0 were examined in this study. It was found that the heat transfer across the annulus was dominated by conduction and radiation for the lower Raleigh number flows. As the fluid Raleigh number increased, convection became a primary mode of heat transfer. As the surface emissivity was increased in the annulus, the average Nusselt number on the inner tube surface decreased

  1. Analytical and numerical study of natural convection in a stably stratified fluid along vertical plates and cylinders with temporally-periodic surface temperature variations

    International Nuclear Information System (INIS)

    Shapiro, A.; Fedorovich, E.

    2005-01-01

    This paper describes one-dimensional (parallel) laminar and transitional regimes of natural convection in a viscous stably stratified fluid due to temporally-periodic variations in the surface temperature of infinite vertical plates and cylinders. Analytical solutions are obtained for the periodic laminar regime for arbitrary values of stratification, Prandtl number and forcing frequency. The solutions for plates and cylinders are qualitatively similar and show that (i) the flows are composed of two waves that decay exponentially with distance from the surface; a fast long wave and a slow short wave, (ii) for forcing frequencies less than the natural frequency, both waves propagate away from the surface, while (iii) for forcing frequencies less than this natural frequency, the short wave propagates away from the surface while the long wave propagates toward the surface. The analytical results are complemented, for the plate problem, with three-dimensional numerical simulations of flows that start from rest and are suddenly subjected to a periodic thermal forcing. The numerical results depict the transient (start-up) stage of the laminar flow and the approach to the periodicity, and confirm that the analytical solutions provide the appropriate description of the periodic regime for the laminar convection case. Preliminary numerical data are presented for transition from the laminar to turbulent convection. (authors)

  2. HIGH-RESOLUTION CALCULATION OF THE SOLAR GLOBAL CONVECTION WITH THE REDUCED SPEED OF SOUND TECHNIQUE. II. NEAR SURFACE SHEAR LAYER WITH THE ROTATION

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H.; Rempel, M. [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Yokoyama, T., E-mail: hotta@ucar.edu [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-01-01

    We present a high-resolution, highly stratified numerical simulation of rotating thermal convection in a spherical shell. Our aim is to study in detail the processes that can maintain a near surface shear layer (NSSL) as inferred from helioseismology. Using the reduced speed of sound technique, we can extend our global convection simulation to 0.99 R {sub ☉} and include, near the top of our domain, small-scale convection with short timescales that is only weakly influenced by rotation. We find the formation of an NSSL preferentially in high latitudes in the depth range of r = 0.95-0.975 R {sub ☉}. The maintenance mechanisms are summarized as follows. Convection under the weak influence of rotation leads to Reynolds stresses that transport angular momentum radially inward in all latitudes. This leads to the formation of a strong poleward-directed meridional flow and an NSSL, which is balanced in the meridional plane by forces resulting from the 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 correlation of turbulent velocities. The origin of the required correlations depends to some degree on latitude. In high latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 is induced in the NSSL by the poleward meridional flow whose amplitude increases with the radius, while a negative correlation is generated by the Coriolis force in bulk of the convection zone. In low latitudes, a positive correlation 〈v{sub r}{sup ′}v{sub θ}{sup ′}〉 results from rotationally aligned convection cells ({sup b}anana cells{sup )}. The force caused by these Reynolds stresses is in balance with the Coriolis force in the NSSL.

  3. Exponentially varying viscosity of magnetohydrodynamic mixed convection Eyring-Powell nanofluid flow over an inclined surface

    Science.gov (United States)

    Khan, Imad; Fatima, Sumreen; Malik, M. Y.; Salahuddin, T.

    2018-03-01

    This paper explores the theoretical study of the steady incompressible two dimensional MHD boundary layer flow of Eyring-Powell nanofluid over an inclined surface. The fluid is considered to be electrically conducting and the viscosity of the fluid is assumed to be varying exponentially. The governing partial differential equations (PDE's) are reduced into ordinary differential equations (ODE's) by applying similarity approach. The resulting ordinary differential equations are solved successfully by using Homotopy analysis method. The impact of pertinent parameters on velocity, concentration and temperature profiles are examined through graphs and tables. Also coefficient of skin friction, Sherwood and Nusselt numbers are illustrated in tabular and graphical form.

  4. Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface

    Science.gov (United States)

    Dettenrieder, Fabian; Bodony, Daniel

    2016-11-01

    Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.

  5. Unsteady mixed convection flow of a micro-polar fluid near the stagnation point on a vertical surface

    Energy Technology Data Exchange (ETDEWEB)

    Lok, Y.Y. [Center for Academic Services, Kolej Universiti Teknikal Kebangsaan Malaysia, 75450 Ayer Keroh, Melaka (Malaysia); Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2006-12-15

    The unsteady mixed convection boundary-layer flow of a micro-polar fluid near the region of the stagnation point on a double-infinite vertical flat plate is studied. It is assumed that the unsteadiness is caused by the impulsive motion of the free stream velocity and by sudden increase or sudden decrease in the surface temperature from the uniform ambient temperature. The problem is reduced to a system of non-dimensional partial differential equations, which is solved numerically using the Keller-box method. This method may present well-behaved solutions for the transient (small time) solution and those of the steady-state flow (large time) solution. It was found that there is a smooth transition from the small-time solution (initial unsteady-state flow) to the large-time solution (final steady-state flow). Further, it is shown that for both assisting and opposing cases and a fixed value of the Prandtl number, the reduced steady-state skin friction and the steady-state heat transfer from the wall (or Nusselt number) decrease with the increase of the material parameter. On the other hand, it is shown that with the increase of the Prandtl number and a fixed value of the material parameter, the reduced steady-state skin friction decreases when the flow is assisting and it increases when the flow is opposing. (author)

  6. Fem Simulation of Triple Diffusive Natural Convection Along Inclined Plate in Porous Medium: Prescribed Surface Heat, Solute and Nanoparticles Flux

    Directory of Open Access Journals (Sweden)

    Goyal M.

    2017-12-01

    Full Text Available In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.

  7. Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Layek, G C; Seth, G S

    2014-01-01

    A mathematical model is presented to study the Soret and Dufour effects on the convective heat and mass transfer in stagnation-point flow of viscous incompressible fluid towards a shrinking surface. Suitable similarity transformations are used to convert the governing partial differential equations into self-similarity ordinary differential equations that are then numerically solved by shooting method. Dual solutions for temperature and concentration are obtained in the presence of Soret and Dufour effects. Graphical representations of the heat and mass transfer coefficients, the dimensionless thermal and solute profiles for various values of Prandtl number, Lewis number, Soret number and Dufour number are demonstrated. With Soret number the mass transfer coefficient which is related to mass transfer rate increases for both solutions and the heat transfer coefficient (related to heat transfer rate) for both solutions becomes larger with Dufour number. The Prandtl number causes reduction in heat and the mass transfer coefficients and similarly with the Lewis number mass transfer coefficient decreases. Also, double crossing over is found in dual dimensionless temperature profiles for increasing Soret number and in dual dimensionless concentration profiles for the increase in Dufour number. Due to the larger values of Dufour number the thermal boundary layer increases and for Prandtl number increment it decreases; whereas, the solute boundary layer thickness reduces with increasing values of Prandtl number and Lewis number. (paper)

  8. Fem Simulation of Triple Diffusive Natural Convection Along Inclined Plate in Porous Medium: Prescribed Surface Heat, Solute and Nanoparticles Flux

    Science.gov (United States)

    Goyal, M.; Goyal, R.; Bhargava, R.

    2017-12-01

    In this paper, triple diffusive natural convection under Darcy flow over an inclined plate embedded in a porous medium saturated with a binary base fluid containing nanoparticles and two salts is studied. The model used for the nanofluid is the one which incorporates the effects of Brownian motion and thermophoresis. In addition, the thermal energy equations include regular diffusion and cross-diffusion terms. The vertical surface has the heat, mass and nanoparticle fluxes each prescribed as a power law function of the distance along the wall. The boundary layer equations are transformed into a set of ordinary differential equations with the help of group theory transformations. A wide range of parameter values are chosen to bring out the effect of buoyancy ratio, regular Lewis number and modified Dufour parameters of both salts and nanofluid parameters with varying angle of inclinations. The effects of parameters on the velocity, temperature, solutal and nanoparticles volume fraction profiles, as well as on the important parameters of heat and mass transfer, i.e., the reduced Nusselt, regular and nanofluid Sherwood numbers, are discussed. Such problems find application in extrusion of metals, polymers and ceramics, production of plastic films, insulation of wires and liquid packaging.

  9. [Study on fluidized melt-granulation. I. Examination of the factors on the granulation].

    Science.gov (United States)

    Haramiishi, Y; Kitazawa, Y; Sakai, M; Kataoka, K

    1991-09-01

    The purpose of this study is to develop a new granulation method by using a fluidized-bed granulator, which requires a nucleus with a low melting point as a binder. This method was named as fluidized melt-granulation. The technique is very simple and useful. In this paper, the granulation mechanism and the effect of the physico-chemical properties of raw materials on the growth of the granules were investigated. The results were as follows: (1) The mixture of the nucleus and the other powder particles was heated up to the melting point of the nucleus by hot inlet air, immediately resulting in the generation of the adhesion of the powders on the melted nucleus. The granules grew as the melted material immersed into the void space among the adhered particles. (2) The lower the viscosity of the melted nucleus was, the faster the granule grew. (3) The shape and the size of the nucleus affected those of the products. (4) The optimum mixing ratio between the nucleus and the granulated materials existed and it depended on the ratio between the surface areas of these materials.

  10. Theories for convection in stellar atmospheres

    International Nuclear Information System (INIS)

    Nordlund, Aa.

    1976-02-01

    A discussion of the fundamental differences between laboratory convection in a stellar atmosphere is presented. The shortcomings of laterally homogeneous model atmospheres are analysed, and the extent to which these shortcoming are avoided in the two-component representation is discussed. Finally a qualitative discussion on the scaling properties of stellar granulation is presented. (Auth.)

  11. Examining the Impacts of High-Resolution Land Surface Initialization on Model Predictions of Convection in the Southeastern U.S.

    Science.gov (United States)

    Case, Jonathan L.; Kumar, Sujay V.; Santos, Pablo; Medlin, Jeffrey M.; Jedlovec, Gary J.

    2009-01-01

    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within physics parameterizations, model resolution limitations, as well as uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture and temperature, ground fluxes, and vegetation are necessary to better simulate the interactions between the land surface and atmosphere, and ultimately improve predictions of local circulations and summertime pulse convection. The NASA Short-term Prediction Research and Transition (SPORT) Center has been conducting studies to examine the impacts of high-resolution land surface initialization data generated by offline simulations of the NASA Land Informatiot System (LIS) on subsequent numerical forecasts using the Weather Research and Forecasting (WRF) model (Case et al. 2008, to appear in the Journal of Hydrometeorology). Case et al. presents improvements to simulated sea breezes and surface verification statistics over Florida by initializing WRF with land surface variables from an offline LIS spin-up run, conducted on the exact WRF domain and resolution. The current project extends the previous work over Florida, focusing on selected case studies of typical pulse convection over the southeastern U.S., with an emphasis on improving local short-term WRF

  12. Mining the granule proteome

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Goetze, Jens P; Johnsen, Anders H

    2015-01-01

    Proteomics of secretory granules is an emerging strategy for identifying secreted proteins, including potentially novel candidate biomarkers and peptide hormones. In addition, proteomics can provide information about the abundance, localization and structure (post-translational modification) of g...

  13. Hydromagnetic slip flow of water based nano-fluids past a wedge with convective surface in the presence of heat generation (or) absorption

    International Nuclear Information System (INIS)

    Rahman, M.M.; Al-Lawatia, M.A.; Eltayeb, I.A.; Al-Salti, N.

    2012-01-01

    Heat transfer characteristics of a two-dimensional steady hydromagnetic slip flow of water based nano-fluids (TiO 2 -water, Al 2 O 3 -water, and Cu-water) over a wedge with convective surface taking into account the effects of heat generation (or absorption) has been investigated numerically. The local similarity solutions are obtained by using very robust computer algebra software MATLAB and presented graphically as well as in a tabular form. The results show that nano-fluid velocity is lower than the velocity of the base fluid and the existence of the nano-fluid leads to the thinning of the hydrodynamic boundary layer. The rate of shear stress is significantly influenced by the surface convection parameter and the slip parameter. It is higher for nano-fluids than the base fluid. The results also show that within the boundary layer the temperature of the nano-fluid is higher than the temperature of the base fluid. The rate of heat transfer is found to increase with the increase of the surface convection and the slip parameters. Addition of nano-particles to the base fluid induces the rate of heat transfer. The rate of heat transfer in the Cu-water nano-fluid is found to be higher than the rate of heat transfer in the TiO 2 -water and Al 2 O 3 -water nano-fluids. (authors)

  14. Antimicrobial-Coated Granules for Disinfecting Water

    Science.gov (United States)

    Akse, James R.; Holtsnider, John T.; Kliestik, Helen

    2011-01-01

    Methods of preparing antimicrobialcoated granules for disinfecting flowing potable water have been developed. Like the methods reported in the immediately preceding article, these methods involve chemical preparation of substrate surfaces (in this case, the surfaces of granules) to enable attachment of antimicrobial molecules to the surfaces via covalent bonds. A variety of granular materials have been coated with a variety of antimicrobial agents that include antibiotics, bacteriocins, enzymes, bactericides, and fungicides. When employed in packed beds in flowing water, these antimicrobial-coated granules have been proven effective against gram-positive bacteria, gram-negative bacteria, fungi, and viruses. Composite beds, consisting of multiple layers containing different granular antimicrobial media, have proven particularly effective against a broad spectrum of microorganisms. These media have also proven effective in enhancing or potentiating the biocidal effects of in-line iodinated resins and of very low levels of dissolved elemental iodine.

  15. Comparison of the granulation behavior of three different excipients in a laboratory fluidized bed granulator using statistical methods.

    Science.gov (United States)

    Schinzinger, Oliver; Schmidt, Peter C

    2005-01-01

    The granulation process and, subsequently, the tableting behavior of the resulting granules of alpha-lactose-monohydrate, dicalcium phosphate anhydrous, and potato starch were investigated using statistical designs. The three substances were chosen due to their differences in granulation and tableting behavior, such as water solubility, swelling, and compressional properties. Granulation process variables, namely the inlet air temperature, spray rate, binder concentration of granulating solution, and inlet air flow rate were investigated. A central composite design was applied to study the granulation of alpha-lactose-monohydrate. Granulations of dicalcium phosphate and potato starch were investigated using a 2(3) factorial design, in which the effects of the inlet air temperature, spray rate, and binder concentration were considered. To compare the granulation behavior of theses substances the particle size distribution, angle of repose, and yield of the granules were used as responses for the statistical designs. The granules were compressed into tablets and the tensile strength was used as an additional statistical response. Based on the process parameters, models were developed using multiple regression modeling for each examined response. These models were then used to optimize the granulation process that provides granules with a Sauter mean diameter of D32 between 300 and 500 microm, an angle of repose smaller than 36 degrees and a granule yield above 90%. Moreover, the values of the tensile strength of the tablets should be between 1.6 and 2.5 N/mm2. The intersections of the response surfaces of each examined substance were compared using contour plots. To achieve the largest "satisfactory zone," the granulations of milled alpha-lactose-monohydrate, dicalcium phosphate, or potato starch should be performed at low inlet air temperatures.

  16. RESEARCH OF MICROWAVE DRYING OF NATURAL ZEOLITE GRANULES AND ITS INFLUENCE ON THE TECHNOLOGICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Rybachuk V.D.

    2016-06-01

    Full Text Available Introduction. The wet granulation technique is often used in the preparation of free-flowing granules in the manufacture of tablets and capsules. It is very important that granules obtained by this technology be dried before further processing. And also, it is important that the method of drying is entirely controlled and managed and the result is quite predictable. In recent years, microwave drying of granules make a considerable interest. Microwave drying is especially useful for moisture sensitive materials which are mostly pharmaceutical substances. Microwave drying technology is useful for dosage forms with high purity, since this method provides the possibility of drying in the same container production, which reduces the chance of cross contamination of matter and its direct contact with staff. The aim of this work was to study the effect of microwave radiation on the technological properties of natural zeolite peets compared to traditional convection method and to determine the optimal drying modes and specific humidity of the material. Material & methods. Granules were prepared by wet granulation technology by using a laboratory granulator NG-12. As the humidifier we used potato starch gel and PVP in an amount of 25% by weight of the dry product. The resulting granules were divided into two equal parts and subjected to drying in a microwave oven (Delfa D20MW of installed capacity (119 W, 280 W, 336 W, 462 W, ​​595 W and 700 W and shelf dryer to a residual moisture level of 0.01 g.w./g.d.m. or less. Determination of the specific humidity of granules was carried out by mass loss on drying. Fractional composition of granules was determined using a standard set of sieves with the diameter of the holes 2.0; 1.0; 0.5 and 0.25 mm. The friability of the granules was determined using friabilator Pharma Test PTF 10E / ER, Germany. To characterize the fluidity of granule Carr`s indicator (IC and coefficient Hausnera (HR. Results & discussion

  17. SUPERGRANULATION AS THE LARGEST BUOYANTLY DRIVEN CONVECTIVE SCALE OF THE SUN

    Energy Technology Data Exchange (ETDEWEB)

    Cossette, Jean-Francois [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States); Rast, Mark P. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO (United States)

    2016-09-20

    The origin of solar supergranulation remains a mystery. Unlike granulation, the size of which is comparable to both the thickness of the radiative boundary layer and local scale-height in the photosphere, supergranulation does not reflect any obvious length scale of the solar convection zone. Moreover, recent observations of flows in the photosphere using Doppler imaging or correlation or feature tracking show a monotonic decrease in horizontal flow power at scales larger than supergranulation. Both local area and global spherical shell simulations of solar convection by contrast show the opposite, an increase in horizontal flow amplitudes to a low wavenumber. We examine these disparities and investigate how the solar supergranulation may arise as a consequence of nonlocal heat transport by cool diving plumes. Using three-dimensional anelastic simulations with surface driving, we show that the kinetic energy of the largest convective scales in the upper layers of a stratified domain reflects the depth of transition from strong buoyant driving to adiabatic stratification below caused by the dilution of the granular downflows. This depth is quite shallow because of the rapid increase of the mean density below the photosphere. We interpret the observed monotonic decrease in solar convective power at scales larger than supergranulation to be a consequence of this rapid transition, with the supergranular scale the largest buoyantly driven mode of convection in the Sun.

  18. Isolation of RNP granules

    DEFF Research Database (Denmark)

    Jønson, Lars; Nielsen, Finn Cilius; Christiansen, Jan

    2011-01-01

    The post-transcriptional operon provides a means of synexpression of mRNAs encoding interrelated proteins. The coordination of gene expression may be achieved by a trans-acting RNA-binding protein attaching to similar cis-elements in different, yet functionally clustered, mRNAs. The RNP granule can...... be regarded as a supramolecular assembly of RNA and protein, probably representing several overlapping post-transcriptional operons. The present protocol describes how RNP granules may be isolated by the transgenic expression of a 3X FLAG version of an RNA-binding protein under tetracycline control via...

  19. Experimental study of urea granulation

    International Nuclear Information System (INIS)

    Irshad, U.; Sharif, M.N.; Rabbani, F.; Rauf, A.; Saleem, M.

    2009-01-01

    Urea is a nitrogenous fertilizer available in two commercial forms, prills and granules, in Pakistan. Prills are more common in Pakistan, however, it has some problems associated with it. Those are moisture, biuret contents of urea prills, prill size, hardness of prills, caking of prills and urea dust emission. Due to these problems urea granulation is favoured over prilling. Urea granulation is studied on laboratory scale using pan granulator and effect of different parameters like binders (water and urea solution), quantity of binders, rpm of pan granulator, time of granulation and angle of inclination on granulation yield is studied. Water and urea solutions of different concentrations are used and results reveal that concentration of urea solution is proportional to rate of granulation. A threshold quantity of binder is required for optimum granulation yield. RPM of pan is inversely proportional to rate of granulation. Granulation yield is also proportional to time of granulation however it becomes critical at a certain point. Angle of inclination of pan has no significant effects on granulation yield. (author)

  20. Growth and Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha

    Science.gov (United States)

    Beeby, Morgan; Cho, Mimi

    2012-01-01

    The bacterium Ralstonia eutropha forms cytoplasmic granules of polyhydroxybutyrate that are a source of biodegradable thermoplastic. While much is known about the biochemistry of polyhydroxybutyrate production, the cell biology of granule formation and growth remains unclear. Previous studies have suggested that granules form either in the inner membrane, on a central scaffold, or in the cytoplasm. Here we used electron cryotomography to monitor granule genesis and development in 3 dimensions (3-D) in a near-native, “frozen-hydrated” state in intact Ralstonia eutropha cells. Neither nascent granules within the cell membrane nor scaffolds were seen. Instead, granules of all sizes resided toward the center of the cytoplasm along the length of the cell and exhibited a discontinuous surface layer more consistent with a partial protein coating than either a lipid mono- or bilayer. Putatively fusing granules were also seen, suggesting that small granules are continually generated and then grow and merge. Together, these observations support a model of biogenesis wherein granules form in the cytoplasm coated not by phospholipid but by protein. Previous thin-section electron microscopy (EM), fluorescence microscopy, and atomic force microscopy (AFM) results to the contrary may reflect both differences in nucleoid condensation and specimen preparation-induced artifacts. PMID:22178974

  1. Influence of binder droplet dimension on granulation rate during fluidized bed granulation.

    Science.gov (United States)

    Fujiwara, Maya; Dohi, Masafumi; Otsuka, Tomoko; Yamashita, Kazunari; Sako, Kazuhiro

    2013-01-01

    Here, we statistically identified the critical factor of the granulation rate during the fluidized bed granulation process. Lactose was selected as the excipient and was granulated with several binders, including hydroxypropyl cellulose, hydroxypropyl methyl cellulose, and polyvinylpyrrolidone. The viscosity, density, and surface tension of the binder solution, contact angle, and the work done during adhesion and cohesion between the binder and lactose, mist diameter, Stokes number, and the dimension of the droplet were considered. The Stokes number was defined as the ratio of the inertial force to the viscous-damping force of a particle. We confirmed that droplet diameter after adhesion had the highest correlation coefficient with the granulation rate constant in our investigated parameters. Partial least squares regression revealed two critical principal components of the granulation rate: one relating to the droplet dimension, which is composed of mist diameter and diameter and thickness of the droplet after adhesion of the binder to the lactose surface; and the other relating to wettability, which involves the work done during adhesion and cohesion, surface tension, and the thickness of the droplet after adhesion of the binder to the lactose surface.

  2. Improvements of condenser performance with granulate balls

    International Nuclear Information System (INIS)

    Bratthaell, L.

    1986-05-01

    At the nuclear power plant Oskarshamn has during time Nov 1983 - Apr 1985 test series been done to investigate the improvements of condensor performance with granulate balls. This type of ball is a normal sponge rubber ball coated with granulated plastic material. This material is, different from carborundum and pumice not abrasive to the tube material. The test results show that granulate balls give an improvement of the overall heat transfer coefficient of 5-7 percent compared to continous cleaning with normal sponge rubber balls. Granulate balls remove the utmost thin coating of organic material that the spong rubber balls are not able to remove and a practically metallic clean surface is established. This has been verified by laboratory inspection of tubes withdrawn from the tube bundle and site inspections of the condenser. When the condenser is cleaned by granulate balls during a period of about three days it is possible to keep the performance at a high level for a long time with continous cleaning with normal sponge rubber balls. After about three days the plastic layer on the balls is practically worned out. The balls have during that time fulfilled their function. The improvement in condenser temperature is 1,0-1,5 degree C. For the 02-turbine this means additional delivered energy of about 15000 MWh per year. (author)

  3. Evidence for transonic flows in the solar granulation

    Science.gov (United States)

    Nesis, A.; Bogdan, T. J.; Cattaneo, F.; Hanslmeier, A.; Knoelker, M.; Malagoli, A.

    1992-01-01

    High-resolution observations of the solar granulation are interpreted in the light of recent numerical simulations of compressible convection. The observations show a negative correlation between the width of suitably chosen, nonmagnetic lines and the continuum intensity. This result is consistent with a model of granular convection where regions of supersonic horizontal flow form intermittently in the vicinity of the downflow lanes. We conjecture that the observed line broadening in the regions of low intensity is caused by enhanced turbulent fluctuations generated by the passage of shock fronts bounding the regions of supersonic motion.

  4. Mixed convection boundary-layer flow from a horizontal circular cylinder with a constant surface heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Nazar, R.; Amin, N. [Department of Mathematics, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Pop, I. [Faculty of Mathematics, University of Cluj, R-3400 Cluj, CP 253 (Romania)

    2004-02-01

    The laminar mixed convection boundary-layer flow of a viscous and incompressible fluid past a horizontal circular cylinder, which is maintained at a constant heat flux and is placed in a stream flowing vertically upward has been theoretically studied in this paper. The solutions for the flow and heat transfer characteristics are evaluated numerically for different values of the mixed convection parameter {lambda} with the Prandtl number Pr = 1 and 7, respectively. It is found, as for the case of a heated or cooled cylinder, considered by Merkin [5], that assisting flow delays separation of the boundary-layer and can, if the assisting flow is strong enough, suppress it completely. The opposing flow, on the other side, brings the separation point nearer to the lower stagnation point and for sufficiently strong opposing flows there will not be a boundary-layer on the cylinder. (orig.)

  5. Effect of Variable Viscosity on Vortex Instability of Non-Darcy Mixed Convection Boundary Layer Flow Adjacent to a Nonisothermal Horizontal Surface in a Porous Medium

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2012-01-01

    Full Text Available We study the effect of variable viscosity on the flow and vortex instability for non-Darcy mixed convection boundary layer flow on a nonisothermal horizontal plat surface in a saturated porous medium. The variation of viscosity is expressed as an exponential function of temperature. The analysis of the disturbance flow is based on linear stability theory. The base flow equations and the resulting eigenvalue problem are solved using finite difference schemes. It is found that the variable viscosity effect enhances the heat transfer rate and destabilizes the flow for liquid heating, while the opposite trend is true for gas heating.

  6. Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices.

    Science.gov (United States)

    Zhang, Guang; Jiang, Shaohui; Yao, Wei; Liu, Changhong

    2016-11-16

    Owing to the outstanding properties of thermal conduction, lightweight, and chemical durability, carbon nanotubes (CNTs) have revealed promising applications in thermal management materials. Meanwhile, the increasingly popular portable electronics and the rapid development of space technology need lighter weight, smaller size, and more effective thermal management devices. Here, a novel kind of heat dissipation devices based on the superaligned CNT films and underlying microchannels is proposed, and the heat dissipation properties are measured at the natural condition. Distinctive from previous studies, by combining the advantages of microchannels and CNTs, such a novel heat dissipation device enables superior natural convection heat transfer properties. Our findings prove that the novel CNT-based devices could show an 86.6% larger total natural heat dissipation properties than bare copper plate. Further calculations of the radiation and natural convection heat transfer properties demonstrate that the excellent passive cooling properties of these CNT-based devices are primarily caused by the reinforcement of the natural convection heat transfer properties. Furthermore, the heat dissipation mechanisms are briefly discussed, and we propose that the very high heat transfer coefficients and the porous structures of superaligned CNT films play critical roles in reinforcing the natural convection. The novel CNT-based heat dissipation devices also have advantages of energy-saving, free-noise, and without additional accessories. So we believe that the CNT-based heat dissipation devices would replace the traditional metal-finned heat dissipation devices and have promising applications in electronic devices, such as photovoltaic devices, portable electronic devices, and electronic displays.

  7. Influence of process variable and physicochemical properties on the granulation mechanism of mannitol in a fluid bed top spray granulator.

    Science.gov (United States)

    Bouffard, Jonathan; Kaster, Meagan; Dumont, Hubert

    2005-10-01

    This study investigated the influence of specific process variables, including the hydroxypropyl cellulose (HPC) binder solution atomization, on the fluidized bed top spray granulation of mannitol. Special attention was given to the relationship between wetting and the granule growth profile. The atomization of the HPC binder solution using a binary nozzle arrangement produced droplets of decreasing size as the atomization pressure was increased, while changes in the spray rate had little effect on the mean droplet size. Increasing the HPC binder concentration from 2 to 8% w/w increased the binder droplet size and was most likely attributed to higher solution viscosity. The top spray granulation of mannitol showed induction type growth behavior. Process conditions like high spray rate, low fluidizing air velocity and binder solution concentration that promote the availability of HPC binder solution at the surface of the particles appeared to be key in enhancing nucleation and growth of the granules. Increasing the bed moisture level, up to a certain value, reduced the contribution of attrition to the overall growth profile of the granule and, more significantly, produced less granule breakage on drying. It was observed that the mean granule size could be reduced as much as 40% between the end of granulation and the end of drying for lower initial bed moisture level despite a shorter drying phase. High atomization pressure, especially when maintained during the drying phase, contributed substantially to granule breakage.

  8. Heat convection

    Energy Technology Data Exchange (ETDEWEB)

    Jiji, L.M. [City Univ. of New York, NY (United States). Dept. of Mechanical Engineering

    2006-07-01

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the following ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters. (orig.)

  9. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  10. Experimental study of wet granulation in fluidized bed: impact of the binder properties on the granule morphology.

    Science.gov (United States)

    Rajniak, P; Mancinelli, C; Chern, R T; Stepanek, F; Farber, L; Hill, B T

    2007-04-04

    In this work, the effect of the physicochemical properties of aqueous hydroxypropyl-cellulose (HPC) binder solutions and different pharmaceutical excipients (mannitol and anhydrous CaHPO(4)) on the agglomeration kinetics and granule properties were investigated. First, a particle size distribution (PSD) analysis together with a detailed analysis of morphological properties of the excipient particles were performed. Second, the viscosity, density, surface tension and size of the spray droplets of binder solutions with different HPC concentrations were determined and wetting characteristics of the binders on the excipients were measured. Third, several fluid bed wet granulation experiments were conducted for pure excipients and their blends with binder solution of different HPC concentrations in a pilot plant Wurster granulator. The observed granule growth for different binder concentrations was a strong function of the binder concentration and the excipient solubility. For mannitol, a significant "coating" period followed by a slow granule growth was observed for the case with the diluted 5% binder. The "coating" period was significantly shorter for the 10% HPC binder and did not exist for the 15% HPC for which immediate and fast granule growth was observed. For anhydrous CaHPO(4) (trademark A-TAB), no growth was observed for the 10% HPC binder and a long coating period followed by fast granule growth was observed for the 15% HPC. Simple physically based criteria were also evaluated, which employ the morphological properties of excipients (size and surface roughness) together with physical properties of the used binder for prediction of the coating versus agglomeration regime at given flow conditions (collision velocity). As expected, a preferential coalescence and growth of the mannitol granules from the blend of mannitol+A-TAB was observed. Finally, the mechanical and morphological properties of the produced granules were measured and correlated to the HPC

  11. Properties of convective motions in facular regions

    Science.gov (United States)

    Kostik, R.; Khomenko, E. V.

    2012-09-01

    Aims: We study the properties of solar granulation in a facular region from the photosphere up to the lower chromosphere. Our aim is to investigate the dependence of granular structure on magnetic field strength. Methods: We used observations obtained at the German Vacuum Tower Telescope (Observatorio del Teide, Tenerife) using two different instruments: the Triple Etalon SOlar Spectrometer (TESOS) to measure velocity and intensity variations along the photosphere in the Ba ii 4554 Å line; and, simultaneously, the Tenerife Infrared Polarimeter (TIP-II) to the measure Stokes parameters and the magnetic field strength at the lower photosphere in the Fe i 1.56 μm lines. Results: We find that the convective velocities of granules in the facular area decrease with magnetic field while the convective velocities of intergranular lanes increase with the field strength. Similar to the quiet areas, there is a contrast and velocity sign reversal taking place in the middle photosphere. The reversal heights depend on the magnetic field strength and are, on average, about 100 km higher than in the quiet regions. The correlation between convective velocity and intensity decreases with magnetic field at the bottom photosphere, but increases in the upper photosphere. The contrast of intergranular lanes observed close to the disk center is almost independent of the magnetic field strength. Conclusions: The strong magnetic field of the facular area seems to stabilize the convection and to promote more effective energy transfer in the upper layers of the solar atmosphere, since the convective elements reach greater heights.

  12. Investigating the Impact of Surface Heterogeneity on the Convective Boundary Layer Over Urban Areas Through Coupled Large-Eddy Simulation and Remote Sensing

    Science.gov (United States)

    Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.

    2011-01-01

    Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.

  13. Granulation of increasingly hydrophobic formulations using a twin screw granulator.

    Science.gov (United States)

    Yu, Shen; Reynolds, Gavin K; Huang, Zhenyu; de Matas, Marcel; Salman, Agba D

    2014-11-20

    The application of twin screw granulation in the pharmaceutical industry has generated increasing interest due to its suitability for continuous processing. However, an understanding of the impact of formulation properties such as hydrophobicity on intermediate and finished product quality has not yet been established. Hence, the current work investigated the granulation behaviour of three formulations containing increasing amounts of hydrophobic components using a Consigma™-1 twin screw granulator. Process conditions including powder feed rate, liquid to solid ratio, granulation liquid composition and screw configuration were also evaluated. The size of the wet granules was measured in order to enable exploration of granulation behaviour in isolation without confounding effects from downstream processes such as drying. The experimental observations indicated that the granulation process was not sensitive to the powder feed rate. The hydrophobicity led to heterogeneous liquid distribution and hence a relatively large proportion of un-wetted particles. Increasing numbers of kneading elements led to high shear and prolonged residence time, which acted to enhance the distribution of liquid and feeding materials. The bimodal size distributions considered to be characteristic of twin screw granulation were primarily ascribed to the breakage of relatively large granules by the kneading elements. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A transilient matrix for moist convection

    Energy Technology Data Exchange (ETDEWEB)

    Romps, D.; Kuang, Z.

    2011-08-15

    A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z{prime} for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere.

  15. Convection-enhanced water evaporation

    Directory of Open Access Journals (Sweden)

    B. M. Weon

    2011-03-01

    Full Text Available Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive evaporation in nanoliter water droplets. This suggests that convection of water vapor would enhance water evaporation at nanoliter scales, for instance, on microdroplets or inside nanochannels.

  16. Modeling convection-diffusion-reaction systems for microfluidic molecular communications with surface-based receivers in Internet of Bio-Nano Things.

    Science.gov (United States)

    Kuscu, Murat; Akan, Ozgur B

    2018-01-01

    We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.

  17. Convection-enhanced water evaporation

    OpenAIRE

    B. M. Weon; J. H. Je; C. Poulard

    2011-01-01

    Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplet...

  18. Spray granulation for drug formulation.

    Science.gov (United States)

    Loh, Zhi Hui; Er, Dawn Z L; Chan, Lai Wah; Liew, Celine V; Heng, Paul W S

    2011-12-01

    Granulation is a key unit process in the production of pharmaceutical solid dosage forms and involves the agglomeration of fine particles with the aid of a binding agent. Fluidized bed granulation, a classic example of spray granulation, is a technique of particle agglomeration brought about by the spray addition of the binding liquid onto a stationary bed of powder particles that is transformed to a fluid-like state by the passage of air through it. The basic working principles, equipment set-up, advantages and challenges of fluidized bed granulation are introduced in this review. This is followed by an overview of the formulation and process-related variables affecting granulation performance. Technological advances, particularly in the application of process analytical tools, in the field of fluidized bed granulation research are also discussed. Fluidized bed granulation is a popular technique for pharmaceutical production, as it is a highly economical and efficient one-pot process. The research and development of process analytical technologies (PAT) has allowed greater process understanding and control to be achieved, even for the lesser known fluidized bed techniques, such as bottom spray and fluidized hot melt granulation. In view of its consistent mixing, as well as continuous and concurrent wetting and drying occurring throughout processing, fluidized bed granulation shows great potential for continuous production although more research is required to fully implement, validate and integrate the PAT tools in a production line.

  19. The development of a growth regime map for a novel reverse-phase wet granulation process.

    Science.gov (United States)

    Wade, Jonathan B; Martin, Gary P; Long, David F

    2016-10-15

    The feasibility of a novel reverse-phase wet granulation process has been established and potential advantages identified. Granule growth in the reverse-phase process proceeds via a steady state growth mechanism controlled by capillary forces, whereas granule growth in the conventional process proceeds via an induction growth regime controlled by viscous forces. The resultant reverse-phase granules generally have greater mass mean diameter and lower intragranular porosity when compared to conventional granules prepared under the same liquid saturation and impeller speed conditions indicating the two processes may be operating under different growth regimes. Given the observed differences in growth mechanism and consolidation behaviour of the reverse-phase and conventional granules the applicability of the current conventional granulation regime map is unclear. The aim of the present study was therefore to construct and evaluate a growth regime map, which depicts the regime as a function of liquid saturation and Stokes deformation number, for the reverse-phase granulation process. Stokes deformation number was shown to be a good predictor of both granule mass mean diameter and intragranular porosity over a wide range of process conditions. The data presented support the hypothesis that reverse-phase granules have a greater amount of surface liquid present which can dissipate collision energy and resist granule rebound resulting in the greater granule growth observed. As a result the reverse-phase granulation process results in a greater degree of granule consolidation than that produced using the conventional granulation process. Stokes deformation number was capable of differentiating these differences in the granulation process. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Internal Wave Generation by Convection

    Science.gov (United States)

    Lecoanet, Daniel Michael

    In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the

  1. Effects of Thermal Radiation on Mixed Convection Flow of a Micropolar Fluid from an Unsteady Stretching Surface with Viscous Dissipation and Heat Generation/Absorption

    Directory of Open Access Journals (Sweden)

    Khilap Singh

    2016-01-01

    Full Text Available A numerical model is developed to examine the effects of thermal radiation on unsteady mixed convection flow of a viscous dissipating incompressible micropolar fluid adjacent to a heated vertical stretching surface in the presence of the buoyancy force and heat generation/absorption. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The model contains nonlinear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. The dimensionless governing equations for this investigation are solved by Runge-Kutta-Fehlberg fourth fifth-order method with shooting technique. Numerical solutions are then obtained and investigated in detail for different interesting parameters such as the local skin-friction coefficient, wall couple stress, and Nusselt number as well as other parametric values such as the velocity, angular velocity, and temperature.

  2. Correlation between loose density and compactibility of granules prepared by various granulation methods.

    Science.gov (United States)

    Murakami, H; Yoneyama, T; Nakajima, K; Kobayashi, M

    2001-03-23

    The objectives of this study were to prepare the lactose granules by various granulation methods using polyethylene glycol 6000 (PEG 6000) as a binder and to evaluate the effects of granulation methods on the compressibility and compactibility of granules in tabletting. Lactose was granulated by seven granulation methods -- four wet granulations including wet massing granulation, wet high-speed mixer granulation, wet fluidized bed granulation and wet tumbling fluidized bed granulation; and three melt granulations including melt high-speed mixer granulation, melt fluidized bed granulation and melt tumbling fluidized bed granulation. The loose density, angle of repose, granule size distribution, mean diameter of granules, and the tensile strength and porosity of tablets were evaluated. The compactibilities of granules were varied by the granulation methods. However, the difference in compactibility of granules could not be explained due to the difference in compressibility, since there was no difference in Heckel plots due to granulation methods. Among their granule properties, the loose density of granules seemed to have a correlation with the tablet strength regardless of the granulation methods.

  3. Granulation techniques and technologies: recent progresses.

    Science.gov (United States)

    Shanmugam, Srinivasan

    2015-01-01

    Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical properties such as granule size, bulk density, porosity, hardness, moisture, compressibility, etc. together with physical and chemical stability of the drug. Granulation process can be divided into two types: wet granulation that utilize a liquid in the process and dry granulation that requires no liquid. The type of process selection requires thorough knowledge of physicochemical properties of the drug, excipients, required flow and release properties, to name a few. Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note. Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable. This review focuses on the recent progress in the granulation techniques and technologies such as pneumatic dry granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, thermal adhesion granulation, freeze granulation, and foamed binder or foam granulation. This review gives an overview of these with a short description about each development along with its significance and limitations.

  4. Prediction of suitable amount of water addition for wet granulation.

    Science.gov (United States)

    Miwa, A; Yajima, T; Itai, S

    2000-02-15

    The purpose of this study was to predict the amounts of water addition suitable for pharmaceutical formulations in wet granulation, using a high-speed mixer or a fluidized bed granulator, before granulation trials. In order to determine the suitable amount of water addition, each excipient was first subjected to kneading with water in a mortar and a refractive near-infrared moisture sensor (IR sensor) measured the amount of water at the powder surface. Further by analysis the plot (output value of the IR sensor vs. amount of added water) for each excipient, the amount of water addition for granulation was determined for it. As a second step, two model formulations were designed and suitable amounts of water for granulation were predicted by summation of the obtained excipient values. The predicted value was compared with the experimental value for high-speed mixer granulation. The predicted and experimental amounts of water addition corresponded for the two model formulations, suggesting that the above method is useful for estimating suitable amounts of addition of water for formulations before granulation trials.

  5. National Convective Weather Diagnostic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current convective hazards identified by the National Convective Weather Detection algorithm. The National Convective Weather Diagnostic (NCWD) is an automatically...

  6. Convection and stellar oscillations

    DEFF Research Database (Denmark)

    Aarslev, Magnus Johan

    2017-01-01

    energy exchange between convection and pulsations, i.e. the modal part of the surface effect. Studying excitation and damping mechanisms requires a non-adiabatic treatment. A major part of my research has been modelling damping rates of red giant stars observed by {\\Kp}. The basis for the non...... atmospheres to replace the outer layers of stellar models. The additional turbulent pressure and asymmetrical opacity effects in the atmosphere model, compared to convection in stellar evolution models, serve to expand the atmosphere. The enlarged acoustic cavity lowers the pulsation frequencies bringing them....... However, the effects are barely prominent enough to be distinguishable with today's observational precision. But it does provide means of determining the mixing-length and enables consistent patching. The previously mentioned investigations are based on adiabatic frequency calculations, which neglect...

  7. Convective blueshifts in the solar atmosphere. I. Absolute measurements with LARS of the spectral lines at 6302 Å

    Science.gov (United States)

    Löhner-Böttcher, J.; Schmidt, W.; Stief, F.; Steinmetz, T.; Holzwarth, R.

    2018-03-01

    Context. The solar convection manifests as granulation and intergranulation at the solar surface. In the photosphere, convective motions induce differential Doppler shifts to spectral lines. The observed convective blueshift varies across the solar disk. Aim. We focus on the impact of solar convection on the atmosphere and aim to resolve its velocity stratification in the photosphere. Methods: We performed high-resolution spectroscopic observations of the solar spectrum in the 6302 Å range with the Laser Absolute Reference Spectrograph at the Vacuum Tower Telescope. A laser frequency comb enabled the calibration of the spectra to an absolute wavelength scale with an accuracy of 1 m s-1. We systematically scanned the quiet Sun from the disk center to the limb at ten selected heliocentric positions. The analysis included 99 time sequences of up to 20 min in length. By means of ephemeris and reference corrections, we translated wavelength shifts into absolute line-of-sight velocities. A bisector analysis on the line profiles yielded the shapes and convective shifts of seven photospheric lines. Results: At the disk center, the bisector profiles of the iron lines feature a pronounced C-shape with maximum convective blueshifts of up to -450 m s-1 in the spectral line wings. Toward the solar limb, the bisectors change into a "\\"-shape with a saturation in the line core at a redshift of +100 m s-1. The center-to-limb variation of the line core velocities shows a slight increase in blueshift when departing the disk center for larger heliocentric angles. This increase in blueshift is more pronounced for the magnetically less active meridian than for the equator. Toward the solar limb, the blueshift decreases and can turn into a redshift. In general, weaker lines exhibit stronger blueshifts. Conclusions: Best spectroscopic measurements enabled the accurate determination of absolute convective shifts in the solar photosphere. We convolved the results to lower spectral

  8. Evidence for small-scale convection in the Pacific and Atlantic upper mantle from joint analysis of surface wave phase velocity and seafloor bathymetry

    Science.gov (United States)

    Ma, Z.; Dalton, C. A.

    2017-12-01

    It has been long observed that the rate of seafloor subsidence in the Pacific Ocean is lower than predicted by half-space cooling at ages older than 70 Myr. The magnitude, geographical distribution, onset time, and physical origin of the flattening are fundamental to our understanding of the evolution of oceanic lithosphere, and give important constraints on the Earth's heat budget and ocean volume throughout its history. However, none of these quantities is well established even after a long history of debates. Here, we present evidence from bathymetry and seismic tomography for the wide-scale operation of small-scale convection in the Pacific and Atlantic upper mantle. We track the temporal evolution of surface wave phase velocity and seafloor topography along age trajectories, which connect each piece of seafloor with the ridge segment that created it. The half-space cooling model (HSCM) and plate cooling model are used to predict the age dependence of phase velocity and bathymetry and to identify, for each age trajectory, the age at which the HSCM fails to explain the observations. The phase velocity and bathymetry are analyzed independently and yet yield identical results for more than 80% of points. We observe a wide range of ages at which the HSCM fails in the Atlantic and a much narrower range in the Pacific. We find that the age at which the HSCM fails is anti-correlated with the present-day depth of the ridge axis, with younger failure ages corresponding to deeper ridge axes and therefore colder mantle beneath the ridge.Such dependence is best explained by the small-scale convection model in which the effective viscosity of the lithosphere is regulated by the dehydration process that happens at the mid-ocean ridges. Decompression melting at a ridge removes water from the mantle and generates a depleted, dehydrated, and viscous layer. Since high mantle potential temperatures cause decompression melting to begin at greater depths, the thickness of the

  9. Combining floating continents and a free surface in a 3D spherical mantle convection model with self-consistent plate tectonics

    Science.gov (United States)

    Rolf, T.; Crameri, F.; Tackley, P. J.

    2012-04-01

    The dynamics of the Earth's lithosphere and mantle are strongly influenced by its upper mechanical boundary condition. For instance, our previous work has shown that a necessity for the evolution of Earth-like, single-sided subduction is a free surface, which allows for vertical movement of the two converging plates, i.e. the development of surface topography [Crameri et al (2012), in press]. Single-sided subduction has an important effect on the evolution of self-consistent plate tectonics, e.g. by shaping subduction trenches. However, due to the usage of a homogeneous, i.e. purely oceanic, lithosphere these models tend to favour the rigid lid mode of plate tectonics for a realistic strength of the lithosphere, which is in contradiction to the present-day Earth. In contrast, our previous work with a pre-existing heterogeneous structure of the lithosphere has shown that the presence of continents floating at the top of the mantle may play an important role in the evolution of plate tectonics. Convective stresses may be focussed at the rheological boundary between continent and ocean, which facilitates the formation of plate boundaries and makes the Earth-like, mobile lid mode of plate tectonics easier to observe [Rolf & Tackley (2011)]. However, in these models subduction is single-sided when one oceanic and one continental plate converge, but double-sided in the case of two converging oceanic plates. Taking the previous findings as a motivation, we now combine both ingredients: the free surface and the heterogeneous lithosphere, in one self-consistent model. We approximate the free surface by using a "sticky air" layer [Schmeling et al, 2008; Crameri et al., submitted] and the continents by strong Archaean cratons, which can resist recycling on long timescales [Rolf & Tackley (2011)]. Such a model might produce single-sided subduction that is continuously evolving supported by the presence of continents. Performing global-scale self-consistent mantle convection

  10. Collages of granulation pictures

    International Nuclear Information System (INIS)

    Dunn, R.B.; November, L.J.

    1985-01-01

    This paper describes two small-area selection schemes that the authors have applied to CCD observations of solar granulation. The first scheme, which the authors call the ''mosaic,'' divides the 128 x 128 array into 64 subarrays each containing 16 x 16 pixels. On each picture in the burst the RMS contrast of the fine structure is measured in each subarray and compared to the corresponding value in a table that contains the highest previous RMS values. The second scheme, which the authors call a ''collage,'' is similar except the RMS value is calculated smoothly within a sliding Gaussian window over the entire scene and the value of an individual pixel is gated into the final collage whenever the RMS contrast at that pixel location exceeds that of all previous frames taken during the burst

  11. Coupling granule properties and granulation rates in high-shear granulation

    NARCIS (Netherlands)

    Biggs, CA; Sanders, C; Scott, AC; Willemse, AW; Hoffman, AC; Instone, T; Salman, AD; Hounslow, MJ

    2003-01-01

    It is possible to link granulation rates to granule properties. The linkage is by multiple dimension population balance equations that, by means of simplifying assumptions, can be reduced to multiple one-dimensional (1-D) population balance equations (PBES). Using simple physically based models,

  12. Evaluation of the Fertilizer Granules Strength Obtained from Plate Granulation with Different Angle of Granulation Blade

    Directory of Open Access Journals (Sweden)

    Leszczuk Tomasz

    2014-09-01

    Full Text Available The goal of the paper was to assess the strength of the fertilizer granules obtained by non-pressure granulation method. The granulation process was carried out in plate granulator, according to the three-level experiment plan. A mixture of raw materials prepared in a Polish factory of agrochemicals for agriculture and horticulture was used as a study material and water was used as a wetting liquid. Granulator design parameters and process parameters were treated as entrance sizes of the experiment. Three different angles of granulation blade were used in experiments. This paper presents: the results of study of equivalent diameter size and the impact of changes in the angle of granulating blade on the strength of obtained granulate. Pfost apparatus and a set of sieves used in granulometric sieve were utilized in this study. A relation was suggested P∞ = f(α, ϰ, n, ww, t. The results were presented in the form of graphs and tables. Conclusions were presented.

  13. Air-dictated bottom spray process: impact of fluid dynamics on granule growth and morphology.

    Science.gov (United States)

    Liew, Celine V; Er, Dawn Z L; Heng, Paul W S

    2009-07-01

    Growing interest in the use of the less-explored bottom spray technique for fluidized bed granulation provided impetus for this study. The impact of fluid dynamics (air accelerator insert diameter; partition gap) and wetting (binder spray rate) on granule properties were investigated. In this 3(3) full factorial study, the results were fitted to a quadratic model using response surface methodology. The air velocity at the spray granulation zone for the investigated conditions was measured using a pitot tube. Air accelerator insert diameter correlated to measured air velocity at the spray granulation zone and was found to not only dictate growth but also influence granule morphology. The partition gap was found to play important roles in regulating particle movement into the spray granulation zone and optimizing process yields, whereas binder spray rate significantly affected granule morphology but not granule size. Unlike conventional fluidized bed granulation, ease of modulation of fluid dynamics and insensitivity of the bottom spray process to wetting allow flexible control of granule size, shape, and flow. Its good drying ability also indicated potential use in granulating moisture-sensitive materials.

  14. Study growth kinetics in fluidized bed granulation with at-line FBRM.

    Science.gov (United States)

    Hu, Xinhui; Cunningham, John C; Winstead, Denita

    2008-01-22

    In this study, a novel at-line focused beam reflectance measurement (FBRM) technique was developed to investigate granule growth in a fluidized bed granulation (FBG). The chord length distribution (CLD) measured by the FBRM was used to represent granule particle size distribution (PSD). Through a systematic study, it was proved that the trends of the chord length measured by the at-line FBRM technique were identical to those measured by a laser diffraction instrument and sieve analysis in spite of different measurement mechanisms. The portable at-line FBRM technique was successfully applied to a granule growth kinetics study for a fluidized bed granulation performed in a Glatt GPCG-1 granulator. Granule size evolution was clearly exhibited by the at-line FBRM. Spray rate was found to be the most significant factor on the granule growth compared with the other two factors: binder solution concentration and intra- to extra-granular microcrystalline cellulose (MCC) ratio for the formulation studied in this work. The CLD evolution measured by the FBRM confirmed that the granule agglomeration was mainly dominated by the binder on the granule surface. The at-line FBRM enables us to select appropriate process parameters and effectively control the fluid bed granulation process.

  15. In vitro binding of puroindolines to wheat starch granules

    DEFF Research Database (Denmark)

    Sørensen, Helle Aagaard; Darlington, H.F.; Shewry, P.R.

    2001-01-01

    Puroindoline (pin) preparations made from flours of hard and soft wheats contained a mixture of pin-a, 0.19/0.53 alpha -amylase inhibitor, and purothionins. Starch granule preparations from the same cultivars were treated with proteinase to remove surface proteins and incubated with solutions...... of the pin preparations. Binding of pin-a and purothionins but not the 0.19/0.53 inhibitor was observed with no apparent differences between the behavior of the pin preparations or starch granule preparations from hard or soft types. No binding was observed when several other proteins (bovine serum albumin......, total albumins, a commercial preparation of wheat alpha -amylase inhibitors, and barley beta -amylase) were incubated with the starch granules under the same conditions, indicating that in vitro binding can be used to study specific starch granule and protein interactions....

  16. [Quantitative structure characteristics and fractal dimension of Chinese medicine granules measured by synchrotron radiation X-ray computed micro tomography].

    Science.gov (United States)

    Lu, Xiao-long; Zheng, Qin; Yin, Xian-zhen; Xiao, Guang-qing; Liao, Zu-hua; Yang, Ming; Zhang, Ji-wen

    2015-06-01

    The shape and structure of granules are controlled by the granulation process, which is one of the main factors to determine the nature of the solid dosage forms. In this article, three kinds of granules of a traditional Chinese medicine for improving appetite and promoting digestion, namely, Jianwei Granules, were prepared using granulation technologies as pendular granulation, high speed stirring granulation, and fluidized bed granulation and the powder properties of them were investigated. Meanwhile, synchrotron radiation X-ray computed micro tomography (SR-µCT) was applied to quantitatively determine the irregular internal structures of the granules. The three-dimensional (3D) structure models were obtained by 3D reconstruction, which were more accurately to characterize the three-dimensional structures of the particles through the quantitative data. The models were also used to quantitatively compare the structural differences of granules prepared by different granulation processes with the same formula, so as to characterize how the production process plays a role in the pharmaceutical behaviors of the granules. To focus on the irregularity of the particle structure, the box counting method was used to calculate the fractal dimensions of the granules. The results showed that the fractal dimension is more sensitive to reflect the minor differences in the structure features than the conventional parameters, and capable to specifically distinct granules in structure. It is proved that the fractal dimension could quantitatively characterize the structural information of irregular granules. It is the first time suggested by our research that the fractal dimension difference (Df,c) between two fractal dimension parameters, namely, the volume matrix fractal dimension and the surface matrix fractal dimension, is a new index to characterize granules with irregular structures and evaluate the effects of production processes on the structures of granules as a new

  17. Prédiction des structures convectives terrestres

    OpenAIRE

    Bello , Léa

    2015-01-01

    Since its formation, the Earth is slowly cooling. The heat produced by the core and the radioactive decay in the mantle is evacuated toward the surface by convection. The evolving convective structures thereby created control a diversity of surface phenomena such as vertical motion of continents or sea level variation. The study presented here attempts to determine which convective structures can be predicted, to what extent and over what timescale. Because of the chaotic nature of convection...

  18. Aerosol properties and their impacts on surface CCN at the ARM Southern Great Plains site during the 2011 Midlatitude Continental Convective Clouds Experiment

    Science.gov (United States)

    Logan, Timothy; Dong, Xiquan; Xi, Baike

    2018-02-01

    Aerosol particles are of particular importance because of their impacts on cloud development and precipitation processes over land and ocean. Aerosol properties as well as meteorological observations from the Department of Energy Atmospheric Radiation Measurement (ARM) platform situated in the Southern Great Plains (SGP) are utilized in this study to illustrate the dependence of continental cloud condensation nuclei (CCN) number concentration ( N CCN) on aerosol type and transport pathways. ARM-SGP observations from the 2011 Midlatitude Continental Convective Clouds Experiment field campaign are presented in this study and compared with our previous work during the 2009-10 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer field campaign over the current ARM Eastern North Atlantic site. Northerly winds over the SGP reflect clean, continental conditions with aerosol scattering coefficient ( σ sp) values less than 20 Mm-1 and N CCN values less than 100 cm-3. However, southerly winds over the SGP are responsible for the observed moderate to high correlation ( R) among aerosol loading ( σ sp moisture via the Gulf of Mexico, indicating a strong dependence on air mass type. NASA MERRA-2 reanalysis aerosol and chemical data are moderately to highly correlated with surface ARM-SGP data, suggesting that this facility can represent surface aerosol conditions in the SGP, especially during strong aerosol loading events that transport via the Gulf of Mexico. Future long-term investigations will help to understand the seasonal influences of air masses on aerosol, CCN, and cloud properties over land in comparison to over ocean.

  19. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout

    2013-01-01

    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  20. Influence of Lorentz force, Cattaneo-Christov heat flux and viscous dissipation on the flow of micropolar fluid past a nonlinear convective stretching vertical surface

    Science.gov (United States)

    Gnaneswara Reddy, Machireddy

    2017-12-01

    The problem of micropolar fluid flow over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation is investigated. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model effect is properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton's methods are utilized to resolve the altered governing nonlinear equations. Obtained numerical results are compared with the available literature and found to be an excellent agreement. The impacts of dimensionless governing flow pertinent parameters on velocity, micropolar velocity and temperature profiles are presented graphically for two cases (linear and nonlinear) and analyzed in detail. Further, the variations of skin friction coefficient and local Nusselt number are reported with the aid of plots for the sundry flow parameters. The temperature and the related boundary enhances enhances with the boosting values of M. It is found that fluid temperature declines for larger thermal relaxation parameter. Also, it is revealed that the Nusselt number declines for the hike values of Bi.

  1. Numerical analysis for MHD thermal and solutal stratified stagnation point flow of Powell-Eyring fluid induced by cylindrical surface with dual convection and heat generation effects

    Science.gov (United States)

    Khalil-Ur-Rehman; Malik, M. Y.; Bilal, S.; Bibi, M.

    The current analysis reports the untapped characteristics of magneto-hydrodynamic dual convection boundary layer stagnation point flow of Powell-Eyring fluid by way of cylindrical surface. Flow exploration is carried out with the combined effects of thermal and solutal stratification. The strength of temperature and concentration adjacent to the cylindrical surface is assumed to be greater than the ambient fluid. Flow conducting mathematically modelled equations are fairly transformed into system of coupled non-linear ordinary differential equations with the aid of suitable transformations. The computations are made against these resultant coupled equations through shooting technique by the support of fifth order Runge-Kutta algorithm. A parametric study is performed to examine the effect logs of various pertinent flow controlling parameters on the velocity, temperature and concentration flow regime. The achieved outcomes are validated by developing comparison with existing published literature. In addition, numerical values of skin friction coefficient and Nusselt number are presented graphically for two different geometries namely, plate and cylinder.

  2. Granulation of acetaminophen by a rotating fluidized-bed granulator.

    Science.gov (United States)

    Kawaguchi, T; Sunada, H; Yonezawa, Y; Danjo, K; Hasegawa, M; Makino, T; Sakamoto, H; Fujita, K; Tanino, T; Kokubo, H

    2000-01-01

    The purpose of this research was to evaluate the use of a rotating fluidized-bed granulator to produce acetaminophen granules with sufficient binding force between particles and good plasticity in tablets. Ethenzamide and ascorbic acid were used to compare the relationship between granulation and the sample wetness. It was revealed that a blade rotation rate of 300 rpm, inlet air flow rate of 42 m3/hr, and spraying pressure of 1.5 kg/cm3 produced tablets with the best properties. The granule and tablet properties of ethenzamide and ascorbic acid were compared to those of acetaminophen. These compounds showed different wetting behaviors with water and different compression behaviors. With an increase in medicament content, tablet hardness increased except for the ascorbic acid formulation. Capping and sticking were observed in acetaminophen and in ascorbic acid, respectively, and acetaminophen and ethenzamide showed prolonged disintegration time.

  3. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation

    DEFF Research Database (Denmark)

    Kumar, Ashish; Alakarjula, Maija; Vanhoorne, Valérie

    2016-01-01

    elements in the granulator screw allowing the production of granules with a size distribution appropriate for tableting. The distribution of residence time and granulation liquid is governed by the field conditions (such as location and length of mixing zones) in the twin-screw granulator, thus contain...

  4. Rice starch granule amylolysis--differentiating effects of particle size, morphology, thermal properties and crystalline polymorph.

    Science.gov (United States)

    Dhital, Sushil; Butardo, Vito M; Jobling, Stephen A; Gidley, Michael J

    2015-01-22

    The underlying mechanism of amylolysis of rice starch granules was investigated using isolated starch granules from wild-type, as well as SBEIIb mutant and down-regulated lines. Fused granule agglomerates isolated from mutant and transgenic lines were hydrolysed at similar rates by amylases, and had similar crystalline patterns and thermal properties as individual granules. Surface pores, a feature previously only reported for A-polymorphic starch granules, were also observed in B- and C-polymorphic rice starch granules. Although the microscopic patterns of hydrolysis among granules with different crystalline polymorphs were qualitatively similar, the extent and the rate of amylolysis were different, suggesting that B-type crystalline polymorphs are intrinsically more resistant to enzymatic hydrolysis than A-type in rice starch granules. It is proposed that the slightly longer branch lengths of amylopectin which leads to the formation of more stable B-type double helical structures compared to their A-type counterparts is the major parameter, with other factors such as granule size, surface pores and interior channels having secondary roles, in determining the rate of enzymatic hydrolysis of rice starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Collages of granulation pictures

    Science.gov (United States)

    Dunn, R. B.; November, L. J.

    Two small-area selection schemes are applied to CCD observations of solar granulation. One procedure, referred to as mosaic, divides a 128 x 128 array into 64 subarrays of 16 x 16 pixels; the rms contrast of the fine structure is measured and compared in order to develop a mosaic of the subarrays. The second technique, collage, involves calculating rms values within a sliding Gaussian window and gating the pixel into the final image. Methods for assessing seeing quality, which involve the calculation of rms after high-pass filtering, are examined; a simple high-pass filter or an edge-locating function can be utilized for filtering. The rms map is then formed from the convolution of a Gaussian with either the high-pass or the Laplacian filters. The usefulness of the two procedures is demonstrated by applying the mosaic and collage processes to data recorded on July 17, 1983 with a CCD device on the NSO/Sac Peak Vacuum Tower Telescope.

  6. Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer.

    Science.gov (United States)

    Taheri-Garavand, Amin; Karimi, Fatemeh; Karimi, Mahmoud; Lotfi, Valiullah; Khoobbakht, Golmohammad

    2017-01-01

    The aim of the study is to fit models for predicting surfaces using the response surface methodology and the artificial neural network to optimize for obtaining the maximum acceptability using desirability functions methodology in a hot air drying process of banana slices. The drying air temperature, air velocity, and drying time were chosen as independent factors and moisture content, drying rate, energy efficiency, and exergy efficiency were dependent variables or responses in the mentioned drying process. A rotatable central composite design as an adequate method was used to develop models for the responses in the response surface methodology. Moreover, isoresponse contour plots were useful to predict the results by performing only a limited set of experiments. The optimum operating conditions obtained from the artificial neural network models were moisture content 0.14 g/g, drying rate 1.03 g water/g h, energy efficiency 0.61, and exergy efficiency 0.91, when the air temperature, air velocity, and drying time values were equal to -0.42 (74.2 ℃), 1.00 (1.50 m/s), and -0.17 (2.50 h) in the coded units, respectively.

  7. In-depth experimental analysis of pharmaceutical twin-screw wet granulation in view of detailed process understanding.

    Science.gov (United States)

    Verstraeten, Maxim; Van Hauwermeiren, Daan; Lee, Kai; Turnbull, Neil; Wilsdon, David; Am Ende, Mary; Doshi, Pankaj; Vervaet, Chris; Brouckaert, Davinia; Mortier, Séverine T F C; Nopens, Ingmar; Beer, Thomas De

    2017-08-30

    Twin-screw wet granulation is gaining increasing interest within the pharmaceutical industry for the continuous manufacturing of solid oral dosage forms. However, limited prior fundamental physical understanding has been generated relating to the granule formation mechanisms and kinetics along the internal compartmental length of a twin-screw granulator barrel, and about how process settings, barrel screw configuration and formulation properties such as particle size, density and surface properties influence these mechanisms. One of the main reasons for this limited understanding is that experimental data is generally only collected at the exit of the twin-screw granulator barrel although the granule formation occurs spatially along the internal length of the barrel. The purpose of this study is to analyze the twin-screw wet granulation process using both hydrophilic and hydrophobic formulations, manufactured under different process settings such as liquid-to-solid ratio, mass throughput and screw speed, in such a way that the mechanisms occurring in the individual granulator barrel compartments (i.e., the wetting and different conveying and kneading compartments) and their impact upon granule formation are understood. To achieve this, a unique experimental setup was developed allowing granule characteristic data-collection such as size, shape, liquid and porosity distribution at the different compartments along the length of the granulator barrel. Moreover, granule characteristic information per granule size class was determined. The experimental results indicated that liquid-to-solid ratio is the most important factor dictating the formation of the granules and their corresponding properties, by regulating the degree of aggregation and breakage in the different compartments along the internal length of the twin-screw granulator barrel. Collecting appropriate and detailed experimental data about granule formation along the internal length of the granulator barrel

  8. Two Secondary Carbohydrate Binding Sites on the Surface of Barley alpha-Amylase 1 Have Distinct Functions and Display Synergy in Hydrolysis of Starch Granules

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Bozonnet, Sophie; Seo, Eun-Seong

    2009-01-01

    Some polysaccharide processing enzymes possess secondary carbohydrate binding sites situated on the surface far from the active site. In barley alpha-amylase 1 (AMY1), two such sites, SBS1 and SBS2, are found on the catalytic (beta/alpha)8-barrel and the noncatalytic C-terminal domain, respective...

  9. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation.

    Science.gov (United States)

    Kumar, Ashish; Alakarjula, Maija; Vanhoorne, Valérie; Toiviainen, Maunu; De Leersnyder, Fien; Vercruysse, Jurgen; Juuti, Mikko; Ketolainen, Jarkko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2016-07-30

    Twin-screw granulation is a promising wet granulation technique for the continuous manufacturing of pharmaceutical solid dosage forms. A twin screw granulator displays a short residence time. Thus, the solid-liquid mixing must be achieved quickly by appropriate arrangement of transport and kneading elements in the granulator screw allowing the production of granules with a size distribution appropriate for tableting. The distribution of residence time and granulation liquid is governed by the field conditions (such as location and length of mixing zones) in the twin-screw granulator, thus contain interesting information on granulation time, mixing and resulting sub-processes such as wetting, aggregation and breakage. In this study, the impact of process (feed rate, screw speed and liquid-to-solid ratio) and equipment parameters (number of kneading discs and stagger angle) on the residence time (distribution), the granulation liquid-powder mixing and the resulting granule size distributions during twin-screw granulation were investigated. Residence time and axial mixing data was extracted from tracer maps and the solid-liquid mixing was quantified from moisture maps, obtained by monitoring the granules at the granulator outlet using near infra-red chemical imaging (NIR-CI). The granule size distribution was measured using the sieving method. An increasing screw speed dominantly reduced the mean residence time. Interaction of material throughput with the screw speed and with the number of kneading discs led to most variation in the studied responses including residence time and mixing capacity. At a high screw speed, granulation yield improved due to high axial mixing. However, increasing material throughput quickly lowers the yield due to insufficient mixing of liquid and powder. Moreover, increasing liquid-to-solid ratio resulted in more oversized granules, and the fraction of oversized granules further increased at higher throughput. Although an increasing number

  10. Granulation techniques and technologies: recent progresses

    OpenAIRE

    Shanmugam, Srinivasan

    2015-01-01

    Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical proper...

  11. The use of Rheology Combined with Differential Scanning Calorimetry to Elucidate the Granulation Mechanism of an Immiscible Formulation During Continuous Twin-Screw Melt Granulation.

    Science.gov (United States)

    Monteyne, Tinne; Heeze, Liza; Mortier, Severine Therese F C; Oldörp, Klaus; Cardinaels, Ruth; Nopens, Ingmar; Vervaet, Chris; Remon, Jean-Paul; De Beer, Thomas

    2016-10-01

    Twin screw hot melt granulation (TS HMG) is a valuable, but still unexplored alternative to continuous granulation of moisture sensitive drugs. However, knowledge of the material behavior during TS HMG is crucial to optimize the formulation, process and resulting granule properties. The aim of this study was to evaluate the agglomeration mechanism during TS HMG using a rheometer in combination with differential scanning calorimetry (DSC). An immiscible drug-binder formulation (caffeine-Soluplus(®)) was granulated via TS HMG in combination with thermal and rheological analysis (conventional and Rheoscope), granule characterization and Near Infrared chemical imaging (NIR-CI). A thin binder layer with restricted mobility was formed on the surface of the drug particles during granulation and is covered by a second layer with improved mobility when the Soluplus(®) concentration exceeded 15% (w/w). The formation of this second layer was facilitated at elevated granulation temperatures and resulted in smaller and more spherical granules. The combination of thermal and rheological analysis and NIR-CI images was advantageous to develop in-depth understanding of the agglomeration mechanism during continuous TS HMG and provided insight in the granule properties as function of process temperature and binder concentration.

  12. Numerical study of magnetohydrodynamics (MHD boundary layer slip flow of a Maxwell nanofluid over an exponentially stretching surface with convective boundary condition

    Directory of Open Access Journals (Sweden)

    P.BalaAnki Reddy

    2017-12-01

    Full Text Available This paper focuses on a theoretical analysis of a steady two-dimensional magnetohydrodynamic boundary layer flow of a Maxwell fluid over an exponentially stretching surface in the presence of velocity slip and convective boundary condition. This model is used for a nanofluid, which incorporates the effects of Brownian motion and thermophoresis. The resulting non-linear partial differential equations of the governing flow field are converted into a system of coupled non-linear ordinary differential equations by using suitable similarity transformations, and the resultant equations are then solved numerically by using Runge-Kutta fourth order method along with shooting technique. A parametric study is conducted to illustrate the behavior of the velocity, temperature and concentration. The influence of significant parameters on velocity, temperature, concentration, skin friction coefficient and Nusselt number has been studied and numerical results are presented graphically and in tabular form. The reported numerical results are compared with previously published works on various special cases and are found to be an in excellent agreement. It is found that momentum boundary layer thickness decreases with the increase of magnetic parameter. It can also be found that the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters.

  13. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    International Nuclear Information System (INIS)

    Baconnais, S.; Delavoie, F.; Zahm, J.M.; Milliot, M.; Terryn, C.; Castillon, N.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E.; Balossier, G.

    2005-01-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na + absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na + , Mg 2+ , P, S and Cl - ) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR inh -172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF

  14. Performance evaluation of land surface models and cumulus convection schemes in the simulation of Indian summer monsoon using a regional climate model

    Science.gov (United States)

    Maity, S.; Satyanarayana, A. N. V.; Mandal, M.; Nayak, S.

    2017-11-01

    In this study, an attempt has been made to investigate the sensitivity of land surface models (LSM) and cumulus convection schemes (CCS) using a regional climate model, RegCM Version-4.1 in simulating the Indian Summer Monsoon (ISM). Numerical experiments were conducted in seasonal scale (May-September) for three consecutive years: 2007, 2008, 2009 with two LSMs (Biosphere Atmosphere Transfer Scheme (BATS), Community Land Model (CLM 3.5) and five CCSs (MIT, KUO, GRELL, GRELL over land and MIT over ocean (GL_MO), GRELL over ocean and MIT over land (GO_ML)). Important synoptic features are validated using various reanalysis datasets and satellite derived products from TRMM and CRU data. Seasonally averaged surface temperature is reasonably well simulated by the model using both the LSMs along with CCSs namely, MIT, GO_ML and GL_MO schemes. Model simulations reveal slight warm bias using these schemes whereas significant cold bias is seen with KUO and GRELL schemes during all three years. It is noticed that the simulated Somali Jet (SJ) is weak in all simulations except MIT scheme in the simulations with (both BATS and CLM) in which the strength of SJ reasonably well captured. Although the model is able to simulate the Tropical Easterly Jet (TEJ) and Sub-Tropical Westerly Jet (STWJ) with all the CCSs in terms of their location and strength, the performance of MIT scheme seems to be better than the rest of the CCSs. Seasonal rainfall is not well simulated by the model. Significant underestimation of Indian Summer Monsoon Rainfall (ISMR) is observed over Central and North West India. Spatial distribution of seasonal ISMR is comparatively better simulated by the model with MIT followed by GO_ML scheme in combination with CLM although it overestimates rainfall over heavy precipitation zones. On overall statistical analysis, it is noticed that RegCM4 shows better skill in simulating ISM with MIT scheme using CLM.

  15. The Surface Energy Budget and Precipitation Efficiency for Convective Systems During TOGA, COARE, GATE, SCSMEX and ARM: Cloud-Resolving Model Simulations

    Science.gov (United States)

    Tao, W.-K.; Shie, C.-L.; Johnson, D; Simpson, J.; Starr, David OC. (Technical Monitor)

    2002-01-01

    A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.

  16. The Effect of Wetting on The Course of The Drum Granulation

    Directory of Open Access Journals (Sweden)

    Błaszczyk Michał

    2017-06-01

    Full Text Available This paper presents the results of experimental drum granulation of silica flour with the use of wetting liquids with different values of surface tension. Additionally, different liquid jet breakup and different residual moisture of the bed were applied in the tests. The process was conducted periodically in two stages: wetting and proper granulation, during which no liquid was supplied to the bed. The condition of the granulated material after the period of wetting (particle size distribution and moisture of separate fractions and a change in the particle size distribution during the further conduct of the process (granulation kinetics were determined.

  17. Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes

    International Nuclear Information System (INIS)

    Ul Haq, Rizwan; Nadeem, Sohail; Khan, Z.H.; Noor, N.F.M.

    2015-01-01

    In the present study, thermal conductivity and viscosity of both single-wall and multiple-wall Carbon Nanotubes (CNT) within the base fluids (water, engine oil and ethylene glycol) of similar volume have been investigated when the fluid is flowing over a stretching surface. The magnetohydrodynamic (MHD) and viscous dissipation effects are also incorporated in the present phenomena. Experimental data consists of thermo-physical properties of each base fluid and CNT have been considered. The mathematical model has been constructed and by employing similarity transformation, system of partial differential equations is rehabilitated into the system of non-linear ordinary differential equations. The results of local skin friction and local Nusselt number are plotted for each base fluid by considering both Single Wall Carbon Nanotube (SWCNT) and Multiple-Wall Carbon Nanotubes (MWCNT). The behavior of fluid flow for water based-SWCNT and MWCNT are analyzed through streamlines. Concluding remarks have been developed on behalf of the whole analysis and it is found that engine oil-based CNT have higher skin friction and heat transfer rate as compared to water and ethylene glycol-based CNT. - Graphical abstract: Comparison among three different base fluids in the presence of SWCNTs and MWCNTs for skin friction and local Nusselt number.

  18. OPTIMIZATION OF GRANULATION TECHNIQUES FOR DEVELOPMENT OF TABLET DOSAGE FORM

    OpenAIRE

    V. B. Khot*, D.A. Bhagwat, J. I. D'Souza, S. S. Shelake, S. V. Patil

    2017-01-01

    The purpose of this study was to optimize the best granulation techniques for development of tablet dosage form. The present study explains comparative study of different wet granulation techniques including Planetary mixer granulation, Rapid mixer granulation, Fluid bed granulation with Direct compression method. Similar formulations were used to evaluate Planetary mixer granulation, Rapid mixer granulation and Fluid bed granulation method. The granules prepared by different techniques were ...

  19. High-resolution observations of the solar granulation

    Science.gov (United States)

    Topka, K. P.; Title, A. M.

    1991-01-01

    Digitally-enhanced high-resolution images from space and ground observatories have yielded data on the solar granulation which show it to be a more complex combination of phenomena than previously suspected. These new data have been used to detect large-scale horizontal flows over the solar surface through direct measurements of granule proper motions. The results thus obtained may have important implications for the heating of the solar chromosphere and corona. The observed intensity pattern on the surface of the sun is noted to be due not only to granulation, but the superposition of different types of waves as well. All such phenomena are modified in the presence of magnetic fields, becoming smaller and of reduced contrast.

  20. Granulopoiesis and granules of human neutrophils

    DEFF Research Database (Denmark)

    Cowland, Jack B; Borregaard, Niels

    2016-01-01

    Granules are essential for the ability of neutrophils to fulfill their role in innate immunity. Granule membranes contain proteins that react to environmental cues directing neutrophils to sites of infection and initiate generation of bactericidal oxygen species. Granules are densely packed...... with proteins that contribute to microbial killing when liberated to the phagosome or extracellularly. Granules are, however, highly heterogeneous and are traditionally subdivided into azurophil granules, specific granules, and gelatinase granules in addition to secretory vesicles. This review will address...... issues pertinent to formation of granules, which is a process intimately connected to maturation of neutrophils from their precursors in the bone marrow. We further discuss possible mechanisms by which decisions are made regarding sorting of proteins to constitutive secretion or storage in granules...

  1. In vivo and in vitro observations of polyhydroxybutyrate granules formed by Dinoroseobacter sp. JL 1447.

    Science.gov (United States)

    Xiao, Na; Jiao, Nianzhi; Liu, Yongqin

    2015-03-01

    Polyhydroxybutyrate (PHB) granules formed by a marine aerobic anoxygenic phototrophic bacterial strain Dinoroseobacter sp. JL 1447 were detected using transmission electron microscopy and atomic force microscopy. When Dinoroseobacter sp. JL 1447 was inoculated into a medium with glucose as the sole carbon source, the formation of PHB granules occurred and accumulated with incubation time, reaching their maximum in the stationary phase cultures. PHB granules, formed in the cytoplasm at the cell poles or future cell poles, were remobilized and used by the cells in late stationary complex cultures. When PHB granules formed, cell length elongated from 0.5 to 1.5 μm and spherical protrusions appeared on the cell surface. The French press method was used to break the cells and isolate the PHB granules. The freshly prepared and intact PHB granules were spherical with a soft, smooth outer envelope without visible substructures. Upon treating PHB granules with sodium dodecyl sulfate, the envelope was destroyed and nearly parted from the granules, and uniform, spherical structures with a central pore appeared on the granule surface. Copyright © 2015. Published by Elsevier B.V.

  2. Spontaneous Pattern Formation Induced by Bénard-Marangoni Convection for Sol-Gel-Derived Titania Dip-Coating Films: Effect of Co-solvents with a High Surface Tension and Low Volatility.

    Science.gov (United States)

    Uchiyama, Hiroaki; Matsui, Tadayuki; Kozuka, Hiromitsu

    2015-11-17

    Evaporation-driven surface tension gradient in the liquid layer often causes the convective flow, i.e., Bénard-Marangoni convection, resulting in the formation of cell-like patterns on the surface. Here, we prepared sol-gel-derived titania films from Ti(OC3H7(i))4 solutions by dip coating and discussed the effect of the addition of co-solvents with a high surface tension and low volatility on the spontaneous pattern formation induced by Bénard-Marangoni convection. Propylene glycol (PG, with a surface tension of 38.6 mN m(-1)) and dipropylene glycol (DPG, with a surface tension of 33.9 mN m(-1)) were added to the coating solutions containing 2-propanol (2-Pr, with a surface tension of 22.9 mN m(-1)) for controlling the evaporation-driven surface tension gradient in the coating layer on a substrate. During dip coating at a substrate withdrawal speed of 50 cm min(-1) in a thermostatic oven at 60 °C, linearly arranged cell-like patterns on a micrometer scale were spontaneously formed on the titania gel films, irrespective of the composition of coating solutions. Such surface patterns remained even after the heat treatment at 200 and 600 °C, where the densification and crystallization of the titania films progressed. The width and height of the cell-like patterns increased with increasing PG and DPG contents in the coating solutions, where the addition of PG resulted in the formation of cells with a larger height than DPG.

  3. Convective transfers; Transferts convectifs

    Energy Technology Data Exchange (ETDEWEB)

    Accary, G.; Raspo, I.; Bontoux, P. [Aix-Marseille-3 Univ. Paul Cezanne, CNRS, Lab. MSNM-GP UMR 6181, 13 - Marseille (France); Zappoli, B. [Centre National d' Etudes Spatiales (CNES), 31 - Toulouse (France); Polidori, G.; Fohanno, S. [Laboratoire de Thermomecanique, 51 - Reims (France); Hirata, S.C.; Goyeau, B.; Gobin, D. [Paris-6 et Paris-11 Univ., FAST-UMR CNRS 7608, 91 - Orsay (France); Cotta, R.M. [UFRJ/LTTC/PEM/EE/COPPE, Rio de Janeiro (Brazil); Perrin, L.; Reulet, P.; Micheli, F.; Millan, P. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 31 - Toulouse (France); Menard, V. [France Telecom R and D, 22 - Lannion (France); Benkhelifa, A.; Penot, F. [Ecole Nationale Superieure de Mecanique et d' Aerotechnique (ENSMA), Lab. d' Etudes Thermiques, UMR CNRS 6608, 86 - Poitiers (France); Ng Wing Tin, M.; Haquet, J.F.; Journeau, C. [CEA Cadarache (DEN/DTN/STRI/LMA), Lab. d' Essais pour la Maitrise des Accidents Graves, 13 - Saint-Paul-lez-Durance (France); Naffouti, T.; Hammani, M.; Ben Maad, R. [Faculte des Sciences de Tunis, Lab. d' Energetique et des Transferts Thermique et Massique, Dept. de Physique, Tunis (Tunisia); Zinoubi, J. [Institut Preparatoire aux Etudes d' Ingenieurs de Nabeul (Tunisia); Menard, V.; Le Masson, S.; Nortershauser, D. [France Telecom R and D, 22 - Lannion (France); Stitou, A.; Perrin, L.; Millan, P. [ONERA, 31 - Toulouse (France)

    2005-07-01

    This session about convective transfers gathers 31 articles dealing with: numerical study of the hydrodynamic stability of a bottom heated supercritical fluid layer; establishment of laminar-turbulent transition criteria of free convection dynamic and thermal boundary layers; heat transfer changes in free convection by mechanical and thermal disturbances; natural convection stability in partially porous horizontal layers; experimental characterization of the dynamic and thermal aspects of a natural convection flow inside a confined space; determination of transitions towards non-stationary natural convection inside a differentially heated inclined cavity; interface temperatures for the convection of fluids with variable viscosity; influence of the height of a vertical cylinder on the flow resulting from a plume-thermosyphon interaction; simultaneous measurement of dynamic and thermal fields by thermo-chromic liquid crystals in natural convection; numerical simulation of turbulent natural convection flows inside a heated room; numerical and experimental study of mixed convection heat transfer inside an axisymmetrical network; analysis of laminar flow instabilities in assisted mixed convection; entropy generation in mixed convection; thermal and mass convection in non-stationary regime inside a ventilated cavity; study of a low Reynolds number mixed convection flow; numerical study of a convective flow inside a rotating annular cavity; study of the dynamical behaviour of a transient mixed convection flow inside a thick vertical duct; internal laminar convection: selection criteria for the identification of natural, mixed or forced regimes; turbulent flow and convection heat transfer inside a channel with corrugated walls; study of the impact of an axisymmetrical jet on a concave wall; modeling of volume irreversibilities of turbulent forced convection; numerical study of forced convection irreversibilities around a network of cylindrical tubes; estimation of the

  4. Tropical deep convective cloud morphology

    Science.gov (United States)

    Igel, Matthew R.

    A cloud-object partitioning algorithm is developed. It takes contiguous CloudSat cloudy regions and identifies various length scales of deep convective clouds from a tropical, oceanic subset of data. The methodology identifies a level above which anvil characteristics become important by analyzing the cloud object shape. Below this level in what is termed the pedestal region, convective cores are identified based on reflectivity maxima. Identifying these regions allows for the assessment of length scales of the anvil and pedestal of the deep convective clouds. Cloud objects are also appended with certain environmental quantities from the ECMWF reanalysis. Simple geospatial and temporal assessments show that the cloud object technique agrees with standard observations of local frequency of deep-convective cloudiness. Additionally, the nature of cloud volume scale populations is investigated. Deep convection is seen to exhibit power-law scaling. It is suggested that this scaling has implications for the continuous, scale invariant, and random nature of the physics controlling tropical deep convection and therefore on the potentially unphysical nature of contemporary convective parameterizations. Deep-convective clouds over tropical oceans play important roles in Earth's climate system. The response of tropical, deep convective clouds to sea surface temperatures (SSTs) is investigated using this new data set. Several previously proposed feedbacks are examined: the FAT hypothesis, the Iris hypothesis, and the Thermostat hypothesis. When the data are analyzed per cloud object, each hypothesis is broadly found to correctly predict cloud behavior in nature, although it appears that the FAT hypothesis needs a slight modification to allow for cooling cloud top temperatures with increasing SSTs. A new response that shows that the base temperature of deep convective anvils remains approximately constant with increasing SSTs is introduced. These cloud-climate feedbacks are

  5. National Convective Weather Forecast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCWF is an automatically generated depiction of: (1) current convection and (2) extrapolated signficant current convection. It is a supplement to, but does NOT...

  6. MHD free convection flow of Eyring–Powell fluid from vertical surface in porous media with Hall/ionslip currents and ohmic dissipation

    Directory of Open Access Journals (Sweden)

    S. Abdul Gaffar

    2016-06-01

    Full Text Available A mathematical study is presented to analyze the nonlinear, non-isothermal, magnetohydrodynamic (MHD free convection boundary layer flow, heat and mass transfer of non-Newtonian Eyring–Powell fluid from a vertical surface in a non-Darcy, isotropic, homogenous porous medium, in the presence of Hall currents and ionslip currents. The governing nonlinear coupled partial differential equations for momentum conservation in the x, and z directions, heat and mass conservation, in the flow regime are transformed from an (x, y, z coordinate system to a (ξ, η coordinate system in terms of dimensionless x-direction velocity (f′ and z-direction velocity (G, dimensionless temperature and concentration functions (θ and ϕ under appropriate boundary conditions. Both Darcian and Forchheimer porous impedances are incorporated in both momentum equations. Computations are also provided for the variation of the x and z direction shear stress components and also heat and mass transfer rates. It is observed that with increasing ɛ, primary velocity, secondary velocity, heat and mass transfer rates are decreased whereas, the temperature, concentration and skin friction are increased. An increasing δ is found to increase primary and secondary velocities, skin friction, heat and mass transfer rates. But the temperature and concentration decrease. Increasing βe and βi are seen to increase primary velocity, skin friction, heat and mass transfer rates whereas secondary velocity, temperature and concentration are decreased. Excellent correlation is achieved with a Nakamura tridiagonal finite difference scheme (NTM. The model finds applications in magnetic materials processing, MHD power generators and purification of crude oils.

  7. ROTATION AND GRANULATION OF THE K2 GIANT α SER

    Energy Technology Data Exchange (ETDEWEB)

    Gray, David F., E-mail: dfgray@uwo.ca [Department of Physics and Astronomy University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada)

    2016-07-20

    The red giant α Ser was observed over 10 seasons, 2001–2010, at the Elginfield Observatory with the high-resolution coudé spectrograph. Season-mean radial velocities appear to show a small secular rise ∼11 ± 3 m s{sup 1} yr{sup 1}. The absolute spectroscopic radial velocity with convective blueshifts taken into account is 2730 m s{sup 1}. Ten line-depth ratios were investigated and show that the star's temperature is constant with any secular variation below 1.3 ± 1.0 K over the 11 years of observation. Fourier analysis of the line broadening yields v sin i = 2.0 ± 0.3 km s{sup 1} and a radial-tangential macroturbulence dispersion ζ {sub RT} = 4.50 ± 0.10 km s{sup 1}. The third-granulation-signature plot shows that the granulation velocities of α Ser are only 0.55 ± 0.10 as large as the Sun's. The line bisector of Fe i λ 6253 has the usual “C” shape and when mapped onto the third-signature plot results in a flux deficit that is slightly broader than seen in other measured K giants. The deficit fractional area of 12.3 ± 1.5% suggests a temperature difference between granules and lanes of 105 K as seen averaged over the stellar disk.

  8. Three novel proteins co-localise with polyhydroxybutyrate (PHB) granules in Rhodospirillum rubrum S1.

    Science.gov (United States)

    Narancic, Tanja; Scollica, Elisa; Cagney, Gerard; O'Connor, Kevin E

    2018-04-01

    Polyhydroxybutyrate (PHB), a biodegradable polymer accumulated by bacteria is deposited intracellularly in the form of inclusion bodies often called granules. The granules are supramolecular complexes harbouring a varied number of proteins on their surface, which have specific but incompletely characterised functions. By comparison with other organisms that produce biodegradable polymers, only two phasins have been described to date for Rhodosprillum rubrum, raising the possibility that more await discovery. Using a comparative proteomics strategy to compare the granules of wild-type R. rubrum with a PHB-negative mutant housing artificial PHB granules, we identified four potential PHB granules' associated proteins. These were: Q2RSI4, an uncharacterised protein; Q2RWU9, annotated as an extracellular solute-binding protein; Q2RQL4, annotated as basic membrane lipoprotein; and Q2RQ51, annotated as glucose-6-phosphate isomerase. In silico analysis revealed that Q2RSI4 harbours a Phasin_2 family domain and shares low identity with a single-strand DNA-binding protein from Sphaerochaeta coccoides. Fluorescence microscopy found that three proteins Q2RSI4, Q2EWU9 and Q2RQL4 co-localised with PHB granules. This work adds three potential new granule associated proteins to the repertoire of factors involved in bacterial storage granule formation, and confirms that proteomics screens are an effective strategy for discovery of novel granule associated proteins.

  9. Physicochemical and tablet properties of Cyperus alulatus rhizomes starch granules.

    Science.gov (United States)

    Paramakrishnan, N; Jha, S; Kumar, K Jayaram

    2015-05-01

    The starch extracted from rhizomes of Cyperus alulatus (CA) was characterized for its physicochemical, morphological and tableting properties. Rhizomes of CA yield a significant quantity of starch granules (CASG) i.e., 11.93%. CASG was characterized in terms of moisture, ash and amylose contents, solubility and swelling power, paste clarity and water retention capacity. The swelling power was found to be significantly improved with the increase in temperature. Scanning electron micrographs revealed that the granule's surface was smooth, the granules were spherical, mostly round, disc like, and the size range was 6.65-12.13 μm. Finger print region in FTIR spectra confirmed its carbohydrate nature. The evaluated micromeritic properties of extracted granule's bulk density, tapped density, Carr's index, Hausner ratio, true density and porosity render unique practicability of CASG being used as an adjuvant in pharmaceutical solid dosage forms. Tablets prepared by using CASG showed higher mechanical strength and more disintegration time, which depicted the characteristic binding nature of the starch granules. As CASG is imparting better binding properties in less concentration and also it can be used in combination with the established starches to get the synergistic effect; this starch can be used commercially in the tablet preparation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Multidimensional modelling of anaerobic granules

    DEFF Research Database (Denmark)

    Picioreanu, C.; Batstone, Damien J.; van Loosdrecht, M.C.M.

    2005-01-01

    A multispecies, two- and three-dimensional model was developed, based on a previously published planar biofilm model, and the biochemical structure of the ADM1. Several soluble substrates diffuse and react in the granule. Local pH is calculated from acid-base equilibria and charge balance...

  11. Cultures of Cerebellar Granule Neurons

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Parizad M. Bilimoria and Azad Bonni1 Corresponding author ([]()) ### INTRODUCTION Primary cultures of granule neurons from the post-natal rat cerebellum provide an excellent model system for molecular and cell biological studies of neuronal development and function. The cerebellar cortex, with its highly organized structure and few neuronal subtypes, offers a well-characterized neural circuitry. Many fundamental insight...

  12. Mechanistic modelling of the drying behaviour of single pharmaceutical granules

    DEFF Research Database (Denmark)

    Thérèse F.C. Mortier, Séverine; Beer, Thomas De; Gernaey, Krist

    2012-01-01

    The trend to move towards continuous production processes in pharmaceutical applications enhances the necessity to develop mechanistic models to understand and control these processes. This work focuses on the drying behaviour of a single wet granule before tabletting, using a six......-segmented fluidised bed drying system, which is part of a fully continuous from-powder-to-tablet manufacturing line. The drying model is based on a model described by Mezhericher et al. [1] and consists of two submodels. In the first drying phase (submodel 1), the surface water evaporates, while in the second drying...... phase (submodel 2), the water inside the granule evaporates. The second submodel contains an empirical power coefficient, b. A sensitivity analysis was performed to study the influence of parameters on the moisture content of single pharmaceutical granules, which clearly points towards the importance...

  13. Improving solid dosage forms with dry granulation

    OpenAIRE

    Boswell, Steve; Smith, Geoff

    2011-01-01

    Although tablet manufacture is traditionally a batchbased wet granulation process, there are many advantages to be gained by adopting dry granulation, including lower costs and increased yields. The simplicity of dry granulation could also enable it to become one of the main technologies for continuous processing

  14. Molecular composition of IMP1 ribonucleoprotein granules

    DEFF Research Database (Denmark)

    Jønson, Lars; Vikesaa, Jonas; Krogh, Anders

    2007-01-01

    , and in motile cells IMP-containing granules are dispersed around the nucleus and in cellular protrusions. We isolated the IMP1-containing RNP granules and found that they represent a unique RNP entity distinct from neuronal hStaufen and/or fragile X mental retardation protein granules, processing bodies...

  15. Momordica Foetida (cucurbitacea) A Potential Laxative Granule ...

    African Journals Online (AJOL)

    There has been a folklore belief that the plant Momordica foetida has a laxative effect. This paper attempted to investigate this claim. The dried extract was granulated with cornstarch mucilage to produce free flowing granules. Capsules containing 500mg of the granules were hand filled. The capsules were evaluated in ...

  16. Statistical analysis and comparison of a continuous high shear granulator with a twin screw granulator: Effect of process parameters on critical granule attributes and granulation mechanisms.

    Science.gov (United States)

    Meng, Wei; Kotamarthy, Lalith; Panikar, Savitha; Sen, Maitraye; Pradhan, Shankali; Marc, Michaelis; Litster, James D; Muzzio, Fernando J; Ramachandran, Rohit

    2016-11-20

    This study is concerned with identifying the design space of two different continuous granulators and their respective granulation mechanisms. Performance of a continuous high shear granulator and a twin screw granulator with paracetamol formulations were examined by face-centered cubic design, which focused on investigating key performance metrics, namely, granule size, porosity, flowability and particle morphology of granules as a function of essential input process parameters (liquid content, throughput and rotation speed). Liquid and residence time distribution tests were also performed to gain insights into the liquid-powder mixing and flow behavior. The results indicated that continuous high shear granulation was more sensitive to process variation and produced spherical granules with monomodal size distribution and distinct internal structure and strength variation. Twin screw granulation with such a particular screw configuration showed narrower design space and granules were featured with multimodal size distribution, irregular shape, less detectible porosity difference and tighter range of strength. Granulation mechanisms explored on the basis of nucleation and growth regime maps revealed that for most cases liquid binder was uniformly distributed with fast droplet penetration into the powder bed and that granule consolidation and coalescence mainly took place in the nucleation, steady growth and rapid growth regimes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. On Solar Granulations, Limb Darkening, and Sunspots: Brief Insights in Remembrance of Father Angelo Secchi

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2011-07-01

    Full Text Available Father Angelo Secchi used the existence of solar granulation as a central line of rea- soning when he advanced that the Sun was a gaseous body with a photosphere contain- ing incandescent particulate matter (Secchi A. Sulla Struttura della Fotosfera Solare. Bullettino Meteorologico dell’Osservatorio del Collegio Romano , 30 November 1864, v.3(11, 1–3. Secchi saw the granules as condensed matter emitting the photospheric spectrum, while the darkened intergranular lanes conveyed the presence of a gaseous solar interior. Secchi also considered the nature of sunspots and limb darkening. In the context of modern solar models, opacity arguments currently account for the emis- sive properties of the photosphere. Optical depth is thought to explain limb darkening. Both temperature variations and magnetic fields are invoked to justify the weakened emissivities of sunspots, even though the presence of static magnetic fields in materi- als is not usually associated with modified emissivity. Conversely, within the context of a liquid metallic hydrogen solar model, the appearance of granules, limb darkening, and sunspots can be elegantly understood through the varying directional emissivity of condensed matter. A single explanation is applicable to all three phenomena. Granular contrast can be directly associated with the generation of limb darkening. Depending on size, granules can be analyzed by considering Kolmogoroff’s formulations and B ́ enard convection, respectively, both of which were observed using incompressible liquids, not gases. Granules follow the 2-dimensional space filling laws of Aboav-Weiner and Lewis. Their adherence to these structural laws provides supportive evidence that the granular surface of the Sun represents elements which can only be constructed from condensed matter. A gaseous Sun cannot be confined to a 2-dimensional framework. Mesogranules, supergranules, and giant cells constitute additional entities which further

  18. Inline real-time near-infrared granule moisture measurements of a continuous granulation-drying-milling process.

    Science.gov (United States)

    Chablani, Lipika; Taylor, Michael K; Mehrotra, Amit; Rameas, Patrick; Stagner, William C

    2011-12-01

    The purpose of this research was to use inline real-time near-infrared (NIR) to measure the moisture content of granules manufactured using a commercial production scale continuous twin-screw granulator fluid-bed dryer milling process. A central composite response surface statistical design was used to study the effect of inlet air temperature and dew point on granule moisture content. The NIR moisture content was compared to Karl Fischer (KF) and loss on drying (LOD) moisture determinations. Using multivariate analysis, the data showed a statistically significant correlation between the conventional methods and NIR. The R(2) values for predicted moisture content by NIR versus KF and predicted moisture values by NIR versus LOD were 0.94 (p moisture content as measured by predicted NIR (adjusted R(2) = 0.84, p moisture measurements.

  19. Improved tabletability after a polymorphic transition of delta-mannitol during twin screw granulation.

    Science.gov (United States)

    Vanhoorne, V; Bekaert, B; Peeters, E; De Beer, T; Remon, J-P; Vervaet, C

    2016-06-15

    In most formulations processed via continuous twin screw granulation microcrystalline cellulose (MCC) and/or lactose are used as excipients, but mannitol is also a preferred excipient for wet granulation and tableting due to its non-hygroscopicity and inertness. Therefore, the aim of the current study was to investigate the influence of process parameters on critical quality attributes of granules (moisture content, solid state, morphology, size distribution, specific surface area, friability, flowability and hygroscopicity) and tablets (tensile strength and friability) after twin screw granulation of δ-mannitol. The δ-polymorph was selected since a moisture-induced transformation to β-mannitol was observed during batch wet granulation, which exhibited a unique morphology with a large surface area and improved tabletability. A full factorial experimental design was performed, varying screw speed (400-900rpm), granulation temperature (25-40°C), number of kneading elements (6 or 12) and liquid-to-solid (L/S) ratio, on the granulation unit of a ConsiGma™-25 line (a continuous powder-to-tablet manufacturing system). After tray drying the granules were milled and tableted. The results showed that the polymorphic transition from δ- to β-mannitol also occurred during twin screw granulation, although the residence time and L/S ratios were much lower in continuous twin screw granulation compared to batch processing. However, the polymorphic transition was not complete in all experiments and depended on the L/S ratio, screw speed and number of kneading elements. Nevertheless all granules exhibited the unique morphology linked to the polymorphic transition and had a superior tabletability compared to granules produced with β-mannitol as starting material. This was attributed to enhanced plastic deformation of the granules manufactured using δ-mannitol as starting material. In addition, it was concluded that mannitol was granulated via a different mechanism than

  20. Lunar gravity pattern: two modes of granulation

    Science.gov (United States)

    Kochemasov, G.

    The Lunar Prospector's lunar gravity map [1] clearly shows two prevailing modes of granulation. Most abundant one evenly covering the whole surface is represented by even-sized shoulder-to-shoulder grains about 100 km in diameter (πR/60 -πR/48). This background is interrupted by a few much greater grains with a characteristic diameter about or less than πR/4 (hundreds to thousand km). Haw to explain this pattern? We now know that "orbits make structures"[2 & others]. This follows from the facts that all celestial bodies move in non-round (elliptical, parabolic) orbits and rotate. Cyclic movements in non-round orbits with periodically changing accelerations arouse inertia-gravity forces exiting warping waves of stationary character and 4 ortho- and diagonal directions. Interferences of these waves produce tectonic blocks of various sizes depending on wavelengths. Along with the fundamental wave1making ubiquitous dichotomy and its overtones (mainly the first one wave2) making tectonic sectors, every body is subjected to a warping action of waves whose lengths are strictly proportional to bodies orbital periods or inversely proportional to their orbital frequencies. These individual waves are responsible for ubiquitous tectonic granulation. Most known from the thirties of the 20th century is the solar supergranulation with the characteristic granule size about 30000 km (πR/60) corresponding to its orbital frequency around the center of the solar system about 1/1 month. But the same orbital frequency has the Moon around Earth. So, one might expect to find similar granulation in the lunar crust. This theoretical assumption was perfectly confirmed when a lunar gravity map was created [1]. Thus, the Sun's 30000 km supergranules are the same as the Moon's 100 km granules. Farther from Sun, the terrestrial planets orbital frequencies diminish and concordantly granule sizes increase: Mercury πR/16, Venus πR/6, Earth πR/4, Mars πR/2, asteroids πR/1. This sizes are

  1. CRUCIB: an axisymmetric convection code

    International Nuclear Information System (INIS)

    Bertram, L.A.

    1975-03-01

    The CRUCIB code was written in support of an experimental program aimed at measurement of thermal diffusivities of refractory liquids. Precise values of diffusivity are necessary to realistic analysis of reactor safety problems, nuclear waste disposal procedures, and fundamental metal forming processes. The code calculates the axisymmetric transient convective motions produced in a right circular cylindrical crucible, which is surface heated by an annular heat pulse. Emphasis of this report is placed on the input-output options of the CRUCIB code, which are tailored to assess the importance of the convective heat transfer in determining the surface temperature distribution. Use is limited to Prandtl numbers less than unity; larger values can be accommodated by replacement of a single block of the code, if desired. (U.S.)

  2. Rheological and fractal hydrodynamics of aerobic granules.

    Science.gov (United States)

    Tijani, H I; Abdullah, N; Yuzir, A; Ujang, Zaini

    2015-06-01

    The structural and hydrodynamic features for granules were characterized using settling experiments, predefined mathematical simulations and ImageJ-particle analyses. This study describes the rheological characterization of these biologically immobilized aggregates under non-Newtonian flows. The second order dimensional analysis defined as D2=1.795 for native clusters and D2=1.099 for dewatered clusters and a characteristic three-dimensional fractal dimension of 2.46 depicts that these relatively porous and differentially permeable fractals had a structural configuration in close proximity with that described for a compact sphere formed via cluster-cluster aggregation. The three-dimensional fractal dimension calculated via settling-fractal correlation, U∝l(D) to characterize immobilized granules validates the quantitative measurements used for describing its structural integrity and aggregate complexity. These results suggest that scaling relationships based on fractal geometry are vital for quantifying the effects of different laminar conditions on the aggregates' morphology and characteristics such as density, porosity, and projected surface area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Neutrophil granules in health and disease

    DEFF Research Database (Denmark)

    Häger, M; Cowland, J B; Borregaard, N

    2010-01-01

    Neutrophil granules store proteins that are critically important for the neutrophil to move from the vascular bed to tissues and to kill microorganisms. This is illustrated in nature when individual proteins are deleted due to inherited mutations of their cognate genes, and such deficiencies result...... in the conditions leucocyte adhesion deficiency and chronic granulomatous disease. The granules of the neutrophil have traditionally been divided into two or three major types but are instead a continuum where several subtypes can be identified with differences in protein content and propensity for mobilization....... This is explained by the 'targeting by timing hypothesis' which states that granules are filled with granule proteins that are synthesized at the time the granule is formed. The heterogeneity of granules arises because the synthesis of granule proteins is individually controlled and major differences exist...

  4. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor.

    Science.gov (United States)

    He, Qiulai; Zhou, Jun; Wang, Hongyu; Zhang, Jing; Wei, Li

    2016-08-01

    The evolution of the bacterial population during formation of denitrifying phosphorus removal granular sludge was investigated using high-throughput pyrosequencing. As a result, mature granules with a compact structure were obtained in an anaerobic/aerobic/anoxic (A/O/A) sequencing batch reactor under an organic loading rate as low as 0.3kg COD/(m(3)·d). Rod-shaped microbes were observed to cover with the outer surface of granules. Besides, reliable COD and simultaneous nitrogen and phosphorus removal efficiencies were achieved over the whole operation period. MiSeq pyrosequencing analysis illustrated that both the microbial diversity and richness increased sharply during the granulation process, whereas they stayed stable after the presence of granules. Some microorganisms seemed to contribute to the formation of granules, and some were identified as functional bacterial groups responsible for constructing the biological reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Impact of full range of amylose contents on the architecture of starch granules

    DEFF Research Database (Denmark)

    Goldstein, Avi; Annor, George; Putaux, Jean-Luc

    2016-01-01

    The effects of amylose deposition on crystalline regions of barley starch granules were studied in granules containing zero to 99.1% amylose using "waxy" (WBS, 0% amylose), normal (NBS, 18% amylose) and amylose-only barley lines (AOS, 99.1% amylose). The effects were probed after hydrolysis...... of amorphous regions of starch granules in dilute HCl generating lintners, which typically represent the crystalline lamella of starch granules. Compared to NBS and WBS, AOS granules exhibited an irregular, multilobular morphology with a rough surface texture. AOS displayed lower rates of acid hydrolysis than...... WBS, and AOS reached a plateau at ∼45wt% acid hydrolysis. High-performance anion-exchange chromatography of lintners at equivalent levels of hydrolysis (45wt%) revealed the average degree of polymerization (DP) of AOS lintners was 21, substantially smaller than that of NBS and WBS (DP 42). AOS...

  6. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  7. Protein mobility within secretory granules.

    Science.gov (United States)

    Weiss, Annita Ngatchou; Bittner, Mary A; Holz, Ronald W; Axelrod, Daniel

    2014-07-01

    We investigated the basis for previous observations that fluorescent-labeled neuropeptide Y (NPY) is usually released within 200 ms after fusion, whereas labeled tissue plasminogen activator (tPA) is often discharged over many seconds. We found that tPA and NPY are endogenously expressed in small and different subpopulations of bovine chromaffin cells in culture. We measured the mobility of these proteins (tagged with fluorophore) within the lumen of individual secretory granules in living chromaffin cells, and related their mobilities to postfusion release kinetics. A method was developed that is not limited by standard optical resolution, in which a bright flash of strongly decaying evanescent field (∼64 nm exponential decay constant) produced by total internal reflection (TIR) selectively bleaches cerulean-labeled protein proximal to the glass coverslip within individual granules. Fluorescence recovery occurred as unbleached protein from distal regions within the 300 nm granule diffused into the bleached proximal regions. The fractional bleaching of tPA-cerulean (tPA-cer) was greater when subsequently probed with TIR excitation than with epifluorescence, indicating that tPA-cer mobility was low. The almost equal NPY-cer bleaching when probed with TIR and epifluorescence indicated that NPY-cer equilibrated within the 300 ms bleach pulse, and therefore had a greater mobility than tPA-cer. TIR-fluorescence recovery after photobleaching revealed a significant recovery of tPA-cer (but not NPY-cer) fluorescence within several hundred milliseconds after bleaching. Numerical simulations, which take into account bleach duration, granule diameter, and the limited number of fluorophores in a granule, are consistent with tPA-cer being 100% mobile, with a diffusion coefficient of 2 × 10(-10) cm(2)/s (∼1/3000 of that for a protein of similar size in aqueous solution). However, the low diffusive mobility of tPA cannot alone explain its slow postfusion release. In the

  8. Cultivation of aerobic granules for polyhydroxybutyrate production from wastewater.

    Science.gov (United States)

    Wang, Jin; Li, Wen-Wei; Yue, Zheng-Bo; Yu, Han-Qing

    2014-05-01

    Polyhydroxybutyrate (PHB)-rich aerobic granule was cultivated in a sequencing batch reactor (SBR) under nitrogen deficient conditions by adapting a two-step strategy. In the first step the PHB-storage ability of activated sludge was enhanced by keeping both oxygen and ammonia at a low level. In the second step granular sludge was cultivated through adjusting sludge settling time. The matured PHB-rich granular sludge with a PHB content of 40 ± 4.6% and a high settling ability was successfully obtained. The analysis on sludge surface properties showed that the surface charge, extracellular polymeric substances (EPS) content and the sludge hydrophobicity all increased significantly, while the surface energy of sludge decreased to a relatively steady state accompanied with the growth of granular sludge. This study demonstrates that the metabolism of intracellular storages induced microbial production of EPS, which favored the formation of aerobic granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Increased accuracy of starch granule type quantification using mixture distributions

    OpenAIRE

    Tanaka, Emi; Ral, Jean-Phillippe F.; Li, Sean; Gaire, Raj; Cavanagh, Colin R.; Cullis, Brian R.; Whan, Alex

    2017-01-01

    Background The proportion of granule types in wheat starch is an important characteristic that can affect its functionality. It is widely accepted that granule types are either large, disc-shaped A-type granules or small, spherical B-type granules. Additionally, there are some reports of the tiny C-type granules. The differences between these granule types are due to its carbohydrate composition and crystallinity which is highly, but not perfectly, correlated with the granule size. A majority...

  10. Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR

    Science.gov (United States)

    2015-01-01

    Starch is a prominent component of the human diet and is hydrolyzed by α-amylase post-ingestion. Probing the mechanism of this process has proven challenging, due to the intrinsic heterogeneity of individual starch granules. By means of solution-state NMR, we demonstrate that flexible polysaccharide chains protruding from the solvent-exposed surfaces of waxy rice starch granules are highly mobile and that during hydrothermal treatment, when the granules swell, the number of flexible residues on the exposed surfaces increases by a factor of 15. Moreover, we show that these flexible chains are the primary substrates for α-amylase, being cleaved in the initial stages of hydrolysis. These findings allow us to conclude that the quantity of flexible α-glucan chains protruding from the granule surface will greatly influence the rate of energy acquisition from digestion of starch. PMID:25815624

  11. Spatial incoherence of solar granulation

    DEFF Research Database (Denmark)

    Lund, Mikkel N.; Chaplin, William J.; Hale, Steven J.

    2017-01-01

    A poor understanding of the impact of convective turbulence in the outer layers of the Sun and Sun-like stars challenges the advance towards an improved understanding of their internal structure and dynamics. Assessing and calibrating these effects is therefore of great importance. Here, we study...

  12. Ocular Injury due to Potassium Permanganate Granules

    Directory of Open Access Journals (Sweden)

    Chareenun Chirapapaisan

    2018-02-01

    Full Text Available Purpose: We report a rare case of ocular injury due to potassium permanganate (KMnO4 granules in a child. Methods: This is a retrospective case report. Results: A 2-year-old boy was transferred to our emergency room with severe pain in his right eye, inflamed eyelids, and brownish stains on his fingers. Chemical injury was suspected. Copious eye irrigation was immediately performed. Diffuse brownish splotches were then observed at the inferior bulbar conjunctiva. Otherwise, systemic organs were intact. Complete eye exam under general anesthesia revealed a 5-mm epithelial defect at the central cornea, along with generalized conjunctival injection and limbal ischemia, inferiorly. Multiple semi-dissolved granules of KMnO4 trapped in the inferior fornix were identified. The chemical particles were gradually washed out and removed; however, the brownish stains remained. The patient received preservative-free steroid, antibiotic eye drops, and lubricants as regular management for mild to moderate degree of ocular burn. Pseudomembrane developed early and transformed into symblepharon within a few days after the injury. Membrane adhesion was lysed, and more aggressive medications were then substituted. Commercial amniotic membrane (PROKERA® was also applied to promote wound healing and to prevent recurrence of symblepharon. The ocular surface was eventually restored, and corneal transparency was preserved. Conclusion: Ocular injury with the granular form of KMnO4 is rare. Its toxicity is comparable to concentrated KMnO4 solution. However, the dissolved particles that had been absorbed in the stained conjunctiva were continuously released and damaged the ocular surface more than we primarily anticipated. Awareness of this condition and prompt management yield a good treatment outcome.

  13. DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, E; Eric Frickey, E; Leung Heung, L

    2004-02-23

    An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tend to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were

  14. Driving forces: Slab subduction and mantle convection

    Science.gov (United States)

    Hager, Bradford H.

    1988-01-01

    Mantle convection is the mechanism ultimately responsible for most geological activity at Earth's surface. To zeroth order, the lithosphere is the cold outer thermal boundary layer of the convecting mantle. Subduction of cold dense lithosphere provides tha major source of negative buoyancy driving mantle convection and, hence, surface tectonics. There are, however, importnat differences between plate tectonics and the more familiar convecting systems observed in the laboratory. Most important, the temperature dependence of the effective viscosity of mantle rocks makes the thermal boundary layer mechanically strong, leading to nearly rigid plates. This strength stabilizes the cold boundary layer against small amplitude perturbations and allows it to store substantial gravitational potential energy. Paradoxically, through going faults at subduction zones make the lithosphere there locally weak, allowing rapid convergence, unlike what is observed in laboratory experiments using fluids with temperature dependent viscosities. This bimodal strength distribution of the lithosphere distinguishes plate tectonics from simple convection experiments. In addition, Earth has a buoyant, relatively weak layer (the crust) occupying the upper part of the thermal boundary layer. Phase changes lead to extra sources of heat and bouyancy. These phenomena lead to observed richness of behavior of the plate tectonic style of mantle convection.

  15. Twin screw granulation - review of current progress.

    Science.gov (United States)

    Thompson, M R

    2015-01-01

    Twin screw granulation (TSG) is a new process of interest to the pharmaceutical community that can continuously wet granulate powders, doing so at lower liquid concentrations and with better product consistency than found by a high shear batch mixer. A considerable body of research has evolved over the short time since this process was introduced but generally with little comparison of results. A certain degree of confidence has been developed through these studies related to how process variables and many attributes of machinery configuration will affect granulation but some major challenges still lay ahead related to scalability, variations in the processing regimes related to degree of channel fill and the impact of wetting and granulation of complex powder formulations. This review examines the current literature for wet granulation processes studied in twin screw extrusion machinery, summarizing the influences of operational and system parameters affecting granule properties as well as strives to provide some practical observations to newly interested users of the technique.

  16. Low strength ultrasonication positively affects the methanogenic granules toward higher AD performance. Part I: Physico-chemical characteristics

    DEFF Research Database (Denmark)

    Cho, S. K.; Hwang, Yuhoon; Kim, D. H.

    2013-01-01

    To elucidate the correlation between enhanced biogas production and changed physico-chemical properties of methanogenic granules after low strength ultrasonication, in this study, the effects of low strength ultrasonication on the settling velocity, permeability, porosity, and fluid collection...... efficiency of the methanogenic granules were investigated. In addition, their morphological changes were visualized using a scanning electron microscopic technique. The experimental results indicate that low strength ultrasonication increased both the permeability (37%) and specific surface area (230...... to the ultrasonicated granules. The microbial community shift caused by the changed physico-chemical properties of the methanogenic granules will be further analyzed in part II of this study....

  17. Convective aggregation in realistic convective-scale simulations

    Science.gov (United States)

    Holloway, Christopher E.

    2017-06-01

    To investigate the real-world relevance of idealized-model convective self-aggregation, five 15 day cases of real organized convection in the tropics are simulated. These include multiple simulations of each case to test sensitivities of the convective organization and mean states to interactive radiation, interactive surface fluxes, and evaporation of rain. These simulations are compared to self-aggregation seen in the same model configured to run in idealized radiative-convective equilibrium. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy shows that control runs have significant positive contributions to organization from radiation and negative contributions from surface fluxes and transport, similar to idealized runs once they become aggregated. Despite identical lateral boundary conditions for all experiments in each case, systematic differences in mean column water vapor (CWV), CWV distribution shape, and CWV autocorrelation length scale are found between the different sensitivity runs, particularly for those without interactive radiation, showing that there are at least some similarities in sensitivities to these feedbacks in both idealized and realistic simulations (although the organization of precipitation shows less sensitivity to interactive radiation). The magnitudes and signs of these systematic differences are consistent with a rough equilibrium between (1) equalization due to advection from the lateral boundaries and (2) disaggregation due to the absence of interactive radiation, implying disaggregation rates comparable to those in idealized runs with aggregated initial conditions and noninteractive radiation. This points to a plausible similarity in the way that radiation feedbacks maintain aggregated convection in both idealized simulations and the real world.Plain Language SummaryUnderstanding the processes that lead to the organization of tropical rainstorms is an important challenge for weather

  18. Application of polyhydroxyalkanoate granules for sizing of paper.

    Science.gov (United States)

    Bourbonnais, Robert; Marchessault, Robert H

    2010-04-12

    Polyhydroxyalkanoates (PHAs) are characterized by the chemistry of the biodegradable inclusions inside the microbial membrane. They are produced by a wide variety of bacteria, where they function as energy and carbon storage materials. This intracellular Bioplastic forms a stable latex suitable for surface treatments of paper such as sizing and coating. In this work, we compare native granules and artificial granules made from market poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-hydroxyvalerate), P(3HB-co-3HV), for their ability as sizing agent. Paper sizing was assayed by measuring the resistance of sized paper to penetration by aqueous fluids. Our results indicate that the sizing effect of PHAs is dependent on several factors, such as, paper drying temperature, drying time, pressure, and polymer composition, that is, homopolymer, random copolymer, and texture of granules. The sizing efficiency of the copolymer is generally poor compared to the PHB homopolymer. In addition to water permeability, the tensile strength of sized paper was measured and physical properties of granule suspensions were recorded using SEM microscopy, X-ray diffraction, and dynamic light scattering.

  19. Balloon-borne imagery of the solar granulation. II - The lifetime of solar granulation

    Science.gov (United States)

    Mehltretter, J. P.

    1978-01-01

    Phenomenological aspects of the temporal evolution of photospheric granulation are reported as derived from time series of granulation photographs obtained during a flight of a balloon-borne telescope. The distribution of granule lifetime probabilities is determined, and it is found that the data can be represented by an exponential decrease with a 'decay constant' of 5.9 min. The general properties of granular evolution are described along with the way individual granules evolve with time. The most common type of granule is shown to be a medium-sized or small fragment, and it is suggested that all granules are produced by fragmentation of preexisting granules. The relative frequencies of granule destruction by fragmentation, fading, and merging are determined to be 51%, 21%, and 28%, respectively. An average radial velocity of 0.8 km/s is computed for conglomerates with an average diameter of 2.25 arcsec.

  20. Medical image of the week: granulation tissue

    Directory of Open Access Journals (Sweden)

    Ganesh A

    2014-03-01

    Full Text Available A 57 year old woman presented with a tickling sensation in the back of throat and intermittent bleeding from the healing stoma one month after decannulation of her tracheostomy tube. On bronchoscopy a granuloma with surrounding granulation tissue was present in the subglottic space (Figure 1. Argon plasma coagulation (APC was performed to cauterize the granulation tissue (Figure 2. Formation of granulation tissue after tracheostomy is a common complication which can result in tracheal stenosis. APC and electrocautery using flexible bronchoscopy has been shown to safely and effectively remove the granulation tissue.

  1. Granulation of coal fly ash by using different types of granule agents

    Science.gov (United States)

    Agusta, H.; Nisya, F. N.; Iman, R. N.; Bilad, D. B. C.

    2017-05-01

    The use of coal produces about 5% solid pollutant in the form of ash (fly ash and bottom ash). Of the total ash produced, about 10-20% is bottom ash and 80-90% is fly ash. This study was aimed at obtaining a type of adhesive which could be used as a fly granulation material for soil conditioner. The study was conducted at the pilot plant of Surfactant and Bioenergy Research Center (SBRC) LPPM IPB from April to August 2016. The fly ash used in this study was obtained from Kalimantan. A pan granulator was used in fly ash granule making process. Granule agent materials were diluted in the concentration of 5, 10, and 15%. Different types of granule agents, namely SBRC-M, SBRC-T, and SBRC-SC were used. The formed fly ash granules were then analyzed for their physical properties including particle density, fly ash granule pH, fly ash granule durability, and fly ash granule water holding capacity. Results showed that fly ash granules made from 15% of SBRC-M had the highest particle density (0.75 g/cm3). Fly ash granules made with SBRC-M had higher pH (10) than those made by using SBRC-SC adhesive (9.3) and SBRC-T (9). SBRC-T was found as the granule agent material which produced fly ash granules with the highest durability levels on average. In this study, the use of SBRC-M granule agent resulted in higher water holding capacity (WHC) (40.62%) than did SBRC-SC (38.79%) and SBRC-T (36.85%). As a granule agent, compared to SBRC-SC and SBRC-T, SBRC-M could produce fly ash granules with highest particle density, highest pH, good durability, and best water holding capacity.

  2. An innovative method for the preparation of high API-loaded hollow spherical granules for use in controlled-release formulation.

    Science.gov (United States)

    Asada, Takumi; Kobiki, Mitsuaki; Ochiai, Yasushi; Iwao, Yasunori; Itai, Shigeru

    2017-05-15

    The aim of this study was to prepare controlled-release (CR) granules with suitable particle strength, flowability, particle size distribution (PSD) and density characteristics for blending with other excipients. We also wanted these CR granules to contain large quantities of active pharmaceutical ingredient (API). A high shear mixer was used to mix an API with various polymers at various feed ratios, and the resulting granulated materials were sprayed with solvent. The wet granules were dried using a fluidized bed dryer to give CR granules. The API content of the granules was determined to be 95wt%. The granules were found to be spherical in shape with smooth surfaces by scanning electron microscopy. The inner structure of each granule was determined to be hollow by X-ray computed tomography, highlighting the unusual mechanism of this granulation process. The PSD of the granules was found to be dependent on that of the constituent polymer, and a narrow PSD was obtained by adjusting the PSD of the polymer. The dissolution profile of the granules was also dependent on the constituent polymer. Taken together, these results show that we have successfully developed a new manufacturing technology for the simple and low-cost preparation of ideal CR granules. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nanoparticles

    Directory of Open Access Journals (Sweden)

    G.K. Ramesh

    2014-09-01

    Full Text Available In this article, heat source/sink effects on the steady boundary layer flow of a Maxwell fluid over a stretching sheet with convective boundary condition in the presence of nanoparticles are reported. An appropriate similarity transformation is employed to transform the governing equations in partial differential equations form to similarity equations in ordinary differential equations form. The resulting equations are then solved numerically using shooting technique. Results for the velocity, temperature and concentration distributions are presented graphically for different values of the pertinent parameters. It is found that the local Nusselt number is smaller and local Sherwood number is higher for Maxwell fluids compared to Newtonian fluids.

  4. Distribution of phosphorus and hydroxypropyl groups within granules of modified sweet potato starches as determined after chemical peeling

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin, Z.; Buwalda, P.; Gruppen, H.

    2015-01-01

    The distributions of phosphorus and hydroxypropyl groups within granules of cross-linked and hydroxypropylated sweet potato starches were investigated. Chemical surface peeling of starch granules was performed after sieving of native and modified starches into large-size (diameter = 20 µm) and

  5. Ionization effects in three-dimensional solar granulation simulations

    Science.gov (United States)

    Rast, Mark P.; Nordlund, Ake; Stein, Robert F.; Toomre, Juri

    1993-01-01

    These numerical studies show that ionization influences both the transport and dynamical properties of compressible convection near the surface of the Sun. About two-thirds of the enthalpy transported by convective motions in the region of partial hydrogen ionization is carried as latent heat. The role of fast downflow plumes in total convective transport is substantially elevated by this contribution. Instability of the thermal boundary layer is strongly enhanced by temperature sensitive variations in the radiative properties of the fluid, and this provides a mechanism for plume initiation and cell fragmentation in the surface layers. As the plumes descend, temperature fluctuations and associated buoyancy forces are maintained because of the increased specific heat of the partially ionized material. This can result is supersonic vertical flows. At greater depths, ionization effects diminish, and the plumes are decelerated by significant entrainment of surrounding fluid.

  6. Distribution of binder in granules produced by means of twin screw granulation

    DEFF Research Database (Denmark)

    Fonteyne, Margot; Fussell, Andrew Luke; Vercruysse, Jurgen

    2014-01-01

    According to the quality by design principle processes may not remain black-boxes and full process understanding is required. The granule size distribution of granules produced via twin screw granulation is often found to be bimodal. The aim of this study was to gain a better understanding...

  7. The paradox of high shear granulation : the formation of non-homogeneous granules

    NARCIS (Netherlands)

    Dries, Kaspar van den

    2004-01-01

    Wet granulation is a process used for the particle size enlargement of primary powders. The mixing of a liquid with the powder glues the primary particles together, which results in the formation of the granules. The mixing action can be performed in many ways, like tumbling (drum granulation),

  8. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  9. Influence of convective conditions on three dimensional mixed convective hydromagnetic boundary layer flow of Casson nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Siddiq, M.K. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Abbasi, F.M. [Department of Mathematics, Comsats Institute of Information Technology, Islamabad 44000 (Pakistan); Meraj, M.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan); Ashraf, M. [Centre for Advanced Studies in Pure and Applied Mathematics, Department of Mathematics, Bahauddin Zakariya University, Multan 63000 (Pakistan); Shehzad, S.A. [Department of Mathematics, Comsats Institute of Information Technology, Sahiwal 57000 (Pakistan)

    2016-10-15

    The present work deals with the steady laminar three-dimensional mixed convective magnetohydrodynamic (MHD) boundary layer flow of Casson nanofluid over a bidirectional stretching surface. A uniform magnetic field is applied normal to the flow direction. Similarity variables are implemented to convert the non-linear partial differential equations into ordinary ones. Convective boundary conditions are utilized at surface of the sheet. A numerical technique of Runge–Kutta–Fehlberg (RFK45) is used to obtain the results of velocity, temperature and concentration fields. The physical dimensionless parameters are discussed through tables and graphs. - Highlights: • Mixed convective boundary layer flow of Casson nanofluid is taken into account. • Impact of magnetic field is examined. • Convective heat and mass conditions are imposed. • Numerical solutions are presented and discussed.

  10. Convective heat flow probe

    Science.gov (United States)

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  11. Modeling de novo granulation of anaerobic sludge.

    Science.gov (United States)

    Doloman, Anna; Varghese, Honey; Miller, Charles D; Flann, Nicholas S

    2017-07-17

    A unique combination of mechanical, physiochemical and biological forces influences granulation during processes of anaerobic digestion. Understanding this process requires a systems biology approach due to the need to consider not just single-cell metabolic processes, but also the multicellular organization and development of the granule. In this computational experiment, we address the role that physiochemical and biological processes play in granulation and provide a literature-validated working model of anaerobic granule de novo formation. The agent-based model developed in a cDynoMiCs simulation environment successfully demonstrated a de novo granulation in a glucose fed system, with the average specific methanogenic activity of 1.11 ml C H 4 /g biomass and formation of a 0.5 mm mature granule in 33 days. The simulated granules exhibit experimental observations of radial stratification: a central dead core surrounded by methanogens then encased in acidogens. Practical application of the granulation model was assessed on the anaerobic digestion of low-strength wastewater by measuring the changes in methane yield as experimental configuration parameters were systematically searched. In the model, the emergence of multicellular organization of anaerobic granules from randomly mixed population of methanogens and acidogens was observed and validated. The model of anaerobic de novo granulation can be used to predict the morphology of the anaerobic granules in a alternative substrates of interest and to estimate methane potential of the resulting microbial consortia. The study demonstrates a successful integration of a systems biology approach to model multicellular systems with the engineering of an efficient anaerobic digestion system.

  12. The Continental Drift Convection Cell

    Science.gov (United States)

    Whitehead, J. A.; Behn, M. D.

    2014-12-01

    Continents on Earth periodically assemble to form supercontinents, and then break up again into smaller continental blocks (the Wilson Cycle). Highly developed but realistic numerical models cannot resolve if continents respond passively to mantle convection or whether they modulate flow. Our simplified numerical model addresses this problem: A thermally insulating continent floats on a stress-free surface for infinite Prandtl number cellular convection with constant material properties in a chamber 8 times longer than its depth. The continent moves back and forth across the chamber driven by a "continental drift convection cell" of a form not previously described. Subduction exists at the upstream end with cold slabs dipping at an angle beneath the moving continent. Fluid moves with the continent in the upper region of this cell with return flow near the bottom. Many continent/subduction regions on Earth have these features. The drifting cell enhances vertical heat transport by approximately 30% compared to a fixed continent, especially at the core-mantle boundary, and significantly decreases lateral mantle temperature differences. However, continent drift or fixity has smaller effects on profiles of horizontally averaged temperature. Although calculations are done at Rayleigh numbers lower than expected for Earth's mantle (2x105 and 106), the drift speed extrapolates to reasonable Wilson Cycle speeds for larger Ra.

  13. Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis.

    Science.gov (United States)

    Barrera, Gabriela N; Calderón-Domínguez, Georgina; Chanona-Pérez, Jorge; Gutiérrez-López, Gustavo F; León, Alberto E; Ribotta, Pablo D

    2013-11-06

    The effect of mechanical damage on wheat starch granules surface, at a microstructural level, was investigated by scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM), and image textural analysis. The SEM and ESEM images of the native sample showed that the starch granules had smooth, flat surfaces and smooth edges. The samples with higher damaged starch content exhibited granular distortion, irregularity and less uniformity. The fractal dimension of contour parameter increased with mechanical damage, indicating that the surface irregularities quantitatively increased due to the damage. The surfaces of damaged granules showed depressions of different shapes and sizes. The roughness parameters and fractal dimension of the surface increased as a result of the mechanical damage. The surface of damaged granules showed higher entropy and lower homogeneity values when damaged starch increased. The results indicated that the mechanical process caused structural modifications at nano level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Transition to finger convection in double-diffusive convection

    OpenAIRE

    Kellner, M.; Tilgner, A.

    2014-01-01

    Finger convection is observed experimentally in an electrodeposition cell in which a destabilizing gradient of copper ions is maintained against a stabilizing temperature gradient. This double-diffusive system shows finger convection even if the total density stratification is unstable. Finger convection is replaced by an ordinary convection roll if convection is fast enough to prevent sufficient heat diffusion between neighboring fingers, or if the thermal buoyancy force is less than 1/30 of...

  15. Coating of waste containing ceramic granules

    International Nuclear Information System (INIS)

    Neumann, W.; Kofler, O.

    1979-01-01

    Simulated high-level waste granules produced by fluidized-bed calcination were overcoated by chemical vapor deposition (CVD) with pyrocarbon and nickel in laboratory-scale experiments. Successful development enables pyrocrbon deposition at temperatures of 600 to 800 0 K. The coated granules have excellent properties for long-term waste storage

  16. Particle size distribution of wheat starch granules in relation to baking properties of frozen dough.

    Science.gov (United States)

    Tao, Han; Wang, Pei; Wu, Fengfeng; Jin, Zhengyu; Xu, Xueming

    2016-02-10

    The impact of freezing on the wheat starches with different particle size was studied using a range of characterization methods including X-ray diffraction, differential scanning calorimetry, the Rapid Visco Analyser and a reconstitution dough system. Wheat starches were fractionated into A- and B-type granules, and then subjected to freezing/thawing treatment for 3 cycles. The freezing treatment did not cause apparent damage on A-type granular surface but induced cracked structure on B-type granules. It facilitated materials such as amylose, proteins, and lipids leaching from starch granule and an increase in gelatinization temperatures, melting enthalpy, and pasting viscosities. A smaller bread specific volume was obtained from freezing-treated B-granules while the crumb firmness significantly increased (p>0.05). No marked differences were observed in the counterparts of A-granules after freezing treatment. It seemed that the B-type granules were more sensitive to the freezing/thawing treatment, thus facilitating structural transformations from dough to bread. Results indicated that the deterioration in frozen bread quality derived from starch could be minimized by increasing the A-granules content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The effect of the amount of binder liquid on the granulation mechanisms and structure of microcrystalline cellulose granules prepared by high shear granulation

    NARCIS (Netherlands)

    Bouwman, A M; Henstra, M J; Westerman, D; Chung, J T; Zhang, Z; Ingram, A; Seville, J P K; Frijlink, H W

    2005-01-01

    The structure of granules changes during the high shear granulation process. The purpose of this research was to investigate the effect of the amount of binder liquid on the structure of the granules and the structural changes which occur during the granulation process, using microcrystalline

  18. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  19. Roll Compaction/Dry Granulation of Dibasic Calcium Phosphate Anhydrous-Does the Morphology of the Raw Material Influence the Tabletability of Dry Granules?

    Science.gov (United States)

    Grote, Simon; Kleinebudde, Peter

    2018-04-01

    The influence of raw material particle morphology on the tabletabilty of dry granules was investigated. Therefore, dibasic calcium phosphate anhydrous was used as a model material. One milled grade, 2 agglomerated grades with different porosities, and a functionalized structure, that is, an agglomerate formed by very small primary particles, were included. Particle size, density, and specific surface area of raw materials were measured. The starting materials and 2 fractions of dry granules were compressed to tablets. The tabletability of granules was compared to that of the powders and the influence of specific compaction force, granule size, and lubrication on tablet tensile strength was evaluated. All materials showed a loss in tabletability induced by a previous compaction step but to a varying extent. Only in case of the functionalized calcium phosphate morphology, this effect depended on the specific compaction force. In contrast to the other materials, the tabletability of functionalized calcium phosphate was influenced by the granule size. This effect was not related to an overlubrication as internal and external lubrication resulted in similar tensile strengths. A clear influence of the particle morphology on tablet strength was demonstrated by the study. The functionalized structure showed aspects of a more plastic deformation behavior. The functionalized dibasic calcium phosphate and the more porous agglomerate performed as potential filler/binder in the field of roll compaction/dry granulation. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. Granulation effects on the radon emanation rate.

    Science.gov (United States)

    Bikit, I; Mrda, D; Grujic, S; Kozmidis-Luburic, U

    2011-05-01

    The radon emanation and the granulation effect on the emanation rate of several building materials (ceramic plates, sand, red brick and siporex brick) with different (226)Ra concentrations were investigated. A ball mill was used to achieve different granulations of the materials. The particle size distributions were determined by a particle size analyser (Mastersizer 2000). The increase in the (222)Rn concentration inside a closed chamber (volume ≈5.4 × 10(-3) m(3)) due to emanation from each material with different granulations was measured by an alpha spectrometer (RAD7). Thus, time-dependent curves for radon concentrations were obtained. The highest radon emanation coefficient (27 %) was obtained for the siporex sample with the smallest grain size (0.34 µm). For the ceramic pads, the granulation effect was negligible and the emanation coefficient was very low (∼0.4 %). The strongest influence of granulation on the radon emanation rate was found for the siporex brick sample.

  1. Lewis M. Rutherfurd and the First Photograph of Solar Granulation

    Science.gov (United States)

    Harvey, J. W.; Briggs, John W.; Prosser, Sian

    2017-08-01

    A major astronomical controversy of the mid-19th century was discordant descriptions of the small scale structure of the solar surface. Visual observers contradicted each other by describing the surface as consisting of “corrugations”, “willow leaves”, “rice grains”, “cumuli”, “thatch”, “granules”, etc. Early photographs of the solar surface were not good enough to settle the controversy. The French astronomer Jules Janssen is credited with the first 1876 photographs that clearly showed what we now call solar granulation (1876, CRAS 82, 1363). Upon seeing these images, New Yorker Lewis M. Rutherfurd (1878, MNRAS 38, 410) praised the high quality of Janssen’s images but asserted that he had also photographed granulation as early as 1871 using collodion wet plates. He sent copies of his best photograph to the Royal Astronomical Society to support his assertion. Curious about his claim, Briggs and Harvey set up Rutherfurd’s 13-inch achromatic refractor on Kitt Peak and found that it easily showed well-resolved solar granulation, so his claim might well have been justified. But without his plates we could not confirm the claim. For 140 years the copies of Rutherfurd’s best solar photograph remained in the archives of the Royal Astronomical Society and were recently discovered by Prosser (RAS Photographs A3/001B and A3/002). By coincidence a few days later, Briggs found the original August 11, 1871 plate. Despite poor condition these photographs show solar granulation. There are at least two other possible early claimants (Reade; Vogel) but their plates are almost certainly lost. Rutherfurd was a master of astronomical instrumentation and photography. He was reticent about his work, letting results speak for themselves, so it is satisfying to find that he was justified in making his claim of priority.

  2. Mesoscale convective system surface pressure anomalies responsible for meteotsunamis along the U.S. East Coast on June 13th, 2013.

    Science.gov (United States)

    Wertman, Christina A; Yablonsky, Richard M; Shen, Yang; Merrill, John; Kincaid, Christopher R; Pockalny, Robert A

    2014-11-25

    Two destructive high-frequency sea level oscillation events occurred on June 13th, 2013 along the U.S. East Coast. Seafloor processes can be dismissed as the sources, as no concurrent offshore earthquakes or landslides were detected. Here, we present evidence that these tsunami-like events were generated by atmospheric mesoscale convective systems (MCSs) propagating from inland to offshore. The USArray Transportable Array inland and NOAA tide gauges along the coast recorded the pressure anomalies associated with the MCSs. Once offshore, the pressure anomalies generated shallow water waves, which were amplified by the resonance between the water column and atmospheric forcing. Analysis of the tidal data reveals that these waves reflected off the continental shelf break and reached the coast, where bathymetry and coastal geometry contributed to their hazard potential. This study demonstrates that monitoring MCS pressure anomalies in the interior of the U.S. provides important observations for early warnings of MCS-generated tsunamis.

  3. Heat and Mass Transfer of Unsteady Hydromagnetic Free Convection Flow Through Porous Medium Past a Vertical Plate with Uniform Surface Heat Flux

    Science.gov (United States)

    El-Aziz, Mohamed Abd; Yahya, Aishah S.

    2017-09-01

    Simultaneous effects of thermal and concentration diffusions in unsteady magnetohydrodynamic free convection flow past a moving plate maintained at constant heat flux and embedded in a viscous fluid saturated porous medium is presented. The transport model employed includes the effects of thermal radiation, heat sink, Soret and chemical reaction. The fluid is considered as a gray absorbing-emitting but non-scattering medium and the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. The dimensionless coupled linear partial differential equations are solved by using Laplace transform technique. Numerical results for the velocity, temperature, concentration as well as the skin friction coefficient and the rates of heat and mass transfer are shown graphically for different values of physical parameters involved.

  4. Influence of fluctuating thermal and mass diffusion on unsteady MHD buoyancy-driven convection past a vertical surface with chemical reaction and Soret effects

    Science.gov (United States)

    Pal, Dulal; Talukdar, Babulal

    2012-04-01

    The influence of thermal radiation and first-order chemical reaction on unsteady MHD convective flow, heat and mass transfer of a viscous incompressible electrically conducting fluid past a semi-infinite vertical flat plate in the presence of transverse magnetic field under oscillatory suction and heat source in slip-flow regime is studied. The dimensionless governing equations for this investigation are formulated and solved analytically using two-term harmonic and non-harmonic functions. Comparisons with previously published work on special cases of the problem are performed and results are found to be in excellent agreement. A parametric study illustrating the effects of various physical parameters on the fluid velocity, temperature and concentration fields as well as skin-friction coefficient, the Nusselt and Sherwood numbers in terms of amplitude and phase is conducted. The numerical results of this parametric study are presented graphically and in tabular form to highlight the physical aspects of the problem.

  5. Mechanisms initiating deep convection over complex terrain during COPS

    Directory of Open Access Journals (Sweden)

    Christoph Kottmeier

    2008-12-01

    Full Text Available Precipitating convection in a mountain region of moderate topography is investigated, with particular emphasis on its initiation in response to boundary-layer and mid- and upper-tropospheric forcing mechanisms. The data used in the study are from COPS (Convective and Orographically-induced Precipitation Study that took place in southwestern Germany and eastern France in the summer of 2007. It is found that the initiation of precipitating convection can be roughly classified as being due to either: (i surface heating and low-level flow convergence; (ii surface heating and moisture supply overcoming convective inhibition during latent and/or potential instability; or (iii mid-tropospheric dynamical processes due to mesoscale convergence lines and forced mean vertical motion. These phenomena have to be adequately represented in models in order to improve quantitative precipitation forecast. Selected COPS cases are analysed and classified into these initiation categories. Although only a subset of COPS data (mainly radiosondes, surface weather stations, radar and satellite data are used here, it is shown that convective systems are captured in considerable detail by sensor synergy. Convergence lines were observed by Doppler radar in the location where deep convection is triggered several hours later. The results suggest that in many situations, observations of the location and timing of convergence lines will facilitate the nowcasting of convection. Further on, forecasting of the initiation of convection is significantly complicated if advection of potentially convective air masses over changing terrain features plays a major role. The passage of a frontal structure over the Vosges - Rhine valley - Black Forest orography was accompanied by an intermediate suppression of convection over the wide Rhine valley. Further downstream, an intensification of convection was observed over the Black Forest due to differential surface heating, a convergence line

  6. Convective evaporation of vertical films.

    Science.gov (United States)

    Boulogne, François; Dollet, Benjamin

    2018-02-28

    Motivated by the evaporation of soap films, which has a significant effect on their lifetime, we performed an experimental study on the evaporation of vertical surfaces with model systems based on hydrogels. From the analogy between heat and mass transfer, we adopt a model describing the natural convection in the gas phase due to a density contrast between dry and saturated air. Our measurements show a good agreement with this model, both in terms of scaling law with the Grashof number and in terms of order of magnitude. We discuss the corrections to take into account, notably the contribution of edge effects, which have a small but visible contribution when lateral and bottom surface areas are not negligible compared to the main evaporating surface area.

  7. Solar granulation and statistical crystallography: A modeling approach using size-shape relations

    Science.gov (United States)

    Noever, D. A.

    1994-01-01

    The irregular polygonal pattern of solar granulation is analyzed for size-shape relations using statistical crystallography. In contrast to previous work which has assumed perfectly hexagonal patterns for granulation, more realistic accounting of cell (granule) shapes reveals a broader basis for quantitative analysis. Several features emerge as noteworthy: (1) a linear correlation between number of cell-sides and neighboring shapes (called Aboav-Weaire's law); (2) a linear correlation between both average cell area and perimeter and the number of cell-sides (called Lewis's law and a perimeter law, respectively) and (3) a linear correlation between cell area and squared perimeter (called convolution index). This statistical picture of granulation is consistent with a finding of no correlation in cell shapes beyond nearest neighbors. A comparative calculation between existing model predictions taken from luminosity data and the present analysis shows substantial agreements for cell-size distributions. A model for understanding grain lifetimes is proposed which links convective times to cell shape using crystallographic results.

  8. Impact of screw configuration on the particle size distribution of granules produced by twin screw granulation.

    Science.gov (United States)

    Vercruysse, J; Burggraeve, A; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-02-01

    Twin screw granulation (TSG) has been reported by different research groups as an attractive technology for continuous wet granulation. However, in contrast to fluidized bed granulation, granules produced via this technique typically have a wide and multimodal particle size distribution (PSD), resulting in suboptimal flow properties. The aim of the current study was to evaluate the impact of granulator screw configuration on the PSD of granules produced by TSG. Experiments were performed using a 25 mm co-rotating twin screw granulator, being part of the ConsiGma™-25 system (a fully continuous from-powder-to-tablet manufacturing line from GEA Pharma Systems). Besides the screw elements conventionally used for TSG (conveying and kneading elements), alternative designs of screw elements (tooth-mixing-elements (TME), screw mixing elements (SME) and cutters) were investigated using an α-lactose monohydrate formulation granulated with distilled water. Granulation with only conveying elements resulted in wide and multimodal PSD. Using kneading elements, the width of the PSD could be partially narrowed and the liquid distribution was more homogeneous. However, still a significant fraction of oversized agglomerates was obtained. Implementing additional kneading elements or cutters in the final section of the screw configuration was not beneficial. Furthermore, granulation with only TME or SME had limited impact on the width of the PSD. Promising results were obtained by combining kneading elements with SME, as for these configurations the PSD was narrower and shifted to the size fractions suitable for tableting. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. [Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].

    Science.gov (United States)

    Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen

    2017-05-01

    The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.

  10. Granular Data Description: Designing Ellipsoidal Information Granules.

    Science.gov (United States)

    Zhu, Xiubin; Pedrycz, Witold; Li, Zhiwu

    2017-12-01

    Granular computing (GrC) has emerged as a unified conceptual and processing framework. Information granules are fundamental constructs that permeate concepts and models of GrC. This paper is concerned with a design of a collection of meaningful, easily interpretable ellipsoidal information granules with the use of the principle of justifiable granularity by taking into consideration reconstruction abilities of the designed information granules. The principle of justifiable granularity supports designing of information granules based on numeric or granular evidence, and aims to achieve a compromise between justifiability and specificity of the information granules to be constructed. A two-stage development strategy behind the construction of justifiable information granules is considered. First, a collection of numeric prototypes is determined with the use of fuzzy clustering. Second, the lengths of the semi-axes of ellipsoidal information granules to be formed around such prototypes are optimized. Two optimization criteria are introduced and studied. Experimental studies involving synthetic data set and data sets coming from the machine learning repository are reported.

  11. Crystal-Growing Crucible To Suppress Convection

    Science.gov (United States)

    Richter, R.

    1986-01-01

    Platform under growth region stabilizes melt for more uniform crystal growth. In new crucible, platform just below growth interface so melt is too shallow to support convection. Critical depth for onset of pertinent instability calculated from heat flux through surface of melt, volume coefficient of thermal expansion, thermal conductivity, thermal diffusivity, and kinematic viscosity.

  12. Determination of the convective heat transfer coefficient

    NARCIS (Netherlands)

    Spierings, D.; Bosman, F.; Peters, T.; Plasschaert, F.

    The value of the convective heat transfer coefficient (htc) is determined under different loading conditions by using a computer aided method. The thermal load has been applied mathematically as well as experimentally to the coronal surface of an axisymmetric tooth model. To verify the assumptions

  13. Analysis of the release process of phenylpropanolamine hydrochloride from ethylcellulose matrix granules V. Release properties of ethylcellulose layered matrix granules.

    Science.gov (United States)

    Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu

    2008-04-01

    In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. In previous papers, a combination of the square-root time law and cube-root law equations was confirmed to be a useful equation for qualitative treatment. It was also confirmed that the combination equation could analyze the release properties of layered granules as well as matrix granules. The drug release property from layered granules is different from that of matrix granules. A time lag occurs before release, and the entire release property of layered granules was analyzed using the combination of the square-root time law and cube-root law equations. It is considered that the analysis method is very useful and efficient for both matrix and layered granules. Comparing the granulation methods, it is easier to control the manufacturing process by tumbling granulation (method B) than by tumbling-fluidized bed granulation (method C). Ethylcellulose (EC) layered granulation by a fluidized bed granulator might be convenient for the preparation of controlled release dosage forms as compared with a tumbling granulator, because the layered granules prepared by the fluidized bed granulator can granulate and dry at the same time. The time required for drying by the fluidized bed granulator is shorter than that by the tumbling granulator, so the fluidized bed granulator is convenient for preparation of granules in handling and shorter processing time than the tumbling granulator. It was also suggested that the EC layered granules prepared by the fluidized bed granulator were suitable for a controlled release system as well as the EC matrix granules.

  14. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor

    International Nuclear Information System (INIS)

    Ahmad, Anwar; Ghufran, Rumana; Wahid, Zularisam Abd.

    2011-01-01

    Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: ► Examine the treatability of POME and effects of CaO–CKD on the granulation process in UASB reactors. ► The main objective was to determine the influent CaO–CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. ► The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. ► SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO–CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO–CKD at doses of 1.5–20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 °C for 150 days to investigate the effect of CaO–CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5–65.5 g-COD g/l at an OLR of 4.5–12.5 kg-COD/m 3 d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids/total solids (VS/TS) and volatile fatty acids in the anaerobic sludge in the UASB reactor decreased

  15. Role of calcium oxide in sludge granulation and methanogenesis for the treatment of palm oil mill effluent using UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Anwar, E-mail: anwarak218@yahoo.co.uk [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia); Ghufran, Rumana; Wahid, Zularisam Abd. [Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang (UMP), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang (Malaysia)

    2011-12-30

    Graphical abstract: SEM micrograph of granules; Outer surface of the granule; Scanning electron micrographs of the granule: Archaea (Methanosarcina sp.) showing the arrangement of bacterial cells in granule surrounded by extracellular polymeric substances (EPS), the seed sludge and granules sampled on day 150. Highlights: Black-Right-Pointing-Pointer Examine the treatability of POME and effects of CaO-CKD on the granulation process in UASB reactors. Black-Right-Pointing-Pointer The main objective was to determine the influent CaO-CKD concentration and the relationship between the CaO concentration in the feed and biomass accumulation, specific granulation, methanogenic activity, and the density and composition of granules. Black-Right-Pointing-Pointer The biomass concentration profiles along the reactors and the size distribution of granules were also measured to track and to assess granulation, methanogenesis, and COD removal on levels at the industrial scale. Black-Right-Pointing-Pointer SEM micrograph are showing smooth surface of granule with a large opening cavities likely for biogas escape. - Abstract: The granulation process in palm oil mill effluent using calcium oxide-cement kiln dust (CaO-CKD) provides an attractive and cost effective treatment option. In this study the efficiency of CaO-CKD at doses of 1.5-20 g/l was tested in batch experiments and found that 10 g of CaO/l caused the greatest degradation of VFA, butyrate and acetate. An upflow anaerobic sludge blanket (UASB) reactor was operated continuously at 35 Degree-Sign C for 150 days to investigate the effect of CaO-CKD on sludge granulation and methanogenesis during start-up. The treatment of POME emphasized the influence of varying organic loading rates (OLR). Up to 94.9% of COD was removed when the reactor was fed with the 15.5-65.5 g-COD g/l at an OLR of 4.5-12.5 kg-COD/m{sup 3} d, suggesting the feasibility of using CaO in an UASB process to treat POME. The ratio of volatile solids

  16. High-temperature superconductivity of granulated metals

    CERN Document Server

    Mejlikhov, E Z

    2001-01-01

    Only the area of relatively low temperatures was traditionally considered in the theoretical ands experimental studies on the nanocomposites (granulated metals) conductivity, related to the intergranular electrons tunneling. The conductivity temperature dependence in this mode is exponential. However, according to the experiment the character of the nanocomposites conductivity at higher temperatures essentially changes. The model, relating the peculiarities of the granulated metals conductivity at high temperatures, to the involvement of the multicharged granules in this process under the conditions of high spread of their sizes, is proposed. The model conclusions are in agreement with the experiment

  17. An investigation into the usefulness of different empirical modeling techniques for better control of spray-on fluidized bed melt granulation.

    Science.gov (United States)

    Aleksić, Ivana; Đuriš, Jelena; Ibrić, Svetlana; Parojčić, Jelena

    2015-12-30

    Melt granulation in fluid bed processors is an emerging technique, but literature data regarding the modeling of this granulation method are lacking. In the present study different techniques (response surface analysis, multilayer perceptron neural network, and partial least squares method) were applied for modeling of spray-on fluidized bed melt granulation. Experiments were organized in line with central composite design. The effect of binder content and spray air pressure on granule properties was evaluated. The results obtained indicate that binder content can be identified as a critical factor controlling the granule size and size distribution. It was found that agglomeration mechanism involved, i.e., granule shape, can be greatly influenced by binder properties. The spray air pressure was identified as critical process parameter affecting granule flowability. The results presented indicate that application of in silico tools enables enhanced understanding and better control of novel pharmaceutical processes, such as melt granulation in fluidized bed. The artificial neural networks and partial least squares method were found to be superior to response surface methodology in prediction of granule properties. According to the results obtained, application of more advanced empirical modeling techniques complementary to design of experiments can be a suitable approach in defining the design space and optimization of spray-on fluidized bed melt granulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Simulating deep convection with a shallow convection scheme

    Directory of Open Access Journals (Sweden)

    C. Hohenegger

    2011-10-01

    Full Text Available Convective processes profoundly affect the global water and energy balance of our planet but remain a challenge for global climate modeling. Here we develop and investigate the suitability of a unified convection scheme, capable of handling both shallow and deep convection, to simulate cases of tropical oceanic convection, mid-latitude continental convection, and maritime shallow convection. To that aim, we employ large-eddy simulations (LES as a benchmark to test and refine a unified convection scheme implemented in the Single-column Community Atmosphere Model (SCAM. Our approach is motivated by previous cloud-resolving modeling studies, which have documented the gradual transition between shallow and deep convection and its possible importance for the simulated precipitation diurnal cycle.

    Analysis of the LES reveals that differences between shallow and deep convection, regarding cloud-base properties as well as entrainment/detrainment rates, can be related to the evaporation of precipitation. Parameterizing such effects and accordingly modifying the University of Washington shallow convection scheme, it is found that the new unified scheme can represent both shallow and deep convection as well as tropical and mid-latitude continental convection. Compared to the default SCAM version, the new scheme especially improves relative humidity, cloud cover and mass flux profiles. The new unified scheme also removes the well-known too early onset and peak of convective precipitation over mid-latitude continental areas.

  19. The driving force for magnetospheric convection

    Science.gov (United States)

    Johnson, F. S.

    1978-01-01

    Viscously driven magnetospheric models, as well as a model involving interconnection between the geomagnetic field and the magnetic field in the solar wind, have been proposed to describe the driving force for magnetospheric convection. Lack of a satisfactory theory for the interconnection in the latter model and, in the case of the viscous interaction models, inadequacies in predicting the quantity of the driving force, make these two classes of models less than successful. Accordingly, a mechanically driven magnetospheric model is proposed: solar wind plasma enters the magnetosphere around the neutral points, covers the inner surface of the magnetopause and subsequently expands, driving convection as it escapes from the open tail.

  20. Fluid bed granulation of a poorly water soluble, low density, micronized drug: comparison with high shear granulation.

    Science.gov (United States)

    Gao, Julia Z H; Jain, A; Motheram, R; Gray, D B; Hussain, M A

    2002-04-26

    A 2(4-1) fractional factorial design was used to evaluate the effect of various process variables in fluid bed granulation, on the physico-chemical properties of granule and tablet containing a high dose, poorly water soluble, low density, and micronized drug. The process variables studied were inlet air temperature, inlet air flow, spray rate of the binder solution, and atomization air pressure. Tablets with identical composition, weight, size and hardness were also manufactured in a high shear granulator and their physical properties were determined and compared with those produced by the fluidized bed granulation method. Except for the granule size distribution, other physical properties of granulations and tablets produced in a fluid bed granulator are independent of the selected process variables within the study range. Both atomization air pressure and spray rate of the binder solution had strong impact on granule size distribution. Irrespective of the process conditions used in the fluid bed granulation, granules from this process were more porous, less dense and more compressible than the granules from the high shear granulation process. Comparable tablet dissolution rates to those prepared by the optimized high shear granulation method can be achieved by selecting the appropriate process conditions in fluid bed granulation. These results suggest that wet granulation tablets of a high dose, poorly water soluble, low density, micronized drug can be manufactured using a fluidized bed granulation method, with comparable tablet dissolution rates to those produced with an optimized high shear granulation method.

  1. High-shear granulation as a manufacturing method for cocrystal granules

    DEFF Research Database (Denmark)

    Rehder, Sönke; Christensen, Niels Peter Aae; Rantanen, Jukka

    2013-01-01

    influenced by the excipients, since in presence of calcium hydrogenphosphate, the poorly water-soluble salt calcium tartrate monohydrate was formed at high relative humidity. Interestingly, compactability was increased by cocrystal formation compared to that of the reference granules (piracetam......Cocrystal formation allows the tailoring of physicochemical as well as of mechanical properties of an API. However, there is a lack of large-scale manufacturing methods of cocrystals. Therefore, the objective of this work was to examine the suitability of high-shear wet granulation...... as a manufacturing method for cocrystal granules on a batch scale. Furthermore, the cocrystal granules were characterized regarding their mechanical properties as well as their dissolution behavior. High-shear wet granulation was found to be a feasible manufacturing method for cocrystal granules. Cocrystal formation...

  2. Preliminary Research on Granulation Process of Dust Waste from Reclamation Process of Moulding Sands with Furan Resin

    Directory of Open Access Journals (Sweden)

    J. Kamińska

    2012-09-01

    Full Text Available The results of investigations of the granulation process of foundry dusts generated in the dry mechanical reclamation process of usedsands, where furan resins were binders are presented in the paper. Investigations concerned producing of granules of the determineddimensions and strength parameters.Granules were formed from the dusts mixture consisting in 50 mass% of dusts obtained after the reclamation of the furane sands and in50 mass % of dusts from sands with bentonite. Dusts from the bentonite sands with water were used as a binder allowing the granulation of after reclamation dusts from the furane sands.The following parameters of the ready final product were determined: moisture content (W, shatter test of granules (Wz performeddirectly after the granulation process and after 1, 3, 5, 10 days and nights of seasoning, water-resistance of granules after 24 hours of being immersed in water, surface porosity ep and volumetric porosity ev. In addition the shatter test and water-resistance of granulate dried at a temperature of 105oC were determined.Investigations were performed at the bowl angle of inclination 45o, for three rotational speeds of the bowl being: 10, 15, 20 rpm.For the speed of 10 rpm the granulation tests of dusts mixture after the preliminary mixing in the roller mixer and with the addition ofwater-glass in the amount of 2% in relation to the amount of dust were carried out.The obtained results indicate that the granulator allows to obtain granules from dusts originated from the reclamations of mouldingsands with the furane resin with an addition of dusts from the bentonite sands processing plants.

  3. Spherical-shell boundaries for two-dimensional compressible convection in a star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Geroux, C.; Viallet, M.; Folini, D.; Constantino, T.; Popov, M.; Walder, R.

    2016-10-01

    Context. Studies of stellar convection typically use a spherical-shell geometry. The radial extent of the shell and the boundary conditions applied are based on the model of the star investigated. We study the impact of different two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from an established one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone representative of a young low-mass star, like our sun at 106 years of age. Aims: We analyze how the radial extent of the spherical shell changes the convective dynamics that result in the deep interior of the young sun model, far from the surface. In the near-surface layers, simple small-scale convection develops from the profiles of temperature and density. A central radiative zone below the convection zone provides a lower boundary on the convection zone. The inclusion of either of these physically distinct layers in the spherical shell can potentially affect the characteristics of deep convection. Methods: We perform hydrodynamic implicit large eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over tens or even hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: To measure the impact of the spherical-shell geometry and our treatment of boundaries, we evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward studies exploiting the so

  4. Wet granulation in rotary processor and fluid bed: Comparison of granule and tablet properties

    OpenAIRE

    Kristensen, Jakob; Hansen, Vibeke Wallaert

    2006-01-01

    The aim of the present study was to investigate and compare granule and tablet properties of granules prepared by wet granulation in a rotary processor or a conventional fluid bed. For this purpose the working range of selected process variables was determined and a factorial study with 3 factors (equipment type, filler type, and liquid addition rate) and 1 covariate (fluidizing air flow rate) was performed. Two grades of calcium carbonate with different size and shape characteristics were ap...

  5. Bone growth response with porous hydroxyapatite granules in a

    Indian Academy of Sciences (India)

    Bone growth with porous hydroxyapatite granules 147 granules. Yet few gaps still persisted between the new bone and the granules. Morphologically the granules did not show any signs of degradation. Formation of the. Haversian system and the maturation of woven bone were observed (figure 7b). 12 weeks: The defect ...

  6. Impact and attrition shear breakage of enzyme granules and placebo particles-application to particle design and formulation

    DEFF Research Database (Denmark)

    Jørgensen, Kåre; Bach, Poul; Jensen, Anker

    2005-01-01

    the enzyme into the core of the granule as compared to a layer-structured enzyme distribution. Furthermore, the results indicated that stronger enzyme granule core materials provide a better impact resistance of the final enzyme granule towards the release of enzyme-active dust. Coating layers of inorganic...... salts and water-soluble polymers are observed to enhance the breakage resistance of the enzyme granules tremendously. The impact and shear resistance of four different placebo enzyme granule core particles were investigated. A transition from chipping to fragmentation as the main breakage mechanism...... was observed at impact velocities from 8 to 20 m/s. Experiments performed with attrition shearing indicated that the extent of breakage depend on surface friction and particle sphericity as well as intraparticular forces. The results obtained in this work are of importance for the design and formulation...

  7. Axisymmetric Marangoni convection in microencapsulation

    Science.gov (United States)

    Subramanian, Pravin; Zebib, Abdelfattah; McQuillan, Barry

    2005-07-01

    Spherical shells used as laser targets in inertial confinement fusion (ICF) experiments are made by microencapsulation. In one phase of manufacturing, the spherical shells contain a solvent (fluorobenzene (FB)) and a solute (polystyrene (PAMS)) in a water-FB environment. Evaporation of the FB results in the desired hardened plastic hollow spherical shells, 1-2 mm in diameter. Perfect sphericity is demanded for efficient fusion ignition and the observed surface roughness maybe driven by Marangoni instabilities due to surface tension dependence on the FB concentration (buoyant forces are negligible in this micro-scale problem). Here we model this drying process and compute nonlinear, time-dependent, axisymmetric, variable viscosity, infinite Schmidt number solutocapillary convection in the shells. Comparison with results from linear theory and available experiments are made.

  8. A murine model of subglottic granulation.

    Science.gov (United States)

    Ghosh, A; Leahy, K P; Singhal, S; Einhorn, E; Howlett, P; Cohen, N A; Mirza, N

    2016-04-01

    This study aimed to develop a functional model of subglottic stenosis by inducing direct airway irritation in transplanted mouse laryngotracheal complexes. Laryngotracheal complexes from C57BL/6 mice were harvested and divided into three groups: uninjured, mechanically injured and chemically injured. Donor laryngotracheal complexes from each group were placed in dorsal subcutaneous pockets of recipient mice. Each week, the transplanted laryngotracheal complexes were harvested, and tissues were fixed, sectioned, and stained with haematoxylin and eosin. Representative slides were reviewed by a blinded pathologist, to determine the formation of granulation tissue, and graded as to the degree of granulation formation. Direct airway irritation induced granulation tissue formation under the disrupted epithelium of airway mucosa; this was seen as early as two weeks after chemical injury. Results indicate that granulation tissue formation in a murine model may be an efficient tool for investigating the development and treatment of subglottic stenosis.

  9. Mathematical models of convection

    CERN Document Server

    Andreev, Victor K; Goncharova, Olga N; Pukhnachev, Vladislav V

    2012-01-01

    Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the ""front"" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fiel

  10. The quorum-sensing effect of aerobic granules on bacterial adhesion, biofilm formation, and sludge granulation.

    Science.gov (United States)

    Ren, Ting-ting; Yu, Han-qing; Li, Xiao-yan

    2010-10-01

    Quorum sensing (QS) through signal chemical molecules is known to be essential to bacterial adhesion and biofilm formation. In this study, the QS ability of aerobic granules--a special form of biofilms used for biological wastewater treatment--was investigated and compared with that of conventional activated sludge flocs. A novel sectional membrane bioreactor was used together with a flow-cell to evaluate the possible influence of signal chemicals produced by the source sludge on the growth mode of bacterial cells. The results demonstrate the apparent production of QS chemicals from granules and its impact on initial cell attachment and granule formation. When granules were used as the signal-producing biomass, the attached-growth mode was dominant for the free cells, and the biofilm formation rate in the flow-cell was about ten times faster than in cases which used activated sludge as the signal source biomass. In addition, the intracellular extract from mature granules significantly accelerated the sludge granulation process. It is argued that the production and expression of QS signal chemicals from granules and granule precursors might have induced the gene expression of bacteria in suspension for attached growth rather than suspended growth, leading to granule formation and its stable structure.

  11. Process analysis of fluidized bed granulation.

    Science.gov (United States)

    Rantanen, J; Jørgensen, A; Räsänen, E; Luukkonen, P; Airaksinen, S; Raiman, J; Hänninen, K; Antikainen, O; Yliruusi, J

    2001-10-17

    This study assesses the fluidized bed granulation process for the optimization of a model formulation using in-line near-infrared (NIR) spectroscopy for moisture determination. The granulation process was analyzed using an automated granulator and optimization of the verapamil hydrochloride formulation was performed using a mixture design. The NIR setup with a fixed wavelength detector was applied for moisture measurement. Information from other process measurements, temperature difference between process inlet air and granules (T(diff)), and water content of process air (AH), was also analyzed. The application of in-line NIR provided information related to the amount of water throughout the whole granulation process. This information combined with trend charts of T(diff) and AH enabled the analysis of the different process phases. By this means, we can obtain in-line documentation from all the steps of the processing. The choice of the excipient affected the nature of the solid-water interactions; this resulted in varying process times. NIR moisture measurement combined with temperature and humidity measurements provides a tool for the control of water during fluid bed granulation.

  12. CDM Convective Forecast Planning guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...

  13. Granulation of activated sludge under low hydrodynamic shear and different wastewater characteristics.

    Science.gov (United States)

    Devlin, T R; di Biase, A; Kowalski, M; Oleszkiewicz, J A

    2017-01-01

    Five reactors were operated with low upflow superficial air velocities (0.41cmmin -1 ) in order to observe granulation on synthetic wastewaters with different characteristics: 1) 340mg-CODL -1 ; 2) 630mg-CODL -1 ; and 3) 1300mg-CODL -1 . Stable granulation was only observed under low hydrodynamic shear for low-strength wastewater. 55-70% of soluble chemical oxygen demand (COD) was utilized before aeration and 91% COD, 62% total nitrogen (TN), and 96% total phosphorus (TP) were removed from the low-strength wastewater. Although medium-strength wastewater did generate granules they rapidly acquired a filamentous surface layer that resulted in decreased performance and loss of nitrification. 94% COD, 30% TN, and 85% TP were removed from the medium-strength wastewater. The high-strength wastewater did not develop granules and 85% COD was removed. Results demonstrated that high shear force was not required for granulation. Rather, granulation depended on multiple parameters to out-select rapidly growing aerobic microorganisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Detection of component segregation in granules manufactured by high shear granulation with over-granulation conditions using near-infrared chemical imaging.

    Science.gov (United States)

    Koide, Tatsuo; Nagato, Takuya; Kanou, Yoshiyuki; Matsui, Kou; Natsuyama, Susumu; Kawanishi, Toru; Hiyama, Yukio

    2013-01-30

    The objective of this study was to evaluate the high shear granulation process using near-infrared (NIR) chemical imaging technique and to make the findings available for pharmaceutical development. We prepared granules and tablets made under appropriate- and over-granulation conditions with high shear granulation and observed these granules and tablets using NIR chemical imaging system. We found an interesting phenomenon: lactose agglomeration and segregation of ingredients occurred in experimental tablets when over-granulation conditions, including greater impeller rotation speeds and longer granulation times, were employed. Granules prepared using over-granulation conditions were larger and had progressed to the consolidation stage; segregation between ethenzamide and lactose occurred within larger granules. The segregation observed here is not detectable using conventional analytical technologies such as high pressure liquid chromatography (HPLC) because the content of the granules remained uniform despite the segregation. Therefore, granule visualization using NIR chemical imaging is an effective method for investigating and evaluating the granulation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Convective overshooting in stars

    NARCIS (Netherlands)

    Andrássy, R.

    2015-01-01

    Numerous observations provide evidence that the standard picture, in which convective mixing is limited to the unstable layers of a star, is incomplete. The mixing layers in real stars are significantly more extended than what the standard models predict. Some of the observations require changing

  16. Stochasticc convection parameterization

    NARCIS (Netherlands)

    Dorrestijn, J.

    2016-01-01

    Clouds are chaotic, difficult to predict, but above all, magnificent natural phenomena. There are different types of clouds: stratus, a layer of clouds that may produce drizzle, cirrus, clouds in the higher parts of the atmosphere, and cumulus, clouds that arise in convective updrafts. Thermals,

  17. Wet granulation in rotary processor and fluid bed: Comparison of granule and tablet properties.

    Science.gov (United States)

    Kristensen, Jakob; Hansen, Vibeke Wallaert

    2006-03-01

    The aim of the present study was to investigate and compare granule and tablet properties of granules prepared by wet granulation in a rotary processor or a conventional fluid bed. For this purpose the working range of selected process variables was determined and a factorial study with 3 factors (equipment type, filler type, and liquid addition rate) and 1 covariate (fluidizing air flow rate) was performed. Two grades of calcium carbonate with different size and shape characteristics were applied, and the liquid addition and fluidizing air flow rates were investigated in the widest possible range. Dry mixtures of microcrystalline cellulose, polyvinyl povidone, calcium carbonate, and riboflavin, in a 10∶5∶84∶1 ratio, were granulated in both types of equipment. The granulation end point was determined manually in the fluid bed and by torque measurements in the rotary processor. The filler type had a more pronounced effect on granular properties in the fluid bed, but the rotary processor showed a higher dependency on the investigated process variables. The rotary processor gave rise to more dense granules with better flow properties, but the fluid bed granules had slightly better compressional properties. Furthermore, the distribution of a low-dose drug was found to be more homogeneous in the rotary processor granules and tablets. Generally, wet granulation in a rotary processor was found to be a good alternative to conventional fluid bed granulation, especially when cohesive powders with poor flow properties or formulations with low drug content are to be granulated by a fluidizing air technique.

  18. Mixing and transport during pharmaceutical twin-screw wet granulation: experimental analysis via chemical imaging.

    Science.gov (United States)

    Kumar, Ashish; Vercruysse, Jurgen; Toiviainen, Maunu; Panouillot, Pierre-Emmanuel; Juuti, Mikko; Vanhoorne, Valérie; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2014-07-01

    Twin-screw granulation is a promising continuous alternative for traditional batch high shear wet granulation (HSWG). The extent of HSWG in a twin screw granulator (TSG) is greatly governed by the residence time of the granulation materials in the TSG and degree of mixing. In order to determine the residence time distribution (RTD) and mixing in TSG, mostly visual observation and particle tracking methods are used, which are either inaccurate and difficult for short RTD, or provide an RTD only for a finite number of preferential tracer paths. In this study, near infrared chemical imaging, which is more accurate and provides a complete RTD, was used. The impact of changes in material throughput (10-17 kg/h), screw speed (500-900 rpm), number of kneading discs (2-12) and stagger angle (30-90°) on the RTD and axial mixing of the material was characterised. The experimental RTD curves were used to calculate the mean residence time, mean centred variance and the Péclet number to determine the axial mixing and predominance of convective over dispersive transport. The results showed that screw speed is the most influential parameter in terms of RTD and axial mixing in the TSG and established a significant interaction between screw design parameters (number and stagger angle of kneading discs) and the process parameters (material throughput and number of kneading discs). The results of the study will allow the development and validation of a transport model capable of predicting the RTD and macro-mixing in the TSG. These can later be coupled with a population balance model in order to predict granulation yields in a TSG more accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Convective Propagation Characteristics Using a Simple Representation of Convective Organization

    Science.gov (United States)

    Neale, R. B.; Mapes, B. E.

    2016-12-01

    Observed equatorial wave propagation is intimately linked to convective organization and it's coupling to features of the larger-scale flow. In this talk we a use simple 4 level model to accommodate vertical modes of a mass flux convection scheme (shallow, mid-level and deep). Two paradigms of convection are used to represent convective processes. One that has only both random (unorganized) diagnosed fluctuations of convective properties and one with organized fluctuations of convective properties that are amplified by previously existing convection and has an explicit moistening impact on the local convecting environment We show a series of model simulations in single-column, 2D and 3D configurations, where the role of convective organization in wave propagation is shown to be fundamental. For the optimal choice of parameters linking organization to local atmospheric state, a broad array of convective wave propagation emerges. Interestingly the key characteristics of propagating modes are the low-level moistening followed by deep convection followed by mature 'large-scale' heating. This organization structure appears to hold firm across timescales from 5-day wave disturbances to MJO-like wave propagation.

  20. Eosinophil secretion of granule-derived cytokines

    Directory of Open Access Journals (Sweden)

    Lisa A Spencer

    2014-10-01

    Full Text Available Eosinophils are tissue-dwelling leukocytes, present in the thymus, and gastrointestinal and genitourinary tracts of healthy individuals at baseline, and recruited, often in large numbers, to allergic inflammatory foci and sites of active tissue repair. The biological significance of eosinophils is vast and varied. In health, eosinophils support uterine and mammary gland development, and maintain bone marrow plasma cells and adipose tissue alternatively activated macrophages, while in response to tissue insult eosinophils function as inflammatory effector cells, and, in the wake of an inflammatory response, promote tissue regeneration and wound healing. One common mechanism driving many of the diverse eosinophil functions is the regulated and differential secretion of a vast array of eosinophil-derived cytokines. Eosinophils are distinguished from most other leukocytes in that many, if not all, of the over three dozen eosinophil-derived cytokines are pre-synthesized and stored within intracellular granules, poised for very rapid, stimulus-induced secretion. Eosinophils engaged in cytokine secretion in situ utilize distinct pathways of cytokine release that include: classical exocytosis, whereby granules themselves fuse with the plasma membrane and release their entire contents extracellularly; piecemeal degranulation, whereby granule-derived cytokines are selectively mobilized into vesicles that emerge from granules, traverse the cytoplasm and fuse with the plasma membrane to release discrete packets of cytokines; and eosinophil cytolysis, whereby intact granules are extruded from eosinophils, and deposited within tissues. In this latter scenario, extracellular granules can themselves function as stimulus-responsive secretory-competent organelles within the tissue. Here we review the distinctive processes of differential secretion of eosinophil granule-derived cytokines.

  1. Investigation of Physicochemical Drug Properties to Prepare Fine Globular Granules Composed of Only Drug Substance in Fluidized Bed Rotor Granulation.

    Science.gov (United States)

    Mise, Ryohei; Iwao, Yasunori; Kimura, Shin-Ichiro; Osugi, Yukiko; Noguchi, Shuji; Itai, Shigeru

    2015-01-01

    The effect of some drug properties (wettability and particle size distribution) on granule properties (mean particle size, particle size distribution, sphericity, and granule strength) were investigated in a high (>97%) drug-loading formulation using fluidized bed rotor granulation. Three drugs: acetaminophen (APAP); ibuprofen (IBU); and ethenzamide (ETZ) were used as model drugs based on their differences in wettability and particle size distribution. Granules with mean particle sizes of 100-200 µm and a narrow particle size distribution (PSD) could be prepared regardless of the drug used. IBU and ETZ granules showed a higher sphericity than APAP granules, while APAP and ETZ granules exhibited higher granule strength than IBU. The relationship between drug and granule properties suggested that the wettability and the PSD of the drugs were critical parameters affecting sphericity and granule strength, respectively. Furthermore, the dissolution profiles of granules prepared with poorly water-soluble drugs (IBU and ETZ) showed a rapid release (80% release in 20 min) because of the improved wettability with granulation. The present study demonstrated for the first time that fluidized bed rotor granulation can prepare high drug-loaded (>97%) globular granules with a mean particle size of less than 200 µm and the relationship between physicochemical drug properties and the properties of the granules obtained could be readily determined, indicating the potential for further application of this methodology to various drugs.

  2. Fabrication of dicalcium phosphate dihydrate-coated β-TCP granules and evaluation of their osteoconductivity using experimental rats.

    Science.gov (United States)

    Shariff, Khairul Anuar; Tsuru, Kanji; Ishikawa, Kunio

    2017-06-01

    β-Tricalcium phosphate (β-TCP) has attracted much attention as an artificial bone substitute owing to its biocompatibility and osteoconductivity. In this study, osteoconductivity of β-TCP bone substitute was enhanced without using growth factors or cells. Dicalcium phosphate dihydrate (DCPD), which is known to possess the highest solubility among calcium phosphates, was coated on β-TCP granules by exposing their surface with acidic calcium phosphate solution. The amount of coated DCPD was regulated by changing the reaction time between β-TCP granules and acidic calcium phosphate solution. Histomorphometry analysis obtained from histological results revealed that the approximately 10mol% DCPD-coated β-TCP granules showed the largest new bone formation compared to DCPD-free β-TCP granules, approximately 2.5mol% DCPD-coated β-TCP granules, or approximately 27mol% DCPD-coated β-TCP granules after 2 and 4weeks of implantation. Based on this finding, we demonstrate that the osteoconductivity of β-TCP granules could be improved by coating their surface with an appropriate amount of DCPD. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Convective heat transfer on Mars

    International Nuclear Information System (INIS)

    Arx, A.V. von; Delgado, A. Jr.

    1991-01-01

    An examination was made into the feasibility of using convective heat transfer on Mars to reject the waste heat from a Closed Brayton Cycle. Forced and natural convection were compared to thermal radiation. For the three radiator configurations studied, it was concluded that thermal radiation will yield the minimum mass and forced convection will result in the minimum area radiator. Other issues such as reliability of a fan motor were not addressed. Convective heat transfer on Mars warrants further investigation. However, the low density of the Martian atmosphere makes it difficult to utilize convective heat transfer without incurring a weight penalty

  4. Granule fraction inhomogeneity of calcium carbonate/sorbitol in roller compacted granules

    DEFF Research Database (Denmark)

    Bacher, Charlotte; Olsen, P.M.; Bertelsen, P.

    2008-01-01

    The granule fraction inhomogeneity of roller compacted granules was examined on mixtures of three different morphologic forms of calcium carbonate and three particle sizes of sorbitol. The granule fraction inhomogeneity was determined by the distribution of the calcium carbonate in each of the 10...... size fractions between 0 and 2000 µm and by calculating the demixing potential. Significant inhomogeneous occurrence of calcium carbonate in the size fractions was demonstrated, depending mostly on the particles sizes of sorbitol but also on the morphological forms of calcium carbonate....... The heterogeneous distribution of calcium carbonate was related to the decrease in compactibility of roller compacted granules in comparison to the ungranulated materials. This phenomenon was explained by a mechanism where fracturing of the ribbon during granulation occurred at the weakest interparticulate bonds...

  5. Expression of an amylosucrase gene in potato results in larger starch granules with novel properties.

    Science.gov (United States)

    Huang, Xing-Feng; Nazarian-Firouzabadi, Farhad; Vincken, Jean-Paul; Ji, Qin; Visser, Richard G F; Trindade, Luisa M

    2014-08-01

    Expression of amylosucrase in potato resulted in larger starch granules with rough surfaces and novel physico-chemical properties, including improved freeze-thaw stability, higher end viscosity, and better enzymatic digestibility. Starch is a very important carbohydrate in many food and non-food applications. In planta modification of starch by genetic engineering has significant economic and environmental benefits as it makes the chemical or physical post-harvest modification obsolete. An amylosucrase from Neisseria polysaccharea fused to a starch-binding domain (SBD) was introduced in two potato genetic backgrounds to synthesize starch granules with altered composition, and thereby to broaden starch applications. Expression of SBD-amylosucrase fusion protein in the amylose-containing potato resulted in starch granules with a rough surface, a twofold increase in median granule size, and altered physico-chemical properties including improved freeze-thaw stability, higher end viscosity, and better enzymatic digestibility. These effects are possibly a result of the physical interaction between amylosucrase and starch granules. The modified larger starches not only have great benefit to the potato starch industry by reducing losses during starch isolation, but also have an advantage in many food applications such as frozen food due to its extremely high freeze-thaw stability.

  6. A Finite Difference Scheme for Double-Diffusive Unsteady Free Convection from a Curved Surface to a Saturated Porous Medium with a Non-Newtonian Fluid

    KAUST Repository

    El-Amin, Mohamed

    2011-05-14

    In this paper, a finite difference scheme is developed to solve the unsteady problem of combined heat and mass transfer from an isothermal curved surface to a porous medium saturated by a non-Newtonian fluid. The curved surface is kept at constant temperature and the power-law model is used to model the non-Newtonian fluid. The explicit finite difference method is used to solve simultaneously the equations of momentum, energy and concentration. The consistency of the explicit scheme is examined and the stability conditions are determined for each equation. Boundary layer and Boussinesq approximations have been incorporated. Numerical calculations are carried out for the various parameters entering into the problem. Velocity, temperature and concentration profiles are shown graphically. It is found that as time approaches infinity, the values of wall shear, heat transfer coefficient and concentration gradient at the wall, which are entered in tables, approach the steady state values.

  7. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  8. Microbial selection pressure is not a prerequisite for granulation: dynamic granulation and microbial community study in a complete mixing bioreactor.

    Science.gov (United States)

    Zhou, Dandan; Niu, Shu; Xiong, Yongjiao; Yang, Yang; Dong, Shuangshi

    2014-06-01

    Microbial selection pressure is traditionally supposed as a prerequisite for aerobic granulation. This work gives a different insight on this issue. Fluorescent microspheres were used to label the flocculent biomass granulation for a period of 47days in a continuous-flow bioreactor. Analysis of the distribution of fluorescent microspheres in granules revealed that the terminal phase of granulation is in a dynamic steady state, where bioflocs detach, collide and aggregate randomly. This revealed that the un-granulated biomass was the result of the dynamic aggregation and breakage, rather than the microbial species unable to be granulated. Furthermore, denaturing gradient gel electrophoresis (DGGE) profile and UPGMA dendrogram results showed similar microbial communities during the granulation. To sum up, microbial selection pressure was not a prerequisite for aerobic granulation from both of the dynamic granulation steps and molecular biology aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The combined effect of wet granulation process parameters and dried granule moisture content on tablet quality attributes.

    Science.gov (United States)

    Gabbott, Ian P; Al Husban, Farhan; Reynolds, Gavin K

    2016-09-01

    A pharmaceutical compound was used to study the effect of batch wet granulation process parameters in combination with the residual moisture content remaining after drying on granule and tablet quality attributes. The effect of three batch wet granulation process parameters was evaluated using a multivariate experimental design, with a novel constrained design space. Batches were characterised for moisture content, granule density, crushing strength, porosity, disintegration time and dissolution. Mechanisms of the effect of the process parameters on the granule and tablet quality attributes are proposed. Water quantity added during granulation showed a significant effect on granule density and tablet dissolution rate. Mixing time showed a significant effect on tablet crushing strength, and mixing speed showed a significant effect on the distribution of tablet crushing strengths obtained. The residual moisture content remaining after granule drying showed a significant effect on tablet crushing strength. The effect of moisture on tablet tensile strength has been reported before, but not in combination with granulation parameters and granule properties, and the impact on tablet dissolution was not assessed. Correlations between the energy input during granulation, the density of granules produced, and the quality attributes of the final tablets were also identified. Understanding the impact of the granulation and drying process parameters on granule and tablet properties provides a basis for process optimisation and scaling. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Soret and Dufour effects on MHD non-Darcian radiating convective flow of micropolar fluid past an inclined surface with non-uniform surface heat source or sink and chemical reaction

    Science.gov (United States)

    Sreenivasulu, P.; Poornima, T.; Bala Anki Reddy, P.

    2017-11-01

    The present study investigates the effects of Soret and Dufour on MHD non-Darcy convective flow of a viscous incompressible radiating micropolar fluid past an inclined permeable plate with non-uniform heat source or sink and chemical reaction. The flow field with partial differential equations are converted to a system of nonlinear coupled ordinary differential equations by similarity transformations and solved employing shooting method. Swiftness in the momentum of the fluid is observed as the Darcian and fluid parameter ascends. Speed of the fluid in angular rotation ascends as the material parameter or sheet inclination or magnetic parameter increases. Molecular diffusion rate is more as the microparticles undergo chemical reactions. While the thermal distribution rate reduces because of the reactions. Rest of the results are interpreted graphically. A good agreement is observed with the previous publications. The presence of chemical reaction makes the problem industrially applicable taking the case of heterogeneous reactions.

  11. Chromospheric impact of an exploding solar granule

    Science.gov (United States)

    Fischer, C. E.; Bello González, N.; Rezaei, R.

    2017-06-01

    Context. Observations of multi-wavelength and therefore height-dependent information following events throughout the solar atmosphere and unambiguously assigning a relation between these rapidly evolving layers are rare and difficult to obtain. Yet, they are crucial for our understanding of the physical processes that couple the different regimes in the solar atmosphere. Aims: We characterize the exploding granule event with simultaneous observations of Hinode spectroplarimetric data in the solar photosphere and Hinode broadband Ca II H images combined with Interface Region Imaging Spectrograph (IRIS) slit spectra. We follow the evolution of an exploding granule and its connectivity throughout the atmosphere and analyze the dynamics of a magnetic element that has been affected by the abnormal granule. Methods: In addition to magnetic flux maps we use a local correlation tracking method to infer the horizontal velocity flows in the photosphere and apply a wavelet analysis on several IRIS chromospheric emission features such as Mg II k2v and Mg II k3 to detect oscillatory phenomena indicating wave propagation. Results: During the vigorous expansion of the abnormal granule we detect radially outward horizontal flows, causing, together with the horizontal flows from the surrounding granules, the magnetic elements in the bordering intergranular lanes to be squeezed and elongated. In reaction to the squeezing, we detect a chromospheric intensity and velocity oscillation pulse which we identify as an upward traveling hot shock front propagating clearly through the IRIS spectral line diagnostics of Mg II h&k. Conclusions: Exploding granules can trigger upward-propagating shock fronts that dissipate in the chromosphere. Movies associated to Figs. A.1 and A.2 are available in electronic form at http://www.aanda.org

  12. Coupling between lower‐tropospheric convective mixing and low‐level clouds: Physical mechanisms and dependence on convection scheme

    Science.gov (United States)

    Bony, Sandrine; Dufresne, Jean‐Louis; Roehrig, Romain

    2016-01-01

    Abstract Several studies have pointed out the dependence of low‐cloud feedbacks on the strength of the lower‐tropospheric convective mixing. By analyzing a series of single‐column model experiments run by a climate model using two different convective parametrizations, this study elucidates the physical mechanisms through which marine boundary‐layer clouds depend on this mixing in the present‐day climate and under surface warming. An increased lower‐tropospheric convective mixing leads to a reduction of low‐cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the convective mixing and to boundary‐layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower‐tropospheric drying induced by the convective mixing, which damps the reduction of the low‐cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low‐cloud radiative cooling, which enhances the reduction of the low‐cloud fraction. The relative importance of these two different processes depends on the closure of the convective parameterization. The convective scheme that favors the coupling between latent heat flux and low‐cloud radiative cooling exhibits a stronger sensitivity of low‐clouds to convective mixing in the present‐day climate, and a stronger low‐cloud feedback in response to surface warming. In this model, the low‐cloud feedback is stronger when the present‐day convective mixing is weaker and when present‐day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low‐cloud feedbacks observationally is discussed. PMID:28239438

  13. Arachnoid granulation affected by subarachnoid hemorrhage

    Directory of Open Access Journals (Sweden)

    R.P. Chopard

    1993-11-01

    Full Text Available The purpose of this study was to investigate using light microscopy the fibro-cellular components of arachnoid granulations affected by mild and severe subarachnoid hemorrage. The erythrocytes were in the channels delimitated by collagenous and elastic bundles and arachnoid cells, showing their tortuous and intercommunicating row from the pedicle to the fibrous capsule. The core portion of the pedicle and the center represented a principal route to the bulk outflow of cerebrospinal fluid and erythrocytes. In the severe hemorrhage, the fibrocellular components are desorganized, increasing the extracellular channels. We could see arachnoid granulations without erythrocytes, which cells showed big round nucleous suggesting their transformation into phagocytic cells.

  14. THE ORBIT, ROTATION, AND GRANULATION OF THE G7 GIANT β Her

    Energy Technology Data Exchange (ETDEWEB)

    Gray, David F., E-mail: dfgray@uwo.ca [Department of Physics and Astronomy University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 (Canada)

    2016-11-20

    The G7 IIIa single-lined spectroscopic binary, β Her, is studied with high-resolution, high-signal-to-noise spectra taken over 10 seasons from 23MR2000 to 10MY2009. Absolute radial velocities, corrected for convective blueshifts, are determined and new orbital parameters are derived. Line-depth ratios are used to measure temperature variation ∼2 K. A Fourier analysis is done for the line broadening, yielding a projected rotation velocity of 3.27 ± 0.20 km s{sup -1} and a radial–tangential macroturbulence dispersion of 6.43 ± 0.08 km s{sup -1}. The “C” shaped bisector of Fe i λ 6253 has its blue-most point at a relative flux level of 0.52, consistent with what is expected from β Her’s absolute magnitude. The third-signature plot indicates granulation velocities 20% larger than the Sun’s. Mapping the λ 6253 line bisector onto the third-signature curve results in a flux deficit of 12.6 ± 1.0% that can be interpreted as arising from a temperature difference between granules and inter-granular lanes of 132 K. The flux deficit peaks near 5.5 km s{sup -1} from the line center, suggesting the velocity difference between granules and lanes is ∼20% larger than that found for recently analyzed K giants.

  15. Granule size distributions after twin-screw granulation - Do not forget the feeding systems.

    Science.gov (United States)

    Meier, R; Thommes, M; Rasenack, N; Moll, K-P; Krumme, M; Kleinebudde, P

    2016-09-01

    The aim of this study was to investigate the influence of qualitatively different powder feeder performances on resulting granule size distributions after twin-screw granulation of a highly drug loaded, hydrophobic mixture and a mannitol powder. It was shown that powder feeder related problems usually cannot be identified by trusting in the values given by the feeder. Therefore, a newly developed model for the evaluation of the performance of powder feeders was introduced and it was tried to connect this model to residence time distributions in twin-screw granulation processes. The influence of feeder performances on resulting granule size distributions varied, depending on the applied screw configuration and the used powder. Regarding the hydrophobic and highly drug loaded formulation, which was granulated at an L/S-ratio of 0.5, a pure conveying screw and a medium kneading configuration, consisting of 60° kneading blocks were negatively influenced by poor feeder settings. For optimal settings more narrow distributions could be obtained. For an extensive kneading configuration good and poor settings resulted in mono-modal granule size distributions but were differing in the overall size. Mannitol, a model substance for a liquid sensitive formulation was granulated at an L/S-ratio of 0.075. It was even more important to maintain optimal feeding as mannitol was highly affected by poor feeder performances. Even an extensive kneading configuration could not level the errors in powder feeder performance, resulting in qualitatively different granule size distributions. The results of this study demonstrate the importance of detailed knowledge about applied feeding systems to gain optimal performance in twin-screw granulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Characterization of Nanoporous Ceramic Granules Made with Coal Fly Ash and Their Utilization in Phenol Removal from Water

    Directory of Open Access Journals (Sweden)

    Zhaoqian Jing

    2013-01-01

    Full Text Available Coal fly ash has been evaluated as low-cost material for pollutants adsorption. But powdered fly ash is difficult to be separated from the adsorbate and solution after saturation. When it is made into granules, this problem can be solved. Granules with uniform diameter of 6 mm were prepared and used as adsorbents for phenol removal from aqueous solution. The physical and chemical characteristics of the granules were investigated. The data indicated that the granules were abundant with nanosize pores of 9.8 nm on average. The specific surface area and porosity reached 130.5 m2/g and 60.1%, respectively. The main components in the granules were SiO2, Al2O3, MgO, Fe2O3, CaO, K2O, and unburned carbon. The adsorption batch experiments showed that this granular material was an efficient adsorbent for phenol removal. Phenol adsorption on the granules was mainly influenced by dosage and contact time. Increase in the dosage could enhance phenol adsorption effectively. More than 90% phenol could be removed under normal temperature and neutral pH with initial concentration of 100 mg/L, contact time of 90 min, and dosage of 140 g/L. The adsorption of phenol on the granules was spontaneous and complied well with the pseudo-second-order model and Langmuir isotherm model.

  17. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control.

    Science.gov (United States)

    Ming, Liangshan; Li, Zhe; Wu, Fei; Du, Ruofei; Feng, Yi

    2017-01-01

    Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the process was investigated using response surface model (RSM), partial least squares method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products.

  18. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control.

    Directory of Open Access Journals (Sweden)

    Liangshan Ming

    Full Text Available Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD was used to identify the high-risk factors. Then, Box-Behnken design (BBD was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5 and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5 of the process was investigated using response surface model (RSM, partial least squares method (PLS and artificial neural network of multilayer perceptron (MLP. The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products.

  19. Tablet formulation of an active pharmaceutical ingredient with a sticking and filming problem: direct compression and dry granulation evaluations.

    Science.gov (United States)

    Bejugam, Naveen K; Mutyam, Shravan K; Shankar, Gita N

    2015-02-01

    To develop a tablet formulation for an active pharmaceutical ingredient for which sticking and filming problems occurred during tablet punching. Direct compression and dry granulation tableting techniques were evaluated using factorial experimental design. The effects of chrome-coated punch tips, filler types and active percent in the tablet formulation by direct compression were evaluated. Similarly, for dry granulation using the roller compaction technique, three formulation factors - roller compaction pressure, intragranular filler percent and filler type - were studied. Tablets prepared by both techniques were characterized in regard to their compressibility index, tablet hardness, disintegration time, friability index and stickiness-filming index (an arbitrary index). Ten formulations were prepared by each technique. Using multiple response optimizations and estimated response surface plots, the data were analyzed to identify optimum levels for the formulation factors. Compressibility index values for all the formulations prepared by direct compression exceeded 25%, unlike the blends prepared by dry granulation. Both tablet hardness and disintegration time for direct compression formulations were significantly lower than for dry granulation formulations. The friability index values were significantly higher for direct compression formulations than for dry granulation formulations. All the direct compression formulations, unlike the dry granulation formulations, had a high stickiness-filming index. Statistical analysis helped in identifying the optimum levels of formulation factors, as well as the method for eliminating sticking and filming. Unlike the direct compression technique, dry granulation yielded tablets for which sticking and filming were completely eliminated.

  20. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control

    Science.gov (United States)

    Ming, Liangshan; Li, Zhe; Wu, Fei; Du, Ruofei; Feng, Yi

    2017-01-01

    Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the process was investigated using response surface model (RSM), partial least squares method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products. PMID:28662115

  1. Study of quantitative interactions of potato and corn starch granules with ions in diluted solutions of heavy metal salts.

    Science.gov (United States)

    Szymońska, Joanna; Molenda, Marcin; Wieczorek, Jerzy

    2015-12-10

    Interactions of potato and corn starch granules with ions in diluted solutions of silver, lead, copper or iron salts were investigated. It was shown experimentally that granules accumulated the cations in amounts depending on the granule structure and water content as well as a type of both metal and counter-ions present in solution. Potato starch retained almost three times more cations compared to corn starch what was proportional to the total phosphorous content in these starches. Quantity of milligrams of cations bound by 1g of starch was inversely correlated with the cation hydration. Ag(+), Pb(2+) and Cu(2+) were connected in stoichiometric amounts of moles to semicrystalline and amorphous parts of the granules. Fe(3+) ions were accumulated in higher than stoichiometric quantities mainly in granule amorphous regions. Metal ions penetrated into granules together with anions except nitrates which remained on surface of potato starch granules. Cations facilitated the starch thermal decomposition in accordance with values of their standard redox potentials. Nitrates supported this process only in the presence of base metal cations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Application of fluidized hot-melt granulation (FHMG) for the preparation of granules for tableting; properties of granules and tablets prepared by FHMG.

    Science.gov (United States)

    Kidokoro, Motonori; Haramiishi, Yasuo; Sagasaki, Shinji; Shimizu, Tsutomu; Yamamoto, Yoji

    2002-01-01

    The objective of this study was to investigate the properties of granules and tablets prepared by a novel Fluidized Hot-Melt Granulation (FHMG) technique. Macrogol 6000 (polyethylene glycol 6000, PEG 6000), macrogol 20000 (polyethylene glycol 20000, PEG 20000), and glyceryl monostearate (GMS) were used as binders with different levels of viscosity and water solubility. The properties of both granules and tablets were compared with those obtained using the Standard Tablet Formulation (STF, lactose/corn starch/hydroxypropylcellulose/ magnesium stearate: 66/30/3.5/0.5) for fluidized-bed granulation, which is widely used for wet granulation. To obtain suitable flowability as granules for tabletting, the content of the melting material should be approximately 10 w/w%. The rate of increase in the mean diameter of the granules during FHMG was affected by both the melting temperature and the viscosity of the melting material used in the granules. The compression properties of granules prepared by FHMG were also investigated, demonstrating that these granules had a high pressure transmittance. The hardness and the disintegration time of tablets obtained from granules prepared by FHMG were influenced by the properties of the melting material, such as its compaction behavior, solubility, and wettability. No significant differences of hardness were observed when compared to STF tablets. Tablets prepared from FHMG granules disintegrated within 15 min, whereas the STF tablets showed faster disintegration. It was also demonstrated that the hardness and disintegration time of tablets prepared from FHMG granules were not affected by the tablet porosity. Therefore, tablets with a constant quality may be obtainable under a wide range of compression forces. The results of this study suggested that FHMG is a useful method of preparing granules for tableting without using any solvents or water.

  3. The evolution of granule fracture strength as a function of impeller tip speed and granule size for a novel reverse-phase wet granulation process.

    Science.gov (United States)

    Wade, J B; Martin, G P; Long, D F

    2015-07-05

    The feasibility of a novel reverse-phase wet granulation process has been established previously and several potential advantages over the conventional process have been highlighted (Wade et al., 2014a,b,b). Due to fundamental differences in the growth mechanism and granule consolidation behaviour between the two processes the reverse-phase approach generally formed granules with a greater mass mean diameter and a lower intragranular porosity than those formed by the conventional granulation process under the same liquid saturation and impeller tip speed conditions. The lower intragranular porosity was hypothesised to result in an increase in the granule strength and subsequent decrease in tablet tensile strength. Consequently, the aim of this study was to compare the effect of impeller tip speed and granule size on the strength and compaction properties of granules prepared using both the reverse-phase and conventional granulation processes. For the conventional granulation process an increase in the impeller tip speed from 1.57 to 4.71 ms(-1) (200-600 RPM) resulted in an increase in the mean granule strength (pgranule size fractions and as the granule size fraction increased from 425-600 to 2000-3350 μm the mean fracture strength decreased (p0.05) on mean granule strength whereas, like the conventional process, an increase in granule size fraction from 425-600 to 2000-3350 μm resulted in a decrease (pgranule fracture strength and the tablet tensile strength (p>0.05) for either granulation approach. These data support the rejection of the original hypothesis which stated that an increase in granule strength may result in a decrease in the tablet tensile strength. The similar tablet tensile strength observed between the conventional and reverse-phase granulation processes indicated that while mechanistic differences exist in the formation of the granules, which resulted in significant granule-scale fracture strength differences, the granule compaction properties

  4. Evidence of Marangoni Convection Cells on Spherical Shells

    Science.gov (United States)

    McQuillan, Barry

    2001-11-01

    1 and 2 mm OD plastic shells show surface bumps. The origin of the bumps are Marangoni convection cells created during the formation of the shells. The L mode number for these bumps is consistent with the mode number predicted from a calculation of Lebon and Pirotte. The bumps can be eliminated by suitable changes in the processing, changes which are guided by the presumption of Marangoni convection cells.

  5. Development and characterisation of semi-crystalline composite granules: The effect of particle chemistry and the electrostatic charging

    Science.gov (United States)

    Haque, Syed N.; Hussain, Tariq; Chowdhry, Babur Z.; Douroumis, Dennis; Scoutaris, Nikolaos; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-12-01

    This study investigated the surface of semi-crystalline composite granules produced via a novel mechano-chemical process and assessed the effect of electrostatic charging. Ibuprofen (IBU), a model drug with low solubility and known associated processing challenges was loaded in composite granules to improve its processibility and dissolution rates. Synthetic amorphous mesoporous magnesium alumina metasilicate (MAS) was co-processed with hydrophilic HPMC polymer in the presence of polyethylene glycol 2000 (PEG) and deionised water. The solid state analyses conducted by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed the existence of semi-crystalline IBU in the complex composite structures. Dynamic vapour sorption (DVS) study showed the water sorption and desorption profiles of the manufactured composite granules as well as the effect of water on the solid-state stability of IBU in various formulations. Advanced surface analysis conducted via energy dispersive X-ray (EDS) revealed homogenous distribution of the drug/excipients on the surface of the granules while atomic force microscopy (AFM) complemented the findings. The electrostatic charge analysis showed variable charge property which is affected by the size of the particles/granules. As expected, the in vitro dissolution study showed about 5 fold increase in the release rates of IBU compared to that of the bulk drug. The mechanochemical processing has been demonstrated as an efficient technique to develop semi-crystalline composite granules with enhanced dissolution rates of water insoluble drugs.

  6. Expression of an amylosucrase gene in potato results in larger starch granules with novel properties

    NARCIS (Netherlands)

    Huang, X.; Nazarian, F.; Vincken, J.P.; Ji, Q.; Visser, R.G.F.; Trindade, L.M.

    2014-01-01

    Main conclusion - Expression of amylosucrase in potato resulted in larger starch granules with rough surfaces and novel physico-chemical properties, including improved freeze–thaw stability, higher end viscosity, and better enzymatic digestibility. Starch is a very important carbohydrate in many

  7. Study on molybdenum base alloy granules fabricated under impulse discharge conditions

    International Nuclear Information System (INIS)

    Myagkov, K.A.; Blinkov, I.V.

    1984-01-01

    The investigation of the structure and properties of alloy granules of the composition Mo-1.2% Ti-0.35%C and Mo-3.1% Ti-0.8%C obtained as a result of titanium and carbon deposition from gas phase on molybdenum powder under impulse discharge conditions is carried out. The alloy granules have been studied by the methods of chemical metallographic and X-ray structural analysis and measured their microhardness and specific surface. It has been found that the deposited elements in case of alloy solidification form fine-dispersed carbide inclusions in matrix metal causing its hardening

  8. Large-scale horizontal flows from SOUP observations of solar granulation

    Science.gov (United States)

    November, L. J.; Simon, G. W.; Tarbell, T. D.; Title, A. M.; Ferguson, S. H.

    1987-01-01

    Using high resolution time sequence photographs of solar granulation from the SOUP experiment on Spacelab 2, large scale horizontal flows were observed in the solar surface. The measurement method is based upon a local spatial cross correlation analysis. The horizontal motions have amplitudes in the range 300 to 1000 m/s. Radial outflow of granulation from a sunspot penumbra into surrounding photosphere is a striking new discovery. Both the supergranulation pattern and cellular structures having the scale of mesogranulation are seen. The vertical flows that are inferred by continuity of mass from these observed horizontal flows have larger upflow amplitudes in cell centers than downflow amplitudes at cell boundaries.

  9. Interannual variability of the thermohaline structure in the convective gyre of the Greenland Sea

    Science.gov (United States)

    Alekseev, G. V.; Ivanov, V. V.; Korablev, A. A.

    The temporal variability of thermohaline conditions in the Greenland Sea Convective gyre is examined on the basis of the long term observational series. The existence of two stable types of winter thermohaline structure is discovered. The transition from one type to another occurs through the pre-convective state and consequent convection. The characteristic feature ofthe pre-convective state is an increased (about 0.07 PSU above normal) surface salinity, caused by the external salt water influx. Potential temperature and salinity time series joint analysis confirms the crucial role of the surface salinity in the convection realization. An explanation of the surface to bottom overturning events and of the low frequency variability of convection activity is suggested on this basis.

  10. EFFECT OF BINDER ON THE RELATIONSHIP BETWEEN BULK-DENSITY AND COMPACTIBILITY OF LACTOSE GRANULATIONS

    NARCIS (Netherlands)

    ZUURMAN, K; BOLHUIS, GK; VROMANS, H

    1995-01-01

    The effect of a binder on the relationship between the bulk density and compactibility of lactose granulations was studied by comparing binderless granules with granules containing hydroxypropylcellulose. Granulations were prepared from different grades of alpha-lactose monohydrate and anhydrous

  11. Detection and Analysis of the Quality of Ibuprofen Granules

    Science.gov (United States)

    Yu-bin, Ji; Xin, LI; Guo-song, Xin; Qin-bing, Xue

    2017-12-01

    The Ibuprofen Granules comprehensive quality testing to ensure that it is in accordance with the provisions of Chinese pharmacopoeia. With reference of Chinese pharmacopoeia, the Ibuprofen Granules is tested by UV, HPLC, in terms of grain size checking, volume deviation, weight loss on drying detection, dissolution rate detection, and quality evaluation. Results indicated that Ibuprofen Granules conform to the standards. The Ibuprofen Granules are qualified and should be permitted to be marketed.

  12. Impact of full range of amylose contents on the architecture of starch granules.

    Science.gov (United States)

    Goldstein, Avi; Annor, George; Putaux, Jean-Luc; Hebelstrup, Kim H; Blennow, Andreas; Bertoft, Eric

    2016-08-01

    The effects of amylose deposition on crystalline regions of barley starch granules were studied in granules containing zero to 99.1% amylose using "waxy" (WBS, 0% amylose), normal (NBS, 18% amylose) and amylose-only barley lines (AOS, 99.1% amylose). The effects were probed after hydrolysis of amorphous regions of starch granules in dilute HCl generating lintners, which typically represent the crystalline lamella of starch granules. Compared to NBS and WBS, AOS granules exhibited an irregular, multilobular morphology with a rough surface texture. AOS displayed lower rates of acid hydrolysis than WBS, and AOS reached a plateau at ∼45wt% acid hydrolysis. High-performance anion-exchange chromatography of lintners at equivalent levels of hydrolysis (45wt%) revealed the average degree of polymerization (DP) of AOS lintners was 21, substantially smaller than that of NBS and WBS (DP 42). AOS lintners contained the lowest number of chains (NC) per molecule (1.1) compared to NBS (2.8) and WBS (3.3) and the average chain length of AOS, NBS and WBS lintners was 19, 15 and 13, respectively. Hence, both NC and the average chain length correlated with amylose content. The size distribution profile of AOS lintners revealed a repeat motif in the molecules corresponding to 5-6 glucose residues. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Implementation of fluidized granulated iron reactors in a chromate remediation process

    International Nuclear Information System (INIS)

    Müller, P.; Lorber, K.E.; Mischitz, R.; Weiß, C.

    2014-01-01

    A new approach concerning in-situ remediation on source (‘hot-spot’) decontamination of a chromate damage in connection with an innovative pump-and-treat-technique has been developed. Iron granulates show significant higher reduction rates, using fluidized bed conditions, than a literature study with a fixed bed installation of small-sized iron granules. First results from an abandoned tannery site concerning injections of sodium dithionite as a chromate reductant for the vadose zone in combination with a pump-and-treat-method, allying the advantages of granulated zero valent iron (ZVI), are reported. Reduction amounts of chromate have been found up to 88% compared with initial values in the soil after a soil water exchange of 8 pore volumes within 2.5 months. Chromate concentrations in the pumped effluent have been reduced to under the detection limit of 0.005 mg/L by treatment with ZVI in the pilot plant. - Highlights: • Fe-granules show high Cr(VI)-reduction rates using fluidized bed conditions. • No respective negligible passivation effects on the surface of the iron granulates. • P and T-method by using ZVI in a FBR is very effective for Cr(VI) remediation. • The process provides no increase in salinity of the treated effluent

  14. Tracheostomy Decannulation: Suprastomal Granulation Tissue in ...

    African Journals Online (AJOL)

    Background: Suprastomal granulation tissue is a complication of tracheostomy which may make decannulation difficult and presents a therapeutic challenge to the Otorhinolaryngologists. The aims of this study therefore were to evaluate tracheostomy in black African population, determine the prevalence of suprastomal ...

  15. Atrial natriuretic peptide (ANP)-granules: ultrastructure ...

    African Journals Online (AJOL)

    ANP) are present in the four regions of the atrial-auricular complex (two atria and two auricles). ANP-immunoreactivity was detected in all granules from the four regions. Ultrastructurally, atrial myocytes show the presence of very electron dense ...

  16. Next generation fluidized bed granulator automation.

    Science.gov (United States)

    Rantanen, J; Känsäkoski, M; Suhonen, J; Tenhunen, J; Lehtonen, S; Rajalahti, T; Mannermaa, J P; Yliruusi, J

    2000-05-06

    A system for fluidized bed granulator automation with in-line multichannel near infrared (NIR) moisture measurement and a unique air flow rate measurement design was assembled, and the information gained was investigated. The multivariate process data collected was analyzed using principal component analysis (PCA). The test materials (theophylline and microcrystalline cellulose) were granulated and the calibration behavior of the multichannel NIR set-up was evaluated against full Fourier Transform (FT) NIR spectra. Accurate and reliable process air flow rate measurement proved critical in controlling the granulation process. The process data describing the state of the process was projected in two dimensions, and the information from various trend charts was outlined simultaneously. The absorbence of test material at correction wavelengths (NIR region) and the nature of material-water interactions affected the detected in-line NIR water signal. This resulted in different calibration models for the test materials. Development of process analytical methods together with new data visualization algorithms creates new tools for in-process control of the fluidized bed granulation.

  17. Chinese herbal medicine shenqi detoxification granule ...

    African Journals Online (AJOL)

    Shenqi Detoxification Granule (SDG), a traditional Chinese herbal formula, has been used for treatment of chronic renal failure in clinic for many years. Materials and Methods: In order to evaluate the efficacy, and explore the mechanism of SDG to inhibit the progression of renal fibrosis, study was carried out using the ...

  18. Granulate of stainless steel as compensator material

    NARCIS (Netherlands)

    J.P.C. van Santvoort (J. P C)

    1995-01-01

    textabstractCompensators produced with computer controlled milling devices usually consist of a styrofoam mould, filled with an appropriate material. We investigated granulate of stainless steel as filling material. This cheap, easy to use, clean and re-usable material can be obtained with an

  19. Creep of granulated loose-fill insulation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    with SP-Building Physics in Sweden and VTT Building Technology in Finland. For the round robin test a cellulosic fibre insulation material was used. The proposed standardised method for creep tests and theories are limited to cases when the granulated loose-fill material is exposed to a constant......, Organisation for Testing in Scandinavia funded the Nordtest....

  20. 21 CFR 520.1468 - Naproxen granules.

    Science.gov (United States)

    2010-04-01

    ... and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1468 Naproxen granules. (a... musculoskeletal system of the horse. (2)(i) For oral maintenance therapy following initial intravenous dosage...

  1. Modelling of stellar convection

    Science.gov (United States)

    Kupka, Friedrich; Muthsam, Herbert J.

    2017-07-01

    The review considers the modelling process for stellar convection rather than specific astrophysical results. For achieving reasonable depth and length we deal with hydrodynamics only, omitting MHD. A historically oriented introduction offers first glimpses on the physics of stellar convection. Examination of its basic properties shows that two very different kinds of modelling keep being needed: low dimensional models (mixing length, Reynolds stress, etc.) and "full" 3D simulations. A list of affordable and not affordable tasks for the latter is given. Various low dimensional modelling approaches are put in a hierarchy and basic principles which they should respect are formulated. In 3D simulations of low Mach number convection the inclusion of then unimportant sound waves with their rapid time variation is numerically impossible. We describe a number of approaches where the Navier-Stokes equations are modified for their elimination (anelastic approximation, etc.). We then turn to working with the full Navier-Stokes equations and deal with numerical principles for faithful and efficient numerics. Spatial differentiation as well as time marching aspects are considered. A list of codes allows assessing the state of the art. An important recent development is the treatment of even the low Mach number problem without prior modification of the basic equation (obviating side effects) by specifically designed numerical methods. Finally, we review a number of important trends such as how to further develop low-dimensional models, how to use 3D models for that purpose, what effect recent hardware developments may have on 3D modelling, and others.

  2. Feasibility study of hydrogen generator with molten slag granulation

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, T.; Mizuochi, T. [Graduate School of Engineering, Osaka Pref. Univ., Sakai, Osaka (Japan); Yagi, J.I.; Nogami, H. [Inst. of Multidisciplinary Research for Advanced Materials, Tohoku Univ., Aobaku, Sendai (Japan)

    2004-02-01

    A huge amount of hot molten oxides, such as steelmaking slag and molten municipal waste, is discharged at present without heat recovery, in spite of its very high potential. For example, hot molten slag as a byproduct in the Japanese steelmaking industry, over 1723 K in temperature, reaches as much as 30 million tonnes annually. To recover heat of the viscous slag chemically, the strongly endothermic reaction CH{sub 4}+H{sub 2}O {yields} 3H{sub 2}+CO was selected and then the property of dry granulation of the molten slag by rotary cup atomizer (RCA) for expanding surface area of the slag was experimentally studied. The purpose of this paper was, therefore, to study slag granulation under various conditions for promoting heat exchange between slag and gas, in which the influence of the rotating speed and the shape of the cup on the slag drop size was mainly examined. The collected slag drops were correlated with operating conditions such as rotating speed, cup shape, etc. Most significantly, the molten slag was successfully granulated under the dry conditions without water impingement. The rotating speed of the cup influenced the diameter and shape of the slag drops very strongly. The higher rotating speed made the slag drops smaller, more spherical and uniform. Drops with 5 to 6 mm of average dimension were obtained at a rotating speed of 15 rps (900 rpm), and drops with about 1 mm at 50 rps (3000 rpm). In the former case, the shape of the obtained drops changed from spherical to ribbon-like. These results will be useful to establish new heat recovery processes with hydrogen generation from molten slag with many benefits. Energy analysis and cost evaluation were also conducted, to study the benefit of the proposed process. (orig.)

  3. Bidispersive-inclined convection

    Science.gov (United States)

    Mulone, Giuseppe; Straughan, Brian

    2016-01-01

    A model is presented for thermal convection in an inclined layer of porous material when the medium has a bidispersive structure. Thus, there are the usual macropores which are full of a fluid, but there are also a system of micropores full of the same fluid. The model we employ is a modification of the one proposed by Nield & Kuznetsov (2006 Int. J. Heat Mass Transf. 49, 3068–3074. (doi:10.1016/j.ijheatmasstransfer.2006.02.008)), although we consider a single temperature field only. PMID:27616934

  4. The influence of granulating solvents on drug release from tablets ...

    African Journals Online (AJOL)

    ... significantly lower than the other wet granulated tablets, but higher than the matrix tablets. The granulating solvent influenced the release of drug which increased with increase in the water content. Key Words: Grewia gum: Granulating solvents; Release mechanisms. Journal of Pharmacy and Bioresources Vol.1(1) 2004: ...

  5. Which shape factor(s) best describe granules?

    NARCIS (Netherlands)

    Bouwman, Anneke M.; Bosma, Jaap C.; Vonk, Pieter; Wesselingh, J.A.; Frijlink, Henderik W.

    2004-01-01

    This study evaluates methods used for granule shape characterization. The aim is to identify an optimal combination of shape factors to measure granule shape and roughness. Granules were prepared from microcrystalline cellulose (MCC), alpha-lactose, microfine cellulose (MFC), and dextrin, using a

  6. The role of sea–land air thermal difference, shape of the coastline and sea surface temperature in the nocturnal offshore convection

    Directory of Open Access Journals (Sweden)

    Jordi Mazón

    2013-01-01

    Full Text Available Nocturnal precipitation cells and lines occur near the coastline in the whole Mediterranean basin in all seasons. The precipitation events are mainly located in areas where coastal mountain ranges and rivers enhance convergence though the interaction of nocturnal mesoscale and local flows (land breeze, katabatic and drainages winds with prevailing synoptic wind or with other mesoscale and local flows. The methodology used here to study this phenomenon consists of three stages. First, the Tropical Rainfall Measuring Mission (TRMM radar satellite database is used to detect nocturnal precipitation near the coastline, from 18 to 09 UTC. An event is included in the study if the 3 hours accumulated precipitation detected by TRMM is stationary near the coast, or has moved slightly onshore or offshore, and has lasted no more than six consecutive hours. Second, the NCEP reanalysis database is used to describe the synoptic conditions and to discard precipitation associated with synoptic events (large low pressure areas, dynamic polar fronts, or troughs, for example. In the final step by using the version 3 of the Weather Research Forecast model, we simulate and analyse some of the selected events to determine the role of the land–sea temperature differences, the curvature of the coastline and the sea surface temperature.The simulations confirm that the nocturnal precipitation studied in the Mediterranean basin near the coastline is formed from the interaction between relatively warm and wet sea-air with the cold air mass from drainage winds, as well as from the convergence of several drainage winds offshore. The mechanism is the same that is used to explain nocturnal precipitation in tropical areas.

  7. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  8. Polyamines are present in mast cell secretory granules and are important for granule homeostasis.

    Science.gov (United States)

    García-Faroldi, Gianni; Rodríguez, Carlos E; Urdiales, José L; Pérez-Pomares, José M; Dávila, José C; Pejler, Gunnar; Sánchez-Jiménez, Francisca; Fajardo, Ignacio

    2010-11-30

    Mast cell secretory granules accommodate a large number of components, many of which interact with highly sulfated serglycin proteoglycan (PG) present within the granules. Polyamines (putrescine, spermidine and spermine) are absolutely required for the survival of the vast majority of living cells. Given the reported ability of polyamines to interact with PGs, we investigated the possibility that polyamines may be components of mast cell secretory granules. Spermidine was released by mouse bone marrow derived mast cells (BMMCs) after degranulation induced by IgE/anti-IgE or calcium ionophore A23187. Additionally, both spermidine and spermine were detected in isolated mouse mast cell granules. Further, depletion of polyamines by culturing BMMCs with α-difluoromethylornithine (DFMO) caused aberrant secretory granule ultrastructure, impaired histamine storage, reduced serotonin levels and increased β-hexosaminidase content. A proteomic approach revealed that DFMO-induced polyamine depletion caused an alteration in the levels of a number of proteins, many of which are connected either with the regulated exocytosis or with the endocytic system. Taken together, our results show evidence that polyamines are present in mast cell secretory granules and, furthermore, indicate an essential role of these polycations during the biogenesis and homeostasis of these organelles.

  9. Polyamines are present in mast cell secretory granules and are important for granule homeostasis.

    Directory of Open Access Journals (Sweden)

    Gianni García-Faroldi

    2010-11-01

    Full Text Available Mast cell secretory granules accommodate a large number of components, many of which interact with highly sulfated serglycin proteoglycan (PG present within the granules. Polyamines (putrescine, spermidine and spermine are absolutely required for the survival of the vast majority of living cells. Given the reported ability of polyamines to interact with PGs, we investigated the possibility that polyamines may be components of mast cell secretory granules.Spermidine was released by mouse bone marrow derived mast cells (BMMCs after degranulation induced by IgE/anti-IgE or calcium ionophore A23187. Additionally, both spermidine and spermine were detected in isolated mouse mast cell granules. Further, depletion of polyamines by culturing BMMCs with α-difluoromethylornithine (DFMO caused aberrant secretory granule ultrastructure, impaired histamine storage, reduced serotonin levels and increased β-hexosaminidase content. A proteomic approach revealed that DFMO-induced polyamine depletion caused an alteration in the levels of a number of proteins, many of which are connected either with the regulated exocytosis or with the endocytic system.Taken together, our results show evidence that polyamines are present in mast cell secretory granules and, furthermore, indicate an essential role of these polycations during the biogenesis and homeostasis of these organelles.

  10. Transformation of anaerobic granules into aerobic granules and the succession of bacterial community.

    Science.gov (United States)

    Sun, Haohao; Yu, Ping; Li, Qiaoling; Ren, Hongqiang; Liu, Bo; Ye, Lin; Zhang, Xu-Xiang

    2017-10-01

    In this study, we demonstrated that anaerobic granular sludge could be successfully transformed into aerobic granular sludge in a continuous up-flow reactor in 45 days. An aerobic microbial community successfully developed in the granules and high organic matter and nitrogen removal performance was achieved. Under an ammonia nitrogen loading rate of 0.8 kg N/(m 3 day), ammonia nitrogen and the total nitrogen removal efficiency of the reactor reached up to 100 and 93%, respectively. An obvious bacterial community shift in granular sludge was observed during the transformation process. By comparing with the bacterial community in aerobic granules cultivated from floccular activated sludge, some bacteria (affiliated with Comamonadaceae, Xanthomonadaceae, Rhodocyclaceae, Moraxellaceae, and Nitrosomonadaceae) playing significant roles in maintaining the structures and functions of aerobic granules were identified. After the transformation, the granules could be clearly separated into the inner core and outer shell. 16S rRNA gene sequencing results indicated many bacterial species present in both the inner core and outer shell; however, their abundance differed significantly. Overall, this study confirms the feasibility of transforming anaerobic granules into aerobic granules and provides novel approaches and insights to understand the microbial ecology in granular sludge.

  11. Natural convection in enclosures. Proceedings of the nineteenth national heat transfer conference, Orlando, FL, July 27-30, 1980

    International Nuclear Information System (INIS)

    Torrance, K.E.; Catton, I.

    1980-01-01

    Natural convection in low aspect ratio rectangular enclosures is considered along with three-dimensional convection within rectangular boxes, natural convection flow visualization in irradiated water cooled by air flow over the surface, free convection in vertical slots, the stratification in natural convection in vertical enclosures, the flow structure with natural convection in inclined air-filled enclosures, and natural convection across tilted, rectangular enclosures of small aspect ratio. Attention is given to the effect of wall conduction and radiation on natural convection in a vertical slot with uniform heat generation of the heated wall, a numerical study of thermal insulation enclosure, free convection in a piston-cylinder enclosure with sinusoidal piston motion, natural convection heat transfer between bodies and their spherical enclosure, an experimental study of the steady natural convection in a horizontal annulus with irregular boundaries, three-dimensional natural convection in a porous medium between concentric inclined cylinders, a numerical solution for natural convection in concentric spherical annuli, and heat transfer by natural convection in porous media between two concentric spheres

  12. Compressional behavior of a mixture of granules containing high load of Phyllanthus niruri spray-dried extract and granules of adjuvants: comparison between eccentric and rotary tablet machines.

    Science.gov (United States)

    Spaniol, Bárbara; Bica, Vinicius Claudino; Ruppenthal, Lisias Rafael; Volpato, Maria Ramos; Petrovick, Pedro Ros

    2009-01-01

    The purpose of this paper was to evaluate the compressional behavior of granules containing high load of a Phyllanthus niruri spray-dried extract in eccentric (ETM) and rotary (RTM) tablet presses. Tablets were constituted by spray-dried extract granules (SDEG, 92%), excipient granules (EXCG, 7.92%), and magnesium stearate (0.08%). SDEG was obtained by dry granulation and EXCG, composed of microcrystalline cellulose (62.9%) and sodium starch glycolate (37.1%), by wet granulation. Particle size distribution was fixed between 0.250 and 0.850 mm. Tablets did not evidence any mechanical failures, such as lamination or capping, or anomalous weight variation in either tablet machine types. Upper and lower tablet surface photomicrographs from ETM and RTM tablets showed differences in porosity and texture. Different RTM speeds suggested the visco-plastic behavior of the formulation, since, by slowing down rotation speeds, the tensile strength of the tablets increased significantly, but the porosity and disintegration time were not affected. Tablets produced in RTM showed lower friability and porosity than ETM tablets, which did not reflect on higher tensile strength. The EXCG distribution at upper and lower surfaces from ETM and RTM tablets was quantified by image analysis and evaluated through statistical methods. Spray-dried extract release was not influenced by the type of equipment or operational conditions to which the compacts were submitted. Construction and operation differences between both tablet presses influenced the final product, since tablets with similar tensile strength, made by distinct tablet machines, exhibited different quality parameters.

  13. Convective Lyapunov spectra

    Science.gov (United States)

    Kenfack Jiotsa, Aurélien; Politi, Antonio; Torcini, Alessandro

    2013-06-01

    We generalize the concept of the convective (or velocity-dependent) Lyapunov exponent from the maximum rate Λ(v) to an entire spectrum Λ(v, n). Our results are derived by following two distinct computational protocols: (i) Legendre transform within the chronotopic approach (Lepri et al 1996 J. Stat. Phys. 82 1429); (ii) by letting evolve an ensemble of initially localized perturbations. The two approaches turn out to be mutually consistent. Moreover, we find the existence of a phase transition: above a critical value n = nc of the integrated density of exponents, the zero-velocity convective exponent is strictly smaller than the corresponding Lyapunov exponent. This phenomenon is traced back to a change of concavity of the so-called temporal Lyapunov spectrum for n > nc, which, therefore, turns out to be a dynamically invariant quantity. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’.

  14. Controlling arbitrary humidity without convection.

    Science.gov (United States)

    Wasnik, Priyanka S; N'guessan, Hartmann E; Tadmor, Rafael

    2015-10-01

    In this paper we show a way that allows for the first time to induce arbitrary humidity of desired value for systems without convective flow. To enable this novelty we utilize a semi-closed environment in which evaporation is not completely suppressed. In this case, the evaporation rate is determined both by the outer (open) humidity and by the inner (semi-closed) geometry including the size/shape of the evaporating medium and the size/shape of the semi-closure. We show how such systems can be used to induce desired humidity conditions. We consider water droplet placed on a solid surface and study its evaporation when it is surrounded by other drops, hereon "satellite" drops and covered by a semi-closed hemisphere. The main drop's evaporation rate is proportional to its height, in agreement with theory. Surprisingly, however, the influence of the satellite drops on the main drop's evaporation suppression is not proportional to the sum of heights of the satellite drops. Instead, it shows proportionality close to the satellite drops' total surface area. The resultant humidity conditions in the semi-closed system can be effectively and accurately induced using different satellite drops combinations. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Heat Transfer Convection in The Cooking of Apple Using a Solar Cooker Box-Type

    Science.gov (United States)

    Terres, H.; Chávez, S.; Lizardi, A.; López, R.; Vaca, M.; Flores, J.; Salazar, A.

    2015-01-01

    In this work, experimental results to determine the convection heat transfer coefficient in the cooking process of apple using a solar cooker box-type are presented. Experimental data of temperatures for water, surface and central point of the apple were used. To determine the convection coefficient, the apple was modelled as a sphere. The temperatures evolution was defined using thermocouples located at water, surface and central point in the vegetables. Using heat transfer convection equations in transitory state and the temperatures measured, the Biot number and the convection coefficient were determined.

  16. Heat Transfer Convection in The Cooking of Apple Using a Solar Cooker Box-Type

    International Nuclear Information System (INIS)

    Terres, H; Chávez, S; Lizardi, A; López, R; Vaca, M; Flores, J; Salazar, A

    2015-01-01

    In this work, experimental results to determine the convection heat transfer coefficient in the cooking process of apple using a solar cooker box-type are presented. Experimental data of temperatures for water, surface and central point of the apple were used. To determine the convection coefficient, the apple was modelled as a sphere. The temperatures evolution was defined using thermocouples located at water, surface and central point in the vegetables. Using heat transfer convection equations in transitory state and the temperatures measured, the Biot number and the convection coefficient were determined

  17. Test of a new theory for stellar convection using helioseismology

    Science.gov (United States)

    Paterno, L.; Ventura, R.; Canuto, V. M.; Mazzitelli, I.

    1993-01-01

    Two evolutionary models of the sun have been tested using helioseismological data. The two models use the same input microphysics (nuclear reaction rates, opacity, equation of state) and the same numerical evolutionary code, but differ in the treatment of turbulent convection. The first model employs the standard mixing - length theory of convection, while the second one employs a new turbulent convection model which overcomes some basic inconsistencies of the standard theory of convection. The test rests on the calculation of p-mode eigenfrequencies and on the comparison with the helioseismological data. The comparison shows an overall improvement of the eigenfrequencies calculated with the new model with respect to those calculated with the standard model, although it appears that both models still suffer from inaccuracies especially in the treatment of the surface layers.

  18. Polymorphic changes of thiamine hydrochloride during granulation and tableting.

    Science.gov (United States)

    Wöstheinrich, K; Schmidt, P C

    2001-07-01

    Thiamine hydrochloride was granulated using an instrumented fluidized bed granulator (Hüttlin HKC 05-TJ). Granules consisting of pure thiamine hydrochloride were produced using an aqueous solution of thiamine hydrochloride as the granulating liquid. The effects of process variables such as inlet air temperature, spray rate, and amount of granulating liquid on granule properties are described. Particle size distributions of granules depended mainly on the amount of granulating liquid sprayed into the powder bed. Granules were tableted on a rotary tablet press at four different compression forces. Crushing strengths and disintegration times of all tablets were found to be very low after manufacture, but increased considerably after 4 months of storage at room temperature. Granular materials showed "caking" under the same storage conditions. These changes could be attributed to alterations of the polymorphic form of thiamine hydrochloride. The water-free form, being present directly after granulation, absorbs humidity very fast and is transformed into the monohydrate, which is stable at room temperature. Loss of water takes place during the drying phase of the granulation process and on storage of the substance at temperatures of 50 degrees C and 80 degrees C. During storage at room temperature while exposed to humidity, a transformation into the hemihydrate was observed. This polymorph is transformed during thermal analysis at about 190 degrees C to a water-free form that is stable at higher temperatures.

  19. On the Sensitivity of the Diurnal Cycle in the Amazon to Convective Intensity

    Science.gov (United States)

    Itterly, Kyle; Taylor, Patrick

    2015-01-01

    This presentation uses publicly available CERES and radiosonde data to investigate the sensitivity of thetropical convective diurnal cycle to atmosphere state. Averaging surface observations into regimes of convective intensitydefined by satellite shows great promise for physical understandingof convection.• Convective processes in the Amazon are highly variable seasonallyand locally.• Buoyancy/CIN more important JJA– Mesoscale/synoptic features easier to separate– Length/depth of buoyancy layer very important in DJF (EL).• Moisture more important DJF, esp. UTH– Humidity of lower atmosphere significantly impacts LTS, LCL and abilityfor parcels to reach LFC.• Lower level jet strength/direction important• Convective initiation correlated with LTS, LR, LTH, EL• Duration/Phase better correlated with humidity variables• Surface Flux amplitude well correlated with convection

  20. Factors Involved in Sludge Granulation under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Jalal Shayegan

    2011-03-01

    Full Text Available This paper investigates the effects of factors involved in sludge anaerobic granulation. Granulated sludge formation is the main parameter contributing to the success of UASB reactors. Anaerobic granulation leads to reduced reactor size, space requirement, and investment costs. Operation costs are also greatly reduced due to lack of aeration. An important parameter affecting process performance is the size of sludge granules; the factors involved in granule size will be investigated. Some of the important parameters of anaerobic sludge granulation are: existence of growth cores as inert particles or granulated sludge, process operational conditions (Sludge Loading Rate and Organic Loading Rate, Loading rate increase and …, and environment conditions (nutrients, temperature, pH, combination and ….

  1. Giant renin secretory granules in beige mouse renal afferent arterioles

    DEFF Research Database (Denmark)

    Jensen, B L; Rasch, Ruth; Nyengaard, Jens Randel

    1997-01-01

    The mutant beige mouse (C57BL/6 bg) has a disease characterised by abnormally enlarged cytoplasmic granules in a variety of cells. With the purpose of establishing a suitable cellular model for studying renin secretion, the present study was undertaken to compare renin granule morphology in beige.......5+/-0.3 mGoldblatt units/ml). The total volume of renin granules per afferent arteriole was similar in the two mice strains (1114 microm3 in the controls and 1507 microm3 in the beige mice). The total number of renin granules per arteriole as assessed by stereological techniques was about 1900 in controls...... (average granular volume 0.681 microm3), whereas 1-2 large granules were present per cell in beige mice. The volume of afferent arteriole that contained secretory granules was lower in the beige mice. We conclude that the beige mouse synthesizes, stores and releases active renin. Renin secretory granules...

  2. Analysis and modeling of tropical convection observed by CYGNSS

    Science.gov (United States)

    Lang, T. J.; Li, X.; Roberts, J. B.; Mecikalski, J. R.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a multi-satellite constellation that utilizes Global Positioning System (GPS) reflectometry to retrieve near-surface wind speeds over the ocean. While CYGNSS is primarily aimed at measuring wind speeds in tropical cyclones, our research has established that the mission may also provide valuable insight into the relationships between wind-driven surface fluxes and general tropical oceanic convection. Currently, we are examining organized tropical convection using a mixture of CYGNSS level 1 through level 3 data, IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement), and other ancillary datasets (including buoys, GPM level 1 and 2 data, as well as ground-based radar). In addition, observing system experiments (OSEs) are being performed using hybrid three-dimensional variational assimilation to ingest CYGNSS observations into a limited-domain, convection-resolving model. Our focus for now is on case studies of convective evolution, but we will also report on progress toward statistical analysis of convection sampled by CYGNSS. Our working hypothesis is that the typical mature phase of organized tropical convection is marked by the development of a sharp gust-front boundary from an originally spatially broader but weaker wind speed change associated with precipitation. This increase in the wind gradient, which we demonstrate is observable by CYGNSS, likely helps to focus enhanced turbulent fluxes of convection-sustaining heat and moisture near the leading edge of the convective system where they are more easily ingested by the updraft. Progress on the testing and refinement of this hypothesis, using a mixture of observations and modeling, will be reported.

  3. Increased accuracy of starch granule type quantification using mixture distributions.

    Science.gov (United States)

    Tanaka, Emi; Ral, Jean-Phillippe F; Li, Sean; Gaire, Raj; Cavanagh, Colin R; Cullis, Brian R; Whan, Alex

    2017-01-01

    The proportion of granule types in wheat starch is an important characteristic that can affect its functionality. It is widely accepted that granule types are either large, disc-shaped A-type granules or small, spherical B-type granules. Additionally, there are some reports of the tiny C-type granules. The differences between these granule types are due to its carbohydrate composition and crystallinity which is highly, but not perfectly, correlated with the granule size. A majority of the studies that have considered granule types analyse them based on a size threshold rather than chemical composition. This is understandable due to the expense of separating starch into different types. While the use of a size threshold to classify granule type is a low-cost measure, this results in misclassification. We present an alternative, statistical method to quantify the proportion of granule types by a fit of the mixture distribution, along with an R package, a web based app and a video tutorial for how to use the web app to enable its straightforward application. Our results show that the reliability of the genotypic effects increase approximately 60% using the proportions of the A-type and B-type granule estimated by the mixture distribution over the standard size-threshold measure. Although there was a marginal drop in reliability for C-type granules. The latter is likely due to the low observed genetic variance for C-type granules. The determination of the proportion of granule types from size-distribution is better achieved by using the mixing probabilities from the fit of the mixture distribution rather than using a size-threshold.

  4. Convection in porous media

    CERN Document Server

    Nield, Donald A

    1992-01-01

    This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches

  5. Convection in Porous Media

    CERN Document Server

    Nield, Donald A

    2013-01-01

    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  6. Study of standard tablet formulation based on fluidized-bed granulation.

    Science.gov (United States)

    Sunada, H; Hasegawa, M; Makino, T; Sakamoto, H; Fujita, K; Tanino, T; Kokubo, H; Kawaguchi, T

    1998-03-01

    In this study, acetaminophen, ascorbic acid, and ethenzamide were selected as model drugs for tableting granules. Agitation and fluidized-bed granulation were carried out at three drug contents of 30, 50, and 70%. Compared with agitation granulation, granules made by fluidized-bed granulation showed superior compressibility with wide formulation allowance for drug type and amount. Fluidized-bed granulation resulted in less granule hardness and greater plastic deformability. The granules had considerable compactness and for tablets containing 70% ethenzamide, prolonged disintegration and dissolution times were noted. These are typical features of granules produced by fluidized-bed granulation.

  7. [Characterization of Bacillus thuringrensis var. israelesis larvicide granules to larvae of mosquitoes].

    Science.gov (United States)

    Xu, Jian; Zhao, Song; Liu, Qin; Qi, Jian-Hang; Li, Chuang-Ming; Wang, Yan; Sun, Jun; Han, Guang-Jie; Ma, Tan-Bin

    2013-02-01

    To develop a new formulation of Bacillus thuringrensis var. israelesis (Bti) granules and assess its effect on mosquito control. The Bti granule formulation was produced by coating Bti liquid on the surface of the carrier. and imitation tests, persistence tests and field tests were carried to assess its mosquito larvicidal effect, extended period and stability. A strain of Bti isolated from field had high toxicity to mosquito larvae and its LC50 values for larvae of Culex pipiens pallens and Aedes aegypti were 0.461 0 microl/L and 1.713 3 microl/L respectively. The developed 216 ITU/mg Bti granules had a control effect of 83.3%-100% to larvae of C. pipiens pallens at the dosage of 1-3 g/m2, and 72.7%-100% to A. aegypti at the dosage of 3-5 g/m2. When the 3rd instar larvae of C. pipiens pallens were put in the water that was treated with the granules at the dosage of 0.5 g/m2 13 days before, the larval mortality still reached to 55.3%. The field tests showed that with the treatment of 2-4 g/m2 Bti granules, the control effects on the larvae were high from 92.4% to 100% within the first 3 days and about 51.6%-75.7% after 20 days. The developed new formulation of Bti granules with the isolated strain has a preferable control effect on mosquito larvae and reveals a longer persistence and better stability than liquid formulation in the field tests.

  8. Sorption of basic dyes onto granulated pillared clays: thermodynamic and kinetic studies.

    Science.gov (United States)

    Cheknane, B; Zermane, F; Baudu, M; Bouras, O; Basly, J P

    2012-09-01

    Effect of the granulation process onto the thermodynamic and kinetic sorption parameters of two basic dyes (Basic Yellow 28-BY 28 and Basic Green 4-BG 4) was evaluated in the present work. The charge surface properties of the surfactant-modified aluminium-pillared clay (CTAB-Al-Mont-PILC) particles were not modified, and the isoelectric point remains constant after high shear wet granulation. The Gibbs free energy of both BY 28 and BG 4 sorption was negative and decreased with the granulation; the endothermic nature of the sorption process was confirmed by the positive values of ΔH°. Adsorption kinetics of the two dyes, studied at pH 6 and 150 mg L(-1), follow the pseudo-first order kinetic model with observed rate constants of 2.5-4.2×10(-2) min(-1). The intraparticle diffusion model, proposed by Weber and Morris, was applied, and the intraparticle plots revealed three distinct sections representing external mass transfer, intraparticle diffusion and adsorption/desorption equilibrium. Diffusion coefficients, calculated from the Boyd kinetic equation, increased with the granulation and the particle size. Pseudo-first order kinetic constants, intraparticle diffusion rate constants and diffusion coefficients were determined for two other initial concentrations (50 and 100 mg L(-1)) and include in a statistical study to evaluate the impact of granulation and initial concentration on the kinetic parameters. Kruskal-Wallis tests, Spearman's rank order correlation and factor analysis revealed a correlation between (i) the diffusion coefficients and granulation, and between (ii) the intraparticle diffusion rate constants and initial concentration. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Zymophagy: Selective Autophagy of Secretory Granules

    Directory of Open Access Journals (Sweden)

    Maria I. Vaccaro

    2012-01-01

    Full Text Available Timing is everything. That's especially true when it comes to the activation of enzymes created by the pancreas to break down food. Pancreatic enzymes are packed in secretory granules as precursor molecules called zymogens. In physiological conditions, those zymogens are activated only when they reach the gut, where they get to work releasing and distributing nutrients that we need to survive. If this process fails and the enzymes are prematurely activated within the pancreatic cell, before they are released from the gland, they break down the pancreas itself causing acute pancreatitis. This is a painful disease that ranges from a mild and autolimited process to a severe and lethal condition. Recently, we demonstrated that the pancreatic acinar cell is able to switch on a refined mechanism that could explain the autolimited form of the disease. This is a novel selective form of autophagy named zymophagy, a cellular process to specifically detect and degrade secretory granules containing activated enzymes before they can digest the organ. In this work, we revise the molecules and mechanisms that mediate zymophagy, a selective autophagy of secretory granules.

  10. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure.

    Science.gov (United States)

    LaSarge, Candi L; Santos, Victor R; Danzer, Steve C

    2015-03-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offsets the reduction in boutons per axon length. These morphological changes predict a net increase in granule cell innervation of CA3. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell communication with CA3. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Magnetic Control of Convection during Protein Crystallization

    Science.gov (United States)

    Ramachandran, N.; Leslie, F. W.

    2004-01-01

    An important component in biotechnology, particularly in the area of protein engineering and rational drug design is the knowledge of the precise three-dimensional molecular structure of proteins. The quality of structural information obtained from X-ray diffraction methods is directly dependent on the degree of perfection of the protein crystals. As a consequence, the growth of high quality macromolecular Crystals for diffraction analyses has been the central focus for bio-chemists, biologists, and bioengineers. Macromolecular crystals are obtained from solutions that contain the crystallizing species in equilibrium with higher aggregates, ions, precipitants, other possible phases of the protein, foreign particles, the walls of container, and a likely host of other impurities. By changing transport modes in general, i.e., reduction of convection and Sedimentation as is achieved in "microgravity", we have been able to dramatically affect the movement and distribution of macromolecules in the fluid, and thus their transport, f o d o n of crystal nuclei, and adsorption to the crystal surface. While a limited number of high quality crystals from space flights have been obtained, as the recent National Research Council (NRC) review of the NASA microgravity crystallization program pointed out, the scientific approach and research in crystallization of proteins has been mainly empirical yielding inconclusive results. We postulate that we can reduce convection in ground-based experiments and we can understand the different aspects of convection control through the use of strong magnetic fields and field gradients. We postulate that limited convection in a magnetic field will provide the environment for the growth of high quality crystals. The approach exploits the variation of fluid magnetic susceptibility with counteracts on for this purpose and the convective damping is realized by appropriately positioning the crystal growth cell so that the magnetic susceptibility

  12. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions.

    Science.gov (United States)

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.

  13. Natural convection type BWR reactor

    International Nuclear Information System (INIS)

    Tobimatsu, Toshimi.

    1990-01-01

    In a natural convection type BWR reactor, a mixed stream of steams and water undergo a great flow resistance. In particular, pressure loss upon passing from an upper plenum to a stand pipe and pressure loss upon passing through rotational blades are great. Then, a steam dryer comprising laminated dome-like perforated plates and a drain pipe for flowing down separated water to a downcomer are disposed above a riser. The coolants heated in the reactor core are boiled, uprise in the riser as a gas-liquid two phase flow containing voids, release steams containing droplets from the surface of the gas-liquid two phase, flow into the steam dryer comprising the perforated plates and are separated into a gas and a liquid. The dried steams flow to a turbine passing through a main steam pipe and the condensated droplets flow down through the drain pipe and the downcomer to the lower portion of the reactor core. In this way, the conventional gas-liquid separator can be saved without lowering the quality of steam drying to reduce the pressure loss and to improve the operation performance. (N.H.)

  14. Improved photocatalytic activity of nano CuO-incorporated TiO2 granules prepared by spray drying

    Directory of Open Access Journals (Sweden)

    Zongjie Liu

    2015-08-01

    Full Text Available 4 wt% CuO–96 wt% TiO2 granules were prepared by a spray drying process. The microstructure and optical property of CuO–TiO2 granules were studied. The results indicate that copper existed in the form of CuO. The spray dried granules possess spherical geometry and smooth surface with grain size in the range of 40–80 μm. CuO–TiO2 has a relatively smaller Eg value (2.85 eV than TiO2 (3.17 eV. The photocatalytic property of CuO–TiO2 granules was investigated by degradation of a model pollutant (the azo dye methyl orange under the irradiation of the xenon lamp equipped with a band pass filter of 365 nm. The CuO–TiO2 spray-dried granules degrade about 10% more MO than TiO2 spray-dried granules under UV irradiation within the same time. The XPS spectra suggested that Cu2+ and reduced copper species were coexistent in reacted CuO–TiO2 photocatalyst. The improvement of photocatalytic activity for CuO–TiO2 was mainly attributed to effective separation of photo-generated electron–hole pairs in the presence of CuO.

  15. The sensitivity of convective aggregation to diabatic processes in idealized radiative-convective equilibrium simulations

    Science.gov (United States)

    Holloway, C. E.; Woolnough, S. J.

    2016-03-01

    Idealized explicit convection simulations of the Met Office Unified Model exhibit spontaneous self-aggregation in radiative-convective equilibrium, as seen in other models in previous studies. This self-aggregation is linked to feedbacks between radiation, surface fluxes, and convection, and the organization is intimately related to the evolution of the column water vapor field. Analysis of the budget of the spatial variance of column-integrated frozen moist static energy (MSE), following Wing and Emanuel (2014), reveals that the direct radiative feedback (including significant cloud longwave effects) is dominant in both the initial development of self-aggregation and the maintenance of an aggregated state. A low-level circulation at intermediate stages of aggregation does appear to transport MSE from drier to moister regions, but this circulation is mostly balanced by other advective effects of opposite sign and is forced by horizontal anomalies of convective heating (not radiation). Sensitivity studies with either fixed prescribed radiative cooling, fixed prescribed surface fluxes, or both do not show full self-aggregation from homogeneous initial conditions, though fixed surface fluxes do not disaggregate an initialized aggregated state. A sensitivity study in which rain evaporation is turned off shows more rapid self-aggregation, while a run with this change plus fixed radiative cooling still shows strong self-aggregation, supporting a "moisture-memory" effect found in Muller and Bony (2015). Interestingly, self-aggregation occurs even in simulations with sea surface temperatures (SSTs) of 295 and 290 K, with direct radiative feedbacks dominating the budget of MSE variance, in contrast to results in some previous studies.

  16. Scaling up of the fluidized bed granulation process.

    Science.gov (United States)

    Rambali, B; Baert, L; Massart, D L

    2003-02-18

    The scaling up of a fluidized bed granulation process from small scale to production scale is often done empirically in the pharmaceutical industry. In this study, a more practical and systematic method was developed in order to achieve a similar granule size in the scaled up fluid bed. The scaling up is based on the relative droplet size, and the powder bed moisture content at the end of the spraying cycle. The present study describes the scaling up of the fluidized granulation process from small (5 kg scale) to medium (30 kg scale) and to production fluid bed scale (120 kg scale). The granulation process is scaled up with as target a geometric mean granule size of 400 microm. First, the effect of the relative droplet size on the granule size was investigated in the different fluid beds. The effect of the change in relative droplet size on the granule size was different for each fluid bed. Second, experimental design is applied on the small and the medium fluid scale, and regression models for the granule size are proposed in order to scale up the granulation process on the small to medium scale. The granulation process was also successful by scaling-up to the large fluid bed, considering only the relative droplet size.

  17. The convection patterns in microemulsions

    International Nuclear Information System (INIS)

    Korneta, W.; Lopez Quintela, M.A.; Fernandez Novoa, A.

    1991-07-01

    The Rayleigh-Benard convection in the microemulsion consisting of water (7.5%), cyclohexan (oil-61.7%) and diethylenglycolmonobutylether (surfactant-30.8%) is studied from the onset of convection to the phase separation. The five classes of convection patterns are observed and recorded on the video: localized travelling waves, travelling waves, travelling waves and localized steady rolls, steady rolls and steady polygons. The Fourier transforms and histograms of these patterns are presented. The origin of any pattern is discussed. The intermittent behaviour close to the phase separation was observed. Possible applications of the obtained results are suggested. (author). 6 refs, 4 figs

  18. An experimental study of mixed convection

    International Nuclear Information System (INIS)

    Saez, Manuel

    1998-01-01

    The aim of our study is to establish a reliable data base for improving thermal-hydraulic codes, in the field of turbulent flows with buoyancy forces. The flow considered is mixed convection in the Reynolds and Richardson number range: Re=10 3 to 6*10 4 and Ri=10 -4 to 1. Experiments are carried out in an upward turbulent flow between vertical parallel plates at different wall temperatures. Part 1 gives a detailed data base of turbulent mixed flow of free and forced convection. Part II presents the installation and the calibration system intended for probes calibration. Part III describes the measurement technique (constant-temperature probe and cold-wire probe) and the method for measuring the position of the hot-wire anemometer from the wall surface. The measurement accuracy is within 0.001 mm in the present system. Part IV relates the development of a method for near wall measurements. This correction procedure for hot-wire anemometer close to wall has been derived on the basis of a two-dimensional numerical study. The method permits to obtain a quantitative correction of the wall influence on hot-wires and takes into account the velocity profile and the effects the wall material has on the heat loss. Part V presents the experimental data obtained in the channel in forced and mixed convection. Results obtained in the forced convection regime serve as a verification of the measurement technique close to the wall and give the conditions at the entrance of the test section. The effects of the buoyancy force on the mean velocity and temperature profiles are confirmed. The buoyancy strongly affects the flow structure and deforms the distribution of mean velocity. The velocity profiles are asymmetric. The second section of part V gives an approach of analytical wall functions with buoyancy forces, on the basis of the experimental data obtained in the test section. (author) [fr

  19. Passively Enhancing Convection Heat Transfer Around Cylinder Using Shrouds

    Science.gov (United States)

    Samaha, Mohamed A.; Kahwaji, Ghalib Y.

    2017-11-01

    Natural convection heat transfer around a horizontal cylinder has received considerable attention through decades since it has been used in several viable applications. However, investigations into passively enhancement of the free convective cooling using external walls and chimney effect are lacking. In this work, a numerical simulation to study natural convection from a horizontal cylinder configured with semicircular shrouds with an expended chimney is employed. The fluid flow and convective heat transfer around the cylinder are modeled. The bare cylinder is also simulated for comparison. The present study are aimed at improving our understanding of the parameters advancing the free convective cooling of the cylinder implemented with the shrouds configuration. For validation, the present results for the bare tube are compared with data reported in the literature. The numerical simulations indicate that applying the shrouds configuration with extended chimney to a tube promotes the convection heat transfer from the cylinder. Such a method is less expensive and simpler in design than other configurations (e.g. utilizing extended surfaces, fins), making the technology more practical for industrial productions, especially for cooling systems. Dubai Silicon Oasis Authority (DSOA) Grants.

  20. Using pattern recognition to infer parameters governing mantle convection

    Science.gov (United States)

    Atkins, Suzanne; Valentine, Andrew P.; Tackley, Paul J.; Trampert, Jeannot

    2016-08-01

    The results of mantle convection simulations are fully determined by the input parameters and boundary conditions used. These input parameters can be for initialisation, such as initial mantle temperature, or can be constant values, such as viscosity exponents. However, knowledge of Earth-like values for many input parameters are very poorly constrained, introducing large uncertainties into the simulation of mantle flow. Convection is highly non-linear, therefore linearised inversion methods cannot be used to recover past configurations over more than very short periods of time, which makes finding both initial and constant simulation input parameters very difficult. In this paper, we demonstrate a new method for making inferences about simulation input parameters from observations of the mantle temperature field after billions of years of convection. The method is fully probabilistic. We use prior sampling to construct probability density functions for convection simulation input parameters, which are represented using neural networks. Assuming smoothness, we need relatively few samples to make inferences, making this approach much more computationally tractable than other probabilistic inversion methods. As a proof of concept, we show that our method can invert the amplitude spectra of temperature fields from 2D convection simulations, to constrain yield stress, surface reference viscosity and the initial thickness of primordial material at the CMB, for our synthetic test cases. The best constrained parameter is yield stress. The reference viscosity and initial thickness of primordial material can also be inferred reasonably well after several billion years of convection.

  1. Cyclonic circulation of Saturn's atmosphere due to tilted convection

    Science.gov (United States)

    Afanasyev, Y. D.; Zhang, Y.

    2018-02-01

    Saturn displays cyclonic vortices at its poles and the general atmospheric circulation at other latitudes is dominated by embedded zonal jets that display cyclonic circulation. The abundance of small-scale convective storms suggests that convection plays a role in producing and maintaining Saturn's atmospheric circulation. However, the dynamical influence of small-scale convection on Saturn's general circulation is not well understood. Here we present laboratory analogue experiments and propose that Saturn's cyclonic circulation can be explained by tilted convection in which buoyancy forces do not align with the planet's rotation axis. In our experiments—conducted with a cylindrical water tank that is heated at the bottom, cooled at the top and spun on a rotating table—warm rising plumes and cold sinking water generate small anticyclonic and cyclonic vortices that are qualitatively similar to Saturn's convective storms. Numerical simulations complement the experiments and show that this small-scale convection leads to large-scale cyclonic flow at the surface and anticyclonic circulation at the base of the fluid layer, with a polar vortex forming from the merging of smaller cyclonic storms that are driven polewards.

  2. Magnetic fields in non-convective regions of stars.

    Science.gov (United States)

    Braithwaite, Jonathan; Spruit, Henk C

    2017-02-01

    We review the current state of knowledge of magnetic fields inside stars, concentrating on recent developments concerning magnetic fields in stably stratified (zones of) stars, leaving out convective dynamo theories and observations of convective envelopes. We include the observational properties of A, B and O-type main-sequence stars, which have radiative envelopes, and the fossil field model which is normally invoked to explain the strong fields sometimes seen in these stars. Observations seem to show that Ap-type stable fields are excluded in stars with convective envelopes. Most stars contain both radiative and convective zones, and there are potentially important effects arising from the interaction of magnetic fields at the boundaries between them; the solar cycle being one of the better known examples. Related to this, we discuss whether the Sun could harbour a magnetic field in its core. Recent developments regarding the various convective and radiative layers near the surfaces of early-type stars and their observational effects are examined. We look at possible dynamo mechanisms that run on differential rotation rather than convection. Finally, we turn to neutron stars with a discussion of the possible origins for their magnetic fields.

  3. Effect of vortex orifice air distributor on granule growth in conical fluidized bed granulation with bottom entry spray

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Y.; Sekiguchi, I. [Chuo Univ., Tokyo (Japan). Faculty of Science and Engineering

    2000-02-01

    This investigation is undertaken to obtain information on the effect of vortex orifice air distributors on the granule growth in conical fluidized bed granulation with a bottom entry spray. The five types of vortex orifice distributors suitable for a strong swirling air supply at the base of the conical bed were prepared. Although all these orifices consisted of four tangential injection nozzles with the same opening, the opening size of the air injection nozzle in each of the orifices was different. Intensity of the air injection nozzle torque within the vortex orifice was measured by a torque balance method. The granule formation of fluidising lactose particles in the process of size-enlargement was carried out by spraying an aqueous HPC solution into the bed where the moisture content of granules was maintained at or below 0.30 wt %. As a result, granule growth in the bed could be precisely controlled by changes in the air injection nozzle torques arising from the vortex orifice distributor. The extent of granule growth, namely the granule growth conversion increasing with accumulated content of HPC in the bed particles during the operating time decreased according to the air injection nozzle torque within the vortex orifice. Using these process variables, granule growth conversion could be arranged experimentally. It is finally found that one of the features of the proposed air distributor is useful for size-control of granule products in the conical fluidized bed granulation with a bottom entry spray. (author)

  4. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.

    Science.gov (United States)

    Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas

    2014-04-01

    Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. Copyright © 2013 Elsevier B.V. All

  5. Deep Convection in the Ocean

    National Research Council Canada - National Science Library

    McWilliams, James

    1999-01-01

    ... mechanism of water mass transformation. The resultant newly mixed deep water masses form a component of the thermohaline circulation, and hence it is essential to understand the deep convection process if the variability of the meridional...

  6. Scaling of plate tectonic convection with pseudoplastic rheology

    Science.gov (United States)

    Korenaga, Jun

    2010-11-01

    The scaling of plate tectonic convection is investigated by simulating thermal convection with pseudoplastic rheology and strongly temperature-dependent viscosity. The effect of mantle melting is also explored with additional depth-dependent viscosity. Heat flow scaling can be constructed with only two parameters, the internal Rayleigh number and the lithospheric viscosity contrast, the latter of which is determined entirely by rheological properties. The critical viscosity contrast for the transition between plate tectonic and stagnant lid convection is found to be proportional to the square root of the internal Rayleigh number. The relation between mantle temperature and surface heat flux on Earth is discussed on the basis of these scaling laws, and the inverse relationship between them, as previously suggested from the consideration of global energy balance, is confirmed by this fully dynamic approach. In the presence of surface water to reduce the effective friction coefficient, the operation of plate tectonics is suggested to be plausible throughout the Earth history.

  7. Effects of granule size on the osteoconductivity of bovine and synthetic hydroxyapatite: a histologic and histometric study in dogs.

    Science.gov (United States)

    Carvalho, Alexandre L; Faria, Paulo E P; Grisi, Marcio F M; Souza, Sergio L S; Taba, Mario Júnior; Palioto, Daniela B; Novaes, Arthur B Júnior; Fraga, Alexandre F; Ozyegin, L Sevgi; Oktar, Faik N; Salata, Luiz A

    2007-01-01

    Two bovine hydroxyapatites (BHAs), one with granule size of 150 to 200 microm and one with granule size of 300 to 329 micro, and 2 synthetic hydroxyapatites (SHAs), with granule size of 150 and 300 microm, respectively, were compared for effectiveness in repairing circumferential bone defects in dogs. The hydroxyapatites (HAs) were characterized through powder x-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Three trephined bone defects (5.0 mm wide x 4 mm long) were created in the humeruses of 8 dogs. In a random manner, the defects on each side were treated with either BHA with small granules (BHA[s]), BHA with large granules (BHA[L]), SHA with small granules (SHA[s]), SHA with large granules (SHA[L]), or left to heal unaided (bilateral control). Four dogs were sacrificed after 6 and 12 postoperative weeks, respectively. Ground sections of each defect were submitted to histologic and histomorphometric analysis (percentage of area occupied by bone, bone marrow, and biomaterial). As a rule, the HA granules exhibited direct bone contact, regardless of the origin and the size of the granules. Control sites were related and had an increased amount of connective tissue infiltration. At 12 weeks, BHA(s) exhibited improved bone formation compared with SHA(s) and SHA(L). The SHA(s) delivered reduced amounts of bone compared with the remaining groups (control included). The area of bone measured in BHA(s) sites was significantly higher at 12 weeks than 6 weeks. The XRD revealed the tested HA samples to be highly crystalline, while BHA appeared with rougher surface at SEM analysis. The BHA(s) performed better than the SHA(s) and SHA(L), as assessed by the amount of bone measured in both implantation sites at 12 weeks. The BHA's material characteristic itself rather than granules size accounted for the distinctive biological behavior. The increased roughness of the BHAs' surface, as assessed through SEM, seemed to benefit the osteoconduction process.

  8. Analysis of the convective heat transfer of a fluid flow over an ...

    African Journals Online (AJOL)

    Convective heat transfer in a homogeneous fluid flow Reynolds number of order less than 2000 over an immersed axi-symmetrical body with curved surfaces has been investigated. The fluid flow in consideration was unsteady and of constant density .This study analysed the extent to which convective heat transfer has on ...

  9. Comparison of Different Granulation Techniques for Lactose Monohydrate

    OpenAIRE

    Pankaj Patel; Darshan Telange; Nitesh Sharma

    2011-01-01

    The objective of this study was directed to improve the physical and technical properties of poorly flowing and highly cohesive Lactose monohydrate to solve the most important problem that affects tablet manufacture. To overcome all the problems related to lactose granulation is required. Granulation is one of the most important unit operations in the production of pharmaceutical oral dosage forms. Granulation process will improve flow and compression characteristics, reduce segregation, impr...

  10. Giant arachnoid granulation in a patient with benign intracranial hypertension

    Energy Technology Data Exchange (ETDEWEB)

    Kiroglu, Yilmaz; Yaqci, Baki; Cirak, Bayram; Karabulut, Nevzat [Pamukkale University, Department of Radiology, School of Medicine, Denizli (Turkey)

    2008-10-15

    We report magnetic resonance (MR), computed tomography (CT) and angiographic imaging of an unusual giant arachnoid granulation in the superior sagittal sinus in a man with headache and vertigo. Intrasinus pressure measurements revealed a significant pressure gradient across the lesion. MR imaging is useful to identify giant arachnoid granulation and dural sinus thrombosis, whereas dural sinus pressure measurement in certain cases of giant arachnoid granulations can be used to evaluate the lesion as the cause of the patient's symptoms. (orig.)

  11. Giant arachnoid granulation in a patient with benign intracranial hypertension

    International Nuclear Information System (INIS)

    Kiroglu, Yilmaz; Yaqci, Baki; Cirak, Bayram; Karabulut, Nevzat

    2008-01-01

    We report magnetic resonance (MR), computed tomography (CT) and angiographic imaging of an unusual giant arachnoid granulation in the superior sagittal sinus in a man with headache and vertigo. Intrasinus pressure measurements revealed a significant pressure gradient across the lesion. MR imaging is useful to identify giant arachnoid granulation and dural sinus thrombosis, whereas dural sinus pressure measurement in certain cases of giant arachnoid granulations can be used to evaluate the lesion as the cause of the patient's symptoms. (orig.)

  12. Aerobic granules: microbial landscape and architecture, stages, and practical implications.

    Science.gov (United States)

    Gonzalez-Gil, Graciela; Holliger, Christof

    2014-06-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In "old" granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters "rooting" from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation.

  13. Aerobic Granules: Microbial Landscape and Architecture, Stages, and Practical Implications

    Science.gov (United States)

    Holliger, Christof

    2014-01-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In “old” granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters “rooting” from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation. PMID:24657859

  14. Thermal Convection on an Ablating Target

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva

    2015-11-01

    Modeling and analysis of thermal convection of a metallic targets subject to radiative flux is of relevance to various manufacturing processes as well as for the development of protective shields. The present work involves the computational modeling of metallic targets subject to high heat fluxes that are both steady and pulsed. Modeling of the ablation and associated fluid dynamics when metallic surfaces are exposed to high intensity pulsed laser fluence at normal atmospheric conditions is considered. The incident energy from the laser is partly absorbed and partly reflected by the surface during ablation and subsequent vaporization of the convecting melt also participates in the radiative exchange. The energy distribution during the process between the bulk and vapor phase strongly depends on optical and thermodynamic properties of the irradiated material, radiation wavelength, and laser pulse intensity and duration. Computational findings based on effective representation and prediction of the heat transfer, melting and vaporization of the targeting material as well as plume formation and expansion are presented and discussed in the context of various ablation mechanisms, variable thermo-physical and optical properties, plume expansion and surface geometry. Funded in part by U. S. Army ARDEC, Picatinny Arsenal, NJ.

  15. Enhanced aerobic granulation, stabilization, and nitrification in a continuous-flow bioreactor by inoculating biofilms.

    Science.gov (United States)

    Yang, Yang; Zhou, Dandan; Xu, Zhengxue; Li, Aijun; Gao, Hang; Hou, Dianxun

    2014-06-01

    In this study, the possibility of using backwashed biofilm as seed in an aerobic granular sludge continuous-flow airlift fluidized bed (CAFB) reactor was investigated. After the addition of the inoculated backwashed biofilm, the start-up period of this reactor fed with municipal wastewater was reduced to 25 days, and aerobic granulation and stabilization were enhanced. At steady state, the chemical oxygen demand (COD) removal efficiency and nitrification efficiency were as high as 80-90 and 60 %, respectively. The CAFB was operated continuously and totally for 90 days, and its performance was much more stable when compared with system inoculated with activated sludge. Microbial distribution analyzed by fluorescence in situ hybridization (FISH) showed that the nitrite-oxidizing bacteria (NOB) and ammonium-oxidizing bacteria (AOB) were compatible with heterotrophic bacteria and distributed evenly throughout the granules. Such unique population distribution might be attributed to the low COD level and abundant dissolved oxygen in the entire granule as simulated by the mathematic models. Moreover, scanning electron microscopy revealed broad holes in the granules, which might promote the mass transfer of the nutrients from the surface to the center and enable simultaneous COD removal and nitrification. In conclusion, backwashed biofilm is an alternative seed of the conventional flocculent activated sludge in the aerobic granular sludge system to enhance carbonaceous oxidization and nitrification.

  16. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de; Zanetti, María Natalia [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Fukuda, Mitsunori [Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fissore, Rafael A. [Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003 (United States); Mayorga, Luis S. [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Michaut, Marcela A., E-mail: mmichaut@gmail.com [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (Argentina)

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of

  17. Physics of greenhouse effect and convection in warm oceans

    Science.gov (United States)

    Inamdar, A. K.; Ramanathan, V.

    1994-01-01

    Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST greater than 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top of the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective

  18. Multimodal sensory integration in single cerebellar granule cells in vivo.

    Science.gov (United States)

    Ishikawa, Taro; Shimuta, Misa; Häusser, Michael

    2015-12-29

    The mammalian cerebellum is a highly multimodal structure, receiving inputs from multiple sensory modalities and integrating them during complex sensorimotor coordination tasks. Previously, using cell-type-specific anatomical projection mapping, it was shown that multimodal pathways converge onto individual cerebellar granule cells (Huang et al., 2013). Here we directly measure synaptic currents using in vivo patch-clamp recordings and confirm that a subset of single granule cells receive convergent functional multimodal (somatosensory, auditory, and visual) inputs via separate mossy fibers. Furthermore, we show that the integration of multimodal signals by granule cells can enhance action potential output. These recordings directly demonstrate functional convergence of multimodal signals onto single granule cells.

  19. Distribution of phosphorus and hydroxypropyl groups within granules of modified sweet potato starches as determined after chemical peeling.

    Science.gov (United States)

    Zhao, Jianwei; Schols, Henk A; Chen, Zhenghong; Jin, Zhengyu; Buwalda, Piet; Gruppen, Harry

    2015-11-05

    The distributions of phosphorus and hydroxypropyl groups within granules of cross-linked and hydroxypropylated sweet potato starches were investigated. Chemical surface peeling of starch granules was performed after sieving of native and modified starches into large-size (diameter ≥ 20 μm) and small-size (diameter < 20 μm) fractions. Starch granules were surface gelatinized in a 4M calcium chloride solution at different levels. After the peeling step, the remaining starch granules were analysed for the content of phosphorus and hydroxypropyl groups. The phosphorus level of the parental starch gradually decreased from periphery to core of the granules. The increase in phosphorus content after cross-linking in periphery was higher than that in core. The subsequent hydroxypropylation reaction resulted in lower phosphate levels. Hydroxypropylation resulted in a gradient of hydroxypropyl group concentration from periphery to core. Cross-linking prior to the hydroxypropylation resulted in lower levels of hydroxypropyl groups and less pronounced differences between periphery and core. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Coupled interactions of organized deep convection over the tropical western pacific

    Energy Technology Data Exchange (ETDEWEB)

    Hong, X.; Raman, S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    The relationship between sea surface temperature (SST) and deep convection is complex. In general, deep convection occurs more frequently and with more intensity as SSTs become higher. This theory assumes that the atmospheric stability is sufficiently reduced to allow the onset of moist convection. However, the amount and intensity of convection observed tends to decrease with increasing SST because very warm SSTs. A reason for such decrease is the enhancements to surface fluxes of heat and moisture out of the ocean surface because of the vertical overturning associated with deep convection. Early studies used the radiative-convective models of the atmosphere to examine the role of the convective exchange of heat and moisture in maintaining the vertical temperature profile. In this paper we use a Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) to simulate a squall line over a tropical ocean global atmosphere/coupled ocean atmosphere response experiment (TOGA/COARE) area and to investigate how the ocean cooling mechanisms associated with organized deep convection act to limit tropical SSTs.

  1. MATHEMATICAL MODELING OF THE DYNAMICS OF TRANSFER PROCESSES DEHYDRATION AND GRANULATION IN A FLUIDIZED BED

    Directory of Open Access Journals (Sweden)

    Б.Я. Корнієнко

    2012-12-01

    Full Text Available  An approach to the description of multivariate process of dehydration and granulation in a fluidized bed, which is accompanied by a phase transition is complicated by the formation of liquid phase on the surface of the pellet, followed by removal of the liquid phase and the formation of a mass crystallization by a layer of microcrystals. Presents a mathematical model of two-phase Euler-Euler.

  2. A numerical study of momentum and forced convection heat transfer ...

    African Journals Online (AJOL)

    A numerical study has been carried out to examine the momentum and turbulent forced-convection characteristics for airflow through a constant temperature- surfaced rectangular duct with top and lower wallmounted waved baffles.Air is the working fluid with the flow rate in terms of Reynolds numbers ranging from 5,000 to ...

  3. A micro-convection model for thermal conductivity of nanofluids

    Indian Academy of Sciences (India)

    Increase in the specific surface area as well as Brownian motion are supposed to be the most significant reasons for the anomalous enhancement in thermal conductivity of nanofluids. This work presents a semi-empirical approach for the same by emphasizing the above two effects through micro-convection. A new way of ...

  4. The biology and dynamics of mammalian cortical granules

    Directory of Open Access Journals (Sweden)

    Liu Min

    2011-11-01

    Full Text Available Abstract Cortical granules are membrane bound organelles located in the cortex of unfertilized oocytes. Following fertilization, cortical granules undergo exocytosis to release their contents into the perivitelline space. This secretory process, which is calcium dependent and SNARE protein-mediated pathway, is known as the cortical reaction. After exocytosis, the released cortical granule proteins are responsible for blocking polyspermy by modifying the oocytes' extracellular matrices, such as the zona pellucida in mammals. Mammalian cortical granules range in size from 0.2 um to 0.6 um in diameter and different from most other regulatory secretory organelles in that they are not renewed once released. These granules are only synthesized in female germ cells and transform an egg upon sperm entry; therefore, this unique cellular structure has inherent interest for our understanding of the biology of fertilization. Cortical granules are long thought to be static and awaiting in the cortex of unfertilized oocytes to be stimulated undergoing exocytosis upon gamete fusion. Not till recently, the dynamic nature of cortical granules is appreciated and understood. The latest studies of mammalian cortical granules document that this organelle is not only biochemically heterogeneous, but also displays complex distribution during oocyte development. Interestingly, some cortical granules undergo exocytosis prior to fertilization; and a number of granule components function beyond the time of fertilization in regulating embryonic cleavage and preimplantation development, demonstrating their functional significance in fertilization as well as early embryonic development. The following review will present studies that investigate the biology of cortical granules and will also discuss new findings that uncover the dynamic aspect of this organelle in mammals.

  5. Numerical and experimental investigation of nonsteady state, natural laminar double diffusive convection on heating surfaces of different geometry; Numerische und experimentelle Untersuchung der instationaeren, natuerlichen, laminaren doppelt diffusen Konvektion an Heizflaechen unterschiedlicher Geometrie

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, J.

    1990-12-31

    The aim of this work is the development of a numerical process independent of the geometry of the flow space. The temperature, concentration and speed fields set up with double diffusive convection should be determined by this and their effect on heat transfer should be determined. The numerical process should be used for non-steady state double diffusive convection in various geometries. The results should be verified experimentally with the aid of holographic interferometry. (orig./IHL) [Deutsch] Ziel der vorliegenden Arbeit ist die Entwicklung eines von der Geometrie des Stroemungsraumes unabhaengigen numerischen Verfahrens. Mit ihm sollen die sich bei doppelt diffusiver Konvektion einstellenden Temperatur-, Konzentrations- und Geschwindigkeitsfelder bestimmt und deren Einfluss auf die Waermeuebertragung ermittelt werden. Das numerische Verfahren soll auf die instationaere doppelt diffusive Konvektion in verschiedenen Geometrien angewendet werden. Die Ergebnisse sollen experimentell mit Hilfe der holographischen Interferometrie verifiziert werden. (orig./IHL)

  6. Iron coated pottery granules for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Dong Liangjie; Zinin, Pavel V.; Cowen, James P.; Ming, Li Chung

    2009-01-01

    A new media, iron coated pottery granules (ICPG) has been developed for As removal from drinking water. ICPG is a solid phase media that produces a stable Fe-Si surface complex for arsenic adsorption. Scanning electron microscopy (SEM) was used to document the physical attributes (grain size, pore size and distribution, surface roughness) of the ICPG media. Several advantages of the ICPG media such as (a) its granular structure, (b) its ability to absorb As via the F(0) coating on the granules' surface; (c) the inexpensive preparation process for the media from clay material make ICPG media a highly effective media for removing arsenic at normal pH. A column filtration test demonstrated that within the stability region (flow rate lower than 15 L/h, EBCT >3 min), the concentration of As in the influent was always lower than 50 μg/L. The 2-week system ability test showed that the media consistently removed arsenic from test water to below the 5 μg/L level. The average removal efficiencies for total arsenic, As(III), and As(V) for a 2-week test period were 98%, 97%, and 99%, respectively, at an average flow rate of 4.1 L/h and normal pH. Measurements of the Freundlich and Langmuir isotherms at normal pH show that the Freundlich constants of the ICPG are very close to those of ferric hydroxide, nanoscale zero-valent iron and much higher than those of nanocrystalline titanium dioxide. The parameter 1/n is smaller than 0.55 indicating a favorable adsorption process [K. Hristovski, A. Baumgardner, P. Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media, J. Hazard. Mater. 147 (2007) 265-274]. The maximum adsorption capacity (q e ) of the ICPG from the Langmuir isotherm is very close to that of nanoscale zero-valent indicating that zero-valent iron is involved in the process of the As removal from the water. The results of the toxicity characteristic leaching procedure (TCLP) analysis

  7. Benard-Marangoni convection in two-layered liquids

    Science.gov (United States)

    Tokaruk; Molteno; Morris

    2000-04-17

    We describe experiments on Benard-Marangoni convection in horizontal layers of two immiscible liquids. Unlike previous experiments, which used gases as the upper fluid, we find a square planform close to onset which undergoes a secondary bifurcation to rolls at higher temperature differences. The scale of the convection pattern is that of the thinner lower fluid layer for which buoyancy and surface tension forces are comparable. The wave number of the pattern near onset agrees with the linear stability prediction for the full two-layer problem. The square planform is in qualitative agreement with recent two-layer weakly nonlinear theories, which fail however to predict the transition to rolls.

  8. Bénard-Marangoni Convection in Two-Layered Liquids

    Science.gov (United States)

    Tokaruk, Wayne A.; Molteno, T. C. A.; Morris, Stephen W.

    2000-04-01

    We describe experiments on Bénard-Marangoni convection in horizontal layers of two immiscible liquids. Unlike previous experiments, which used gases as the upper fluid, we find a square planform close to onset which undergoes a secondary bifurcation to rolls at higher temperature differences. The scale of the convection pattern is that of the thinner lower fluid layer for which buoyancy and surface tension forces are comparable. The wave number of the pattern near onset agrees with the linear stability prediction for the full two-layer problem. The square planform is in qualitative agreement with recent two-layer weakly nonlinear theories, which fail however to predict the transition to rolls.

  9. Roll compaction and granulation system for nuclear fuel material

    International Nuclear Information System (INIS)

    Goldmann, L.H. Jr.; Holley, C.C.

    1981-01-01

    A roll compaction and roll granulation system has been designed and fabricated to replace conventional preslugging and crushing operations typically used in the fabrication of mixed oxide nuclear fuel pellets. This equipment will be of maintenance advantage with only the compaction and granulation rolls inside containment. The prototype is being tested and the results will be reported within a year

  10. Proximate analysis of Sweet Potato Toasted Granules | Meludu ...

    African Journals Online (AJOL)

    Sweet potato is an important root crop in the food system of many African countries. The yield, nutrition and economic potential of sweet potato have been identified as very high. In this study, sweet potato was processed and toasted into granules. The proximate analysis performed on the toasted granules showed protein, ...

  11. Granule properties of paracetamol made with Bombax ceiba gum ...

    African Journals Online (AJOL)

    Bombax ceiba gum was extracted from the calyx of the Bombax flower using both hot and cold water extraction method. The gum was used as binder to prepare paracetamol granules in concentrations of 1, 1.5, 2, and 3 %. Acacia gum was used to prepare the standard at the same concentrations. The granule properties of ...

  12. Internal structure and fragmentation kinetics of silica granules

    Science.gov (United States)

    Grosseau, P.; Dumas, T.; Bonnefoy, O.; Barriquand, L.; Guy, L.; Thomas, G.

    2013-06-01

    To improve the mechanical properties of tires, silica granules can be incorporated into the elastomer as well as carbon black. Ideally, the fragmentation of the granules in the elastomer must be obtained with low mechanical stresses and lead to very small fragments distributed homogeneously in the material. On the other hand, granules must present a sufficient cohesion, in order to avoid the generation of fine particles during handling operations. Thus it appears necessary to control the mechanical strength of granules and the mechanism of their fragmentation. In this experimental study, we investigated the fragmentation of silica granules of 250 microns produced by spray drying. For this, we characterized by granulometry the evolution of the Particle Size Distribution of silica powder in water. The granules were suspended in water and submitted to ultrasounds. This treatment is used to create the fragmentation that occurs by viscous shearing in industrial rubber processing. A core-shell structure, characteristic of granules obtained by atomization process, was observed by SEM. Furthermore, by varying the intensity of mechanical stress, the multi-scale structure of granules was evidenced as well as the existence of different regimes of fragmentation. The kinetics of fragmentation was experimentally followed on two grades of silica that showed significant differences in their behavior during the fragmentation process.

  13. Bone growth response with porous hydroxyapatite granules in a ...

    Indian Academy of Sciences (India)

    This study evaluated the tissue reaction to porous hydroxyapatite (HA) granules in a critical sized tibial-defect of New Zealand white rabbits for a period of 2, 6, 12 and 24 weeks. Physicochemical characterizations of the granules were done using transmission electron microscopy, scanning electron microscopy, X-ray ...

  14. Application of granulating of tires; Aplicaciones de granulado de NFUs

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez Justicia, A.

    2001-07-01

    At present, used tires are mainly used as fuel, retreading and granulating of tires. In this article. I will focus on the last option, talking about some of the multiple applications and going into detail of the making process of the granulation of used tires in a recycling plant. (Author)

  15. Experiments on convection in laser-melted pools

    Science.gov (United States)

    Caillibotte, Georges; Kechemair, Didier; Sabatier, Lilian

    1991-10-01

    High-power CO2 cw lasers proved to be very efficient in surface treatment of metallic materials in order to improve wear or fatigue resistance of workpieces. In the case of surface treatments which involve a molten zone, it is necessary to improve existing knowledge on convection which can take place inside the metallic bath during laser-material interaction. As a matter of fact, metallurgical investigations showed that this convection influences the homogenization and the structure of the metal specimen. It has been pointed out by some researchers that these movements are generated by high-temperature gradients which produce surface tension variations within the liquid surface. This kind of flow is generally called Marangoni Convection. A method which allows the measurement of some particle velocities on the pool surface is described. A CCD camera was used to estimate surface temperatures and a high-speed video camera allowed the analysis of the velocity fields. The first experiments showed that the order of magnitude of these velocities is typically about a few tens of centimeters per second in the case od cast-iron surface treatment. The scanning speed was about one centimeter per second with a 10 kW/cm2 shaped beam originating at a 6 mods UTIL laser.

  16. Using data assimilation to reconstruct convection patterns below an active region of solar corona from observed magnetograms

    Science.gov (United States)

    Pirot, D.; Vincent, A. P.; Charbonneau, P.; Solar Physics Research Group of University of Montreal

    2011-12-01

    Solar magnetic field originates deep inside the convection zone and rises through it to produce active regions. Detailled simulations of solar convection including granulation and radiation that have been performed in the past are important both to understand the physics of magnetic flux tube evolution as well as the algorithms used for simulations. A challenging problem is the reconstruction of the effective patterns of convection below an observed active region as given by magnetograms and temperature maps at photospheric levels. Since convection in the sun is strongly stratified in density it can be regarded as being anelastic, therefore we used ANMHD software. Here we chosed AR9077-20000714 also known to have produced the ''Bastille day'' flare a region of area 175 Mm2. To this purpose we used an anelastic convection model that we modified to include the Nudging Back and Forth, a Newtonian relaxation technique for the data assimilation of SOHO/MDI temperature and magnetograms. Vector magnetograms are first choice for the upper boundary condition to be data assimilated. However they have been computed from SOHO line of sight magnetograms using the force free hypothesis as if we would be just above photosphere. We found that velocity shears between slow diverging upflows and fast turbulent downflows produce Ω and U-shaped magnetic field loops. The coronal arcade system of AR9077-20000714 (the ``slinky'') is here understood as the emerging part of the magneto convective pattern below.

  17. Understanding and predicting bed humidity in fluidized bed granulation.

    Science.gov (United States)

    Hu, Xinhui; Cunningham, John; Winstead, Denita

    2008-04-01

    Bed humidity is a critical parameter that needs to be controlled in a fluidized bed granulation to ensure reliability. To predict and control the bed humidity during the fluidized bed granulation process, a simple model based on the mass conservation of moisture was developed. The moisture mass balance model quantitatively simulates the effects of spray rate, binder solution concentration, airflow rate, inlet air temperature, and dew point on the bed humidity. The model was validated by a series of granulations performed in different scale granulators including Glatt GPCG-1, GPCG-15, and GPCG-60. Good agreement was observed between the theoretical prediction and the measured loss on drying (LOD). The model developed in the current work enables us to choose the appropriate parameters for the fluidized bed granulation and can be used as a valuable tool in process scaling-up. 2007 Wiley-Liss, Inc

  18. Analysis of Summertime Convective Initiation in Central Alabama Using the Land Information System

    Science.gov (United States)

    James, Robert S.; Case, Jonathan L.; Molthan, Andrew L.; Jedlovec, Gary J.

    2011-01-01

    During the summer months in the southeastern United States, convective initiation presents a frequent challenge to operational forecasters. Thunderstorm development has traditionally been referred to as random due to their disorganized, sporadic appearance and lack of atmospheric forcing. Horizontal variations in land surface characteristics such as soil moisture, soil type, land and vegetation cover could possibly be a focus mechanism for afternoon convection during the summer months. The NASA Land Information System (LIS) provides a stand-alone land surface modeling framework that incorporates these varying soil and vegetation properties, antecedent precipitation, and atmospheric forcing to represent the soil state at high resolution. The use of LIS as a diagnostic tool may help forecasters to identify boundaries in land surface characteristics that could correlate to favored regions of convection initiation. The NASA Shortterm Prediction Research and Transition (SPoRT) team has been collaborating with the National Weather Service Office in Birmingham, AL to help incorporate LIS products into their operational forecasting methods. This paper highlights selected convective case dates from summer 2009 when synoptic forcing was weak, and identifies any boundaries in land surface characteristics that may have contributed to convective initiation. The LIS output depicts the effects of increased sensible heat flux from urban areas on the development of convection, as well as convection along gradients in land surface characteristics and surface sensible and latent heat fluxes. These features may promote mesoscale circulations and/or feedback processes that can either enhance or inhibit convection. With this output previously unavailable to operational forecasters, LIS provides a new tool to forecasters in order to help eliminate the randomness of summertime convective initiation.

  19. Efeito do tamanho dos grânulos nas características estruturais e físico-químicas do amido de trigo Effect of granule size on the structural and physicochemical characteristics of wheat starch

    Directory of Open Access Journals (Sweden)

    Patrícia Guedes Yonemoto

    2007-12-01

    Full Text Available A distribuição de tamanho dos grânulos influencia diretamente a composição química do amido, afetando sua funcionalidade, características de gelatinização, susceptibilidade enzimática, e cristalinidade. Os grânulos de amido de trigo possuem distribuição bimodal de tamanho e são divididos em grânulos tipo A (10-40 µm e B (15 µm e pequenos (Granule size distribution directly influences the chemical composition of starch, affecting its functionality, characteristics of gelatinization, enzymatic susceptibility and crystallinity. Wheat starch granules exhibit a bimodal size distribution and are divided into type A (10-40 µm and type B (15 µm and small granules (<10 µm. Starches of different sizes were analyzed to determine their lysophospholipid and amylose content, X-ray patterns, enzymatic susceptibility, swelling power, and thermal and pasting properties. They were also examined under a scanning electron microscope. Independent of the cultivar studied, large granules showed an average diameter of 22 µm and were lentil-shaped, while small granules showed an average diameter of 6 µm and were spherical. The large granules exhibited lower lysophospholipids content, higher amylose content and a lower index of crystallinity (IC than the small granules. Despite their higher crystallinity, small granules were more susceptible to hydrolysis than large ones, suggesting that the enzymatic susceptibility of small granules is related to its larger surface area.

  20. Effect of granulated wood ash fertilization on N2O emissions in boreal peat forests

    Science.gov (United States)

    Liimatainen, Maarit; Martikainen, Pertti J.; Hytönen, Jyrki; Maljanen, Marja

    2016-04-01

    Peatlands cover one third of the land surface area in Finland and over half of that are drained for forestry. Natural peatlands are either small sources of nitrous oxide (N2O) or they can also act as a sinks of N2O. When peatlands are drained, oxygen concentration in the peat increases, organic matter decomposition accelerates and N2O emissions may increase significantly, especially in nutrient rich peat soils. Hence drainage and land-use changes can have a big impact on N2O fluxes in peatlands. The annual consumption of wood chips is to be increased to 13.5 M m3 from the present 8.7 M m3 in Finland. This will also increase the amount of wood ash in the power plants. Wood ash contains considerable amounts of mineral nutrients but lacks nitrogen. Therefore, it has been used as a fertilizer in nitrogen rich peatland forests lacking other nutrients. Recycling of ash would also return the nutrients lost during biomass harvesting back to the forests. We studied the effects of granulated wood ash as a fertilizer in peat soils drained for forestry. Ash is nowadays granulated mainly to facilitate its handling and spreading. Granulation also stabilizes the ash decreasing the solubility of most of the nutrients and minimizing harmful effects of ash spread over the vegetation. Granulated wood ash increases soil pH less than loose ash. Drainage of peatland forests increases microbial activity in the soil which is furthermore intensified with the addition of ash promoting organic matter decomposition and possibly affecting N2O emissions. We studied the effect of granulated wood ash on N2O fluxes in three different peat forests in Finland in both field and laboratory experiments. In the field, N2O emissions were not affected by granulated wood ash fertilization but the soil respiration rate increased. However, in the laboratory studies we observed a clear decrease in N2O production due to wood ash addition, although changes in pH values were only minor. We studied what could

  1. Compressional Behavior of a Mixture of Granules Containing High Load of Phyllanthus niruri Spray-Dried Extract and Granules of Adjuvants: Comparison between Eccentric and Rotary Tablet Machines

    OpenAIRE

    Spaniol, Bárbara; Bica, Vinicius Claudino; Ruppenthal, Lisias Rafael; Volpato, Maria Ramos; Petrovick, Pedro Ros

    2009-01-01

    The purpose of this paper was to evaluate the compressional behavior of granules containing high load of a Phyllanthus niruri spray-dried extract in eccentric (ETM) and rotary (RTM) tablet presses. Tablets were constituted by spray-dried extract granules (SDEG, 92%), excipient granules (EXCG, 7.92%), and magnesium stearate (0.08%). SDEG was obtained by dry granulation and EXCG, composed of microcrystalline cellulose (62.9%) and sodium starch glycolate (37.1%), by wet granulation. Particle siz...

  2. Large-Scale Dynamics of the Convection Zone and Tachocline

    Directory of Open Access Journals (Sweden)

    Miesch Mark S.

    2005-04-01

    Full Text Available The past few decades have seen dramatic progress in our understanding of solar interior dynamics, prompted by the relatively new science of helioseismology and increasingly sophisticated numerical models. As the ultimate driver of solar variability and space weather, global-scale convective motions are of particular interest from a practical as well as a theoretical perspective. Turbulent convection under the influence of rotation and stratification redistributes momentum and energy,generating differential rotation, meridional circulation, and magnetic fields through hydromagnetic dynamo processes. In the solar tachocline near the base of the convection zone, strong angular velocity shear further amplifies fields which subsequently rise to the surface to form active regions. Penetrative convection, instabilities, stratified turbulence, and waves all add to the dynamical richness of the tachocline region and pose particular modeling challenges. In this article we review observational, theoretical, and computationalinvestigations of global-scale dynamics in the solar interior. Particular emphasis is placed on high-resolution global simulations of solar convection, highlighting what we have learned from them and how they may be improved.

  3. Extended Subadiabatic Layer in Simulations of Overshooting Convection

    Energy Technology Data Exchange (ETDEWEB)

    Käpylä, Petri J.; Arlt, Rainer [Leibniz-Institut für Astrophysik, An der Sternwarte 16, D-14482 Potsdam (Germany); Rheinhardt, Matthias; Käpylä, Maarit J.; Olspert, Nigul [ReSoLVE Centre of Excellence, Department of Computer Science, P.O. Box 15400, FI-00076 Aalto (Finland); Brandenburg, Axel [NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Lagg, Andreas; Warnecke, Jörn [Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany)

    2017-08-20

    We present numerical simulations of hydrodynamic overshooting convection in local Cartesian domains. We find that a substantial fraction of the lower part of the convection zone (CZ) is stably stratified according to the Schwarzschild criterion while the enthalpy flux is outward directed. This occurs when the heat conduction profile at the bottom of the CZ is smoothly varying, based either on a Kramers-like opacity prescription as a function of temperature and density or a static profile of a similar shape. We show that the subadiabatic layer arises due to nonlocal energy transport by buoyantly driven downflows in the upper parts of the CZ. Analysis of the force balance of the upflows and downflows confirms that convection is driven by cooling at the surface. We find that the commonly used prescription for the convective enthalpy flux being proportional to the negative entropy gradient does not hold in the stably stratified layers where the flux is positive. We demonstrate the existence of a non-gradient contribution to the enthalpy flux, which is estimated to be important throughout the convective layer. A quantitative analysis of downflows indicates a transition from a tree-like structure where smaller downdrafts merge into larger ones in the upper parts to a structure in the deeper parts where a height-independent number of strong downdrafts persist. This change of flow topology occurs when a substantial subadiabatic layer is present in the lower part of the CZ.

  4. A review on granules initiation and development inside UASB Reactor and the main factors affecting granules formation process

    Energy Technology Data Exchange (ETDEWEB)

    Habeeb, S.A.; Latiff, Ab Aziz Bin Abdul; Daud, Zawawi Bin; Ahmad, Zulkifli Bin [Civil and Environmental Engineering, University Tun Hussein Onn Malaysia (Malaysia)

    2011-07-01

    Decades of investigations and explorations in the field of anaerobic wastewater treatment have resulted in significant indications about the role importance of sludge granules in biodegradation anaerobic process. It is believed that the development of anaerobic granules is reflecting an important role on the performance of reactor. An overview on the concept of up-flow anaerobic sludge bed (UASB) reactor operation as well as the main parts that reactor consists of is briefly explained in this paper, whereas the major theories of anaerobic granules formation are listed by related researchers. The correlations and compositions of such sludge granule have been specifically explained. It is believed that the extracellular polymer (ECP) is totally responsible of bacterial cell correlations and the formation of bacterial communities in the form of granules. In addition, the dependable factors for the performance of anaerobic granules formation process e.g. temperature, organic loading rate, pH, and alkalinity, nutrients, and cations and heavy metals have been discussed in this paper. Strong evidences proved that the process of gas production in the form of biogas is related to the methanogens activities, which are practically found in the core of granules. The aim of this review is to explore and assess the mechanisms of granules initiation and development inside UASB reactor.

  5. Comparison of the osteogenic potentials of autologous cultured osteoblasts and mesenchymal stem cells loaded onto allogeneic cancellous bone granules.

    Science.gov (United States)

    Kim, Seok-Jung; Chung, Yang-Guk; Lee, Yun-Kyoung; Oh, Il-Whan; Kim, Yong-Sik; Moon, Young-Seok

    2012-02-01

    We compared the bone regeneration potentials of autologous cultured osteoblasts and of bone-marrow-derived autologous MSCs in combination with allogeneic cancellous bone granules in a rabbit radial defect model. Radial shaft defects over 15 mm were made in 26 New Zealand white rabbits. The animals underwent insertion of allogeneic cancellous bone granules containing autologous osteoblasts into right-side defects (the experimental group) and of allogeneic cancellous bone granules with autologous MSCs into left-side defects (the control group). To quantitatively assess bone regeneration, radiographic evaluations as well as BMD and BMC measurements were performed 3, 6, 9 and 12 weeks post-implantation and histology as well as micro-CT image analysis were performed at 6 and 12 weeks. Radiographic evaluations 3 weeks post-implantation showed that the experimental group had a higher mean bone quantity index (p bone volume and surface area than the control sides (p bone formation in the experimental group. This in vivo study demonstrates that a combination of autologous osteoblasts and small-sized, allogeneic cancellous bone granules leads to more rapid bone regeneration than autologous MSCs and small-sized, allogeneic cancellous bone granules.

  6. The effect of the physical state of binders on high-shear wet granulation and granule properties: a mechanistic approach to understand the high-shear wet granulation process. part IV. the impact of rheological state and tip-speeds.

    Science.gov (United States)

    Li, Jinjiang; Tao, Li; Buckley, David; Tao, Jing; Gao, Julia; Hubert, Mario

    2013-12-01

    The purpose of this study is to provide a mechanistic understanding concerning the effect of tip-speed on a granulation at various binder rheological states; the in situ rheological state of a binder was controlled by exposing a granulation blend to 96% relative humidity. This approach allowed us to investigate the impact of tip-speed on granule consolidation coupled with the in situ binder state, which was not possible using a conventional granulation approach. Experimentally, the rheological state of binders was characterized using a rheometer. Granule size and granule porosity were measured by Qicpic instrument and Mercury Intrusion Porosimetry, respectively. For the granulations containing binders at viscous state (PVP K17 and PVP K29/32), the granule size increased significantly with mixing time and the growth rate increased with tip-speed until 5.8 m/s; when binders were at viscoelastic state, tip-speed had no impact on granulation. Furthermore, the granule porosity was higher for granulation with binders at viscoelastic state (HPC and PVP K90), whereas it was lower for granulation with binders at viscous state. In addition, the impeller tip-speed had minimal impact on the porosity of the final granules. Finally, Ennis' model was used for interpreting results, providing mechanistic insights on granulation. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Microbial granulation for lactic acid production

    DEFF Research Database (Denmark)

    Kim, Dong-Hoon; Lee, Mo-Kwon; Hwang, Yuhoon

    2016-01-01

    was fed with 2% glucose and operated at a hydraulic retention time (HRT) of 12 h and pH 5.0 ± 0.1 under a thermophilic condition (50°C). The mixed liquor in the CSTR was then transferred to an up-flow anaerobic sludge blanket reactor (UASB). The fermentation performance and granulation process were...... monitored with a gradual decrease of HRT from 8.0 to 0.17 h, corresponding to an increase in the substrate loading from 60 to 2,880 g glucose L−1d−1. As the operation continued, the accumulation of biomass in the UASB was clearly observed, which changed from flocculent to granular form with decrease in HRT...

  8. Elemental characterization of microorganism granules by EFTEM in the tube wall of a deep-sea vent invertebrate.

    Science.gov (United States)

    Lechaire, Jean-Pierre; Shillito, Bruce; Frébourg, Ghislaine; Gaill, Françoise

    2002-09-01

    Microorganisms colonizing the exoskeletons of the tube worm Riftia pachyptila are described at the ultrastructural level. The prokaryotic cells from the worm tube wall differ from those colonizing the exoskeleton outer surface in the presence of an electron dense granule. The morphology and distribution of these bacteria-like cells are described. Prokaryotic organisms are assembled in nodules which increased in size in the oldest part of the exoskeleton. The aspect, location and elemental composition of the intracellular granules are determined. Most of them (100 nm in diameter) are located close to the cell membrane and exhibit a homogeneous and amorphous content. EDX and EFTEM microanalyses show that these structures contain phosphorus, oxygen and iron. All together these data suggest that these granules are iron polyphosphates. These structures may act as energy sources for making ATP during anoxic conditions as existing in hydrothermal environments.

  9. The Solar-flux Third Granulation Signature

    Science.gov (United States)

    Gray, David F.; Oostra, Benjamin

    2018-01-01

    The velocity shifts of spectral lines as a function of line strength, so-called the third signature of granulation, are investigated using three published solar-flux atlases. We use flux atlases because we wish to treat the Sun as a star, against which stellar observations can be compared and judged. The atlases are critiqued and compared to the lower-resolution observations taken with the Elginfield stellar spectrograph. Third-signature plots are constructed for the 6020–6340 Å region. No dependence on excitation potential or wavelength is found over this wavelength span. The shape of the plots from the three solar atlases is essentially the same, with rms line-core velocity differences of 30–35 m s‑1. High-resolution atlas data are degraded to the level of the Elginfield spectrograph and compared to direct observations taken with that spectrograph. The line-core velocities show good agreement, with rms differences of 38 m s‑1. A new standard curve is derived and compared with the previously published one. Only small differences in shape are found, but a significant (+97 m s‑1) change in the zero point is indicated. The bisector of the Fe I 6253 line is mapped onto the third-signature plots and flux deficits are derived, which measure the granule/lane flux imbalance. The lower spectral resolution lowers the flux deficit area slightly and moves the peak of the deficit 0.3–0.5 km s‑1 toward higher velocities. These differences, while significant, are not large compared to measurement errors for stellar data.

  10. 3D Porous Architecture of Stacks of β-TCP Granules Compared with That of Trabecular Bone: A microCT, Vector Analysis, and Compression Study.

    Science.gov (United States)

    Chappard, Daniel; Terranova, Lisa; Mallet, Romain; Mercier, Philippe

    2015-01-01

    The 3D arrangement of porous granular biomaterials usable to fill bone defects has received little study. Granular biomaterials occupy 3D space when packed together in a manner that creates a porosity suitable for the invasion of vascular and bone cells. Granules of beta-tricalcium phosphate (β-TCP) were prepared with either 12.5 or 25 g of β-TCP powder in the same volume of slurry. When the granules were placed in a test tube, this produced 3D stacks with a high (HP) or low porosity (LP), respectively. Stacks of granules mimic the filling of a bone defect by a surgeon. The aim of this study was to compare the porosity of stacks of β-TCP granules with that of cores of trabecular bone. Biomechanical compression tests were done on the granules stacks. Bone cylinders were prepared from calf tibia plateau, constituted high-density (HD) blocks. Low-density (LD) blocks were harvested from aged cadaver tibias. Microcomputed tomography was used on the β-TCP granule stacks and the trabecular bone cores to determine porosity and specific surface. A vector-projection algorithm was used to image porosity employing a frontal plane image, which was constructed line by line from all images of a microCT stack. Stacks of HP granules had porosity (75.3 ± 0.4%) and fractal lacunarity (0.043 ± 0.007) intermediate between that of HD (respectively 69.1 ± 6.4%, p TCP granules than bone trabecule. Stacks of HP granules represent a scaffold that resembles trabecular bone in its porous microarchitecture.

  11. Evolution of granule structure and drug content during fluidized bed granulation by X-ray microtomography and confocal Raman spectroscopy.

    Science.gov (United States)

    Poutiainen, Sami; Pajander, Jari; Savolainen, Armi; Ketolainen, Jarkko; Järvinen, Kristiina

    2011-12-01

    The distribution of the drug in the granular end product is a critical quality attribute in fluidized bed spray granulation of pharmaceuticals. The evolution of drug content inhomogeneity in a case study was examined as a function of granulation time. Intragranular structure was also investigated using confocal Raman spectroscopy and computerized X-ray microtomography. A principal component analysis was conducted on the results to investigate granule structure-drug content relationships. Inhomogeneity increased at the beginning of the process but later it was found to decrease. Changes in the homogeneity were accompanied by significant changes in the intragranular structure. It was concluded that segregation of the primary components explained the observed inhomogeneity at low saturation levels when the granules grow by layering, but at elevated moisture levels, granule growth is mediated by the coalescence of agglomerates, which promotes homogeneous distribution of the drug particles. Copyright © 2011 Wiley-Liss, Inc.

  12. Granular boycott effect: How to mix granulates

    Science.gov (United States)

    Duran, J.; Mazozi, T.

    1999-11-01

    Granular material can display the basic features of the Boycott effect in sedimentation. A simple experiment shows that granular material falls faster in an inclined tube than in a vertical tube, in analogy with the Boycott effect. As long as the inclination of the tube is above the avalanche threshold, descent of granular material in the tube causes internal convection which in turn results in an efficient mixture of the granular components. By contrast, as in analogous experiments in two dimensions, a vertical fall of granular material occurs via successive block fragmentation, resulting in poor mixing.

  13. ENVIRONMENTAL ASPECTS OF THE INTENSIFICATION CONVECTIVE DRYING

    Directory of Open Access Journals (Sweden)

    A. M. Gavrilenkov

    2012-01-01

    Full Text Available Identified and analyzed the relationship of the intensity convective drying and air pollution emissions of heat. The ways to reduce the thermal pollution of the atmosphere at convective drying.

  14. Cerebellar granule cells are predominantly generated by terminal symmetric divisions of granule cell precursors.

    Science.gov (United States)

    Nakashima, Kie; Umeshima, Hiroki; Kengaku, Mineko

    2015-06-01

    Neurons in the central nervous system (CNS) are generated by symmetric and asymmetric cell division of neural stem cells and their derivative progenitor cells. Cerebellar granule cells are the most abundant neurons in the CNS, and are generated by intensive cell division of granule cell precursors (GCPs) during postnatal development. Dysregulation of GCP cell cycle is causal for some subtypes of medulloblastoma. However, the details and mechanisms underlying neurogenesis from GCPs are not well understood. Using long-term live-cell imaging of proliferating GCPs transfected with a fluorescent newborn-granule cell marker, we found that GCPs underwent predominantly symmetric divisions, generating two GCPs or two neurons, while asymmetric divisions generating a GCP and a neuron were only occasionally observed, in both dissociated culture and within tissues of isolated cerebellar lobules. We found no significant difference in cell cycle length between proliferative and neurogenic divisions, or any consistent changes in cell cycle length during repeated proliferative division. Unlike neural stem cells in the cerebral cortex and spinal cord, which generate many neurons by repeated asymmetric division, cerebellar GCPs produce neurons predominantly by terminal symmetric division. These results indicate diverse mechanisms of neurogenesis in the mammalian brain. © 2015 Wiley Periodicals, Inc.

  15. A numerical approach to drying process of hygroscopic polymeric granulates with different drying configurations and parameter comparison

    Science.gov (United States)

    Mahbub, A. M. Ishtiaque; Mawa, Zannatul

    2017-06-01

    Some polymers tend to possess affinity with water and eventually, absorb significant moisture content from the surrounding air, causing difficulties during their industrial processing. Drying of these hygroscopic polymers, therefore, plays a vital role in their usability in industrial applications. In this work, the drying kinetics of the polymeric granulates is numerically formulated and the influence of different parameters pertaining to the drying procedure has been investigated. Backward Euler or implicit algorithm has been considered for solving the second order partial differential heat and mass transfer equations for simulating the drying kinetics of Polyamide 6 (PA-6). At first, the conduction of heat from the granulate surface towards the core was formulated using one dimensional transient heat conduction law and corresponding diffusion coefficients were determined using Arrhenius diffusion model. Afterwards, the migration of moisture from the granulate core towards the surface has been calculated using Fick's second law of diffusion. The data obtained from the single polymer granulate was then used to calculate the amount of moisture removed and the drying rate. The numerical results showed similitude with the experimental data obtained from the literature, although deviated quantitatively. To investigate the influence of different parameters on the drying process, different cases with varying drying air temperature, granulate radius and initial moisture content were compared. The numerical analysis qualitatively predicted all the dependencies to be expected. With higher drying air temperature, drying rate was observed to be faster and with higher granulate radius, drying rate was slower. With better approximations of the applied parameters and algorithms, the accuracy of the developed numerical model could be improved and used as a prediction tool for the drying process of polymer samples with reasonable tolerance.

  16. Stationary thermal convection in a viscoelastic ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Laroze, D., E-mail: david.laroze@gmail.co [Max Planck Institute for Polymer Research, D 55021 Mainz (Germany); Instituto de Alta Investigacion, Universidad de Tarapaca, Casilla 7D, Arica (Chile); Martinez-Mardones, J. [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Perez, L.M. [Departamento de Ingenieria Metalurgica, Universidad de Santiago de Chile, Av. Bernardo OHiggins 3363, Santiago (Chile); Rojas, R.G. [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile)

    2010-11-15

    We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid. We focus in the stationary convection for idealized boundary conditions. We obtain explicit expressions of convective thresholds in terms of the control parameters of the system. Close to bifurcation, the coefficients of the corresponding amplitude equation are determined analytically. Finally, the secondary instabilities are performed.

  17. Sunspots and the physics of magnetic flux tubes. IV. Aerodynamic lift on a thin cylinder in convective flows

    International Nuclear Information System (INIS)

    Tsinganos, K.C.

    1979-01-01

    The aerodynamic lift exerted on a long circular cylinder immersed in a convective flow pattern in an ideal fluid is calculated to establish the equilibrium position of the cylinder. The calculations establish the surprising result that the cylinder is pushed out of the upwellings and the downdrafts of the convective cell, into a location midway between them.The implications for the intense magnetic flux tubes in the convection beneath the surface of the Sun are considered

  18. Sunspots and the physics of magnetic flux tubes. IV - Aerodynamic lift on a thin cylinder in convective flows

    Science.gov (United States)

    Tsinganos, K. C.

    1979-01-01

    The aerodynamic lift exerted on a long circular cylinder immersed in a convective flow pattern in an ideal fluid is calculated to establish the equilibrium position of the cylinder. The calculations establish the surprising result that the cylinder is pushed out the upwellings and the downdrafts of the convective cell, into a location midway between them. The implications for the intense magnetic flux tubes in the convection beneath the surface of the sun are considered.

  19. Enhanced aerobic nitrifying granulation by static magnetic field.

    Science.gov (United States)

    Wang, Xin-Hua; Diao, Mu-He; Yang, Ying; Shi, Yi-Jing; Gao, Ming-Ming; Wang, Shu-Guang

    2012-04-01

    One of the main challenging issues for aerobic nitrifying granules in treating high strength ammonia wastewater is the long granulation time required for activated sludge to transform into aerobic granules. The present study provides a novel strategy for enhancing aerobic nitrifying granulation by applying an intensity of 48.0mT static magnetic field. The element analysis showed that the applied magnetic field could promote the accumulation of iron compounds in the sludge. And then the aggregation of iron decreased the full granulation time from 41 to 25days by enhancing the setting properties of granules and stimulating the secretion of extracellular polymeric substances (EPS). Long-term, cycle experiments and fluorescence in-situ hybridization (FISH) analysis proved that an intensity of 48.0mT magnetic field could enhance the activities and growth of nitrite-oxidizing bacteria (NOB). These findings suggest that magnetic field is helpful and reliable for accelerating the aerobic nitrifying granulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. UNCERTAINTY HANDLING IN DISASTER MANAGEMENT USING HIERARCHICAL ROUGH SET GRANULATION

    Directory of Open Access Journals (Sweden)

    H. Sheikhian

    2015-08-01

    Full Text Available Uncertainty is one of the main concerns in geospatial data analysis. It affects different parts of decision making based on such data. In this paper, a new methodology to handle uncertainty for multi-criteria decision making problems is proposed. It integrates hierarchical rough granulation and rule extraction to build an accurate classifier. Rough granulation provides information granules with a detailed quality assessment. The granules are the basis for the rule extraction in granular computing, which applies quality measures on the rules to obtain the best set of classification rules. The proposed methodology is applied to assess seismic physical vulnerability in Tehran. Six effective criteria reflecting building age, height and material, topographic slope and earthquake intensity of the North Tehran fault have been tested. The criteria were discretized and the data set was granulated using a hierarchical rough method, where the best describing granules are determined according to the quality measures. The granules are fed into the granular computing algorithm resulting in classification rules that provide the highest prediction quality. This detailed uncertainty management resulted in 84% accuracy in prediction in a training data set. It was applied next to the whole study area to obtain the seismic vulnerability map of Tehran. A sensitivity analysis proved that earthquake intensity is the most effective criterion in the seismic vulnerability assessment of Tehran.

  1. Thermocapillary Convection in Floating Zone with Axial Magnetic Fields

    Science.gov (United States)

    Liang, Ruquan; Yang, Shuo; Li, Jizhao

    2014-02-01

    Numerical simulations on the effects of axial magnetic fields on the thermocapillary convection in a liquid bridge of silicone-oil-based ferrofluid under zero gravity have been conducted. The Navier-Stokes equations coupled with the energy conservation equation are solved on a staggered grid, and the mass conserving level set approach is used to capture the free surface deformation of the liquid bridge. The obvious effects of the magnetic fields on the flow pattern as well as the velocity and temperature distributions in the liquid bridge can be detected. The axial magnetic fields suppress the thermocapillary convection and a stagnant flow zone is formed between the circulating flow and the symmetric axis as the magnetic fields increase. The axial magnetic fields affect not only the velocity level inside the liquid bridge but also the velocity level on the free surface. The temperature contours near the free surface illustrates conduction-type temperature profiles at moderate strength fields.

  2. Convective-stratiform rainfall separation of Typhoon Fitow (2013: A 3D WRF modeling study

    Directory of Open Access Journals (Sweden)

    Huiyan Xu

    2018-01-01

    Full Text Available Surface precipitation budget equation in a three-dimensional (3D WRF model framework is derived. By applying the convective-stratiform partition method to the surface precipitation budget equation in the 3D model, this study separated convective and stratiform rainfall of typhoon Fitow (2013. The separations are further verified by examining statistics of vertical velocity, surface precipitation budget, and cloud microphysical budget. Results show that water vapor convergence moistens local atmosphere and offsets hydrometeor divergence, and producing convective rainfall, while hydrometeor convergence primarily supports stratiform rainfall, since water vapor divergence and local atmospheric drying generally cancelled out. Mean ascending motions are prevailing in the entire troposphere in the convective region, whereas mean descending motions occur below 5 km and mean ascending motions occur above in the stratiform region. The frequency distribution of vertical velocity shows vertical velocity has wide distribution with the maximum values up to 13 m s-1 in the convective regions, whereas it has narrow distribution with absolute values confined within 7 m s-1 in the stratiform region. Liquid cloud microphysics is dominant in convective regions and ice cloud microphysics is dominant in stratiform regions. These indicate that the statistics results are generally consistent with the corresponding physical characteristics of the convective-stratiform rainfall structures generalized by previous studies.

  3. On the Reconstruction of the Convection Pattern Below an Active Region of Solar Corona

    International Nuclear Information System (INIS)

    Pirot, Dorian; Gaudet, Jonathan; Vincent, Alain

    2012-01-01

    In order to better understand magneto-convective patterns and flux emergence, we use the Nudging Back and Forth, a data assimilation method with an anelastic convection model to reconstruct the convection zone below a solar active region from observed solar surface magnetograms. To mimic photosphere, vector magnetograms are computed using force free hypothesis. We find that the observed arcade system of AR9077-20000714 ( t he slinky ) of magnetic lines is actually formed by Ω and U loops generated in the convection zone. We generate temperature maps at top of the convective zone and find that high magnetic fields on either sides of the neutral line produce a local cooling by impeding the overturning motions.

  4. On the Reconstruction of the Convection Pattern Below an Active Region of Solar Corona

    Science.gov (United States)

    Pirot, Dorian; Gaudet, Jonathan; Vincent, Alain

    2012-02-01

    In order to better understand magneto-convective patterns and flux emergence, we use the Nudging Back and Forth, a data assimilation method with an anelastic convection model to reconstruct the convection zone below a solar active region from observed solar surface magnetograms. To mimic photosphere, vector magnetograms are computed using force free hypothesis. We find that the observed arcade system of AR9077-20000714 ("the slinky") of magnetic lines is actually formed by Ω and U loops generated in the convection zone. We generate temperature maps at top of the convective zone and find that high magnetic fields on either sides of the neutral line produce a local cooling by impeding the overturning motions.

  5. ATP storage and uptake by isolated pancreatic zymogen granules

    DEFF Research Database (Denmark)

    Haanes, Kristian Agmund; Novak, Ivana

    2010-01-01

    ATP is released from pancreatic acini in response to cholinergic and hormonal stimulation. The same stimuli cause exocytosis of ZG (zymogen granules) and release of digestive enzymes. The aim of the present study was to determine whether ZG stored ATP and to characterize the uptake mechanism...... for ATP transport into the ZG. ZG were isolated and the ATP content was measured using luciferin/luciferase assays and was related to protein in the sample. The estimate of ATP concentration in freshly isolated granules was 40-120 µM. The ATP uptake had an apparent Km value of 4.9±2.1 mM when granules...

  6. ARM Support for the Plains Elevated Convection at Night (AS-PECAN) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Silver Spring, MD (United States); Geerts, B. [Univ. of Wyoming, Laramie, WY (United States)

    2016-04-01

    The Plains Elevated Convection at Night (PECAN) field campaign was a large multi-agency/multi-institutional experiment that targeted nighttime convection events in the central plains of the United States in order to better understand a range of processes that lead to the initiation and upscale growth of deep convection. Both weather and climate models struggle to properly represent the timing and intensity of precipitation in the central United States in their simulations. These models must be able to represent the interactions between the nocturnal stable boundary layer (SBL), the nocturnal low-level jet (LLJ), and a reservoir of convectively available potential energy (CAPE) that frequently exists above the SBL. Furthermore, a large fraction of the nocturnal precipitation is due to the organization of mesoscale convective systems (MCSs). In particular, there were four research foci for the PECAN campaign: •The initiation of elevated nocturnal convection focus seeks to elucidate the mesoscaleenvironmental characteristics and processes that lead to convection initiation (CI) and provide baseline data on the early evolution of mesoscale convective clusters. •The dynamics and internal structure and microphysics of nocturnal MCSs focus will investigatethe transition from surface-based to elevated storm structure, the interaction of cold pools generated by MCSs with the nocturnal stable boundary layer, and how the organization and evolution of elevated convection is influenced by the SBL and the vertical profile of wind and stability above the LLJ. •The bores and wave-like disturbances focus seeks to advance knowledge of the initiation of boredisturbances by convection, how the vertical profile of stability and winds modulate bore structure, the role of these disturbances in the initiation, maintenance, and organization of deep convection, and their impact on the LLJ and SBL. •The LLJ focus seeks to understand the processes that influence the spatial and

  7. Self-aggregation of convection in long channel geometry

    Science.gov (United States)

    Wing, Allison; Cronin, Timothy

    2015-04-01

    Self-aggregation is the spontaneous transition in numerical simulations from randomly distributed convection to organized convection despite homogeneous boundary conditions. We explore the influence of domain geometry on the mechanisms and temperature-dependence of self-aggregation of tropical convection. Specifically, the System for Atmospheric Modeling is used to perform 3-d simulations of radiative-convective equilibrium in a non-rotating framework, with interactive radiation and surface fluxes and fixed sea surface temperature. The results of simulations employing a highly elongated 3-d channel domain, in which self-aggregation takes the form of multiple moist and dry bands, are compared to that of a square domain, in which self-aggregation takes the form of a single moist cluster. For both domain types, and across a range of temperatures, we characterize the fundamental physical mechanisms that lead to self-aggregation as well as its growth rate and spatial scale. The variance budget equation for the vertically integrated frozen moist static energy is used to quantify the mechanisms governing self-aggregation and characterize its time scale. We find that diabatic processes dominate the evolution of self-aggregation in the elongated channel simulations. In contrast, in the square domain simulations, similar diabatic processes dominate the initial stages of aggregation but up-gradient advection by the circulation plays a role in the later stages. Self-aggregation occurs across a much wider range of temperatures with elongated channel geometry than with square geometry. As the sea surface temperature is increased in the channel simulations, the aggregated state is characterized by smaller spatial scales and more regularity. An advantage of the channel geometry is that a separation distance between convectively active regions can be defined, which is a prerequisite for developing a spatial scaling theory.

  8. Effects of Deep Convective Mixing on the Ice Giants

    Science.gov (United States)

    Soderlund, Krista M.; Aurnou, J. M.

    2007-10-01

    Cloud layer observations show that the surface winds on the Ice Giants, Uranus and Neptune, are dominated by zonal motions. The winds are retrograde near the equator and are prograde at high latitudes. Measurements of outward heat flux show that Neptune emits more than twice the heat it receives via solar insolation. This indicates a significant internal heat source. In contrast, the ratio of outward thermal emission to insolation is no greater than 1.1 for Uranus. Although this ratio is likely to be only slightly greater than unity, if the internal heat flow exceeds the interior adiabat, it may still be dynamically important. Here we present numerical simulations of Boussinesq convection in a rotating spherical shell that show that strong convection in the molecular envelopes of these planets can generate large-scale zonal winds similar to the planetary observations. The deep zonal flows in the simulated molecular envelopes of our model result from convectively-driven angular momentum mixing. Using our present modeling results, we will derive an asymptotic heat transfer scaling law for this regime in order to determine if the observed interior heat fluxes on the Ice Giants can drive vigorous deep convection. We will also examine what controls the regime transition to an Ice Giant style of zonal flow. In particular, we test the effects of rotation. Our simulations indicate that the zonal flows do not depend on the planetary rotation rate once a critical value of the Ekman number, the ratio of viscous to Coriolis forces, is reached. Finally, we will predict convective heat flow patterns of Uranus and Neptune, assuming that deep convection is a dominant heat transfer process on these planets. The authors thank NASA's PATM Program for research funding (Grant NNG06GD12G). Computational resources were provided by the San Diego Supercomputing Center.

  9. SIMILARITY SOLUTION FOR NATURAL CONVECTION FROM A MOVING VERTICAL PLATE WITH INTERNAL HEAT GENERATION AND A CONVECTIVE BOUNDARY CONDITION

    Directory of Open Access Journals (Sweden)

    Oluwole Daniel Makinde

    2011-01-01

    Full Text Available Steady laminar natural convection flow over a semi-infinite moving vertical plate in the presence of internal heat generation and a convective surface boundary condition is examined in this paper. It is assumed that the left surface of the plate is in contact with a hot fluid while the cold fluid on the right surface of the plate contains a heat source that decays exponentially with the classical similarity variable. The governing non-linear partial differential equations have been transformed by a similarity transformation into a system of ordinary differential equations, which are solved numerically by applying shooting iteration technique together with fourth order Runge-Kutta integration scheme. The effects of physical parameters on the dimensionless velocity and temperature profiles are depicted graphically and analyzed in detail. Finally, numerical values of physical quantities, such as the local skin-friction coefficient and the local Nusselt number are presented in tabular form.

  10. Does Thermal Granulation Drive Tephra Jets?

    Science.gov (United States)

    White, J. D.; Zimanowski, B.; Buettner, R.; Sonder, I.; Dellino, P.

    2011-12-01

    Surtseyan tephra jets, also called cypressoid or cock's tail plumes, comprise a characteristic mixture of ash with bombs travelling roughly ballistic paths that tip the individual fingers of the projecting jet. Jets of similar form but smaller scale are generated by littoral magma-water interactions, confirming the general inference that surtseyan tephra jets are a characteristic product of explosive magma-water interaction, and suggesting that magmatic volatiles play a subsidiary role, if any, in their formation. Surtseyan jets have been inferred to result from both intense fuel-coolant interactions, and from simple boiling of water entrained into rising magma, and little new information has become available to test these two positions since they were clearly developed in the 1980s. Recent experiments in which magma is poured into standing water have produced vigorous jetting of hot water as melt solidifies and undergoes extensive thermal granulation. We present high-resolution hi-speed video of these jets, which we see as having the following origin. As thermal granulation takes place, a fracture network advances into the melt/glass body, and water invading the cracks at the rate of propagation is heated nearly instantaneously. Vapor produced at the contact expands and drives outward through cooled cracks, condensing as it moves to the exterior of the magma body where it is emitted as a jet of hot water. In ocean ridge hydrothermal systems a diffuse crack network inducts cold water, which is heated and expelled in focused jets. Focusing of hot outflow in experiments is inferred to result, as suggested for ridge hydrothermal systems, from thermoelastic closure of cracks near the one(s) feeding the jet. From the cooled products of our experimental runs, we know that thermal contraction produces a network of curved cracks with modal spacing of 1-2 mm, which separate domains of unbroken glass. It is during growth of this crack network that cold water enters, is

  11. Evaluation of deep convective transport in storms from different convective regimes during the DC3 field campaign using WRF-Chem with lightning data assimilation

    Science.gov (United States)

    Li, Yunyao; Pickering, Kenneth E.; Allen, Dale J.; Barth, Mary C.; Bela, Megan M.; Cummings, Kristin A.; Carey, Lawrence D.; Mecikalski, Retha M.; Fierro, Alexandre O.; Campos, Teresa L.; Weinheimer, Andrew J.; Diskin, Glenn S.; Biggerstaff, Michael I.

    2017-07-01

    Deep convective transport of surface moisture and pollution from the planetary boundary layer to the upper troposphere and lower stratosphere affects the radiation budget and climate. This study analyzes the deep convective transport in three different convective regimes from the 2012 Deep Convective Clouds and Chemistry field campaign: 21 May Alabama air mass thunderstorms, 29 May Oklahoma supercell severe storm, and 11 June mesoscale convective system (MCS). Lightning data assimilation within the Weather Research and Forecasting (WRF) model coupled with chemistry (WRF-Chem) is utilized to improve the simulations of storm location, vertical structure, and chemical fields. Analysis of vertical flux divergence shows that deep convective transport in the 29 May supercell case is the strongest per unit area, while transport of boundary layer insoluble trace gases is relatively weak in the MCS and air mass cases. The weak deep convective transport in the strong MCS is unexpected and is caused by the injection into low levels of midlevel clean air by a strong rear inflow jet. In each system, the magnitude of tracer vertical transport is more closely related to the vertical distribution of mass flux density than the vertical distribution of trace gas mixing ratio. Finally, the net vertical transport is strongest in high composite reflectivity regions and dominated by upward transport.

  12. Extreme value statistics for two-dimensional convective penetration in a pre-main sequence star

    Science.gov (United States)

    Pratt, J.; Baraffe, I.; Goffrey, T.; Constantino, T.; Viallet, M.; Popov, M. V.; Walder, R.; Folini, D.

    2017-08-01

    Context. In the interior of stars, a convectively unstable zone typically borders a zone that is stable to convection. Convective motions can penetrate the boundary between these zones, creating a layer characterized by intermittent convective mixing, and gradual erosion of the density and temperature stratification. Aims: We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. Methods: We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Results: Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we

  13. Seismic Constraints on Interior Solar Convection

    Science.gov (United States)

    Hanasoge, Shravan M.; Duvall, Thomas L.; DeRosa, Marc L.

    2010-01-01

    We constrain the velocity spectral distribution of global-scale solar convective cells at depth using techniques of local helioseismology. We calibrate the sensitivity of helioseismic waves to large-scale convective cells in the interior by analyzing simulations of waves propagating through a velocity snapshot of global solar convection via methods of time-distance helioseismology. Applying identical analysis techniques to observations of the Sun, we are able to bound from above the magnitudes of solar convective cells as a function of spatial convective scale. We find that convection at a depth of r/R(solar) = 0.95 with spatial extent l < 30, where l is the spherical harmonic degree, comprise weak flow systems, on the order of 15 m/s or less. Convective features deeper than r/R(solar) = 0.95 are more difficult to image due to the rapidly decreasing sensitivity of helioseismic waves.

  14. Role of radiative-convective feedbacks in tropical cyclogenesis in rotating radiative-convective equilibrium simulations

    Science.gov (United States)

    Wing, A. A.; Camargo, S. J.; Sobel, A. H.

    2015-12-01

    "Self-aggregation" is a mode of convective organization found in idealized numerical simulations, in which there is a spontaneous transition from randomly distributed to organized convection despite homogeneous boundary conditions. Self-aggregation has primarily been studied in a non-rotating framework, but it has been hypothesized to be important to tropical cyclogenesis. In numerical simulations of tropical cyclones, a broad vortex or saturated column is often used to initialize the circulation. Here, we instead allow a circulation to develop spontaneously from a homogeneous environment in 3-d cloud-resolving simulations of radiative-convective equilibrium in a rotating framework, with interactive radiation and surface fluxes and fixed sea surface temperature. The goals of this study are two-fold: to study tropical cyclogenesis in an unperturbed environment free from the influence of a prescribed initial vortex or external disturbances, and to compare cyclogenesis to non-rotating self-aggregation. We quantify the feedbacks leading to tropical cyclogenesis using a variance budget equation for the vertically integrated frozen moist static energy. In the initial development of a broad circulation, the feedback processes are similar to the initial phase of non-rotating aggregation. Sensitivity tests in which the degree of interactive radiation is modified are also performed to determine the extent to which the radiative feedbacks that are essential to non-rotating self-aggregation are important for tropical cyclogenesis. Finally, we examine the evolution of the rotational and divergent flow, to determine the point at which rotation becomes important and the cyclogenesis process begins to differ from non-rotating aggregation.

  15. A review of monitoring methods for pharmaceutical wet granulation.

    Science.gov (United States)

    Hansuld, E M; Briens, L

    2014-09-10

    High-shear wet granulation is commonly used in the pharmaceutical industry to improve powder properties for downstream processes such as tabletting. Granule growth, however, is difficult to predict because the process is sensitive to raw material properties and operating conditions. Development of process analytical technologies is encouraged by regulatory bodies to improve process understanding and monitor quality online. The primary technologies investigated for high-shear wet granulation monitoring include power consumption, near-infrared spectroscopy, Raman spectroscopy, capacitance measurements, microwave measurements, imaging, focused beam reflectance measurements, spatial filter velocimetry, stress and vibration measurements, as well as acoustic emissions. This review summarizes relevant research related to each of these technologies and discusses the challenges associated with each approach as a possible process analytical technology tool for high-shear wet granulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Heterogeneity of secretory granules of silent pituitary adenomas

    DEFF Research Database (Denmark)

    Holck, S; Wewer, U M; Albrechtsen, R

    1988-01-01

    Silent pituitary adenomas were compared with hormonally active tumors taking into account the size, number, and ultrastructural characteristics of secretory granules (SG). The study group (a total of 79 primary pituitary adenomas) comprised 27 silent, 21 growth hormone (GH)-producing-, 16 prolactin...... (PRL)-producing-, 5 GH-PRL-producing- and 10 adrenocorticotropic hormone (ACTH)-producing adenomas. The SG of silent adenomas were significantly smaller than SG in endocrine active adenomas. All hormonally inactive tumors also contained small (mean, 94 nm) specific cytoplasmic granules, designated...... "silent adenoma granules" (SIG). The fine structural features of the SIG included: a flocculent, granular material occupying an eccentric position in a larger vesicle limited by a double membrane. In the silent adenomas this particular granule was present in up to 90% of the adenoma cells and constituted...

  17. Treatment of hyper-granulated limb wounds in horses

    Directory of Open Access Journals (Sweden)

    O. A. Bader

    2011-01-01

    Full Text Available This study was performed to investigate the different methods of treating hyper granulation tissue on experimentally induced wounds in equine limbs. Wounds were induced by removal of a skin patch and subcutaneous tissue for about 5-7 cm width and 6-8 cm in length from the dorsal and lateral aspect of the fore and hind limbs below the carpal and tarsal joints. The wounds were left open without treatment and the animals were trained 2-2.5 hours every day for about 3-5 weeks until hyper granulation tissue was developed. The schedule for the treatment of hyper granulation was divided into five groups each contained eight wounds of hyper granulation tissue; each main group was divided into two subgroups. The subgroups of first, second, third, fourth and fifth groups were treated by the following schedules: bandage alone; copper sulphate ointment 10%; silver nitrate ointment 2%; red mercury ointment 11%; and laser therapy (at a total dose of 9.72 Joule / cm2 respectively. While the second subgroups were treated by surgical resection of the hyper granulation tissue, followed by the same treatments applied on the first subgroup. The bandage for all experimental groups was changed every 48 hours until healing was occurred. The clinical and histological observation of the first group revealed that the healing take long period comparing with other groups. The mean of wound healing were 65 days in non surgical removal of hyper granulation tissue subgroup, while 57 days in surgical removed of hyper granulation tissue subgroup. The results of the second, third, fourth groups revealed that the caustic material especially red mercury has a role in healing processes through depressing the hyper granulation tissue. The mean of wound healing of the second group was 42.25 days in non surgical removal of hyper granulation tissue subgroup while 37.25 days in surgically removed hyper granulation tissue subgroup. In the third group the mean of wound healing was 45

  18. Kit systems for granulated decontamination formulations

    Science.gov (United States)

    Tucker, Mark D.

    2010-07-06

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a sorbent additive, and water. A highly adsorbent sorbent additive (e.g., amorphous silica, sorbitol, mannitol, etc.) is used to "dry out" one or more liquid ingredients into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field. The formulation can be pre-mixed and pre-packaged as a multi-part kit system, where one or more of the parts are packaged in a powdered, granulated form for ease of handling and mixing in the field.

  19. Height variation of the solar granulation

    Science.gov (United States)

    Krieg, J.; Wunnenberg, M.; Kneer, F.; Koschinsky, M.; Ritter, C.

    1999-03-01

    We analyze spectral scans of narrow-band images across the Na D_2 line. They were obtained from disc centre of the Sun with our Fabry-Perot interferometer (FPI) in the Vacuum Tower Telescope at the Observatorio del Teide. The FPI was set to a bandwidth of 200 mAngstroms FWHM and the spectral stepwidth was 100 mAngstroms. Our aim is to study the variation of the granulation pattern with height in the atmosphere. To achieve high spatial resolution the simultaneously taken broad-band images are restored with speckle methods. With the knowledge of these reconstructed images we were also able to restore the narrow-band images. The formation heights are found from temperature response functions RF_T. In the wings of NaD_2, the response functions for different wavelengths exhibit a substantial overlap in atmospheric heights. Therefore we use linear combinations which allow a better height discrimination. Applying the same combinations to the D_2 images we can visualize the height variation of the granular pattern. The granular intensity fluctuations are a matter of the deep photosphere alone. They disappear at heights of about 100 km (above tau_ {5000}=1).

  20. Pasteurella multocida toxin: Targeting mast cell secretory granules during kiss-and-run secretion.

    Science.gov (United States)

    Danielsen, Elisabeth M; Christiansen, Nina; Danielsen, E Michael

    2016-02-01

    Pasteurella multocida toxin (PMT), a virulence factor of the pathogenic Gram-negative bacterium P. multocida, is a 146 kDa protein belonging to the A-B class of toxins. Once inside a target cell, the A domain deamidates the α-subunit of heterotrimeric G-proteins, thereby activating downstream signaling cascades. However, little is known about how PMT selects and enters its cellular targets. We therefore studied PMT binding and uptake in porcine cultured intestinal mucosal explants to identify susceptible cells in the epithelium and underlying lamina propria. In comparison with Vibrio cholera B-subunit, a well-known enterotoxin taken up by receptor-mediated endocytosis, PMT binding to the epithelial brush border was scarce, and no uptake into enterocytes was detected by 2h, implying that none of the glycolipids in the brush border are a functional receptor for PMT. However, in the lamina propria, PMT distinctly accumulated in the secretory granules of mast cells. This also occurred at 4 °C, ruling out endocytosis, but suggestive of uptake via pores that connect the granules to the cell surface. Mast cell granules are known to secrete their contents by a "kiss-and-run" mechanism, and we propose that PMT may exploit this secretory mechanism to gain entry into this particular cell type. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Endoscopic management of a rare granulation polyp in a colonic diverticulum.

    Science.gov (United States)

    Mori, Hirohito; Tsushimi, Takaaki; Kobara, Hideki; Nishiyama, Noriko; Fujihara, Shintaro; Matsunaga, Tae; Ayagi, Maki; Yachida, Tatsuo; Masaki, Tsutomu

    2013-12-28

    There are many case reports on colon diverticula that cause irritable bowel syndrome, constipation, bleeding, diverticulitis, stricture due to multiple recurrences of diverticulitis, and perforation. However, few articles have examined neoplasms that arise from a diverticulum, such as adenoma and adenocarcinoma, and there have been no reports of granulation polyps that arise from a colon diverticulum after recurrent diverticulitis. We observed a rare granulation polyp that arose from a diverticulum as a result of repeated episodes of local diverticulitis. Narrow band imaging magnified colonoscopy was very useful to diagnose the polyp as a granulation polyp because of the absence of a pit pattern on the surface of the polyp. We successfully resected the polyp using endoscopic mucosal resection. We inverted the diverticulum, and the resected stalk of the polyp was used to close the diverticulum with an over-the-scope clip. If a granulomatous polyp could arise from a diverticulum, differential diagnosis between a colon neoplasm and a granulomatous polyp would not only be difficult but also necessary for suitable endoscopic treatment.

  2. Accumulation of pigment granules in lacrymal gland epithelium in practolol-treated beagle dogs.

    Science.gov (United States)

    Tsuchitani, M; Narama, I; Kohda, S

    1989-04-01

    A 6-month oral toxicity test of practolol was carried out in beagle dogs as a reference control for a newly developed beta blocker. No significant drug-induced changes were detected in any animals by various ophthalmological examinations such as ERG, tear flow, lysozymal activity in tears, etc. However, an unusual pathological change was detected in the lacrymal gland of all five dogs treated with practolol and not in control animals. Macroscopically, the lacrymal glands assumed a blackish brown to deep black colour on both the outside and the cut surface. Microscopically, fine, dark-brown pigment granules were present in the apical and supra-nuclear portion of the cytoplasm of predominantly serosal type epithelial cells. These pigments reacted positively to Schmorl's method for lipofuscin, but gave a negative PAS reaction for polysaccharide, Prussian blue for iron and Ziehl-Neelsen method for ceroid pigment. They were detected as membrane-bound electron-dense bodies by electron microscopy. Similar pigments were also deposited in the cytoplasm of the apocrine sweat gland. Although the mechanism of the accumulation of these granules is far from clear, concentration of practolol in the lacrymal gland is considered to be very closely related to the presence of these granules. A possible mechanism for ocular toxicity by practolol, involving this change, is discussed.

  3. Development of granules from Phyllanthus niruri spray-dried extract

    Directory of Open Access Journals (Sweden)

    Tatiane Pereira de Souza

    2009-12-01

    Full Text Available The aim of this study was to develop granules from Phyllanthus niruri spray-dried extract using dry and wet granulation and to assess techniques to enable the production of granules with improved technological characteristics and yields. Granules were characterized by granulometry, reological parameters, compression and hygroscopic behavior. Independent of the granulation technique, technologically developed granules presented particle diameter, bulk and tapped densities and compressibility indexes suitable for a solid dosage form. The compression behavior showed plastic and fragmentary deformation for granules produced by the dry granulation technique and predominantly plastic deformation for wet granulation. Concerning the humidity sorption, the study showed that granules absorb less humidity than the spray-dried extract. However, granules with Eudragit® E 100 were the least hygroscopic.O objetivo deste estudo foi desenvolver grânulos de extrato Phyllantus niruri seco por aspersão e por granulação úmida e avaliar técnicas que possibilitem a produção de grânulos com características tecnológicas e rendimentos aperfeiçoados. Os grânulos foram caracterizados por granulometria, parâmetros reológicos, compressão e comportamento higroscópico. Independentemente da técnica de granulação, os grânulos tecnologicamente desenvolvidos apresentaram diâmetro de partículas, densidades aparente e compactada e índices de compressibilidade adequados para a formulação sólida. O comportamento de compressão mostrou deformação plástica e elástica para os grânulos produzidos por técnicas de granulação seca e, predominantemente, deformação plástica para a granulação úmida. Com relação à absorção da umidade, o estudo mostrou que os grânulos absorvem menos umidade do que o extrato seco por aspersão. Entretanto, os grânulos com Eudragit E 100 foram os menos higroscópicos.

  4. Sludge granulation during anaerobic treatment of pre-hydrolysed ...

    African Journals Online (AJOL)

    An upflow anaerobic sludge bed (UASB) digester was operated at different hydraulic retention times (HRT) ranging from 26.7 h to 2.2 h, while the organic load rate (OLR) ranged from 0.9 to 7.3 kgCOD/m3·d. Sludge granulation was observed after day 150 of operation, at an HRT of 3.4 h, when small granules of less than 2 ...

  5. Superheated superconducting granules: a detector for particle physics and astrophysics

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1987-01-01

    A general introduction to superheated superconducting granules (SSG) detectors is given and some recent results on their basic properties are presented. Granules recently made by industrial producers exhibit good metastability properties and show sensitivity, better than naively expected, to photons and ionizing particles. The behaviour of SSG detectors at very low temperatures is also discussed. We finally sketch a critical review of proposed applications to the cross-disciplinary frontier between particle physics and astrophysics

  6. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.

    Science.gov (United States)

    Tao, Jia; Qin, Lian; Liu, Xiaoying; Li, Bolin; Chen, Junnan; You, Juan; Shen, Yitian; Chen, Xiaoguo

    2017-07-01

    The granulation of activated sludge and effect of granular activated carbon (GAC) was investigated under the alternative anaerobic and aerobic conditions. The results showed that GAC accelerated the granulation, but had no obvious effect on the bacterial community structure of granules. The whole granulation process could be categorized into three phases, i.e. lag, granulation and granule maturation phase. During lag period GAC provided nuclei for sludge to attach, and thus enhanced the morphological regularization of sludge. During granulation period the granule size increased significantly due to the growth of bacteria in granules. GAC reduced the compression caused by the inter-particle collisions and thus accelerate the granulation. GAC has no negative effect on the performance of SBR, and thus efficient simultaneous removal of COD, nitrogen and phosphorus were obtained during most of the operating time. Copyright © 2017. Published by Elsevier Ltd.

  7. Ca(2+)-calmodulin-dependent phosphorylation of islet secretory granule proteins

    International Nuclear Information System (INIS)

    Watkins, D.T.

    1991-01-01

    The effect of Ca2+ and calmodulin on phosphorylation of islet secretory granule proteins was studied. Secretory granules were incubated in a phosphorylation reaction mixture containing [32P]ATP and test reagents. The 32P-labeled proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 32P content was visualized by autoradiography, and the relative intensities of specific bands were quantitated. When the reaction mixture contained EGTA and no added Ca2+, 32P was incorporated into two proteins with molecular weights of 45,000 and 13,000. When 10(-4) M Ca2+ was added without EGTA, two additional proteins (58,000 and 48,000 Mr) were phosphorylated, and the 13,000-Mr protein was absent. The addition of 2.4 microM calmodulin markedly enhanced the phosphorylation of the 58,000- and 48,000-Mr proteins and resulted in the phosphorylation of a major protein whose molecular weight (64,000 Mr) is identical to that of one of the calmodulin binding proteins located on the granule surface. Calmodulin had no effect on phosphorylation in the absence of Ca2+ but was effective in the presence of calcium between 10 nM and 50 microM. Trifluoperazine and calmidazolium, calmodulin antagonists, produced a dose-dependent inhibition of the calmodulin effect. 12-O-tetradecanoylphorbol 13-acetate, a phorbol ester that activates protein kinase C, produced no increase in phosphorylation, and 1-(5-isoquinoline sulfonyl)-2-methyl piperazine dihydrochloride, an inhibitor of protein kinase C, had no effect. These results indicate that Ca(2+)-calmodulin-dependent protein kinases and endogenous substrates are present in islet secretory granules

  8. Removal of ammonium from municipal wastewater with powdered and granulated metakaolin geopolymer.

    Science.gov (United States)

    Luukkonen, Tero; Věžníková, Kateřina; Tolonen, Emma-Tuulia; Runtti, Hanna; Yliniemi, Juho; Hu, Tao; Kemppainen, Kimmo; Lassi, Ulla

    2018-02-01

    Ammonium [Formula: see text] removal from municipal wastewater poses challenges with the commonly used biological processes. Especially at low wastewater temperatures, the process is frequently ineffective and difficult to control. One alternative is to use ion-exchange. In the present study, a novel [Formula: see text] ion-exchanger, metakaolin geopolymer (MK-GP), was prepared, characterised, and tested. Batch experiments with powdered MK-GP indicated that the maximum exchange capacities were 31.79, 28.77, and 17.75 mg/g in synthetic, screened, and pre-sedimented municipal wastewater, respectively, according to the Sips isotherm (R 2  ≥ 0.91). Kinetics followed the pseudo-second-order rate equation in all cases (k p2  = 0.04-0.24 g mg -1  min -1 , R 2  ≥ 0.97) and the equilibrium was reached within 30-90 min. Granulated MK-GP proved to be suitable for a continuous column mode use. Granules were high-strength, porous at the surface and could be regenerated multiple times with NaCl/NaOH. A bench-scale pilot test further confirmed the feasibility of granulated MK-GP in practical conditions at a municipal wastewater treatment plant: consistently <4 mg/L [Formula: see text] could be reached even though wastewater had low temperature (approx. 10°C). The results indicate that powdered or granulated MK-GP might have practical potential for removal and possible recovery of [Formula: see text] from municipal wastewaters. The simple and low-energy preparation method for MK-GP further increases the significance of the results.

  9. Regional Bowen ratio controls on afternoon moist convection: A large eddy simulation study

    Science.gov (United States)

    Kang, Song-Lak

    2016-12-01

    This study examines the effect of the regional Bowen ratio β, the ratio of the domain-averaged surface sensible heat flux (SHF) to latent heat flux (LHF), on afternoon moist convection. With a temporally evolving but spatially uniform surface available energy over a mesoscale domain under a weak capping inversion, we run large eddy simulation of the afternoon convective boundary layer (CBL). We first prescribe a small β of 0.56 (a wet surface) and then the reversed large β of 1.80 (a dry surface) by switching the SHF and LHF fields. The perturbation fields of the fluxes are prescribed with the Fourier spectra of κ- 3 (κ is horizontal wave number; strong mesoscale heterogeneity) and κ0 (homogeneity). The large β cases have strong vertical buoyancy fluxes and produce more vigorous updrafts. In the heterogeneous, large β surface case, with the removal of convective inhibition over a mesoscale subdomain of large SHF, deep convection develops. In the heterogeneous, small β surface case, convective clouds develop but do not progress into precipitating convection. In the homogeneous surface cases, randomly distributed shallow clouds develop with significantly more and thicker clouds in the large β case. (Co)spectral analyses confirm the more vigorous turbulent thermals in the large β cases and reveal that the moisture advection by the surface heterogeneity-induced mesoscale flows makes the correlation between mesoscale temperature and moisture perturbations change from negative to positive, which facilitates the mesoscale pool of high relative humidity air just above the CBL top, a necessary condition for deep convection.

  10. Detection of soil moisture impact in convective initiation in the central region of Mexico

    Science.gov (United States)

    Dolores, Edgar; Caetano, Ernesto

    2017-04-01

    Soil moisture is important for understanding hydrological cycle variability in many regions. Local surface heat and moisture fluxes represent a major source of convective rainfall in Mexico during the summer, driven by positive evaporation-precipitation feedback. The effects of soil moisture are directly reflected in the limitation of evapotranspiration, affecting the development of the planetary boundary layer and, therefore, the initiation and intensity of convective precipitation. This study presents preliminary analysis of the role of soil moisture in convective initiations in central Mexico, for which a methodology for the detection of convective initiations si