WorldWideScience

Sample records for surface condition rating

  1. Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces

    International Nuclear Information System (INIS)

    Zhu, Yingxi; Granick, Steve

    2001-01-01

    Newtonian fluids were placed between molecularly smooth surfaces whose spacing was vibrated at spacings where the fluid responded as a continuum. Hydrodynamic forces agreed with predictions from the no-slip boundary condition only provided that flow rate (peak velocity normalized by spacing) was low, but implied partial slip when it exceeded a critical level, different in different systems, correlated with contact angle (surface wettability). With increasing flow rate and partially wetted surfaces, hydrodynamic forces became up to 2--4 orders of magnitude less than expected by assuming the no-slip boundary condition that is commonly stated in textbooks

  2. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions

    Science.gov (United States)

    Mitani, Takeshi; Komatsu, Naoyoshi; Takahashi, Tetsuo; Kato, Tomohisa; Fujii, Kuniharu; Ujihara, Toru; Matsumoto, Yuji; Kurashige, Kazuhisa; Okumura, Hajime

    2014-09-01

    The growth rate and surface morphology of 4H-SiC crystals prepared by solution growth with Si1-xCrx and Si1-x-yCrxAly (x=0.4, 0.5 and 0.6; y=0.04) solvents were investigated under various temperature conditions. The growth rate was examined as functions of the temperature difference between the growth surface and C source, the amount of supersaturated C and supersaturation at the growth surface. We found that generation of trench-like surface defects in 4H-SiC crystals was suppressed using Si1-x-yCrxAly solvents even under highly supersaturated conditions where the growth rate exceeded 760 μm/h. Conversely, trench-like defects were observed in crystals grown with Si1-xCrx solvents under all experimental conditions. Statistical observation of the macrostep structure showed that the macrostep height in crystals grown with Si1-x-yCrxAly solvents was maintained at lower levels than that obtained using Si1-xCrx solvents. Addition of Al prevents the macrosteps from developing into large steps, which are responsible for the generation of trench-like surface defects.

  3. Revisiting classical silicate dissolution rate laws under hydrothermal conditions

    Science.gov (United States)

    Pollet-Villard, Marion; Daval, Damien; Saldi, Giuseppe; Knauss, Kevin; Wild, Bastien; Fritz, Bertrand

    2015-04-01

    In the context of geothermal energy, the relative intensities of primary mineral leaching and secondary mineral precipitation can affect porosity and permeability of the reservoir, thereby influencing its hydraulic performance and the efficiency of the geothermal power station. That is why the prediction of reaction kinetics of fluid/rock interactions represents a critical issue in this context. Moreover, in several geothermal systems such as the one of Soultz-sous-Forêts (Alsace, France), the circulation of aqueous fluids induces only modest modifications of their chemical composition. Therefore, fluid-rock interactions take place at close-to-equilibrium conditions, where the rate-affinity relations are poorly known and intensively debated [1]. To describe more precisely the dissolution processes, our strategy consists in investigating the dissolution of the main cleavages of K-spar minerals (one of the prevalent primary minerals in the reservoir of Soultz-sous-Forêts geothermal system) over a wide range of Gibbs free energy (ΔG) conditions. The aims are to decipher the impact of crystallographic orientation and microstructural surface modifications on the dissolution kinetics and to propose a relation between K-spar dissolution rate and ΔG. Our experimental work relies on a coupled approach which combines classical experiments of K-spar dissolution monitored by aqueous chemical analyses (ICP-AES) and innovative techniques of nm- to μm-scale characterization of solid surface (SEM, AFM, VSI) [2]. Our results confirm that K-spar dissolution is an anisotropic process: we measure a tenfold factor between the slowest and the fastest-dissolving surfaces. Moreover, the formation of etch pits on surfaces during their alteration has been evidenced on all of the different faces that have been studied. This complex evolution of the surface topography casts doubt of the relevance of a surface model based on shrinking particles and represents a possible cause of an

  4. Cooling the vertical surface by conditionally single pulses

    Science.gov (United States)

    Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor

    2017-10-01

    You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.

  5. Magnesite dissolution and precipitation rates at hydrothermal conditions

    International Nuclear Information System (INIS)

    Saldi, Giuseppe

    2009-01-01

    Magnesite (MgCO 3 ) is the stable anhydrous member of a series of Mg-carbonates with different degrees of hydration. Despite its relative scarcity in the natural environments, it constitutes an important mineral phase for the permanent sequestration of CO 2 as carbonate minerals. Experimental determination of magnesite precipitation and dissolution rates at conditions representative of the storage sites is therefore fundamental for the assessment of magnesite sequestration potential in basaltic and ultramafic rocks and the optimization of the techniques of CO 2 storage. Magnesite precipitation rates have been measured using mixed-flow and batch reactors as a function of temperature (100 ≤ T ≤ 200 deg. C), solution composition and CO 2 partial pressure (up to 30 bar). Rates were found to be independent of aqueous solution ionic strength at 0.1 M 3 2- activity at pH > 8. All rates obtained from mixed flow reactor experiments were found to be consistent with the model of Pokrovsky et al. (1999) where magnesite precipitation rates are proportional to the concentration of the >MgOH 2 + surface species. The study of magnesite crystallization using hydrothermal atomic force microscopy (HAFM) demonstrated the consistency of the rates derived from microscopic measurements with those obtained from bulk experiments and showed that these rates are also consistent with a spiral growth mechanism. According to AFM observations this mechanism controls magnesite growth over a wide range of temperatures and saturation states (15≤ Ω ≤200 for 80 ≤T 2 to accelerate the rate of the overall carbonation process, avoiding the inhibiting effect of carbonate ions on magnesite precipitation and increasing the rates of Mg-silicate dissolution via acidification of reacting solutions. Determination of magnesite dissolution rates by mixed flow reactor at 150 and 200 deg. C and at neutral to alkaline conditions allowed us to improve and extend to high temperatures the surface

  6. Materials surface modification by plasma bombardment under simultaneous erosion and redeposition conditions

    International Nuclear Information System (INIS)

    Hirooka, Y.; Goebel, D.M.; Conn, R.W.

    1986-07-01

    The first in-depth investigation of surface modification of materials by continuous, high-flux argon plasma bombardment under simultaneous erosion and redeposition conditions have been carried out for copper and 304 stainless steel using the PISCES facility. The plasma bombardment conditions are: incident ion flux range from 10 17 to 10 19 ions sec -1 cm -2 , total ion fluence is controlled between 10 19 and 10 22 ions cm -2 , electron temperature range from 5 to 15 eV, and plasma density range from 10 11 to 10 13 cm -3 . The incident ion energy is 100 eV. The sample temperature is between 300 and 700K. Under redeposition dominated conditions, the material erosion rate due to the plasma bombardment is significantly smaller (by a factor up to 10) than that can be expected from the classical ion beam sputtering yield data. It is found that surface morphologies of redeposited materials strongly depend on the plasma bombardment condition. The effect of impurities on surface morphology is elucidated in detail. First-order modelings are implemented to interpret the reduced erosion rate and the surface evolution. Also, fusion related surface properties of redeposited materials such as hydrogen reemission and plasma driven permeation have been characterized

  7. Open charcoal chamber method for mass measurements of radon exhalation rate from soil surface

    International Nuclear Information System (INIS)

    Tsapalov, Andrey; Kovler, Konstantin; Miklyaev, Peter

    2016-01-01

    Radon exhalation rate from the soil surface can serve as an important criterion in the evaluation of radon hazard of the land. Recently published international standard ISO 11665-7 (2012) is based on the accumulation of radon gas in a closed container. At the same time since 1998 in Russia, as a part of engineering and environmental studies for the construction, radon flux measurements are made using an open charcoal chamber for a sampling duration of 3–5 h. This method has a well-defined metrological justification and was tested in both favorable and unfavorable conditions. The article describes the characteristics of the method, as well as the means of sampling and measurement of the activity of radon absorbed. The results of the metrological study suggest that regardless of the sampling conditions (weather, the mechanism and rate of radon transport in the soil, soil properties and conditions), uncertainty of method does not exceed 20%, while the combined standard uncertainty of radon exhalation rate measured from the soil surface does not exceed 30%. The results of the daily measurements of radon exhalation rate from the soil surface at the experimental site during one year are reported. - Highlights: • Radon exhalation rate from the soil surface area of 32 cm"2 can be measured at level of 10 mBq/(m"2s) at the uncertainty ≤30%. • The method has a metrological justification. • No need to consider climate conditions, soil properties and conditions, mechanism and rate of radon transport in the soil.

  8. Correlation-study about the ambient dose rate and the weather conditions

    Science.gov (United States)

    Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide

    2016-04-01

    The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.

  9. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium.

    Science.gov (United States)

    Kendall, Michaela; Hodges, Nikolas J; Whitwell, Harry; Tyrrell, Jess; Cangul, Hakan

    2015-02-05

    When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of 100 nm polystyrene particles (one uncoated and one with an amine functionalized surface) were used to measure the influence of surface type. In identically prepared conditioned medium, agglomeration was visible in all samples after 1 h, but was variable, indicating inter-sample variability in secretion rates and extracellular medium conditions. In samples conditioned for 1 h or more, ENP agglomeration rates varied significantly. Agglomerate size measured by DLS was well correlated with surface sequestered peptide number for uncoated but not for amine coated polystyrene ENPs. Amine-coated ENPs grew much faster and into larger agglomerates associated with fewer sequestered peptides, but including significant sequestered lactose dehydrogenase. We conclude that interference with extracellular peptide balance and oxidoreductase activity via sequestration is worthy of further study, as increased oxidative stress via this new mechanism may be important for cell toxicity. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Dilution rate and microstructure of TIG arc Ni-Al powder surfacing layer

    Institute of Scientific and Technical Information of China (English)

    SHAN Jiguo; DONG Wei; TAN Wenda; ZHANG Di; PEN Jialie

    2007-01-01

    Surfacing beads are prepared by a direct current tungsten inert gas arc nickel-aluminum (Ni-Al) powder surfacing process. With the aim of controlling the dilution rate and obtaining surfacing beads rich in intermetallic compounds, the effects of surfacing parameters on geometric parameters, dilution rate, composition, and microstructure of the bead are investigated. An assistant cooler, which can potentially reduce the temperature of the base metal, is used in the surfacing process and its effect on dilution rate and microstructure is studied. The result indicates that with the surfacing parameter combination of low current and speed, the width and penetration of the bead decrease, reinforcement increases, and dilution rate drops markedly. With the reduc- tion of the parameter combination, the intergranular phase T-(Fe, Ni) is formed in the grain boundaries of Ni-Al interme- tallic matrix instead of the intergranular phase α-Fe, and large amount of intermetallics are obtained. With the use of an assistant cooler on a selected operation condition during the surfacing process, the reinforcement of the bead increases, penetration decreases, and dilution rate declines. The use of an assistant cooler helps obtain a surfacing bead composed of only intermetallics.

  11. Cooling the vertical surface by conditionally single pulses

    Directory of Open Access Journals (Sweden)

    Karpov Pavel

    2017-01-01

    Full Text Available You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of “island” film cooling.

  12. Groundwater infiltration, surface water inflow and sewerage exfiltration considering hydrodynamic conditions in sewer systems.

    Science.gov (United States)

    Karpf, Christian; Hoeft, Stefan; Scheffer, Claudia; Fuchs, Lothar; Krebs, Peter

    2011-01-01

    Sewer systems are closely interlinked with groundwater and surface water. Due to leaks and regular openings in the sewer system (e.g. combined sewer overflow structures with sometimes reverse pressure conditions), groundwater infiltration and surface water inflow as well as exfiltration of sewage take place and cannot be avoided. In the paper a new hydrodynamic sewer network modelling approach will be presented, which includes--besides precipitation--hydrographs of groundwater and surface water as essential boundary conditions. The concept of the modelling approach and the models to describe the infiltration, inflow and exfiltration fluxes are described. The model application to the sewerage system of the City of Dresden during a flood event with complex conditions shows that the processes of infiltration, exfiltration and surface water inflows can be described with a higher reliability and accuracy, showing that surface water inflow causes a pronounced system reaction. Further, according to the simulation results, a high sensitivity of exfiltration rates on the in-sewer water levels and a relatively low influence of the dynamic conditions on the infiltration rates were found.

  13. Characterizing Pavement Surface Distress Conditions with Hyper-Spatial Resolution Natural Color Aerial Photography

    Directory of Open Access Journals (Sweden)

    Su Zhang

    2016-05-01

    Full Text Available Roadway pavement surface distress information is critical for effective pavement asset management, and subsequently, transportation management agencies at all levels (i.e., federal, state, and local dedicate a large amount of time and money to routinely evaluate pavement surface distress conditions as the core of their asset management programs. However, currently adopted ground-based evaluation methods for pavement surface conditions have many disadvantages, like being time-consuming and expensive. Aircraft-based evaluation methods, although getting more attention, have not been used for any operational evaluation programs yet because the acquired images lack the spatial resolution to resolve finer scale pavement surface distresses. Hyper-spatial resolution natural color aerial photography (HSR-AP provides a potential method for collecting pavement surface distress information that can supplement or substitute for currently adopted evaluation methods. Using roadway pavement sections located in the State of New Mexico as an example, this research explored the utility of aerial triangulation (AT technique and HSR-AP acquired from a low-altitude and low-cost small-unmanned aircraft system (S-UAS, in this case a tethered helium weather balloon, to permit characterization of detailed pavement surface distress conditions. The Wilcoxon Signed Rank test, Mann-Whitney U test, and visual comparison were used to compare detailed pavement surface distress rates measured from HSR-AP derived products (orthophotos and digital surface models generated from AT with reference distress rates manually collected on the ground using standard protocols. The results reveal that S-UAS based hyper-spatial resolution imaging and AT techniques can provide detailed and reliable primary observations suitable for characterizing detailed pavement surface distress conditions comparable to the ground-based manual measurement, which lays the foundation for the future application

  14. Measurements of dry-deposition rates on various earth surfaces by 212Pb

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.

    2004-01-01

    Dry deposition rates of 212 Pb on a coniferous forest (Japanese cedar) and a broad-leaf forest (Pasania edulis) have been measured. Those on various kinds of grass fields, various states on artificial surface such as water, paper, and standing paper have been also measured. The dry deposition rates depend on the characteristics of depositing particles and the conditions of deposited surfaces. Dry deposition rates on the forest of Japanese cedar are highest because of the complex and adhesive surface of the leaves. Those on various grass fields are roughly depend on the logarithm of the height of their grasses. The total deposition rates of 7 Be do not depend on the densities or heights of the grasses. 7 Be may be not kept on their leaves or surface soil for a long time. The dry deposition rates of on artificial surface, e.g. paper and water surfaces make clear the mechanism on dry deposition, and suggest that more chances of collision and more adhesive of the surface are important for the dry deposition. About 90% of all deposition on the artificial paper grass was attached on the standing paper. On water surface, 60% of the rate of paper grass was attached, but only about 20% were attached on a dry paper plate. The aerosol particles are deposited by collision with the surface, therefore the deposition velocity depends on the chance of collision and the characteristics of the surface. Therefore the dry deposition rates on forests are larger and those of coniferous forest are largest. (author)

  15. Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones

    Science.gov (United States)

    Irimpan, Kiran Joy; Menezes, Viren

    2018-03-01

    Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.

  16. Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions

    Science.gov (United States)

    Sears, D. W. G.; Moore, S. R.; Meier, A.; Chittenden, J.; Kareev, M.; Farmer, C. B.

    2004-01-01

    A number of studies have been concerned with the evaporation rates under martian conditions in order to place limits on the possible survival time of both liquid water and ice exposed on the surface of Mars. Such studies also aid in assessing the efficacy of an overlying layer of dust or loose regolith material in providing a barrier to free evaporation and thus prolong the lifetime of water in locations where its availability to putative living organisms would be significant. A better quantitative understanding of the effects of phase changes of water in the near surface environment would also aid the evaluation of the possible role of water in the formation of currently observed features, such as gullies in cliff walls and relatively short-term changes in the albedo of small surface areas ('dark stains'). Laboratory measurements aimed at refinement of our knowledge of these values are described here. The establishment of accurate values for evaporation rates and their dependence on the physical conditions of temperature, pressure and energy input, is an important benchmark for the further investigation of the efficacy of barriers to free evaporation in providing a prolonged period of survival of the water, particularly as a liquid.

  17. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    Science.gov (United States)

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  18. Study on Surface Integrity of AISI 1045 Carbon Steel when machined by Carbide Cutting Tool under wet conditions

    Directory of Open Access Journals (Sweden)

    Tamin N. Fauzi

    2017-01-01

    Full Text Available This paper presents the evaluation of surface roughness and roughness profiles when machining carbon steel under wet conditions with low and high cutting speeds. The workpiece materials and cutting tools selected in this research were AISI 1045 carbon steel and canela carbide inserts graded PM25, respectively. The cutting tools undergo machining tests by CNC turning operations and their performances were evaluated by their surface roughness value and observation of the surface roughness profile. The machining tests were held at varied cutting speeds of 35 to 53 m/min, feed rate of 0.15 to 0.50 mm/rev and a constant depth of cut of 1 mm. From the analysis, it was found that surface roughness increased as the feed rate increased. Varian of surface roughness was suspected due to interaction between cutting speeds and feed rates as well as nose radius conditions; whether from tool wear or the formation of a built-up edge. This study helps us understand the effect of cutting speed and feed rate on surface integrity, when machining AISI 1045 carbon steel using carbide cutting tools, under wet cutting conditions.

  19. Evaporation rates and surface profiles on heterogeneous surfaces with mass transfer and surface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Flytzani-Stephanopoulos, M; Schmidt, L D

    1979-01-01

    Simple models incorporating surface reaction and diffusion of volatile products through a boundary layer are developed to calculate effective rates of evaporation and local surface profiles on surfaces having active and inactive regions. The coupling between surface heterogeneities with respect to a particular reaction and external mass transfer may provide a mechanism for the surface rearrangement and metal loss encountered in several catalytic systems of practical interest. Calculated transport rates for the volatilization of platinum in oxidizing environments and the rearrangement of this metal during the ammonia oxidation reaction agree well with published experimental data.

  20. Surface studies of niobium chemically polished under conditions for superconducting radio frequency (SRF) cavity production

    Science.gov (United States)

    Tian, Hui; Reece, Charles E.; Kelley, Michael J.; Wang, Shancai; Plucinski, Lukasz; Smith, Kevin E.; Nowell, Matthew M.

    2006-11-01

    The performance of niobium superconducting radiofrequency (SRF) accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially as influenced by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant datasets. We found that the predominant general surface orientation is (1 0 0), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3-1.4 times that resulting from static solution. The standard deviation of the roughness measurements is ±30% and that of the surface composition is ±5%.

  1. Surface studies of niobium chemically polished under conditions for superconducting radio frequency (SRF) cavity production

    Energy Technology Data Exchange (ETDEWEB)

    Tian Hui [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States); Kelley, Michael J. [Thomas Jefferson National Accelerator Facility and College of William and Mary (United States)]. E-mail: mkelley@jlab.org; Wang Shancai [Department of Physics, Boston University (United States); Plucinski, Lukasz [Department of Physics, Boston University (United States); Smith, Kevin E. [Department of Physics, Boston University (United States); Nowell, Matthew M. [EDAX TSL (United States)

    2006-11-30

    The performance of niobium superconducting radiofrequency (SRF) accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially as influenced by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant datasets. We found that the predominant general surface orientation is (1 0 0), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3-1.4 times that resulting from static solution. The standard deviation of the roughness measurements is {+-}30% and that of the surface composition is {+-}5%.

  2. Surface Studies of Niobium Chemically Polished Under Conditions for Superconducting Radio Frequency (SRF) Cavity Production

    Energy Technology Data Exchange (ETDEWEB)

    Tian,H.; Reece, C.; Kelley, M.; Wang, S.; Plucinski, L.; Smith, K.; Nowell, M.

    2006-01-01

    The performance of niobium superconducting radiofrequency (SRF) accelerator cavities is strongly impacted by the topmost several nanometers of the active (interior) surface, especially as influenced by the final surface conditioning treatments. We examined the effect of the most commonly employed treatment, buffered chemical polishing (BCP), on polycrystalline niobium sheet over a range of realistic solution flow rates using electron back scatter diffraction (EBSD), stylus profilometry, atomic force microscopy, laboratory XPS and synchrotron (variable photon energy) XPS, seeking to collect statistically significant datasets. We found that the predominant general surface orientation is (1 0 0), but others are also present and at the atomic-level details of surface plane orientation are more complex. The post-etch surface exhibits micron-scale roughness, whose extent does not change with treatment conditions. The outermost surface consists of a few-nm thick layer of niobium pentoxide, whose thickness increases with solution flow rate to a maximum of 1.3-1.4 times that resulting from static solution. The standard deviation of the roughness measurements is {+-}30% and that of the surface composition is {+-}5%.

  3. The influence of various cooling rates during laser alloying on nodular iron surface layer

    Science.gov (United States)

    Paczkowska, Marta; Makuch, Natalia; Kulka, Michał

    2018-06-01

    The results of research referring to modification of the nodular iron surface layer by laser alloying with cobalt were presented. The aim of this study was to analyze the possibilities of cobalt implementation into the surface layer of nodular iron in various laser heat treatment conditions (by generating different cooling rates of melted surface layer). The modified surface layer of nodular iron was analyzed with OM, SEM, TEM, XRD, EDS and Vickers microhardness tester. The modified surface layer of nodular iron after laser alloying consisted of: the alloyed zone (melted with cobalt), the transition zone and the hardened zone from solid state. The alloyed zone was characterized by higher microstructure homogeneity - in contrast to the transition and the hardened zones. All the alloyed zones contained a dendritic microstructure. Dendrites consisted of martensite needles and retained austenite. Cementite was also detected. It was stated, that due to similar dimension of iron and cobalt atoms, their mutual replacement in the crystal lattice could occur. Thus, formation of phases based on α solution: Co-Fe (44-1433) could not be excluded. Although cobalt should be mostly diluted in solid solutions (because of its content in the alloyed zone), the other newly formed phases as Co (ε-hex.), FeC and cobalt carbides: Co3C, CoC0.25 could be present in the alloyed zones as a result of unique microstructure creation during laser treatment. Pearlite grains were observed in the zone, formed using lower power density of the laser beam and its longer exposition time. Simply, such conditions resulted in the cooling rate which was lower than critical cooling rate. The alloyed zones, produced at a higher cooling rate, were characterized by better microstructure homogeneity. Dendrites were finer in this case. This could result from a greater amount of crystal nuclei appearing at higher cooling rate. Simultaneously, the increased amount of γ-Fe and Fe3C precipitates was expected in

  4. The Influences of Water Vapor/Hydrogen Ratio, Gas-Flow Rate and Antimony on the Surface Oxidation of Trip Steels

    International Nuclear Information System (INIS)

    Kwon, You Jong; Zhu, Jing Xi; Sridhar, Seetharaman; Sohn, Il Ryong

    2011-01-01

    In the current paper, we are reporting the results from an investigation of the surface and sub-surface oxidation of a TRIP steel containing 2 wt.% Mn and 0.5 wt.% Al with and without 0.03 wt.% Sb. The oxidizing conditions in the gas were successively varied in terms of the linear gas flow-rate and dew-point, from conditions were gas-phase mass transport limited conditions prevailed, to those were solid state processes became the rate determining conditions. It was found, that at sufficient low oxidizing conditions (defined as flow-rate/dew-point), the metal surfaces were clear of any external oxides, and as the oxidizing conditions were increased, Mn- and Si- oxide nodules formed along with magnetite. As the oxidizing conditions were increased further, a dense magnetite layer was present. The limits of the various regions were experimentally quantified and a proposed hypothesis for their occurrences is presented. No obvious effect of Sb was noted in this micro-structural research of the oxides that results from the various conditions investigated in this study

  5. Influence of surface conditions in nucleate boiling--the concept of bubble flux density

    International Nuclear Information System (INIS)

    Shoukri, M.; Judd, R.L.

    1978-01-01

    A study of the influence of surface conditions in nucleate pool boiling is presented. The surface conditions are represented by the number and distribution of the active nucleation sites as well as the size and size distribution of the cavities that constitute the nucleation sites. The heat transfer rate during nucleate boiling is shown to be influenced by the surface condition through its effect on the number and distribution of the active nucleation sites as well as the frequency of bubble departure from each of these different size cavities. The concept of bubble flux density, which is a function of both the active site density and frequency of bubble departure, is introduced. A method of evaluating the bubble flux density is proposed and a uniform correlation between the boiling heat flux and the bubble flux density is found to exist for a particular solid-liquid combination irrespective of the surface finish within the region of isolated bubbles

  6. Time, rate, and conditioning.

    Science.gov (United States)

    Gallistel, C R; Gibbon, J

    2000-04-01

    The authors draw together and develop previous timing models for a broad range of conditioning phenomena to reveal their common conceptual foundations: First, conditioning depends on the learning of the temporal intervals between events and the reciprocals of these intervals, the rates of event occurrence. Second, remembered intervals and rates translate into observed behavior through decision processes whose structure is adapted to noise in the decision variables. The noise and the uncertainties consequent on it have both subjective and objective origins. A third feature of these models is their timescale invariance, which the authors argue is a very important property evident in the available experimental data. This conceptual framework is similar to the psychophysical conceptual framework in which contemporary models of sensory processing are rooted. The authors contrast it with the associative conceptual framework.

  7. Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions

    Science.gov (United States)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2017-01-01

    The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.

  8. Influence of Surface Properties and Impact Conditions on Adhesion of Insect Residues

    Science.gov (United States)

    Wohl, Christopher J.; Smith, Joseph G.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Shanahan, Michelle H.; Penner, Ronald K.

    2015-01-01

    Insect residues can cause premature transition to turbulent flow on laminar flow airfoils. Engineered surfaces that mitigate the adhesion of insect residues provide, therefore, a route to more efficient aerodynamics and reduced fuel burn rates. Areal coverage and heights of residues depend not only on surface properties, but also on impact conditions. We report high speed photography of fruit fly impacts at different angles of inclination on a rigid aluminum surface, optical microscopy and profilometry, and contact angle goniometry to support the design of engineered surfaces. For the polyurethane and epoxy coatings studied, some of which exhibited superhydrophobicity, it was determined that impact angle and surface compositions play critical roles in the efficacy of these surfaces to reduce insect residue adhesion.

  9. Effect of surface stress state on dissolution property of Alloy 690 in simulated primary water condition

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Shim, Hee-Sang; Lee, Eun Hee; Seo, Myung Ji; Han, Jung Ho; Hur, Do Haeng

    2014-01-01

    The dissolution control of nickel is important to reduce the radioactive dose rate and deterioration of fuel performance in the operation of nuclear power plants (PWR). The corrosion properties are affected by the metal surface residual stress introduced in manufacture process such as work hardening. This work studied the effect of surface modification on the release rate of Alloy 690, nickel-base alloy for a steam generator tube, in the test condition of simulated primary water chemistry in PWRs. The surface stress modification was applied by the electro-polishing and shot peening method. Shot peening process was applied using ceramic beads with different intensities through the variation of air pressure. The corrosion release tests performed at 330degC with LiOH 2 ppm and H 3 BO 4 1200 ppm, DH(dissolved hydrogen) 35 cc/kg (STP) and about 20 ppb of DO(dissolved oxygen) condition. The corrosion release rate was evaluated by a gravimetric analysis method and the surface analysed by SEM and optical microscope. The surface residual stress was measured by an X-ray diffractometer, and the distribution of stress state was evaluated by a micro-hardness tester. The metal ion release rate of alloy 690 was evaluated from the influence of the stress state on the metal surface. The oxide property and structure was affected by the residual stress in the oxide layer. (author)

  10. Near-surface air temperature lapse rates in Xinjiang, northwestern China

    Science.gov (United States)

    Du, Mingxia; Zhang, Mingjun; Wang, Shengjie; Zhu, Xiaofan; Che, Yanjun

    2018-02-01

    Lapse rates of near-surface (2 m) air temperature are important parameters in hydrologic and climate simulations, especially for the mountainous areas without enough in-situ observations. In Xinjiang, northwestern China, the elevations range from higher than 7000 m to lower than sea level, but the existing long-term meteorological measurements are limited and distributed unevenly. To calculate lapse rates in Xinjiang, the daily data of near-surface air temperature ( T min, T ave, and T max) were measured by automatic weather stations from 2012 to 2014. All the in situ observation stations were gridded into a network of 1.5° (latitude) by 1.5° (longitude), and the spatial distribution and the daily, monthly, seasonal variations of lapse rates for T min, T ave, and T max in Xinjiang are analyzed. The Urumqi River Basin has been considered as a case to study the influence of elevation, aspect, and the wet and dry air conditions to the T min, T ave, and T max lapse rates. Results show that (1) the lapse rates for T min, T ave, and T max vary spatially during the observation period. The spatial diversity of T min lapse rates is larger than that of T ave, and that of T max is the smallest. For each season, T max lapse rates have more negative values than T ave lapse rates which are steeper than T min lapse rates. The weakest spatial diversity usually appears in July throughout a year. (2) The comparison for the three subregions (North, Middle, and South region) exhibits that lapse rates have similar day-to-day and month-to-month characteristics which present shallower values in winter months and steeper values in summer months. The T ave lapse rates in North region are shallower than those in Middle and South region, and the steepest T ave lapse rates of the three regions all appear in April. T min lapse rates are shallower than T max lapse rates. The maximum medians of T min and T max lapse rates for each grid in the three regions all appear in January, whereas the

  11. The effect of loading rate on ductile fracture toughness and fracture surface roughness

    DEFF Research Database (Denmark)

    Osovski, S.; Srivastava, Akhilesh Kumar; Ponson, L.

    2015-01-01

    The variation of ductile crack growth resistance and fracture surface roughness with loading rate is modeled under mode I plane strain, small scale yielding conditions. Three-dimensional calculations are carried out using an elastic-viscoplastic constitutive relation for a progressively cavitatin...

  12. Response Surface Methodology: An Extensive Potential to Optimize in vivo Photodynamic Therapy Conditions

    International Nuclear Information System (INIS)

    Tirand, Loraine; Bastogne, Thierry; Bechet, Denise M.Sc.; Linder, Michel; Thomas, Noemie; Frochot, Celine; Guillemin, Francois; Barberi-Heyob, Muriel

    2009-01-01

    Purpose: Photodynamic therapy (PDT) is based on the interaction of a photosensitizing (PS) agent, light, and oxygen. Few new PS agents are being developed to the in vivo stage, partly because of the difficulty in finding the right treatment conditions. Response surface methodology, an empirical modeling approach based on data resulting from a set of designed experiments, was suggested as a rational solution with which to select in vivo PDT conditions by using a new peptide-conjugated PS targeting agent, neuropilin-1. Methods and Materials: A Doehlert experimental design was selected to model effects and interactions of the PS dose, fluence, and fluence rate on the growth of U87 human malignant glioma cell xenografts in nude mice, using a fixed drug-light interval. All experimental results were computed by Nemrod-W software and Matlab. Results: Intrinsic diameter growth rate, a tumor growth parameter independent of the initial volume of the tumor, was selected as the response variable and was compared to tumor growth delay and relative tumor volumes. With only 13 experimental conditions tested, an optimal PDT condition was selected (PS agent dose, 2.80 mg/kg; fluence, 120 J/cm 2 ; fluence rate, 85 mW/cm 2 ). Treatment of glioma-bearing mice with the peptide-conjugated PS agent, followed by the optimized PDT condition showed a statistically significant improvement in delaying tumor growth compared with animals who received the PDT with the nonconjugated PS agent. Conclusions: Response surface methodology appears to be a useful experimental approach for rapid testing of different treatment conditions and determination of optimal values of PDT factors for any PS agent.

  13. Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore.

    Science.gov (United States)

    Fischer, Cornelius; Finkeldei, Sarah; Brandt, Felix; Bosbach, Dirk; Luttge, Andreas

    2015-08-19

    The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.

  14. Degradation of atrazine and isoproturon in surface and sub-surface soil materials undergoing different moisture and aeration conditions.

    Science.gov (United States)

    Issa, Salah; Wood, Martin

    2005-02-01

    The influence of different moisture and aeration conditions on the degradation of atrazine and isoproturon was investigated in environmental samples aseptically collected from surface and sub-surface zones of agricultural land. The materials were maintained at two moisture contents corresponding to just above field capacity or 90% of field capacity. Another two groups of samples were adjusted with water to above field capacity, and, at zero time, exposed to drying-rewetting cycles. Atrazine was more persistent (t(1/2) = 22-35 days) than isoproturon (t(1/2) = 5-17 days) in samples maintained at constant moisture conditions. The rate of degradation for both herbicides was higher in samples maintained at a moisture content of 90% of field capacity than in samples with higher moisture contents. The reduction in moisture content in samples undergoing desiccation from above field capacity to much lower than field capacity enhanced the degradation of isoproturon (t(1/2) = 9-12 days) but reduced the rate of atrazine degradation (t(1/2) = 23-35 days). This demonstrates the variability between different micro-organisms in their susceptibility to desiccation. Under anaerobic conditions generated in anaerobic jars, atrazine degraded much more rapidly than isoproturon in materials taken from three soil profiles (0-250 cm depth). It is suggested that some specific micro-organisms are able to survive and degrade herbicide under severe conditions of desiccation. Copyright (c) 2005 Society of Chemical Industry.

  15. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    International Nuclear Information System (INIS)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K.; Mishima, K.; Furuya, M.

    2003-01-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by γ-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by γ-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co γ-ray irradiation

  16. Effect of surface wettability caused by radiation induced surface activation on leidenfrost condition

    Energy Technology Data Exchange (ETDEWEB)

    Takamasa, T.; Hazuku, T.; Tamura, N.; Okamoto, K. [Tokyo Univ., Tokyo (Japan); Mishima, K. [Kyoto Univ., Kyoto (Japan); Furuya, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2003-07-01

    Improving the limit of boiling heat transfer or critical heat flux requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. From this basis, we investigated surface wettability and Leidenfrost condition using metal oxides irradiated by {gamma}-rays. In our previous study, contact angle, an indicator of macroscopic wettability, of a water droplet on metal oxide at room temperature was measured by image processing of the images obtained by a CCD video camera. The results showed that the surface wettability on metal oxide pieces of titanium, Zircaloy No. 4, SUS-304, and copper was improved significantly by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of Radiation Induced Surface Activation (RISA) on heat transferring phenomena, the Leidenfrost condition and quenching of metal oxides irradiated by {gamma}-rays were investigated. In the Leidenfrost experiment, when the temperature of the heating surface reached the wetting limit temperature, water-solid contact vanished because a stable vapor film existed between the droplet and the metal surface; i.e., a Leidenfrost condition obtained. The wetting limit temperature increased with integrated irradiation dose. After irradiation, the wet length and the duration of contact increased, and the contact angle decreased. In the quenching test, high surface wettability, or a highly hydrophilic condition, of a simulated fuel rod made of SUS was achieved, and the quenching velocities were increased up to 20-30% after 300 kGy 60Co {gamma}-ray irradiation.

  17. Effect of surface conditions on blast wave propagation

    International Nuclear Information System (INIS)

    Song, Seung Ho; Li, Yi Bao; Lee, Chang Hoon; Choi, Jung Il

    2016-01-01

    We performed numerical simulations of blast wave propagations on surfaces by solving axisymmetric two-dimensional Euler equations. Assuming the initial stage of fireball at the breakaway point after an explosion, we investigated the effect of surface conditions considering surface convex or concave elements and thermal conditions on blast wave propagations near the ground surface. Parametric studies were performed by varying the geometrical factors of the surface element as well as thermal layer characteristics. We found that the peak overpressure near the ground zero was increased due to the surface elements, while modulations of the blast wave propagations were limited within a region for the surface elements. Because of the thermal layer, the precursor was formed in the propagations, which led to the attenuation of the peak overpressure on the ground surface

  18. Surface free energy for systems with integrable boundary conditions

    International Nuclear Information System (INIS)

    Goehmann, Frank; Bortz, Michael; Frahm, Holger

    2005-01-01

    The surface free energy is the difference between the free energies for a system with open boundary conditions and the same system with periodic boundary conditions. We use the quantum transfer matrix formalism to express the surface free energy in the thermodynamic limit of systems with integrable boundary conditions as a matrix element of certain projection operators. Specializing to the XXZ spin-1/2 chain we introduce a novel 'finite temperature boundary operator' which characterizes the thermodynamical properties of surfaces related to integrable boundary conditions

  19. N balance of different N application rate of winter wheat under water-saving condition

    International Nuclear Information System (INIS)

    Li Shijuan; Zhu Yeping; Sun Kaimeng; E Yue

    2003-01-01

    N uptake and N balance of different N rate applied to wheat under water-saving condition were investigated with 15 N tracer technique and the dynamic N uptake of economic N treatment under two irrigation conditions was compared. The results showed that (1) compared with conventional n treatment, the N loss of economic N treatment reduced while NUE and N residue in soil improved under water-saving condition; (2) Use efficiency of fertilizer applied as basal fertilizer was higher than that as top-dressing fertilizer under water-saving condition; (3) The fertilizer N residue rate was from 29% to 41%, and 60% of N residue, which distributed in 1 m depth soil concentrated in 0-20 cm surface layer; (4) In whole growing stage of wheat, fertilizer N hadn't leach to 130 cm depth; (5) NUE of economic N treatment under conventional irrigation decreased by 16.6% compared with the same n treatment under water-saving condition

  20. Generation of synthetic surface electromyography signals under fatigue conditions for varying force inputs using feedback control algorithm.

    Science.gov (United States)

    Venugopal, G; Deepak, P; Ghosh, Diptasree M; Ramakrishnan, S

    2017-11-01

    Surface electromyography is a non-invasive technique used for recording the electrical activity of neuromuscular systems. These signals are random, complex and multi-component. There are several techniques to extract information about the force exerted by muscles during any activity. This work attempts to generate surface electromyography signals for various magnitudes of force under isometric non-fatigue and fatigue conditions using a feedback model. The model is based on existing current distribution, volume conductor relations, the feedback control algorithm for rate coding and generation of firing pattern. The result shows that synthetic surface electromyography signals are highly complex in both non-fatigue and fatigue conditions. Furthermore, surface electromyography signals have higher amplitude and lower frequency under fatigue condition. This model can be used to study the influence of various signal parameters under fatigue and non-fatigue conditions.

  1. Response rate and reinforcement rate in Pavlovian conditioning.

    Science.gov (United States)

    Harris, Justin A; Carpenter, Joanne S

    2011-10-01

    Four experiments used delay conditioning of magazine approach in rats to investigate the relationship between the rate of responding, R, to a conditioned stimulus (CS) and the rate, r, at which the CS is reinforced with the unconditioned stimulus (US). Rats were concurrently trained with four variable-duration CSs with different rs, either as a result of differences in the mean CS-US interval or in the proportion of CS presentations that ended with the US. In each case, R was systematically related to r, and the relationship was very accurately characterized by a hyperbolic function, R = Ar/(r +c). Accordingly, the reciprocal of these two variables-response interval, I (= 1/R), and CS-US interval, i (= 1/r) - were related by a simple affine (straight line) transformation, I = mi+b. This latter relationship shows that each increment in the time that the rats had to wait for food produced a linear increment in the time they waited between magazine entries. We discuss the close agreement between our findings and the Matching Law (Herrnstein, 1970) and consider their implications for both associative theories (e.g., Rescorla & Wagner, 1972) and nonassociative theories (Gallistel & Gibbon, 2000) of conditioning. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  2. Adherence of platelets to in situ albumin-binding surfaces under flow conditions: role of surface-adsorbed albumin

    International Nuclear Information System (INIS)

    Guha Thakurta, Sanjukta; Miller, Robert; Subramanian, Anuradha

    2012-01-01

    Surfaces that preferentially bind human serum albumin (HSA) were generated by grafting albumin-binding linear peptide (LP1) onto silicon surfaces. The research aim was to evaluate the adsorption pattern of proteins and the adhesion of platelets from platelet-poor plasma and platelet-rich plasma, respectively, by albumin-binding surfaces under physiological shear rate (96 and 319 s −1 ) conditions. Bound proteins were quantified using enzyme-linked immunosorbent assays (ELISAs) and two-dimensional gel electrophoresis. A ratio of ∼1000:100:1 of adsorbed HSA, human immunoglobulin (HIgG) and human fibrinogen (HFib) was noted, respectively, on LP1-functionalized surfaces, and a ratio of ∼5:2:1 of the same was noted on control surfaces, as confirmed by ELISAs. The surface-adsorbed von Willebrand factor was undetectable by sensitive ELISAs. The amount of adhered platelets correlated with the ratio of adsorbed HSA/HFib. Platelet morphology was more rounded on LP1-functionalized surfaces when compared to control surfaces. The platelet adhesion response on albumin-binding surfaces can be explained by the reduction in the co-adsorption of other plasma proteins in a surface environment where there is an excess of albumin molecules, coupled with restrictions in the conformational transitions of other surface-adsorbed proteins into hemostatically active forms. (paper)

  3. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    Science.gov (United States)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented

  4. Plasma treatment of bulk niobium surface for superconducting rf cavities: Optimization of the experimental conditions on flat samples

    Directory of Open Access Journals (Sweden)

    M. Rašković

    2010-11-01

    Full Text Available Accelerator performance, in particular the average accelerating field and the cavity quality factor, depends on the physical and chemical characteristics of the superconducting radio-frequency (SRF cavity surface. Plasma based surface modification provides an excellent opportunity to eliminate nonsuperconductive pollutants in the penetration depth region and to remove the mechanically damaged surface layer, which improves the surface roughness. Here we show that the plasma treatment of bulk niobium (Nb presents an alternative surface preparation method to the commonly used buffered chemical polishing and electropolishing methods. We have optimized the experimental conditions in the microwave glow discharge system and their influence on the Nb removal rate on flat samples. We have achieved an etching rate of 1.7  μm/min⁡ using only 3% chlorine in the reactive mixture. Combining a fast etching step with a moderate one, we have improved the surface roughness without exposing the sample surface to the environment. We intend to apply the optimized experimental conditions to the preparation of single cell cavities, pursuing the improvement of their rf performance.

  5. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    Directory of Open Access Journals (Sweden)

    A. Descoeudres

    2009-03-01

    Full Text Available The rf accelerating structures of the Compact Linear Collider (CLIC require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of dc and rf breakdown, a dc breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultrahigh vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100  MV/m for Al to 850  MV/m for stainless steel, and is around 170  MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at the surface with a vacuum heat treatment, typically at 875°C for 2 hours. Surface finishing treatments of Cu samples only affect the very first breakdowns. More generally, surface treatments have an effect on the conditioning process itself, but not on the average breakdown field reached after the conditioning phase. In analogy to rf, the breakdown probability has been measured in dc with Cu and Mo electrodes. The dc data show similar behavior as rf as a function of the applied electric field.

  6. Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics

    Science.gov (United States)

    Jeschke, Alexander A.; Vosbeck, Katrin; Dreybrodt, Wolfgang

    2001-01-01

    The effective dissolution rates of gypsum are determined by mixed kinetics, where the rate constants of dissolution at the surface and the transport constant of molecular diffusion of dissolved material are similar. To obtain the surface reaction rate law it is necessary to know the transport constant. We have determined the surface rate law for monocrystalline selenite by using a rotating disc set-up, where the transport coefficients are well known. As a result, up to a calcium concentration of 0.6 · ceq, we find a nearly linear rate law Rs = ksl (1- cs/ ceq) n1, where cs is the total calcium concentration at the surface and ceq the equilibrium concentration with respect to gypsum, n1 = 1.2 ± 0.2, and ksl = 1.1 · 10 -4 mmol cm -2 s -1 ± 15%. We also employed batch-experiments for selenite, alabaster and gypsum rock samples. The result of these experiments were interpreted by using a transport constant determined by NaCl dissolution experiments under similar physical conditions. The batch experiments reveal a dissolution rate law Rs = ksl (1- cs/ ceq) n1, ksl = 1.3 · 10 -4 mmol · cm -2 s -1, n1 = 1.2 ± 0.2 for c ≤ 0.94 · ceq. Close to equilibrium a nonlinear rate law, Rs = ks2 (1- cs/ ceq) n2, is observed, where ks2 is in the order of 10 mmol · cm -2 s -1 and n2 ≈ 4.5. The experimentally observed gypsum dissolution rates from the batch experiments could be accurately fitted, with only minor variations of the surface reaction constant obtained from the rotating disk experiment and the transport coefficient from the NaCl dissolution batch experiment. Batch experiments on pure synthetic gypsum, reveal a linear rate law up to equilibrium. This indicates inhibition of dissolution in natural samples close to equilibrium, as is known also for calcite minerals.

  7. Surface condition effects on tritium permeation through the first wall of a water-cooled ceramic breeder blanket

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.-S. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Xu, Y.-P.; Liu, H.-D. [Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Liu, F.; Li, X.-C.; Zhao, M.-Z.; Qi, Q.; Ding, F. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Luo, G.-N., E-mail: gnluo@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei (China); Science Island Branch of Graduate School, University of Science and Technology of China, P.O. Box 1126, Hefei (China); Hefei Center for Physical Science and Technology, P.O. Box 1126, Hefei (China); Hefei Science Center of Chinese Academy of Science, P.O. Box 1126, Hefei (China)

    2016-11-01

    Highlights: • We investigate surface effects on T transport through the first wall. • We solve transport equations with various surface conditions. • The RAFMs walls w/and w/o W exhibit different T permeation behavior. • Diffusion in W has been found to be the rate-limiting step. - Abstract: Plasma-driven permeation of tritium (T) through the first wall of a water-cooled ceramic breeder (WCCB) blanket may raise safety and other issues. In the present work, surface effects on T transport through the first wall of a WCCB blanket have been investigated by theoretical calculation. Two types of wall structures, i.e., reduced activation ferritic/martensitic steels (RAFMs) walls with and without tungsten (W) armor, have been analyzed. Surface recombination is assumed to be the boundary condition for both the plasma-facing side and the coolant side. It has been found that surface conditions at both sides can affect T permeation flux and inventory. For the first wall using W as armor material, T permeation is not sensitive to the plasma-facing surface conditions. Contamination of the surfaces will lead to higher T inventory inside the first wall.

  8. The dissolution rate of UO2 in the alkaline regime under oxidizing conditions using a simplified ground water analog

    International Nuclear Information System (INIS)

    Leider, H.R.; Nguyen, S.N.; Weed, H.C.; Steward, S.A.

    1992-01-01

    The major factor controlling the long term release of radionuclides from spent fuel in a geologic repository is the leaching/dissolution by groundwater of the UO 2 matrix, since more than 90% of the radionuclide waste is contained in the fuel matrix. The objective of this investigation is to provide experimental dissolution rates for UO 2 samples which can be used to develop a mechanistic release model (or models) for UO 2+x (x≥0) under repository conditions. Several types of data will be obtained from this study: (1) the dissolution rates of UO 2 as a function of pI-L temperature, carbonate and oxygen fugacity; (2) the comparison of the steady state dissolution rates of ''not-reduced'' versus ''reduced'' UO 2 samples and of single crystal versus polycrystalline UO 2 under identical experimental conditions; (3) the pre- and post-test surface analyses of the samples to provide information on the surface phases that may be formed under experimental conditions

  9. Direct numerical simulation of turbulent flows over superhydrophobic surfaces with gas pockets using linearized boundary conditions

    Science.gov (United States)

    Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali

    2012-11-01

    Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  10. Foam Core Particleboards with Intumescent FRT Veneer: Cone Calorimeter Testing With Varying Adhesives, Surface Layer Thicknesses, and Processing Conditions

    Science.gov (United States)

    Mark A. Dietenberger; Johannes Welling; Ali Shalbafan

    2014-01-01

    Intumescent FRT Veneers adhered to the surface of foam core particleboard to provide adequate fire protection were evaluated by means of cone calorimeter tests (ASTM E1354). The foam core particleboards were prepared with variations in surface layer treatment, adhesives, surface layer thicknesses, and processing conditions. Ignitability, heat release rate profile, peak...

  11. Rates of surface lowering and landscape development in southern South Africa: a cosmogenic view

    Science.gov (United States)

    Richardson, Janet; Vanacker, Veerle; Lang, Andreas; Hodgson, David

    2016-04-01

    The landscape of southern South Africa is characterised by large-scale erosion surfaces, including extensive pediments and multiple strath terraces, which document discordant river evolution through resistant quarzitic lithologies of the Cape Fold Belt (CFB). The timing and rate of erosion is poorly constrained. New cosmogenic ages from surfaces in South Africa are presented using in situ produced 10Be. Strath terraces in deeply incised rivers at two sites within the CFB indicate slow rates of erosion (1.54 - 11.79 m/Ma), which are some of the lowest rates recorded globally. Four pediment surfaces and a depth profile of the thickest pediment were also dated, and the results indicate that there are low rates of surface lowering on the pediments (0.44 - 1.24 m/Ma). The pediments are long-lived features (minimum exposure ages of 0.47 - 1.09 Ma), and are now deeply dissected. Given the minimum exposure ages, calculated river incision rates (42- 203 m/Ma) suggest that after a long period of geomorphic stability during pediment formation there was a discrete phase of increased geomorphic activity. The calculated minimum exposure ages are considered dubious because: 1) known rates of surrounding river incision (published and ours); 2) the climate conditions and time necessary for ferricrete formation on the pediment surfaces and; 3) the deeply incised catchments in the CFB on which the pediments sit, which all point to the pediments being much older. The pediments are fossilised remnants of a much larger geomorphic surface that formed after the main phase of exhumation in southern Africa. They form a store of sediment that currently sit above the surrounding rivers that have some of the lowest erosion rates in the world. These results indicate that steep topography can prevail even in areas of low erosion and tectonic quiescence, and that whilst cosmogenic dating of landscapes is an exciting development in earth sciences, care is needed especially in ancient settings. We

  12. Effects of Surface Inclination on the Vertical Loading Rates and Landing Pattern during the First Attempt of Barefoot Running in Habitual Shod Runners

    Science.gov (United States)

    An, W.; Rainbow, M. J.; Cheung, R. T. H.

    2015-01-01

    Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0 km/h at three inclination angles (0°; +10°; −10°) with and without their usual running shoes. Vertical average rate (VALR) and instantaneous loading rate (VILR) were obtained by established methods. Landing pattern was decided using high-speed camera. VALR and VILR in shod condition were significantly higher (p running, but not in barefoot condition (p > 0.382). There was no difference (p > 0.413) in the landing pattern among all surface inclinations. Only one runner demonstrated complete transition to non-heel strike landing in all slope conditions. Reducing heel strike ratio in barefoot running did not ensure a decrease in loading rates (p > 0.15). Conversely, non-heel strike landing, regardless of footwear condition, would result in a softer landing (p < 0.011). PMID:26258133

  13. Effects of Surface Inclination on the Vertical Loading Rates and Landing Pattern during the First Attempt of Barefoot Running in Habitual Shod Runners.

    Science.gov (United States)

    An, W; Rainbow, M J; Cheung, R T H

    2015-01-01

    Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0 km/h at three inclination angles (0°; +10°; -10°) with and without their usual running shoes. Vertical average rate (VALR) and instantaneous loading rate (VILR) were obtained by established methods. Landing pattern was decided using high-speed camera. VALR and VILR in shod condition were significantly higher (p running, but not in barefoot condition (p > 0.382). There was no difference (p > 0.413) in the landing pattern among all surface inclinations. Only one runner demonstrated complete transition to non-heel strike landing in all slope conditions. Reducing heel strike ratio in barefoot running did not ensure a decrease in loading rates (p > 0.15). Conversely, non-heel strike landing, regardless of footwear condition, would result in a softer landing (p < 0.011).

  14. Effect of multipactor conditioning on technical electrode surfaces

    International Nuclear Information System (INIS)

    Graves, T. P.; Spektor, R.; Stout, P.

    2009-01-01

    Historically, multipactor conditioning has been utilized to remove surface contaminants from rf electrodes by electron-stimulated gas desorption, and such conditioning has been shown to reduce multipactor susceptibility. Multipactor threshold improvements are due to increasing E 1 , the minimum energy for the secondary electron coefficient, δ>1, such that resonant electrons are incapable of producing discharge-sustaining secondary emission. Using an rf amplitude sweep technique, the evolution of the multipactor threshold is measured as a function of multipactor conditioning time for a series of technical electrode surfaces. Results show over +3 dB of threshold improvement in copper and gold electrodes, while the aluminum threshold actually decreases with conditioning exposure. Additionally, these conditioning results indicate the possible voltage region for transient-mode multipaction (TMM), which can cause significant risk to rf systems such as space satellite components for which in-situ conditioning is generally not possible. Experimental results and supporting Monte Carlo particle tracking simulation results are presented.

  15. Surface Uplift Rate Constrained by Multiple Terrestrial Cosmogenic Nuclides: Theory and Application from the Central Andean Plateau

    Science.gov (United States)

    McPhillips, D. F.; Hoke, G. D.; Niedermann, S.; Wittmann, H.

    2015-12-01

    There is widespread interest in quantifying the growth and decay of topography. However, prominent methods for quantitative determinations of paleoelevation rely on assumptions that are often difficult to test. For example, stable isotope paleoaltimetry relies on the knowledge of past lapse rates and moisture sources. Here, we demonstrate how cosmogenic 10Be - 21Ne and/or 10Be - 26Al sample pairs can be applied to provide independent estimates of surface uplift rate using both published data and new data from the Atacama Desert. Our approach requires a priori knowledge of the maximum age of exposure of the sampled surface. Ignimbrite surfaces provide practical sampling targets. When erosion is very slow (roughly, ≤1 m/Ma), it is often possible to constrain paleo surface uplift rate with precision comparable to that of stable isotopic methods (approximately ±50%). The likelihood of a successful measurement is increased by taking n samples from a landscape surface and solving for one regional paleo surface uplift rate and n local erosion rates. In northern Chile, we solve for surface uplift and erosion rates using three sample groups from the literature (Kober et al., 2007). In the two lower elevation groups, we calculate surface uplift rates of 110 (+60/-12) m/Myr and 160 (+120/-6) m/Myr and estimate uncertainties with a bootstrap approach. The rates agree with independent estimates derived from stream profile analyses nearby (Hoke et al., 2007). Our calculated uplift rates correspond to total uplift of 1200 and 850 m, respectively, when integrated over appropriate timescales. Erosion rates were too high to reliably calculate the uplift rate in the third, high elevation group. New cosmogenic nuclide analyses from the Atacama Desert are in progress, and preliminary results are encouraging. In particular, a replicate sample in the vicinity of the first Kober et al. (2007) group independently yields a surface uplift rate of 110 m/Myr. Compared to stable isotope

  16. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    CERN Document Server

    Descoeudres, A; Calatroni, S; Taborelli, M; Wuensch, W

    2009-01-01

    RF accelerating structures of the Compact Linear Collider (CLIC) require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of DC and RF breakdown, a DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultra-high vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100 MV/m for Al to 850 MV/m for stainless steel, and is around 170 MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at t...

  17. Frictional behavior and BET surface-area changes of SAFOD gouge at intermediate to seismic slip rates

    Science.gov (United States)

    Sawai, Michiyo; Shimamoto, Toshihiko; Mitchell, Thomas; Kitajima, Hiroko; Hirose, Takehiro

    2013-04-01

    The San Andreas Fault Observatory at Depth (SAFOD) Drilling site is located near the southern end of the creeping section of the San Andreas fault. Experimental studies on the frictional properties of fault gouge from SAFOD drill cores may provide valuable information on the cause of diverse fault motion. We conducted friction experiments on gouge from the southwest deformation zone (SDZ, Phase III core; Hole G-Run 2-Section 8) where creep is confirmed by ongoing borehole casing deformation, at intermediate to high slip rates (10-5 to 1.3 m/s), at a normal stress of about 1 MPa, and under both dry (room humidity) and wet (25 wt% of H2O added, drained tests) conditions. Experiments were performed with two rotary-shear friction apparatuses. One gram of gouge was placed between specimens of Belfast gabbro 25 mm in diameter surrounded by a Teflon sleeve to confine the gouge. Slip rate was first decreased and then increased in a step-wise manner to obtain the steady-state friction at intermediate slip rates. The friction coefficient increases from about 0.13 to 0.37 as the slip rate increases from 0.8 x 10-5 to 9.7 x 10-3 m/s. Our results agree with frictional strength measured at higher effective normal stress (100 MPa) by the Brown University group in the same material. Data shows pronounced velocity strengthening at intermediate slip rates, which is unfavorable for rupture nucleation and may be a reason for having creep behavior. On the other hand, the steady-state friction markedly decreases at high velocity, and such weakening may allow earthquake rupture to propagate into the creeping section, once the intermediate strength barrier is overcome. Gouge temperature, measured at the edge of the stationary sample during seismic fault motion, increased to around 175oC under dry conditions, but increased up to 100oC under wet conditions. We measured BET surface area of gouge before and after deformation to determine the energy used for grain crushing. The initial

  18. Well Conditioned Formulations for Open Surface Scattering

    National Research Council Canada - National Science Library

    Ottusch, John J; Visher, John L

    2008-01-01

    .... This report describes an analytical preconditioner method for the EFIE on open surface PEC targets that converts the EFIE to a well conditioned, second-kind integral equation. We present theory and the results from a numerical implementation. We also discuss a 2d extension of the Poincare-Bertrand identity could be used to develop an explicitly second-kind integral equation for open surface scattering problems.

  19. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  20. Effect of sand versus grass training surfaces during an 8-week pre-season conditioning programme in team sport athletes.

    Science.gov (United States)

    Binnie, Martyn John; Dawson, Brian; Arnot, Mark Alexander; Pinnington, Hugh; Landers, Grant; Peeling, Peter

    2014-01-01

    This study compared the use of sand and grass training surfaces throughout an 8-week conditioning programme in well-trained female team sport athletes (n = 24). Performance testing was conducted pre- and post-training and included measures of leg strength and balance, vertical jump, agility, 20 m speed, repeat speed (8 × 20 m every 20 s), as well as running economy and maximal oxygen consumption (VO2max). Heart rate (HR), training load (rating of perceived exertion (RPE) × duration), movement patterns and perceptual measures were monitored throughout each training session. Participants completed 2 × 1 h conditioning sessions per week on sand (SAND) or grass (GRASS) surfaces, incorporating interval training, sprint and agility drills, and small-sided games. Results showed a significantly higher (P < 0.05) HR and training load in the SAND versus GRASS group throughout each week of training, plus some moderate effect sizes to suggest lower perceptual ratings of soreness and fatigue on SAND. Significantly greater (P < 0.05) improvements in VO2max were measured for SAND compared to GRASS. These results suggest that substituting sand for grass training surfaces throughout an 8-week conditioning programme can significantly increase the relative exercise intensity and training load, subsequently leading to superior improvements in aerobic fitness.

  1. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2015-09-08

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions.

  2. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    International Nuclear Information System (INIS)

    Sanchez-Arenillas, M.; Mateo-Marti, E.

    2015-01-01

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions

  3. Dominant rate process of silicon surface etching by hydrogen chloride gas

    International Nuclear Information System (INIS)

    Habuka, Hitoshi; Suzuki, Takahiro; Yamamoto, Sunao; Nakamura, Akio; Takeuchi, Takashi; Aihara, Masahiko

    2005-01-01

    Silicon surface etching and its dominant rate process are studied using hydrogen chloride gas in a wide concentration range of 1-100% in ambient hydrogen at atmospheric pressure in a temperature range of 1023-1423 K, linked with the numerical calculation accounting for the transport phenomena and the surface chemical reaction in the entire reactor. The etch rate, the gaseous products and the surface morphology are experimentally evaluated. The dominant rate equation accounting for the first-order successive reactions at silicon surface by hydrogen chloride gas is shown to be valid. The activation energy of the dominant surface process is evaluated to be 1.5 x 10 5 J mol - 1 . The silicon deposition by the gaseous by-product, trichlorosilane, is shown to have a negligible influence on the silicon etch rate

  4. Effects of Surface Inclination on the Vertical Loading Rates and Landing Pattern during the First Attempt of Barefoot Running in Habitual Shod Runners

    Directory of Open Access Journals (Sweden)

    W. An

    2015-01-01

    Full Text Available Barefoot running has been proposed to reduce vertical loading rates, which is a risk factor of running injuries. Most of the previous studies evaluated runners on level surfaces. This study examined the effect of surface inclination on vertical loading rates and landing pattern during the first attempt of barefoot running among habitual shod runners. Twenty habitual shod runners were asked to run on treadmill at 8.0 km/h at three inclination angles (0°; +10°; −10° with and without their usual running shoes. Vertical average rate (VALR and instantaneous loading rate (VILR were obtained by established methods. Landing pattern was decided using high-speed camera. VALR and VILR in shod condition were significantly higher (p0.382. There was no difference (p>0.413 in the landing pattern among all surface inclinations. Only one runner demonstrated complete transition to non-heel strike landing in all slope conditions. Reducing heel strike ratio in barefoot running did not ensure a decrease in loading rates (p>0.15. Conversely, non-heel strike landing, regardless of footwear condition, would result in a softer landing (p<0.011.

  5. Determination of surface dose rate for cloisonne using thermoluminescent dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Hengyuan, Zhao; Yulian, Zhang

    1985-07-01

    In this paper, the measuring method and results of surface dose rate of cloisonne using CaSO/sub 4/ Dy-Teflon foil dosimeter are described. The surface dose rate of all products are below 0.015 mrad/h. These products contain 42 sorts of jewelery and 20 sets of wares (such as vases, plates, ash-trays, etc.). Most of the data fall within the range of natural background. For comparison, some jewelery from Taiwan and 3 vases from Japan are measured. The highest surface dose rate of 0.78 mrad/h is due to the necklace jewelery from Taiwan.

  6. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates.

    Science.gov (United States)

    Ikari, Matt J; Kopf, Achim J

    2017-11-01

    The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than plate tectonic speeds, which are the natural driving conditions for major faults; the absence of experimental data for natural driving rates represents a critical knowledge gap. We use laboratory friction experiments on natural fault zone samples at driving rates of centimeters per year to demonstrate that there is abundant evidence of unstable slip behavior that was not previously predicted. Specifically, weak clay-rich fault samples generate slow slip events (SSEs) and have frictional properties favorable for earthquake rupture. Our work explains growing field observations of shallow SSE and surface-breaking earthquake slip, and predicts that such phenomena should be more widely expected.

  7. Optimizing Cutting Conditions for Minimum Surface Roughness in Face Milling of High Strength Steel Using Carbide Inserts

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2016-01-01

    Full Text Available A full factorial design technique is used to investigate the effect of machining parameters, namely, spindle speed (N, depth of cut (ap, and table feed rate (Vf, on the obtained surface roughness (Ra and Rt during face milling operation of high strength steel. A second-order regression model was built using least squares method depending on the factorial design results to approximate a mathematical relationship between the surface roughness and the studied process parameters. Analysis of variance was conducted to estimate the significance of each factor and interaction with respect to the surface roughness. For Ra, the results show that spindle speed, depth of cut, and table feed rate have a significant effect on the surface roughness in both linear and quadratic terms. There is also an interaction between depth of cut and feed rate. It also appears that feed rate has the greatest effect on the data variation followed by depth of cut. For Rt, the results show that the table feed rate is the most effective factor followed by the depth of cut, while the spindle speed had a significant small effect only in its quadratic term. The conditions of minimum Ra and Rt are identified through least square optimization. Moreover, multiobjective optimization for minimizing Ra and maximizing metal removal rate Q is conducted and the results are presented.

  8. Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data

    Directory of Open Access Journals (Sweden)

    J. Szilagyi

    2009-05-01

    Full Text Available Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature (<Ts> by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure of the Complementary Relationship of evaporation. The corresponding watershed ET rate, , is obtained from the Bowen ratio with the help of air temperature, humidity and percent possible sunshine data. The resulting (<Ts>, pair together with the wet-environment surface temperature (<Tws> and ET rate (ETw, obtained by the Priestley-Taylor equation, define a linear transformation on a monthly basis by which spatially distributed ET rates can be estimated as a sole function of MODIS daytime land surface temperature, Ts, values within the watershed. The linear transformation preserves the mean which is highly desirable. <Tws>, in the lack of significant open water surfaces within the study watershed (Elkhorn, Nebraska, was obtained as the mean of the smallest MODIS Ts values each month. The resulting period-averaged (2000–2007 catchment-scale ET rate of 624 mm/yr is very close to the water-balance derived ET rate of about 617 mm/yr. The latter is a somewhat uncertain value due to the effects of (a observed groundwater depletion of about 1m over the study period caused by extensive irrigation, and; (b the uncertain rate of net regional groundwater supply toward the watershed. The spatially distributed ET rates correspond well with soil/aquifer properties and the resulting land use type (i.e. rangeland versus center-pivot irrigated crops.

  9. The effect of surface chemistry on particulate fouling under flow-boiling conditions

    International Nuclear Information System (INIS)

    Turner, C.W.; Klimas, S.J.

    2001-01-01

    A model of particulate fouling has been developed that takes account of the influence of deposit consolidation on the kinetics of the fouling process. Fouling kinetics predicted by the model are linear, falling-rate or asymptotic, depending on the relative magnitudes of the rate constants for deposition, re-entrainment, and consolidation. One of the key predictions of the model is that the steady-state fouling rate is proportional to the ratio Kλ c /λ, where K, λ c and λ are the rate constants for deposition, consolidation, and removal, respectively. Tests conducted in a high-temperature recirculating-water loop have demonstrated that chemistry exerts a strong influence on the fouling kinetics of particulate corrosion product under flow-boiling conditions in alkaline water at 270 o C. For example, the fouling rates of lepidocrocite and hematite are 12 and 50 times greater, respectively, than the rate for magnetite. It is argued that the difference can be attributed to the sign of the surface charge that develops on the metal oxide surfaces in the high-temperature coolant, which, in turn, is a function of pH relative to the isoelectric point of the metal oxide. Chemical effects also influence fouling behaviour through the rate of consolidation. For example, when morpholine is used for the alkalizing agent the fouling rate is 3-5 times higher than the case when the pH is controlled using dimethylamine. The difference is attributed to the rate of deposit consolidation, which is 6-20 times greater than the rate of deposit removal for morpholine compared to 0.2-0.3 times the rate of removal for dimethylamine. The results of this investigation, together with the insights provided by the fouling model, are being used to guide the selection of the alkalizing amine to optimize its properties for both corrosion (pH) control and deposit control in the steam generator. (author)

  10. Analysis of surface integrity in machining of AISI 304 stainless steel under various cooling and cutting conditions

    Science.gov (United States)

    Klocke, F.; Döbbeler, B.; Lung, S.; Seelbach, T.; Jawahir, I. S.

    2018-05-01

    Recent studies have shown that machining under specific cooling and cutting conditions can be used to induce a nanocrystalline surface layer in the workspiece. This layer has beneficial properties, such as improved fatigue strength, wear resistance and tribological behavior. In machining, a promising approach for achieving grain refinement in the surface layer is the application of cryogenic cooling. The aim is to use the last step of the machining operation to induce the desired surface quality to save time-consuming and expensive post machining surface treatments. The material used in this study was AISI 304 stainless steel. This austenitic steel suffers from low yield strength that limits its technological applications. In this paper, liquid nitrogen (LN2) as cryogenic coolant, as well as minimum quantity lubrication (MQL), was applied and investigated. As a reference, conventional flood cooling was examined. Besides the cooling conditions, the feed rate was varied in four steps. A large rounded cutting edge radius and finishing cutting parameters were chosen to increase the mechanical load on the machined surface. The surface integrity was evaluated at both, the microstructural and the topographical levels. After turning experiments, a detailed analysis of the microstructure was carried out including the imaging of the surface layer and hardness measurements at varying depths within the machined layer. Along with microstructural investigations, different topological aspects, e.g., the surface roughness, were analyzed. It was shown that the resulting microstructure strongly depends on the cooling condition. This study also shows that it was possible to increase the micro hardness in the top surface layer significantly.

  11. Initial results from dissolution rate testing of N-Reactor spent fuel over a range of potential geologic repository aqueous conditions

    International Nuclear Information System (INIS)

    Gray, W.J.; Einziger, R.E.

    1998-04-01

    Hanford N-Reactor spent nuclear fuel (HSNF) may ultimately be placed in a geologic repository for permanent disposal. To determine whether the engineered barrier system that will be designed for emplacement of light-water-reactor (LWR) spent fuel will also suffice for HSNF, aqueous dissolution rate measurements were conducted on the HSNF. The purpose of these tests was to determine whether HSNF dissolves faster or slower than LWR spent fuel under some limited repository-relevant water chemistry conditions. The tests were conducted using a flowthrough method that allows the dissolution rate of the uranium matrix to be measured without interference by secondary precipitation reactions that would confuse interpretation of the results. Similar tests had been conducted earlier with LWR spent fuel, thereby allowing direct comparisons. Two distinct corrosion modes were observed during the course of these 12 tests. The first, Stage 1, involved no visible corrosion of the test specimen and produced no undissolved corrosion products. The second, Stage 2, resulted in both visible corrosion of the test specimen and left behind undissolved corrosion products. During Stage 1, the rate of dissolution could be readily determined because the dissolved uranium and associated fission products remained in solution where they could be quantitatively analyzed. The measured rates were much faster than has been observed for LWR spent fuel under all conditions tested to date when normalized to the exposed test specimen surface areas. Application of these results to repository conditions, however, requires some comparison of the physical conditions of the different fuels. The surface area of LWR fuel that could potentially be exposed to repository groundwater is estimated to be approximately 100 times greater than HSNF. Therefore, when compared on the basis of mass, which is more relevant to repository conditions, the HSNF and LWR spent fuel dissolve at similar rates

  12. Conditions affecting the release of phosphorus from surface lake sediments.

    Science.gov (United States)

    Christophoridis, Christophoros; Fytianos, Konstantinos

    2006-01-01

    Laboratory studies were conducted to determine the effect of pH and redox conditions, as well as the effect of Fe, Mn, Ca, Al, and organic matter, on the release of ortho-phosphates in lake sediments taken from Lakes Koronia and Volvi (Northern Greece). Results were evaluated in combination with experiments to determine P fractionation in the sediment. The study revealed the major effect of redox potential and pH on the release of P from lake sediments. Both lakes showed increased release rates under reductive conditions and high pH values. The fractionation experiments revealed increased mobility of the reductive P fraction as well as of the NaOH-P fraction, indicating participation of both fractions in the overall release of sediment-bound P, depending on the prevailing environmental conditions. The results were assessed in combination with the release patterns of Fe, Mn, Ca, Al, and organic matter, enabling the identification of more specific processes of P release for each lake. The basic release patterns included the redox induced reductive dissolution of P-bearing metal oxides and the competitive exchange of phosphate anions with OH- at high pH values. The formation of an oxidized surface microlayer under oxic conditions acted as a protective film, preventing further P release from the sediments of Lake Volvi, while sediments from Lake Koronia exhibited a continuous and increased tendency to release P under various physicochemical conditions, acting as a constant source of internal P loading.

  13. Evaluation method of gas leakage rate from transportation casks of radioactive materials (gas leakage rates from scratches on O-ring surface)

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Li Ninghua; Asano, Ryoji; Kawa, Tsunemichi

    2004-01-01

    A sealing function is essential for transportation and/or storage casks of radioactive materials under both normal and accidental operating conditions in order to prevent radioactive materials from being released into the environment. In the safety analysis report, the release rate of radioactive materials into the environment is evaluated using the correlations specified in the ANSI N14.5, 1987. The purposes of the work are to reveal the underlying problems on the correlations specified in the ANSI N14.5 related to gas leakage rates from a scratch on O-ring surface and from multi-leak paths, to offer a data base to study the evaluation method of the leakage rate and to propose the evaluation method. In this paper, the following insights were obtained and clarified: 1. If a characteristic value of a leak path is defined as D 4 /a ('D' is the diameter and 'a' is the length), a scratch on the O-ring surface can be evaluated as a circular tube. 2. It is proper to use the width of O-ring groove on the flange as the leak path length for elastomer O-rings. 3. Gas leakage rates from multi leak paths of the transportation cask can be evaluated in the same manner as a single leak path if an effective D4/a is introduced. (author)

  14. Optimization of Al-CVD process based on elementary reaction simulation and experimental verification: From the growth rate to the surface morphology

    International Nuclear Information System (INIS)

    Sugiyama, Masakazu; Iino, Tomohisa; Nakajima, Tohru; Tanaka, Takeshi; Egashira, Yasuyuki; Yamashita, Kohichi; Komiyama, Hiroshi; Shimogaki, Yukihiro

    2006-01-01

    We propose a method to reduce the surface roughness of Al film in the chemical vapor deposition (CVD) using dimethyl-aluminum-hydride (DMAH) as the precursor. An elementary reaction simulation was executed not only to predict the deposition rate but also to predict the coverage of the film by surface adsorbates. It was assumed that high surface coverage is essential in order to deposit smooth films because the adsorbates protect the surface from oxidation which causes discontinuous growth of crystal grains. According to this principle, the condition, that realizes both high surface coverage and high deposition rate at the same time by using the elementary reaction simulation, was sought. A nozzle inlet was used instead of a conventional showerhead. This drastically improved the surface morphology, showing the effectiveness of this theoretical optimization procedure

  15. The Role of Meteorology and Surface Condition to Multi-Decadal Variations of Dust Emission in Sahara and Sahel

    Science.gov (United States)

    Kim, D.; Chin, M.; Diehl, T. L.; Bian, H.; Brown, M. E.; Remer, L. A.; Stockwell, W. R.

    2014-12-01

    North Africa is the world's largest dust source region influencing regional and global climate, human health, and even the local economy. However North Africa as a dust source is not uniform but it consists of the arid region (Sahara) and the semi-arid region (Sahel) with emission rates depending on meteorological and surface conditions. Several recent studies have shown that dust from North Africa seems to have a decreasing trend in the past three decades. The goal of this study is to better understand the controlling factors that determine the change of dust in North Africa using observational data and model simulations. First we analyze surface bareness conditions determined from a long-term satellite observed Normalized Difference Vegetation Index for 1980-2008. Then we examine the key meteorological variables of precipitation and surface winds. Modeling experiments were conducted using the NASA Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which has been recently updated with a dynamic dust source function. Using the method we separate the dust originating from the Sahel from that of the Sahara desert. We find that the surface wind speed is the most dominant factor affecting Sahelian dust emission while vegetation has a modulating effect. We will show regional differences in meteorological variables, surface conditions, dust emission, and dust distribution and address the relationships among meteorology, surface conditions, and dust emission/loading in the past three decades (1980-2008).

  16. Radionuclide transfer onto ground surface in surface water flow, 1

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu; Kamiyama, Hideo

    1991-07-01

    Radionuclides migration in ground surface water flow is considered to be one of the important path way in the scenario for environmental migration of radionuclides leaked from low level radioactive waste repository. Simulating the slightly sloped surface on which contaminated solution is flowing downward, testing for radionuclide migration on ground surface had been started. As it's first step, an experiment was carried out under the condition of restricted infiltration in order to elucidate the adsorption behavior of radionuclides onto the loamy soil surface in related with hydraulic conditions. Radionuclides concentration change in effluent solution with time and a concentration distribution of radionuclides adsorbed on the ground surface were obtained from several experimental conditions combining the rate and the duration time of the water flow. The radionuclides concentration in the effluent solution was nearly constant during each experimental period, and was reduced under the condition of lower flow rate. The surface distribution of radionuclides concentration showed two distinctive regions. The one was near the inlet vessel where the concentration was promptly reducing, and the other was following the former where the concentration was nearly constant. The characteristic surface distribution of radionuclides concentration can be explained by a two dimensional diffusion model with a first order adsorption reaction, based on the advection of flow rate distribution in perpendicular direction. (author)

  17. Statistical optimization of cultural conditions by response surface ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... Full Length Research Paper. Statistical optimization of cultural conditions by response surface methodology for phenol degradation by a novel ... Phenol is a hydrocarbon compound that is highly toxic, ... Microorganism.

  18. Weak-interaction rates in stellar conditions

    Science.gov (United States)

    Sarriguren, Pedro

    2018-05-01

    Weak-interaction rates, including β-decay and electron captures, are studied in several mass regions at various densities and temperatures of astrophysical interest. In particular, we study odd-A nuclei in the pf-shell region, which are involved in presupernova formations. Weak rates are relevant to understand the late stages of the stellar evolution, as well as the nucleosynthesis of heavy nuclei. The nuclear structure involved in the weak processes is studied within a quasiparticle proton-neutron random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. First, the energy distributions of the Gamow-Teller strength are discussed and compared with the available experimental information, measured under terrestrial conditions from charge-exchange reactions. Then, the sensitivity of the weak-interaction rates to both astrophysical densities and temperatures is studied. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus and to the electron captures from the degenerate electron plasma.

  19. Magnetic field effects on coating deposition rate and surface morphology coatings using magnetron sputtering

    International Nuclear Information System (INIS)

    Yang, Yu-Sen; Huang, Wesley

    2010-01-01

    Chromium nitride coatings exhibit superior hardness, excellent wear and oxidation resistance, and are widely applied in the die and mold industries. The aim of this study was to investigate magnetic field effects on the deposition rate and surface morphology of chromium nitride coatings deposited by magnetron sputtering. Four types of magnetic field configurations, including the magnetron sputtering system, SNSN, SNNN, and intermediate magnetron modification, are discussed in this paper. SKD11 cold work die steel and a silicon (100) chip were used as substrates in the chromium nitride depositions. The process parameters, such as target current, substrate bias, and the distance between the substrate and target, are at fixed conditions, except for the magnetic arrangement type. The experimental results showed that the deposition rates of the four types of magnetic field configurations were 1.06, 1.38, 1.67 and 1.26 µm h −1 , respectively. In these cases, the SNNN type performs more than 58% faster than the unbalanced magnetron configuration does for the deposition rate. The surface morphology of chromium nitride films was also examined by SEM and is discussed in this paper

  20. Influence of liquid temperature and flow rate on enamel erosion and surface softening.

    Science.gov (United States)

    Eisenburger, M; Addy, M

    2003-11-01

    Enamel erosion and softening are based on chemical processes which could be influenced by many factors including temperature and acid flow rate. Knowledge of the influence of these variables could have relevance to research experiments and clinical outcomes. Both parameters were investigated using an ultrasonication and profilometry method to assess erosion depth and surface softening of enamel. The influence of temperature was studied by eroding polished human enamel samples at 4, 20, 35 or 50 degrees C for 2 h. Secondly, different liquid flow conditions were established by varying acid agitation. Additionally, a slow laminar flow and a jet of citric acid, to simulate drinking through a straw, were applied to specimens. Erosion depth increased significantly with acid temperature from 11.0 microm at 4 degrees C to 35.8 microm at 50 degrees C. Surface softening increased much more slowly and plateaued at 2.9 microm to 3.5 microm after 35 degrees C. A strong dependence of erosion on liquid flow was revealed. In unstirred conditions only 8.6 microm erosion occurred, which increased to 22.2 microm with slow stirring and 40.9 microm with fast stirring. Surface softening did not increase correspondingly with its largest extent at slow stirring at 3.4 microm.The implication of these data are: first, the conditions for erosion experiments in vitro or in situ need to be specified for reliable comparisons between studies. Secondly, erosion of teeth by soft drinks are likely to be influenced both by the temperature of the drink and individual drinking habits.

  1. Polluted soil leaching: unsaturated conditions and flow rate effects

    Directory of Open Access Journals (Sweden)

    Chourouk Mathlouthi

    2017-04-01

    Full Text Available In this study, soil samples are extracted from a polluted site at different depths. Soils texture and pollutant presence are different with depth. Preliminary analyzes showed pollution by heavy metals. To simulate soil leaching operation in static condition, a series of leaching tests are conducted in laboratory column under conditions of upflow unsaturated soil. Electrical conductivity and pH measurements on the recovered leachate are performed. Different flow rates are tested. Comparison of different profiles shows that the dissolved pollutants are concentrated in the upper soil levels and disperse weakly in the lower parts which confirm the nature of anthropogenic pollution of heavy metals. Water mobilizes a high amount of dissolved ionic substances up to 80% of the initial concentration. The increase in flow rate requires more pore volume injected to achieve the maximum clearance rate. The down flow condition extracts a small amount of dissolved substances.

  2. Economic conditions and suicide rates in New York City.

    Science.gov (United States)

    Nandi, Arijit; Prescott, Marta R; Cerdá, Magdalena; Vlahov, David; Tardiff, Kenneth J; Galea, Sandro

    2012-03-15

    Extant analyses of the relation between economic conditions and population health were often based on annualized data and were susceptible to confounding by nonlinear time trends. In the present study, the authors used generalized additive models with nonparametric smoothing splines to examine the association between economic conditions, including levels of economic activity in New York State and the degree of volatility in the New York Stock Exchange, and monthly rates of death by suicide in New York City. The rate of suicide declined linearly from 8.1 per 100,000 people in 1990 to 4.8 per 100,000 people in 1999 and then remained stable from 1999 to 2006. In a generalized additive model in which the authors accounted for long-term and seasonal time trends, there was a negative association between monthly levels of economic activity and rates of suicide; the predicted rate of suicide was 0.12 per 100,000 persons lower when economic activity was at its peak compared with when it was at its nadir. The relation between economic activity and suicide differed by race/ethnicity and sex. Stock market volatility was not associated with suicide rates. Further work is needed to elucidate pathways that link economic conditions and suicide.

  3. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions

    Science.gov (United States)

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Nield, Shawn J.; Johnson, Kristofer D.; Finley, Andrew O.

    2015-01-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map nearsurface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of ~85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  4. The effect of heating rate on the surface chemistry of NiTi.

    Science.gov (United States)

    Undisz, Andreas; Hanke, Robert; Freiberg, Katharina E; Hoffmann, Volker; Rettenmayr, Markus

    2014-11-01

    The impact of the heating rate on the Ni content at the surface of the oxide layer of biomedical NiTi is explored. Heat treatment emulating common shape-setting procedures was performed by means of conventional and inductive heating for similar annealing time and temperature, applying various heating rates from ~0.25 K s(-1) to 250 K s(-1). A glow discharge optical emission spectroscopy method was established and employed to evaluate concentration profiles of Ni, Ti and O in the near-surface region at high resolution. The Ni content at the surface of the differently treated samples varies significantly, with maximum surface Ni concentrations of ~20 at.% at the lowest and ~1.5 at.% at the highest heating rate, i.e. the total amount of Ni contained in the surface region of the oxide layer decreases by >15 times. Consequently, the heating rate is a determinant for the biomedical characteristics of NiTi, especially since Ni available at the surface of the oxide layer may affect the hemocompatibility and be released promptly after surgical application of a respective implant. Furthermore, apparently contradictory results presented in the literature reporting surface Ni concentrations of ~3 at.% to >20 at.% after heat treatment are consistently explained considering the ascertained effect of the heating rate. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Summation of reinforcement rates when conditioned stimuli are presented in compound.

    Science.gov (United States)

    Andrew, Benjamin J; Harris, Justin A

    2011-10-01

    Three experiments used delay conditioning of magazine approach in rats to examine the summation of responding when two conditioned stimuli (CSs) are presented together as a compound. The duration of each CS varied randomly from trial-to-trial around a mean that differed between the CSs. This meant that the rats' response rate to each CS was systematically related to the reinforcement rate of that CS, but remained steady as time elapsed during the CS (Harris & Carpenter, 2011; Harris, Gharaei, & Pincham, 2011). When the rats were presented with a compound of two CSs that had been conditioned separately, they responded more during the compound than during either of the CSs individually. More significantly, however, in all three experiments, the rats responded to the compound at the same rate as they responded to a third CS that had been reinforced at a rate equal to the sum of the reinforcement rates of the two CSs in compound. We discuss the implications of this finding for associative models (e.g., Rescorla & Wagner, 1972) and rate-based models (Gallistel & Gibbon, 2000) of conditioning.

  6. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    International Nuclear Information System (INIS)

    Rozing, Goran; Marusic, Vlatko; Alar, Vesna

    2017-01-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  7. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rozing, Goran [Osijek Univ. (Croatia). Chair of Mechanical Engineering; Marusic, Vlatko [Osijek Univ. (Croatia). Dept. of Engineering Materials; Alar, Vesna [Zagreb Univ. (Croatia). Dept. Materials

    2017-04-01

    Stainless steel samples were tested in the laboratory and under real conditions of tribocorrosion wear. Electrochemical tests were also carried out to verify the corrosion resistance of modified steel surfaces. Metallographic analysis and hardness testing were conducted on stainless steel samples X20Cr13 and X17CrNi16 2. The possibilities of applications of modified surfaces of the selected steels were investigated by testing the samples under real wear conditions. The results have shown that the induction hardened and subsequently nitrided martensitic steels achieved an average wear resistance of up to three orders of magnitude higher as compared to the delivered condition.

  8. Morphological evolution of dissolving feldspar particles with anisotropic surface kinetics and implications for dissolution rate normalization and grain size dependence: A kinetic modeling study

    Science.gov (United States)

    Zhang, Li; Lüttge, Andreas

    2009-11-01

    surface area normalizations have been used to normalize the bulk dissolution rate. For each of the treatments, time consistence and grain size dependence of the normalized dissolution rate have been evaluated and the results revealed significant dependences on the magnitude of surface kinetic anisotropy under differing environmental conditions. In general, the normalized dissolution rates are strongly dependent on grain size. Time-consistent normalization treatment varies with the investigated condition. The modeling results suggest that the sphere-, cube-, and BET-normalized dissolution rates are appropriate under the far-from-equilibrium conditions at low pH where these normalizations are time-consistent and are slightly dependent on grain size.

  9. Synthetic surface for expansion of human mesenchymal stem cells in xeno-free, chemically defined culture conditions.

    Directory of Open Access Journals (Sweden)

    Paula J Dolley-Sonneville

    Full Text Available Human mesenchymal stem cells (HMSCS possess three properties of great interest for the development of cell therapies and tissue engineering: multilineage differentiation, immunomodulation, and production of trophic factors. Efficient ex vivo expansion of hMSCs is a challenging requirement for large scale production of clinical grade cells. Low-cost, robust, scalable culture methods using chemically defined materials need to be developed to address this need. This study describes the use of a xeno-free synthetic peptide acrylate surface, the Corning® Synthemax® Surface, for culture of hMSCs in serum-free, defined medium. Cell performance on the Corning Synthemax Surface was compared to cells cultured on biological extracellular matrix (ECM coatings in xeno-free defined medium and in traditional conditions on tissue culture treated (TCT plastic in fetal bovine serum (FBS supplemented medium. Our results show successful maintenance of hMSCs on Corning Synthemax Surface for eight passages, with cell expansion rate comparable to cells cultured on ECM and significantly higher than for cells in TCT/FBS condition. Importantly, on the Corning Synthemax Surface, cells maintained elongated, spindle-like morphology, typical hMSC marker profile and in vitro multilineage differentiation potential. We believe the Corning Synthemax Surface, in combination with defined media, provides a complete synthetic, xeno-free, cell culture system for scalable production of hMSCs.

  10. Effects of atmospheric pressure conditions on flow rate of an elastomeric infusion pump.

    Science.gov (United States)

    Wang, Jong; Moeller, Anna; Ding, Yuanpang Samuel

    2012-04-01

    The effects of pressure conditions, both hyperbaric and hypobaric, on the flow rate of an elastomeric infusion pump were investigated. The altered pressure conditions were tested with the restrictor outlet at two different conditions: (1) at the same pressure condition as the Infusor elastomeric balloon and (2) with the outlet exposed to ambient conditions. Five different pressure conditions were tested. These included ambient pressure (98-101 kilopascals [kPa]) and test pressures controlled to be 10 or 20 kPa below or 75 or 150 kPa above the ambient pressure. A theoretical calculation based on the principles of fluid mechanics was also used to predict the pump's flow rate at various ambient conditions. The conditions in which the Infusor elastomeric pump and restrictor outlet were at the same pressure gave rise to average flow rates within the ±10% tolerance of the calculated target flow rate of 11 mL/hr. The flow rate of the Infusor pump decreased when the pressure conditions changed from hypobaric to ambient. The flow rate increased when the pressure conditions changed from hyperbaric to ambient. The flow rate of the Infusor elastomeric pump was not affected when the balloon reservoir and restrictor outlet were at the same pressure. The flow rate varied from 58.54% to 377.04% of the labeled flow rate when the pressure applied to the reservoir varied from 20 kPa below to 150 kPa above the pressure applied to the restrictor outlet, respectively. The maximum difference between observed flow rates and those calculated by applying fluid mechanics was 4.9%.

  11. Influence of atmospheric rainfall to γ radiation Kerma rate in surface air

    International Nuclear Information System (INIS)

    Xu Zhe; Wan Jun; Yu Rongsheng

    2009-01-01

    Objective: To investigate the influence rule of the atmospheric Rainfall to the γ radiation Kerma rate in surface air in order to revise the result of its measurement during rainfall. Methods: The influence factors of rainfall to the measurement of the γ radiation Kerma rate in air were analyzed and then the differential equation of the correlation factors was established theoretically, and by resolving the equation, the mathematical model Was obtained. The model was discussed through several practical examples. Results: The mathematical model was coincided with the tendency of curve about the measured data on the influence rule of rainfall to the γ radiation Kerma rate in surface air. Conclusion: By using the theoretical formula in this article which is established to explain the relationship between the rainfall and the γ radiation Kerma rate in surface air, the influence of rainfall to the γ radiation Kerma rate in surface air could be correctly revised. (authors)

  12. SMART, Radiation Dose Rates on Cask Surface

    International Nuclear Information System (INIS)

    Yamakoshi, Hisao

    1989-01-01

    1 - Description of program or function: SMART calculates radiation dose rate at the center of each cask surface by using characteristic functions for radiation shielding ability and for radiation current back-scattered from cask wall and cask cavity of each cask, once cask-type is specified. 2 - Method of solution: Matrix Calculation

  13. Isopleths of surface air concentration and surface air kerma rate due to a radioactive cloud released from a stack (3)

    International Nuclear Information System (INIS)

    Tachibana, Haruo; Kikuchi, Masamitsu; Sekita, Tsutomu; Yamaguchi, Takenori

    2004-06-01

    This report is a revised edition of 'Isopleths of Surface Air Concentration and Surface Air Absorbed Dose Rate due to a Radioactive Cloud Released from a Stack(II) '(JAERI-M 90-206) and based on the revised Nuclear Safety Guidelines reflected the ICRP1990 Recommendation. Characteristics of this report are the use of Air Karma Rate (Gy/h) instead of Air Absorbed Dose Rate (Gy/h), and the record of isopleths of surface air concentration and surface air karma rate on CD-ROM. These recorded data on CD-ROM can be printed out on paper and/or pasted on digital map by personal computer. (author)

  14. Assimilation and High Resolution Forecasts of Surface and Near Surface Conditions for the 2010 Vancouver Winter Olympic and Paralympic Games

    Science.gov (United States)

    Bernier, Natacha B.; Bélair, Stéphane; Bilodeau, Bernard; Tong, Linying

    2014-01-01

    A dynamical model was experimentally implemented to provide high resolution forecasts at points of interests in the 2010 Vancouver Olympics and Paralympics Region. In a first experiment, GEM-Surf, the near surface and land surface modeling system, is driven by operational atmospheric forecasts and used to refine the surface forecasts according to local surface conditions such as elevation and vegetation type. In this simple form, temperature and snow depth forecasts are improved mainly as a result of the better representation of real elevation. In a second experiment, screen level observations and operational atmospheric forecasts are blended to drive a continuous cycle of near surface and land surface hindcasts. Hindcasts of the previous day conditions are then regarded as today's optimized initial conditions. Hence, in this experiment, given observations are available, observation driven hindcasts continuously ensure that daily forecasts are issued from improved initial conditions. GEM-Surf forecasts obtained from improved short-range hindcasts produced using these better conditions result in improved snow depth forecasts. In a third experiment, assimilation of snow depth data is applied to further optimize GEM-Surf's initial conditions, in addition to the use of blended observations and forecasts for forcing. Results show that snow depth and summer temperature forecasts are further improved by the addition of snow depth data assimilation.

  15. Nutrients interaction investigation to improve Monascus purpureus FTC5391 growth rate using Response Surface Methodology and Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Mohamad, R.

    2013-01-01

    Full Text Available Aims: Two vital factors, certain environmental conditions and nutrients as a source of energy are entailed for successful growth and reproduction of microorganisms. Manipulation of nutritional requirement is the simplest and most effectual strategy to stimulate and enhance the activity of microorganisms. Methodology and Results: In this study, response surface methodology (RSM and artificial neural network (ANN were employed to optimize the carbon and nitrogen sources in order to improve growth rate of Monascus purpureus FTC5391,a new local isolate. The best models for optimization of growth rate were a multilayer full feed-forward incremental back propagation network, and a modified response surface model using backward elimination. The optimum condition for cell mass production was: sucrose 2.5%, yeast extract 0.045%, casamino acid 0.275%, sodium nitrate 0.48%, potato starch 0.045%, dextrose 1%, potassium nitrate 0.57%. The experimental cell mass production using this optimal condition was 21 mg/plate/12days, which was 2.2-fold higher than the standard condition (sucrose 5%, yeast extract 0.15%, casamino acid 0.25%, sodium nitrate 0.3%, potato starch 0.2%, dextrose 1%, potassium nitrate 0.3%. Conclusion, significance and impact of study: The results of RSM and ANN showed that all carbon and nitrogen sources tested had significant effect on growth rate (P-value < 0.05. In addition the use of RSM and ANN alongside each other provided a proper growth prediction model.

  16. Rate and extent of aqueous perchlorate removal by iron surfaces.

    Science.gov (United States)

    Moore, Angela M; De Leon, Corinne H; Young, Thomas M

    2003-07-15

    The rate and extent of perchlorate reduction on several types of iron metal was studied in batch and column reactors. Mass balances performed on the batch experiments indicate that perchlorate is initially sorbed to the iron surface, followed by a reduction to chloride. Perchlorate removal was proportional to the iron dosage in the batch reactors, with up to 66% removal in 336 h in the highest dosage system (1.25 g mL(-1)). Surface-normalized reaction rates among three commercial sources of iron filings were similar for acid-washed samples. The most significant perchlorate removal occurred in solutions with slightly acidic or near-neutral initial pH values. Surface mediation of the reaction is supported by the absence of reduction in batch experiments with soluble Fe2+ and also by the similarity in specific reaction rate constants (kSA) determined for three different iron types. Elevated soluble chloride concentrations significantly inhibited perchlorate reduction, and lower removal rates were observed for iron samples with higher amounts of background chloride contamination. Perchlorate reduction was not observed on electrolytic sources of iron or on a mixed-phase oxide (Fe3O4), suggesting that the reactive iron phase is neither pure zerovalent iron nor the mixed oxide alone. A mixed valence iron hydr(oxide) coating or a sorbed Fe2+ surface complex represent the most likely sites for the reaction. The observed reaction rates are too slow for immediate use in remediation system design, but the findings may provide a basis for future development of cost-effective abiotic perchlorate removal techniques.

  17. Characterization of the parameters at the origin of the chemical species hideout process at the fuel rod surface in boiling conditions

    International Nuclear Information System (INIS)

    Peybernes, J.; March, P.

    1999-01-01

    Current trends in nuclear power generation (and particularly in pressurized water reactors) are toward plant life extension and extended fuel burnup. A higher heat generation rate can induce local boiling regimes at the fuel rod surface in the hottest channels of the core, which can strongly modify the chemical environment of the cladding and influence the oxidation rate of zirconium alloys. Tests performed in out-of-pile loops under severe chemical and thermal-hydraulic conditions (nucleate boiling, higher lithium contents compared to PWRs) reveal two important phenomena: an increase of the oxidation rate of Zircaloy-4 cladding materials in 'high' lithiated environments; an enrichment of the chemical additives in the primary water (boron, lithium) at the surface of the cladding under nucleate boiling conditions. The latter phenomenon, also called 'hideout effect', is mainly controlled by some thermal hydraulic parameters such as bubble diameters and nucleation site density. These parameters strongly depend on the oxide morphology (roughness, porosity). The lack of reliable data in high temperature water environments has led to the development of a specific instrumentation based on visualization. The fitting of windows on the REGGAE out-of-pile loop provides an optical access to the two-phase flow regime under PWR operating conditions, allowing for the characterization of the parameters at the origin of the chemical species hideout process. These direct observations of the cladding surfaces subjected to nucleate boiling conditions provide information about the development of the boiling mechanisms in relation to the morphology of the oxide layers (porosity, thickness, roughness). (author)

  18. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators

    Energy Technology Data Exchange (ETDEWEB)

    Eichmann, Marion; Fluehs, Dirk; Spaan, Bernhard [Fakultaet Physik, Technische Universitaet Dortmund, D 44221 Dortmund (Germany); Klinische Strahlenphysik, Universitaetsklinikum Essen, D 45122 Essen (Germany); Fakultaet Physik, Technische Universitaet Dortmund, D 44221 Dortmund (Germany)

    2009-10-15

    Purpose: The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. Methods: In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. Results: The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. Conclusions: The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate

  19. Development of a high precision dosimetry system for the measurement of surface dose rate distribution for eye applicators.

    Science.gov (United States)

    Eichmann, Marion; Flühs, Dirk; Spaan, Bernhard

    2009-10-01

    The therapeutic outcome of the therapy with ophthalmic applicators is highly dependent on the application of a sufficient dose to the tumor, whereas the dose applied to the surrounding tissue needs to be minimized. The goal for the newly developed apparatus described in this work is the determination of the individual applicator surface dose rate distribution with a high spatial resolution and a high precision in dose rate with respect to time and budget constraints especially important for clinical procedures. Inhomogeneities of the dose rate distribution can be detected and taken into consideration for the treatment planning. In order to achieve this, a dose rate profile as well as a surface profile of the applicator are measured and correlated with each other. An instrumental setup has been developed consisting of a plastic scintillator detector system and a newly designed apparatus for guiding the detector across the applicator surface at a constant small distance. It performs an angular movement of detector and applicator with high precision. The measurements of surface dose rate distributions discussed in this work demonstrate the successful operation of the measuring setup. Measuring the surface dose rate distribution with a small distance between applicator and detector and with a high density of measuring points results in a complete and gapless coverage of the applicator surface, being capable of distinguishing small sized spots with high activities. The dosimetrical accuracy of the measurements and its analysis is sufficient (uncertainty in the dose rate in terms of absorbed dose to water is <7%), especially when taking the surgical techniques in positioning of the applicator on the eyeball into account. The method developed so far allows a fully automated quality assurance of eye applicators even under clinical conditions. These measurements provide the basis for future calculation of a full 3D dose rate distribution, which then can be used as input for

  20. A Rate Adaptation Scheme According to Channel Conditions in Wireless LANs

    Science.gov (United States)

    Numoto, Daisuke; Inai, Hiroshi

    Rate adaptation in wireless LANs is to select the most suitable transmission rate automatically according to channel condition. If the channel condition is good, a station can choose a higher transmission rate, otherwise, it should choose a lower but noise-resistant transmission rate. Since IEEE 802.11 does not specify any rate adaptation scheme, several schemes have been proposed. However those schemes provide low throughput or unfair transmission opportunities among stations especially when the number of stations increases. In this paper, we propose a rate adaptation scheme under which the transmission rate quickly closes and then stays around an optimum rate even in the presence of a large number of stations. Via simulation, our scheme provides higher throughput than existing ones and almost equal fairness.

  1. Areal-averaged trace gas emission rates from long-range open-path measurements in stable boundary layer conditions

    Directory of Open Access Journals (Sweden)

    K. Schäfer

    2012-07-01

    Full Text Available Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2 are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s−1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N2O emissions of flat grassland and NH3 emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions.

  2. Surface runoff and soil erosion by difference of surface cover characteristics using by an oscillating rainfall simulator

    Science.gov (United States)

    Kim, J. K.; Kim, M. S.; Yang, D. Y.

    2017-12-01

    Sediment transfer within hill slope can be changed by the hydrologic characteristics of surface material on hill slope. To better understand sediment transfer of the past and future related to climate changes, studies for the changes of soil erosion due to hydrological characteristics changes by surface materials on hill slope are needed. To do so, on-situ rainfall simulating test was conducted on three different surface conditions, i.e. well covered with litter layer condition (a), undisturbed bare condition (b), and disturbed bare condition (c) and these results from rainfall simulating test were compared with that estimated using the Limburg Soil Erosion Model (LISEM). The result from the rainfall simulating tests showed differences in the infiltration rate (a > b > c) and the highest soil erosion rate was occurred on c condition. The result from model also was similar to those from rainfall simulating tests, however, the difference from the value of soil erosion rate between two results was quite large on b and c conditions. These results implied that the difference of surface conditions could change the surface runoff and soil erosion and the result from the erosion model might significantly underestimate on bare surface conditions rather than that from rainfall simulating test.

  3. Regularity conditions of the field on a toroidal magnetic surface

    International Nuclear Information System (INIS)

    Bouligand, M.

    1985-06-01

    We show that a field B vector which is derived from an analytic canonical potential on an ordinary toroidal surface is regular on this surface when the potential satisfies an elliptic equation (owing to the conservative field) subject to certain conditions of regularity of its coefficients [fr

  4. Repairability of Compomers with Different Methods of Surface Conditioning

    Directory of Open Access Journals (Sweden)

    P.Samimi

    2005-06-01

    Full Text Available Statement of Problem: Considering the cost and amount of time and also the quantity of tooth loss in the process of cavity preparation, repair of the restoration instead of itsreplacement would be much more efficient.Purpose: The aim of this study was to determine the effect of different methods of surface conditioning on the shear bond strength of repaired compomers.Materials and Methods: Sixty blocks of compomer were prepared in acrylic molds and then they were randomly divided into five groups of 12. Group I (control groupreceived no treatment. The remaining samples were immersed in 37 ºC distilled water for one week, then the surfaces were roughened with a coarse diamond bur. Samples ineach group were prepared by different surface treatment and conditioning: In group II specimens were conditioned with 35% phosphoric acid for 20s. Specimens in group III were etched with 10% polyacrylic acid for 20s. In group IV 1.23% acidulated phosphatefluoride was applied for 30s, and compomer surfaces were sandblasted with 50μm Al2O3 powder in group V. After the initial preparations, all groups were treated with silane and resin before bonding of the second mix of compomer. Shear forces were applied with a universal testing machine at a cross-head speed of 5mm/min. The data were analyzed using one-way ANOVA and Duncan's multiple range tests.Results: The mean shear bond strengths and standard deviations (in parentheses for groups I to V were 31.56(10.86, 20.02(5.49, 17.74(7.34, 19.31(4.31 and 27.7(6.33MPa, respectively. The mean bond strengths for Groups I and V were significantly higher than that of the other groups (P<0.05.Conclusion: The results showed that among the surface treatments used in this study,sandblasting with alumina could be the best surface preparation method for repairing compomer restorations.

  5. Analytical solution describing pesticide volatilization from soil affected by a change in surface condition.

    Science.gov (United States)

    Yates, S R

    2009-01-01

    An analytical solution describing the fate and transport of pesticides applied to soils has been developed. Two pesticide application methods can be simulated: point-source applications, such as idealized shank or a hot-gas injection method, and a more realistic shank-source application method that includes a vertical pesticide distribution in the soil domain due to a soil fracture caused by a shank. The solutions allow determination of the volatilization rate and other information that could be important for understanding fumigant movement and in the development of regulatory permitting conditions. The solutions can be used to characterize differences in emissions relative to changes in the soil degradation rate, surface barrier conditions, application depth, and soil packing. In some cases, simple algebraic expressions are provided that can be used to obtain the total emissions and total soil degradation. The solutions provide a consistent methodology for determining the total emissions and can be used with other information, such as field and laboratory experimental data, to support the development of fumigant regulations. The uses of the models are illustrated by several examples.

  6. Osteogenic potential of laser modified and conditioned titanium zirconium surfaces

    Directory of Open Access Journals (Sweden)

    P David Charles

    2016-01-01

    Full Text Available Statement of Problem: The osseointegration of dental implant is related to their composition and surface treatment. Titanium zirconium (TiZr has been introduced as an alternative to the commercially pure titanium and its alloys as dental implant material, which is attributed to its superior mechanical and biological properties. Surface treatments of TiZr have been introduced to enhance their osseointegration ability; however, reliable, easy to use surface modification technique has not been established. Purpose: The purpose of this study was to evaluate and compare the effect of neodymium-doped yttrium aluminum garnet (Nd-YAG laser surface treatment of TiZr implant alloy on their osteogenic potential. Materials and Methods: Twenty disc-shaped samples of 5 mm diameter and 2 mm height were milled from the TiZr alloy ingot. The polished discs were ultrasonically cleaned in distilled water. Ten samples each were randomly selected as Group A control samples and Group B consisted of Nd-YAG laser surface etched and conditioned test samples. These were evaluated for cellular response. Cellular adhesion and proliferation were quantified, and the results were statistically analyzed using nonparametric analysis. Cellular morphology was observed using electron and epiflurosence microscopy. Results: Nd-YAG laser surface modified and conditioned TiZr samples increased the osteogenic potential. Conclusion: Nd-YAG laser surface modification of TiZr, improves the cellular activity, surface roughness, and wettability, thereby increasing the osteogenic potential.

  7. Optimization of Coolant Technique Conditions for Machining A319 Aluminium Alloy Using Response Surface Method (RSM)

    Science.gov (United States)

    Zainal Ariffin, S.; Razlan, A.; Ali, M. Mohd; Efendee, A. M.; Rahman, M. M.

    2018-03-01

    Background/Objectives: The paper discusses about the optimum cutting parameters with coolant techniques condition (1.0 mm nozzle orifice, wet and dry) to optimize surface roughness, temperature and tool wear in the machining process based on the selected setting parameters. The selected cutting parameters for this study were the cutting speed, feed rate, depth of cut and coolant techniques condition. Methods/Statistical Analysis Experiments were conducted and investigated based on Design of Experiment (DOE) with Response Surface Method. The research of the aggressive machining process on aluminum alloy (A319) for automotive applications is an effort to understand the machining concept, which widely used in a variety of manufacturing industries especially in the automotive industry. Findings: The results show that the dominant failure mode is the surface roughness, temperature and tool wear when using 1.0 mm nozzle orifice, increases during machining and also can be alternative minimize built up edge of the A319. The exploration for surface roughness, productivity and the optimization of cutting speed in the technical and commercial aspects of the manufacturing processes of A319 are discussed in automotive components industries for further work Applications/Improvements: The research result also beneficial in minimizing the costs incurred and improving productivity of manufacturing firms. According to the mathematical model and equations, generated by CCD based RSM, experiments were performed and cutting coolant condition technique using size nozzle can reduces tool wear, surface roughness and temperature was obtained. Results have been analyzed and optimization has been carried out for selecting cutting parameters, shows that the effectiveness and efficiency of the system can be identified and helps to solve potential problems.

  8. Rate of mass deposition of scaling compounds from seawater on the outer surface of heat exchangers in MED evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Omar, W. [Department of Natural Resources and Chemical Engineering, Tafila Technical University, Tafila (Jordan); Ulrich, J. [FB Ingenieurwissenschaften, Institut fuer Verfahrenstechnik/TVT, Martin-Luther-Universitaet Halle-Wittenberg, Halle (Germany)

    2006-08-15

    The scaling problem in Multi Effect Distillation (MED) evaporators is investigated by the experimental measurement of the deposition rate under different operating conditions. The measurements are conducted in a batch vessel containing artificial seawater, which is allowed to contact the outer surface of a hot pipe under controlled temperature, salinity and pH. The rate of mass deposition is higher at elevated temperature. The salinity of the seawater also influences the scaling process - an increase in salinity from 47-59 g/L leads to an increase of 75.6 % in the deposition rate. Decreasing the pH value of seawater to 2.01 results in a complete inhibition of scaling, whereas the severity of the scaling increases in neutral and basic mediums. Polyacrylic acid is tested as an antifoulant and it was found that its presence in seawater reduces the scaling process. The nature of the heat transfer surface material also plays an important role in the scaling process. It is found experimentally that the rate of scaling is higher in the case of a Cu-Ni alloy as the surface material of the tube rather than stainless steel. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. Evaluation of the contribution of contamination of radiotherapy room surfaces in the measure of exposure rate of radioiodine therapy patients

    International Nuclear Information System (INIS)

    Campos, Rafael Ferreira

    2015-01-01

    The contamination of radiotherapy room surfaces is significant and the measures of patient exposure rate are held on the fourth dependencies, relevant questions are raised: the background radiation of the room stay high due to surface contamination, may interfere with the rate of patient exposure at the time of its release? The monitoring site is important to determine whether the patient will be released? The value of the deal activity and the clinical condition of the patient may increase the contamination, influencing the monitoring results? This paper aims to conduct a quantitative analysis of surface contamination of the contribution of therapeutic room at the time is monitored exposure rate from inpatient. Measurements were made regarding the hospitalization of 32 patients with different doses administered activity, age and of both genders. The measurements were performed in the therapeutic rooms at the hospital Brotherhood Santa Casa de Misericordia de Sao Paulo. Exposure rate measurements were performed at the center of the room at 1 meter of the patient on the day of its release. After his release and prior to decontamination, measurements were performed at predetermined landmarks within the therapeutic room. The results revealed that on average background radiation, high due to surface contamination contributes only 2% of the patient dose rate. It can be considered that even with influence of contamination of surfaces, this is insignificant to determine if the patient may or may not be released. This study suggests that the site in which monitoring occurs exposure rate of the patient should not be decisive for liberation thereof. (author)

  10. Jump rates for surface diffusion of large molecules from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2015-04-21

    We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). We find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.

  11. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces.

    Science.gov (United States)

    Shu, Shi; Morrison, Glenn C

    2011-05-15

    Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.

  12. Testing of newly developed functional surfaces under pure sliding conditions

    DEFF Research Database (Denmark)

    Godi, Alessandro; Mohaghegh, Kamran; Grønbæk, J.

    2013-01-01

    the surfaces in an industrial context. In this paper, a number of experimental tests were performed using a novel test rig, called axial sliding test, simulating the contact of surfaces under pure sliding conditions. The aim of the experiments is to evaluate the frictional behavior of a new typology...... of textured surfaces, the so-called multifunctional surfaces, characterized by a plateau area able to bear loads and a deterministic pattern of lubricant pockets. Six surface typologies, namely three multifunctional and three machined using classical processes, were chosen to slide against a mirror....... The results comparison showed clearly how employing multifunctional surfaces can reduce friction forces up to 50 % at high normal loads compared to regularly ground or turned surfaces. Friction coefficients approximately equal to 0.12 were found for classically machined surfaces, whereas the values were 0...

  13. The effects of operational conditions on the respiration rate of Tubificidae.

    Directory of Open Access Journals (Sweden)

    Juqing Lou

    Full Text Available Tubificidae is often used in the wastewater treatment systems to minimize the sludge production because it can be fed on the activated sludge. The process conditions have effect on the growth, reproduction, and sludge reduction efficiency of Tubificidae. The effects of the water quality, density of worms, pH, temperature and dissolved oxygen (DO concentration on the respiration rate of Tubificidae were investigated to determine the optimal conditions for the growth and metabolism of the worms and reveal the mechanisms involving the efficient sludge reduction in terms of these conditions. It was observed that the respiration rate was highest in the water discharged from an ecosystem that included symbiotic Tubificidae and microbes and was lowest in distilled water. Considering density of the worms, the highest rate was 81.72±5.12 mg O2/g(dry weight·h·L with 0.25 g (wet weight of worms in 1 L test flask. The maximum Tubificidae respiration rate was observed at a pH of 8.0±0.05, a rate that was more than twice as high as those observed at other pH values. The respiration rate increased in the temperature range of ∼8°C-22°C, whereas the rate declined in the temperature range of ∼22°C-30°C. The respiration rate of Tubificidae was very high for DO range of ∼3.5-4.5 mg/L, and the rates were relatively low for out of this DO range. The results of this study revealed the process conditions which influenced the growth, and reproduction of Tubificidae and sludge reduction at a microscopic level, which could be a theoretical basis for the cultivation and application of Tubificidae in wastewater treatment plants.

  14. Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions

    Science.gov (United States)

    Zhang, Zhihui; Shao, Feixian; Liang, Yunhong; Lin, Pengyu; Tong, Xin; Ren, Luquan

    2017-07-01

    Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.

  15. Environmental conditions influence tissue regeneration rates in scleractinian corals.

    Science.gov (United States)

    Sabine, Alexis M; Smith, Tyler B; Williams, Dana E; Brandt, Marilyn E

    2015-06-15

    Natural and anthropogenic factors may influence corals' ability to recover from partial mortality. To examine how environmental conditions affect lesion healing, we assessed several water quality parameters and tissue regeneration rates in corals at six reefs around St. Thomas, US Virgin Islands. We hypothesized that sites closer to developed areas would have poor water quality due to proximity to anthropogenic stresses, which would impede tissue regeneration. We found that water flow and turbidity most strongly influenced lesion recovery rates. The most impacted site, with high turbidity and low flow, recovered almost three times slower than the least impacted site, with low turbidity, high flow, and low levels of anthropogenic disturbance. Our results illustrate that in addition to lesion-specific factors known to affect tissue regeneration, environmental conditions can also control corals' healing rates. Resource managers can use this information to protect low-flow, turbid nearshore reefs by minimizing sources of anthropogenic stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. 13 CFR 120.214 - What conditions apply for variable interest rates?

    Science.gov (United States)

    2010-01-01

    ... interest rates? 120.214 Section 120.214 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Policies Specific to 7(a) Loans Maturities; Interest Rates; Loan and Guarantee Amounts § 120.214 What conditions apply for variable interest rates? A Lender may use a variable rate of interest...

  17. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    OpenAIRE

    Scheuerlein, C; Hilleret, Noël; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis resu...

  18. The dissolution rate constant of magnetite in water at different temperatures and pH conditions

    International Nuclear Information System (INIS)

    Mohajery, Khatereh; Deydier de Pierrefeu, Laurent; Lister, Derek H.

    2012-09-01

    Under the nominal conditions of power system coolants, the corrosion of components made of carbon steel is limited by the magnetite films that develop on surfaces. In some situations, the magnetite film loses much of its protective ability and corrosion and loss of iron to the system are exacerbated. Common examples of such situations occur when the system is non-isothermal so that temperature gradients cause differences in magnetite solubility around the circuit; the resulting areas of under-saturation in iron give rise to dissolution of normally protective films. Condensing steam in two-phase systems may also promote oxide dissolution. When the turbulence in the system is high, oxide degradation is aggravated and flow-accelerated corrosion (FAC) results. The subsequent increased loading of systems with iron leads to fouling of flow passages and heat transfer surfaces and in reactor primary coolants to rising radiation fields, while FAC can have disastrous results in terms of pipe wall thinning and eventual rupture. Magnetite dissolution is clearly a key contributor to these processes. Thus, the conventional mechanistic description of FAC postulates magnetite dissolution in series with mass transfer of iron from the film to the bulk coolant. In the resulting equations, if the dissolution rate constant is considerably less than the mass transfer coefficient for a particular situation, dissolution will control and flow should have no effect. This is clearly untenable for FAC, so it is often assumed that mass transfer controls and the contribution from oxide dissolution is ignored - on occasion when data on dissolution kinetics are available and sometimes when those data show that dissolution should control. In most cases, however, dissolution rate constants for magnetite are not available. At UNB Nuclear we have a research program using a high-temperature loop to measure dissolution rates of magnetite in water under various conditions of flow, temperature and

  19. Surface layer conditions of the atmosphere over western Bay of Bengal during Monex

    Digital Repository Service at National Institute of Oceanography (India)

    Anto, A.F.; Rao, L.V.G.; Somayajulu, Y.K.

    Based on surface meteorological data and wave data collected from 2 stations in the western Bay of Bengal in July 1979, surface layer (SL) conditions of the atmosphere for different situations of surface circulations and the associated sea surface...

  20. Surface applicators for high dose rate brachytherapy in AIDS-related kaposi's sarcoma

    International Nuclear Information System (INIS)

    Evans, Michael D.C.; Yassa, Mariam; Podgorsak, Ervin B.; Roman, Ted N.; Schreiner, L. John; Souhami, Luis

    1997-01-01

    Purpose: The development of commercially available surface applicators using high dose rate remote afterloading devices has enabled radiotherapy centers to treat selected superficial lesions using a remote afterloading brachytherapy unit. The dosimetric parameters of these applicators, the clinical implementation of this technique, and a review of the initial patient treatment regimes are presented. Methods and Materials: A set of six fixed-diameter (1, 2, and 3 cm), tungsten/steel surface applicators is available for use with a single stepping-source (Ir-192, 370 GBq) high dose rate afterloader. The source can be positioned either in a parallel or perpendicular orientation to the treatment plane at the center of a conical aperture that sits at an SSD of approximately 15 mm and is used with a 1-mm thick removable plastic cap. The surface dose rates, percent depth dose, and off-axis ratios were measured. A custom-built, ceiling-mounted immobilization device secures the applicator on the surface of the patient's lesion during treatment. Results: Between November 1994, and September 1996, 16 AIDS-related Kaposi's sarcoma patients having a total of 120 lesions have been treated with palliative intent. Treatment sites were distributed between the head and neck, extremity, and torso. Doses ranged from 8 to 20 Gy, with a median dose of 10 Gy delivered in a single fraction. Treatments were well tolerated with minimal skin reaction, except for patients with lesions treated to 20 Gy who developed moderate/severe desquamation. Conclusion: Radiotherapy centers equipped with a high dose rate remote afterloading unit may treat small selected surface lesions with commercially available surface applicators. These surface applicators must be used with a protective cap to eliminate electron contamination. The optimal surface dose appears to be either 10 or 15 Gy depending upon the height of the lesion

  1. Evaluation of Scaling Approaches for the Oceanic Dissipation Rate of Turbulent Kinetic Energy in the Surface Ocean

    Science.gov (United States)

    Esters, L. T.; Ward, B.; Sutherland, G.; Ten Doeschate, A.; Landwehr, S.; Bell, T. G.; Christensen, K. H.

    2016-02-01

    The air-sea exchange of heat, gas and momentum plays an important role for the Earth's weather and global climate. The exchange processes between ocean and atmosphere are influenced by the prevailing surface ocean dynamics. This surface ocean is a highly turbulent region where there is enhanced production of turbulent kinetic energy (TKE). The dissipation rate of TKE (ɛ) in the surface ocean is an important process for governing the depth of both the mixing and mixed layers, which are important length-scales for many aspects of ocean research. However, there exist very limited observations of ɛ under open ocean conditions and consequently our understanding of how to model the dissipation profile is very limited. The approaches to model profiles of ɛ that exist, differ by orders of magnitude depending on their underlying theoretical assumption and included physical processes. Therefore, scaling ɛ is not straight forward and requires open ocean measurements of ɛ to validate the respective scaling laws. This validated scaling of ɛ, is for example required to produce accurate mixed layer depths in global climate models. Errors in the depth of the ocean surface boundary layer can lead to biases in sea surface temperature. Here, we present open ocean measurements of ɛ from the Air-Sea Interaction Profiler (ASIP) collected during several cruises in different ocean basins. ASIP is an autonomous upwardly rising microstructure profiler allowing undisturbed profiling up to the ocean surface. These direct measurements of ɛ under various types of atmospheric and oceanic conditions along with measurements of atmospheric fluxes and wave conditions allow us to make a unique assessment of several scaling approaches based on wind, wave and buoyancy forcing. This will allow us to best assess the most appropriate ɛ-based parameterisation for air-sea exchange.

  2. Maximum Evaporation Rates of Water Droplets Approaching Obstacles in the Atmosphere Under Icing Conditions

    Science.gov (United States)

    Lowell, H. H.

    1953-01-01

    When a closed body or a duct envelope moves through the atmosphere, air pressure and temperature rises occur ahead of the body or, under ram conditions, within the duct. If cloud water droplets are encountered, droplet evaporation will result because of the air-temperature rise and the relative velocity between the droplet and stagnating air. It is shown that the solution of the steady-state psychrometric equation provides evaporation rates which are the maximum possible when droplets are entrained in air moving along stagnation lines under such conditions. Calculations are made for a wide variety of water droplet diameters, ambient conditions, and flight Mach numbers. Droplet diameter, body size, and Mach number effects are found to predominate, whereas wide variation in ambient conditions are of relatively small significance in the determination of evaporation rates. The results are essentially exact for the case of movement of droplets having diameters smaller than about 30 microns along relatively long ducts (length at least several feet) or toward large obstacles (wings), since disequilibrium effects are then of little significance. Mass losses in the case of movement within ducts will often be significant fractions (one-fifth to one-half) of original droplet masses, while very small droplets within ducts will often disappear even though the entraining air is not fully stagnated. Wing-approach evaporation losses will usually be of the order of several percent of original droplet masses. Two numerical examples are given of the determination of local evaporation rates and total mass losses in cases involving cloud droplets approaching circular cylinders along stagnation lines. The cylinders chosen were of 3.95-inch (10.0+ cm) diameter and 39.5-inch 100+ cm) diameter. The smaller is representative of icing-rate measurement cylinders, while with the larger will be associated an air-flow field similar to that ahead of an airfoil having a leading-edge radius

  3. Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model

    Science.gov (United States)

    Shellito, Peter J.; Small, Eric E.; Livneh, Ben

    2018-03-01

    Drydown periods that follow precipitation events provide an opportunity to assess controls on soil evaporation on a continental scale. We use SMAP (Soil Moisture Active Passive) observations and Noah simulations from drydown periods to quantify the role of soil moisture, potential evaporation, vegetation cover, and soil texture on soil drying rates. Rates are determined using finite differences over intervals of 1 to 3 days. In the Noah model, the drying rates are a good approximation of direct soil evaporation rates, and our work suggests that SMAP-observed drying is also predominantly affected by direct soil evaporation. Data cover the domain of the North American Land Data Assimilation System Phase 2 and span the first 1.8 years of SMAP's operation. Drying of surface soil moisture observed by SMAP is faster than that simulated by Noah. SMAP drying is fastest when surface soil moisture levels are high, potential evaporation is high, and when vegetation cover is low. Soil texture plays a minor role in SMAP drying rates. Noah simulations show similar responses to soil moisture and potential evaporation, but vegetation has a minimal effect and soil texture has a much larger effect compared to SMAP. When drying rates are normalized by potential evaporation, SMAP observations and Noah simulations both show that increases in vegetation cover lead to decreases in evaporative efficiency from the surface soil. However, the magnitude of this effect simulated by Noah is much weaker than that determined from SMAP observations.

  4. Determining Surface Infiltration Rate of Permeable Pavements with Digital Imaging

    Directory of Open Access Journals (Sweden)

    Caterina Valeo

    2018-01-01

    Full Text Available Cell phone images of pervious pavement surfaces were used to explore relationships between surface infiltration rates (SIR measured using the ASTM C1701 standard test and using a simple falling head test. A fiber-reinforced porous asphalt surface and a highly permeable material comprised of stone, rubber and a polymer binder (Porous Pave were tested. Images taken with a high-resolution cellphone camera were acquired as JPEG files and converted to gray scale images in Matlab® for analysis. The distribution of gray levels was compared to the surface infiltration rates obtained for both pavements with attention given to the mean of the distribution. Investigation into the relationships between mean SIR and parameters determined from the gray level distribution produced in the image analysis revealed that mean SIR measured in both pavements were proportional to the inverse of the mean of the distribution. The relationships produced a coefficient of determination over 85% using both the ASTM and the falling head test in the porous asphalt surface. SIR measurements determined with the ASTM method were highly correlated with the inverse mean of the distribution of gray levels in the Porous Pave material as well, producing coefficients of determination of over 90% and Kendall’s tau-b of roughly 70% for nonparametric data.

  5. Skating on thin ice: surface chemistry under interstellar conditions

    Science.gov (United States)

    Fraser, H.; van Dishoeck, E.; Tielens, X.

    Solid CO2 has been observed towards both active star forming regions and quiescent clouds (Gerakines et. al. (1999)). The high abundance of CO2 in the solid phase, and its low abundance in the gas phase, support the idea that CO2 is almost exclusively formed in the solid state. Several possible formation mechanisms have been postulated (Ruffle &Herbst (2001): Charnley &Kaufman (2000)), and the detection of CO2 towards quiescent sources such as Elias 16 (Whittet et. al. (1998)) clearly suggests that CO2 can be produced in the absence of UV or electron mediated processes. The most likely route is via the surface reactions between O atoms, or OH radicals, and CO. The tools of modern surface- science offer us the potential to determine many of the physical and chemical attributes of icy interstellar grain mantles under highly controlled conditions, that closely mimic interstellar environments. The Leiden Surface Reaction Simulation Device ( urfreside) combines UHV (UltraS High Vacuum) surface science techniques with an atomic beam to study chemical reactions occurring on the SURFACE and in the BULK of interstellar ice grain mimics. By simultaneously combining two or more surface analysis techniques, the chemical kinetics, reaction mechanisms and activation energies can be determined directly. The experiment is aimed at identifying the key barrierless reactions and desorption pathways on and in H2 O and CO ices under interstellar conditions. The results from traditional HV (high vacuum) and UHV studies of the CO + O and CO + OH reactions will be presented in this paper. Charnley, S.B., & Kaufman, M.J., 2000, ApJ, 529, L111 Gerakines, P.A., 1999, ApJ, 522, 357 Ruffle, D.P., & Herbst, E., 2001, MNRAS, 324, 1054 Whittet, D.C.B., et.al., 1998, ApJ, 498, L159

  6. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.; Breward, C. J. W.; Howell, P. D.; Oliver, J. M.

    2012-01-01

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown

  7. High speed surface cleaning by a high repetition rated TEA-CO2 laser

    International Nuclear Information System (INIS)

    Tsunemi, Akira; Hirai, Ryo; Hagiwara, Kouji; Nagasaka, Keigo; Tashiro, Hideo

    1994-01-01

    We demonstrated the feasibility of high speed cleaning of solid surfaces by the laser ablation technique using a TEA-CO 2 laser. The laser pulses with the repetition rate of 1 kHz were applied to paint, rust, moss and dirt attached on the surfaces. The attachments were effectively removed without the damage of bulk surfaces by the irradiation of line-focused sequential pulses with an energy of 300 mJ/pulse. A cleaning rate reached to 17 m 2 /hour for the case of paint removal from iron surfaces. (author)

  8. CONDITIONING OF INTERMEDIATE-LEVEL WASTE AT FORSCHUNGSZENTRUM JUELICH GMBH

    International Nuclear Information System (INIS)

    Krumbach, H.

    2003-01-01

    This contribution to the group of low-level, intermediate, mixed and hazardous waste describes the conditioning of intermediate-level mixed waste (dose rate above 10 mSv/h at the surface) from Research Centre Juelich (FZJ). Conditioning of the waste by supercompaction is performed at Research Centre Karlsruhe (FZK). The waste described is radioactive waste arising from research at Juelich. This waste includes specimens and objects from irradiation experiments in the research reactors Merlin (FRJ-1) and Dido (FRJ-2) at FZJ. In principle, radioactive waste at Forschungszentrum Juelich GmbH is differentiated by the surface dose rate at the waste package. Up to a surface dose rate of 10 mSv/h, the waste is regarded as low-level. The radioactive waste described here has a surface dose rate above 10 mSv/h. Waste up to 10 mSv/h is conditioned at the Juelich site according to different conditioning methods. The intermediate-level waste can only be conditioned by supercompaction in the processing facility for intermediate-level waste from plant operation at Research Centre Karlsruhe. Research Centre Juelich also uses this waste cell to condition its intermediate-level waste from plant operation

  9. Effect of deposition conditions on the growth rate and electrical properties of ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Roro, K.T.; Botha, J.R.; Leitch, A.W.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2008-07-01

    ZnO thin films have been grown on glass substrates by MOCVD. The effect of deposition conditions such as VI/II molar ratio, DEZn flow rate and total reactor pressure on the growth rate and electrical properties of the films was studied. It is found that the growth rate decreases with an increase in the VI/II molar ratio. This behaviour is ascribed to the competitive adsorption of reactant species on the growth surface. The growth rate increases with an increase in DEZn flow rate, as expected. It is shown that the carrier concentration is independent of the DEZn flow rate. An increase in the total reactor pressure yields a decrease in growth rate. This phenomenon is attributed to the depletion of the gas phase due to parasitic prereactions between zinc and oxygen species at high pressure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Adaptative changes of leaf surface of tropical orchid Cattleya gaskelliana (N.E.Br. B.S. Williams after transferring from in vitro to ex vitro conditions

    Directory of Open Access Journals (Sweden)

    Lyudmila I. Buyun

    2013-04-01

    Full Text Available The leaf surface micromorphology of Cattleya gaskellianajuvenile plants, propagated in vitrofrom seeds, as well as of adult plants, cultivated in glasshouse, was analyzed by scanning electron microscopy (SEM. The leaves of both juvenile and adult plants are hypostomatic, their stomata are of tetracytic type. It was found that development of single stomata on the adaxial leaf surface of juvenile plants was induced byin vitro conditions. During the acclimation of in vitro propagated plants to glasshouse conditions the following changes of leaf surface micromorphology have been observed: 1 configuration of epidermal cells changed; 2 dimensions of typical epidermal cells reduced; 3 stomata density and their dimensions increased. The results suggest that structural changes, probably, can be regarded as an adaptation to avoid excessive rate leaf transpiration during a period of C. gaskelliana juvenile plants acclimation to glasshouse conditions. In the case when micromorphological leaf characteristics (stomata density per mm2, stomatal index, epidermal cells number per mm 2 of in vitro propagated plants of C. gaskelliana were comparable to those of adult plants, survival rate was more than 95%.

  11. Surface Acoustic Wave (SAW Resonators for Monitoring Conditioning Film Formation

    Directory of Open Access Journals (Sweden)

    Siegfried Hohmann

    2015-05-01

    Full Text Available We propose surface acoustic wave (SAW resonators as a complementary tool for conditioning film monitoring. Conditioning films are formed by adsorption of inorganic and organic substances on a substrate the moment this substrate comes into contact with a liquid phase. In the case of implant insertion, for instance, initial protein adsorption is required to start wound healing, but it will also trigger immune reactions leading to inflammatory responses. The control of the initial protein adsorption would allow to promote the healing process and to suppress adverse immune reactions. Methods to investigate these adsorption processes are available, but it remains difficult to translate measurement results into actual protein binding events. Biosensor transducers allow user-friendly investigation of protein adsorption on different surfaces. The combination of several transduction principles leads to complementary results, allowing a more comprehensive characterization of the adsorbing layer. We introduce SAW resonators as a novel complementary tool for time-resolved conditioning film monitoring. SAW resonators were coated with polymers. The adsorption of the plasma proteins human serum albumin (HSA and fibrinogen onto the polymer-coated surfaces were monitored. Frequency results were compared with quartz crystal microbalance (QCM sensor measurements, which confirmed the suitability of the SAW resonators for this application.

  12. Rate equation analysis of hydrogen uptake on Si (100) surfaces

    International Nuclear Information System (INIS)

    Inanaga, S.; Rahman, F.; Khanom, F.; Namiki, A.

    2005-01-01

    We have studied the uptake process of H on Si (100) surfaces by means of rate equation analysis. Flowers' quasiequilibrium model for adsorption and desorption of H [M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, Surf. Sci. 396, 227 (1998)] is extended so that in addition to the H abstraction (ABS) and β 2 -channel thermal desorption (TD) the proposed rate equation further includes the adsorption-induced desorption (AID) and β 1 -TD. The validity of the model is tested by the experiments of ABS and AID rates in the reaction system H+D/Si (100). Consequently, we find it can well reproduce the experimental results, validating the proposed model. We find the AID rate curve as a function of surface temperature T s exhibits a clear anti-correlation with the bulk dangling bond density versus T s curve reported in the plasma-enhanced chemical vapor deposition (CVD) for amorphous Si films. The significance of the H chemistry in plasma-enhanced CVD is discussed

  13. A calculation of the surface recombination rate constant for hydrogen isotopes on metals

    International Nuclear Information System (INIS)

    Baskes, M.J.

    1980-01-01

    The surface recombination rate constant for hydrogen isotopes on a metal has been calculated using a simple model whose parameters may be determined by direct experimental measurements. Using the experimental values for hydrogen diffusivity, solubility, and sticking coefficient at zero surface coverage a reasonable prediction of the surface recombination constant may be made. The calculated recombination constant is in excellent agreement with experiment for bcc iron. A heuristic argument is developed which, along with the rate constant calculation, shows that surface recombination is important in those metals in which hydrogen has an exothermic heat of solution. (orig.)

  14. Influence of product thickness, chamber pressure and heating conditions on production rate of freeze-dried yoghurt

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, N.K. [G.B. Pant Univ., of Agriculture and Technology (India). Dept. of Mechanical Engineering; Arora, C.P. [Indian Inst. of Tech., New Delhi (India)

    1995-06-01

    The effects of product thickness, chamber pressure and heating conditions on product temperature profiles and production rate of freeze-dried yoghurt were investigated experimentally. Three sample thicknesses - 3.8 mm, 6.2 mm and 9.4 mm - were tested at chamber pressures of 0.01 and 0.5 mmHg. The production rate increased by decreasing product thickness in contact heating through the bottom of the frozen layer, whereas no significant change was observed in radiant heating. A reduction in chamber pressure from 0.50 to 0.01 mmHg increased the drying time in radiant heating. Maximum production rate was obtained when the thickness of dried product was 6.2 mm, when heat was transferred simultaneously through the frozen and dried layers, and the chamber pressure was at 0.01 mmHg. Use of the product tray developed in this study prevents the growth of dry layers at the contact surfaces. (Author)

  15. First-order dissolution rate law and the role of surface layers in glass performance assessment

    Science.gov (United States)

    Grambow, B.; Müller, R.

    2001-09-01

    The first-order dissolution rate law is used for nuclear waste glass performance predictions since 1984. A first discussion of the role of saturation effects was initiated at the MRS conference that year. In paper (1) it was stated that "For glass dissolution A* (the reaction affinity) cannot become zero since saturation only involves the reacting surface while soluble elements still might be extracted from the glass" [B. Grambow, J. Mater. Res. Soc. Symp. Proc. 44 (1985) 15]. Saturation of silica at the surface and condensation of surface silanol groups was considered as being responsible for the slow down of reaction rates by as much as a factor of 1000. Precipitation of Si containing secondary phases such as quartz was invoked as a mechanism for keeping final dissolution affinities higher than zero. Another (2) paper [A.B. Barkatt, P.B. Macedo, B.C. Gibson, C.J. Montrose, J. Mater. Res. Soc. Symp. Proc. 44 (1985) 3] stated that "… under repository conditions the extent of glass dissolution will be moderate due to saturation with respect to certain major elements (in particular, Si, Al and Ca). Consequently, the concentration levels of the more soluble glass constituents in the aqueous medium are expected to fall appreciable below their solubility limit." The formation of dense surface layers was considered responsible for explaining the saturation effect. The mathematical model assumed stop of reaction in closed systems, once solubility limits were achieved. For more than 15 years the question of the correctness of one or the other concept has seldom been posed and has not yet been resolved. The need of repository performance assessment for validated rate laws demands a solution, particularly since the consequences of the two concepts and research requirements for the long-term glass behavior are quite different. In concept (1) the stability of the `equilibrium surface region' is not relevant because, by definition, this region is stable chemically and after a

  16. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)

    2015-02-01

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  17. Experimental study of the surface thermal signature of gravity currents: application to the assessment of lava flow effusion rate

    Science.gov (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2011-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a

  18. A New Rig for Testing Textured Surfaces in Pure Sliding Conditions

    DEFF Research Database (Denmark)

    Godi, Alessandro; Grønbæk, J.; Mohaghegh, Kamran

    2013-01-01

    machineries are necessary: a press to provide the normal pressure and a tensile machine to perform the axial movements. The test is calibrated so that the correspondence between the normal pressure and the container advancement is found. Preliminary tests are carried out involving a multifunctional and a fine......Throughout the years, it has become more and more important to find new methods for reducing friction and wear occurrence in machine elements. A possible solution is found in texturing the surfaces under tribological contact, as demonstrated by the development and spread of plateau-honed surface...... for cylinder liners. To prove the efficacy of a particular textured surface, it is paramount to perform experimental tests under controlled laboratory conditions. In this paper, a new test rig simulating pure sliding conditions is presented, dubbed axial sliding test. It presents four major components: a rod...

  19. The surface-forming energy release rate versus the local energy release rate

    OpenAIRE

    Xiao, Si; Wang, He-ling; Landis, Chad M; Hwang, Keh-Chih; Liu, Bin

    2016-01-01

    This paper identifies two ways to extract the energy (or power) flowing into a crack tip during propagation based on the power balance of areas enclosed by a stationary contour and a comoving contour. It is very interesting to find a contradiction that two corresponding energy release rates (ERRs), a surface-forming ERR and a local ERR, are different when stress singularity exists at a crack tip. Besides a rigorous mathematical interpretation, we deduce that the stress singularity leads to an...

  20. Microcanonical rates, gap times, and phase space dividing surfaces

    NARCIS (Netherlands)

    Ezra, Gregory S.; Waalkens, Holger; Wiggins, Stephen

    2009-01-01

    The general approach to classical unimolecular reaction rates due to Thiele is revisited in light of recent advances in the phase space formulation of transition state theory for multidimensional systems. Key concepts, such as the phase space dividing surface separating reactants from products, the

  1. Radon and Thoron Exhalation Rates from Surface Soil of Bangka - Belitung Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Syarbaini Syarbaini

    2015-03-01

    Full Text Available DOI:10.17014/ijog.2.1.35-42Radon and thoron exhalation rate from soil is one of the most important factors that can influence the radioactivity level in the environment. Radon and thoron gases are produced by the decay of the radioactive elements those are radium and thorium in the soil, where its concentration depends on the soil conditions and the local geological background. In this paper, the results of radon and thoron exhalation rate measurements from surface soil of Bangka Belitung Islands at thirty six measurement sites are presented. Exhalation rates of radon and thoron were measured by using an accumulation chamber equipped with a solid-state alpha particle detector. Furthermore, the correlations between radon and thoron exhalation rates with their parent nuclide (226Ra and 232Th concentrations in collected soil samples from the same locations were also evaluated. The result of the measurement shows that mostly the distribution of radon and thoron is similar to 226Ra and 232Th, eventhough it was not a good correlation between radon and thoron exhalation rate with their parent activity concentrations (226Ra and 232Th due to the environmental factors that can influence the radon and thoron mobilities in the soil. In comparison to a world average, Bangka Belitung Islands have the 222Rn and 220Rn exhalation rates higher than the world average value for the regions with normal background radiation.

  2. Evaluation of surface dose rate on C-14 scrubber and gas bag

    International Nuclear Information System (INIS)

    Gang, D. W.; Lee, H. S.; Lee, D. H.

    2003-01-01

    In CANDU(Canadian Deuterium Uranium) reactors, purge and discharge of moderator cover gas has been performed via vapor recovery system. The methods employed in C-14 removal are mainly based on reactions of CO 2 with absorber of adsorbent. In order to choose an optimum process, we should consider the characteristics of the process, such as, temperature, pressure, humidity etc. and surface dose rate on C-14 scrubber and gas bag to estimate job-related personnel doses. Assuming that the whole C-14 scrubber was completely replaced after one-cycle operation, and that its C-14 activity for one-cycle operation was 40 mCi, we calculated the surface dose rate at the six points of the C-14 scrubber. This calculation showed that the dose rate on the surface of cartridge was only 1.25μSυ/hγ because of low energy of β ray. It is concluded, therefore, that the cartridge change-out is safe because the operation of C-14 removal system causes only a small increase in dose rate

  3. Surface analysis, by SNMS, of 316L steel exposed to simulated BWR conditions

    International Nuclear Information System (INIS)

    Buckley, D.; Schenker, E.

    1994-01-01

    Samples of 316L steel have been exposed to Boiling Light Water Reactor chemistry for between forty and seven thousand hours. These samples, with three different surface finishes, 'as-delivered', mechanically polished and electro-polished, have been analysed by Sputtered Neutral Mass Spectrometry and profiles of the constituent alloying elements have been obtained. Differences in the oxide that has built-up are compared and discussed in terms of current ideas of corrosion mechanisms. The structure of the oxide changes with exposure time for the experimental conditions. The effect of surface finish and water velocity have a clear marked effect on the oxide structure and growth rate, respectively: samples in a low water velocity stream form the protective oxide, chromia, and some mixed spinels; electro-polished samples have no chromium layer but show possible secondary passivation through the build-up of nickel; and samples in high velocity water form a simple structured oxide that does not reach a saturation thickness after 291 days but steadily increases. (author) 9 figs., 3 tabs., 7 refs

  4. Modified hot-conditioning of PHT system surfaces of PHWRs

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, G [Bhabha Atomic Research Centre, Trombay, Bombay (India)

    1997-02-01

    The increased awareness on the importance of controlling activity transport and radiation buildup on out-of-core surfaces of water cooled nuclear reactors is leading to a host of measures both from chemistry as well as engineering sides being undertaken. Passivation of the surfaces of structural materials is one such. Pressurised Heavy Water Reactors of CANDU design use large surface area of carbon steel alloy in the Primary Heat Transport System. Hot-conditioning of the PHT system with deoxygenated light water at temperatures {approx_equal} 473 - 523 K during commissioning stage is done to form a protective magnetite film on the surfaces of carbon steel essentially to guard this material from corrosion during the intervening period between initial commissioning and first fuel loading and achieving nuclear heat. However, a need is felt to improve the quality of this magnetite film and control the crud release so that the twin objectives of controlling the corrosion of carbon steel and reducing a possible deposition of corrosion products on surfaces of fuel clad could be achieved. Laboratory static autoclave investigations have been carried out on the formation of protective magnetite film on carbon steel at 473 K, pH 10 (pH at 298 K) deoxygenated aqueous solutions of chelants like HEDTA, DTPA, NTA apart from EDTA. Additionally, influence of AVT chemicals like hydrazine, cyclohexylamine, morpholine and additives like glucose, boric acid has been studied. The data have been compared with the standard procedure of hot-conditioning namely with simple LiOH. It is found that chelants increase the base metal loss but the oxide formed is more protective than the one formed under simple LiOH treatment. The efficiency of passivation is greatly enhanced by hydrazine and boric acid while it is adversely affected by glucose. AVT chemicals acts as effective corrosion inhibitors. (author). 14 refs, 2 figs, 4 tabs.

  5. Modified hot-conditioning of PHT system surfaces of PHWRs

    International Nuclear Information System (INIS)

    Venkateswaran, G.

    1997-01-01

    The increased awareness on the importance of controlling activity transport and radiation buildup on out-of-core surfaces of water cooled nuclear reactors is leading to a host of measures both from chemistry as well as engineering sides being undertaken. Passivation of the surfaces of structural materials is one such. Pressurised Heavy Water Reactors of CANDU design use large surface area of carbon steel alloy in the Primary Heat Transport System. Hot-conditioning of the PHT system with deoxygenated light water at temperatures ≅ 473 - 523 K during commissioning stage is done to form a protective magnetite film on the surfaces of carbon steel essentially to guard this material from corrosion during the intervening period between initial commissioning and first fuel loading and achieving nuclear heat. However, a need is felt to improve the quality of this magnetite film and control the crud release so that the twin objectives of controlling the corrosion of carbon steel and reducing a possible deposition of corrosion products on surfaces of fuel clad could be achieved. Laboratory static autoclave investigations have been carried out on the formation of protective magnetite film on carbon steel at 473 K, pH 10 (pH at 298 K) deoxygenated aqueous solutions of chelants like HEDTA, DTPA, NTA apart from EDTA. Additionally, influence of AVT chemicals like hydrazine, cyclohexylamine, morpholine and additives like glucose, boric acid has been studied. The data have been compared with the standard procedure of hot-conditioning namely with simple LiOH. It is found that chelants increase the base metal loss but the oxide formed is more protective than the one formed under simple LiOH treatment. The efficiency of passivation is greatly enhanced by hydrazine and boric acid while it is adversely affected by glucose. AVT chemicals acts as effective corrosion inhibitors. (author). 14 refs, 2 figs, 4 tabs

  6. Recombination of chlorine atoms on plasma-conditioned stainless steel surfaces in the presence of adsorbed Cl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, Luc; Poirier, Jean-Sebastien; Margot, Joelle [Departement de Physique, Universite de Montreal, Montreal, Quebec, H3C 3J7 (Canada); Khare, Rohit; Guha, Joydeep; Donnelly, Vincent M, E-mail: luc.stafford@umontreal.c, E-mail: vmdonnelly@uh.ed [Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204 (United States)

    2009-03-07

    We investigated the interactions of atomic and molecular chlorine with plasma-conditioned stainless steel surfaces through both experiments and modelling. The recombination of Cl during adsorption and desorption of Cl{sub 2} was characterized using a rotating-substrate technique in which portions of the cylindrical substrate surface are periodically exposed to an inductively coupled chlorine plasma and then to an Auger electron spectrometer in separate, differentially pumped chambers. After several hours of exposure to the Cl{sub 2} plasma, the stainless steel substrate became coated with a Si-oxychloride-based layer (Fe : Si : O : Cl {approx} 1 : 13 : 13 : 3) due to chlorine adsorption and the erosion of the silica discharge tube. Desorption of Cl{sub 2} from this surface was monitored through measurements of pressure rises in the Auger chamber as a function of substrate rotation frequency. Significant adsorption and desorption of Cl{sub 2} was observed with the plasma off, similar to that observed previously on plasma-conditioned anodized aluminium surfaces, but with much faster desorption rates that are most likely attributable to the smoother and non-porous stainless steel surface morphology. When the plasma was turned on, a much larger pressure rise was observed due to Langmuir-Hinshelwood recombination of Cl atoms. Recombination coefficients, {gamma}{sub Cl}, ranged from 0.004 to 0.03 and increased with Cl-to-Cl{sub 2} number density ratio. This behaviour was observed previously for anodized aluminium surfaces, and was explained by the blocking of Cl recombination sites by adsorbed Cl{sub 2}. Application of this variable recombination coefficient to the modelling of high-density chlorine plasmas gives a much better agreement with measured Cl{sub 2} percent dissociations compared with predictions obtained with a recombination coefficient that is independent of plasma conditions.

  7. Conditioning of intermediate-level waste at Forschungszentrum Juelich GmbH

    International Nuclear Information System (INIS)

    Krumbach, H.

    2003-01-01

    This contribution to the group of low-level, intermediate, mixed and hazardous waste describes the conditioning of intermediate-level mixed waste (dose rate above 10 mSv/h at the surface) from Research Centre Juelich (FZJ). Conditioning of the waste by supercompaction is performed at Research Centre Karlsruhe (FZK). The waste described is radioactive waste arising from research at Juelich. This waste includes specimens and objects from irradiation experiments in the research reactors Merlin (FRJ-1) and Dido (FRJ-2) at FZJ. In principle, radioactive waste at Forschungszentrum Juelich GmbH is differentiated by the surface dose rate at the waste package. Up to a surface dose rate of 10 mSv/h, the waste is regarded as low-level. The radioactive waste described here has a surface dose rate above 10 mSv/h. Waste up to 10 mSv/h is conditioned at the Juelich site according to different conditioning methods. The intermediate-level waste can only be conditioned by supercompaction in the processing facility for intermediate-level waste from plant operation at Research Centre Karlsruhe. Research Centre Juelich also uses this waste cell to condition its intermediate-level waste from plant operation. (orig.)

  8. Interactions of hydroxyapatite surfaces: conditioning films of human whole saliva.

    Science.gov (United States)

    Cárdenas, Marité; Valle-Delgado, Juan José; Hamit, Jildiz; Rutland, Mark W; Arnebrant, Thomas

    2008-07-15

    Hydroxyapatite is a very interesting material given that it is the main component in tooth enamel and because of its uses in bone implant applications. Therefore, not only the characterization of its surface is of high relevance but also designing reliable methods to study the interfacial properties of films adsorbed onto it. In this paper we apply the colloidal probe atomic force microscopy method to investigate the surface properties of commercially available hydroxyapatite surfaces (both microscopic particles and macroscopic discs) in terms of interfacial and frictional forces. In this way, we find that hydroxyapatite surfaces at physiological relevant conditions are slightly negatively charged. The surfaces were then exposed to human whole saliva, and the surface properties were re-evaluated. A thick film was formed that was very resistant to mechanical stress. The frictional measurements demonstrated that the film was indeed highly lubricating, supporting the argument that this system may prove to be a relevant model for evaluating dental and implant systems.

  9. CONDITIONS FOR STABLE CHIP BREAKING AND PROVISION OF MACHINED SURFACE QUALITY WHILE TURNING WITH ASYMMETRIC TOOL VIBRATIONS

    Directory of Open Access Journals (Sweden)

    V. K. Sheleh

    2015-01-01

    Full Text Available The paper considers a process of turning structural steel with asymmetric tool vibrations directed along feeding. Asymmetric vibrations characterized by asymmetry coefficient of vibration cycle, their frequency and amplitude are additionally transferred to the tool in the turning process with the purpose to crush chips. Conditions of stable chip breaking and obtaining optimum dimensions of chip elements have been determined in the paper. In order to reduce a negative impact of the vibration amplitude on a cutting process and quality of the machined surfaces machining must be carried out with its minimum value. In this case certain ratio of the tool vibration frequency to the work-piece rotation speed has been ensured in the paper. A formula has been obtained for calculation of this ratio with due account of the expected length of chip elements and coefficient of vibration cycle asymmetry.Influence of the asymmetric coefficient of the tool vibration cycle on roughness of the machined surfaces and cutting tool wear has been determined in the paper. According to the results pertaining to machining of work-pieces made of 45 and ШХ15 steel the paper presents mathematical relationships of machined surface roughness with cutting modes and asymmetry coefficient of tool vibration cycle. Tool feeding being one of the cutting modes exerts the most significant impact on the roughness value and increase of the tool feeding entails increase in roughness. Reduction in coefficient of vibration cycle asymmetry contributes to surface roughness reduction. However, the cutting tool wear occurs more intensive. Coefficient of the vibration cycle asymmetry must be increased in order to reduce wear rate. Therefore, the choice of the coefficient of the vibration cycle asymmetry is based on the parameters of surface roughness which must be obtained after machining and intensity of tool wear rate.The paper considers a process of turning structural steel with asymmetric

  10. Plasma-polymerized perfluoro(methylcyclohexane) coating on ethylene propylene diene elastomer surface: Effect of plasma processing condition on the deposition kinetics, morphology and surface energy of the film

    International Nuclear Information System (INIS)

    Tran, N.D.; Dutta, N.K.; Choudhury, N. Roy

    2005-01-01

    Plasma polymerization of perfluoro (methylcyclohexane) was carried out under cold plasma process operated at 13.56 MHz to deposit pore-free, uniform, ultra-thin film on an ethylene propylene diene terpolymer (EPDM) substrate in a view to modify the surface characteristics. The plasma fluoropolymeric films were formed at different plasma treatment times (from 20 s to 16 min), applied powers (20 to 100 W) and precursor flow rates to produce high quality films in a controllable yet tunable fashion. Scanning electron microscopy was employed successfully to characterize the evolution of the morphological feature in the film and also to determine the thickness of the coating. The surface energy of the film was determined by sessile drop method using different solvents as probe liquids. It is observed that a pore-free homogeneous plasma polymer thin film is formed within 20 s of treatment time, however, the morphology of the film depends on the plasma processing conditions, such as plasma power, precursor flow rate and deposition time. With increased time and power at a constant flow rate, the morphology of the film progressively changes from flat smooth to globular and rough. The kinetics and activation energy of the plasma polymer film deposition process were also estimated. The surface energy of the EPDM substrate decreased dramatically with plasma coating, however, it appears to be independent of the treatment time

  11. Stressful working conditions and poor self-rated health among financial services employees

    Directory of Open Access Journals (Sweden)

    Luiz Sérgio Silva

    2012-06-01

    Full Text Available OBJECTIVE: To assess the association between exposure to adverse psychosocial working conditions and poor self-rated health among bank employees. METHODS: A cross-sectional study including a sample of 2,054 employees of a government bank was conducted in 2008. Self-rated health was assessed by a single question: "In general, would you say your health is (...." Exposure to adverse psychosocial working conditions was evaluated by the effort-reward imbalance model and the demand-control model. Information on other independent variables was obtained through a self-administered semi-structured questionnaire. A multiple logistic regression analysis was performed and odds ratio calculated to assess independent associations between adverse psychosocial working conditions and poor self-rated health. RESULTS: The overall prevalence of poor self-rated health was 9%, with no significant gender difference. Exposure to high demand and low control environment at work was associated with poor self-rated health. Employees with high effort-reward imbalance and overcommitment also reported poor self-rated health, with a dose-response relationship. Social support at work was inversely related to poor self-rated health, with a dose-response relationship. CONCLUSIONS: Exposure to adverse psychosocial work factors assessed based on the effort-reward imbalance model and the demand-control model is independently associated with poor self-rated health among the workers studied.

  12. Optimal condition for fabricating superhydrophobic Aluminum surfaces with controlled anodizing processes

    Science.gov (United States)

    Saffari, Hamid; Sohrabi, Beheshteh; Noori, Mohammad Reza; Bahrami, Hamid Reza Talesh

    2018-03-01

    A single step anodizing process is used to produce micro-nano structures on Aluminum (1050) substrates with sulfuric acid as electrolyte. Therefore, surface energy of the anodized layer is reduced using stearic acid modification. Undoubtedly, effects of different parameters including anodizing time, electrical current, and type and concentration of electrolyte on the final contact angle are systemically studied and optimized. Results show that anodizing current of 0.41 A, electrolyte (sulfuric acid) concentration of 15 wt.% and anodizing time of 90 min are optimal conditions which give contact angle as high as 159.2° and sliding angle lower than 5°. Moreover, the study reveals that adding oxalic acid to the sulfuric acid cannot enhance superhydrophobicity of the samples. Also, scanning electron microscopy images of samples show that irregular (bird's nest) structures present on the surface instead of high-ordered honeycomb structures expecting from normal anodizing process. Additionally, X-ray diffraction analysis of the samples shows that only amorphous structures present on the surface. The Brunauer-Emmett-Teller (BET) specific surface area of the anodized layer is 2.55 m2 g-1 in optimal condition. Ultimately, the surface keeps its hydrophobicity in air and deionized water (DIW) after one week and 12 weeks, respectively.

  13. Control of first-wall surface conditions in the 2XIIB Magnetic Mirror Plasma Confinement experiment

    International Nuclear Information System (INIS)

    Simonen, T.C.; Bulmer, R.H.; Coensgen, F.H.

    1976-01-01

    The control of first-wall surface conditions in the 2XIIB Magnetic Mirror Plasma Confinement experiment is described. Before each plasma shot, the first wall is covered with a freshly gettered titanium surface. Up to 5 MW of neutral beam power has been injected into 2XIIB, resulting in first-wall bombardment fluxes of 10 17 atoms . cm -2 . s -1 of 13-keV mean energy deuterium atoms for several ms. The background gas flux is measured with a calibrated, 11-channel, fast-atom detector. Background gas levels are found to depend on surface conditions, injected beam current, and beam pulse duration. For our best operating conditions, an efective reflex coefficient of 0.3 can be inferred from the measurements. Experiments with long-duration and high-current beam injection are limited by charge exchange; however, experiments with shorter beam duration are not limited by first-wall surface conditions. It is concluded that surface effects will be reduced further with smoother walls. (Auth.)

  14. Size distribution of Parkfield’s microearthquakes reflects changes in surface creep rate

    Science.gov (United States)

    Tormann, Theresa; Wiemer, Stefan; Metzger, Sabrina; Michael, Andrew J.; Hardebeck, Jeanne L.

    2013-01-01

    The nucleation area of the series of M6 events in Parkfield has been shown to be characterized by low b-values throughout the seismic cycle. Since low b-values represent high differential stresses, the asperity structure seems to be always stably stressed and even unaffected by the latest main shock in 2004. However, because fault loading rates and applied shear stress vary with time, some degree of temporal variability of the b-value within stable blocks is to be expected. We discuss in this study adequate techniques and uncertainty treatment for a detailed analysis of the temporal evolution of b-values. We show that the derived signal for the Parkfield asperity correlates with changes in surface creep, suggesting a sensitive time resolution of the b-value stress meter, and confirming near-critical loading conditions within the Parkfield asperity.

  15. Ions, metabolites, and cells: Water as a reporter of surface conditions during bacterial growth

    Science.gov (United States)

    Jarisz, Tasha A.; Lane, Sarah; Gozdzialski, Lea; Hore, Dennis K.

    2018-06-01

    Surface-specific nonlinear vibrational spectroscopy, combined with bulk solution measurements and imaging, is used to study the surface conditions during the growth of E. coli. As a result of the silica high surface charge density, the water structure at the silica-aqueous interface is known to be especially sensitive to pH and ionic strength, and surface concentration profiles develop that can be appreciably different from the bulk solution conditions. We illustrate that, in the presence of growing cells, a unique surface micro-environment is established as a result of metabolites accumulating on the silica surface. Even in the subsequent absence of the cells, this surface layer works to reduce the interfacial ionic strength as revealed by the enhanced signal from surface water molecules. In the presence of growing cells, an additional boost in surface water signal is attributed to a local pH that is higher than that of the bulk solution.

  16. Rate law of Fe(II) oxidation under low O2 conditions

    Science.gov (United States)

    Kanzaki, Yoshiki; Murakami, Takashi

    2013-12-01

    Despite intensive studies on Fe(II) oxidation kinetics, the oxidation rate law has not been established under low O2 conditions. The importance of Fe(II) oxidation under low O2 conditions has been recently recognized; for instance, the Fe(II)/Fe(III) compositions of paleosols, ancient soils formed by weathering, can produce a quantitative pattern of the atmospheric oxygen increase during the Paleoproterozoic. The effects of partial pressure of atmospheric oxygen (PO2) on the Fe(II) oxidation rate were investigated to establish the Fe(II) oxidation rate - PO2 relationships under low O2 conditions. All oxidation experiments were carried out in a glove box by introducing Ar gas at ∼10-5-∼10-4 atm of PO2, pH 7.57-8.09 and 22 °C. Luminol chemiluminescence was adopted to measure low Fe(II) concentrations (down to ∼2 nM). Combining previous data under higher PO2 conditions (10-3-0.2 atm) with the present data, the rate law for Fe(II) oxidation over a wide range of PO2 (10-5-0.2 atm) was found to be written as: d[Fe(II)]/dt=-k[Fe(II)][[]2 where the exponent of [O2], x, and the rate constant, k, change from x = 0.98 (±0.04) and log k = 15.46 (±0.06) at ∼6 × 10-3-0.2 atm of PO2 to x = 0.58 (±0.02) and log k = 13.41 (±0.03) at 10-5-∼6 × 10-3 atm of PO2. The most plausible mechanism that explains the change in x under low O2 conditions is that, instead of O2, oxygen-derived oxidants, H2O2 and to some extent, O2rad -, dominate the oxidation reactions at PO2. The rate law found in the present study requires us to reconsider distributions of Fe redox species at low PO2 in natural environments, especially in paleoweathering profiles, and may provide a deeper understanding of the evolution of atmospheric oxygen in the Precambrian.

  17. Influence of surface condition on the corrosion resistance of copper alloy condenser tubes in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S; Nagata, K; Yamauchi, S

    1979-07-01

    Investigation was made on the influence of various surface conditions of aluminum brass tube. The corrosion behavior of aluminum brass tube, with nine kinds of surface conditions, was studied in stagnant 0.1N NaHCo/sub 3/ solution and flowing sea water (natural, Fe/sup + +/ containing and S/sup - -/ containing water). Surface treatments investigated contained bright annealing, special annealing to form carbon film, hot oxidizing and pickling. Anodic polarization measurements in 0.1N NaHCO/sub 3/ solution showed that the oxidized surface was superior and that the pickled surface was inferior. However, relation between these characteristics and corrosion resistance in sea water has not been established. Electrochemical characteristics in flowing sea water were dependent on the surface conditions in the very beginning of immersion time; nobler corrosion potential for the surface with carbon film, higher polarization resistance for the bright annealed and the oxidized surface, and faster decrease of polarization resistance in S/sup - -/ containing sea water for the pickled surface. However, these differences disappeared in the immersion time of only 2 to 7 days. It was revealed, by the statistical analysis on the corrosion depth in corrosion test in flowing sea water and in jet impingement test, that the corrosion behavior was not influenced by surface conditions, but was significantly influenced by quality of sea water and sponge ball cleaning. Sulfide ion of 0.05 ppm caused severe pitting corrosion, and sponge ball cleaning of 5 chances a week caused erosion corrosion. From above results, it was concluded that surface conditions of aluminum brass were not important to sea water corrosion, and that quality of sea water and operating condition such as sponge ball cleaning were more significant.

  18. Stepping towards new parameterizations for non-canonical atmospheric surface-layer conditions

    Science.gov (United States)

    Calaf, M.; Margairaz, F.; Pardyjak, E.

    2017-12-01

    Representing land-atmosphere exchange processes as a lower boundary condition remains a challenge. This is partially a result of the fact that land-surface heterogeneity exists at all spatial scales and its variability does not "average" out with decreasing scales. Such variability need not rapidly blend away from the boundary thereby impacting the near-surface region of the atmosphere. Traditionally, momentum and energy fluxes linking the land surface to the flow in NWP models have been parameterized using atmospheric surface layer (ASL) similarity theory. There is ample evidence that such representation is acceptable for stationary and planar-homogeneous flows in the absence of subsidence. However, heterogeneity remains a ubiquitous feature eliciting appreciable deviations when using ASL similarity theory, especially in scalars such moisture and air temperature whose blending is less efficient when compared to momentum. The focus of this project is to quantify the effect of surface thermal heterogeneity with scales Ο(1/10) the height of the atmospheric boundary layer and characterized by uniform roughness. Such near-canonical cases describe inhomogeneous scalar transport in an otherwise planar homogeneous flow when thermal stratification is weak or absent. In this work we present a large-eddy simulation study that characterizes the effect of surface thermal heterogeneities on the atmospheric flow using the concept of dispersive fluxes. Results illustrate a regime in which the flow is mostly driven by the surface thermal heterogeneities, in which the contribution of the dispersive fluxes can account for up to 40% of the total sensible heat flux. Results also illustrate an alternative regime in which the effect of the surface thermal heterogeneities is quickly blended, and the dispersive fluxes provide instead a quantification of the flow spatial heterogeneities produced by coherent turbulent structures result of the surface shear stress. A threshold flow

  19. Flow Components in a NaK Test Loop Designed to Simulate Conditions in a Nuclear Surface Power Reactor

    Science.gov (United States)

    Polzin, Kurt A.; Godfroy, Thomas J.

    2008-01-01

    A test loop using NaK as the working fluid is presently in use to study material compatibility effects on various components that comprise a possible nuclear reactor design for use on the lunar surface. A DC electromagnetic (EM) pump has been designed and implemented as a means of actively controlling the NaK flow rate through the system and an EM flow sensor is employed to monitor the developed flow rate. These components allow for the matching of the flow rate conditions in test loops with those that would be found in a full-scale surface-power reactor. The design and operating characteristics of the EM pump and flow sensor are presented. In the EM pump, current is applied to a set of electrodes to produce a Lorentz body force in the fluid. A measurement of the induced voltage (back-EMF) in the flow sensor provides the means of monitoring flow rate. Both components are compact, employing high magnetic field strength neodymium magnets thermally coupled to a water-cooled housing. A vacuum gap limits the heat transferred from the high temperature NaK tube to the magnets and a magnetically-permeable material completes the magnetic circuit. The pump is designed to produce a pressure rise of 5 psi, and the flow sensor's predicted output is roughly 20 mV at the loop's nominal flow rate of 0.5 GPM.

  20. Lesion dehydration rate changes with the surface layer thickness during enamel remineralization

    Science.gov (United States)

    Chang, Nai-Yuan N.; Jew, Jamison M.; Fried, Daniel

    2018-02-01

    A transparent highly mineralized outer surface zone is formed on caries lesions during remineralization that reduces the permeability to water and plaque generated acids. However, it has not been established how thick the surface zone should be to inhibit the penetration of these fluids. Near-IR (NIR) reflectance coupled with dehydration can be used to measure changes in the fluid permeability of lesions in enamel and dentin. Based on our previous studies, we postulate that there is a strong correlation between the surface layer thickness and the rate of dehydration. In this study, the rates of dehydration for simulated lesions in enamel with varying remineralization durations were measured. Reflectance imaging at NIR wavelengths from 1400-2300 nm, which coincides with higher water absorption and manifests the greatest sensitivity to contrast changes during dehydration measurements, was used to image simulated enamel lesions. The results suggest that the relationship between surface zone thickness and lesion permeability is highly non-linear, and that a small increase in the surface layer thickness may lead to a significant decrease in permeability.

  1. Modeling dose-rate on/over the surface of cylindrical radio-models using Monte Carlo methods

    International Nuclear Information System (INIS)

    Xiao Xuefu; Ma Guoxue; Wen Fuping; Wang Zhongqi; Wang Chaohui; Zhang Jiyun; Huang Qingbo; Zhang Jiaqiu; Wang Xinxing; Wang Jun

    2004-01-01

    Objective: To determine the dose-rates on/over the surface of 10 cylindrical radio-models, which belong to the Metrology Station of Radio-Geological Survey of CNNC. Methods: The dose-rates on/over the surface of 10 cylindrical radio-models were modeled using the famous Monte Carlo code-MCNP. The dose-rates on/over the surface of 10 cylindrical radio-models were measured by a high gas pressurized ionization chamber dose-rate meter, respectively. The values of dose-rate modeled using MCNP code were compared with those obtained by authors in the present experimental measurement, and with those obtained by other workers previously. Some factors causing the discrepancy between the data obtained by authors using MCNP code and the data obtained using other methods are discussed in this paper. Results: The data of dose-rates on/over the surface of 10 cylindrical radio-models, obtained using MCNP code, were in good agreement with those obtained by other workers using the theoretical method. They were within the discrepancy of ±5% in general, and the maximum discrepancy was less than 10%. Conclusions: As if each factor needed for the Monte Carlo code is correct, the dose-rates on/over the surface of cylindrical radio-models modeled using the Monte Carlo code are correct with an uncertainty of 3%

  2. Conditions of rib design for polycarbonate resin with high glossy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seong Won [Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2013-10-15

    Much attention has been being given to the importance of product surfaces in the field of plastic parts, as industrial design has become one of the key elements of product success. These plastic parts incorporate rib-like geometries on the non-appearance surfaces of plastic in order to increase the stiffness of rigidity of the section, but they often cause appearance problems of the product's surface overall by making a sink mark on that surface. The thickness, height and draft-angle of the rib are generally known as major parameters influencing the sink mark on the appearance surface. Therefore, designers of plastic parts must determine the variables of reinforcing ribs. The goal of this study is to find the optimum design variables in the mixing conditions of the thickness, the height and the draft angle of reinforcing ribs so that designers of plastic parts can easily determine the conditions of the reinforcing ribs as the part's section thickness varies within an objective limit in polycarbonate plastic resin and a high glossy surface that are widely applied in the creation of plastic products. We investigated the actual depths of sink marks on the surface of a specimen that was manufactured with an injection mold specifically for this study. Response surface methodology with the Box-Behnken design was used to analyze the regression curve of real depths with combinations of the thickness, height and draft angle of the ribs. The result shows that the most influential factor to increase the shrinkage is the thickness of ribs and that the optimum value of the rib thickness is a range from multiple of 0.25 to 0.34 of the section thickness. Also, the rib height and rib draft angle are not major factors that can change the sink amount.

  3. Conditions of rib design for polycarbonate resin with high glossy surfaces

    International Nuclear Information System (INIS)

    Jeong, Seong Won

    2013-01-01

    Much attention has been being given to the importance of product surfaces in the field of plastic parts, as industrial design has become one of the key elements of product success. These plastic parts incorporate rib-like geometries on the non-appearance surfaces of plastic in order to increase the stiffness of rigidity of the section, but they often cause appearance problems of the product's surface overall by making a sink mark on that surface. The thickness, height and draft-angle of the rib are generally known as major parameters influencing the sink mark on the appearance surface. Therefore, designers of plastic parts must determine the variables of reinforcing ribs. The goal of this study is to find the optimum design variables in the mixing conditions of the thickness, the height and the draft angle of reinforcing ribs so that designers of plastic parts can easily determine the conditions of the reinforcing ribs as the part's section thickness varies within an objective limit in polycarbonate plastic resin and a high glossy surface that are widely applied in the creation of plastic products. We investigated the actual depths of sink marks on the surface of a specimen that was manufactured with an injection mold specifically for this study. Response surface methodology with the Box-Behnken design was used to analyze the regression curve of real depths with combinations of the thickness, height and draft angle of the ribs. The result shows that the most influential factor to increase the shrinkage is the thickness of ribs and that the optimum value of the rib thickness is a range from multiple of 0.25 to 0.34 of the section thickness. Also, the rib height and rib draft angle are not major factors that can change the sink amount.

  4. Condition Assessment for Wastewater Pipes: Method for Assessing Cracking and Surface Damage of Concrete Pipes

    OpenAIRE

    Hauge, Petter

    2013-01-01

    The objective of the Master Thesis has been to provide an improved method for condition assessment, which will give a better correlation between Condition class and actual Condition of concrete pipes with cracking and/or surface damages. Additionally improvement of the characterization of cracking (SR) and surface (KO) damages was a sub goal.Based on the findings described in my Thesis and my Specialization Project (Hauge 2012), I recommend that the Norwegian condition assessment method based...

  5. Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

    International Nuclear Information System (INIS)

    McCrea, Keith R.

    2001-01-01

    In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-(sigma) bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active than the other, since the concentration of the surface intermediate would be different on the two crystals. The most likely active intermediates are weakly adsorbed molecules such as(pi)-bonded ethylene and ethyl. These species are not easily detected because their concentration lies at the detection limit of SFG. The SFG spectra and GC data essentially show that ethylene hydrogenation is structure insensitive for Pt(111) and Pt(100). SFG has proven to be a unique and excellent technique for studying adsorbed species on single crystal surfaces under high-pressure catalytic reactions. Coupled with kinetic data obtained from gas chromatography measurements, it can

  6. Theoretical assessment of evaporation rate of isolated water drop under the conditions of cooling tower of thermal power plant

    Directory of Open Access Journals (Sweden)

    Shevelev Sergey

    2017-01-01

    Full Text Available The purpose of the work is numerical modelling of heat and mass transfer at evaporation of water drops under the conditions which are typical for a modern chimney-type cooling tower of a thermal power plant. The dual task of heat and mass transfer with movable boundary at convective cooling and evaporation for a ‘drop–humid air’ system in a spherical coordinate system has been solved. It has been shown that there is a rapid decline of water evaporation rate at the initial stage of the process according to temperature decrease of its surface. It has been stated that the effect of evaporation rate decrease appears greatly in the area of small radiuses.

  7. Distant Measurement of Plethysmographic Signal in Various Lighting Conditions Using Configurable Frame-Rate Camera

    Directory of Open Access Journals (Sweden)

    Przybyło Jaromir

    2016-12-01

    Full Text Available Videoplethysmography is currently recognized as a promising noninvasive heart rate measurement method advantageous for ubiquitous monitoring of humans in natural living conditions. Although the method is considered for application in several areas including telemedicine, sports and assisted living, its dependence on lighting conditions and camera performance is still not investigated enough. In this paper we report on research of various image acquisition aspects including the lighting spectrum, frame rate and compression. In the experimental part, we recorded five video sequences in various lighting conditions (fluorescent artificial light, dim daylight, infrared light, incandescent light bulb using a programmable frame rate camera and a pulse oximeter as the reference. For a video sequence-based heart rate measurement we implemented a pulse detection algorithm based on the power spectral density, estimated using Welch’s technique. The results showed that lighting conditions and selected video camera settings including compression and the sampling frequency influence the heart rate detection accuracy. The average heart rate error also varies from 0.35 beats per minute (bpm for fluorescent light to 6.6 bpm for dim daylight.

  8. Older adults in jail: high rates and early onset of geriatric conditions.

    Science.gov (United States)

    Greene, Meredith; Ahalt, Cyrus; Stijacic-Cenzer, Irena; Metzger, Lia; Williams, Brie

    2018-02-17

    The number of older adults in the criminal justice system is rapidly increasing. While this population is thought to experience an early onset of aging-related health conditions ("accelerated aging"), studies have not directly compared rates of geriatric conditions in this population to those found in the general population. The aims of this study were to compare the burden of geriatric conditions among older adults in jail to rates found in an age-matched nationally representative sample of community dwelling older adults. This cross sectional study compared 238 older jail inmates age 55 or older to 6871 older adults in the national Health and Retirement Study (HRS). We used an age-adjusted analysis, accounting for the difference in age distributions between the two groups, to compare sociodemographics, chronic conditions, and geriatric conditions (functional, sensory, and mobility impairment). A second age-adjusted analysis compared those in jail to HRS participants in the lowest quintile of wealth. All geriatric conditions were significantly more common in jail-based participants than in HRS participants overall and HRS participants in the lowest quintile of net worth. Jail-based participants (average age of 59) experienced four out of six geriatric conditions at rates similar to those found in HRS participants age 75 or older. Geriatric conditions are prevalent in older adults in jail at significantly younger ages than non-incarcerated older adults suggesting that geriatric assessment and geriatric-focused care are needed for older adults cycling through jail in their 50s and that correctional clinicians require knowledge about geriatric assessment and care.

  9. Homogeneous nucleation rates of nitric acid dihydrate (NAD at simulated stratospheric conditions – Part II: Modelling

    Directory of Open Access Journals (Sweden)

    O. Möhler

    2006-01-01

    Full Text Available Activation energies ΔGact for the nucleation of nitric acid dihydrate (NAD in supercooled binary HNO3/H2O solution droplets were calculated from volume-based nucleation rate measurements using the AIDA (Aerosol, Interactions, and Dynamics in the Atmosphere aerosol chamber of Forschungszentrum Karlsruhe. The experimental conditions covered temperatures T between 192 and 197 K, NAD saturation ratios SNAD between 7 and 10, and nitric acid molar fractions of the nucleating sub-micron sized droplets between 0.26 and 0.28. Based on classical nucleation theory, a new parameterisation for ΔGact=A×(T ln SNAD−2+B is fitted to the experimental data with A=2.5×106 kcal K2 mol−1 and B=11.2−0.1(T−192 kcal mol−1. A and B were chosen to also achieve good agreement with literature data of ΔGact. The parameter A implies, for the temperature and composition range of our analysis, a mean interface tension σsl=51 cal mol−1 cm−2 between the growing NAD germ and the supercooled solution. A slight temperature dependence of the diffusion activation energy is represented by the parameter B. Investigations with a detailed microphysical process model showed that literature formulations of volume-based (Salcedo et al., 2001 and surface-based (Tabazadeh et al., 2002 nucleation rates significantly overestimate NAD formation rates when applied to the conditions of our experiments.

  10. TBA biodegradation in surface-water sediments under aerobic and anaerobic conditions.

    Science.gov (United States)

    Bradley, Paul M; Landmeyer, James E; Chapelle, Francis H

    2002-10-01

    The potential for [U-14C] TBA biodegradation was examined in laboratory microcosms under a range of terminal electron accepting conditions. TBA mineralization to CO2 was substantial in surface-water sediments under oxic, denitrifying, or Mn(IV)-reducing conditions and statistically significant but low under SO4-reducing conditions. Thus, anaerobic TBA biodegradation may be a significant natural attenuation mechanism for TBA in the environment, and stimulation of in situ TBA bioremediation by addition of suitable terminal electron acceptors may be feasible. No degradation of [U-14C] TBA was observed under methanogenic or Fe(III)-reducing conditions.

  11. Rate-Independent Processes with Linear Growth Energies and Time-Dependent Boundary Conditions

    Czech Academy of Sciences Publication Activity Database

    Kružík, Martin; Zimmer, J.

    2012-01-01

    Roč. 5, č. 3 (2012), s. 591-604 ISSN 1937-1632 R&D Projects: GA AV ČR IAA100750802 Grant - others:GA ČR(CZ) GAP201/10/0357 Institutional research plan: CEZ:AV0Z10750506 Keywords : concentrations * oscillations * time - dependent boundary conditions * rate-independent evolution Subject RIV: BA - General Mathematics http://library.utia.cas.cz/separaty/2011/MTR/kruzik-rate-independent processes with linear growth energies and time - dependent boundary conditions.pdf

  12. Influence of growth conditions and surface reaction byproducts on GaN grown via metal organic molecular beam epitaxy: Toward an understanding of surface reaction chemistry

    Science.gov (United States)

    Pritchett, David; Henderson, Walter; Burnham, Shawn D.; Doolittle, W. Alan

    2006-04-01

    The surface reaction byproducts during the growth of GaN films via metal organic molecular beam epitaxy (MOMBE) were investigated as a means to optimize material properties. Ethylene and ethane were identified as the dominant surface reaction hydrocarbon byproducts, averaging 27.63% and 7.15% of the total gas content present during growth. Intense ultraviolet (UV) photoexcitation during growth was found to significantly increase the abundance of ethylene and ethane while reducing the presence of H2 and N2. At 920°C, UV excitation was shown to enhance growth rate and crystalline quality while reducing carbon incorporation. Over a limited growth condition range, a 4.5×1019-3.4×1020 cm-3 variation in carbon incorporation was achieved at constant high vacuum. Coupled with growth rate gains, UV excitation yielded films with ˜58% less integrated carbon content. Structural material property variations are reported for various ammonia flows and growth temperatures. The results suggest that high carbon incorporation can be achieved and regulated during MOMBE growth and that in-situ optimization through hydrocarbon analysis may provide further enhancement in the allowable carbon concentration range.

  13. Crack propagation rate modelling for 316SS exposed to PWR-relevant conditions

    International Nuclear Information System (INIS)

    Vankeerberghen, M.; Weyns, G.; Gavrilov, S.; Martens, B.; Deconinck, J.

    2009-01-01

    The crack propagation rate of Type 316 stainless steel in boric acid-lithium hydroxide solutions under PWR-relevant conditions was modelled. A film rupture/dissolution/repassivation mechanism is assumed and extended to cold worked materials by including a stress-dependent bare metal dissolution current density. The chemical and electrochemical conditions within the crack are calculated by finite element calculations, an analytical expression is used for the crack-tip strain rate and the crack-tip stress is assumed equal to 2.5 times the yield stress (plane-strain). First the model was calibrated against a literature published data set. Afterwards, the influence of various variables - dissolved hydrogen, boric acid and lithium hydroxide content, stress intensity, crack length, temperature, flow rate - was studied. Finally, other published crack growth rate tests were modelled and the calculated crack growth rates were found to be in reasonable agreement with the reported ones

  14. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    Science.gov (United States)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  15. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, R.L.; Buchanan, R.A. [Univ. of Tennessee, Knoxville, TN (United States)

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  16. Effects of network dissolution changes on pore-to-core upscaled reaction rates for kaolinite and anorthite reactions under acidic conditions

    KAUST Repository

    Kim, Daesang

    2013-11-01

    We have extended reactive flow simulation in pore-network models to include geometric changes in the medium from dissolution effects. These effects include changes in pore volume and reactive surface area, as well as topological changes that open new connections. The computed changes were based upon a mineral map from an X-ray computed tomography image of a sandstone core. We studied the effect of these changes on upscaled (pore-scale to core-scale) reaction rates and compared against the predictions of a continuum model. Specifically, we modeled anorthite and kaolinite reactions under acidic flow conditions during which the anorthite reactions remain far from equilibrium (dissolution only), while the kaolinite reactions can be near-equilibrium. Under dissolution changes, core-scale reaction rates continuously and nonlinearly evolved in time. At higher injection rates, agreement with predictions of the continuum model degraded significantly. For the far-from-equilibrium reaction, our results indicate that the ability to correctly capture the heterogeneity in dissolution changes in the reactive mineral surface area is critical to accurately predict upscaled reaction rates. For the near-equilibrium reaction, the ability to correctly capture the heterogeneity in the saturation state remains critical. Inclusion of a Nernst-Planck term to ensure neutral ionic currents under differential diffusion resulted in at most a 9% correction in upscaled rates.

  17. Evaporation rate of water in hydrophobic confinement.

    Science.gov (United States)

    Sharma, Sumit; Debenedetti, Pablo G

    2012-03-20

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  18. Evaluation of Surface Characteristics and Shear Bond Strength of Metal Brackets Bonded to Two Different Porcelain Systems (Feldspathic/IPS-Empress-2 treated with Different Surface Conditioning Methods

    Directory of Open Access Journals (Sweden)

    Amal S Nair

    2012-01-01

    Conclusion: Surface conditioning with Co-Jet sand which produced silicatization resulted in a favorable bond strength in both feldspathic and IPS-Empress-2 ceramic surfaces. It was shown that it produced the least surface roughness among all the other surface conditioning groups.

  19. Is the surface oxygen exchange rate linked to bulk ion diffusivity in mixed conducting Ruddlesden-Popper phases?

    Science.gov (United States)

    Tomkiewicz, Alex C; Tamimi, Mazin A; Huq, Ashfia; McIntosh, Steven

    2015-01-01

    The possible link between oxygen surface exchange rate and bulk oxygen anion diffusivity in mixed ionic and electronic conducting oxides is a topic of great interest and debate. While a large body of experimental evidence and theoretical analyses support a link, observed differences between bulk and surface composition of these materials are hard to reconcile with this observation. This is further compounded by potential problems with simultaneous measurement of both parameters. Here we utilize separate techniques, in situ neutron diffraction and pulsed isotopic surface exchange, to examine bulk ion mobility and surface oxygen exchange rates of three Ruddlesden-Popper phases, general form A(n-1)A(2)'B(n)O(3n+1), A(n-1)A(2)'B(n)X(3n+1); LaSrCo(0.5)Fe(0.5)O(4-δ) (n = 1), La(0.3)Sr(2.7)CoFeO(7-δ) (n = 2) and LaSr3Co(1.5)Fe(1.5)O(10-δ) (n = 3). These measurements are complemented by surface composition determination via high sensitivity-low energy ion scattering. We observe a correlation between bulk ion mobility and surface exchange rate between materials. The surface exchange rates vary by more than one order of magnitude with high anion mobility in the bulk of an oxygen vacancy-rich n = 2 Ruddlesden-Popper material correlating with rapid oxygen exchange. This is in contrast with the similar surface exchange rates which we may expect due to similar surface compositions across all three samples. We conclude that experimental limitations lead to inherent convolution of surface and bulk rates, and that surface exchange steps are not likely to be rate limiting in oxygen incorporation.

  20. High-rate production of micro- and nanostructured surfaces: Injection molding and novel process for metal tooling manufacturing

    Science.gov (United States)

    De Jesus Vega, Marisely

    rapidly processed via liquid injection molding. LSR with its excellent mechanical properties, transparency, non-toxicity and rapid molding capabilities can bring the production of micro and nanostructured surfaces from laboratory research facilities to high-rate manufacturing. However, previous research on microstructured surfaces made off LSR does not focus on the processing aspect of this material. Therefore, there is a lack of understanding of how different processing conditions affect the replication of microstructures. Additionally, there are no reports molding nanostructures of LSR. Features between 115 microm and 0.250 microm were molded in this work and the effect of different processing conditions and features sizes were studied. For the last part of this work, a novel metal additive manufacturing technique was used for the production of microstructured surfaces to be used as tooling for injection molding. The printing method consists of metal pastes printed through a tip onto a steel substrate. Prior work has shown spreading and swelling of features when metal pastes extrude out of the printing tip. PDMS was studied as a binder material to minimize spreading and swelling of the features by curing right after printing. In addition, prior work has shown durability of this metal printed tool up to 5000 injection molding cycles. This work compares this durability to durability of commercially available selective laser sintering metal tools. Furthermore, surface roughness was studied as this is one of the most important things to consider when molding microchannels for certain applications.

  1. Long-term climate change: the evolution of shield surface boundary conditions

    International Nuclear Information System (INIS)

    Peltier, W.R.

    2007-01-01

    The Earths surface during the Pleistocene epoch has been repeatedly subjected to glacial cycles that have markedly influenced both the landscape and surface boundary conditions that, in part, governed past evolution of deep-seated Shield groundwater flow domains. As part of the Deep Geologic Repository Technology Programme simulations of the last Laurentide glacial episode have been undertaken with the University of Toronto Glacial System Model (GSM). The purpose of these simulations is to yield constrained predictions of the magnitude and time rate of change of peri-glacial, glacial and boreal regimes that have perturbed Shield flow domains in the geologic past. A detailed model of long timescale climate change has been developed, which is able to make useful predictions of the process of continental glaciation and deglaciation that has occurred in the past due to the small changes in the effective intensity of the Sun at the location of the Earth caused by gravitational many body effects in Solar System evolution. Based upon the success of this model we are able to assert that we have demonstrated a basic understanding of why this process has continually recurred in the past on a timescale of approximately 100 000 years. Continuing work with the Glacial Systems Model and efforts to provide explicit linkage to numerical analyses of sub-surface hydrology are beginning to yield a new understanding of groundwater flow system evolution and response to glacial perturbations. In so doing this understanding is not only providing a reasoned basis on which to examine issues of geosphere stability as relevant to the safety of a hypothetical repository for used nuclear fuel in Shield terrain, but is also offering an improved basis for the integrated interpretation of multi-disciplinary geo-scientific data necessary for development of a descriptive geosphere model that is seen as fundamental to the repository Safety Case. (author)

  2. Long-term changes in the surface conditions of PLT

    International Nuclear Information System (INIS)

    Cohen, S.A.; Dylla, H.F.; Rossnagel, S.M.; Picraux, S.T.; Borders, J.A.; Magee, C.W.

    1977-01-01

    Long-term changes in the surface conditions of the PLT vacuum vessel wall have been monitored by the periodic analysis of a variety of sample substrates (stainless steel, alumina, silicon), exposed to PLT discharges for periods of up to several months and subsequently removed for analysis by Auger electron spectroscopy (AES), photoelectron spectroscopy, ion backscattering, nuclear reaction analysis, secondary ion mass spectroscopy, and scanning electron microscopy

  3. RATINGS OF THE HYGIENIC CONDITIONS AND VERIFICATION PROFESSIONAL COMPETENCE EMPLOYEE IN COMMON FOOD SERVICES

    Directory of Open Access Journals (Sweden)

    Lucia Zeleňáková

    2012-02-01

    Full Text Available The general food legislation is a key element in creating systems for food safety and food. Its observance, particularly the general hygiene requirements, a prerequisite for the introduction of the HACCP system, and thus the overall safety of food preparation. The level of hygiene in catering premises reflects the responsibility of their management to food safety and also demonstrates the willingness of management to gain the favor of customers. In providing common food services and catering services to the public is always a danger of contagion that can spread the food, but also finished products. To avoid this possibility, it is necessary to apply the rules of hygiene. Establishments which provide catering services must meet the requirements to ensure the health of boarders. The common food services are very strict controled and is our aim to provide pointers on how to minimize risk and liability. Very dangerous is also bacterial transfer rates between hands and other common surfaces involved in food preparation in the kitchen. In our work we were rating the hygienic conditions and also verificating professional competence employee in common food services by using the modern methods like 3MTM PetrifilmTM .

  4. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    Science.gov (United States)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-12-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  5. Effect of alloy type and surface conditioning on roughness and bond strength of metal brackets

    NARCIS (Netherlands)

    Nergiz, I.; Schmage, P.; Herrmann, W.; Ozcan, M.; Nergiz, [No Value

    2004-01-01

    The effect of 5 different surface conditioning methods on bonding of metal brackets to cast dental alloys was examined. The surface conditioning methods were fine (30-µm) or rough (125-µm) diamond bur, sandblasting (50-µm or 110-µm aluminum oxide [Al2O3]), and silica coating (30-µm silica). Fifty

  6. Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates

    Science.gov (United States)

    Proctor, B. P.; Mitchell, T. M.; Hirth, G.; Goldsby, D.; Zorzi, F.; Platt, J. D.; Di Toro, G.

    2014-11-01

    To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite ("gouge") at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (σn) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (μnss) in gouge at V = 1 m/s are larger than in bare surfaces for all σn tested and demonstrate a strong σn dependence; μnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, μnss values for bare surfaces remained ~0.1 with increasing σn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for μnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at σn ≥ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V ≥ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed.

  7. Surface reactivity of colloidal corrosion product and alloys in PWR conditions

    International Nuclear Information System (INIS)

    Lefevre, Gregory; Leclercq, Stephanie; Cabanas, Bruna-Martin; Delaunay, Sophie; Mansour, Carine; Berger, Gilles

    2012-09-01

    The corrosion of metallic components of water circuits of Pressurized Water Reactors generates colloidal particles. These particles are transported in the circuits, they sorb dissolved species and they can deposit on alloys in given parts of the circuits. Sorption and deposition generate several technical drawbacks in both primary and secondary circuits. According to the DLVO theory, adhesion between two surfaces is controlled by electrostatic and Van der Waals forces. The latter are always attractive and does not depends on solution chemistry. On the contrary, electrostatic forces are connected to the surface charge and depend strongly on the chemical properties of the solids and on the chemistry of the solution. Depending on the relative charge of the surfaces, these forces are attractive or repulsive and can have a major effect on the deposition behavior of particles. According to the surface complexation theory, the surface charge of metallic oxides results from sorption or desorption of protons, leading to positive or negative surface sites, and thus, strongly depends on the solution pH. Dissolved species can sorb on the surface, depending on the ionic charge of these species and on the surface charge. Thus, the knowledge of the surface charge of corrosion particles and alloys, their affinity towards several ions as protons, nickel, cobalt, sulfate, or borate ions has been shown to be useful to predict the transport of the contamination in the primary circuit, or to understand the accumulation of impurities in the steam generator in the secondary circuit. At room temperature, these data can be easily measured, or found in literature. In PWR conditions (high temperature, high pressure), most of the usual protocols and commercial instruments cannot be used. For several years, collaboration between EDF R and D and CNRS has been developed to get information about the surface reactivity of iron oxides, ferrites, and alloys in such conditions. Some of the results

  8. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    CERN Document Server

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  9. Influence of Cutting Fluid Flow Rate and Cutting Parameters on the Surface Roughness and Flank Wear of TiAlN Coated Tool In Turning AISI 1015 Steel Using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Moganapriya C.

    2017-09-01

    Full Text Available This paper presents the influence of cutting parameters (Depth of cut, feed rate, spindle speed and cutting fluid flow rate on the surface roughness and flank wear of physical vapor deposition (PVD Cathodic arc evaporation coated TiAlN tungsten carbide cutting tool insert during CNC turning of AISI 1015 mild steel. Analysis of Variance has been applied to determine the critical influence of cutting parameters. Taguchi orthogonal test design has been employed to optimize the process parameters affecting surface roughness and tool wear. Depth of cut was found to be the most dominant factor contributing to high surface roughness (67.5% of the inserts. However, cutting speed, feed rate and flow rate of cutting fluid showed minimal contribution to surface roughness. On the other hand, cutting speed (45.6% and flow rate of cutting fluid (23% were the dominant factors influencing tool wear. The optimum cutting conditions for desired surface roughness constitutes the following parameters such as medium cutting speed, low feed rate, low depth of cut and high cutting fluid flow rate. Minimal tool wear was achieved for the following process parameters such as low cutting speed, low feed rate, medium depth of cut and high cutting fluid flow rate.

  10. A Feasibility Study for Measuring Accurate Chest Compression Depth and Rate on Soft Surfaces Using Two Accelerometers and Spectral Analysis

    Directory of Open Access Journals (Sweden)

    Sofía Ruiz de Gauna

    2016-01-01

    Full Text Available Background. Cardiopulmonary resuscitation (CPR feedback devices are being increasingly used. However, current accelerometer-based devices overestimate chest displacement when CPR is performed on soft surfaces, which may lead to insufficient compression depth. Aim. To assess the performance of a new algorithm for measuring compression depth and rate based on two accelerometers in a simulated resuscitation scenario. Materials and Methods. Compressions were provided to a manikin on two mattresses, foam and sprung, with and without a backboard. One accelerometer was placed on the chest and the second at the manikin’s back. Chest displacement and mattress displacement were calculated from the spectral analysis of the corresponding acceleration every 2 seconds and subtracted to compute the actual sternal-spinal displacement. Compression rate was obtained from the chest acceleration. Results. Median unsigned error in depth was 2.1 mm (4.4%. Error was 2.4 mm in the foam and 1.7 mm in the sprung mattress (p<0.001. Error was 3.1/2.0 mm and 1.8/1.6 mm with/without backboard for foam and sprung, respectively (p<0.001. Median error in rate was 0.9 cpm (1.0%, with no significant differences between test conditions. Conclusion. The system provided accurate feedback on chest compression depth and rate on soft surfaces. Our solution compensated mattress displacement, avoiding overestimation of compression depth when CPR is performed on soft surfaces.

  11. A new entropy condition for increasing accuracy and convergence rate of TVD scheme

    International Nuclear Information System (INIS)

    Rashidi, M.M.; Esfahanian, V.

    2005-01-01

    In this paper, a TVD method is applied to the numerical solution of the flow over axisymmetric steady hypersonic viscous flow using TLNS equations over blunt cone. In the TVD schemes, the artificial viscosity (AV) is implemented using entropy condition. For hypersonic flow, Yee entropy condition shows relatively a better stability and convergence rate than others. This paper presents a new entropy condition for increasing the accuracy and convergence rate of the TVD scheme which does not have the difficulty associated with Yee entropy condition for viscous flow in the hypersonic regime. The entropy condition increases the AV in the shocks and decreases AV in the smooth region. The numerical solution has been compared with the Beam and Warming shock fitting approach indicating a better numerical accuracy. (author)

  12. Charge transfer rates for xenon Rydberg atoms at metal and semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, F.B. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States)]. E-mail: fbd@rice.edu; Wethekam, S. [Institut fuer Physik der Humboldt-Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin (Germany); Dunham, H.R. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States); Lancaster, J.C. [Department of Physics and Astronomy, Rice University, MS 61, 6100 Main Street, Houston, TX 77005-1892 (United States)

    2007-05-15

    Recent progress in the study of charge exchange between xenon Rydberg atoms and surfaces is reviewed. Experiments using Au(1 1 1) surfaces show that under appropriate conditions each incident atom can be detected as an ion. The ionization dynamics, however, are strongly influenced by the perturbations in the energies and structure of the atomic states that occur as the ion collection field is applied and as the atom approaches the surface. These lead to avoided crossings between different atomic levels causing the atom to successively assume the character of a number of different states and lose much of its initial identity. The effects of this mixing are discussed. Efficient surface ionization is also observed at Si(1 0 0) surfaces although the ion signal is influenced by stray fields present at the surface.

  13. Conditions for mould growth on typical interior surfaces

    DEFF Research Database (Denmark)

    Møller, Eva B.; Andersen, Birgitte; Rode, Carsten

    2017-01-01

    Prediction of the risk for mould growth is an important parameter for the analysis and design of the hygrothermal performance of building constructions. However, in practice the mould growth does not always follow the predicted behavior described by the mould growth models. This is often explained...... by uncertainty in the real conditions of exposure. In this study, laboratory experiments were designed to determine mould growth at controlled transient climate compared to growth at constant climate. The experiment included three building materials with four different surface treatments. The samples were...

  14. Core-debris quenching-heat-transfer rates under top- and bottom-reflood conditions

    International Nuclear Information System (INIS)

    Ginsberg, T.; Tutu, N.; Klages, J.; Schwarz, C.E.; Sanborn, Y.

    1983-02-01

    This paper presents recent experimental data for the quench-heat-transfer characteristics of superheated packed beds of spheres which were cooled, in separate experiments, by top- and bottom-flooding modes. Experiments were carried out with beds of 3-mm steel spheres of 330-mm height. The initial bed temperature was 810 K. The observed heat-transfer rates are strongly dependent on the mode of water injection. The results suggest that top-flood bed quench heat transfer is limited by the rate at which water can penetrate the bed under two-phase countercurrent-flow conditions. With bottom-reflood the heat-transfer rate is an order-of-magnitude greater than under top-flood conditions and appears to be limited by particle-to-fluid film boiling heat transfer

  15. Study on the optimal moisture adding rate of brown rice during germination by using segmented moisture conditioning method.

    Science.gov (United States)

    Cao, Yinping; Jia, Fuguo; Han, Yanlong; Liu, Yang; Zhang, Qiang

    2015-10-01

    The aim of this study was to find out the optimal moisture adding rate of brown rice during the process of germination. The process of water addition in brown rice could be divided into three stages according to different water absorption speeds in soaking process. Water was added with three different speeds in three stages to get the optimal water adding rate in the whole process of germination. Thus, the technology of segmented moisture conditioning which is a method of adding water gradually was put forward. Germinated brown rice was produced by using segmented moisture conditioning method to reduce the loss of water-soluble nutrients and was beneficial to the accumulation of gamma aminobutyric acid. The effects of once moisture adding amount in three stages on the gamma aminobutyric acid content in germinated brown rice and germination rate of brown rice were investigated by using response surface methodology. The optimum process parameters were obtained as follows: once moisture adding amount of stage I with 1.06 %/h, once moisture adding amount of stage II with 1.42 %/h and once moisture adding amount of stage III with 1.31 %/h. The germination rate under the optimum parameters was 91.33 %, which was 7.45 % higher than that of germinated brown rice produced by soaking method (84.97 %). The content of gamma aminobutyric acid in germinated brown rice under the optimum parameters was 29.03 mg/100 g, which was more than two times higher than that of germinated brown rice produced by soaking method (12.81 mg/100 g). The technology of segmented moisture conditioning has potential applications for studying many other cereals.

  16. Two new techniques for the remote evaluation of reactor steel condition - microscopic removal and surface examination

    International Nuclear Information System (INIS)

    Clayton, R.

    Much reactor inspection work involves an assessment of the condition of structural steel. This paper reviews two different techniques which provide information for such an assessment. The first - micro-sample removal (for the measurement of surface oxide thickness and chemical composition) - requires contact with the steel surface, whereas the second - a 'teach and learn' photographic technique (in which a special photogrammatic camera is used to obtain high-quality close-up photographs, to assess surface condition and corrosion growth) can obtain surface information on inaccessible components. (author)

  17. Modal analysis and cut-off conditions of multichannel surface-acoustic-waveguide structures.

    Science.gov (United States)

    Griffel, G; Golan, G; Ruschin, S; Seidman, A; Croitoru, N

    1988-01-01

    Multichannel guides for surface acoustic waves can improve the efficiency of SAW (surface acoustic-wave) devices significantly. Focusing, steering, and modulating the propagating acoustical modes can be achieved similarly to optical waveguided devices. A general formulation is presented for the analysis of the lateral waveguiding properties of Rayleigh modes in surfaces loaded with deposited strips of different materials. General expressions are obtained for the number of modes and cutoff conditions in these structures. As examples of applications, a simple directional coupler and an electrically controlled coupler are proposed.

  18. Pregnancy Rates After Compulsatory One and Conditional Two Embriyo Transfer

    Directory of Open Access Journals (Sweden)

    Seyhan Gümüşlü

    2013-06-01

    Full Text Available Objective: To predict our pregnancy rates after compulsatory one and conditional two embriyo transfer (ET number. Design: Retrospective Analysis Materiyal and Methods: One or two embryo transferred 362 patient were analyzed between March 2010 and September 2011. Results: Our clinical pregnancy rate was 31% and implantation rate was 25%. Our pregnancy rates after one or two ET were 30 and 32 % respectively ( P>0.05. We transferred embryos at second, third day or blastocyst stage. Pregnancy rates were 19, 30 and 48 % respectively (p< 0.001, implantation rates were 14.5, 23.5 and 42.4 % respectively ( P< 0.001. Our freezing rate was 39.5 %. Not to have freezing quality embrios or to have increased the the pregnancy rate from 21% to %45 significantly. When one embriyo transfered 95 % single and 5 % twins observed. When two embryos were transfered 81% single,17% twin and 2 % triplets observed. Conclusion: Pregnancy rates for one or two ET were statistically similar. If embryo quality allows us to culture up to blastocyt stage pregnancy rates were statistically increased. New Turkish ET policy resulted 95 % to 81 % single gestational sacs according to 1 or 2 ET at Gazi University IVF center.

  19. Real-time Continuous Assessment Method for Mental and Physiological Condition using Heart Rate Variability

    Science.gov (United States)

    Yoshida, Yutaka; Yokoyama, Kiyoko; Ishii, Naohiro

    It is necessary to monitor the daily health condition for preventing stress syndrome. In this study, it was proposed the method assessing the mental and physiological condition, such as the work stress or the relaxation, using heart rate variability at real time and continuously. The instantanuous heart rate (HR), and the ratio of the number of extreme points (NEP) and the number of heart beats were calculated for assessing mental and physiological condition. In this method, 20 beats heart rate were used to calculate these indexes. These were calculated in one beat interval. Three conditions, which are sitting rest, performing mental arithmetic and watching relaxation movie, were assessed using our proposed algorithm. The assessment accuracies were 71.9% and 55.8%, when performing mental arithmetic and watching relaxation movie respectively. In this method, the mental and physiological condition was assessed using only 20 regressive heart beats, so this method is considered as the real time assessment method.

  20. Indexing Glomerular Filtration Rate to Body Surface Area

    DEFF Research Database (Denmark)

    Redal-Baigorri, Belén; Rasmussen, Knud; Heaf, James Goya

    2014-01-01

    BACKGROUND: Kidney function is mostly expressed in terms of glomerular filtration rate (GFR). A common feature is the expression as ml/min per 1.73 m(2) , which represents the adjustment of the individual kidney function to a standard body surface area (BSA) to allow comparison between individuals....... We investigated the impact of indexing GFR to BSA in cancer patients, as this BSA indexation might affect the reported individual kidney function. METHODS: Cross-sectional study of 895 adults who had their kidney function measured with (51) chrome ethylene diamine tetraacetic acid. Mean values of BSA...

  1. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Mei, Zhi-Gang [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  2. Accelerated anaerobic hydrolysis rates under a combination of intermittent aeration and anaerobic conditions

    DEFF Research Database (Denmark)

    Jensen, T. R.; Lastra Milone, T.; Petersen, G.

    2017-01-01

    Anaerobic hydrolysis in activated return sludge was investigated in laboratory scale experiments to find if intermittent aeration would accelerate anaerobic hydrolysis rates compared to anaerobic hydrolysis rates under strict anaerobic conditions. The intermittent reactors were set up in a 240 h...... for calculating hydrolysis rates based on soluble COD were compared. Two-way ANOVA with the Bonferroni post-test was performed in order to register any significant difference between reactors with intermittent aeration and strictly anaerobic conditions respectively. The experiment demonstrated a statistically...... significant difference in favor of the reactors with intermittent aeration showing a tendency towards accelerated anaerobic hydrolysis rates due to application of intermittent aeration. The conclusion of the work is thus that intermittent aeration applied in the activated return sludge process (ARP) can...

  3. Investigation and Evaluation on Influence of Machining (CNC Conditions on Surface Quality of Paulownia Wood

    Directory of Open Access Journals (Sweden)

    Mohammad Aghajani

    2012-01-01

    Full Text Available The aim of this study was to investigate the effective factors on surface quality of paulownia wood during machining by advanced computer numerical controled (CNC machine. For this aim paulownia logs were provided and were converted to proper sizes (2.5 x 10 x 15 cm and then air dried. The Variable of this study were cutting speed (8.37 and 15.07 m/s, feeding rate (6 and 12 m/min, cutting depth (1and 5 mm, cutting method (down and up-milling and cutting pattern (tangential and radial. Roughness of cut specimens edge were evaluated by profilometer method according to ISO 13565 standard. For evaluation of surface quality, average roughness (Ra, maximum roughness (R max, valley roughness (Rv and peak roughness (Rp were used. Degrees of effectiveness of the parameters were evaluated by fractional factorial design as completely random design at confidence level of 95%. The result showed that cutting speed, cutting method and feed rate are influencive factors on surface quality of machined specimens and their effects were significant. With increasing cutting speed and decreasing feeding rate the roughness decreased and surface quality improved. In up-milling cutting method, degree of roughness was higher and consequently surface quality was inferior. It is to be noted that cutting method in comparison to other factors had the high influence on surface quality. The rest variables did now have independent influence on surface quality at 95% Confidence level. This study for achieving the optimum surface quality recommends that cutting speed of 15.07 m/s, feeding rate of 6 m/min, cutting method of down-milling and cutting depth of 1 mm for tangential cross section.

  4. Response Surface Design Model to Predict Surface Roughness when Machining Hastelloy C-2000 using Uncoated Carbide Insert

    International Nuclear Information System (INIS)

    Razak, N H; Rahman, M M; Kadirgama, K

    2012-01-01

    This paper presents to develop of the response surface design model to predict the surface roughness for end-milling operation of Hastelloy C-2000 using uncoated carbide insert. Mathematical model is developed to study the effect of three input cutting parameters includes the feed rate, axial depth of cut and cutting speed. Design of experiments (DOE) was implemented with the aid of the statistical software package. Analysis of variance (ANOVA) has been performed to verify the fit and adequacy of the developed mathematical model. The result shows that the feed rate gave the more effect on the both prediction values of Ra compared to the cutting speed and axial depth of cut. SEM and EDX analyses were performed in different cutting conditions. It can be concluded that the feed rate and cutting force give the higher impact to influence the machining characteristics of surface roughness. Thus, the optimizing the cutting conditions are essential in order to improve the surface roughness in machining of Hastlelloy C-2000.

  5. Methods of forecasting crack growth rate under creep conditions

    International Nuclear Information System (INIS)

    Ol'kin, S.I.

    1979-01-01

    Using construction aluminium alloy application possibility of linear mechanics of the destruction for quantitative description of crack development process under creepage conditions is investigated. It is shown, that the grade dependence between the stress intensity coefficient and the crack growth rate takes place only at certain combination of the sample geometry and creepage parameters, and consequently, its applicability in every given case must necessarily be tested experimentally

  6. Lead-210 analyses of sediment accumulation rates in five Southern Illinois surface mine lakes

    International Nuclear Information System (INIS)

    Brugam, R.B.; Carlson, M.A.

    1981-01-01

    210 Pb is a naturally occurring radionuclide with a short half-life (22 yrs) which can be used to determine sedimentation rates in lakes. The technique was applied in 5 Southern Illinois surface mine lakes where it revealed past sedimentation rates to have been extremely variable. In some of the lakes there was evidence for extensive slumping immediately after mining ceased followed by a more regular sedimentary regime that continued until the present. In others there have been one or more changes in sediment accumulation rates since lacustrine sedimentation began. These results suggest that simply measuring the amount of sediment that has accumulated in a surface mine lake since mining ceased is inadequate to determine filling rates. Sedimentation rates in the 5 lakes varied from .60 +- .19 to 1.46 +- .19 cm/y. These rates are similar to natural lakes with moderately disturbed watersheds

  7. Condition and Performance Rating Procedures for Rubble Breakwaters and Jetties

    Science.gov (United States)

    1998-11-01

    coastal community whose excellent ideas helped guide this work. Dr. Michael J. O’Connor is Director of USACERL. Chapter 1 Introduction 1 Introduction...headquarters. Concepts for the condition rating procedures were generated by the authors, the CSAG, and other members of the Corps’ coastal community . These

  8. Influence of Chatter of VMC Arising During End Milling Operation and Cutting Conditions on Quality of Machined Surface

    Directory of Open Access Journals (Sweden)

    A.K.M.N. Amin, M.A. Rizal, and M. Razman

    2012-08-01

    Full Text Available Machine tool chatter is a dynamic instability of the cutting process. Chatter results in poor part surface finish, damaged cutting tool, and an irritating and unacceptable noise. Exten¬sive research has been undertaken to study the mechanisms of chatter formation. Efforts have been also made to prevent the occurrence of chatter vibration. Even though some progress have been made, fundamental studies on the mechanics of metal cutting are necessary to achieve chatter free operation of CNC machine tools to maintain their smooth operating cycle. The same is also true for Vertical Machining Centres (VMC, which operate at high cutting speeds and are capable of offering high metal removal rates. The present work deals with the effect of work materials, cutting conditions and diameter of end mill cutters on the frequency-amplitude characteristics of chatter and on machined surface roughness. Vibration data were recorded using an experimental rig consisting of KISTLER 3-component dynamometer model 9257B, amplifier, scope meters and a PC.  Three different types of vibrations were observed. The first type was a low frequency vibration, associated with the interrupted nature of end mill operation. The second type of vibration was associated with the instability of the chip formation process and the third type was due to chatter. The frequency of the last type remained practically unchanged over a wide range of cutting speed.  It was further observed that chip-tool contact processes had considerable effect on the roughness of the machined surface.Key Words: Chatter, Cutting Conditions, Stable Cutting, Surface Roughness.

  9. Lunar and planetary surface conditions advances in space science and technology

    CERN Document Server

    Weil, Nicholas A

    1965-01-01

    Lunar and Planetary Surface Conditions considers the inferential knowledge concerning the surfaces of the Moon and the planetary companions in the Solar System. The information presented in this four-chapter book is based on remote observations and measurements from the vantage point of Earth and on the results obtained from accelerated space program of the United States and U.S.S.R. Chapter 1 presents the prevalent hypotheses on the origin and age of the Solar System, followed by a brief description of the methods and feasibility of information acquisition concerning lunar and planetary data,

  10. Influence of surface conditions on fatigue strength through the numerical simulation of microstructure

    International Nuclear Information System (INIS)

    Le Pecheur, A.; Clavel, M.; Rey, C.; Bompard, P.; Le Pecheur, A.; Curtit, F.; Stephan, J.M.

    2010-01-01

    A thermal fatigue test (INTHERPOL) was developed by EDF in order to study the initiation of cracks. These tests are carried out on tubular specimens under various thermal loadings and surface finish qualities in order to give an account of these parameters on crack initiation. The main topic of this study is to test the sensitivity of different fatigue criteria to surface conditions using a micro/macro modelling approach. Therefore a 304L polycrystalline aggregate, used for cyclic plasticity based FE modelling, have been considered as a Representative Volume Element located at the surface and subsurface of the test tube. This aggregate has been cyclically strained according to the results issued from FE simulation of INTHERPOL thermal fatigue experiment. Different surface parameters have been numerically simulated: effects of local microstructure and of grains orientation, effects of machining: metallurgical prehardening, residual stress gradient, and surface roughness. Three different fatigue criteria (Manson Coffin, Fatemi Socie and dissipated energy types), previously fitted at a macro-scale for thermal fatigue of 304L, have been computed at a meso scale, in order to show the surface 'hot spots' features and test the sensitivity of these three criteria to different surface conditions. Results show that grain orientation and neighbouring play an important role on the location of hot spots, and also that the positive effect of pre-straining and the negative effect of roughness on fatigue life are not all similarly predicted by these different fatigue criteria. (authors)

  11. Fuzzy Based Decision Support System for Condition Assessment and Rating of Bridges

    Science.gov (United States)

    Srinivas, Voggu; Sasmal, Saptarshi; Karusala, Ramanjaneyulu

    2016-09-01

    In this work, a knowledge based decision support system has been developed to efficiently handle the issues such as distress diagnosis, assessment of damages and condition rating of existing bridges towards developing an exclusive and robust Bridge Management System (BMS) for sustainable bridges. The Knowledge Based Expert System (KBES) diagnoses the distresses and finds the cause of distress in the bridge by processing the data which are heuristic and combined with site inspection results, laboratory test results etc. The coupling of symbolic and numeric type of data has been successfully implemented in the expert system to strengthen its decision making process. Finally, the condition rating of the bridge is carried out using the assessment results obtained from the KBES and the information received from the bridge inspector. A systematic procedure has been developed using fuzzy mathematics for condition rating of bridges by combining the fuzzy weighted average and resolution identity technique. The proposed methodologies and the decision support system will facilitate in developing a robust and exclusive BMS for a network of bridges across the country and allow the bridge engineers and decision makers to carry out maintenance of bridges in a rational and systematic way.

  12. Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions

    Science.gov (United States)

    Rubinato, Matteo; Martins, Ricardo; Kesserwani, Georges; Leandro, Jorge; Djordjević, Slobodan; Shucksmith, James

    2017-09-01

    The linkage between sewer pipe flow and floodplain flow is recognised to induce an important source of uncertainty within two-dimensional (2D) urban flood models. This uncertainty is often attributed to the use of empirical hydraulic formulae (the one-dimensional (1D) weir and orifice steady flow equations) to achieve data-connectivity at the linking interface, which require the determination of discharge coefficients. Because of the paucity of high resolution localised data for this type of flows, the current understanding and quantification of a suitable range for those discharge coefficients is somewhat lacking. To fulfil this gap, this work presents the results acquired from an instrumented physical model designed to study the interaction between a pipe network flow and a floodplain flow. The full range of sewer-to-surface and surface-to-sewer flow conditions at the exchange zone are experimentally analysed in both steady and unsteady flow regimes. Steady state measured discharges are first analysed considering the relationship between the energy heads from the sewer flow and the floodplain flow; these results show that existing weir and orifice formulae are valid for describing the flow exchange for the present physical model, and yield new calibrated discharge coefficients for each of the flow conditions. The measured exchange discharges are also integrated (as a source term) within a 2D numerical flood model (a finite volume solver to the 2D Shallow Water Equations (SWE)), which is shown to reproduce the observed coefficients. This calibrated numerical model is then used to simulate a series of unsteady flow tests reproduced within the experimental facility. Results show that the numerical model overestimated the values of mean surcharge flow rate. This suggests the occurrence of additional head losses in unsteady conditions which are not currently accounted for within flood models calibrated in steady flow conditions.

  13. Adhesion of resin composites to biomaterials in dentistry : an evaluation of surface conditioning methods

    NARCIS (Netherlands)

    Özcan, Mutlu

    2003-01-01

    Since previous investigations revealed that most clinical failures in adhesively luted ceramic restorations initiate from the cementation or internal surfaces, the study presented in Chapter II evaluated the effect of three different surface conditioning methods on the bond strength of a Bis-GMA

  14. The machined surface of magnesium AZ31 after rotary turning at air cooling condition

    Science.gov (United States)

    Akhyar, G.; Purnomo, B.; Hamni, A.; Harun, S.; Burhanuddin, Y.

    2018-04-01

    Magnesium is a lightweight metal that is widely used as an alternative to iron and steel. Magnesium has been applied in the automotive industry to reduce the weight of a component, but the machining process has the disadvantage that magnesium is highly flammable because it has a low flash point. High temperature can cause the cutting tool wear and contributes to the quality of the surface roughness. The purpose of this study is to obtain the value of surface roughness and implement methods of rotary cutting tool and air cooling output vortex tube cooler to minimize the surface roughness values. Machining parameters that is turning using rotary cutting tool at speed the workpiece of (Vw) 50, 120, 160 m/min, cutting speed of rotary tool of (Vt) 25, 50, 75 m/min, feed rate of (f) 0.1, 0.15, 0.2 mm/rev, and depth of cut of 0.3 mm. Type of tool used is a carbide tool diameter of 16 mm and air cooling pressure of 6 bar. The results show the average value of the lowest surface roughness on the speed the workpiece of 80 m/min, cutting speed of rotary tool of 50 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm. While the average value of the highest surface roughness on the speed the workpiece of 160 m/min, cutting speed of rotary tool of 50 m/min, feed rate of 0.2 mm/rev, and depth of cut of 0.3 mm. The influence of machining parameters concluded the higher the speed of the workpiece the surface roughness value higher. Otherwise the higher cutting speed of rotary tool then the lower the surface roughness value. The observation on the surface of the rotary tool, it was found that no uniform tool wear which causes non-uniform surface roughness. The use of rotary cutting tool contributing to lower surface roughness values generated.

  15. Mass transfer inside a flux hood for the sampling of gaseous emissions from liquid surfaces - Experimental assessment and emission rate rescaling

    Science.gov (United States)

    Prata, Ademir A.; Lucernoni, Federico; Santos, Jane M.; Capelli, Laura; Sironi, Selena; Le-Minh, Nhat; Stuetz, Richard M.

    2018-04-01

    This study assesses the mass transfer of compounds inside the US EPA flux hood, one of the enclosure devices most commonly employed for the direct measurement of atmospheric emissions from liquid surfaces in wastewater treatment plants (WWTPs). Experiments comprised the evaporation of water and the volatilisation of a range of volatile organic compounds (VOCs). Special attention was given to the evaluation of the mass transfer coefficients in the microenvironment created by the flux hood and the effects of concentration build up in the hood's headspace. The VOCs emission rates and the water evaporation rates generally increased with the sweep air flow rate, as did the mass transfer coefficients for all compounds. The emission of compounds whose volatilisation is significantly influenced by the gas phase was greatly affected by concentration build up, whereas this effect was not significant for liquid phase-controlled compounds. The gas-film mass transfer coefficient (kG) estimated inside the US EPA flux hood was of the same order as the respective kG reported in the literature for wind tunnel-type devices, but the emission rates measured by the flux hood can be expected to be lower, due to the concentration build-up. Compared against an emission model for the passive surfaces in WWTPs, the mass transfer of acetic acid (representing a gas phase-dominated compound) inside the US EPA flux hood was equivalent to conditions of wind speeds at 10 m height (U10) of 0.27, 0.51 and 0.99 m s-1, respectively, for sweep air flow rates of 2, 5 and 10 L min-1. On the other hand, for higher wind speeds, the emission rates of gas phase-controlled compounds obtained with the flux hood can be considerably underestimated: for instance, at U10 = 5 m s-1, the emission rates of acetic acid inside the flux hood would be approximately 23, 12 and 6 times lower than the emission rates in the field, for sweep air flow rates of 2, 5 and 10 L min-1, respectively. A procedure is presented in

  16. Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions

    Science.gov (United States)

    Magee, N. B.; Miller, A.; Amaral, M.; Cumiskey, A.

    2014-11-01

    Here we show high-magnification images of hexagonal ice crystals acquired by environmental scanning electron microscopy (ESEM). Most ice crystals were grown and sublimated in the water vapor environment of an FEI-Quanta-200 ESEM, but crystals grown in a laboratory diffusion chamber were also transferred intact and imaged via ESEM. All of these images display prominent mesoscopic topography including linear striations, ridges, islands, steps, peaks, pits, and crevasses; the roughness is not observed to be confined to prism facets. The observations represent the most highly magnified images of ice surfaces yet reported and expand the range of conditions in which rough surface features are known to be conspicuous. Microscale surface topography is seen to be ubiquitously present at temperatures ranging from -10 °C to -40 °C, in supersaturated and subsaturated conditions, on all crystal facets, and irrespective of substrate. Despite the constant presence of surface roughness, the patterns of roughness are observed to be dramatically different between growing and sublimating crystals, and transferred crystals also display qualitatively different patterns of roughness. Crystals are also demonstrated to sometimes exhibit inhibited growth in moderately supersaturated conditions following exposure to near-equilibrium conditions, a phenomenon interpreted as evidence of 2-D nucleation. New knowledge about the characteristics of these features could affect the fundamental understanding of ice surfaces and their physical parameterization in the context of satellite retrievals and cloud modeling. Links to supplemental videos of ice growth and sublimation are provided.

  17. Target surface condition during reactive glow discharge sputtering of copper

    International Nuclear Information System (INIS)

    Depla, D; Haemers, J; Gryse, R De

    2002-01-01

    During reactive glow discharge sputtering of copper in an argon/nitrogen plasma, we noticed an abrupt change of the target voltage and the deposition rate when the nitrogen concentration in the plasma exceeds a critical value. To explain this behaviour, the target surface after reactive glow discharge sputtering was examined by x-ray photoelectron spectroscopy (XPS). An experimental arrangement was constructed that allows direct transfer of the glow discharge cathode to the XPS analysis chamber without air exposure. These XPS measurements revealed that several different chemical states of nitrogen are present in the layer that forms on the target surface. The relative concentration of these different states changes when the critical nitrogen concentration in the plasma is exceeded

  18. Effects of electromagnetic field and lubricate condition on the surface quality of magnesium alloy billet during LFEC processing

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The microstructures of the magnesium billets could be improved markedly by low-frequency electro-magnetic casting (LFEC) processing. In fact, the low-frequency electromagnetic field (LFEF) also has favorite effect on the surface quality of billet. However, few public reports on the surface quality of LFEC magnesium billets could be found. Therefore, a new crystallizer with a metal internal sleeve to-gether with a kind of lubricant was designed aiming at lowing surface turning quantity, and the effects of casting velocity, electromagnetic condition and lubrication on the surface quality of magnesium billets were investigated. The results indicate that LFEF together with the lubricate condition would be responsible for the surface quality of the billets, and the high surface quality billets could be achieved by optimizing the casting conditions.

  19. A rating tool to assess the condition of South African infrastructure

    CSIR Research Space (South Africa)

    Wall, K

    2015-12-01

    Full Text Available In 2006 the South African Institution of Civil Engineering (SAICE), in partnership with the Council for Scientific and Industrial Research (CSIR), released the first ever “report card” assessment rating of the condition of engineering infrastructure...

  20. A modified surface-resistance approach for representing bare-soil evaporation: wind tunnel experiments under various atmospheric conditions

    International Nuclear Information System (INIS)

    Yamanaka, T.; Takeda, A.; Sugita, F.

    1997-01-01

    A physically based (i.e., nonempirical) representation of surface-moisture availability is proposed, and its applicability is investigated. This method is based on the surface-resistance approaches, and it uses the depth of evaporating surface rather than the water content of the surface soil as the determining factor of surface-moisture availability. A simple energy-balance model including this representation is developed and tested against wind tunnel experiments under various atmospheric conditions. This model can estimate not only the latent heat flux but also the depth of the evaporating surface simultaneously by solving the inverse problem of energy balance at both the soil surface and the evaporating surface. It was found that the depth of the evaporating surface and the latent heat flux estimated by the model agreed well with those observed. The agreements were commonly found out under different atmospheric conditions. The only limitation of this representation is that it is not valid under conditions of drastic change in the radiation input, owing to the influence of transient phase transition of water in the dry surface layer. The main advantage of the approach proposed is that it can determine the surface moisture availability on the basis of the basic properties of soils instead of empirical fitting, although further investigations on its practical use are needed

  1. Effect of diffusion from a lateral surface on the rate of GaN nanowire growth

    International Nuclear Information System (INIS)

    Sibirev, N. V.; Tchernycheva, M.; Cirlin, G. E.; Patriarche, G.; Harmand, J. C.; Dubrovskii, V. G.

    2012-01-01

    The kinetics of the growth of GaN crystalline nanowires on a Si (111) surface with no catalyst is studied experimentally and theoretically. Noncatalytic GaN nanowires were grown by molecular-beam epitaxy with AlN inserts, which makes it possible to determine the rate of the vertical growth of nanowires. A model for the formation of GaN nanowires is developed, and an expression for their rate of growth is derived. It is shown that, in the general case, the dependence of the rate of growth on the nanowire diameter has a minimum. The diameter corresponding to the experimentally observed minimum of the rate of growth steadily increases with increasing diffusion flux from the lateral surface.

  2. Effects of Cooling Rates on Hydride Reorientation and Mechanical Properties of Zirconium Alloy Claddings under Interim Dry Storage Conditions

    International Nuclear Information System (INIS)

    Min, Su-Jeong; Kim, Myeong-Su; Won, Chu-chin; Kim, Kyu-Tae

    2013-01-01

    As-received Zr-Nb cladding tubes and 600 ppm hydrogen-charged tubes were employed to evaluate the effects of cladding cooling rates on the extent of hydride reorientation from circumferential hydrides to radial ones and mechanical property degradations with the use of cooling rates of 2, 4 and 15 °C/min from 400 °C to room temperature simulating cladding cooling under interim dry storage conditions. The as-received cladding tubes generated nearly the same ultimate tensile strengths and plastic elongations, regardless of the cooling rates, because of a negligible hydrogen content in the cladding. The 600 ppm-H cladding tubes indicate that the slower cooling rate generated the larger radial hydride fraction and the longer radial hydrides, which resulted in greater mechanical performance degradations. The cooling rate of 2 °C/min generates an ultimate tensile strength of 758 MPa and a plastic elongation of 1.0%, whereas the cooling rate of 15 °C/min generates an ultimate tensile strength of 825 MPa and a plastic elongation of 15.0%. These remarkable mechanical property degradations of the 600 ppm-H cladding tubes with the slowest cooling rate may be characterized by cleavage fracture surface appearance enhanced by longer radial hydrides and their higher fraction that have been precipitated through a relatively larger nucleation and growth rate.

  3. Epistasis increases the rate of conditionally neutral substitution in an adapting population.

    Science.gov (United States)

    Draghi, Jeremy A; Parsons, Todd L; Plotkin, Joshua B

    2011-04-01

    Kimura observed that the rate of neutral substitution should equal the neutral mutation rate. This classic result is central to our understanding of molecular evolution, and it continues to influence phylogenetics, genomics, and the interpretation of evolution experiments. By demonstrating that neutral mutations substitute at a rate independent of population size and selection at linked sites, Kimura provided an influential justification for the idea of a molecular clock and emphasized the importance of genetic drift in shaping molecular evolution. But when epistasis among sites is common, as numerous empirical studies suggest, do neutral mutations substitute according to Kimura's expectation? Here we study simulated, asexual populations of RNA molecules, and we observe that conditionally neutral mutations--i.e., mutations that do not alter the fitness of the individual in which they arise, but that may alter the fitness effects of subsequent mutations--substitute much more often than expected while a population is adapting. We quantify these effects using a simple population-genetic model that elucidates how the substitution rate at conditionally neutral sites depends on the population size, mutation rate, strength of selection, and prevalence of epistasis. We discuss the implications of these results for our understanding of the molecular clock, and for the interpretation of molecular variation in laboratory and natural populations.

  4. Continuous Rating for Diggability Assessment in Surface Mines

    Science.gov (United States)

    IPHAR, Melih

    2016-10-01

    The rocks can be loosened either by drilling-blasting or direct excavation using powerful machines in opencast mining operations. The economics of rock excavation is considered for each method to be applied. If blasting operation is not preferred and also the geological structures and rock mass properties in site are convenient (favourable ground conditions) for ripping or direct excavation method by mining machines, the next step is to determine which machine or excavator should be selected for the excavation purposes. Many researchers have proposed several diggability or excavatability assessment methods for deciding on excavator type to be used in the field. Most of these systems are generally based on assigning a rating for the parameters having importance in rock excavation process. However, the sharp transitions between the two adjacent classes for a given parameter can lead to some uncertainties. In this paper, it has been proposed that varying rating should be assigned for a given parameter called as “continuous rating” instead of giving constant rating for a given class.

  5. Study on fermentation conditions of palm juice vinegar by response surface methodology and development of a kinetic model

    Directory of Open Access Journals (Sweden)

    S. Ghosh

    2012-09-01

    Full Text Available Natural vinegar is one of the fermented products which has some potentiality with respect to a nutraceutical standpoint. The present study is an optimization of the fermentation conditions for palm juice vinegar production from palm juice (Borassus flabellifer wine, this biochemical process being aided by Acetobacter aceti (NCIM 2251. The physical parameters of the fermentation conditions such as temperature, pH, and time were investigated by Response Surface Methodology (RSM with 2³ factorial central composite designs (CCD. The optimum pH, temperature and time were 5.5, 30 °C and 72 hrs for the highest yield of acetic acid (68.12 g / L. The quadratic model equation had a R² value of 0.992. RSM played an important role in elucidating the basic mechanisms in a complex situation, thus providing better process control by maximizing acetic acid production with the respective physical parameters. At the optimized conditions of temperature, pH and time and with the help of mathematical kinetic equations, the Monod specific growth rate ( µ max= 0.021 h-1, maximum Logistic specific growth rate ( µ 'max = 0.027 h-1 and various other kinetic parameters were calculated, which helped in validation of the experimental data. Therefore, the established kinetic models may be applied for the production of natural vinegar by fermentation of low cost palm juice.

  6. The effects of surface condition on abdominal muscle activity during single-legged hold exercise.

    Science.gov (United States)

    Ha, Sung-min; Oh, Jae-seop; Jeon, In-cheol; Kwon, Oh-yun

    2015-02-01

    To treat low-back pain, various spinal stability exercises are commonly used to improve trunk muscle function and strength. Because human movement for normal daily activity occurs in multi-dimensions, the importance of exercise in multi-dimensions or on unstable surfaces has been emphasized. Recently, a motorized rotating platform (MRP) for facilitating multi-dimensions dynamic movement was introduced for clinical use. However, the abdominal muscle activity with this device has not been reported. The purpose of this study was to compare the abdominal muscle activity (rectus abdominis, external and internal oblique muscles) during an active single-leg-hold (SLH) exercise on a floor (stable surface), foam roll, and motorized rotating platform (MRP). Thirteen healthy male subjects participated in this study. Using electromyography, the abdominal muscle activity was measured while the subjects performed SLH exercises on floor (stable surface), foam roll, and MRP. There were significant differences in the abdominal muscle activities among conditions (P.05) (Fig. 2). After the Bonferroni correction, however, no significant differences among conditions remained, except for differences in both side IO muscle activity between the floor and foam roll conditions (padjexercises on a foam roll and MRP is more effective increased activities of both side of RA and IO, and Rt. EO compared to floor condition. However, there were no significant differences in abdominal muscles activity in the multiple comparison between conditions (mean difference were smaller than the standard deviation in the abdominal muscle activities) (padj>0.017), except for differences in both side IO muscle activity between the floor (stable surface) and foam roll (padj<0.017) (effect size: 0.79/0.62 (non-supporting/supporting leg) for foam-roll versus floor). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Study on leakage rates of high temperature water from wet-type transport casks for spent fuel. Pt. 2. Leakage rates from a scratch on O-ring surface and narrow wires adhering to O-ring surface

    International Nuclear Information System (INIS)

    Asano, R.; Aritomi, M.; Sudi, A.; Kohketsu, Y.

    1997-01-01

    A programme for enhancement of fuel burnup has been promoted in Japan as part of the sophisticated programme for light water reactors to reduce the fuel cost and the amount of spent fuel. As part of this fuel programme, a new wet-type transport cask has been developed to transport the high burnup fuels efficiently. The purpose of this work is to clarify the margin of safety in the evaluation of the release rate of radioactive materials from the wet-type transport cask into the environment and to establish a practical evaluation method for leakage rates on leak behaviour of high temperature water from the casks. In this paper, leakage rates of water under high pressures and at high temperatures are investigated from two kinds of leak path model. One is a disc with a scratch on the surface which simulates a defect on the seal surface of the O-ring flange and the other is narrow stainless steel wires installed on the O-ring surface which simulates hair adhering to the O-ring surface. From the results, an evaluation method for the leakage rate of water under high pressure and at high temperature from a non-circular leak path and multiple leak paths is proposed. (author)

  8. Study on conditional probability of surface rupture: effect of fault dip and width of seismogenic layer

    Science.gov (United States)

    Inoue, N.

    2017-12-01

    The conditional probability of surface ruptures is affected by various factors, such as shallow material properties, process of earthquakes, ground motions and so on. Toda (2013) pointed out difference of the conditional probability of strike and reverse fault by considering the fault dip and width of seismogenic layer. This study evaluated conditional probability of surface rupture based on following procedures. Fault geometry was determined from the randomly generated magnitude based on The Headquarters for Earthquake Research Promotion (2017) method. If the defined fault plane was not saturated in the assumed width of the seismogenic layer, the fault plane depth was randomly provided within the seismogenic layer. The logistic analysis was performed to two data sets: surface displacement calculated by dislocation methods (Wang et al., 2003) from the defined source fault, the depth of top of the defined source fault. The estimated conditional probability from surface displacement indicated higher probability of reverse faults than that of strike faults, and this result coincides to previous similar studies (i.e. Kagawa et al., 2004; Kataoka and Kusakabe, 2005). On the contrary, the probability estimated from the depth of the source fault indicated higher probability of thrust faults than that of strike and reverse faults, and this trend is similar to the conditional probability of PFDHA results (Youngs et al., 2003; Moss and Ross, 2011). The probability of combined simulated results of thrust and reverse also shows low probability. The worldwide compiled reverse fault data include low fault dip angle earthquake. On the other hand, in the case of Japanese reverse fault, there is possibility that the conditional probability of reverse faults with less low dip angle earthquake shows low probability and indicates similar probability of strike fault (i.e. Takao et al., 2013). In the future, numerical simulation by considering failure condition of surface by the source

  9. Evaluation of Haney-Type Surface Thermal Boundary Conditions Using a Coupled Atmosphere and Ocean Model

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    2001-01-01

    ... (Russell et al,, 1995) was used to verify the validity of Haney-type surface thermal boundary condition, which linearly connects net downward surface heat flux Q to air / sea temperature difference DeltaT by a relaxation coefficient K...

  10. Boundary conditions for free surface inlet and outlet problems

    KAUST Repository

    Taroni, M.

    2012-08-10

    We investigate and compare the boundary conditions that are to be applied to free-surface problems involving inlet and outlets of Newtonian fluid, typically found in coating processes. The flux of fluid is a priori known at an inlet, but unknown at an outlet, where it is governed by the local behaviour near the film-forming meniscus. In the limit of vanishing capillary number Ca it is well known that the flux scales with Ca 2/3, but this classical result is non-uniform as the contact angle approaches π. By examining this limit we find a solution that is uniformly valid for all contact angles. Furthermore, by considering the far-field behaviour of the free surface we show that there exists a critical capillary number above which the problem at an inlet becomes over-determined. The implications of this result for the modelling of coating flows are discussed. © 2012 Cambridge University Press.

  11. Nuclear Weak Rates and Detailed Balance in Stellar Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Misch, G. Wendell, E-mail: wendell@sjtu.edu, E-mail: wendell.misch@gmail.com [Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2017-07-20

    Detailed balance is often invoked in discussions of nuclear weak transitions in astrophysical environments. Satisfaction of detailed balance is rightly touted as a virtue of some methods of computing nuclear transition strengths, but I argue that it need not necessarily be strictly obeyed in astrophysical environments, especially when the environment is far from weak equilibrium. I present the results of shell model calculations of nuclear weak strengths in both charged-current and neutral-current channels at astrophysical temperatures, finding some violation of detailed balance. I show that a slight modification of the technique to strictly obey detailed balance has little effect on the reaction rates associated with these strengths under most conditions, though at high temperature the modified technique in fact misses some important strength. I comment on the relationship between detailed balance and weak equilibrium in astrophysical conditions.

  12. Cooling rate and microstructure of surface layers of 5KhNM steel, machined by electroerosion method

    International Nuclear Information System (INIS)

    Foteev, N.K.; Ploshkin, V.V.; Lyakishev, V.A.; Shirokov, S.V.

    1982-01-01

    The cooling rate and microstructure of surface layers of steel 5KhNM machined by electroerosion method have been studied. It is shown that the difference in heating rate of the surface layers with electric discharge over the 5KhNM steel samples depth results in the intensive size reduction of the microstructure. In the surface layer alongside with martensite residual austenite is present, the lattice period of which increases with the increase of pulse duration, carbide phase of complex composition appears, and concentrational heterogeneity in alloying elements (except carbon) is absent

  13. Cooling rate and microstructure of surface layers of 5KhNM steel, machined by electroerosion method

    Energy Technology Data Exchange (ETDEWEB)

    Foteev, N.K.; Ploshkin, V.V.; Lyakishev, V.A.; Shirokov, S.V.

    1982-01-01

    The cooling rate and microstructure of surface layers of steel 5KhNM machined by electroerosion method have been studied. It is shown that the difference in heating rate of the surface layers with electric discharge over the 5KhNM steel samples depth results in the intensive size reduction of the microstructure. In the surface layer alongside with martensite residual austenite is present, the lattice period of which increases with the increase of pulse duration, carbide phase of complex composition appears, and concentrational heterogeneity in alloying elements (except carbon) is absent.

  14. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    Science.gov (United States)

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p ++ -silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  15. Scavenging rate ecoassay: a potential indicator of estuary condition.

    Science.gov (United States)

    Porter, Augustine G; Scanes, Peter R

    2015-01-01

    Monitoring of estuary condition is essential due to the highly productive and often intensely impacted nature of these ecosystems. Assessment of the physico-chemical condition of estuaries is expensive and difficult due to naturally fluctuating water quality and biota. Assessing the vigour of ecosystem processes is an alternative method with potential to overcome much of the variability associated with physico-chemical measures. Indicators of estuary condition should have small spatial and temporal variability, have a predictable response to perturbation and be ecologically relevant. Here, we present tests of the first criterion, the spatio-temporal variability of a potential ecoassay measuring the rate of scavenging in estuaries. We hypothesised that the proposed scavenging ecoassay would not vary significantly among A) sites in an estuary, B) trips separated by weeks, or C) days in a trip. Because not all habitats are present in all estuaries, this test was undertaken in two habitats. When conducted over bare substrate there were occasional significant differences, but no discernible patterns, within levels of the experiment. When conducted over vegetated substrate, days within a trip did not vary significantly, but later trips experienced greater scavenging. This scavenging ecoassay shows potential as a tool for assessing the condition of estuarine ecosystems, and further exploration of this protocol is warranted by implementation in estuaries across a gradient of anthropogenic stress.

  16. Population processes with unbounded extinction rate conditioned to non-extinction

    OpenAIRE

    Champagnat, Nicolas; Villemonais, Denis

    2016-01-01

    This article studies the quasi-stationary behaviour of population processes with unbounded absorption rate, including one-dimensional birth and death processes with catastrophes and multi-dimensional birth and death processes, modeling biological populations in interaction. To handle this situation, we develop original non-linear Lyapunov criteria. We obtain the exponential convergence in total variation of the conditional distributions to a unique quasi-stationary distribution, uniformly wit...

  17. Surface deposition of iodine on some agricultural plants in laboratory conditions

    International Nuclear Information System (INIS)

    Stano, V.

    1990-01-01

    The surface (primary) deposition of nuclides on the above-ground parts of plants was studied. Iodine retention coefficients were measured in laboratory conditions for maize, peas, spinach, lettuce and paprika grown in loose soil taken in the Kecerovce locality. The results confirmed the assumption that the surface deposition of iodine is closely related to the morphological and physiological properties of the plants, although the substrate on which the plants are grown plays an appreciable role as well (the biomass production is higher for plants grown in loose soil than for those grown in aqueous nutrient solutions). The assumption that the above-ground parts retain iodine in higher quantities than the generative organs do was also proved. In the crops the retention of iodine was markedly differentiated in dependence on their overall consistency or on the structure of the surface cuticle layers. (author). 1 tab., 10 refs

  18. City ventilation of Hong Kong at no-wind conditions

    Science.gov (United States)

    Yang, Lina; Li, Yuguo

    We hypothesize that city ventilation due to both thermally-driven mountain slope flows and building surface flows is important in removing ambient airborne pollutants in the high-rise dense city Hong Kong at no-wind conditions. Both spatial and temporal urban surface temperature profiles are an important boundary condition for studying city ventilation by thermal buoyancy. Field measurements were carried out to investigate the diurnal thermal behavior of urban surfaces (mountain slopes, and building exterior walls and roofs) in Hong Kong by using the infrared thermography. The maximum urban surface temperature was measured in the early noon hours (14:00-15:00 h) and the minimum temperature was observed just before sunrise (5:00 h). The vertical surface temperature of the building exterior wall was found to increase with height at daytime and the opposite occurred at nighttime. The solar radiation and the physical properties of the various urban surfaces were found to be important factors affecting the surface thermal behaviors. The temperature difference between the measured maximum and minimum surface temperatures of the four selected exterior walls can be at the highest of 16.7 °C in the early afternoon hours (15:00 h). Based on the measured surface temperatures, the ventilation rate due to thermal buoyancy-induced wall surface flows of buildings and mountain slope winds were estimated through an integral analysis of the natural convection flow over a flat surface. At no-wind conditions, the total air change rate by the building wall flows (2-4 ACH) was found to be 2-4 times greater than that by the slope flows due to mountain surface (1 ACH) due to larger building exterior surface areas and temperature differences with surrounding air. The results provide useful insights into the ventilation of a high-rise dense city at no-wind conditions.

  19. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Directory of Open Access Journals (Sweden)

    Thangam Chinnadurai

    2016-12-01

    Full Text Available This study focuses on investigating the effects of process parameters, namely, Peak current (Ip, Pulse on time (Ton, Pulse off time (Toff, Water pressure (Wp, Wire feed rate (Wf, Wire tension (Wt, Servo voltage (Sv and Servo feed setting (Sfs, on the Material Removal Rate (MRR and Surface Roughness (SR for Wire electrical discharge machining (Wire-EDM of nickel using Taguchi method. Response Surface Methodology (RSM is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used.

  20. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    International Nuclear Information System (INIS)

    Chinnadurai, T.; Vendan, S.A.

    2016-01-01

    This study focuses on investigating the effects of process parameters, namely, Peak current (Ip), Pulse on time (Ton), Pulse off time (Toff), Water pressure (Wp), Wire feed rate (Wf), Wire tension (Wt), Servo voltage (Sv) and Servo feed setting (Sfs), on the Material Removal Rate (MRR) and Surface Roughness (SR) for Wire electrical discharge machining (Wire-EDM) of nickel using Taguchi method. Response Surface Methodology (RSM) is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used. (Author)

  1. Prediction of material removal rate and surface roughness for wire electrical discharge machining of nickel using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Chinnadurai, T.; Vendan, S.A.

    2016-07-01

    This study focuses on investigating the effects of process parameters, namely, Peak current (Ip), Pulse on time (Ton), Pulse off time (Toff), Water pressure (Wp), Wire feed rate (Wf), Wire tension (Wt), Servo voltage (Sv) and Servo feed setting (Sfs), on the Material Removal Rate (MRR) and Surface Roughness (SR) for Wire electrical discharge machining (Wire-EDM) of nickel using Taguchi method. Response Surface Methodology (RSM) is adopted to evolve mathematical relationships between the wire cutting process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired optimal wire cutting quality. Besides, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Mini-tab is used to establish the design and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their appropriateness and suitability. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses accurately and precisely within the limits of cutting parameter being used. (Author)

  2. Measurements of the deposition rates of radon daughters on indoor surfaces

    International Nuclear Information System (INIS)

    Wang, H.; Essling, M.A.; Toohey, R.E.; Rundo, J.

    1982-01-01

    The deposition rates of radon daughters on indoor surfaces have been measured by exposing the window of a proportional counter to the air of a house with high concentrations of radon and its daughters. Deposition velocities for unattached 218 Po (RaA) and 214 Pb (RaB) of approximately 4 mm sec - 1 were obtained by dividing the deposition rates by the concentrations of unattached daughters in the air. These results agree with those obtained by other workers but are dependent on the assumptions made about the fractions of the daughters which are attached to the atmospheric aerosol

  3. Residual stresses relaxation in surface-hardened half-space under creep conditions

    Directory of Open Access Journals (Sweden)

    Vladimir P. Radchenko

    2015-09-01

    Full Text Available We developed the method for solving the problem of residual stresses relaxation in surface-hardened layer of half-space under creep conditions. At the first stage we made the reconstruction of stress-strain state in half-space after plastic surface hardening procedure based on partial information about distribution for one residual stress tensor component experimentally detected. At the second stage using a numerical method we solve the problem of relaxation of self-balanced residual stresses under creep conditions. To solve this problem we introduce the following Cartesian system: x0y plane is aligned with hardened surface of half-space and 0z axis is directed to the depth of hardened layer. We also introduce the hypotheses of plane sections parallel to x0z and y0z planes. Detailed analysis of the problem has been done. Comparison of the calculated data with the corresponding test data was made for plane specimens (rectangular parallelepipeds made of EP742 alloy during T=650°C after the ultrasonic hardening with four hardening modes. We use half-space to model these specimens because penetration's depth of residual stresses is less than specimen general size in two digit exponent. There is enough correspondence of experimental and calculated data. It is shown that there is a decay (in modulus of pressing residual stresses under creep in 1.4–1.6 times.

  4. The effects of viscosity, surface tension, and flow rate on gasoil-water flow pattern in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Boogar, Rahman Sadeghi; Gheshlaghi, Reza; Mahdavi, Mahmood Akhavan [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2013-01-15

    A microchannel was fabricated with glass tubes to investigate the effect of viscosity, surface tension, and flow rate on the liquid-liquid two-phase flow regime. Water and gasoil were selected as aqueous and organic working fluids, respectively. The two fluids were injected into the microchannel and created either slug or parallel profile depending on the applied conditions. The range of Reynolds and capillary numbers was chosen in such a way that neither inertia nor interfacial tension forces were negligible. Xanthan gum was used to increase viscosity and Triton X-100 (TX-100) and Sodium Dodecyl Sulfate (SDS) were used to reduce the interfacial tension. The results demonstrated that higher value of viscosity and flow rate increased interfacial area, but slug flow regime remained unchanged. The two surfactants showed different effects on the flow regime and interfacial area. Addition of TX-100 did not change the slug flow but decreased the interfacial area. In contrast, addition of SDS increased interfacial area by decreasing the slug’s length in the low concentrations and by switching from slug to parallel regime at high concentrations.

  5. Analysis of the influence of operating conditions on fouling rates in fired heaters

    International Nuclear Information System (INIS)

    Morales-Fuentes, A.; Picón-Núñez, M.; Polley, G.T.; Méndez-Díaz, S.

    2014-01-01

    Fouling due to chemical reaction in preheat trains for the processing of crude oil plays a key role in the operation and maintenance costs and on greenhouse emissions to atmosphere in crude processing plants. A preheat train consists of a set of heat transfer units that provide the crude oil stream the required amount of thermal energy to reach its target temperature either by heat recovery or by direct firing. Fired heaters supply external high temperature heating through the burning of fuel which result in complex heat transfer processes due to the large temperature and pressure changes and vaporization that takes place inside the unit. In this work, a thermo-hydraulic analysis of the performance of fired heaters is carried out through the application of commercial software to solve the mathematical models using finite difference methods; the analysis is applied to the crude side of a vertical fired heater in order to evaluate the impact of process conditions such as throughput and crude inlet temperature (CIT) on the fouling that take place at the early stages of operation. Using a fouling rate model based on thermo-hydraulic parameters, fouling rates are predicted assuming steady state operation and clean conditions. Although variations in process conditions are known to influence fouling rates, little work has been done on the subject. In this work excess air and steam injection are studied as a means to mitigate fouling. Results show that throughput reduction brings about a marked increase in the fouling rates. A decrease in CIT affects only the convection zone and it is found that this effect is negligible. In terms of excess air, it is found that although it affects negatively the heater efficiency it can be used to balance heat transfer between the convection and radiation zone in a way that fouling rates are reduced; however this strategy should be considered right from the design stage. Finally it is observed that steam injection is an effective method

  6. Specific absorption rate determination of magnetic nanoparticles through hyperthermia measurements in non-adiabatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Coïsson, M. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Barrera, G. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); University of Torino, Chemistry Department, via P. Giuria 7, 10125 Torino (Italy); Celegato, F.; Martino, L.; Vinai, F. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Martino, P. [Politronica srl, via Livorno 60, 10144 Torino (Italy); Ferraro, G. [Center for Space Human Robotics, Istituto Italiano di Tecnologia - IIT, corso Trento 21, 10129 Torino (Italy); Tiberto, P. [INRIM, strada delle Cacce 91, 10135 Torino (Italy)

    2016-10-01

    An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained. - Highlights: • Development and thermodynamic modelling of a hyperthermia setup operating in non-adiabatic conditions. • Calibration of the experimental setup and validation of the model. • Accurate measurement of specific absorption rate and intrinsic loss power in non-adiabatic conditions.

  7. Effects of strain rate, stress condition and environment on iodine embrittlement of Ziracloy-2

    International Nuclear Information System (INIS)

    Une, K.

    1979-01-01

    Iodine stress corrosion cracking (SCC) susceptibility of Zircaloy became higher with decreasing strain rate. Critical strain rate, below which high SCC severity was observed, substantially depended on Zircaloy stress condition. This strain rate (7 x 10 -3 min -1 ) under plane strain condition was about 3.5 times as fast as that (2 x 10 -3 min -1 ) under uniaxial condition. The maximum iodine embrittlement in Zircaloy was found in stress ratio α (axial/tangential stress) range of 0.5 to 0.7. No embrittlement occurred at α = infinity because of its texture effect. The SCC fracture stresses were about 39 kg/mm 2 for unirradiated and stress-relieved material, and about 34 kg/mm 2 for recrystallized material, whose ratios to yield strength of each material were 0.8 and 1.2. Impurity gases of oxygen and moisture in the iodine had the effects of reducing Zircaloy SCC susceptibility. Stress-relieved material was more sensitive to environmental impurities than recrystallized material

  8. Relationship between oxygen uptake slow component and surface EMG during heavy exercise in humans: influence of pedal rate.

    Science.gov (United States)

    Vercruyssen, Fabrice; Missenard, Olivier; Brisswalter, Jeanick

    2009-08-01

    The aim of this study was to test the hypothesis that extreme pedal rates contributed to the slow component of oxygen uptake (VO(2) SC) in association with changes in surface electromyographic (sEMG) during heavy-cycle exercise. Eight male trained cyclists performed two square-wave transitions at 50 and 110 rpm at a work rate that would elicit a VO(2) corresponding to 50% of the difference between peak VO(2) and the ventilatory threshold. Pulmonary gas exchange was measured breath-by-breath and sEMG was obtained from the vastus lateralis and medialis muscles. Integrated EMG flow (QiEMG) and mean power frequency (MPF) were computed. The relative amplitude of the VO(2) SC was significantly higher during the 110-rpm bout (556+/-186 ml min(-1), Pexercise only during the 110-rpm bout and were associated with the greater amplitude of the VO(2) SC observed for this condition (Pmotor units recruitment pattern, muscle energy turnover and muscle temperature have been suggested to explain the different VO(2) SC to heavy pedal rate bouts.

  9. Surface and subsurface conditions in permafrost areas - a literature review

    International Nuclear Information System (INIS)

    Vidstrand, Patrik

    2003-02-01

    This report contains a summary of some of the information within existing technical and scientific literature on permafrost. Permafrost is viewed as one of the future climate driven process domains that may exist in Scandinavia, and that may give rise to significantly different surface and subsurface conditions than the present. Except for changes in the biosphere, permafrost may impact hydraulic, mechanical, and chemical subsurface processes and conditions. Permafrost and its influences on the subsurface conditions are thus of interest for the performance and safety assessments of deep geological waste repositories. The definition of permafrost is 'ground that stays at or below 0 deg C for at least two consecutive years'. Permafrost will effect the geological subsurface to some depth. How deep the permafrost may grow is a function of the heat balance, thermal conditions at the surface and within the ground, and the geothermal heat flux from the Earth's inner parts. The main chapters of the report summaries the knowledge on permafrost evolution, occurrence and distribution, and extracts information concerning hydrology and mechanical and chemical impacts due to permafrost related conditions. The results of a literature review are always dependent on the available literature. Concerning permafrost there is some literature available from investigations in the field of long-term repositories and some from mining industries. However, reports of these investigations are few and the bulk of permafrost literature comes from the science departments concerned with surficial processes (e.g. geomorphology, hydrology, agriculture, etc) and from engineering concerns, such as foundation of constructions and pipeline design. This focus within the permafrost research inevitably yields a biased but also an abundant amount of information on localised surficial processes and a limited amount on regional and deep permafrost characteristics. Possible conclusions are that there is

  10. Surface and subsurface conditions in permafrost areas - a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik [Bergab, Goeteborg (Sweden)

    2003-02-01

    This report contains a summary of some of the information within existing technical and scientific literature on permafrost. Permafrost is viewed as one of the future climate driven process domains that may exist in Scandinavia, and that may give rise to significantly different surface and subsurface conditions than the present. Except for changes in the biosphere, permafrost may impact hydraulic, mechanical, and chemical subsurface processes and conditions. Permafrost and its influences on the subsurface conditions are thus of interest for the performance and safety assessments of deep geological waste repositories. The definition of permafrost is 'ground that stays at or below 0 deg C for at least two consecutive years'. Permafrost will effect the geological subsurface to some depth. How deep the permafrost may grow is a function of the heat balance, thermal conditions at the surface and within the ground, and the geothermal heat flux from the Earth's inner parts. The main chapters of the report summaries the knowledge on permafrost evolution, occurrence and distribution, and extracts information concerning hydrology and mechanical and chemical impacts due to permafrost related conditions. The results of a literature review are always dependent on the available literature. Concerning permafrost there is some literature available from investigations in the field of long-term repositories and some from mining industries. However, reports of these investigations are few and the bulk of permafrost literature comes from the science departments concerned with surficial processes (e.g. geomorphology, hydrology, agriculture, etc) and from engineering concerns, such as foundation of constructions and pipeline design. This focus within the permafrost research inevitably yields a biased but also an abundant amount of information on localised surficial processes and a limited amount on regional and deep permafrost characteristics. Possible conclusions are that

  11. Road-surface properties affecting rates of energy dissipation from vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Igwe, E.A. [Department of Civil Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ayotamuno, M.J.; Okparanma, R.N. [Department of Agricultural and Environmental Engineering, Rivers State University of Science and Technology, Port Harcourt, P.M.B 5080, Rivers State (Nigeria); Ogaji, S.O.T.; Probert, S.D. [School of Engineering, Cranfield University, Bedfordshire Mk43 OAL (United Kingdom)

    2009-09-15

    The rates of energy that moving vehicles dissipate to road surfaces as well as noise emissions and their propensities for pitting (and hence their repair costs per year) all depend upon the structural properties of these surfaces. Thus, to increase the strength of bituminous concrete (i.e. a typical flexible road-surface) has been one of the major recent aims in highway engineering. The present study explored techniques that will increase these strength properties by modifying the material, using rubber latex, through rubberization and hence, improve the strength of the flexible trafficked surface when in contact with vehicles. At the optimal design asphalt (i.e. bitumen) content of 4.68%, the successive addition of various percentages of the rubber latex produced a design value of 1.65% rubber content, which increased the stability of the roadway from 1595 to 2639 N (i.e. an 65.5% increase) and the density from 2447 to 2520.8 kg/m{sup 3} (i.e. a 3.02% increase). This shows that the addition of rubber latex to bituminous concrete (a flexible road-surface) increased sustainability and the strength (in terms of stability and density). Similarly, the air voids and voids in the mineral aggregate (VMA) were reduced by introducing latex from 4.22% to 3.45% (i.e. a 17.06% reduction) and 16.25% to 13.43% (i.e. an 17.4% reduction), respectively. Whereas, the reduction in voidage volume added strength to the bituminous concrete by increasing its stability and density, the reduction in VMA had no positive impact on the strength properties of the flexible road-surface. (author)

  12. Surface functionalization of SPR chip for specific molecular interaction analysis under flow condition

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-03-01

    Full Text Available Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance (SPR sensors. In this paper, we report a method circulating the dopamine aqueous solution to coat polydopamine film on sensing surface for surface functionalization of SPR chip. The polydopamine film with available thickness can be easily prepared by controlling the circulation time and the biorecognition elements can be immobilized on the polydopamine film for specific molecular interaction analysis. These operations are all performed under flow condition in the fluidic system, and have the advantages of easy implementation, less time consuming, and low cost, because the reagents and devices used in the operations are routinely applied in most laboratories. In this study, the specific absorption between the protein A probe immobilized on the sensing surface and human immunoglobulin G in the buffer is monitored based on this surface functionalization strategy to demonstrated its feasibility for SPR biosensing applications.

  13. The effect of physiological conditions on the surface structure of proteins: Setting the scene for human digestion of emulsions

    Science.gov (United States)

    Maldonado-Valderrama, J.; Gunning, A. P.; Ridout, M. J.; Wilde, P. J.; Morris, V. J.

    2009-10-01

    Understanding and manipulating the interfacial mechanisms that control human digestion of food emulsions is a crucial step towards improved control of dietary intake. This article reports initial studies on the effects of the physiological conditions within the stomach on the properties of the film formed by the milk protein ( β -lactoglobulin) at the air-water interface. Atomic force microscopy (AFM), surface tension and surface rheology techniques were used to visualize and examine the effect of gastric conditions on the network structure. The effects of changes in temperature, pH and ionic strength on a pre-formed interfacial structure were characterized in order to simulate the actual digestion process. Changes in ionic strength had little effect on the surface properties. In isolation, acidification reduced both the dilatational and the surface shear modulus, mainly due to strong repulsive electrostatic interactions within the surface layer and raising the temperature to body temperature accelerated the rearrangements within the surface layer, resulting in a decrease of the dilatational response and an increase of surface pressure. Together pH and temperature display an unexpected synergism, independent of the ionic strength. Thus, exposure of a pre-formed interfacial β -lactoglobulin film to simulated gastric conditions reduced the surface dilatational modulus and surface shear moduli. This is attributed to a weakening of the surface network in which the surface rearrangements of the protein prior to exposure to gastric conditions might play a crucial role.

  14. Environmental conditions to achieve low adhesion and low friction on diamond surfaces

    International Nuclear Information System (INIS)

    Guo, Haibo; Qi, Yue

    2010-01-01

    The adhesion and friction of both diamond and diamond-like carbon coatings can be dramatically changed by active gases in the environment, such as hydrogen, water vapor and humid air, due to tribochemical reactions. To understand the atmospheric effects and to predict the optimized environmental conditions (gas species, pressure and temperature), the tribochemical reactions on diamond surfaces are modeled from first principles thermodynamics. The results show that both H 2 and a mixture of H 2 O plus O 2 (such as humid air) can effectively achieve low adhesion and low friction with a fully –H or –OH passivated surface at very low partial pressures. Water vapor itself can passivate diamond (1 1 1) and (1 0 0) surfaces into half –H and half –OH terminated surfaces, but only at unrealistically high partial pressures. Even a trace amount of oxygen combined with water vapor can significantly reduce the water partial pressure for passivation. In all tribochemical reactions considered, the partial pressure required to reach low adhesion and low friction increases rapidly with temperature, and diamond (1 0 0) surface requires less partial pressures than (1 1 1) surface for surface passivation

  15. Investigation on the Temporal Surface Thermal Conditions for Thermal Comfort Researches Inside A Vehicle Cabin Under Summer Season Climate

    Directory of Open Access Journals (Sweden)

    Zhang Wencan

    2016-01-01

    Full Text Available With the proposes of improving occupant's thermal comfort and reducing the air conditioning power consumption, the present research carried out a comprehensive study on the surface thermal conductions and their influence parameters. A numerical model was built considering the transient conduction, convective and radiation heat transfer inside a vehicle cabin. For more accurate simulation of the radiation heat transfer behaviors, the radiation was considered into two spectral bands (short wave and long wave radiation, and the solar radiation was calculated by two solar fluxes (beam and diffuse solar radiation. An experiment was conducted to validate the numerical approach, showing a good agreement with the surface temperature. The surface thermal conditions were numerically simulated. The results show that the solar radiation is the most important factor in determining the internal surface thermal conditions. Effects of the window glass properties and the car body surface conditions were investigated. The numerical calculation results indicate that reducing the transitivity of window glass can effectively reduce the internal surface temperature. And the reflectivity of the vehicle cabin also has an important influence on the surface temperature, however, it's not so obvious as comparison to the window glass.

  16. Atmospheric Surface Layer Characterization: Preliminary Desert Lapse Rate Study 22-25 August 2000

    National Research Council Canada - National Science Library

    Elliott, Doyle

    2003-01-01

    Results of the August 2000 Desert Lapse Rate (DLR) Experiment are presented. The DLR Experiment was performed to document the night-to-day transition effects on the desert Atmospheric Surface Layer (ASL...

  17. On the initial condition problem of the time domain PMCHWT surface integral equation

    KAUST Repository

    Uysal, Ismail Enes; Bagci, Hakan; Ergin, A. Arif; Ulku, H. Arda

    2017-01-01

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced

  18. Investigating ozone-induced decomposition of surface-bound permethrin for conditions in aircraft cabins.

    Science.gov (United States)

    Coleman, B K; Wells, J R; Nazaroff, W W

    2010-02-01

    The reaction of ozone with permethrin can potentially form phosgene. Published evidence on ozone levels and permethrin surface concentrations in aircraft cabins indicated that significant phosgene formation might occur in this setting. A derivatization technique was developed to detect phosgene with a lower limit of detection of 2 ppb. Chamber experiments were conducted with permethrin-coated materials (glass, carpet, seat fabric, and plastic) exposed to ozone under cabin-relevant conditions (150 ppb O(3), 4.5/h air exchange rate, means of material-balance modeling indicates that the upper limit on the phosgene level in aircraft cabins resulting from this chemistry is approximately 1 microg/m(3) or approximately 0.3 ppb. It was thus determined that phosgene formation, if it occurs in aircraft cabins, is not likely to exceed relevant, health-based phosgene exposure guidelines. Phosgene formation from ozone-initiated oxidation of permethrin in the aircraft cabin environment, if it occurs, is estimated to generate levels below the California Office of Environmental Health Hazard Assessment acute reference exposure level of 4 microg/m(3) or approximately 1 ppb.

  19. Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes

    Science.gov (United States)

    Ayala; Schauwecker, S.; Pellicciotti, F.; McPhee, J. P.

    2011-12-01

    In mountainous areas, and in the Chilean Andes in particular, the irregular and sparse distribution of recording stations resolves insufficiently the variability of climatic factors such as precipitation, temperature and relative humidity. Assumptions about air temperature variability in space and time have a strong effect on the performance of hydrologic models that represent snow processes such as accumulation and ablation. These processes have large diurnal variations, and assumptions that average over longer time periods (days, weeks or months) may reduce the predictive capacity of these models under different climatic conditions from those for which they were calibrated. They also introduce large uncertainties when such models are used to predict processes with strong subdiurnal variability such as snowmelt dynamics. In many applications and modeling exercises, temperature is assumed to decrease linearly with elevation, using the free-air moist adiabatic lapse rate (MALR: 0.0065°C/m). Little evidence is provided for this assumption, however, and recent studies have shown that use of lapse rates that are uniform in space and constant in time is not appropriate. To explore the validity of this approach, near-surface (2 m) lapse rates were calculated and analyzed at different temporal resolution, based on a new data set of spatially distributed temperature sensors setup in a high elevation catchment of the dry Andes of Central Chile (approx. 33°S). Five minutes temperature data were collected between January 2011 and April 2011 in the Ojos de Agua catchment, using two Automatic Weather Stations (AWSs) and 13 T-loggers (Hobo H8 Pro Temp with external data logger), ranging in altitude from 2230 to 3590 m.s.l.. The entire catchment was snow free during our experiment. We use this unique data set to understand the main controls over temperature variability in time and space, and test whether lapse rates can be used to describe the spatial variations of air

  20. Effects of Seasonal Land Surface Conditions on Hydrometeorological Dynamics in South-western North America

    Science.gov (United States)

    2015-09-21

    rain gauges to measure precipitation , and 1 internal mini-flume to measure runoff . 9 Fig. 8. Processed fluxes measured at the two eddy...SECURITY CLASSIFICATION OF: Arid and semiarid landscapes in regions with seasonal precipitation experience dramatic changes that alter land surface...semiarid landscapes in regions with seasonal precipitation experience dramatic changes that alter land surface conditions, including soil moisture

  1. Effect of reacting surface density on the overall graphite oxidation rate

    International Nuclear Information System (INIS)

    Oh, Chang; Kim, Eung; Lim, Jong; Schultz, Richard; Petti, David

    2009-01-01

    Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internal pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1) Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because

  2. False negative rate and other performance measures of a sponge-wipe surface sampling method for low contaminant concentrations.

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, Wayne; Krauter, Paula A.; Boucher, Raymond M.; Tezak, Mathew; Amidan, Brett G. (Pacific Northwest National Laboratory, Richland, WA); Piepel, Greg F. (Pacific Northwest National Laboratory, Richland, WA)

    2011-05-01

    Recovery of spores from environmental surfaces is known to vary due to sampling methodology, techniques, spore size and characteristics, surface materials, and environmental conditions. A series of tests were performed to evaluate a new, validated sponge-wipe method. Specific factors evaluated were the effects of contaminant concentrations and surface materials on recovery efficiency (RE), false negative rate (FNR), limit of detection (LOD) - and the uncertainties of these quantities. Ceramic tile and stainless steel had the highest mean RE values (48.9 and 48.1%, respectively). Faux leather, vinyl tile, and painted wood had mean RE values of 30.3, 25.6, and 25.5, respectively, while plastic had the lowest mean RE (9.8%). Results show a roughly linear dependence of surface roughness on RE, where the smoothest surfaces have the highest mean RE values. REs were not influenced by the low spore concentrations tested (3 x 10{sup -3} to 1.86 CFU/cm{sup 2}). The FNR data were consistent with RE data, showing a trend of smoother surfaces resulting in higher REs and lower FNRs. Stainless steel generally had the lowest mean FNR (0.123) and plastic had the highest mean FNR (0.479). The LOD{sub 90} varied with surface material, from 0.015 CFU/cm{sup 2} on stainless steel up to 0.039 on plastic. Selecting sampling locations on the basis of surface roughness and using roughness to interpret spore recovery data can improve sampling. Further, FNR values, calculated as a function of concentration and surface material, can be used pre-sampling to calculate the numbers of samples for statistical sampling plans with desired performance, and post-sampling to calculate the confidence in characterization and clearance decisions.

  3. Investigation of surface boundary conditions for continuum modeling of RF plasmas

    Science.gov (United States)

    Wilson, A.; Shotorban, B.

    2018-05-01

    This work was motivated by a lacking general consensus in the exact form of the boundary conditions (BCs) required on the solid surfaces for the continuum modeling of Radiofrequency (RF) plasmas. Various kinds of number and energy density BCs on solid surfaces were surveyed, and how they interacted with the electric potential BC to affect the plasma was examined in two fundamental RF plasma reactor configurations. A second-order local mean energy approximation with equations governing the electron and ion number densities and the electron energy density was used to model the plasmas. Zero densities and various combinations of drift, diffusion, and thermal fluxes were considered to set up BCs. It was shown that the choice of BC can have a significant impact on the sheath and bulk plasma. The thermal and diffusion fluxes to the surface were found to be important. A pure drift BC for dielectric walls failed to produce a sheath.

  4. Effect of reference conditions on flow rate, modifier fraction and retention in supercritical fluid chromatography.

    Science.gov (United States)

    De Pauw, Ruben; Shoykhet Choikhet, Konstantin; Desmet, Gert; Broeckhoven, Ken

    2016-08-12

    When using compressible mobile phases such as fluidic CO2, the density, the volumetric flow rates and volumetric fractions are pressure dependent. The pressure and temperature definition of these volumetric parameters (referred to as the reference conditions) may alter between systems, manufacturers and operating conditions. A supercritical fluid chromatography system was modified to operate in two modes with different definition of the eluent delivery parameters, referred to as fixed and variable mode. For the variable mode, the volumetric parameters are defined with reference to the pump operating pressure and actual pump head temperature. These conditions may vary when, e.g. changing the column length, permeability, flow rate, etc. and are thus variable reference conditions. For the fixed mode, the reference conditions were set at 150bar and 30°C, resulting in a mass flow rate and mass fraction of modifier definition which is independent of the operation conditions. For the variable mode, the mass flow rate of carbon dioxide increases with system pump operating pressure, decreasing the fraction of modifier. Comparing the void times and retention factor shows that the deviation between the two modes is almost independent of modifier percentage, but depends on the operating pressure. Recalculating the set volumetric fraction of modifier to the mass fraction results in the same retention behaviour for both modes. This shows that retention in SFC can be best modelled using the mass fraction of modifier. The fixed mode also simplifies method scaling as it only requires matching average column pressure. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Composition, morphology and surface recombination rate of HCl-isopropanol treated and vacuum annealed InAs(1 1 1)A surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kesler, V.G., E-mail: kesler@isp.nsc.ru [Institute of Semiconductor Physics SB RAS, Lavrentiev av., 13, Novosibirsk 630090 (Russian Federation); Seleznev, V.A.; Kovchavtsev, A.P.; Guzev, A.A. [Institute of Semiconductor Physics SB RAS, Lavrentiev av., 13, Novosibirsk 630090 (Russian Federation)

    2010-05-01

    X-ray photoelectron spectroscopy and atomic force microscopy were used to examine the chemical composition and surface morphology of InAs(1 1 1)A surface chemically etched in isopropanol-hydrochloric acid solution (HCl-iPA) and subsequently annealed in vacuum in the temperature range 200-500 deg. C. Etching for 2-30 min resulted in the formation of 'pits' and 'hillocks' on the sample surface, respectively 1-2 nm deep and high, with lateral dimensions 50-100 nm. The observed local formations, whose density was up to 3 x 10{sup 8} cm{sup -2}, entirely vanished from the surface after the samples were vacuum-annealed at temperatures above 300 deg. C. Using a direct method, electron beam microanalysis, we have determined that the defects of the hillock type includes oxygen and excessive As, while the 'pits' proved to be identical in their chemical composition to InAs. Vacuum anneals were found to cause a decrease in As surface concentration relative to In on InAs surface, with a concomitant rise of surface recombination rate.

  6. Composition, morphology and surface recombination rate of HCl-isopropanol treated and vacuum annealed InAs(1 1 1)A surfaces

    Science.gov (United States)

    Kesler, V. G.; Seleznev, V. A.; Kovchavtsev, A. P.; Guzev, A. A.

    2010-05-01

    X-ray photoelectron spectroscopy and atomic force microscopy were used to examine the chemical composition and surface morphology of InAs(1 1 1)A surface chemically etched in isopropanol-hydrochloric acid solution (HCl-iPA) and subsequently annealed in vacuum in the temperature range 200-500 °C. Etching for 2-30 min resulted in the formation of "pits" and "hillocks" on the sample surface, respectively 1-2 nm deep and high, with lateral dimensions 50-100 nm. The observed local formations, whose density was up to 3 × 10 8 cm -2, entirely vanished from the surface after the samples were vacuum-annealed at temperatures above 300 °C. Using a direct method, electron beam microanalysis, we have determined that the defects of the hillock type includes oxygen and excessive As, while the "pits" proved to be identical in their chemical composition to InAs. Vacuum anneals were found to cause a decrease in As surface concentration relative to In on InAs surface, with a concomitant rise of surface recombination rate.

  7. Composition, morphology and surface recombination rate of HCl-isopropanol treated and vacuum annealed InAs(1 1 1)A surfaces

    International Nuclear Information System (INIS)

    Kesler, V.G.; Seleznev, V.A.; Kovchavtsev, A.P.; Guzev, A.A.

    2010-01-01

    X-ray photoelectron spectroscopy and atomic force microscopy were used to examine the chemical composition and surface morphology of InAs(1 1 1)A surface chemically etched in isopropanol-hydrochloric acid solution (HCl-iPA) and subsequently annealed in vacuum in the temperature range 200-500 deg. C. Etching for 2-30 min resulted in the formation of 'pits' and 'hillocks' on the sample surface, respectively 1-2 nm deep and high, with lateral dimensions 50-100 nm. The observed local formations, whose density was up to 3 x 10 8 cm -2 , entirely vanished from the surface after the samples were vacuum-annealed at temperatures above 300 deg. C. Using a direct method, electron beam microanalysis, we have determined that the defects of the hillock type includes oxygen and excessive As, while the 'pits' proved to be identical in their chemical composition to InAs. Vacuum anneals were found to cause a decrease in As surface concentration relative to In on InAs surface, with a concomitant rise of surface recombination rate.

  8. Water surface elevation from the upcoming SWOT mission under different flows conditions

    Science.gov (United States)

    Domeneghetti, Alessio; Schumann, Guy J. P.; Wei, Rui; Frasson, Renato P. M.; Durand, Michael; Pavelsky, Tamlin; Castellarin, Attilio; Brath, Armando

    2017-04-01

    The upcoming SWOT (Surface Water and Ocean Topography) satellite mission will provide unprecedented bi-dimensional observations of terrestrial water surface heights along rivers wider than 100m. Despite the literature reports several activities showing possible uses of SWOT products, potential and limitations of satellite observations still remain poorly understood and investigated. We present one of the first analyses regarding the spatial observation of water surface elevation expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 100-500 m in width and a floodplain delimited by a system of major embankments that can be as wide as 5 km. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2D model built with detailed topographic and bathymetric information (LiDAR, 2m resolution), while the simulation of remotely sensed hydrometric data is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow) this work characterizes the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. The analysis provides a robust reference for spatial water observations that will be available from SWOT and assesses possible effects of river embankments, river width and river topography under different hydraulic conditions. Results of the study characterize the expected accuracy of the upcoming SWOT mission and provide additional insights towards the appropriate exploitation of future hydrological observations.

  9. Effect of processing conditions on residual stress distributions by bead-on-plate welding after surface machining

    International Nuclear Information System (INIS)

    Ihara, Ryohei; Mochizuki, Masahito

    2014-01-01

    Residual stress is important factor for stress corrosion cracking (SCC) that has been observed near the welded zone in nuclear power plants. Especially, surface residual stress is significant for SCC initiation. In the joining processes of pipes, butt welding is conducted after surface machining. Residual stress is generated by both processes, and residual stress distribution due to surface machining is varied by the subsequent butt welding. In previous paper, authors reported that residual stress distribution generated by bead on plate welding after surface machining has a local maximum residual stress near the weld metal. The local maximum residual stress shows approximately 900 MPa that exceeds the stress threshold for SCC initiation. Therefore, for the safety improvement of nuclear power plants, a study on the local maximum residual stress is important. In this study, the effect of surface machining and welding conditions on residual stress distribution generated by welding after surface machining was investigated. Surface machining using lathe machine and bead on plate welding with tungsten inert gas (TIG) arc under various conditions were conducted for plate specimens made of SUS316L. Then, residual stress distributions were measured by X-ray diffraction method (XRD). As a result, residual stress distributions have the local maximum residual stress near the weld metal in all specimens. The values of the local maximum residual stresses are almost the same. The location of the local maximum residual stress is varied by welding condition. It could be consider that the local maximum residual stress is generated by same generation mechanism as welding residual stress in surface machined layer that has high yield stress. (author)

  10. Characterizing near-surface CO2 conditions before injection - Perspectives from a CCS project in the Illinois Basin, USA

    Science.gov (United States)

    Locke, R.A.; Krapac, I.G.; Lewicki, J.L.; Curtis-Robinson, E.

    2011-01-01

    The Midwest Geological Sequestration Consortium is conducting a large-scale carbon capture and storage (CCS) project in Decatur, Illinois, USA to demonstrate the ability of a deep saline formation to store one million tonnes of carbon dioxide (CO2) from an ethanol facility. Beginning in early 2011, CO2 will be injected at a rate of 1,000 tonnes/day for three years into the Mount Simon Sandstone at a depth of approximately 2,100 meters. An extensive Monitoring, Verification, and Accounting (MVA) program has been undertaken for the Illinois Basin Decatur Project (IBDP) and is focused on the 0.65 km2 project site. Goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. MVA efforts are being conducted pre-, during, and post- CO2 injection. Soil and net CO2 flux monitoring has been conducted for more than one year to characterize near-surface CO2 conditions. More than 2,200 soil CO2 flux measurements have been manually collected from a network of 118 soil rings since June 2009. Three ring types have been evaluated to determine which type may be the most effective in detecting potential CO 2 leakage. Bare soil, shallow-depth rings were driven 8 cm into the ground and were prepared to minimize surface vegetation in and near the rings. Bare soil, deep-depth rings were prepared similarly, but were driven 46 cm. Natural-vegetation, shallow-depth rings were driven 8 cm and are most representative of typical vegetation conditions. Bare-soil, shallow-depth rings had the smallest observed mean flux (1.78 ??mol m-2 s-1) versus natural-vegetation, shallow-depth rings (3.38 ??mol m-2 s-1). Current data suggest bare ring types would be more sensitive to small CO2 leak signatures than natural ring types because of higher signal to noise ratios. An eddy covariance (EC) system has been in use since June

  11. Soil erosion rates from mixed soil and gravel surfaces in a wind tunnel: A preliminary report

    International Nuclear Information System (INIS)

    Ligotke, M.W.

    1988-12-01

    Tests of wind erosion were performed in a controlled-environment wind tunnel to support the development of natural-material protective barriers for long-term isolation of radioactive waste. Barrier performance standards currently being developed for internal and external barrier performance are expected to mandate a surface layer that is resistant to wind erosion. The purpose of this study was to initiate a series of tests to determine suitable soil and gravel mixtures for such a barrier and to test worst-case surface layer conditions under the influence of high wind speeds. Six mixed soil and gravel surfaces were prepared, weathered to represent natural wind-blown desert areas, and subjected to controlled wind erosion forces in a wind tunnel. The applied erosive forces, including surface shear forces, were characterized to provide a means of relating wind tunnel results with actual field conditions. Soil particle losses from the surfaces caused by suspension, saltation, and surface creep were monitored by aerosol sample probes and mass balance measurements. 23 refs., 22 figs., 3 tabs

  12. Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

    Science.gov (United States)

    Stella, João Paulo Fragomeni; Oliveira, Andrea Becker; Nojima, Lincoln Issamu; Marquezan, Mariana

    2015-01-01

    OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding. METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%). RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased. CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface. PMID:26352845

  13. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    Science.gov (United States)

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  14. Surface conditioning with Escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion

    Directory of Open Access Journals (Sweden)

    Luciana C. Gomes

    2017-07-01

    Full Text Available Bacterial adhesion and biofilm formation on food processing surfaces pose major risks to human health. Non-efficient cleaning of equipment surfaces and piping can act as a conditioning layer that affects the development of a new biofilm post-disinfection. We have previously shown that surface conditioning with cell extracts could reduce biofilm formation. In the present work, we hypothesized that E. coli cell wall components could be implicated in this phenomena and therefore mannose, myristic acid and palmitic acid were tested as conditioning agents. To evaluate the effect of surface conditioning and flow topology on biofilm formation, assays were performed in agitated 96-well microtiter plates and in a parallel plate flow chamber (PPFC, both operated at the same average wall shear stress (0.07 Pa as determined by computational fluid dynamics (CFD. It was observed that when the 96-well microtiter plate and the PPFC were used to form biofilms at the same shear stress, similar results were obtained. This shows that the referred hydrodynamic feature may be a good scale-up parameter from high-throughput platforms to larger scale flow cell systems as the PPFC used in this study. Mannose did not have any effect on E. coli biofilm formation, but myristic and palmitic acid inhibited biofilm development by decreasing cell adhesion (in about 50%. These results support the idea that in food processing equipment where biofilm formation is not critical below a certain threshold, bacterial lysis and adsorption of cell components to the surface may reduce biofilm buildup and extend the operational time.

  15. First-principles study of low Miller index Ni3S2 surfaces in hydrotreating conditions.

    Science.gov (United States)

    Aray, Yosslen; Vega, David; Rodriguez, Jesus; Vidal, Alba B; Grillo, Maria Elena; Coll, Santiago

    2009-03-12

    Density functional theory (DFT) calculations combined with surface thermodynamic arguments and the Gibbs-Curie-Wulff equilibrium morphology formalism have been employed to explore the effect of the reaction conditions, temperature (T), and gas-phase partial pressures (PH2 and PH2S) on the stability of nickel sulfide (Ni3S2) surfaces. Furthermore, the strength and nature of chemical bonds for selected Ni3S2 surface cuts were investigated with the quantum theory of atoms in molecules methodology. A particular analysis of the electrostatic potential within this theoretical framework is performed to study the potential activity of nickel sulfide nanoparticles as hydrodesulfurization (HDS) catalysts. The calculated thermodynamic surface stabilities and the resulting equilibrium morphology model suggest that unsupported Ni3S2 nanoparticles mainly expose (111) and (111) type surface faces in HDS conditions. Analysis of the electrostatic potential mapped onto a selected electron density isocontour (0.001 au) on those expose surface reveals a poor potential reactivity toward electron-donating reagents (i.e., low Lewis acidity). Consequently, a very low attraction between coordinatively unsaturated active sites (Lewis sites) exposed at the catalytic particles and the S atoms coming from reagent polluting molecules does inactive these kinds of particles for HDS.

  16. Bringing High-Rate, CO2-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions.

    Science.gov (United States)

    Jourdin, Ludovic; Freguia, Stefano; Flexer, Victoria; Keller, Jurg

    2016-02-16

    The enhancement of microbial electrosynthesis (MES) of acetate from CO2 to performance levels that could potentially support practical implementations of the technology must go through the optimization of key design and operating conditions. We report that higher proton availability drastically increases the acetate production rate, with pH 5.2 found to be optimal, which will likely suppress methanogenic activity without inhibitor addition. Applied cathode potential as low as -1.1 V versus SHE still achieved 99% of electron recovery in the form of acetate at a current density of around -200 A m(-2). These current densities are leading to an exceptional acetate production rate of up to 1330 g m(-2) day(-1) at pH 6.7. Using highly open macroporous reticulated vitreous carbon electrodes with macropore sizes of about 0.6 mm in diameter was found to be optimal for achieving a good balance between total surface area available for biofilm formation and effective mass transfer between the bulk liquid and the electrode and biofilm surface. Furthermore, we also successfully demonstrated the use of a synthetic biogas mixture as carbon dioxide source, yielding similarly high MES performance as pure CO2. This would allow this process to be used effectively for both biogas quality improvement and conversion of the available CO2 to acetate.

  17. Determination of dissolution rates of spent fuel in carbonate solutions under different redox conditions with a flow-through experiment

    International Nuclear Information System (INIS)

    Roellin, S.; Spahiu, K.; Eklund, U.-B.

    2001-01-01

    Dissolution rates of spent UO 2 fuel have been investigated using flow-through experiments under oxidizing, anoxic and reducing conditions. For oxidizing conditions, approximately congruent dissolution rates were obtained in the pH range 3-9.3 for U, Np, Ba, Tc, Cs, Sr and Rb. For these elements, steady-state conditions were obtained in the flow rate range 0.02-0.3 ml min -1 . The dissolution rates were about 3 mg d -1 m -2 for pH>6. For pH 2 (g) saturated solutions dropped by up to four orders of magnitude as compared to oxidizing conditions. Because of the very low concentrations, only U, Pu, Am, Mo, Tc and Cs could be measured. For anoxic conditions, both the redox potential and dissolution rates increased approaching the same values as under oxidizing conditions

  18. Failure rate and reliability of the KOMATSU hydraulic excavator in surface limestone mine

    Science.gov (United States)

    Harish Kumar N., S.; Choudhary, R. P.; Murthy, Ch. S. N.

    2018-04-01

    The model with failure rate function of bathtub-shaped is helpful in reliability analysis of any system and particularly in reliability associated privative maintenance. The usual Weibull distribution is, however, not capable to model the complete lifecycle of the any with a bathtub-shaped failure rate function. In this paper, failure rate and reliability analysis of the KOMATSU hydraulic excavator/shovel in surface mine is presented and also to improve the reliability and decrease the failure rate of each subsystem of the shovel based on the preventive maintenance. The model of the bathtub-shaped for shovel can also be seen as a simplification of the Weibull distribution.

  19. Does disinfection of environmental surfaces influence nosocomial infection rates? A systematic review.

    Science.gov (United States)

    Dettenkofer, Markus; Wenzler, Sibylle; Amthor, Susanne; Antes, Gerd; Motschall, Edith; Daschner, Franz D

    2004-04-01

    To review the evidence on the effects of disinfection of environmental surfaces in hospitals (as compared with cleaning without use of disinfectants) on the occurrence of nosocomial infections. Systematic review of experimental and nonexperimental intervention studies dealing with environmental disinfection or cleaning in different health care settings. A total of 236 scientific articles were identified. None described a meta-analysis, systematic review, or randomized controlled trial. Only 4 articles described completed cohort studies matching the inclusion criteria. None of these studies showed lower infection rates associated with routine disinfection of surfaces (mainly floors) versus cleaning with detergent only. Disinfectants may pose a danger to staff, patients, and the environment and require special safety precautions. However, targeted disinfection of certain environmental surfaces is in certain instances an established component of hospital infection control. Given the complex, multifactorial nature of nosocomial infections, well-designed studies that systematically investigate the role of surface disinfection are required.

  20. Effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China); Department of Bone and Joint Surgery, The affiliated hospital of Luzhou Medical College, Luzhou 646000 (China); Qing, Quan [Sichuan College of Traditional Chinese Medicine, Mianyang 621000 (China); Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041 (China); Chen, Xi; Liu, Cheng-Jun; Luo, Jing-Cong [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China); Hu, Jin-Lian [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Qin, Ting-Wu, E-mail: tingwuqin@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China)

    2016-12-01

    Highlights: • The shapes of tenocytes varied when seeded on different surface of scaffolds. • Tenocytes were flat on smooth surface and spindle on micro-grooved surface. • Tenocytes were ellipse or spindle on porous surface. • Tenocytes got varying adhesion shape and elongation index on varying surfaces. • The tenocyte survival on porous surface was superior to the other two groups. - Abstract: The purpose of this study was to investigate the effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs. Tenocytes were obtained from tail tendons of rats. Polydimethylsiloxane (PDMS) was used to fabricate three types of scaffolds with varying surface morphological characteristics, i.e., smooth, micro-grooved, and porous surfaces, respectively. The tenocytes were seeded on the surfaces of the scaffolds to form tenocyte-scaffold constructs. The constructs were cryopreserved in a vitreous cryoprotectant (CPA) with a multi-step protocol. The cell adhesion to scaffolds was observed with electronic scanning microscopy (SEM). The elongation index of the living tenocytes and ratio of live/dead cell number were examined based on a live/dead dual fluorescent staining technique, and the survival rate of tenocytes was studied with flow cytometry (FC). The results showed the shapes of tenocytes varied between the different groups: flat or polygonal (on smooth surface), spindle (on micro-grooved surface), and spindle or ellipse (on porous surface). After thawing, the porous surface got the most living tenocytes and a higher survival rate, suggesting its potential application for vitreous cryopreservation of engineered tendon constructs.

  1. Corrosion and surface conditions of EUROFER 97 steel in Pb-17Li at 500 deg C

    International Nuclear Information System (INIS)

    Zmitko, M.; Splichal, K.; Masarik, V.

    2004-01-01

    In this work the corrosion behaviour of EUROFER 97 was examined in flowing Pb-17Li at the temperature 500 deg C up to 2500 hours. Surface morphology and chemical composition profiles and weight changes were investigated. Interaction of EUROFER 97 specimens with Pb-17Li melt results in a material dissolution, which is demonstrated by surface morphology and specimen weight changes. The specimen surfaces investigated after 500 and 1000 hours of exposure in Pb-17Li show similar surface appearance in both as-received and polished conditions. The corrosive damage occurs locally and a major part of surface areas is not affected. The exposure after 2500 hours evidences some visible decrease in the surface roughness for both surface conditions. The surface overlapping was observed and industrial tube productions have to avoid such types of defects. A small weight changes after 500 and 1000 hours and a higher weight decrease after 2500 hours were observed. The absolute values of the weight change after 500 and 1000 hours are about one order of magnitude lower than ones of weight changes after 2500 hours exposure. There were no significant differences of weight changes between as-received and polished surface conditions. The weight decrease of about 1 mg/cm 2 after 2500 hours is in a sufficient correlation with the value of about 4 mg/cm 2 evaluated from data of Fe-12Cr-1MoVW steel. The experiments have shown that the surface corrosive attack revealed only after a certain incubation period. During this period the surface layers are relatively stable to a direct attack of the surface by the melt. In the course of exposure time those layers are not further resistant and can influence the dissolutions of steel components. Concentration profiles of steel components near the steel surface were examined by EDX line-scan and point analyses. Under the experimental conditions no considerable profile of Cr and Fe in surface layers, as higher soluble steel components in Pb-17Li, was

  2. Modeling driver stop/run behavior at the onset of a yellow indication considering driver run tendency and roadway surface conditions.

    Science.gov (United States)

    Elhenawy, Mohammed; Jahangiri, Arash; Rakha, Hesham A; El-Shawarby, Ihab

    2015-10-01

    The ability to model driver stop/run behavior at signalized intersections considering the roadway surface condition is critical in the design of advanced driver assistance systems. Such systems can reduce intersection crashes and fatalities by predicting driver stop/run behavior. The research presented in this paper uses data collected from two controlled field experiments on the Smart Road at the Virginia Tech Transportation Institute (VTTI) to model driver stop/run behavior at the onset of a yellow indication for different roadway surface conditions. The paper offers two contributions. First, it introduces a new predictor related to driver aggressiveness and demonstrates that this measure enhances the modeling of driver stop/run behavior. Second, it applies well-known artificial intelligence techniques including: adaptive boosting (AdaBoost), random forest, and support vector machine (SVM) algorithms as well as traditional logistic regression techniques on the data in order to develop a model that can be used by traffic signal controllers to predict driver stop/run decisions in a connected vehicle environment. The research demonstrates that by adding the proposed driver aggressiveness predictor to the model, there is a statistically significant increase in the model accuracy. Moreover the false alarm rate is significantly reduced but this reduction is not statistically significant. The study demonstrates that, for the subject data, the SVM machine learning algorithm performs the best in terms of optimum classification accuracy and false positive rates. However, the SVM model produces the best performance in terms of the classification accuracy only. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature

    Science.gov (United States)

    Cadoni, Ezio

    2018-03-01

    The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.

  4. Corrosion of copper under Canadian nuclear fuel waste disposal conditions

    International Nuclear Information System (INIS)

    King, F.; Litke, C.D.

    1990-01-01

    The corrosion of copper was studied under Canadian nuclear fuel waste disposal conditions. The groundwater in a Canadian waste vault is expected to be saline, with chloride concentrations from 0.1 to 1.0 mol/l. The container would be packed in a sand/clay buffer, and the maximum temperature on the copper surface would be 100C; tests were performed up to 150C. Radiation fields will initially be around 500 rad/h, and conditions will be oxidizing. Sulfides may be present. The minimum design lifetime for the container is 500 years. Most work has been done on uniform corrosion, although pitting has been considered. It was found that the rate of uniform corrosion in aerated NaCl at room temperature is limited by the rate of the anodic reaction, which is controlled mainly by the rate of transport of dissolved metal species away from the copper surface. The rate of corrosion should become controlled by the transport of oxygen to the copper surface only at very low oxygen concentrations. In the presence of gamma radiation the corrosion rate may never become cathodically transport limited. In compacted buffer material, the corrosion rate appears to be limited by the rate of transport of copper species away from the corroding surface. The authors recommend that long-term predictions of container lifetime should be based on the known rate-determining step for the overall corrosion process. 8 refs

  5. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    Science.gov (United States)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  6. Influences of surface and solvent on retention of HEMA/mixture components after evaporation.

    Science.gov (United States)

    Garcia, Fernanda C P; Wang, Linda; Pereira, Lúcia C G; de Andrade e Silva, Safira M; Júnior, Luiz M; Carrilho, Marcela Rocha de Oliveira

    2010-01-01

    This study examined the retention of solvents within experimental HEMA/solvent primers after two conditions for solvent evaporation: from a free surface or from dentine surface. Experimental primers were prepared by mixing 35% HEMA with 65% water, methanol, ethanol or acetone (v/v). Aliquots of each primer (50 microl) were placed on glass wells or they were applied to the surface of acid-etched dentine cubes (2mm x 2mm x 2mm) (n=5). For both conditions (i.e. from free surface or dentine cubes), change in primers mass due to solvent evaporation was gravimetrically measured for 10min at 51% RH and 21 degrees C. The rate of solvent evaporation was calculated as a function of loss of primers mass (%) over time. Data were analysed by two-way ANOVA and Student-Newman-Keuls (pevaporation rate (%/min) depending on the solvent present in the primer and the condition for evaporation (from free surface or dentine cubes) (pevaporation for HEMA/acetone primer was almost 2- to 10-times higher than for HEMA/water primer depending whether evaporation occurred, respectively, from a free surface or dentine cubes. The rate of solvent evaporation varied with time, being in general highest at the earliest periods. The rate of solvent evaporation and its retention into HEMA/solvent primers was influenced by the type of the solvent and condition allowed for their evaporation.

  7. Short-term assessment of the sediment deposition rate and water conditions during a rainy season on La Azufrada coral reef, Gorgona Island, Colombia

    Directory of Open Access Journals (Sweden)

    Diego F. Lozano-Cortés

    2014-02-01

    Full Text Available One of the major stresses on corals is the settlement of suspended sediment on their surfaces. This leads to the blocking of light, the covering of the coral mucus surface and an increased risk of disease. For this reason sediment deposition on a reef is considered a highly important variable in coral reef studies. With the use of sediment traps and oceanographic sensors, the sediment deposition rate and water conditions during a rainy season (April-May 2009 on a Tropical Eastern Pacific coral reef (La Azufrada at Gorgona Island in Colombia were investigated. To quantify sediment deposition, sediment traps were established in nine stations along the coral reef (three stations per reef zone: backreef, flat and slope. To minimize disturbance by aquatic organisms in the sediment traps these were filled with hypersaline borax-buffered 10% formaline solution before their deployment; animals found in the filter contents were fixed and stored in a 4% formalin solution, frozen and identified in the laboratory. To determine the water conditions, discrete samples of water from 1 m and 10 m depths were collected using a Niskin bottle. Oceanographic variables (temperature, salinity and dissolved oxygen as well as turbidity, chlorophyll and nutrient concentration (nitrite, nitrate and phosphorus were measured in the samples from both depths. Vertical records of temperature and salinity were carried out with a Seabird-19 CTD nearest to La Azufrada and water transparency was measured using a Secchi disk. We found a mean trap collection rate of 23.30±4.34gm-2d-1 and did not detect a significant difference in the trap collection rate among reef zones. The mean temperature and salinity in the coral reef depth zone (0-10m layer were 26.98±0.19°C and 32.60±0.52, respectively. Fourteen taxonomic groups of invertebrates were detected inside the sediment traps with bivalves and copepods being the most abundant and frequen. The findings presented here constitute

  8. Short-term assessment of the sediment deposition rate and water conditions during a rainy season on La Azufrada coral reef, Gorgona Island, Colombia

    KAUST Repository

    Lozano-Cortés, Diego F

    2014-02-01

    One of the major stresses on corals is the settlement of suspended sediment on their surfaces. This leads to the blocking of light, the covering of the coral mucus surface and an increased risk of disease. For this reason sediment deposition on a reef is considered a highly important variable in coral reef studies. With the use of sediment traps and oceanographic sensors, the sediment deposition rate and water conditions during a rainy season (April-May 2009) on a Tropical Eastern Pacific coral reef (La Azufrada) at Gorgona Island in Colombia were investigated. To quantify sediment deposition, sediment traps were established in nine stations along the coral reef (three stations per reef zone: backreef, flat and slope). To minimize disturbance by aquatic organisms in the sediment traps these were filled with hypersaline borax-buffered 10% formaline solution before their deployment; animals found in the filter contents were fixed and stored in a 4% formalin solution, frozen and identified in the laboratory. To determine the water conditions, discrete samples of water from 1 m and 10 m depths were collected using a Niskin bottle. Oceanographic variables (temperature, salinity and dissolved oxygen) as well as turbidity, chlorophyll and nutrient concentration (nitrite, nitrate and phosphorus) were measured in the samples from both depths. Vertical records of temperature and salinity were carried out with a Seabird-19 CTD nearest to La Azufrada and water transparency was measured using a Secchi disk. We found a mean trap collection rate of 23.30±4.34gm-2d-1 and did not detect a significant difference in the trap collection rate among reef zones. The mean temperature and salinity in the coral reef depth zone (0-10m layer) were 26.98±0.19°C and 32.60±0.52, respectively. Fourteen taxonomic groups of invertebrates were detected inside the sediment traps with bivalves and copepods being the most abundant and frequen. The findings presented here constitute the first report

  9. First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions

    DEFF Research Database (Denmark)

    Saadi, Souheil; Hinnemann, Berit; Appel, Charlotte C.

    2011-01-01

    We investigate the structure and surface composition of the γ′-Ni3Al(111) and β-NiAl(110) alloy surfaces at conditions relevant for metal dusting corrosion related to catalytic steam reforming of natural gas. In regular service as protective coatings, nickel–aluminum alloys are protected...... by an oxide scale, but in case of oxide scale spallation, the alloy surface may be directly exposed to the reactive gas environment and vulnerable to metal dusting. By means of density functional theory and thermochemical calculations for both the Ni3Al and NiAl surfaces, the conditions under which CO and OH...... adsorption is to be expected and under which it is inhibited, are mapped out. Because CO and OH are regarded as precursors for nucleating graphite or oxide on the surfaces, phase diagrams for the surfaces provide a simple description of their stability. Specifically, this study shows how the CO and OH...

  10. Extratropical Influence of Sea Surface Temperature and Wind on Water Recycling Rate Over Oceans and Coastal Lands

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1999-01-01

    Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.

  11. Experimental weathering rates of aluminium silicates

    International Nuclear Information System (INIS)

    Gudbrandsson, Snorri

    2013-01-01

    The chemical weathering of primary rocks and minerals in natural systems has a major impact on soil development and its composition. Chemical weathering is driven to a large extent by mineral dissolution. Through mineral dissolution, elements are released into groundwater and can readily react to precipitate secondary minerals such as clays, zeolites, and carbonates. Carbonates form from divalent cations (e.g. Ca, Fe and Mg) and CO 2 , and kaolin clay and gibbsite formation is attributed to the weathering of aluminium-rich minerals, most notably the feldspars. The CarbFix Project in Hellisheidi (SW-Iceland) aims to use natural weathering processes to form carbonate minerals by the re-injection of CO 2 from a geothermal power plant back into surrounding basaltic rocks. This process is driven by the dissolution of basaltic rocks, rich in divalent cations, which can combine with injected CO 2 to form and precipitate carbonates. This thesis focuses on the dissolution behaviour of Stapafell crystalline basalt, which consists of three major phases (plagioclase, pyroxene, and olivine) and is rich in divalent cations. Steady-state element release rates from crystalline basalt at far-from-equilibrium conditions were measured at pH from 2 to 11 and temperatures from 5 to 75 C in mixed-flow reactors. Steady-state Si and Ca release rates exhibit a U-shaped variation with pH, where rates decrease with increasing pH at acid condition but increase with increasing pH at alkaline conditions. Silicon release rates from crystalline basalt are comparable to Si release rates from basaltic glass of the same chemical composition at low pH and temperatures ≥25 C but slower at alkaline pH and temperatures ≥50 C. In contrast, Mg and Fe release rates decrease continuously with increasing pH at all temperatures. This behaviour is interpreted to stem from the contrasting dissolution behaviours of the three major minerals comprising the basalt: plagioclase, pyroxene, and olivine. Element

  12. 47 CFR 76.1504 - Rates, terms and conditions for carriage on open video systems.

    Science.gov (United States)

    2010-10-01

    ....1504 Rates, terms and conditions for carriage on open video systems. (a) Reasonable rate principle. An... operator will bear the burden of proof to demonstrate, using the principles set forth below, that the...; (2) Packaging, including marketing and other fees; (3) Talent fees; and (4) A reasonable overhead...

  13. Effect of Residue Nitrogen Concentration and Time Duration on Carbon Mineralization Rate of Alfalfa Residues in Regions with Different Climatic Conditions

    Directory of Open Access Journals (Sweden)

    saeid shafiei

    2017-08-01

    Full Text Available Introduction Various factors like climatic conditions, vegetation, soil properties, topography, time, plant residue quality and crop management strategies affect the decomposition rate of organic carbon (OC and its residence time in soil. Plant residue management concerns nutrients recycling, carbon recycling in ecosystems and the increasing CO2 concentration in the atmosphere. Plant residue decomposition is a fundamental process in recycling of organic matter and elements in most ecosystems. Soil management, particularly plant residue management, changes soil organic matter both qualitatively and quantitatively. Soil respiration and carbon loss are affected by soil temperature, soil moisture, air temperature, solar radiation and precipitation. In natural agro-ecosystems, residue contains different concentrations of nitrogen. It is important to understand the rate and processes involved in plant residue decomposition, as these residues continue to be added to the soil under different weather conditions, especially in arid and semi-arid climates. Material and methods Organic carbon mineralization of alfalfa residue with different nitrogen concentrations was assessed in different climatic conditions using split-plot experiments over time and the effects of climate was determined using composite analysis. The climatic conditions were classified as warm-arid (Jiroft, temperate arid (Narab and cold semi-arid (Sardouiyeh using cluster analysis and the nitrogen (N concentrations of alfalfa residue were low, medium and high. The alfalfa residue incubated for four different time periods (2, 4, 6 and 8 months. The dynamics of organic carbon in different regions measured using litter bags (20×10 cm containing 20 g alfalfa residue of 2-10 mm length which were placed on the soil surface. Results and discussion The results of this study showed that in a warm-arid (Jiroft, carbon loss and the carbon decomposition rate constant were low in a cold semi

  14. Local environmental conditions and the stability of protective layers on steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, J P [Technical Univ. of Denmark, Lyngby (Denmark); Bursik, A

    1996-12-01

    Local environmental conditions determine whether the protective layers on steel surfaces are stable. With unfavorable local environmental conditions, the protective layers may be subject to damage. Taking the cation conductivity of all plant cycle streams <0.2 {mu}S/cm for granted, an adequate feed-water and - if applicable - boiler water conditioning is required to prevent such damage. Even if the mentioned conditions are met in a bulk, the local environmental conditions may be inadequate. The reasons for this may be the disregarding of interactions among material, design, and chemistry. The paper presents many possible mechanisms of protective layer damage that are directly influenced or exacerbated by plant cycle chemistry. Two items are discussed in more detail: First, the application of all volatile treatment for boiler water conditioning of drum boiler systems operating at low pressures and, second, the chemistry in the transition zone water/steam in the low pressure turbine. The latter is of major interest for the understanding and prevention of corrosion due to high concentration of impurities in the aqueous liquid phases. This is a typical example showing that local environmental conditions may fundamentally differ from the overall bulk chemistry. (au) 19 refs.

  15. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  16. Harmonic surface wave propagation in plasma

    International Nuclear Information System (INIS)

    Shivarova, A.; Stoychev, T.

    1980-01-01

    Second order harmonic surface waves generated by one fundamental high-frequency surface wave are investigated experimentally in gas discharge plasma. Two types of harmonic waves of equal frequency, associated with the linear dispersion relation and the synchronism conditions relatively propagate. The experimental conditions and the different space damping rates of the waves ensure the existence of different spatial regions (consecutively arranged along the plasma column) of a dominant propagation of each one of these two waves. Experimental data are obtained both for the wavenumbers and the space damping rates by relatively precise methods for wave investigations such as the methods of time-space diagrams and of phase shift measurements. The results are explained by the theoretical model for nonlinear mixing of dispersive waves. (author)

  17. Plasma facing surface composition during NSTX Li experiments

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.H., E-mail: cskinner@pppl.gov [Princeton Plasma Physics Laboratory, POB 451, Princeton, NJ 08543 (United States); Sullenberger, R. [Department of Mechanical and Aerospace Engineering, Princeton University, NJ 08540 (United States); Koel, B.E. [Department of Chemical and Biological Engineering, Princeton University, NJ 08540 (United States); Jaworski, M.A.; Kugel, H.W. [Princeton Plasma Physics Laboratory, POB 451, Princeton, NJ 08543 (United States)

    2013-07-15

    Lithium conditioned plasma facing surfaces have lowered recycling and enhanced plasma performance on many fusion devices. However, the nature of the plasma–lithium surface interaction has been obscured by the difficulty of in-tokamak surface analysis. We report laboratory studies of the chemical composition of lithium surfaces exposed to typical residual gases found in tokamaks. Solid lithium and a molybdenum alloy (TZM) coated with lithium have been examined using X-ray photoelectron spectroscopy, temperature programmed desorption, and Auger electron spectroscopy both in ultrahigh vacuum conditions and after exposure to trace gases. Lithium surfaces near room temperature were oxidized after exposure to 1–2 Langmuirs of oxygen or water vapor. The oxidation rate by carbon monoxide was four times less. Lithiated PFC surfaces in tokamaks will be oxidized in about 100 s depending on the tokamak vacuum conditions.

  18. Experimental investigation of nucleate boiling on heated surfaces under subcooled conditions

    International Nuclear Information System (INIS)

    Schneider, C.; Hampel, R.; Traichel, A.; Hurtado, A.; Meissner, S.; Koch, E.

    2011-01-01

    In case of an accident at pressurized water reactors (PWR), critical boiling conditions can appear at the transition from bubble- to film boiling. During full power operation, heat transfer phenomena of sub cooled nucleate boiling occur on the surface of the fuel rods. To investigate the microscopic processes in nucleate boiling, a test facility with optical measuring methods was constructed. This allows analyzing the effects on a single bubble system at different parameters. For the generation of nucleate boiling, an optically transparent, electrically conductive coating was applied as a heating surface on a borosilicate substrate. The so-called ITO (Indium-Tin-Oxide) coating with a sheet resistance of 20 ohms enables an electrical heating at an optical transparent surface. These properties are prerequisites for the study of microscopic phenomena in the bubble formation with optical coherence tomography (OCT). OCT, generally used in medical diagnostics, is an imaging modality providing cross sectional and volumetric high resolution images. To make sure that the bubble formation takes place at a specific site, artificial nucleation sites in form of micro cavity will be inserted into the surface. Furthermore a small test facility was constructed to dedicate the wall temperature of a heated metal foil during subcooled boiling in non degassed water, which is the content of this paper. (author)

  19. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  20. High rates of organic carbon processing in the hyporheic zone of intermittent streams.

    Science.gov (United States)

    Burrows, Ryan M; Rutlidge, Helen; Bond, Nick R; Eberhard, Stefan M; Auhl, Alexandra; Andersen, Martin S; Valdez, Dominic G; Kennard, Mark J

    2017-10-16

    Organic carbon cycling is a fundamental process that underpins energy transfer through the biosphere. However, little is known about the rates of particulate organic carbon processing in the hyporheic zone of intermittent streams, which is often the only wetted environment remaining when surface flows cease. We used leaf litter and cotton decomposition assays, as well as rates of microbial respiration, to quantify rates of organic carbon processing in surface and hyporheic environments of intermittent and perennial streams under a range of substrate saturation conditions. Leaf litter processing was 48% greater, and cotton processing 124% greater, in the hyporheic zone compared to surface environments when calculated over multiple substrate saturation conditions. Processing was also greater in more saturated surface environments (i.e. pools). Further, rates of microbial respiration on incubated substrates in the hyporheic zone were similar to, or greater than, rates in surface environments. Our results highlight that intermittent streams are important locations for particulate organic carbon processing and that the hyporheic zone sustains this fundamental process even without surface flow. Not accounting for carbon processing in the hyporheic zone of intermittent streams may lead to an underestimation of its local ecological significance and collective contribution to landscape carbon processes.

  1. HIFU scattering by the ribs: constrained optimisation with a complex surface impedance boundary condition

    Science.gov (United States)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2014-04-01

    High intensity focused ultrasound (HIFU) enables highly localised, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more established treatment modalities such as resection, chemotherapy and ionising radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element (BE) approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. Dissipative mechanisms inside the propagating medium have since been implemented, together with a complex surface impedance condition at the surface of the ribs. A reformulation of the boundary element equations as a constrained optimisation problem was carried out to determine the complex surface velocities of a multi-element HIFU array which generated the acoustic pressure field that best fitted a required acoustic pressure distribution in a least-squares sense. This was done whilst ensuring that an acoustic dose rate parameter at the surface of the ribs was kept below a specified threshold. The methodology was tested at an

  2. Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions

    International Nuclear Information System (INIS)

    Gil, E; Orini, M; Bailón, R; Laguna, P; Vergara, J M; Mainardi, L

    2010-01-01

    In this paper we assessed the possibility of using the pulse rate variability (PRV) extracted from the photoplethysmography signal as an alternative measurement of the HRV signal in non-stationary conditions. The study is based on analysis of the changes observed during a tilt table test in the heart rate modulation of 17 young subjects. First, the classical indices of HRV analysis were compared to the indices from PRV in intervals where stationarity was assumed. Second, the time-varying spectral properties of both signals were compared by time-frequency (TF) and TF coherence analysis. Third, the effect of replacing PRV with HRV in the assessment of the changes of the autonomic modulation of the heart rate was considered. Time-invariant HRV and PRV indices showed no statistically significant differences (p > 0.05) and high correlation (>0.97). Time-frequency analysis revealed that the TF spectra of both signals were highly correlated (0.99 ± 0.01); the difference between the instantaneous power, in the LF and HF bands, obtained from HRV and PRV was small (<10 −3 s −2 ) and their temporal patterns were highly correlated (0.98 ± 0.04 and 0.95 ± 0.06 in the LF and HF bands, respectively) and TF coherence in the LF and HF bands was high (0.97 ± 0.04 and 0.89 ± 0.08, respectively). Finally, the instantaneous power in the LF band was observed to significantly increase during head-up tilt by both HRV and PRV analysis. These results suggest that although some differences in the time-varying spectral indices extracted from HRV and PRV exist, mainly in the HF band associated with respiration, PRV could be used as a surrogate of HRV during non-stationary conditions, at least during the tilt table test

  3. The influence of sediment transport rate on the development of structure in gravel bed rivers

    Science.gov (United States)

    Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo

    2013-04-01

    Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this

  4. Micromorphology of leaf surface of Coelogyne Lindl. species (Orchidaceae Juss. in greenhouse conditions

    Directory of Open Access Journals (Sweden)

    Alexander G. Gyrenko

    2013-04-01

    Full Text Available The micromorphological characteristics of both adaxial and abaxial leaf surfaces of the plants of five Coelogyne Lindl. species (C. assamicaLinden & Rchb.f., C. brachyptera Rchb.f., C. cumingii Lindl., C. fimbriataLindl., C. lentiginosaLindl. under glasshouse conditions have been described.

  5. Effect of reactor finiteness on the boundary condition at the surface of a booster section

    International Nuclear Information System (INIS)

    Wassef, W.A.

    1982-01-01

    Effect of reactor finiteness on the boundary condition at the surface of an absorbing booster embedded in the reactor core is studied and formulated. The model used in these calculations depends on the Pl-Transport coupling technique. This method takes into consideration the rigorous neutron transport behavior inside the booster medium, while the Pl-approximation in the bulk of the scattering medium surrounding the booster which can be considered infinite in most practical applications. The neutron flux gradient parallel to the surface of the booster is considered. The geometrical configuration of the reactor core cross section is circular or rectangular. Finiteness of the reactor is introduced in the general formulation through its dimensions or buckling. Extensive numerical results are given to demonstrate the dependence of the boundary condition at the surface of the booster section on the reactor finiteness and the different physical parameters

  6. Control of the graphene growth rate on capped SiC surface under strong Si confinement

    International Nuclear Information System (INIS)

    Çelebi, C.; Yanık, C.; Demirkol, A.G.; Kaya, İsmet İ.

    2013-01-01

    Highlights: ► Graphene is grown on capped SiC surface with well defined cavity size. ► Graphene growth rate linearly increases with the cavity height. ► Graphene uniformity is reduced with thickness. - Abstract: The effect of the degree of Si confinement on the thickness and morphology of UHV grown epitaxial graphene on (0 0 0 −1) SiC is investigated by using atomic force microscopy and Raman spectroscopy measurements. Prior to the graphene growth process, the C-face surface of a SiC substrate is capped by another SiC comprising three cavities on its Si-rich surface with depths varying from 0.5 to 2 microns. The Si atoms, thermally decomposed from the sample surface during high temperature annealing of the SiC cap /SiC sample stack, are separately trapped inside these individual cavities at the sample/cap interface. Our analyses show that the growth rate linearly increases with the cavity height. It was also found that stronger Si confinement yields more uniform graphene layers.

  7. Cold collisions of SH- with He: Potential energy surface and rate coefficients

    Science.gov (United States)

    Bop, C. T.; Trabelsi, T.; Hammami, K.; Mogren Al Mogren, M.; Lique, F.; Hochlaf, M.

    2017-09-01

    Collisional energy transfer under cold conditions is of great importance from the fundamental and applicative point of view. Here, we investigate low temperature collisions of the SH- anion with He. We have generated a three-dimensional potential energy surface (PES) for the SH-(X1Σ+)-He(1S) van der Waals complex. The ab initio multi-dimensional interaction PES was computed using the explicitly correlated coupled cluster approach with simple, double, and perturbative triple excitation in conjunction with the augmented-correlation consistent-polarized valence triple zeta Gaussian basis set. The PES presents two minima located at linear geometries. Then, the PES was averaged over the ground vibrational wave function of the SH- molecule and the resulting two-dimensional PES was incorporated into exact quantum mechanical close coupling calculations to study the collisional excitation of SH- by He. We have computed inelastic cross sections among the 11 first rotational levels of SH- for energies up to 2500 cm-1. (De-)excitation rate coefficients were deduced for temperatures ranging from 1 to 300 K by thermally averaging the cross sections. We also performed calculations using the new PES for a fixed internuclear SH- distance. Both sets of results were found to be in reasonable agreement despite differences existing at low temperatures confirming that accurate predictions require the consideration of all internal degrees of freedom in the case of molecular hydrides. The rate coefficients presented here may be useful in interpreting future experimental work on the SH- negative ion colliding with He as those recently done for the OH--He collisional system as well as for possible astrophysical applications in case SH- would be detected in the interstellar medium.

  8. On the initial condition problem of the time domain PMCHWT surface integral equation

    KAUST Repository

    Uysal, Ismail Enes

    2017-05-13

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.

  9. A Snow Density Dataset for Improving Surface Boundary Conditions in Greenland Ice Sheet Firn Modeling

    DEFF Research Database (Denmark)

    S. Fausto, Robert; E. Box, Jason; Vandecrux, Baptiste Robert Marcel

    2018-01-01

    The surface snow density of glaciers and ice sheets is of fundamental importance in converting volume to mass in both altimetry and surface mass balance studies, yet it is often poorly constrained. Site-specific surface snow densities are typically derived from empirical relations based...... on temperature and wind speed. These parameterizations commonly calculate the average density of the top meter of snow, thereby systematically overestimating snow density at the actual surface. Therefore, constraining surface snow density to the top 0.1 m can improve boundary conditions in high-resolution firn......-evolution modeling. We have compiled an extensive dataset of 200 point measurements of surface snow density from firn cores and snow pits on the Greenland ice sheet. We find that surface snow density within 0.1 m of the surface has an average value of 315 kg m−3 with a standard deviation of 44 kg m−3, and has...

  10. The Impact of Employment and Self-Rated Economic Condition on the Subjective Well-Being of Older Korean Immigrants.

    Science.gov (United States)

    Kim, Bum Jung; Lee, Yura; Sangalang, Cindy; Harris, Lesley M

    2015-09-01

    Extensive research has demonstrated a relationship between socioeconomic factors and health among older adults, yet fewer studies have explored this relationship with older immigrants. This study aims to examine the influence of employment and self-rated economic condition on the subjective well-being of older Korean immigrants in the United States. Data were drawn from a cross-sectional study of 205 older Korean immigrants, aged 65 to 90, in Los Angeles County. Hierarchical regression was employed to explore the independent and interactive effects of employment status and self-rated economic condition. The study found that employment and self-rated economic status were positively associated with subjective well-being. Also, the interaction between employment and self-rated economic status was significantly associated with higher levels of subjective well-being, such that the influence of self-rated economic condition was stronger for unemployed older Korean immigrants compared with those who were employed. This population-based study provides empirical evidence that employment and self-rated economic condition are directly associated with subjective well-being for older Korean immigrants. © The Author(s) 2015.

  11. Tribological Properties of Surface-Textured and Plasma-Nitrided Pure Titanium Under Oil Lubrication Condition

    Science.gov (United States)

    Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting

    2018-01-01

    Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.

  12. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    Science.gov (United States)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  13. An integrated pavement data management and feedback system (PAMS) : evaluation of pavement condition rating procedure.

    Science.gov (United States)

    1984-08-01

    This report describes an evaluation of a method for use in the Highway Needs Study pavement condition rating. The methods by which the Department generates and manages pavement condition data in the overall process of providing a network of highways ...

  14. Song Leading Effectiveness of Undergraduate Education Majors: A Comparison of Student Self Ratings and Expert Ratings under Three Conditions.

    Science.gov (United States)

    Barry, Nancy H.; Orlofsky, Diane DeNicola

    1997-01-01

    Examines the song leading effectiveness of undergraduate education majors under three conditions: unaccompanied, accompanied with autoharp, and accompanied by recording. Finds that students rate themselves higher than experts do; there is greater eye contact using rote or recording; and there is greater tempo accuracy using rote and autoharp. (DSK)

  15. Modeling of the effect of freezer conditions on the principal constituent parameters of ice cream by using response surface methodology.

    Science.gov (United States)

    Inoue, K; Ochi, H; Taketsuka, M; Saito, H; Sakurai, K; Ichihashi, N; Iwatsuki, K; Kokubo, S

    2008-05-01

    A systematic analysis was carried out by using response surface methodology to create a quantitative model of the synergistic effects of conditions in a continuous freezer [mix flow rate (L/h), overrun (%), cylinder pressure (kPa), drawing temperature ( degrees C), and dasher speed (rpm)] on the principal constituent parameters of ice cream [rate of fat destabilization (%), mean air cell diameter (mum), and mean ice crystal diameter (mum)]. A central composite face-centered design was used for this study. Thirty-one combinations of the 5 above-mentioned freezer conditions were designed (including replicates at the center point), and ice cream samples were manufactured and examined in a continuous freezer under the selected conditions. The responses were the 3 variables given above. A quadratic model was constructed, with the freezer conditions as the independent variables and the ice cream characteristics as the dependent variables. The coefficients of determination (R(2)) were greater than 0.9 for all 3 responses, but Q(2), the index used here for the capability of the model for predicting future observed values of the responses, was negative for both the mean ice crystal diameter and the mean air cell diameter. Therefore, pruned models were constructed by removing terms that had contributed little to the prediction in the original model and by refitting the regression model. It was demonstrated that these pruned models provided good fits to the data in terms of R(2), Q(2), and ANOVA. The effects of freezer conditions were expressed quantitatively in terms of the 3 responses. The drawing temperature ( degrees C) was found to have a greater effect on ice cream characteristics than any of the other factors.

  16. Effect of operational conditions of electroerosion machining on the surface microgeometry parameters of steels and alloys

    International Nuclear Information System (INIS)

    Foteev, N.K.

    1976-01-01

    Studies the influence of pulse duration and a series of operating conditions of a ShGI-40-440 spark-machining generator on changes in the basic surface microgeometry characteristics of components of stainless steel 1Kh18N10T, steel St 45 and hard alloy T14K8. The microgeometry characteristics of spark-machined surfaces differ significantly from the corresponding characteristics of surfaces machined by cutting and vibro-rolling

  17. Simulating Sediment Sorting of Streambed Surfaces - It's the Supply, Stupid

    Science.gov (United States)

    Wilcock, P. R.

    2014-12-01

    The grain size of the streambed surface is an integral part of the transport system because it represents the grains immediately available for transport. If the rate and size of grains entrained from the bed surface differ from that delivered to the bed surface, the bed surface grain size will change. Although this balance is intuitively clear, its implications can surprise. The relative mobility of different sizes in a mixture change as transport rates increase. At small transport rates, smaller sizes are more mobile. As transport rate increases, the transport grain size approaches that of the bed. This presents a dilemma when using flumes to simulate surface sorting and transport. When sediment is fed into a flume, the same sediment is typically used regardless of feed rate. The transport grain size remains constant at all rates, which does not match the pattern observed in the field. This operational constraint means that sediment supply is coarser than transport capacity in feed flumes, increasingly so as transport rates diminish. This imbalance drives a coarsening of the stream bed as less mobile coarse grains concentrate on the surface as the system approaches steady-state. If sediment is recirculated in a flume, sediment supply and entrainment are perfectly matched. Surface coarsening is not imposed, but does occur via kinematic sieving. The coarsening of the transport (and supply) accommodates the rate-dependent change in mobility such that the bed surface grain size does not change with transport rate. Streambed armoring depends on both the rate and grain size of sediment supply - their implications do not seem to be fully appreciated. A coarsened bed surface does not indicate sorting of the bed surface during waning flows - it can persist with active sediment supply and transport. Neither sediment feed nor sediment recirculating flumes accurately mimic natural conditions but instead represent end members that bracket the dynamics of natural streams

  18. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    DEFF Research Database (Denmark)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone

    2012-01-01

    The adsorption dynamics of *OH and *O species at Pt(111) and Cu/Pt(111) near-surface alloy (NSA) surfaces in oxygen-free and O2-saturated 0.1M HClO4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(111) surface resulting in weaker bonding to adsorbates like *OH, *H or *O....... This provides a basis for the high oxygen reduction activity of the NSA, as predicted by density functional theory calculations. The shift in *OH adsorption of around 0.16V towards more positive potentials can be clearly monitored in absence of O2 and under the oxygen reduction reaction (ORR) conditions...... for the Cu/Pt(111) NSA. In both cases, for Pt(111) and NSA, the *OH(*O) adsorption dynamics is very similar in the absence of oxygen and under ORR conditions. Therefore, theoretical assumptions about the coverage of adsorbates in the absence of oxygen can be reasonably extrapolated to the situation when...

  19. A Generalized Approach to Model the Spectra and Radiation Dose Rate of Solar Particle Events on the Surface of Mars

    Science.gov (United States)

    Guo, Jingnan; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; McDole, Thoren; Kühl, Patrick; Appel, Jan C.; Matthiä, Daniel; Krauss, Johannes; Köhler, Jan

    2018-01-01

    For future human missions to Mars, it is important to study the surface radiation environment during extreme and elevated conditions. In the long term, it is mainly galactic cosmic rays (GCRs) modulated by solar activity that contribute to the radiation on the surface of Mars, but intense solar energetic particle (SEP) events may induce acute health effects. Such events may enhance the radiation level significantly and should be detected as immediately as possible to prevent severe damage to humans and equipment. However, the energetic particle environment on the Martian surface is significantly different from that in deep space due to the influence of the Martian atmosphere. Depending on the intensity and shape of the original solar particle spectra, as well as particle types, the surface spectra may induce entirely different radiation effects. In order to give immediate and accurate alerts while avoiding unnecessary ones, it is important to model and well understand the atmospheric effect on the incoming SEPs, including both protons and helium ions. In this paper, we have developed a generalized approach to quickly model the surface response of any given incoming proton/helium ion spectra and have applied it to a set of historical large solar events, thus providing insights into the possible variety of surface radiation environments that may be induced during SEP events. Based on the statistical study of more than 30 significant solar events, we have obtained an empirical model for estimating the surface dose rate directly from the intensities of a power-law SEP spectra.

  20. Degradation rates of phorbol esters in Jatropha curcas L. oil and pressed seeds under different storage conditions.

    Science.gov (United States)

    Phasukarratchai, Naphatsarnan; Damrongsiri, Seelawut; Tongcumpou, Chantra

    2017-03-01

    Phorbol esters (PEs), found in Jatropha curcas crude oil (JCO) and J. curcas pressed seeds (JPS), are known as bioactive compounds in agricultural and pharmaceutical applications. The degradation rates of PEs in JCO and JPS under various conditions is important for the utilisation of PEs. Thus the objective of this study was to determine the PE degradation rates in JCO and JPS under different storage conditions. PE degradation rates were found to be first-order reactions. The slowest degradation rate was at 0.9 × 10 -3 d -1 for both JCO and JPS unexposed to light at 4 °C. Light intensity (1097 lx and 4690 lx, representing diffused sunlight and fluorescent lighting, respectively) and temperature (25 to 35 °C) were the significant degradation factors. Light exposure led to 280% to 380% higher degradation rates in JCO than in JPS due to light penetration through the transparent oil. Dried and sterilised JPS showed an 80% to 90% lower PE degradation rate than untreated JPS under all storage conditions since biodegradation was assembly limited. The PEs were unstable under the studied conditions, especially when exposed to light and room temperature. To protect against PE degradation, a material should be stored in a light-protected container and below 4 °C. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Surface-Initiated Graft Atom Transfer Radical Polymerization of Methyl Methacrylate from Chitin Nanofiber Macroinitiator under Dispersion Conditions

    Directory of Open Access Journals (Sweden)

    Ryo Endo

    2015-08-01

    Full Text Available Surface-initiated graft atom transfer radical polymerization (ATRP of methyl methacrylate (MMA from self-assembled chitin nanofibers (CNFs was performed under dispersion conditions. Self-assembled CNFs were initially prepared by regeneration from a chitin ion gel with 1-allyl-3-methylimidazolium bromide using methanol; the product was then converted into the chitin nanofiber macroinitiator by reaction with α-bromoisobutyryl bromide in a dispersion containing N,N-dimethylformamide. Surface-initiated graft ATRP of MMA from the initiating sites on the CNFs was subsequently carried out under dispersion conditions, followed by filtration to obtain the CNF-graft-polyMMA film. Analysis of the product confirmed the occurrence of the graft ATRP on the surface of the CNFs.

  2. Adsorption of flexible polymer chains on a surface: Effects of different solvent conditions

    Science.gov (United States)

    Martins, P. H. L.; Plascak, J. A.; Bachmann, M.

    2018-05-01

    Polymer chains undergoing a continuous adsorption-desorption transition are studied through extensive computer simulations. A three-dimensional self-avoiding walk lattice model of a polymer chain grafted onto a surface has been treated for different solvent conditions. We have used an advanced contact-density chain-growth algorithm, in which the density of contacts can be directly obtained. From this quantity, the order parameter and its fourth-order Binder cumulant are computed, as well as the corresponding critical exponents and the adsorption-desorption transition temperature. As the number of configurations with a given number of surface contacts and monomer-monomer contacts is independent of the temperature and solvent conditions, it can be easily applied to get results for different solvent parameter values without the need of any extra simulations. In analogy to continuous magnetic phase transitions, finite-size-scaling methods have been employed. Quite good results for the critical properties and phase diagram of very long single polymer chains have been obtained by properly taking into account the effects of corrections to scaling. The study covers all solvent effects, going from the limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion, to poor solvent conditions that enable the formation of compact polymer structures.

  3. Analysis of Influence Factors on Extraction Rate of Lutein from Marigold and Optimization of Saponification Conditions

    OpenAIRE

    Wang Xian-Qing; Li Man; Liu Yan-Yan; Liang Ying

    2015-01-01

    After lutein esters extracted by ultrasonic-assisted organic solvent from marigold powder, saponification conditions such as saponification solution concentration, saponification lipuid dosage, saponification temperature and saponification time were optimized by response surface analysis. The results showed that the optimal saponification conditions are saponification solution concentration 10%, saponification lipuid dosage 200 mL, saponification temperature 50°C, saponification time 2 h. Und...

  4. Reductive precipitation of neptunium on iron surfaces under anaerobic conditions

    Science.gov (United States)

    Yang, H.; Cui, D.; Grolimund, D.; Rondinella, V. V.; Brütsch, R.; Amme, M.; Kutahyali, C.; Wiss, A. T.; Puranen, A.; Spahiu, K.

    2017-12-01

    Reductive precipitation of the radiotoxic nuclide 237Np from nuclear waste on the surface of iron canister material at simulated deep repository conditions was investigated. Pristine polished as well as pre-corroded iron specimens were interacted in a deoxygenated solution containing 10-100 μM Np(V), with 10 mM NaCl and 2 mM NaHCO3 as background electrolytes. The reactivity of each of the two different systems was investigated by analyzing the temporal evolution of the Np concentration in the reservoir. It was observed that pre-oxidized iron specimen with a 40 μm Fe3O4 corrosion layer are considerably more reactive regarding the reduction and immobilization of aqueous Np(V) as compared to pristine polished Fe(0) surfaces. 237Np immobilized by the reactive iron surfaces was characterized by scanning electron microscopy as well as synchrotron-based micro-X-ray fluorescence and X-ray absorption spectroscopy. At the end of experiments, a 5-8 μm thick Np-rich layer was observed to be formed ontop of the Fe3O4 corrosion layer on the iron specimen. The findings from this work are significant in the context of performance assessments of deep geologic repositories using iron as high level radioactive waste (HLW) canister material and are of relevance regarding removing pollutants from contaminated soil or groundwater aquifer systems.

  5. Effect of the Machined Surfaces of AISI 4337 Steel to Cutting Conditions on Dry Machining Lathe

    Science.gov (United States)

    Rahim, Robbi; Napid, Suhardi; Hasibuan, Abdurrozzaq; Rahmah Sibuea, Siti; Yusmartato, Y.

    2018-04-01

    The objective of the research is to obtain a cutting condition which has a good chance of realizing dry machining concept on AISI 4337 steel material by studying surface roughness, microstructure and hardness of machining surface. The data generated from the experiment were then processed and analyzed using the standard Taguchi method L9 (34) orthogonal array. Testing of dry and wet machining used surface test and micro hardness test for each of 27 test specimens. The machining results of the experiments showed that average surface roughness (Raavg) was obtained at optimum cutting conditions when VB 0.1 μm, 0.3 μm and 0.6 μm respectively 1.467 μm, 2.133 μm and 2,800 μm fo r dry machining while which was carried out by wet machining the results obtained were 1,833 μm, 2,667 μm and 3,000 μm. It can be concluded that dry machining provides better surface quality of machinery results than wet machining. Therefore, dry machining is a good choice that may be realized in the manufacturing and automotive industries.

  6. Conductivity enhancement of surface-polymerized polyaniline films via control of processing conditions

    Science.gov (United States)

    Park, Chung Hyoi; Jang, Sung Kyu; Kim, Felix Sunjoo

    2018-01-01

    We investigate a fast and facile approach for the simultaneous synthesis and coating of conducting polyaniline (PANI) onto a substrate and the effects of processing conditions on the electrical properties of the fabricated films. Simultaneous polymerizing and depositing on the substrate forms a thin film with the average thickness of 300 nm and sheet resistance of 304 Ω/sq. Deposition conditions such as polymerization time (3-240 min), temperature (-10 to 40 °C), concentrations of monomer and oxidant (0.1-0.9 M), and type of washing solvents (acetone, water, and/or HCl solution) affect the film thickness, doping state, absorption characteristics, and solid-state nanoscale morphology, therefore affecting the electrical conductivity. Among the conditions, the surface-polymerized PANI film deposited at room temperature with acetone washing showed the highest conductivity of 22.2 S/cm.

  7. Dynamic contact with Signorini's condition and slip rate dependent friction

    Directory of Open Access Journals (Sweden)

    Kenneth Kuttler

    2004-06-01

    Full Text Available Existence of a weak solution for the problem of dynamic frictional contact between a viscoelastic body and a rigid foundation is established. Contact is modelled with the Signorini condition. Friction is described by a slip rate dependent friction coefficient and a nonlocal and regularized contact stress. The existence in the case of a friction coefficient that is a graph, which describes the jump from static to dynamic friction, is established, too. The proofs employ the theory of set-valued pseudomonotone operators applied to approximate problems and a priori estimates.

  8. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated Mars surface UV radiation conditions

    Science.gov (United States)

    Poch, Olivier; Dequaire, Tristan; Stalport, Fabien; Jaber, Maguy; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-04-01

    The search for organic carbon-containing molecules at the surface of Mars, as clues of past habitability or remnants of life, is a major scientific goal for Mars exploration. Several lines of evidence, including the detection of phyllosilicates, suggest that early Mars offered favorable conditions for long-term sustaining of water. As a consequence, we can assume that in those days, endogenous chemical processes, or even primitive life, may have produced organic matter on Mars. Moreover, exogenous delivery from small bodies or dust particles is likely to have brought fresh organic molecules to the surface of Mars up today. Organic matter is therefore expected to be present at the surface/subsurface of the planet. But the current environmental conditions at the surface - UV radiation, oxidants and energetic particles - generate physico-chemical processes that may affect organic molecules. On the other hand, on Earth, phyllosilicates are known to accumulate and preserve organic matter. But are phyllosilicates efficient at preserving organic molecules under the current environmental conditions at the surface of Mars? We have monitored the qualitative and quantitative evolutions of glycine, urea and adenine interacting with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated Martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K) and pressure (6 ± 1 mbar) in a laboratory simulation setup. We have tested organic-rich samples which may be representative of the evaporation of a warm little pond of liquid water having concentrated organics on Mars. For each molecule, we have observed how the nontronite influences the quantum efficiency of its photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine: their efficiencies of photodecomposition are reduced by a factor

  9. Convergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities

    International Nuclear Information System (INIS)

    Flemming, Jens; Hofmann, Bernd

    2011-01-01

    In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicate, also for constrained Tikhonov regularization. In this context, we extend the concept of projected source conditions already known in Hilbert spaces to Banach spaces, and we show in the main theorem that such projected source conditions are to some extent equivalent to certain variational inequalities. The derived variational inequalities immediately yield convergence rates measured by Bregman distances

  10. Weak interaction rates for Kr and Sr waiting-point nuclei under rp-process conditions

    International Nuclear Information System (INIS)

    Sarriguren, P.

    2009-01-01

    Weak interaction rates are studied in neutron deficient Kr and Sr waiting-point isotopes in ranges of densities and temperatures relevant for the rp process. The nuclear structure is described within a microscopic model (deformed QRPA) that reproduces not only the half-lives but also the Gamow-Teller strength distributions recently measured. The various sensitivities of the decay rates to both density and temperature are discussed. Continuum electron capture is shown to contribute significantly to the weak rates at rp-process conditions.

  11. Transient burnout under rapid flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    1987-01-01

    Burnout characteristics were experimentally studied using uniformly heated tube and annular test sections under rapid flow reduction conditions. Observations indicated that the onset of burnout under a flow reduction transient is caused by the dryout of a liquid film on the heated surface. The decrease in burnout mass velocity at the channel inlet with increasing flow reduction rate is attributed to the fact that the vapor flow rate continues to increase and sustain the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. This is because the movement of the boiling boundary cannot keep up with the rapid reduction of inlet flow rate. A burnout model for the local condition could be applied to the burnout phenomena with the flow reduction under pressures of 0.5 ∼ 3.9 MPa and flow reduction rates of 0.6 ∼ 35 %/s. Based on this model, a method to predict the burnout time under a flow reduction condition was presented. The calculated burnout times agreed well with experimental results obtained by some investigators. (author)

  12. Selectivity control of photosensitive structures based on gallium arsenide phosphide solid solutions by changing the rate of surface recombination

    International Nuclear Information System (INIS)

    Tarasov, S A; Andreev, M Y; Lamkin, I A; Solomonov, A V

    2016-01-01

    In this paper, we demonstrate the effect of surface recombination on spectral sensitivity of structures based on gallium arsenide phosphide solid solutions. Simulation of the effect for structures based on a p-n junction and a Schottky barrier was carried out. Photodetectors with different rates of surface recombination were fabricated by using different methods of preliminary treatment of the semiconductor surface. We experimentally demonstrated the possibility to control photodetector selectivity by altering the rate of surface recombination. The full width at half maximum was reduced by almost 4 times, while a relatively small decrease in sensitivity at the maximum was observed. (paper)

  13. Initial conditions of urban permeable surfaces in rainfall-runoff models using Horton’s infiltration

    DEFF Research Database (Denmark)

    Davidsen, Steffen; Löwe, Roland; Høegh Ravn, Nanna

    2017-01-01

    Infiltration is a key process controlling runoff, but varies depending on antecedent conditions. This study provides estimates on initial conditions for urban permeable surfaces via continuous simulation of the infiltration capacity using historical rain data. An analysis of historical rainfall...... records show that accumulated rainfall prior to large rain events does not depend on the return period of the event. Using an infiltration-runoff model we found that for a typical large rain storm, antecedent conditions in general lead to reduced infiltration capacity both for sandy and clayey soils...... and that there is substantial runoff for return periods above 1–10 years....

  14. Forcing Mechanisms for the Variations of Near-surface Temperature Lapse Rates along the Himalayas, Tibetan Plateau (HTP) and Their Surroundings

    Science.gov (United States)

    Kattel, D. B.; Yao, T.; Ullah, K.; Islam, G. M. T.

    2016-12-01

    This study investigates the monthly characteristics of near-surface temperature lapse rates (TLRs) (i.e., governed by surface energy balance) based on the 176 stations 30-year (1980 to 2010) dataset covering a wide range of topography, climatic regime and relief (4801 m) in the HTP and its surroundings. Empirical analysis based on techniques in thermodynamics and hydrostatic system were used to obtain the results. Steepest TLRs in summer is due to strong dry convection and shallowest in winter is due to inversion effect is the general pattern of TLR that reported in previous studies in other mountainous region. Result of this study reports a contrast variation of TLRs from general patterns, and suggest distinct forcing mechanisms in an annual cycle. Shallower lapse rate occurs in summer throughout the regions is due to strong heat exchange process within the boundary layer, corresponding to the warm and moist atmospheric conditions. There is a systematic differences of TLRs in winter between the northern and southern slopes the Himalayas. Steeper TLRs in winter on the northern slopes is due to intense cooling at higher elevations, corresponding to the continental dry and cold air surges, and considerable snow-temperature feedback. The differences in elevation and topography, as well as the distinct variation of turbulent heating and cooling, explain the contrast TLRs (shallower) values in winter on the southern slopes. Distinct diurnal variations of TLRs and its magnitudes between alpine, dry, humid and coastal regions is due to the variations of adiabatic mixing during the daytime in the boundary layer i.e., associated with the variations in net radiations, elevation, surface roughness and sea surface temperature. The findings of this study is useful to determine the temperature range for accurately modelling in various field such as hydrology, glaciology, ecology, forestry, agriculture, as well as inevitable for climate downscaling in complex mountainous terrain.

  15. Percolation characteristics of solvent invasion in rough fractures under miscible conditions

    Science.gov (United States)

    Korfanta, M.; Babadagli, T.; Develi, K.

    2017-10-01

    Surface roughness and flow rate effects on the solvent transport under miscible conditions in a single fracture are studied. Surface replicas of seven different rocks (marble, granite, and limestone) are used to represent different surface roughness characteristics each described by different mathematical models including three fractal dimensions. Distribution of dyed solvent is investigated at various flow rate conditions to clarify the effect of roughness on convective and diffusive mixing. After a qualitative analysis using comparative images of different rocks, the area covered by solvent with respect to time is determined to conduct a semi-quantitative analysis. In this exercise, two distinct zones are identified, namely the straight lines obtained for convective (early times) and diffusive (late times) flow. The bending point between these two lines is used to point the transition between the two zones. Finally, the slopes of the straight lines and the bending points are correlated to five different roughness parameters and the rate (Peclet number). It is observed that both surface roughness and flow rate have significant effect on solvent spatial distribution. The largest area covered is obtained at moderate flow rates and hence not only the average surface roughness characteristic is important, but coessentially total fracture surface area needs to be considered when evaluating fluid distribution. It is also noted that the rate effect is critically different for the fracture samples of large grain size (marbles and granite) compared to smaller grain sizes (limestones). Variogram fractal dimension exhibits the strongest correlation with the maximum area covered by solvent, and display increasing trend at the moderate flow rates. Equations with variogram surface fractal dimension in combination with any other surface fractal parameter coupled with Peclet number can be used to predict maximum area covered by solvent in a single fracture, which in turn can be

  16. Nitrogen fixation rates in the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Ahmed, A.; Gauns, M.; Kurian, S.; Bardhan, P.; Pratihary, A.K.; Naik, H.; Shenoy, D.M.; Naqvi, S.W.A.

    The Arabian Sea experiences bloom of the diazotroph Trichodesmium during certain times of the year when optimal sea surface temperature and oligotrophic condition favour their growth. We measured nitrogen fixation rates in the euphotic zone during...

  17. Corrosion properties of sealing surface material for RPV under abnormal working conditions

    International Nuclear Information System (INIS)

    Liu Jinhua; Wen Yan; Zhang Xuemei; Hou Songmin; Gong Bin; He Yanchun

    2012-01-01

    Based on the corrosion issue of sealing surface material for RPV in some nuclear projects, the corrosion properties of sealing surface material for RPV under abnormal working conditions were investigated. The corrosion behavior of 308L stainless steel were studied by using autoclave in different contents of Cl - solutions, and these samples were observed and analyzed by means of the metalloscope and Scanning electron microscope (SEM). Results show that no pitting, crevice and stress corrosion occurred, when the content of Cl - was lower than 1 mg/L at the temperatures of 270℃ and the pressure of 5.5 MPa. However, with the increase of the content of Cl - , the susceptibility to pitting, crevice and stress corrosion of 308L was enhanced remarkably. (authors)

  18. Influence of annealing condition and multicycle AlGaAs/GaAs structures on the Al0.26Ga0.74As surface morphology

    International Nuclear Information System (INIS)

    Wei, Wenzhe; Wang, Yi; Guo, Xiang; Luo, Zijiang; Zhao, Zhen; Zhou, Haiyue; Ding, Zhao

    2015-01-01

    Highlights: • STM study on the change of AlGaAs surface morphology with varying annealing conditions. • Interesting phenomenon that the subsequent sample has more surface roughness than the previous samples do. A physical model was proposed to explain why the multi-runs growth can increase surface roughness. • The annealing conditions of AlGaAs/GaAs surface were proposed. - Abstract: The influence of annealing temperature, As 4 beam equivalent pressure and multi-runs growth on AlGaAs/GaAs structures was investigated. The real space ultrahigh vacuum scanning tunneling microscopy images showed that AlGaAs/GaAs surface morphology greatly depends on annealing conditions and initial state of surface. The reasons of the surface phenomenon are proposed, and a physical model was proposed to explain why the multi-runs growth structures can increase AlGaAs surface roughness. The reasonable preparation conditions for AlGaAs/GaAs structures were proposed

  19. The effect of root surface conditioning on smear layer removal in periodontal regeneration (a scanning electron microscopic study)

    Science.gov (United States)

    Fidyawati, D.; Soeroso, Y.; Masulili, S. L. C.

    2017-08-01

    The role of root surface conditioning treatment on smear layer removal of human teeth is affected by periodontitis in periodontal regeneration. The objective of this study is to analyze the smear layer on root surface conditioned with 2.1% minocycline HCl ointment (Periocline), and 24% EDTA gel (Prefgel). A total of 10 human teeth indicated for extraction due to chronic periodontitis were collected and root planed. The teeth were sectioned in thirds of the cervical area, providing 30 samples that were divided into three groups - minocycline ointment treatment, 24% EDTA gel treatment, and saline as a control. The samples were examined by scanning electron microscope. No significant differences in levels of smear layer were observed between the minocycline group and the EDTA group (p=0.759). However, there were significant differences in the level of smear layer after root surface treatment in the minocycline and EDTA groups, compared with the control group (p=0.00). There was a relationship between root surface conditioning treatment and smear layer levels following root planing.

  20. Mechanics of active surfaces

    Science.gov (United States)

    Salbreux, Guillaume; Jülicher, Frank

    2017-09-01

    We derive a fully covariant theory of the mechanics of active surfaces. This theory provides a framework for the study of active biological or chemical processes at surfaces, such as the cell cortex, the mechanics of epithelial tissues, or reconstituted active systems on surfaces. We introduce forces and torques acting on a surface, and derive the associated force balance conditions. We show that surfaces with in-plane rotational symmetry can have broken up-down, chiral, or planar-chiral symmetry. We discuss the rate of entropy production in the surface and write linear constitutive relations that satisfy the Onsager relations. We show that the bending modulus, the spontaneous curvature, and the surface tension of a passive surface are renormalized by active terms. Finally, we identify active terms which are not found in a passive theory and discuss examples of shape instabilities that are related to active processes in the surface.

  1. Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States); Mei, Zhigang [Argonne National Lab. (ANL), Argonne, IL (United States); Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-10

    Uranium silicide (U3Si2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U3Si2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U3Si2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuel material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U3Si2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U3Si2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U3Si2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U3Si2 fuel as an accident

  2. Effect of flow conditions on flow accelerated corrosion in pipe bends

    International Nuclear Information System (INIS)

    Mazhar, H.; Ching, C.Y.

    2015-01-01

    Flow Accelerated Corrosion (FAC) in piping systems is a safety and reliability problem in the nuclear industry. In this study, the pipe wall thinning rates and development of surface roughness in pipe bends are compared for single phase and two phase annular flow conditions. The FAC rates were measured using the dissolution of test sections cast from gypsum in water with a Schmidt number of 1280. The change in location and levels of maximum FAC under single phase and two phase flow conditions are examined. The comparison of the relative roughness indicates a higher effect for the surface roughness in single phase flow than in two phase flow. (author)

  3. Kinetically limited weathering at low denudation rates in semiarid climatic conditions

    Science.gov (United States)

    Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus

    2016-02-01

    Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.

  4. Analysis of influence of heat exchange conditions on the outer surface of the lithium-ion battery to electrolyte temperature under the conditions of high current loads

    Directory of Open Access Journals (Sweden)

    Krasnoshlykov Alexander

    2017-01-01

    Full Text Available Numerical analysis of thermal conditions of a lithium-ion battery using the software package ANSYS Electric and ANSYS Fluent has been carried out. Time dependence of the electrolyte temperature on the various heat exchange conditions on the outer surface has been obtained.

  5. Surface microhardness of three thicknesses of mineral trioxide aggregate in different setting conditions

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2014-11-01

    Full Text Available Objectives This study aimed to compare the surface microhardness of mineral trioxide aggregate (MTA samples having different thicknesses and exposed to human blood from one side and with or without a moist cotton pellet on the other side. Materials and Methods Ninety cylindrical molds with three heights of 2, 4, and 6 mm were fabricated. In group 1 (dry condition, molds with heights of 2, 4, and 6 mm (10 molds of each were filled with ProRoot MTA (Dentsply Tulsa Dental, and the upper surface of the material was not exposed to any additional moisture. In groups 2 and 3, a distilled water- or phosphate-buffered saline (PBS-moistened cotton pellet was placed on the upper side of MTA, respectively. The lower side of the molds in all the groups was in contact with human blood-wetted foams. After 4 day, the Vickers microhardness of the upper surface of MTA was measured. Results In the dry condition, the 4 and 6 mm-thick MTA samples showed significantly lower microhardness than the 2 mm-thick samples (p = 0.003 and p = 0.001, respectively. However, when a distilled water- or PBS-moistened cotton pellet was placed over the MTA, no significant difference was found between the surface microhardness of samples having the abovementioned three thicknesses of the material (p = 0.210 and p = 0.112, respectively. Conclusions It could be concluded that a moist cotton pellet must be placed over the 4 to 6 mm-thick MTA for better hydration of the material. However, this might not be necessary when 2 mm-thick MTA is used.

  6. The impact of changing surface ocean conditions on the dissolution of aerosol iron

    Science.gov (United States)

    Fishwick, Matthew P.; Sedwick, Peter N.; Lohan, Maeve C.; Worsfold, Paul J.; Buck, Kristen N.; Church, Thomas M.; Ussher, Simon J.

    2014-11-01

    The proportion of aerosol iron (Fe) that dissolves in seawater varies greatly and is dependent on aerosol composition and the physicochemical conditions of seawater, which may change depending on location or be altered by global environmental change. Aerosol and surface seawater samples were collected in the Sargasso Sea and used to investigate the impact of these changing conditions on aerosol Fe dissolution in seawater. Our data show that seawater temperature, pH, and oxygen concentration, within the range of current and projected future values, had no significant effect on the dissolution of aerosol Fe. However, the source and composition of aerosols had the most significant effect on the aerosol Fe solubility, with the most anthropogenically influenced samples having the highest fractional solubility (up to 3.2%). The impact of ocean warming and acidification on aerosol Fe dissolution is therefore unlikely to be as important as changes in land usage and fossil fuel combustion. Our experimental results also reveal important changes in the size distribution of soluble aerosol Fe in solution, depending on the chemical conditions of seawater. Under typical conditions, the majority (77-100%) of Fe released from aerosols into ambient seawater existed in the colloidal (0.02-0.4 µm) size fraction. However, in the presence of a sufficient concentration of strong Fe-binding organic ligands (10 nM) most of the aerosol-derived colloidal Fe was converted to soluble Fe (<0.02 µm). This finding highlights the potential importance of organic ligands in retaining aerosol Fe in a biologically available form in the surface ocean.

  7. Heat transfer in intermediate heat exchanger under low flow rate conditions

    International Nuclear Information System (INIS)

    Mochizuki, H.

    2008-01-01

    The present paper describes the heat transfer in intermediate heat exchangers (IHXs) of liquid metal cooled fast reactors when flow rate is low such as a natural circulation condition. Although empirical correlations of heat transfer coefficients for IHX were derived using test data at the fast reactor 'Monju' and 'Joyo' and also at the 50 MW steam generator facility, the heat transfer coefficient was very low compared to the well known correlation for liquid metals proposed by Seban-Shimazaki. The heat conduction in IHX was discussed as a possible cause of the low Nusselt number. As a result, the heat conduction is not significant under the natural circulation condition, and the heat conduction term in the energy equation can be neglected in the one-dimensional plant dynamics calculation. (authors)

  8. Heart rate response to fear conditioning and virtual reality in subthreshold PTSD.

    Science.gov (United States)

    Roy, Michael J; Costanzo, Michelle E; Jovanovic, Tanja; Leaman, Suzanne; Taylor, Patricia; Norrholm, Seth D; Rizzo, Albert A

    2013-01-01

    Posttraumatic stress disorder (PTSD) is a significant health concern for U.S. military service members (SMs) returning from Afghanistan and Iraq. Early intervention to prevent chronic disability requires greater understanding of subthreshold PTSD symptoms, which are associated with impaired physical health, mental health, and risk for delayed onset PTSD. We report a comparison of physiologic responses for recently deployed SMs with high and low subthreshold PTSD symptoms, respectively, to a fear conditioning task and novel virtual reality paradigm (Virtual Iraq). The high symptom group demonstrated elevated heart rate (HR) response during fear conditioning. Virtual reality sequences evoked significant HR responses which predicted variance of the PTSD Checklist-Military Version self-report. Our results support the value of physiologic assessment during fear conditioning and combat-related virtual reality exposure as complementary tools in detecting subthreshold PTSD symptoms in Veterans.

  9. Diagnostic measurements on the great machines conditions of lignite surface mines

    Energy Technology Data Exchange (ETDEWEB)

    Helebrant, F.; Jurman, J.; Fries, J. [Technical University of Ostrava, Ostrava-Poruba (Czech Republic)

    2005-07-01

    An analysis of the diagnosis of loading and service dependability of a rail-mounted excavator used in surface lignite mining is described. Wheel power vibrations in electric motor bearings and electric motor input bearings to the gearbox were measured in situ, in horizontal, vertical, and axial directions. The data were analyzed using a mathematical relationship. The results are presented in a loading diagram that shows the deterioration and the acceptable lower bound of machine conditions over time. Work is continuing. 5 refs., 1 fig.

  10. Effects of oxygen gas flow rate and ion beam plasma conditions on the opto-electronic properties of indium molybdenum oxide films fabricated by ion beam-assisted evaporation

    International Nuclear Information System (INIS)

    Kuo, C.C.; Liu, C.C.; Lin, C.C.; Liou, Y.Y.; He, J.L.; Chen, F.S.

    2008-01-01

    The purpose of the present work is to experimentally study the effects of the oxygen gas flow rate and ion beam plasma conditions on the properties of indium molybdenum oxide (IMO) films deposited onto the polyethersulfone (PES) substrate. Crystal structure, surface morphology, and optoelectronic properties of IMO films are examined as a function of oxygen gas flow rate and ion beam discharge voltage. Experimental results show that the IMO films consist of a cubic bixbyite B-In 2 O 3 single phase with its crystal preferred orientation alone B(222). Mo 6+ ions are therefore considered to partially substitute In 3+ sites in the deposit. Under-controlled ion bombardment during deposition enhances the reaction among those arriving oxygen and metal ion species to condense into IMO film and facilitates a decreased surface roughness of IMO film. The film with ultimate crystallinity and the lowest surface roughness is obtained when the oxygen flow rate of 3 sccm and the discharge voltage of 110 V are employed. This results in the lowest electrical resistivity due mainly to the increased Hall mobility and irrelevant to carrier concentration. The lowest electrical resistivity of 8.63 x 10 -4 ohm-cm with a 84.63% transmittance at a wavelength of 550 nm can be obtained, which satisfies the requirement of a flexible transparent conductive polymer substrate

  11. UO2 dissolution rates: A review

    International Nuclear Information System (INIS)

    McKenzie, W.F.

    1992-09-01

    This report reviews literature data on UO 2 dissolution kinetics and provides a framework for guiding future experimental studies as well as theoretical modeling studies. Under oxidizing conditions, UO 2 dissolution involves formation of an oxidized surface layer which is then dissolved by formation of aqueous complexes. Higher oxygen pressures or other oxidants are required at higher temperatures to have dissolution rates independent of oxygen pressure. At high oxygen pressures (1-5 atm, 25-70 C), the dissolution rate has a one-half order dependence on oxygen pressure, whereas at oxygen pressures below 0.2 atm, Grandstaff (1976), but nobody else, observed a first-order dependence on dissolution rate. Most people found a first-order dependence on carbonate concentration; Posey-Dowty (1987) found independence of carbonate at pH 7 to 8.2. Dissolution rates increase with temperature except in experiments involving granitic groundwater. Dissolution rates were generally greater under acid or basic conditions than near neutral pH

  12. Tritium loading in ITER plasma-facing surfaces and its release under accident conditions

    International Nuclear Information System (INIS)

    Longhurst, G.R.; Anderl, R.A.; Pawelko, R.J.

    1996-01-01

    Plasma-facing surfaces of the International Thermonuclear Experimental Reactor (ITER) will take up tritium from the plasma. These surfaces will probably consist of matures of Be, C, and possibly W together with other impurities. Recent experimental results have suggested mechanisms, not previously considered in analyses, by which tritium and other hydrogen isotopes are retained in Be. This warrants revised modeling and estimation of the amount of tritium that will be deposited in ITER beryllium plasma-facing surfaces and the rates at which it can be released under postulated accident scenarios. In this paper we describe improvements in modeling and experiments planned at the Idaho National Engineering Laboratory (INEL) to investigate the tritium uptake and thermal release behavior for mixed plasma- facing materials. TMAP4 calculations were made using recent data to estimate first-wall tritium inventories in ITER. 16 refs., 1 fig

  13. Do European Standard Disinfectant tests truly simulate in-use microbial and organic soiling conditions on food preparation surfaces?

    Science.gov (United States)

    Meyer, B; Morin, V N; Rödger, H-J; Holah, J; Bird, C

    2010-04-01

    The results from European standard disinfectant tests are used as one basis to approve the use of disinfectants in Europe. The design of these laboratory-based tests should thus simulate as closely as possible the practical conditions and challenges that the disinfectants would encounter in use. No evidence is available that the organic and microbial loading in these tests simulates actual levels in the food service sector. Total organic carbon (TOC) and total viable count (TVC) were determined on 17 visibly clean and 45 visibly dirty surfaces in two restaurants and the food preparation surfaces of a large retail store. These values were compared to reference values recovered from surfaces soiled with the organic and microbial loading, following the standard conditions of the European Surface Test for bactericidal efficacy, EN 13697. The TOC reference values for clean and dirty conditions were higher than the data from practice, but cannot be regarded as statistical outliers. This was considered as a conservative assessment; however, as additional nine TOC samples from visibly dirty surfaces were discarded from the analysis, as their loading made them impossible to process. Similarly, the recovery of test organisms from surfaces contaminated according to EN 13697 was higher than the TVC from visibly dirty surfaces in practice; though they could not be regarded as statistical outliers of the whole data field. No correlation was found between TVC and TOC in the sampled data, which re-emphasizes the potential presence of micro-organisms on visibly clean surfaces and thus the need for the same degree of disinfection as visibly dirty surfaces. The organic soil and the microbial burden used in EN disinfectant standards represent a realistic worst-case scenario for disinfectants used in the food service and food-processing areas.

  14. Influence of boundary conditions on the existence and stability of minimal surfaces of revolution made of soap films

    Science.gov (United States)

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2014-09-01

    Because of surface tension, soap films seek the shape that minimizes their surface energy and thus their surface area. This mathematical postulate allows one to predict the existence and stability of simple minimal surfaces. After briefly recalling classical results obtained in the case of symmetric catenoids that span two circular rings with the same radius, we discuss the role of boundary conditions on such shapes, working with two rings having different radii. We then investigate the conditions of existence and stability of other shapes that include two portions of catenoids connected by a planar soap film and half-symmetric catenoids for which we introduce a method of observation. We report a variety of experimental results including metastability—an hysteretic evolution of the shape taken by a soap film—explained using simple physical arguments. Working by analogy with the theory of phase transitions, we conclude by discussing universal behaviors of the studied minimal surfaces in the vicinity of their existence thresholds.

  15. A Snow Density Dataset for Improving Surface Boundary Conditions in Greenland Ice Sheet Firn Modeling

    Directory of Open Access Journals (Sweden)

    Robert S. Fausto

    2018-05-01

    Full Text Available The surface snow density of glaciers and ice sheets is of fundamental importance in converting volume to mass in both altimetry and surface mass balance studies, yet it is often poorly constrained. Site-specific surface snow densities are typically derived from empirical relations based on temperature and wind speed. These parameterizations commonly calculate the average density of the top meter of snow, thereby systematically overestimating snow density at the actual surface. Therefore, constraining surface snow density to the top 0.1 m can improve boundary conditions in high-resolution firn-evolution modeling. We have compiled an extensive dataset of 200 point measurements of surface snow density from firn cores and snow pits on the Greenland ice sheet. We find that surface snow density within 0.1 m of the surface has an average value of 315 kg m−3 with a standard deviation of 44 kg m−3, and has an insignificant annual air temperature dependency. We demonstrate that two widely-used surface snow density parameterizations dependent on temperature systematically overestimate surface snow density over the Greenland ice sheet by 17–19%, and that using a constant density of 315 kg m−3 may give superior results when applied in surface mass budget modeling.

  16. Conditioned instrumental behaviour in the rat: Effects of prenatal irradiation with various low dose-rate doses

    International Nuclear Information System (INIS)

    Klug, H.

    1986-01-01

    4 groups of rats of the Wistar-strain were subjected to γ-irradiation on the 16th day of gestation. 5 rats received 0,6 Gy low dose rate irradiation, 5 animals received 0,9 Gy low dose and 6 high dose irradiation, 3 females were shamirradiated. The male offspring of these 3 irradiation groups and 1 control group were tested for locomotor coordination on parallel bars and in a water maze. The female offspring were used in an operant conditioning test. The locomotor test showed slight impairment of locomotor coordination in those animals irradiated with 0,9 Gy high dose rate. Swimming ability was significantly impaired by irradiation with 0,9 Gy high dose rate. Performance in the operant conditioning task was improved by irradiation with 0,9 Gy both low and high dose rate. The 0,9 Gy high dose rate group learned faster than all the other groups. For the dose of 0,9 Gy a significant dose rate effect could be observed. For the dose of 0,6 Gy a similar tendency was observed, differences between 0,6 Gy high and low dose rate and controls not being significant. (orig./MG) [de

  17. Surface crack behavior in socket weld of nuclear piping under fatigue loading condition

    International Nuclear Information System (INIS)

    Choi, Y.H.; Kim, J.S.; Choi, S.Y.

    2005-01-01

    The ASME B and PV Code Sec. III allows the socket weld for the nuclear piping in spite of the weakness on the weld integrity. Recently, the integrity of the socket weld is regarded as a safety concern in nuclear power plants because many failures and leaks have been reported in the socket weld. OPDE (OECD Piping Failure Data Exchange) database lists 108 socket weld failures among 2,399 nuclear piping failure cases during 1970 to 2001. Eleven failures in the socket weld were also reported in Korean NPPs. Many failure cases showed that the root cause of the failure is the fatigue and the gap requirement for the socket weld given in ASME Code was not satisfied. The purpose of this paper is to evaluate the fatigue crack behavior of a surface crack in the socket weld under fatigue loading condition considering the gap effect. Three-dimensional finite element analysis was performed to estimate the fatigue crack behavior of the surface crack. Three types of loading conditions such as the deflection due to vibration, the pressure transient ranging from P=0 to 15.51 MPa, and the thermal transient ranging from T=25 C to 288 C were considered. The results are as follows; 1) The socket weld is susceptible to the vibration where the vibration levels exceed the requirement in the ASME operation and maintenance (OM) Code. 2) The effect of pressure or temperature transient load on the socket weld integrity is not significant. 3) No-gap condition gives very high possibility of the crack initiation at the socket weld under vibration loading condition. 4) For the specific systems having the vibration condition to exceed the requirement in the ASME Code OM and/or the transient loading condition from P=0 and T=25 C to P=15.51 MPa and T=288 C, radiographic examination to examine the gap during the construction stage is recommended. (orig.)

  18. Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited activity on the body surface

    International Nuclear Information System (INIS)

    Kocher, D.C.; Eckerman, K.F.

    1987-01-01

    Dose-rate conversion factors have been calculated for external exposure of the skin from electrons emitted by sources that are deposited uniformly on the body surface. The dose-rate factors are obtained from electron scaled point kernels developed by Berger. The dose-rate factors are calculated at depths of 4, 8, and 40 mg cm-2 below the body surface as recommended by Whitton, and at a depth of 7 mg cm-2 as recommended in ICRP Publication 26 (ICRP77). The dependence of the dose-rate factors at selected depths on the energy of the emitted electrons is displayed. The dose-rate factors for selected radionuclides of potential importance in radiological assessments are tabulated

  19. Importance of initial buoyancy field on evolution of mantle thermal structure: Implications of surface boundary conditions

    Directory of Open Access Journals (Sweden)

    Petar Glišović

    2015-01-01

    Full Text Available Although there has been significant progress in the seismic imaging of mantle heterogeneity, the outstanding issue that remains to be resolved is the unknown distribution of mantle temperature anomalies in the distant geological past that give rise to the present-day anomalies inferred by global tomography models. To address this question, we present 3-D convection models in compressible and self-gravitating mantle initialised by different hypothetical temperature patterns. A notable feature of our forward convection modelling is the use of self-consistent coupling of the motion of surface tectonic plates to the underlying mantle flow, without imposing prescribed surface velocities (i.e., plate-like boundary condition. As an approximation for the surface mechanical conditions before plate tectonics began to operate we employ the no-slip (rigid boundary condition. A rigid boundary condition demonstrates that the initial thermally-dominated structure is preserved, and its geographical location is fixed during the evolution of mantle flow. Considering the impact of different assumed surface boundary conditions (rigid and plate-like on the evolution of thermal heterogeneity in the mantle we suggest that the intrinsic buoyancy of seven superplumes is most-likely resolved in the tomographic images of present-day mantle thermal structure. Our convection simulations with a plate-like boundary condition reveal that the evolution of an initial cold anomaly beneath the Java-Indonesian trench system yields a long-term, stable pattern of thermal heterogeneity in the lowermost mantle that resembles the present-day Large Low Shear Velocity Provinces (LLSVPs, especially below the Pacific. The evolution of subduction zones may be, however, influenced by the mantle-wide flow driven by deeply-rooted and long-lived superplumes since Archean times. These convection models also detect the intrinsic buoyancy of the Perm Anomaly that has been identified as a unique

  20. Characterizing water surface elevation under different flow conditions for the upcoming SWOT mission

    Science.gov (United States)

    Domeneghetti, A.; Schumann, G. J.-P.; Frasson, R. P. M.; Wei, R.; Pavelsky, T. M.; Castellarin, A.; Brath, A.; Durand, M. T.

    2018-06-01

    The Surface Water and Ocean Topography satellite mission (SWOT), scheduled for launch in 2021, will deliver two-dimensional observations of water surface heights for lakes, rivers wider than 100 m and oceans. Even though the scientific literature has highlighted several fields of application for the expected products, detailed simulations of the SWOT radar performance for a realistic river scenario have not been presented in the literature. Understanding the error of the most fundamental "raw" SWOT hydrology product is important in order to have a greater awareness about strengths and limits of the forthcoming satellite observations. This study focuses on a reach (∼140 km in length) of the middle-lower portion of the Po River, in Northern Italy, and, to date, represents one of the few real-case analyses of the spatial patterns in water surface elevation accuracy expected from SWOT. The river stretch is characterized by a main channel varying from 100 to 500 m in width and a large floodplain (up to 5 km) delimited by a system of major embankments. The simulation of the water surface along the Po River for different flow conditions (high, low and mean annual flows) is performed with inputs from a quasi-2D model implemented using detailed topographic and bathymetric information (LiDAR, 2 m resolution). By employing a simulator that mimics many SWOT satellite sensor characteristics and generates proxies of the remotely sensed hydrometric data, this study characterizes the spatial observations potentially provided by SWOT. We evaluate SWOT performance under different hydraulic conditions and assess possible effects of river embankments, river width, river topography and distance from the satellite ground track. Despite analyzing errors from the raw radar pixel cloud, which receives minimal processing, the present study highlights the promising potential of this Ka-band interferometer for measuring water surface elevations, with mean elevation errors of 0.1 cm and 21

  1. The influence of surface type on the absorbed radiation by a human under hot, dry conditions

    Science.gov (United States)

    Hardin, A. W.; Vanos, J. K.

    2018-01-01

    Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human ( R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.

  2. Grouping subjects based on conditioning criteria reveals differences in acquisition rates and in strength of conditioning-specific reflex modification.

    Science.gov (United States)

    Smith-Bell, Carrie A; Schreurs, Bernard G

    2017-11-01

    Averaging behavioral data such as the nictitating membrane response (NMR) across subjects can conceal important individual and group differences. Analyses were conducted of NMR data from rabbits that were grouped based on the point during NMR conditioning when subjects produced 8 conditioned responses (CR) in a set of 10 trials. This resulted in five groups (Early Day 1, Late Day 1, Early Day 2, Late Day 2, Early Day 3) in which group differences in CR acquisition rates were found. Percent (%) CRs were not found to increase monotonically and between-session differences in % CR were found. Conditioning-specific reflex modification (CRM) of the NMR is a type of enhanced reflexive responding of the NMR that is detected when the unconditioned stimulus (US) is presented in the absence of the conditioned stimulus (CS) following paired classical conditioning. CRM occurred in some subjects in all five groups. Subjects from both the group that was fastest and the group that was slowest to reach the learning criterion had unconditioned response (UR) topographies following NMR conditioning that strongly resembled the CR-UR response sequence elicited during NMR conditioning. This finding was most pronounced when the US duration used to assess CRM was equivalent to that used during NMR conditioning, further evidence to support the hypothesis that CRM is a CR that has generalized from the CS to the US. While grouping data based on conditioning criteria did not facilitate identifying individuals more predisposed to exhibiting CRM, strong CRM only occurred in the groups that reached the conditioning criterion the fastest. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Contributions of solar-wind induced potential sputtering to the lunar surface erosion rate and it's exosphere

    Science.gov (United States)

    Alnussirat, S. T.; Barghouty, A. F.; Edmunson, J. E.; Sabra, M. S.; Rickman, D. L.

    2018-04-01

    Sputtering of lunar regolith by solar-wind protons and heavy ions with kinetic energies of about 1 keV/amu is an important erosive process that affects the lunar surface and exosphere. It plays an important role in changing the chemical composition and thickness of the surface layer, and in introducing material into the exosphere. Kinetic sputtering is well modeled and understood, but understanding of mechanisms of potential sputtering has lagged behind. In this study we differentiate the contributions of potential sputtering from the standard (kinetic) sputtering in changing the chemical composition and erosion rate of the lunar surface. Also we study the contribution of potential sputtering in developing the lunar exosphere. Our results show that potential sputtering enhances the total characteristic sputtering erosion rate by about 44%, and reduces sputtering time scales by the same amount. Potential sputtering also introduces more material into the lunar exosphere.

  4. Method for Pre-Conditioning a Measured Surface Height Map for Model Validation

    Science.gov (United States)

    Sidick, Erkin

    2012-01-01

    This software allows one to up-sample or down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. Because the re-sampling of a surface map is accomplished based on the analytical expressions of Zernike-polynomials and a power spectral density model, such re-sampling does not introduce any aliasing and interpolation errors as is done by the conventional interpolation and FFT-based (fast-Fourier-transform-based) spatial-filtering method. Also, this new method automatically eliminates the measurement noise and other measurement errors such as artificial discontinuity. The developmental cycle of an optical system, such as a space telescope, includes, but is not limited to, the following two steps: (1) deriving requirements or specs on the optical quality of individual optics before they are fabricated through optical modeling and simulations, and (2) validating the optical model using the measured surface height maps after all optics are fabricated. There are a number of computational issues related to model validation, one of which is the "pre-conditioning" or pre-processing of the measured surface maps before using them in a model validation software tool. This software addresses the following issues: (1) up- or down-sampling a measured surface map to match it with the gridded data format of a model validation tool, and (2) eliminating the surface measurement noise or measurement errors such that the resulted surface height map is continuous or smoothly-varying. So far, the preferred method used for re-sampling a surface map is two-dimensional interpolation. The main problem of this method is that the same pixel can take different values when the method of interpolation is changed among the different methods such as the "nearest," "linear," "cubic," and "spline" fitting in Matlab. The conventional, FFT-based spatial filtering method used to

  5. MAARGHA: A Prototype System for Road Condition and Surface Type Estimation by Fusing Multi-Sensor Data

    Directory of Open Access Journals (Sweden)

    Deepak Rajamohan

    2015-07-01

    Full Text Available Road infrastructure in countries like India is expanding at a rapid pace and is becoming increasingly difficult for authorities to identify and fix the bad roads in time. Current Geographical Information Systems (GIS lack information about on-road features like road surface type, speed breakers and dynamic attribute data like the road quality. Hence there is a need to build road monitoring systems capable of collecting such information periodically. Limitations of satellite imagery with respect to the resolution and availability, makes road monitoring primarily an on-field activity. Monitoring is currently performed using special vehicles that are fitted with expensive laser scanners and need skilled resource besides providing only very low coverage. Hence such systems are not suitable for continuous road monitoring. Cheaper alternative systems using sensors like accelerometer and GPS (Global Positioning System exists but they are not equipped to achieve higher information levels. This paper presents a prototype system MAARGHA (MAARGHA in Sanskrit language means an eternal path to solution, which demonstrates that it can overcome the disadvantages of the existing systems by fusing multi-sensory data like camera image, accelerometer data and GPS trajectory at an information level, apart from providing additional road information like road surface type. MAARGHA has been tested across different road conditions and sensor data characteristics to assess its potential applications in real world scenarios. The developed system achieves higher information levels when compared to state of the art road condition estimation systems like Roadroid. The system performance in road surface type classification is dependent on the local environmental conditions at the time of imaging. In our study, the road surface type classification accuracy reached 100% for datasets with near ideal environmental conditions and dropped down to 60% for datasets with shadows and

  6. Probing adsorption phenomena on a single crystal Pt-alloy surface under oxygen reduction reaction conditions

    International Nuclear Information System (INIS)

    Bondarenko, Alexander S.; Stephens, Ifan E.L.; Bech, Lone; Chorkendorff, Ib

    2012-01-01

    Highlights: ► Impedance spectroscopy of Cu/Pt(1 1 1) near-surface alloy and Pt(1 1 1). ► Presence of oxygen changes little the adsorption dynamics. ► Adsorption dynamics similar on alloy and Pt(1 1 1). ► Electrosorption phenomena on alloy shifted in potential, relative to Pt(1 1 1). - Abstract: The adsorption dynamics of *OH and *O species at Pt(1 1 1) and Cu/Pt(1 1 1) near-surface alloy (NSA) surfaces in oxygen-free and O 2 -saturated 0.1 M HClO 4 was investigated. Subsurface Cu modifies the electronic structure at the Pt(1 1 1) surface resulting in weaker bonding to adsorbates like *OH, *H or *O. This provides a basis for the high oxygen reduction activity of the NSA, as predicted by density functional theory calculations. The shift in *OH adsorption of around 0.16 V towards more positive potentials can be clearly monitored in absence of O 2 and under the oxygen reduction reaction (ORR) conditions for the Cu/Pt(1 1 1) NSA. In both cases, for Pt(1 1 1) and NSA, the *OH(*O) adsorption dynamics is very similar in the absence of oxygen and under ORR conditions. Therefore, theoretical assumptions about the coverage of adsorbates in the absence of oxygen can be reasonably extrapolated to the situation when oxygen reduction takes place at the surface. A ∼5-fold improvement in the ORR activity over the Pt(1 1 1) at 0.9 V (RHE) was measured for the Cu/Pt(1 1 1) near-surface alloy.

  7. Experimental study of critical heat flux enhancement with hypervapotron structure under natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Chang, Huajian [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhao, Yufeng, E-mail: zhaoyufeng@snptc.com.cn [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhang, Ming; Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei [State Power Investment Corporation, Beijing (China)

    2017-05-15

    Highlights: • Natural circulation tests are performed to study the effect of hypervapotron on CHF. • Hypervapotron structure improves CHF under natural circulation conditions. • Visualization data illustrate vapor blanket behavior under subcooled flow conditions. - Abstract: The enhancement of critical heat flux with a hypervapotron structure under natural circulation conditions is investigated in this study. Subcooled flow boiling CHF experiments are performed using smooth and hypervapotron surfaces at different inclination angles under natural circulation conditions. The experimental facility, TESEC (Test of External Vessel Surface with Enhanced Cooling), is designed to conduct CHF experiments in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. The two-phase flow of subcooled flow boiling on both smooth and hypervapotron heating plates is observed and analyzed by the high-speed visualization technology. The results show that both smooth surface and hypervapotron surface CHF data exhibit a similar trend against inclination angles compared with the CHF results under forced flow condition on the same facility in earlier studies. However, the CHF enhancement of the hypervapotron structure is evidently more significant than the one under forced flow conditions. The experiments also indicate that the natural flow rates are higher with hypervapotron structure. The initiation of CHF is analyzed under transient subcooling and flow rate conditions for both smooth and hypervapotron heating surfaces. An explanation is given for the significant enhancement effect caused by the hypervapotron surface under natural circulation conditions. The visualization data are exhibited to demonstrate the behavior of the vapor blanket at various inclination angles and on different surfaces. The geometric data of the vapor blanket are quantified by an image post-processing method. It is found that the thickness of the vapor blanket

  8. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    International Nuclear Information System (INIS)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  9. Surface treatments for controlling corrosion rate of biodegradable Mg and Mg-based alloy implants

    Science.gov (United States)

    Uddin, M S; Hall, Colin; Murphy, Peter

    2015-01-01

    Due to their excellent biodegradability characteristics, Mg and Mg-based alloys have become an emerging material in biomedical implants, notably for repair of bone as well as coronary arterial stents. However, the main problem with Mg-based alloys is their rapid corrosion in aggressive environments such as human bodily fluids. Previously, many approaches such as control of alloying materials, composition and surface treatments, have been attempted to regulate the corrosion rate. This article presents a comprehensive review of recent research focusing on surface treatment techniques utilised to control the corrosion rate and surface integrity of Mg-based alloys in both in vitro and in vivo environments. Surface treatments generally involve the controlled deposition of thin film coatings using various coating processes, and mechanical surfacing such as machining, deep rolling or low plasticity burnishing. The aim is to either make a protective thin layer of a material or to change the micro-structure and mechanical properties at the surface and sub-surface levels, which will prevent rapid corrosion and thus delay the degradation of the alloys. We have organised the review of past works on coatings by categorising the coatings into two classes—conversion and deposition coatings—while works on mechanical treatments are reviewed based on the tool-based processes which affect the sub-surface microstructure and mechanical properties of the material. Various types of coatings and their processing techniques under two classes of coating and mechanical treatment approaches have been analysed and discussed to investigate their impact on the corrosion performance, biomechanical integrity, biocompatibility and cell viability. Potential challenges and future directions in designing and developing the improved biodegradable Mg/Mg-based alloy implants were addressed and discussed. The literature reveals that no solutions are yet complete and hence new and innovative approaches

  10. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    International Nuclear Information System (INIS)

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  11. Hypoxia-activated prodrug TH-302 decreased survival rate of canine lymphoma cells under hypoxic condition.

    Science.gov (United States)

    Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki

    2017-01-01

    We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.

  12. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Lapen, David R. [Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6 (Canada); Topp, Edward, E-mail: ed.topp@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Department of Biology, Western University, London, ON N6A 5B7 (Canada)

    2015-04-15

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with {sup 14}C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants.

  13. Dissipation of triclosan, triclocarban, carbamazepine and naproxen in agricultural soil following surface or sub-surface application of dewatered municipal biosolids

    International Nuclear Information System (INIS)

    Al-Rajab, Abdul Jabbar; Sabourin, Lyne; Lapen, David R.; Topp, Edward

    2015-01-01

    In many jurisdictions land application of municipal biosolids is a valued source of nutrients for crop production. The practice must be managed to ensure that crops and adjacent water are not subject to contamination by pharmaceuticals or other organic contaminants. The broad spectrum antimicrobial agents triclosan (TCS) and triclocarban (TCC), the anti-epileptic drug carbamazepine (CBZ), and the nonsteroidal anti-inflammatory drug naproxen (NAP) are widely used and are carried in biosolids. In the present study, the effect of biosolids and depth of placement in the soil profile on the rates of TCS, TCC, CBZ, and NAP dissipation were evaluated under semi-field conditions. Aggregates of dewatered municipal biosolids (DMBs) supplemented with 14 C-labeled residues were applied either on the soil surface or in the subsurface of the soil profile, and incubated over several months under ambient outdoor conditions. The dissipation of TCS, TCC and NAP was significantly faster in sub-surface than surface applied biosolid aggregates. In contrast the dissipation rate for CBZ was the same in surface applied and incorporated aggregates. Overall, the present study has determined a significant effect of depth of placement on the dissipation rate of biodegradable molecules. - Highlights: • We characterized the soil fate of four organic contaminants carried in biosolids. • Biosolids were placed on the soil surface or incorporated within the soil profile. • Naproxen, triclosan and triclocarban were dissipated more rapidly when incorporated. • Depth of placement did not influence the rate of carbamazepine dissipation. • Soil incorporation of biosolids will result in more rapid dissipation of contaminants

  14. Surface clay formation during short-term warmer and wetter conditions on a largely cold ancient Mars

    Science.gov (United States)

    Bishop, Janice L.; Fairén, Alberto G.; Michalski, Joseph R.; Gago-Duport, Luis; Baker, Leslie L.; Velbel, Michael A.; Gross, Christoph; Rampe, Elizabeth B.

    2018-03-01

    The ancient rock record for Mars has long been at odds with climate modelling. The presence of valley networks, dendritic channels and deltas on ancient terrains points towards running water and fluvial erosion on early Mars1, but climate modelling indicates that long-term warm conditions were not sustainable2. Widespread phyllosilicates and other aqueous minerals on the Martian surface3-6 provide additional evidence that an early wet Martian climate resulted in surface weathering. Some of these phyllosilicates formed in subsurface crustal environments5, with no association with the Martian climate, while other phyllosilicate-rich outcrops exhibit layered morphologies and broad stratigraphies7 consistent with surface formation. Here, we develop a new geochemical model for early Mars to explain the formation of these clay-bearing rocks in warm and wet surface locations. We propose that sporadic, short-term warm and wet environments during a generally cold early Mars enabled phyllosilicate formation without requiring long-term warm and wet conditions. We conclude that Mg-rich clay-bearing rocks with lateral variations in mixed Fe/Mg smectite, chlorite, talc, serpentine and zeolite occurrences formed in subsurface hydrothermal environments, whereas dioctahedral (Al/Fe3+-rich) smectite and widespread vertical horizonation of Fe/Mg smectites, clay assemblages and sulphates formed in variable aqueous environments on the surface of Mars. Our model for aluminosilicate formation on Mars is consistent with the observed geological features, diversity of aqueous mineralogies in ancient surface rocks and state-of-the-art palaeoclimate scenarios.

  15. Can environmental conditions trigger cyanobacterial surfaces and following carbonate formation: implication for biomineralization and biotechnology

    Science.gov (United States)

    Paulo, C.; Dittrich, M.; Zhu, T.

    2015-12-01

    In this presentation we will give an overview what kind of the factors may trigger carbonate formations at the cell surfaces under a variety of environmental conditions. As examples, we will present the results from our recent studies on formation of calcium carbonates, dolomites and bio-cements. The extracellular polymeric substances (EPS) in the Synechococcuscell envelope are recognized key players in the nucleation of carbonates in marine and freshwater environments. Yet, little is known about a nutrient contents control over the molecular composition of Synechococcus cell envelope, and consequently, biomineralization. In the first study, we investigated how a variation of the phosphorus (P) in the growth media can lead to changes in the surface reactivity of the cells and impact their ability to form carbonates. The objective of the second study is to gain insights into the spatial distribution of cyanobacterial EPS and dolomite from different sediment layers of Khor Al-Adaid sabkha (Qatar). Here, we characterized microbial mats on molecular level in respect of organic and inorganic components using in-situ 2D Raman spectroscopy and Atomic Force Microscopy (AFM) were used. Additionally, 2D chemical maps of sediment layers documented spectral characterizations of minerals and organic matter of microbial origins at high spatial resolution. Finally, we will show the results from the experiments with auto-phototrophic cyanobacteria Gloeocapsa PCC73106, which habitat on the monument surfaces, towards its application for bio-concrete, a product of microbial carbonate precipitation. We studied the biomineralization in biofilm forming Gloeocapsa PCC73106 on the concrete surface as a pre-requirement for microbial carbonate precipitation. Biomineralization on the concrete surface by live cells and killed cells were compared with that under the abiotic condition. Our experiments allow us to conclude that environmental conditions play a significant role in the control of

  16. Influence of different land surfaces on atmospheric conditions measured by a wireless sensor network

    Science.gov (United States)

    Lengfeld, Katharina; Ament, Felix

    2010-05-01

    Atmospheric conditions close to the surface, like temperature, wind speed and humidity, vary on small scales because of surface heterogeneities. Therefore, the traditional measuring approach of using a single, highly accurate station is of limited representativeness for a larger domain, because it is not able to determine these small scale variabilities. However, both the variability and the domain averages are important information for the development and validation of atmospheric models and soil-vegetation-atmosphere-transfer (SVAT) schemes. Due to progress in microelectronics it is possible to construct networks of comparably cheap meteorological stations with moderate accuracy. Such a network provides data in high spatial and temporal resolution. The EPFL Lausanne developed such a network called SensorScope, consisting of low cost autonomous stations. Each station observes air and surface temperature, humidity, wind direction and speed, incoming solar radiation, precipitations, soil moisture and soil temperature and sends the data via radio communication to a base station. This base station forwards the collected data via GSM/GPRS to a central server. Within the FLUXPAT project in August 2009 we deployed 15 stations as a twin transect near Jülich, Germany. One aim of this first experiment was to test the quality of the low cost sensors by comparing them to more accurate reference measurements. It turned out, that although the network is not highly accurate, the measurements are consistent. Consequently an analysis of the pattern of atmospheric conditions is feasible. For example, we detect a variability of ± 0.5K in the mean temperature at a distance of only 2.3 km. The transect covers different types of vegetation and a small river. Therefore, we analyzed the influence of different land surfaces and the distance to the river on meteorological conditions. On the one hand, some results meet our expectations, e.g. the relative humidity decreases with increasing

  17. Plasma surface functionalization and dyeing kinetics of Pan-Pmma copolymers

    OpenAIRE

    Labay, C.; Canal, C.; Rodríguez, C.; Caballero, G.; Canal, J.M.

    2013-01-01

    Fiber surface modification with air corona plasma has been studied through dyeing kinetics under isothermal conditions at 30 °C on an acrylic-fiber fabric with a cationic dye (CI Basic Blue 3) analyzing the absorption, desorption and fixing on the surface of molecules having defined cationic character. The initial dyeing rate in the first 60 s indicates an increase of 58.3% in the dyeing rate due to the effect of corona plasma on the acrylic fiber surface. At the end of the dyeing process...

  18. Influence of Surface Properties and Impact Conditions on Insect Residue Adhesion

    Science.gov (United States)

    Wohl, Christopher J.; Doss, Jereme R.; Shanahan, Michelle H.; Smith, Joseph G., Jr.; Penner, Ronald K.; Connell, John W.; Siochi, Emilie J.

    2015-01-01

    Airflow over airfoils used on current commercial aircraft transitions from laminar to turbulent at relatively low chord positions. As a result, drag increases, requiring more thrust to maintain flight. An airfoil with increased laminar flow would experience reduced drag and a lower fuel burn rate. One of the objectives of NASA's Environmentally Responsible Aviation project is to identify and demonstrate technologies that will enable more environmentally friendly commercial aircraft. While more aerodynamically efficient airfoil shapes can be designed, surface contamination from ice, dirt, pollen, runway debris, and insect residue can degrade performance.

  19. Formation of the prebiotic molecule NH2CHO on astronomical amorphous solid water surfaces: accurate tunneling rate calculations.

    Science.gov (United States)

    Song, Lei; Kästner, Johannes

    2016-10-26

    Investigating how formamide forms in the interstellar medium is a hot topic in astrochemistry, which can contribute to our understanding of the origin of life on Earth. We have constructed a QM/MM model to simulate the hydrogenation of isocyanic acid on amorphous solid water surfaces to form formamide. The binding energy of HNCO on the ASW surface varies significantly between different binding sites, we found values between ∼0 and 100 kJ mol -1 . The barrier for the hydrogenation reaction is almost independent of the binding energy, though. We calculated tunneling rate constants of H + HNCO → NH 2 CO at temperatures down to 103 K combining QM/MM with instanton theory. Tunneling dominates the reaction at such low temperatures. The tunneling reaction is hardly accelerated by the amorphous solid water surface compared to the gas phase for this system, even though the activation energy of the surface reaction is lower than the one of the gas-phase reaction. Both the height and width of the barrier affect the tunneling rate in practice. Strong kinetic isotope effects were observed by comparing to rate constants of D + HNCO → NHDCO. At 103 K we found a KIE of 231 on the surface and 146 in the gas phase. Furthermore, we investigated the gas-phase reaction NH 2 + H 2 CO → NH 2 CHO + H and found it unlikely to occur at cryogenic temperatures. The data of our tunneling rate constants are expected to significantly influence astrochemical models.

  20. Laboratory investigations on the corrosion rate of A42 carbon steel in various secondary circuit chemistries representative of hydraulic tests conditions

    International Nuclear Information System (INIS)

    Brussieux, C.; Clinard, M.H.; Guillodo, M.; Alos-Ramos, O.

    2014-01-01

    Ammonia and hydrazine are currently used in the chemical conditioning of steam generators hydraulic test medium to minimize the corrosion rate of carbon steels. However, hydrazine is classified carcinogenic by the European Commission. Significant effort is therefore ongoing to limit its use or even replace it. The results presented in this paper were obtained in the frame of an EDF and AREVA research program on the subject. The corrosion rate of carbon steel in alkaline media with hydrazine was thoroughly studied. However, most studies concern polished coupons and very few data are available for carbon steel covered with oxides layer(s) representative of the layer(s) which can be found in a SG after operation. In this context, the corrosion rate at 25°C of carbon steel pre-oxidized by an autoclave treatment was studied. The tests coupons were submitted to a secondary circuit chemical conditioning treatment in an autoclave at 280°C during 30 days prior to the corrosion rate measurement. The corrosion rates were measured during two months by an electrochemical method (polarization resistance) in test media composed with deionized water, ammonia and hydrazine under an air blanket at 25°C. Similitudes with steam generators' volume/surface ratios were respected during these tests. The coupons submitted to an autoclave treatment were covered by a duplex magnetite layer. After exposure to hydrazine and ageing, the structure of the magnetite layer contains bigger crystallites than after ageing without exposure to hydrazine. The corrosion rate of passive A42 steel exposed to hydrazine was stable and low even after the complete consumption of hydrazine during at least 50 days. The corrosion rate of passive A42 steel not exposed to hydrazine grew steadily to reach the same corrosion rates as polished carbon steels within 50 days. The hydrazine consumption rate observed in the presence of magnetite covered A42 carbon steel was found higher than 1mg/kg/hour. To explain

  1. Precise muon drift tube detectors for high background rate conditions

    CERN Document Server

    Engl, Albert; Dünnweber, Wolfgang

    The muon spectrometer of the ATLAS-experiment at the Large H adron Collider consists of drift tube chambers, which provide the precise m easurement of trajec- tories of traversing muons. In order to determine the moment um of the muons with high precision, the measurement of the position of the m uon in a single tube has to be more accurate than σ ≤ 100 m. The large cross section of proton-proton-collisions and th e high luminosity of the accelerator cause relevant background of neutrons and γ s in the muon spectrome- ter. During the next decade a luminosity upgrade [1] to 5 10 34 cm − 2 s − 1 is planned, which will increase the background counting rates consider ably. In this context this work deals with the further development of the existing drift chamber tech- nology to provide the required accuracy of the position meas urement under high background conditions. Two approaches of improving the dri ft tube chambers are described: • In regions of moderate background rates a faster and more lin ear ...

  2. The dissolution rate constant of magnetite in water at different temperatures and neutral or ammoniated chemistry conditions

    International Nuclear Information System (INIS)

    Mohajery, K.; Lister, D.H.

    2012-01-01

    In this study, the dissolution rate constants of magnetite were measured at various water chemistry conditions and different temperatures, corresponding to several feedwater conditions of water-cooled reactors. Sintered magnetite pellets were used as the dissolving material and these were mounted in a jet-impingement apparatus in a recirculating water loop. Exposures were carried out at temperatures of 25, 55 and 140 o C and pHs of neutral and 9.2 in which many FAC (Flow Accelerated Corrosion) studies have been conducted. Average dissolution rate constants were estimated by measuring the volume of lost material with a profilometry technique. The excellent correspondent between the calculated value of dissolution rate constant of 2.20 mm/s for the synthesized magnetite and 2.05 mm/s for the single crystal of magnetite at neutral condition shows that the particle removal from the synthesized pellets is not an obstruction in this technique. Also, good agreement between the values calculated in duplicated runs at neutral condition at room temperature supports the accuracy of the method. (author)

  3. A new shape reproduction method based on the Cauchy-condition surface for real-time tokamak reactor control

    International Nuclear Information System (INIS)

    Kurihara, K.

    2000-01-01

    A new shape reproduction method is investigated on the basis of an applied mathematical approach. An analytically exact solution of Maxwell's equations in a static current field yields an (boundary) integral equation. In application of this equation to tokamak plasma shape reproduction, it is made clear that a Cauchy condition (both Dirichlet and Neumann conditions) on a hypothetical surface is necessarily identified. To calculate the Cauchy condition using magnetic sensor signals, conversion to numerical formulation of this method is conducted. Then, reproduction errors by this method are evaluated through two numerical tests: The first test uses ideal signals produced from a full equilibrium code in the JT-60 geometry, and the second test uses actual sensor signals in JT-60 experiments. In addition, it is shown that positioning and shape of the Cauchy condition surface is insensitive to reproduction error. Finally, this method is clarified to have preferable features for real-time tokamak reactor control

  4. Experimental study on soluble chemical transfer to surface runoff from soil.

    Science.gov (United States)

    Tong, Juxiu; Yang, Jinzhong; Hu, Bill X; Sun, Huaiwei

    2016-10-01

    Prevention of chemical transfer from soil to surface runoff, under condition of irrigation and subsurface drainage, would improve surface water quality. In this paper, a series of laboratory experiments were conducted to assess the effects of various soil and hydraulic factors on chemical transfer from soil to surface runoff. The factors include maximum depth of ponding water on soil surface, initial volumetric water content of soil, depth of soil with low porosity, type or texture of soil and condition of drainage. In the experiments, two soils, sand and loam, mixed with different quantities of soluble KCl were filled in the sandboxes and prepared under different initial saturated conditions. Simulated rainfall induced surface runoff are operated in the soils, and various ponding water depths on soil surface are simulated. Flow rates and KCl concentration of surface runoff are measured during the experiments. The following conclusions are made from the study results: (1) KCl concentration in surface runoff water would decrease with the increase of the maximum depth of ponding water on soil surface; (2) KCl concentration in surface runoff water would increase with the increase of initial volumetric water content in the soil; (3) smaller depth of soil with less porosity or deeper depth of soil with larger porosity leads to less KCl transfer to surface runoff; (4) the soil with finer texture, such as loam, could keep more fertilizer in soil, which will result in more KCl concentration in surface runoff; and (5) good subsurface drainage condition will increase the infiltration and drainage rates during rainfall event and will decrease KCl concentration in surface runoff. Therefore, it is necessary to reuse drained fertile water effectively during rainfall, without polluting groundwater. These study results should be considered in agriculture management to reduce soluble chemical transfer from soil to surface runoff for reducing non-point sources pollution.

  5. Fluid flow in panel radiator under various conditions - thermographic visualisation

    Directory of Open Access Journals (Sweden)

    Bašta Jiří

    2012-04-01

    Full Text Available Thermographic investigation of a heating panel radiator under various conditions, especially with various heating water volume flow rate is described in this article. For a radiator type 10-500x1000 TBOE and for two levels of inlet water temperature (75 and 55 °C a set of thermal images of surface temperature patterns for various values of heating water volume flow rate was taken. The initial value of flow rate was derived from nominal heating output and recalculated to real conditions. An increase of volume flow rate higher than 15 % over the nominal recalculated value is for the studied cases easily detectable on the resulting thermal images.

  6. Isopleths of surface concentration and surface exposure rate due to a radioactive cloud released from a stack

    International Nuclear Information System (INIS)

    Kobayashi, Hideo; Yabuta, Hajimu; Katagiri, Hiroshi; Obata, Kazuichi; Kokubu, Morinobu

    1982-03-01

    Various calculations are made to estimate the distributions of concentration and γ-exposure rate due to a radioactive cloud released from a point source to the atmosphere. In this report, the isopleths of concentration and γ-exposure rate which were calculated are given in graphs to enable rapid prediction of the influence of released radioactive material in the emergency situation. Recently there are facilities which are equipped with a system to display the calculation results on CRT; but such practice is rather rare. By placing the calculated isopleths of reduction scale 1/25000 or 1/50000 on the usual map, any facilities without the CRT system can readily estimate the influence of an accidental release. The graphs of isopleths are given with the release height (11 values of 0 to 200 m at about 20 m intervals) and the atmospheric stability (6 classes) as parameters. Calculations of γ-exposure rates were made using the computer code GAMPUL developed by T. Hayashi and T. Shiraishi. In the calculation of radioactive concentrations and γ-exposure rates, the vertical diffusion depths, σsub(z), exceeding 1000 m are taken to be 1000 m according to the Meteorological Guide for the Safety Analysis of Power Reactor (J.AEC). The comparison between with and without this limitation in σsub(z) is made in the case of downwind axial surface distributions. (author)

  7. A system to test the ground surface conditions of construction sites--for safe and efficient work without physical strain.

    Science.gov (United States)

    Koningsveld, Ernst; van der Grinten, Maarten; van der Molen, Henk; Krause, Frank

    2005-07-01

    Ground surface conditions on construction sites have an important influence on the health and safety of workers and their productivity. The development of an expert-based "working conditions evaluation" system is described, intended to assist site managers in recognising unsatisfactory ground conditions and remedying these. The system was evaluated in the period 2002-2003. The evaluation shows that companies recognize poor soil/ground conditions as problematic, but are not aware of the specific physical workload hazards. The developed methods allow assessment of the ground surface quality and selection of appropriate measures for improvement. However, barriers exist at present to wide implementation of the system across the industry. Most significant of these is that responsibility for a site's condition is not clearly located within contracting arrangements, nor is it a topic of serious negotiation.

  8. Monitoring of corrosion rates of Fe-Cu alloys under wet/dry condition in weakly alkaline environments

    International Nuclear Information System (INIS)

    Kim, Je Kyoung; Nishikata, Atsushi; Tsuru, Tooru

    2002-01-01

    When the steel, containing scrap elements like copper, is used as reinforcing steel bars for concrete, the steel is exposed to alkaline environments. in this study, AC impedance technique has been applied to the monitoring of corrosion rates of iron and several Fe-Cu (0.4, 10wt%) alloys in a wet-dry cycle condition. The wet-dry cycle was conducted by exposure to alternate conditions of 1 hour-immersion in a simulated pH10 concrete solution (Ca(OH) 2 ) containing 0.01M NaCl and 3 hour-drying at 298K and 50%RH. The corrosion rate of the iron is greatly accelerated by the wet-dry cycles. Because the active FeOOH species, which are produced by the oxidation of Fe(II, III)oxide in air during drying, act as very strong oxidants to the corrosion in the wet condition. As the drying progresses, iron shows a large increase in the corrosion rate and a small shift of the corrosion potential to the positive values. This can be explained by acceleration of oxygen transport through the thin electrolyte layer In contrast to iron, the Fe-Cu alloys show low corrosion rates and the high corrosion potentials in whole cycles

  9. Shell condition and survival of Puget Sound pteropods are impaired by ocean acidification conditions.

    Directory of Open Access Journals (Sweden)

    D Shallin Busch

    Full Text Available We tested whether the thecosome pteropod Limacina helicina from Puget Sound, an urbanized estuary in the northwest continental US, experiences shell dissolution and altered mortality rates when exposed to the high CO2, low aragonite saturation state (Ωa conditions that occur in Puget Sound and the northeast Pacific Ocean. Five, week-long experiments were conducted in which we incubated pteropods collected from Puget Sound in four carbon chemistry conditions: current summer surface (∼460-500 µatm CO2, Ωa≈1.59, current deep water or surface conditions during upwelling (∼760 and ∼1600-1700 µatm CO2, Ωa≈1.17 and 0.56, and future deep water or surface conditions during upwelling (∼2800-3400 µatm CO2, Ωa≈0.28. We measured shell condition using a scoring regime of five shell characteristics that capture different aspects of shell dissolution. We characterized carbon chemistry conditions in statistical analyses with Ωa, and conducted analyses considering Ωa both as a continuous dataset and as discrete treatments. Shell dissolution increased linearly as aragonite saturation state decreased. Discrete treatment comparisons indicate that shell dissolution was greater in undersaturated treatments compared to oversaturated treatments. Survival increased linearly with aragonite saturation state, though discrete treatment comparisons indicated that survival was similar in all but the lowest saturation state treatment. These results indicate that, under starvation conditions, pteropod survival may not be greatly affected by current and expected near-future aragonite saturation state in the NE Pacific, but shell dissolution may. Given that subsurface waters in Puget Sound's main basin are undersaturated with respect to aragonite in the winter and can be undersaturated in the summer, the condition and persistence of the species in this estuary warrants further study.

  10. Shell condition and survival of Puget Sound pteropods are impaired by ocean acidification conditions.

    Science.gov (United States)

    Busch, D Shallin; Maher, Michael; Thibodeau, Patricia; McElhany, Paul

    2014-01-01

    We tested whether the thecosome pteropod Limacina helicina from Puget Sound, an urbanized estuary in the northwest continental US, experiences shell dissolution and altered mortality rates when exposed to the high CO2, low aragonite saturation state (Ωa) conditions that occur in Puget Sound and the northeast Pacific Ocean. Five, week-long experiments were conducted in which we incubated pteropods collected from Puget Sound in four carbon chemistry conditions: current summer surface (∼460-500 µatm CO2, Ωa≈1.59), current deep water or surface conditions during upwelling (∼760 and ∼1600-1700 µatm CO2, Ωa≈1.17 and 0.56), and future deep water or surface conditions during upwelling (∼2800-3400 µatm CO2, Ωa≈0.28). We measured shell condition using a scoring regime of five shell characteristics that capture different aspects of shell dissolution. We characterized carbon chemistry conditions in statistical analyses with Ωa, and conducted analyses considering Ωa both as a continuous dataset and as discrete treatments. Shell dissolution increased linearly as aragonite saturation state decreased. Discrete treatment comparisons indicate that shell dissolution was greater in undersaturated treatments compared to oversaturated treatments. Survival increased linearly with aragonite saturation state, though discrete treatment comparisons indicated that survival was similar in all but the lowest saturation state treatment. These results indicate that, under starvation conditions, pteropod survival may not be greatly affected by current and expected near-future aragonite saturation state in the NE Pacific, but shell dissolution may. Given that subsurface waters in Puget Sound's main basin are undersaturated with respect to aragonite in the winter and can be undersaturated in the summer, the condition and persistence of the species in this estuary warrants further study.

  11. Substantiation of rate setting of surface contamination with amino acids, labelled with tritium

    International Nuclear Information System (INIS)

    Zhesko, T.V.

    1987-01-01

    For rate setting of surface contamination with the wide-spread biogenic tritium compounds-protein predecessors-experimental study of skin absorption and skin deposit of amino acids labelled with tritium is carried out on rats. While extrapolating data to people and calculating tolerable skin contamination with 3 H- amino acids, it is supposed that people arm skin, 100-500 cm 2 , has no defects and that the skin surface decontamination after radionuclide contact is carried out with a preparation, efficiency of which is not less than 97%. The value of tolerable skin absorption of tritium amino acids, being 110-550 MBq/year or 4.8 kBq/cm 2 per one working day, is calculated

  12. Effect of surface texture of grafted films on antithrombogenicity

    International Nuclear Information System (INIS)

    Otsuhata, K.; Razzak, M.T.; Castanares, R.L.; Tabata, Y.; Ohashi, F.; Takkeuchi, A.

    1985-01-01

    The relation between grafting conditions and antithrombogenicity has been examined from the purpose of clearing the necessity of controlling grafting conditions to enhance blood compatibility. The grafting systems employed here were N,N-dimethylacrylamide (DMAA) - poly(tetrafluoroethylene) (PTFE) and DMAA - poly(ethylene-co-tetrafluoroethylene) (AFLON) and grafting parameters were dose rate, monomer concentration and total dose (irradiation time). Grafting DMAA on to the substrates was carried out by using simultaneous irradiation method of gamma rays from a 60 Co source. After evaluation of blood compatibility of the grafted films by using in vitro tests, it has been clear that control of grafting conditions is important. Especially, in both grafting systems, dose rate control has found to be very important for blood compatibility. When higher dose rate of 1.0 x 10 5 to 3.0 x 10 5 rad/hr was used for grafting DMAA on to PTFE or AFLON, blood compatibility of the substrates was not enhanced, whereas it was improved when the grafting was carried out at lower dose rate of 0.97 x 10 4 rad/hr. The correlation between dose rate and antithrombogenicity has been interpreted in terms of surface-roughness of the grafted films. By scanning electron microscope (SEM) - observation, it has been observed that higher dose rate makes the surface rough, whereas lower dose rate makes it smooth. (author)

  13. Haste makes waste but condition matters: molt rate-feather quality trade-off in a sedentary songbird.

    Directory of Open Access Journals (Sweden)

    Csongor I Vágási

    Full Text Available The trade-off between current and residual reproductive values is central to life history theory, although the possible mechanisms underlying this trade-off are largely unknown. The 'molt constraint' hypothesis suggests that molt and plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains insufficiently explored.The seasonal change in photoperiod was manipulated to accelerate the molt rate. This treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e. shorter, smaller, with a higher barbule density and fewer plumulaceous barbs. However, the wing, tail and primary feather lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent.This study shows that sedentary birds might face evolutionary costs because of the molt rate-feather quality conflict. This is the first study to experimentally demonstrate that (1 molt rate affects several aspects of body feathers as well as flight feathers and (2 the costly effects of rapid molt are condition-specific. We conclude that molt rate and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth.

  14. Association between employment status and self-rated health: Korean working conditions survey.

    Science.gov (United States)

    Kwon, Kimin; Park, Jae Bum; Lee, Kyung-Jong; Cho, Yoon-Sik

    2016-01-01

    This research was conducted with an aim of determining the association between employment status and self-rated health. Using the data from the Third Korean Working Conditions Survey conducted in 2011, We included data from 34,783 respondents, excluding employers, self-employed workers, unpaid family workers, others. Self-rated health was compared according to employment status and a logistic regression analysis was performed. Among the 34,783 workers, the number of permanent and non-permanent workers was 27,564 (79.2 %) and 7,219 (20.8 %). The risk that the self-rated health of non-permanent workers was poor was 1.20 times higher when both socio-demographic factors, work environment and work hazards were corrected. In this study, perceived health was found to be worse in the non-permanent workers than permanent workers. Additional research should investigate whether other factors mediate the relationship between employment status and perceived health.

  15. An experimental study on decontamination by surface condition

    International Nuclear Information System (INIS)

    Lee, Young Hae

    1974-01-01

    Surface decontamination is one of the very important problem to be completely solved in the isotope laboratory where there is always the possibility of radioactive contamination, i.e., on the floors, walls, working tables and benches etc., Isotope laboratories require surface covering of material which can be easily and effectively decontaminated. These experiment were done to find an effective decontamination procedure for kind of surfaces which usually are found in radioisotope laboratories and the best type of surface material, that is, one which is easily decontaminated from the point of view of radiation health and safely. This study is presented to guide radioisotope laboratories in Korea which may need to renovate existing unsafe facilities. In some contaminated facilities entirely new installations may be required. Twelve types of surface material are used for study in this experiment. These include 10 cm square of stainless steel, aluminum, ceramic and mosaic tiles, glass, acrylic, formica board, asphalt tile and coated wood with 4 kinds of paints. Stepwise decontamination was performed with various decontamination procedures following a spill of I 1 31 on the center of the surface material being tested. Twelve different decontamination procedures were tested. These included wet wiping with water and detergent, or dry wiping, or removing with gummed paper. Additional chemical procedures used 10% solution of hydrochloric acid, or surface acid, or ammonium citrate, or potassium iodide, or acetone or carbon tetrachloride. The final testing method was abrasion of the test surfaces. Brief analysis of experimental results on the decontaminability on the tested surface showed: 1. Metallic surfaces such as stainless steel or aluminum, or glass, or a piece of ceramic tile or acrylic are recommended as the surface materials for isotope laboratories because these are easily decontaminated by wet wiping only. 2. Formica board, asphalt tile and wood are not easily

  16. Surface-water nutrient conditions and sources in the United States Pacific Northwest

    Science.gov (United States)

    Wise, D.R.; Johnson, H.M.

    2011-01-01

    The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface-water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency's recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface-water nutrient conditions and should be useful to environmental managers in future water-quality planning efforts.

  17. Trapping of diffusing particles by striped cylindrical surfaces. Boundary homogenization approach

    Science.gov (United States)

    Dagdug, Leonardo; Berezhkovskii, Alexander M.; Skvortsov, Alexei T.

    2015-01-01

    We study trapping of diffusing particles by a cylindrical surface formed by rolling a flat surface, containing alternating absorbing and reflecting stripes, into a tube. For an arbitrary stripe orientation with respect to the tube axis, this problem is intractable analytically because it requires dealing with non-uniform boundary conditions. To bypass this difficulty, we use a boundary homogenization approach which replaces non-uniform boundary conditions on the tube wall by an effective uniform partially absorbing boundary condition with properly chosen effective trapping rate. We demonstrate that the exact solution for the effective trapping rate, known for a flat, striped surface, works very well when this surface is rolled into a cylindrical tube. This is shown for both internal and external problems, where the particles diffuse inside and outside the striped tube, at three orientations of the stripe direction with respect to the tube axis: (a) perpendicular to the axis, (b) parallel to the axis, and (c) at the angle of π/4 to the axis. PMID:26093574

  18. Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the Porong River, Indonesia.

    Science.gov (United States)

    Sidik, Frida; Neil, David; Lovelock, Catherine E

    2016-06-15

    Large quantities of mud from the LUSI (Lumpur Sidoarjo) volcano in northeastern Java have been channeled to the sea causing high rates of sediment delivery to the mouth of the Porong River, which has a cover of natural and planted mangroves. This study investigated how the high rates of sediment delivery affected vertical accretion, surface elevation change and the growth of Avicennia sp., the dominant mangrove species in the region. During our observations in 2010-2011 (4-5years after the initial volcanic eruption), very high rates of sedimentation in the forests at the mouth of the river gave rise to high vertical accretion of over 10cmy(-1). The high sedimentation rates not only resulted in reduced growth of Avicennia sp. mangrove trees at the two study sites at the Porong River mouth, but also gave rise to high soil surface elevation gains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of design factors on surface temperature and wear in disk brakes

    Science.gov (United States)

    Santini, J. J.; Kennedy, F. E.; Ling, F. F.

    1976-01-01

    The temperatures, friction, wear and contact conditions that occur in high energy disk brakes are studied. Surface and near surface temperatures were monitored at various locations in a caliper disk brake during drag type testing, with friction coefficient and wear rates also being determined. The recorded transient temperature distributions in the friction pads and infrared photographs of the rotor disk surface both showed that contact at the friction surface was not uniform, with contact areas constantly shifting due to nonuniform thermal expansion and wear. The effect of external cooling and of design modifications on friction, wear and temperatures was also investigated. It was found that significant decreases in surface temperature and in wear rate can be achieved without a reduction in friction either by slotting the contacting face of the brake pad or by modifying the design of the pad support to improve pad compliance. Both design changes result in more uniform contact conditions on the friction surface.

  20. Monte Carlo simulations of the secondary neutron ambient and effective dose equivalent rates from surface to suborbital altitudes and low Earth orbit.

    Science.gov (United States)

    El-Jaby, Samy; Richardson, Richard B

    2015-07-01

    Occupational exposures from ionizing radiation are currently regulated for airline travel (Earth orbit (∼300-400 km). Aircrew typically receive between 1 and 6 mSv of occupational dose annually, while aboard the International Space Station, the area radiation dose equivalent measured over just 168 days was 106 mSv at solar minimum conditions. It is anticipated that space tourism vehicles will reach suborbital altitudes of approximately 100 km and, therefore, the annual occupational dose to flight crew during repeated transits is expected to fall somewhere between those observed for aircrew and astronauts. Unfortunately, measurements of the radiation environment at the high altitudes reached by suborbital vehicles are sparse, and modelling efforts have been similarly limited. In this paper, preliminary MCNPX radiation transport code simulations are developed of the secondary neutron flux profile in air from surface altitudes up to low Earth orbit at solar minimum conditions and excluding the effects of spacecraft shielding. These secondary neutrons are produced by galactic cosmic radiation interacting with Earth's atmosphere and are among the sources of radiation that can pose a health risk. Associated estimates of the operational neutron ambient dose equivalent, used for radiation protection purposes, and the neutron effective dose equivalent that is typically used for estimates of stochastic health risks, are provided in air. Simulations show that the neutron radiation dose rates received at suborbital altitudes are comparable to those experienced by aircrew flying at 7 to 14 km. We also show that the total neutron dose rate tails off beyond the Pfotzer maximum on ascension from surface up to low Earth orbit. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  1. Associations of psychosocial working conditions with self-rated general health and mental health among municipal employees.

    Science.gov (United States)

    Laaksonen, Mikko; Rahkonen, Ossi; Martikainen, Pekka; Lahelma, Eero

    2006-03-01

    To examine associations of job demands and job control, procedural and relational organizational fairness, and physical work load with self-rated general health and mental health. In addition, the effect of occupational class on these associations is examined. The data were derived from the Helsinki Health Study baseline surveys in 2001-2002. Respondents to cross-sectional postal surveys were middle-aged employees of the City of Helsinki (n=5.829, response rate 67%). Associations of job demands and job control, organizational fairness and physical work load with less than good self-rated health and poor GHQ-12 mental health were examined. Those with the poorest working conditions two to three times more, often reported poor general and mental health than those with the best working conditions. Adjustment for occupational class weakened the associations of low job control and physical work load with general health by one fifth, but even more strengthened that of high job demands. Adjustment for occupational class clearly strengthened the associations of job control and physical work load with mental health in men. Mutual adjustment for all working conditions notably weakened their associations with both health measures, except those of job control in men. All working conditions except relational organizational fairness remained independently associated with general and mental health. All studied working conditions were strongly associated with both general and mental health but the associations weakened after mutual adjustments. Of the two organizational fairness measures, procedural fairness remained independently associated with both health outcomes. Adjustment for occupational class had essentially different effects on the associations of different working conditions and different health outcomes.

  2. Correlation between Ni base alloys surface conditioning and cation release mitigation in primary coolant

    Energy Technology Data Exchange (ETDEWEB)

    Clauzel, M.; Guillodo, M.; Foucault, M. [AREVA NP SAS, Technical Centre, Le Creusot (France); Engler, N.; Chahma, F.; Brun, C. [AREVA NP SAS, Chemistry and Radiochemistry Group, Paris La Defense (France)

    2010-07-01

    The mastering of the reactor coolant system radioactive contamination is a real stake of performance for operating plants and new builds. The reduction of activated corrosion products deposited on RCS surfaces allows minimizing the global dose integrated by workers which supports the ALARA approach. Moreover, the contamination mastering limits the volumic activities in the primary coolant and thus optimizes the reactor shutdown duration and environment releases. The main contamination sources on PWR are due to Co-60 and Co-58 nuclides which come respectively Co-59 and Ni-58, naturally present in alloys used in the RCS. Co is naturally present as an impurity in alloys or as the main component of hardfacing materials (Stellites™). Ni is released mainly by SG tubes which represent the most important surface of the RCS. PWR steam generators (SG), due to the huge wetted surface are the main source of corrosion products release in the primary coolant circuit. As corrosion products may be transported throughout the whole circuit, activated in the core, and redeposited all over circuit surfaces, resulting in an increase of activity buildup, it is of primary importance to gain a better understanding of phenomenon leading to corrosion product release from SG tubes before setting up mitigation measures. Previous studies have shown that SG tubing made of the same material had different release rates. To find the origin of these discrepancies, investigations have been performed on tubes at the as-received state and after exposure to a nominal primary chemistry in titanium recirculating loop. These investigations highlighted the existence of a correlation between the inner surface metallurgical properties and the release of corrosion products in primary coolant. Oxide films formed in nominal primary chemistry are always protective, their morphology and their composition depending strongly on the geometrical, metallurgical and physico-chemical state of the surface on which they

  3. Growth, chamber building rate and reproduction time of Palaeonummulites venosus under natural conditions.

    Science.gov (United States)

    Kinoshita, Shunichi; Eder, Wolfgang; Wöger, Julia; Hohenegger, Johann; Briguglio, Antonino

    2017-04-01

    Investigations on Palaeonummulites venosus using the natural laboratory approach for determining chamber building rate, test diameter increase rate, reproduction time and longevity is based on the decomposition of monthly obtained frequency distributions based on chamber number and test diameter into normal-distributed components. The shift of the component parameters 'mean' and 'standard deviation' during the investigation period of 15 months was used to calculate Michaelis-Menten functions applied to estimate the averaged chamber building rate and diameter increase rate under natural conditions. The individual dates of birth were estimated using the inverse averaged chamber building rate and the inverse diameter increase rate fitted by the individual chamber number or the individual test diameter at the sampling date. Distributions of frequencies and densities (i.e. frequency divided by sediment weight) based on chamber building rate and diameter increase rate resulted both in a continuous reproduction through the year with two peaks, the stronger in May /June determined as the beginning of the summer generation (generation1) and the weaker in November determined as the beginning of the winter generation (generation 2). This reproduction scheme explains the existence of small and large specimens in the same sample. Longevity, calculated as the maximum difference in days between the individual's birth date and the sampling date seems to be round about one year, obtained by both estimations based on the chamber building rate and the diameter increase rate.

  4. Optimization of Surface Finish in Turning Operation by Considering the Machine Tool Vibration using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Muhammad Munawar

    2012-01-01

    Full Text Available Optimization of surface roughness has been one of the primary objectives in most of the machining operations. Poor control on the desired surface roughness generates non conforming parts and results into increase in cost and loss of productivity due to rework or scrap. Surface roughness value is a result of several process variables among which machine tool condition is one of the significant variables. In this study, experimentation was carried out to investigate the effect of machine tool condition on surface roughness. Variable used to represent machine tool\\'s condition was vibration amplitude. Input parameters used, besides vibration amplitude, were feed rate and insert nose radius. Cutting speed and depth of cut were kept constant. Based on Taguchi orthogonal array, a series of experimentation was designed and performed on AISI 1040 carbon steel bar at default and induced machine tool\\'s vibration amplitudes. ANOVA (Analysis of Variance, revealed that vibration amplitude and feed rate had moderate effect on the surface roughness and insert nose radius had the highest significant effect on the surface roughness. It was also found that a machine tool with low vibration amplitude produced better surface roughness. Insert with larger nose radius produced better surface roughness at low feed rate.

  5. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions

    Science.gov (United States)

    Pendlebury, Diane; Gravel, Sylvie; Moran, Michael D.; Lupu, Alexandru

    2018-02-01

    A regional air quality forecast model, GEM-MACH, is used to examine the conditions under which a limited-area air quality model can accurately forecast near-surface ozone concentrations during stratospheric intrusions. Periods in 2010 and 2014 with known stratospheric intrusions over North America were modelled using four different ozone lateral boundary conditions obtained from a seasonal climatology, a dynamically-interpolated monthly climatology, global air quality forecasts, and global air quality reanalyses. It is shown that the mean bias and correlation in surface ozone over the course of a season can be improved by using time-varying ozone lateral boundary conditions, particularly through the correct assignment of stratospheric vs. tropospheric ozone along the western lateral boundary (for North America). Part of the improvement in surface ozone forecasts results from improvements in the characterization of near-surface ozone along the lateral boundaries that then directly impact surface locations near the boundaries. However, there is an additional benefit from the correct characterization of the location of the tropopause along the western lateral boundary such that the model can correctly simulate stratospheric intrusions and their associated exchange of ozone from stratosphere to troposphere. Over a three-month period in spring 2010, the mean bias was seen to improve by as much as 5 ppbv and the correlation by 0.1 depending on location, and on the form of the chemical lateral boundary condition.

  6. Improving the Yule-Nielsen modified Neugebauer model by dot surface coverages depending on the ink superposition conditions

    Science.gov (United States)

    Hersch, Roger David; Crete, Frederique

    2005-01-01

    Dot gain is different when dots are printed alone, printed in superposition with one ink or printed in superposition with two inks. In addition, the dot gain may also differ depending on which solid ink the considered halftone layer is superposed. In a previous research project, we developed a model for computing the effective surface coverage of a dot according to its superposition conditions. In the present contribution, we improve the Yule-Nielsen modified Neugebauer model by integrating into it our effective dot surface coverage computation model. Calibration of the reproduction curves mapping nominal to effective surface coverages in every superposition condition is carried out by fitting effective dot surfaces which minimize the sum of square differences between the measured reflection density spectra and reflection density spectra predicted according to the Yule-Nielsen modified Neugebauer model. In order to predict the reflection spectrum of a patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different reproduction curves according to the weights of the contributing superposition conditions. We analyze the colorimetric prediction improvement brought by our extended dot surface coverage model for clustered-dot offset prints, thermal transfer prints and ink-jet prints. The color differences induced by the differences between measured reflection spectra and reflection spectra predicted according to the new dot surface estimation model are quantified on 729 different cyan, magenta, yellow patches covering the full color gamut. As a reference, these differences are also computed for the classical Yule-Nielsen modified spectral Neugebauer model incorporating a single halftone reproduction curve for each ink. Taking into account dot surface coverages according to different superposition conditions considerably improves the predictions of the Yule-Nielsen modified Neugebauer model. In

  7. Surface-Water Conditions in Georgia, Water Year 2005

    Science.gov (United States)

    Painter, Jaime A.; Landers, Mark N.

    2007-01-01

    INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link

  8. Surface deposition from radioactive plumes

    International Nuclear Information System (INIS)

    Garland, J.A.

    1980-01-01

    Accidents involving nuclear plants may release radioactive particles and gases to the atmosphere. Dry deposition of particles has been investigated mainly in the laboratory and a general understanding of the transfer mechanisms has been established. However there is apparently a substantial discrepancy between the few field observations of dry deposition of particles and laboratory measurements, particularly for 0.1 - 1 μm particles for which laboratory work shows very small deposition rates. In addition there are few estimates of deposition rates for forest and some other kinds of terrain. The most important gas in the context of a nuclear accident is I-131 and the behaviour of this gas at grass surfaces has received much attention. However smaller quantities of other gases and vapours may be released and the surface absorption of these species may require further investigation. In addition there is little knowledge of the behaviour of gases over many types of surface. The rate of deposition of particles and gases is influenced by many parameters including wind speed and the temperature stratification of the lower atmosphere. Conditions which give poor atmospheric dispersion usually give lower deposition velocities. Transfer to man depends on the availability of deposited materials on crops and grass. A wide range of isotopes including iodine and several metallic fission products are lost with a half life for residence on grass ranging from a few days to a few tens days, depending on climatic conditions

  9. Iodine/steel reactions under severe accident conditions in LWR's

    International Nuclear Information System (INIS)

    Funke, F.; Greger, G-U.; Hellman, S.; Bleier, A.; Morell, W.

    1994-01-01

    Due to large surface areas, the reaction of volatile, molecular iodine (I 2 ) with steel surfaces in the containment may play an important role in predicting the source term to the environment. Both wall retention of iodine and conversion of volatile into non-volatile iodine compounds at steel surfaces have to be considered. Two types of laboratory experiments were carried out at Siemens/KWU in order to investigate the reaction of I 2 at steel surfaces representative for German power plants. 1) For steel coupons submerged in an I 2 solution at T = 50 deg C, 90 deg C or 140 deg C the reaction rate of the I 2 /I - conversion was determined. No iodine loading was observed on the steel in the aqueous phase tests. I 2 reacts with the steel components (Fe, Cr or Ni) to form metal iodides on the surface which are all immediately dissolved in water under dissociation into the metal and the iodide ions. From these experiments, the I 2 /I - conversion rate constants over the temperature range 50 deg C - 140 deg C as well as the activation energy were determined. The measured data are suitable to be included in severe accident iodine codes such as IMPAIR. 2) Steel tubes were exposed to a steam/I 2 flow under dry air at T=120 deg C and steam-condensing conditions at T= 120 deg C and 160 deg C. In dry air I 2 was retained on the steel surface and a deposition rate constant was measured. Under steam-condensing conditions there is an effective conversion of volatile I 2 to non-volatile I - which is subsequently washed off from the steel surface. The I 2 /I - conversion rate constants suitable for modelling this process were determined. No temperature dependency was found in the range 120 deg C - 160 deg C. (author). 4 refs., 2 tabs., 7 figs

  10. Investigation of surface oxide morphology in SG feedwater pipes and study of its influence on flow accelerated corrosion rate

    International Nuclear Information System (INIS)

    Qiu, G.; Alos-Ramos, O.; Monchecourt, D.; Mansour, C.; Delaunay, S.; Trevin, S.

    2015-01-01

    Flow accelerated corrosion (FAC) affects carbon steel components in the secondary circuits of PWR plants. The mandatory use of the prediction tool BRT-CICERO in all its PWR plants enables EDF to perform efficient inspections programs and minimize the number of leaks in the secondary circuits. Due to the operating conditions, SG feedwater flow regulation (ARE) circuits can be affected by FAC phenomenon. Thickness loss has been reported by several plants during the last 10 years, although significant damage by FAC remains very rare. This paper describes the surface features observed on an ARE straight tube that has orange peel pattern with thickness loss on the one half of its inner surface and a thick fouling layer without much thickness loss on the other. An analysis of the oxide porosity and structure by SEM investigation has been carried out. The origin of fouling layer and its behavior in the ARE circuits environment (oxide solubility, flow stability/turbulence) have been discussed. Finally by comparing with the classic FAC models, an attempt of correlation between the presence of the fouling layer and the lower corrosion rate is proposed. (authors)

  11. Effect of melt surface depression on the vaporization rate of a metal heated by an electron beam

    International Nuclear Information System (INIS)

    Guilbaud, D.

    1995-01-01

    In order to produce high density vapor, a metal confined in a water cooled crucible is heated by an electron beam (eb). The energy transfer to the metal causes partial melting, forming a pool where the flow is driven by temperature induced buoyancy and capillary forces. Furthermore, when the vaporization rate is high, the free surface is depressed by the thrust of the vapor. The main objective of this paper is to analyse the combined effects of liquid flow and vapor condensation back on the liquid surface. This is done with TRIO-EF, a general purpose fluid mechanics finite element code. A suitable iterative scheme is used to calculate the free surface flow and the temperature field. The numerical simulation gives an insight about the influence of the free surface in heat transfer. The depression of the free surface induces strong effects on both liquid and vapor. As liquid is concerned, buoyancy convection in the pool is enhanced, the energy flux from electron beam is spread and constriction of heat flux under the eb spot is weakened. It results that heat transfer towards the crucible is reinforced. As vapor is concerned, its fraction that condenses back on the liquid surface is increased. These phenomena lead to a saturation of the net vaporization rate as the eb spot radius is reduced, at constant eb power. (author). 8 refs., 13 figs., 2 tabs

  12. Surface chemistry of tribochemical reactions explored in ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Lara-Romero, Javier; Maya-Yescas, Rafael; Rico-Cerda, Jose Luis; Rivera-Rojas, Jose Luis; Castillo, Fernando Chinas; Kaltchev, Matey; Tysoe, Wilfred T.

    2006-01-01

    The thermal decomposition of model extreme-pressure lubricant additives on clean iron was studied in ultrahigh vacuum conditions using molecular beam strategies. Methylene chloride and chloroform react to deposit a solid film consisting of FeCl 2 and carbon, and evolve only hydrogen into the gas phase. No gas-phase products and less carbon on the surface are detected in the case of carbon tetrachloride. Dimethyl and diethyl disulfide react on clean iron to deposit a saturated sulfur plus carbon layer at low temperatures (∼600 K) and an iron sulfide film onto a Fe + C underlayer at higher temperatures (∼950 K). Methane is the only gas-phase product when dimethyl disulfide reacts with iron. Ethylene and hydrogen are detected when diethyl disulfide is used

  13. Influence of radiant energy exchange on the determination of convective heat transfer rates to Orbiter leeside surfaces during entry

    Science.gov (United States)

    Throckmorton, D. A.

    1982-01-01

    Temperatures measured at the aerodynamic surface of the Orbiter's thermal protection system (TPS), and calorimeter measurements, are used to determine heating rates to the TPS surface during atmospheric entry. On the Orbiter leeside, where convective heating rates are low, it is possible that a significant portion of the total energy input may result from solar radiation, and for the wing, cross radiation from the hot (relatively) Orbiter fuselage. In order to account for the potential impact of these sources, values of solar- and cross-radiation heat transfer are computed, based upon vehicle trajectory and attitude information and measured surface temperatures. Leeside heat-transfer data from the STS-2 mission are presented, and the significance of solar radiation and fuselage-to-wing cross-radiation contributions to total energy input to Orbiter leeside surfaces is assessed.

  14. Influence of annealing condition and multicycle AlGaAs/GaAs structures on the Al{sub 0.26}Ga{sub 0.74}As surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wenzhe; Wang, Yi; Guo, Xiang [College of Big Data and Information Engineering, Guizhou University, Guiyang 550025 (China); Luo, Zijiang [School of Education Administration, Guizhou University of Finance and Economics, Guiyang 550025 (China); Zhao, Zhen; Zhou, Haiyue [College of Big Data and Information Engineering, Guizhou University, Guiyang 550025 (China); Ding, Zhao, E-mail: zding@gzu.edu.cn [College of Big Data and Information Engineering, Guizhou University, Guiyang 550025 (China)

    2015-08-01

    Highlights: • STM study on the change of AlGaAs surface morphology with varying annealing conditions. • Interesting phenomenon that the subsequent sample has more surface roughness than the previous samples do. A physical model was proposed to explain why the multi-runs growth can increase surface roughness. • The annealing conditions of AlGaAs/GaAs surface were proposed. - Abstract: The influence of annealing temperature, As{sub 4} beam equivalent pressure and multi-runs growth on AlGaAs/GaAs structures was investigated. The real space ultrahigh vacuum scanning tunneling microscopy images showed that AlGaAs/GaAs surface morphology greatly depends on annealing conditions and initial state of surface. The reasons of the surface phenomenon are proposed, and a physical model was proposed to explain why the multi-runs growth structures can increase AlGaAs surface roughness. The reasonable preparation conditions for AlGaAs/GaAs structures were proposed.

  15. On the Dependence of the X-Ray Burst Rate on Accretion and Spin Rate

    Science.gov (United States)

    Cavecchi, Yuri; Watts, Anna L.; Galloway, Duncan K.

    2017-12-01

    Nuclear burning and its dependence on the mass accretion rate are fundamental ingredients for describing the complicated observational phenomenology of neutron stars (NSs) in binary systems. Motivated by high-quality burst rate data emerging from large statistical studies, we report general calculations relating the bursting rate to the mass accretion rate and NS rotation frequency. In this first work, we ignore general relativistic effects and accretion topology, although we discuss where their inclusion should play a role. The relations we derive are suitable for different burning regimes and provide a direct link between parameters predicted by theory and what is to be expected in observations. We illustrate this for analytical relations of different unstable burning regimes that operate on the surface of an accreting NS. We also use the observed behavior of the burst rate to suggest new constraints on burning parameters. We are able to provide an explanation for the long-standing problem of the observed decrease of the burst rate with increasing mass accretion that follows naturally from these calculations: when the accretion rate crosses a certain threshold, ignition moves away from its initially preferred site, and this can cause a net reduction of the burst rate due to the effects of local conditions that set local differences in both the burst rate and stabilization criteria. We show under which conditions this can happen even if locally the burst rate keeps increasing with accretion.

  16. VNIR Reflectance and MIR Emissivity Spectra of Ordinary Chondrite Meteorites Under Simulated Asteroid Surface Conditions

    Science.gov (United States)

    Gemma, M.; Shirley, K.; Glotch, T. D.; Ebel, D. S. S.

    2017-12-01

    Recent missions have revealed much about the nature of many Near-Earth asteroids, including the NEAR-Shoemaker target 433 Eros and Hayabusa target 25142 Itokawa. Both asteroids appear to have mineralogy consistent with ordinary chondrite meteorites. Laboratory spectral analysis of well-constrained meteorite samples can be employed as a reference tool to characterize and constrain data from current and future asteroid studies. A sample set of ordinary chondrite meteorites was chosen from the collection at the American Museum of Natural History. Six meteorites, spanning groups H, L, and LL, were prepared at four different size fractions (25-63 μm, 63-90 μm, 90-125 μm, 125-250 μm) in an attempt to mimic regolith known to exist on asteroids such as 433 Eros and 25142 Itokawa. At the Center for Planetary Exploration at Stony Brook University, spectra of the ordinary chondrite material were measured under simulated asteroid surface conditions ( 10-6 mbar, 150 K chamber temperature, low intensity illumination). The samples were used in two experiments: one measuring visible and near-infrared (VNIR) reflectance spectra at a series of temperatures, and the other measuring mid-infrared (MIR) emissivity spectra. The emissivity measurements require accurate simulation of the thermal environment within asteroid regolith, achieved by inducing a thermal gradient within the sample that results in a surface brightness temperature around 323 K (similar to the surface of 25142 Itokawa). Mid-IR emissivity spectra were collected for each sample at a surface temperature of 323 K, and reflectance spectra were collected in increments of 10 K, over the range 283 K to 373 K. Preliminary VNIR spectra show spreads similar to those seen in Hinrichs and Lucey (2002). Preliminary MIR emissivity spectra suggest that under asteroid surface conditions, the position of the Christiansen feature shifts to shorter wavelengths and emissivity is lower in the Reststrahlen bands when compared to

  17. Conditions for testing the corrosion rates of ceramics in coal gasification systems

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.P.; Nowok, J.W. [Univ. of North Dakota, Grand Forks, ND (United States)

    1996-08-01

    Coal gasifier operating conditions and gas and ash compositions affect the corrosion rates of ceramics used for construction in three ways: (1) through direct corrosion of the materials, (2) by affecting the concentration and chemical form of the primary corrodents, and (3) by affecting the mass transport rate of the primary corrodents. To perform an accurate corrosion test on a system material, the researcher must include all relevant corrodents and simulate conditions in the gasifier as closely as possible. In this paper, the authors present suggestions for conditions to be used in such corrosion tests. Two main types of corrosion conditions are discussed: those existing in hot-gas cleanup systems where vapor and dry ash may contribute to corrosion and those experienced by high-temperature heat exchangers and refractories where the main corrodent will be coal ash slag. Only the fluidized-bed gasification systems such as the Sierra Pacific Power Company Pinon Pine Power Project system are proposing the use of ceramic filters for particulate cleanup. The gasifier is an air-blown 102-MWe unit employing a Westinghouse{trademark} ceramic particle filter system operating at as high as 1100{degrees}F at 300 psia. Expected gas compositions in the filter will be approximately 25% CO, 15% H{sub 2}, 5% CO{sub 2}, 5% H{sub 2}O, and 50% N{sub 2}. Vapor-phase sodium chloride concentrations are expected to be 10 to 100 times the levels in combustion systems at similar temperatures, but in general the concentrations of the minor primary and secondary corrodents are not well understood. Slag corrosiveness will depend on its composition as well as viscosity. For a laboratory test, the slag must be in a thermodynamically stable form before the beginning of the corrosion test to assure that no inappropriate reactions are allowed to occur. Ideally, the slag would be flowing, and the appropriate atmosphere must be used to assure realistic slag viscosity.

  18. Effect of Reaction Conditions on the Surface Modification of Cellulose Nanofibrils with Aminopropyl Triethoxysilane

    Directory of Open Access Journals (Sweden)

    Eduardo Robles

    2018-04-01

    Full Text Available Nine different surface modifications of cellulose nanofibrils (CNF with 3-aminopropyl triethoxysilane (ATS by using three different solvent systems (water, ethanol, and a mixture of both were investigated. The effect of reaction conditions, such as silane to cellulose ratio and solvent type were evaluated to determine their contribution to the extent of the silane modification. Nanofibril properties were evaluated by infrared spectroscopy, powder X-ray diffraction, surface free energy, thermogravimetry, 13C and 29Si nuclear magnetic resonance, and electronic microscopy. The influence of the solvent in the solvolysis of the silane was reflected in the presence or absence of ethoxy groups in the silane. On the other hand, whereas the surface modification was increased directly proportionally to silane ratio on the reaction, the aggregation of nanofibrils was also increased, which can play a negative role in certain applications. The increment of silane modification also had substantial repercussions on the crystallinity of the nanofibrils by the addition of amorphous components to the crystalline unit; moreover, silane surface modifications enhanced the hydrophobic character of the nanofibrils.

  19. Slope-velocity equilibrium and evolution of surface roughness on a stony hillslope

    Science.gov (United States)

    Nearing, Mark A.; Polyakov, Viktor O.; Nichols, Mary H.; Hernandez, Mariano; Li, Li; Zhao, Ying; Armendariz, Gerardo

    2017-06-01

    Slope-velocity equilibrium is hypothesized as a state that evolves naturally over time due to the interaction between overland flow and surface morphology, wherein steeper areas develop a relative increase in physical and hydraulic roughness such that flow velocity is a unique function of overland flow rate independent of slope gradient. This study tests this hypothesis under controlled conditions. Artificial rainfall was applied to 2 m by 6 m plots at 5, 12, and 20 % slope gradients. A series of simulations were made with two replications for each treatment with measurements of runoff rate, velocity, rock cover, and surface roughness. Velocities measured at the end of each experiment were a unique function of discharge rates, independent of slope gradient or rainfall intensity. Physical surface roughness was greater at steeper slopes. The data clearly showed that there was no unique hydraulic coefficient for a given slope, surface condition, or rainfall rate, with hydraulic roughness greater at steeper slopes and lower intensities. This study supports the hypothesis of slope-velocity equilibrium, implying that use of hydraulic equations, such as Chezy and Manning, in hillslope-scale runoff models is problematic because the coefficients vary with both slope and rainfall intensity.

  20. High cloud variations with surface temperature from 2002 to 2015: Contributions to atmospheric radiative cooling rate and precipitation changes

    Science.gov (United States)

    Liu, Run; Liou, Kuo-Nan; Su, Hui; Gu, Yu; Zhao, Bin; Jiang, Jonathan H.; Liu, Shaw Chen

    2017-05-01

    The global mean precipitation is largely constrained by atmospheric radiative cooling rates (Qr), which are sensitive to changes in high cloud fraction. We investigate variations of high cloud fraction with surface temperature (Ts) from July 2002 to June 2015 and compute their radiative effects on Qr using the Fu-Liou-Gu plane-parallel radiation model. We find that the tropical mean (30°S-30°N) high cloud fraction decreases with increasing Ts at a rate of about -1.0 ± 0.34% K-1 from 2002 to 2015, which leads to an enhanced atmospheric cooling around 0.86 W m-2 K-1. On the other hand, the northern midlatitudes (30°N-60°N) high cloud fraction increases with surface warming at a rate of 1.85 ± 0.65% K-1 and the near-global mean (60°S-60°N) high cloud fraction shows a statistically insignificant decreasing trend with increasing Ts over the analysis period. Dividing high clouds into cirrus, cirrostratus, and deep convective clouds, we find that cirrus cloud fraction increases with surface warming at a rate of 0.32 ± 0.11% K-1 (0.01 ± 0.17% K-1) for the near-global mean (tropical mean), while cirrostratus and deep convective clouds decrease with surface warming at a rate of -0.02 ± 0.18% K-1 and -0.33 ± 0.18% K-1 for the near-global mean and -0.64 ± 0.23% K-1 and -0.37 ± 0.13% K-1 for the tropical mean, respectively. High cloud fraction response to feedback to Ts accounts for approximately 1.9 ± 0.7% and 16.0 ± 6.1% of the increase in precipitation per unit surface warming over the period of 2002-2015 for the near-global mean and the tropical mean, respectively.

  1. Measurement of the radon exhalation rate from the medium surface by tracing the radon concentration

    International Nuclear Information System (INIS)

    Yanliang Tan; Detao Xiao

    2013-01-01

    The paper will present a method based on the accumulation chamber technique for measuring of radon exhalation from the medium surface. A radon monitor traces the change of radon concentration in the accumulation chamber, and then the radon exhalation can be obtained accurately through linear fit. Based on our recent experiments, the radon exhalation rate from the medium surface obtained from this method is in good agreement with the actual exhalation rate of our simulation facility. This method is superior to the competition method which obtains the radon exhalation through the exponential fit by an external PC-system. The calculation for the exponential fit is very easy by computer and related software. However, for portable instruments, the single chip microcomputer can't calculate the exponential fit rapidly. Thus, this method is usable for developing the new portable instrument to classify building materials, etc. (author)

  2. Surface strain rate colour map of the Tatra Mountains region (Slovakia based on GNSS data

    Directory of Open Access Journals (Sweden)

    Bednárik Martin

    2016-12-01

    Full Text Available The surface deformation of the Tatra Mountains region in Western Carpathians can nowadays be studied directly thanks to precise geodetic measurements using the GNSS. The strain or stress tensor field is, however, a rather complex “data structure” difficult to present legibly and with sufficient resolution in the form of a classical map. A novel and promising approach to the solution of this problem is coding the three principal strain or stress values into the three colour channels (red, green, blue of an RGB colour. In our previous study, the colour depended on the stress tensor shape descriptors. In the current study, the adapted colouring scheme uses a subset of shape descriptors common to stress and strain, which differ only in the scaling factor. In this manner, we generate the colour map of the surface strain rate field, where the colour of each grid point carries the information about the shape of the strain rate tensor at that point. The resulting strain rate colour map can be displayed simultaneously with the map of the faults or elevations and be easily checked for the data or interpolation method errors and incompatibility with the geophysical and geological expectations.

  3. A Conditionally Beta Distributed Time-Series Model With Application to Monthly US Corporate Default Rates

    DEFF Research Database (Denmark)

    Nielsen, Thor Pajhede

    2017-01-01

    We consider an observation driven, conditionally Beta distributed model for variables restricted to the unit interval. The model includes both explanatory variables and autoregressive dependence in the mean and precision parameters using the mean-precision parametrization of the beta distribution...... the monthly default rate. (3) There is evidence for volatility clustering beyond what is accounted for by the inherent mean-precision relationship of the Beta distribution in the default rate data....

  4. Influence of Nitrogen Flow Rate on Friction Coefficient and Surface Roughness of TiN Coatings Deposited on Tool Steel Using Arc Method

    Science.gov (United States)

    Hamzah, Esah; Ourdjini, Ali; Ali, Mubarak; Akhter, Parvez; Hj. Mohd Toff, Mohd Radzi; Abdul Hamid, Mansor

    In the present study, the effect of various N2 gas flow rates on friction coefficient and surface roughness of TiN-coated D2 tool steel was examined by a commercially available cathodic arc physical vapor deposition (CAPVD) technique. A Pin-on-Disc test was carried out to study the Coefficient of friction (COF) versus sliding distance. A surface roughness tester measured the surface roughness parameters. The minimum values for the COF and surface roughness were recorded at a N2 gas flow rate of 200 sccm. The increase in the COF and surface roughness at a N2 gas flow rate of 100 sccm was mainly attributed to an increase in both size and number of titanium particles, whereas the increase at 300 sccm was attributed to a larger number of growth defects generated during the coating process. These ideas make it possible to optimize the coating properties as a function of N2 gas flow rate for specific applications, e.g. cutting tools for automobiles, aircraft, and various mechanical parts.

  5. The Effect of Growth Temperature and V/III Flux Ratio of MOCVD Antimony Based Semiconductors on Growth Rate and Surface Morphology

    Directory of Open Access Journals (Sweden)

    Ramelan Ari Handono

    2017-01-01

    Full Text Available Epitaxial Alx Ga1-x Sb layers on GaSb and GaAs substrates have been grown by atmospheric pressure metalorganic chemical vapor deposition using TMAl, TMGa and TMSb. Nomarski microscope and a profiler were employed to examine the surface morphology and growth rate of the samples. We report the effect of growth temperature and V/III flux ratio on growth rate and surface morphology. Growth temperatures in the range of 520°C and 680°C and V/III ratios from 1 to 5 have been investigated. A growth rate activation energy of 0.73 eV was found. At low growth temperatures between 520 and 540°C, the surface morphology is poor due to antimonide precipitates associated with incomplete decomposition of the TMSb. For layers grown on GaAs at 580°C and 600°C with a V/III ratio of 3 a high quality surface morphology is typical, with a mirror-like surface and good composition control. It was found that a suitable growth temperature and V/III flux ratio was beneficial for producing good AlGaSb layers. Undoped AlGaSb grown at 580°C with a V/III flux ratio of 3 at the rate of 3.5 μm/hour shows p-type conductivity with smooth surface morphology

  6. "Magnetic" termite mound surfaces are oriented to suit wind and shade conditions.

    Science.gov (United States)

    Jacklyn, Peter M

    1992-09-01

    The termites Amitermes meridionalis and A. laurensis construct remarkable meridional or "magnetic" mounds in northern Australia. These mounds vary geographically in mean orientation in a manner that suggests such variation is an adaptive response to local environmental conditions. Theoretical modelling of solar irradiance and mound rotation experiments show that maintenance of an eastern face temperature plateau during the dry season is the most likely physical basis for the mound orientation response. Subsequent heat transfer analysis shows that habitat wind speed and shading conditions also affect face temperature gradients such as the rate of eastern face temperature change. It is then demonstrated that the geographic variation in mean mound orientation follows the geographic variation in long-term wind speed and shading conditions across northern Australia such that an eastern face temperature plateau is maintained in all locations.

  7. Importance of Geodetically Controlled Topography to Constrain Rates of Volcanism and Internal Magma Plumbing Systems

    Science.gov (United States)

    Glaze, Lori S.; Baloga, S. M.; Garvin, James B.; Quick, Lynnae C.

    2014-01-01

    Investigation of lava flow deposits is a key component of Investigation II.A.1 in the VEXAG Goals, Objectives and Investigations. Because much of the Venus surface is covered in lava flows, characterization of lava flow emplacement conditions(eruption rate and eruption duration) is critical for understanding the mechanisms through which magma is stored and released onto the surface as well as for placing constraints on rates of volcanic resurfacing throughout the geologic record preserved at the surface.

  8. Influence of Pre-Sintered Zirconia Surface Conditioning on Shear Bond Strength to Resin Cement

    Directory of Open Access Journals (Sweden)

    Tomofumi Sawada

    2016-06-01

    Full Text Available This study analyzed the shear bond strength (SBS of resin composite on zirconia surface to which a specific conditioner was applied before sintering. After sintering of either conditioner-coated or uncoated specimens, both groups were divided into three subgroups by their respective surface modifications (n = 10 per group: no further treatment; etched with hydrofluoric acid; and sandblasted with 50 µm Al2O3 particles. Surfaces were characterized by measuring different surface roughness parameters (e.g., Ra and Rmax and water contact angles. Half of the specimens underwent thermocycling (10,000 cycles, 5–55 °C after self-adhesive resin cement build-up. The SBSs were measured using a universal testing machine, and the failure modes were analyzed by microscopy. Data were analyzed by nonparametric and parametric tests followed by post-hoc comparisons (α = 0.05. Conditioner-coated specimens increased both surface roughness and hydrophilicity (p < 0.01. In the non-thermocycled condition, sandblasted surfaces showed higher SBSs than other modifications, irrespective of conditioner application (p < 0.05. Adhesive fractures were commonly observed in the specimens. Thermocycling favored debonding and decreased SBSs. However, conditioner-coated specimens upon sandblasting showed the highest SBS (p < 0.05 and mixed fractures were partially observed. The combination of conditioner application before sintering and sandblasting after sintering showed the highest shear bond strength and indicated improvements concerning the failure mode.

  9. Flow rate and temperature characteristics in steady state condition on FASSIP-01 loop during commissioning

    Science.gov (United States)

    Juarsa, M.; Giarno; Rohman, A. N.; Heru K., G. B.; Witoko, J. P.; Sony Tjahyani, D. T.

    2018-02-01

    The need for large-scale experimental facilities to investigate the phenomenon of natural circulation flow rate becomes a necessity in the development of nuclear reactor safety management. The FASSIP-01 loop has been built to determine the natural circulation flow rate performance in the large-scale media and aimed to reduce errors in the results for its application in the design of new generation reactors. The commissioning needs to be done to define the capability of the FASSIP-01 loop and to prescribe the experiment limitations. On this commissioning, two scenarios experimental method has been used. The first scenario is a static condition test which was conducted to verify measurement system response during 24 hours without electrical load in heater and cooler, there is water and no water inside the rectangular loop. Second scenario is a dynamics condition that aims to understand the flow rate, a dynamic test was conducted using heater power of 5627 watts and coolant flow rate in the HSS loop of 9.35 LPM. The result of this test shows that the temperature characterization on static test provide a recommendation, that the experiments should be done at night because has a better environmental temperature stability compared to afternoon, with stable temperature around 1°C - 3°C. While on the dynamic test, the water temperature difference between the inlet-outlets in the heater area is quite large, about 7 times the temperature difference in the cooler area. The magnitude of the natural circulation flow rate calculated is much larger at about 300 times compared to the measured flow rate with different flow rate profiles.

  10. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    Science.gov (United States)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2017-08-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  11. Feed rate affecting surface roughness and tool wear in dry hard turning of AISI 4140 steel automotive parts using TiN+AlCrN coated inserts

    Science.gov (United States)

    Paengchit, Phacharadit; Saikaew, Charnnarong

    2018-02-01

    This work aims to investigate the effects of feed rate on surface roughness (Ra) and tool wear (VB) and to obtain the optimal operating condition of the feed rate in dry hard turning of AISI 4140 chromium molybdenum steel for automotive industry applications using TiN+AlCrN coated inserts. AISI 4140 steel bars were employed in order to carry out the dry hard turning experiments by varying the feed rates of 0.06, 0.08 and 0.1 mm/rev based on experimental design technique that can be analyzed by analysis of variance (ANOVA). In addition, the cutting tool inserts were examined after machining experiments by SEM to evaluate the effect of turning operations on tool wear. The results showed that averages Ra and VB were significantly affected by the feed rate at the level of significance of 0.05. Averages Ra and VB values at the feed rate of 0.06 mm/rev were lowest compared to average values at the feed rates of 0.08 and 0.1 mm/rev, based on the main effect plot.

  12. Escaping the correction for body surface area when calculating glomerular filtration rate in children

    International Nuclear Information System (INIS)

    Piepsz, Amy; Tondeur, Marianne; Ham, Hamphrey

    2008-01-01

    51 Cr ethylene diamine tetraacetic acid ( 51 Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right 99m Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for 51 Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)

  13. Assessment of a surface-layer parameterization scheme in an atmospheric model for varying meteorological conditions

    Directory of Open Access Journals (Sweden)

    T. J. Anurose

    2014-06-01

    Full Text Available The performance of a surface-layer parameterization scheme in a high-resolution regional model (HRM is carried out by comparing the model-simulated sensible heat flux (H with the concurrent in situ measurements recorded at Thiruvananthapuram (8.5° N, 76.9° E, a coastal station in India. With a view to examining the role of atmospheric stability in conjunction with the roughness lengths in the determination of heat exchange coefficient (CH and H for varying meteorological conditions, the model simulations are repeated by assigning different values to the ratio of momentum and thermal roughness lengths (i.e. z0m/z0h in three distinct configurations of the surface-layer scheme designed for the present study. These three configurations resulted in differential behaviour for the varying meteorological conditions, which is attributed to the sensitivity of CH to the bulk Richardson number (RiB under extremely unstable, near-neutral and stable stratification of the atmosphere.

  14. Evaluation of the conditions imposed by the fracture surface geometry on water seepage through fractured porous media

    International Nuclear Information System (INIS)

    Fuentes, Nestor O.; Faybishenko, B.

    2003-01-01

    In order to determine the geometric patterns of the fracture surfaces that imposes conditions on the fluid flow through fractured porous media, a series a fracture models have been analyzed using the RIMAPS technique and the variogram method. Results confirm that the main paths followed by the fluid channels are determined by the surface topography and remain constant during water seepage evolution. Characteristics scale lengths of both situations: fracture surface and the flow of water, are also found. There exists a relationship between the scale lengths corresponding to each situation. (author)

  15. Effect of two-step and one-step surface conditioning of glass ceramic on adhesion strength of orthodontic bracket and effect of thermo-cycling on adhesion strength.

    Science.gov (United States)

    Asiry, Moshabab A; AlShahrani, Ibrahim; Alaqeel, Samer M; Durgesh, Bangalore H; Ramakrishnaiah, Ravikumar

    2018-08-01

    The adhesion strength of orthodontic brackets bonded to dental glass ceramics was evaluated after ceramic surface was treated with two-step and one-step surface conditioning systems, and subjecting to thermo-cycling. A total of forty specimens were fabricated from silica based glass ceramic (lithium disilicate) by duplicating the buccal surface of maxillary first premolar. The specimens were randomly assigned to two experimental groups (n = 20), group one specimens were treated with two-step surface conditioning system (IPS ceramic etching gel™ and Monobond plus™) and group two specimens were treated with one-step surface conditioning system (Monobond etch and prime™). The surface roughness of the specimens after treatment with two-step and one-step surface conditioning system was measured using non-contact surface profilometer. Ten randomly selected specimens from each group were subjected to thermo-cycling and the remaining ten served as baseline. The shear bond strength of the specimens was measured using universal material testing machine. The adhesive remnant index score was calculated, and the results of surface roughness and bond strength were tabulated and subjected to analysis of variance and post hoc tukey's test at a significance level of p step conditioning system had higher surface roughness and bond strength than one-step conditioning system. The majority of the specimens treated with both two-step and one-step conditioned specimens showed adhesive failure after subjecting thermo-cycling. Traditional two-step conditioning provides better bond strength. The clinical importance of the study is that, the silane promoted adhesion significantly reduces on exposure to thermo-cycling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Study of transient burnout under flow reduction condition

    International Nuclear Information System (INIS)

    Iwamura, Takamichi

    1986-09-01

    Transient burnout characteristics of a fuel rod under a rapid flow reduction condition of a light water reactor were experimentally and analytically studied. The test sections were uniformly heated vertical tube and annulus with the heated length of 800 mm. Test pressures ranged 0.5 ∼ 3.9 MPa, heat fluxes 2,160 ∼ 3,860 KW/m 2 , and flow reduction rates 0.44 ∼ 770 %/s. The local flow condition during flow reduction transients were calculated with a separate flow model. The two-fluid/three-field thermal-hydraulic code, COBRA/TRAC, was also used to investigate the liquid film behavior on the heated surface. The major results obtained in the present study are as follows: The onset of burnout under a rapid flow reduction condition was caused by a liquid film dryout on the heated surface. With increasing flow reduction rate beyond a threshold, the burnout mass velocity at the inlet became lower than the steady-state burnout mass velocity. This is explained by the fact that the vapor flow rate continues to increase due to the delay of boiling boundary movement and the resultant high vapor velocity sustains the liquid film flow after the inlet flow rate reaches the steady-state burnout flow rate. The ratio of inlet burnout mass velocities between flow reduction transient and steady-state became smaller with increasing system pressure because of the lower vapor velocity due to the lower vapor specific volume. Flow reduction burnout occurred when the outlet quality agreed with the steady-state burnout quality within 10 %, suggesting that the local condition burnout model can be used for flow reduction transients. Based on this model, a method to predict the time to burnout under a flow reduction condition in a uniformly heated tube was developed. The calculated times to burnout agreed well with some experimental results obtained by the Author, Cumo et al., and Moxon et al. (author)

  17. Dependence of wet etch rate on deposition, annealing conditions and etchants for PECVD silicon nitride film

    International Nuclear Information System (INIS)

    Tang Longjuan; Zhu Yinfang; Yang Jinling; Li Yan; Zhou Wei; Xie Jing; Liu Yunfei; Yang Fuhua

    2009-01-01

    The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and annealing temperature were varied to decrease the etch rate of SiN x :H by HF solution. A low etch rate was achieved by increasing the SiH 4 gas flow rate or annealing temperature, or decreasing the NH 3 and N2 gas flow rate. Concentrated, buffered, and dilute hydrofluoric acid were utilized as etchants for SiO 2 and SiN x :H. A high etching selectivity of SiO 2 over SiN x :H was obtained using highly concentrated buffered HF.

  18. Stability conditions of stationary rupture of liquid layers on an immiscible fluid surface

    Energy Technology Data Exchange (ETDEWEB)

    Viviani, A. [Seconda Univ. di Napoli, Aversa (Italy). Facolta di Ingegneria; Kostarev, K.; Shmyrov, A.; Zuev, A. [Inst. of Continuous Media Mechanics, Perm (Russian Federation)

    2009-07-01

    The stationary equilibrium shape of a 3-phase liquids-gas system was investigated. The system consisted of a horizontal liquid layer with an upper free boundary placed on the immiscible fluid interface. The study investigated the stability conditions of rupture of the liquid layer surface. The dependence of rupture parameters on the experimental cuvette diameter and layer thickness was investigated, as well as the difference in the values of surface tension of the examined fluids. The 2-layer system of horizontal fluid layers was formed in a glass cylindrical cuvette. The liquid substrate was tetrachloride carbon (CCI{sub 4}), while upper layers included water, glycerine, ethyleneglycol, and aqueous solutions of 1,4-butanediol C{sub 4}H{sub 10}O{sub 2} and isopropanol C{sub 3H8L}. Initially, the surface of the substrate fluid was overlaid with a horizontal liquid layer. The rupture was formed by subjecting the layer surface to short-time actions of a narrow directional air jet. After rupture formation, the layer thickness increased gradually. The measurements demonstrated that the rupture diameter depends on the initial thickness of the upper layer as well as the diameter of the cuvette, and the difference in the values of the surface tension of the examined fluids. Analysis of the experimental relationships indicated that the critical thickness of the breaking layer is a constant value for any specific pairs of fluids. 4 refs., 7 figs.

  19. Radionuclide transfer onto ground surface in surface water flow. 2. Undisturbed tuff rock

    International Nuclear Information System (INIS)

    Mukai, Masayuki; Takebe, Shinichi; Komiya, Tomokazu

    1994-09-01

    Radionuclide migration with ground surface water flow is considered to be one of path ways in the scenario for environmental migration of the radionuclide leaked from LLRW depository. To study the radionuclide migration demonstratively, a ground surface radionuclide migration test was carried out by simulating radioactive solution flowing on the sloped tuff rock surface. Tuff rock sample of 240 cm in length taken from the Shimokita district was used to test the transfer of 60 Co, 85 Sr and 137 Cs onto the sample surface from the flowing radioactive solution under restricted infiltration condition at flow rates of 25, 80, 160ml/min and duration of 56h. The concentration change of the radionuclides in effluent was nearly constant as a function of elapsed time during the experimental period, but decreased with lower flow rates. Among the three radionuclides, 137 Cs was greatly decreased its concentration to 30% of the inflow. Adsorbed distribution of the radionuclides concentration on the ground surface decreased gradually with the distance from the inlet, and showed greater gradient at lower flow rate. Analyzing the result by the migration model, where a vertical advection distribution and two-dimensional diffusion in surface water are adopted with a first order adsorption reaction, value of migration parameters was obtained relating to the radionuclide adsorption and the surface water flow, and the measured distribution could be well simulated by adopting the value to the model. By comparing the values with the case of loamy soil layer, all values of the migration parameters showed not so great difference between two samples for 60 Co and 85 Sr. For 137 Cs, reflecting a few larger value of adsorption to the tuff rock, larger ability to reduce the concentration of flowing radioactive solution could be indicated than that to the loamy soil surface by estimation for long flowed distance. (author)

  20. Surface Potential and Particle Size Effect on the Rate of Perikinetic Coagulation

    International Nuclear Information System (INIS)

    Molina-Bolivar, J. A.; Galisteo-Gonzalez, F.; Cabrerizo-Vilchez, M.; Hidalgo-alvarez, R.

    1998-01-01

    The diffusion-controlled rapid coagulation rate of monodisperse polystyrene particles in aqueous solutions has been measured with a low angle scattering apparatus (nephelometer). We have refined this technique by using a narrow scattering flow cell and a pneumatic addicting-mixing device to introduce the salt solution and the latex sample in the cell. Coagulation rate constants were determined from analysis of the scattered light intensity dependence with time at an angle of 4.5 degree centigrade ± 1 degree centigrade. Experiments were designed to check the effects of particle size, surface potential and counterion valency on rapid coagulation constant. The particle ranged in diameter from 151 nm to 530 nm. The results are compared with the predictions of Smoluchowski's theory. Experiments to obtain the stability diagrams and the critical coagulation concentration of latexes have been performed. (Author) 31 refs

  1. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  2. Iron cycling at corroding carbon steel surfaces

    Science.gov (United States)

    Lee, Jason S.; McBeth, Joyce M.; Ray, Richard I.; Little, Brenda J.; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with three culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media. PMID:24093730

  3. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods.

    Science.gov (United States)

    Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice

    2018-08-01

    We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters

    International Nuclear Information System (INIS)

    Vione, Davide; Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio

    2013-01-01

    The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield Φ BP3 = (3.1 ± 0.3) · 10 −5 and the following second-order reaction rate constants: with • OH, k BP3, • OH = (2.0 ± 0.4) · 10 10 M −1 s −1 ; with the triplet states of chromophoric dissolved organic matter ( 3 CDOM*), k BP3, 3 CDOM* = (1.1 ± 0.1) · 10 9 M −1 s −1 ; with 1 O 2 , k BP3, 1 O 2 = (2.0 ± 0.1) · 10 5 M −1 s −1 , and with CO 3 −• , k BP3,CO 3 −• 7 M −1 s −1 . These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with • OH and 3 CDOM* would be the main processes of BP3 phototransformation. Reaction with • OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L −1 ), and reaction with 3 CDOM* at high DOC. If the reaction rate constant with CO 3 −• is near the upper limit of experimental measures (5 · 10 7 M −1 s −1 ), the CO 3 −• degradation process could be somewhat important for DOC −1 . The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with • OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ∼ 10% of initial BP3) and benzaldehyde (1%). Highlights: • Benzophenone-3 is mainly photodegraded by direct photolysis, • OH and 3 CDOM*. • Two methylated isomers, benzaldehyde and benzoic acid detected as intermediates. • Phototransformation would be faster in shallow and DOM-poor water. • Half-life times of benzophenone-3 are in the range of weeks to a couple of months.

  5. Impact of Disease Prevalence Adjustment on Hospitalization Rates for Chronic Ambulatory Care-Sensitive Conditions in Germany.

    Science.gov (United States)

    Pollmanns, Johannes; Romano, Patrick S; Weyermann, Maria; Geraedts, Max; Drösler, Saskia E

    2018-04-01

    To explore effects of disease prevalence adjustment on ambulatory care-sensitive hospitalization (ACSH) rates used for quality comparisons. County-level hospital administrative data on adults discharged from German hospitals in 2011 and prevalence estimates based on administrative ambulatory diagnosis data were used. A retrospective cross-sectional study using in- and outpatient secondary data was performed. Hospitalization data for hypertension, diabetes, heart failure, chronic obstructive pulmonary disease, and asthma were obtained from the German Diagnosis Related Groups (DRG) database. Prevalence estimates were obtained from the German Central Research Institute of Ambulatory Health Care. Crude hospitalization rates varied substantially across counties (coefficients of variation [CV] 28-37 percent across conditions); this variation was reduced by prevalence adjustment (CV 21-28 percent). Prevalence explained 40-50 percent of the observed variation (r = 0.65-0.70) in ACSH rates for all conditions except asthma (r = 0.07). Between 30 percent and 38 percent of areas moved into or outside condition-specific control limits with prevalence adjustment. Unadjusted ACSH rates should be used with caution for high-stakes public reporting as differences in prevalence may have a marked impact. Prevalence adjustment should be considered in models analyzing ACSH. © Health Research and Educational Trust.

  6. Modelling and analysis of material removal rate and surface roughness in wire-cut EDM of armour materials

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2015-12-01

    Full Text Available The current work presents a comparative study of wire electrical discharge machining (WEDM of armour materials such as aluminium alloy 7017 and rolled homogeneous armour (RHA steel using buckingham pi theorem to model the input variables and thermo-physical characteristics of WEDM on material removal rate (MRR and surface roughness (Ra of Al 7017 and RHA steel. The parameters of the model such as pulse-on time, flushing pressure, input power, thermal diffusivity and latent heat of vaporization have been determined through design of experiment methodology. Wear rate of brass wire increases with rise in input energy in machining Al 7017. The dependence of thermo-physical properties and machining variables on mechanism of MRR and Ra has been described by performing scanning electron microscope (SEM study. The rise in pulse-on time from 0.85μs to 1.25μs causes improvement in MRR and deterioration of surface finish. The machined surface has revealed that craters are found on the machined surface. The propensity of formation of craters increases during WEDM with a higher current and larger pulse-on time.

  7. Surface displacements and energy release rates for constant stress drop slip zones in joined elastic quarter spaces

    Science.gov (United States)

    Rodgers, Michael J.; Wen, Shengmin; Keer, Leon M.

    2000-08-01

    A three-dimensional quasi-static model of faulting in an elastic half-space with a horizontal change of material properties (i.e., joined elastic quarter spaces) is considered. A boundary element method is used with a stress drop slip zone approach so that the fault surface relative displacements as well as the free surface displacements are approximated in elements over their respective domains. Stress intensity factors and free surface displacements are calculated for a variety of cases to show the phenomenological behavior of faulting in such a medium. These calculations showed that the behavior could be distinguished from a uniform half-space. Slip in a stiffer material increases, while slip in a softer material decreases the energy release rate and the free surface displacements. Also, the 1989 Kalapana earthquake was located on the basis of a series of forward searches using this method and leveling data. The located depth is 8 km, which is the closer to the seismically inferred depth than that determined from other models. Finally, the energy release rate, which can be used as a fracture criterion for fracture at this depth, is calculated to be 11.1×106 J m-2.

  8. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions

    Science.gov (United States)

    Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.

    2018-03-01

    Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.

  9. Discovery of temporal and disease association patterns in condition-specific hospital utilization rates.

    Directory of Open Access Journals (Sweden)

    Julian S Haimovich

    Full Text Available Identifying temporal variation in hospitalization rates may provide insights about disease patterns and thereby inform research, policy, and clinical care. However, the majority of medical conditions have not been studied for their potential seasonal variation. The objective of this study was to apply a data-driven approach to characterize temporal variation in condition-specific hospitalizations. Using a dataset of 34 million inpatient discharges gathered from hospitals in New York State from 2008-2011, we grouped all discharges into 263 clinical conditions based on the principal discharge diagnosis using Clinical Classification Software in order to mitigate the limitation that administrative claims data reflect clinical conditions to varying specificity. After applying Seasonal-Trend Decomposition by LOESS, we estimated the periodicity of the seasonal component using spectral analysis and applied harmonic regression to calculate the amplitude and phase of the condition's seasonal utilization pattern. We also introduced four new indices of temporal variation: mean oscillation width, seasonal coefficient, trend coefficient, and linearity of the trend. Finally, K-means clustering was used to group conditions across these four indices to identify common temporal variation patterns. Of all 263 clinical conditions considered, 164 demonstrated statistically significant seasonality. Notably, we identified conditions for which seasonal variation has not been previously described such as ovarian cancer, tuberculosis, and schizophrenia. Clustering analysis yielded three distinct groups of conditions based on multiple measures of seasonal variation. Our study was limited to New York State and results may not directly apply to other regions with distinct climates and health burden. A substantial proportion of medical conditions, larger than previously described, exhibit seasonal variation in hospital utilization. Moreover, the application of clustering

  10. Influence of Surface Conditioning Protocols on Reparability of CAD/CAM Zirconia-reinforced Lithium Silicate Ceramic.

    Science.gov (United States)

    Al-Thagafi, Rana; Al-Zordk, Walid; Saker, Samah

    2016-01-01

    To test the effect of surface conditioning protocols on the reparability of CAD/CAM zirconia-reinforced lithium silicate ceramic compared to lithium-disilicate glass ceramic. Zirconia-reinforced lithium silicate ceramic (Vita Suprinity) and lithium disilicate glass-ceramic blocks (IPS e.max CAD) were categorized into four groups based on the surface conditioning protocol used. Group C: no treatment (control); group HF: 5% hydrofluoric acid etching for 60 s, silane (Monobond-S) application for 60 s, air drying; group HF-H: 5% HF acid etching for 60 s, application of silane for 60 s, air drying, application of Heliobond, light curing for 20 s; group CO: sandblasting with CoJet sand followed by silanization. Composite resin (Tetric EvoCeram) was built up into 4 x 6 x 3 mm blocks using teflon molds. All specimens were subjected to thermocycling (5000x, 5°C to 55°C). The microtensile bond strength test was employed at a crosshead speed of 1 mm/min. SEM was employed for evaluation of all the debonded microbars, the failure type was categorized as either adhesive (failure at adhesive layer), cohesive (failure at ceramic or composite resin), or mixed (failure between adhesive layer and substrate). Two-way ANOVA and the Tukey's HSD post-hoc test were applied to test for significant differences in bond strength values in relation to different materials and surface pretreatment (p ceramic types used (p ceramics and lithium-disilicate glass ceramic could be improved when ceramic surfaces are sandblasted with CoJet sand followed by silanization.

  11. Metal-silicon reaction rates - The effects of capping

    Science.gov (United States)

    Weizer, Victor G.; Fatemi, Navid S.

    1989-01-01

    Evidence is presented showing that the presence of the commonly used anti-reflection coating material Ta2O5 on the free surface of contact metallization can either suppress or enhance, depending on the system, the interaction that takes place at elevated temperatures between the metallization and the underlying Si. The cap layer is shown to suppress both the generation and annihilation of vacancies at the free surface of the metal which are necessary to support metal-Si interactons. Evidence is also presented indicating that the mechanical condition of the free metal surface has a significant effect on the metal-silicon reaction rate.

  12. Late Quaternary Palaeoceanographic Changes in Sea Surface Conditions in the Tropical Atlantic

    Science.gov (United States)

    Fischel, Andrea; Seidenkrantz, Marit-Solveig; Kuijpers, Antoon; Nürnberg, Dirk

    2013-04-01

    Palaeoceanographic changes and the variability in surface water mass hydrography are reconstructed in order to track tropical ocean and climate variability and inter-hemispheric heat exchange through the last 42,000 year BP. Our studies are based on the relative abundance of planktonic foraminifera combined with sea surface temperature approximation based Mg/Ca measurements, XRF scanning and stable oxygen isotope analyses in a 5 m long gravity core Ga307-Win-12GC (17°50.80N, 64°48.7290W), retrieved in the Virgin Island Basin in approx. 3,960 m water depth. The Virgin Island Basin is the deepest part of the Anegada-Jungfern Passage in the northeast Caribbean, one of the most important pathways for water mass exchange between the Central Atlantic and the Caribbean Sea. Due to its bathymetry surface waters as well as deep water mass strata from the northern and southern hemisphere enter the basin, comprising Caribbean Surface Water (CSW), Antarctic Intermediate Water (AAIW), Atlantic Intermediate Water (AIW) and North Atlantic Deep Water (NADW). The planktonic foraminiferal assemblage suggests rather stable sea-surface conditions during the Holocene in the NE Caribbean. However, major changes in the hydrographic setting could be identified within the glacial period. During the glacial period, clear millennial-scale variability in sea-surface temperature and productivity are present. Fluctuations in the relative abundance of Globigerinoides ruber in the sediment core may be correlated to Dansgaard-Oeschger events in the northern North Atlantic. Furthermore an increase in relative abundance of Globorotalia rubescens occurs synchronous with ice rafted debris layers described from the North Atlantic. The faunal changes in the tropical Atlantic may thus be correlated to major climate changes in the North Atlantic, mainly D-O cyclicity as well as Heinrich events. Thus, the synchronous change in water mass distribution and hydrographic cyclicity suggests a possible linkage

  13. Precise muon drift tube detectors for high background rate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Engl, Albert

    2011-08-04

    The muon spectrometer of the ATLAS-experiment at the Large Hadron Collider consists of drift tube chambers, which provide the precise measurement of trajectories of traversing muons. In order to determine the momentum of the muons with high precision, the measurement of the position of the muon in a single tube has to be more accurate than {sigma}{<=}100 {mu}m. The large cross section of proton-proton-collisions and the high luminosity of the accelerator cause relevant background of neutrons and {gamma}s in the muon spectrometer. During the next decade a luminosity upgrade to 5.10{sup 34} cm{sup -2}s{sup -1} is planned, which will increase the background counting rates considerably. In this context this work deals with the further development of the existing drift chamber technology to provide the required accuracy of the position measurement under high background conditions. Two approaches of improving the drift tube chambers are described: - In regions of moderate background rates a faster and more linear drift gas can provide precise position measurement without changing the existing hardware. - At very high background rates drift tube chambers consisting of tubes with a diameter of 15 mm are a valuable candidate to substitute the CSC muon chambers. The single tube resolution of the gas mixture Ar:CO{sub 2}:N{sub 2} in the ratio of 96:3:1 Vol %, which is more linear and faster as the currently used drift gas Ar:CO{sub 2} in the ratio of 97:3 Vol %, was determined at the Cosmic Ray Measurement Facility at Garching and at high {gamma}-background counting rates at the Gamma Irradiation Facility at CERN. The alternative gas mixture shows similar resolution without background. At high background counting rates it shows better resolution as the standard gas. To analyse the data the various parts of the setup have to be aligned precisely to each other. The change to an alternative gas mixture allows the use of the existing hardware. The second approach are drift tubes

  14. Bond strengths of brackets bonded to enamel surfaces conditioned with femtosecond and Er:YAG laser systems.

    Science.gov (United States)

    Aglarci, Cahide; Demir, Necla; Aksakalli, Sertac; Dilber, Erhan; Sozer, Ozlem Akinci; Kilic, Hamdi Sukur

    2016-08-01

    The aim of this study was to compare femtosecond and Er:YAG laser systems with regard to enamel demineralization and bracket bond strength. Human-extracted premolars were randomized to three groups (n = 17) depending on the conditioning treatment used for the buccal surfaces: 37 % orthophosphoric acid, Er:YAG laser etching (MSP mode 120 mJ, 10 Hz, 1.2 W), and femtosecond laser etching (0.4 W, 800 nm, 90 fs/pulse, 1 kHz). Metal brackets were bonded with Transbond XT to the conditioned surfaces and light cured for 20 s. The samples were thermocycled (5000 cycles, 5-55 °C) and subjected to shear bond strength (SBS) testing using a universal testing machine. Failure types were analyzed under an optical stereomicroscope and SEM. The adhesive remnant index (ARI) was evaluated to assess residual adhesive on the enamel surface. The results revealed no significant differences in SBS between the Er:YAG laser (7.2 ± 3.3 MPa) and acid etching groups (7.3 ± 2.7 MPa; p enamel interface.

  15. The analysis of a condition of an accident rate on highways of Tajikistan

    International Nuclear Information System (INIS)

    Davlatshoev, R.A.; Tursunov, A.A.

    2005-01-01

    In this clause the results of the analysis of an accident rate on highways of Tajikistan, according to the official information State Automobile Inspection the Ministry of Internal affairs of Republic of Tajikistan, and research of safe movement of automobiles in mountain conditions are given. On the basis of the qualitative and quantitative analysis, the ways of safe movement on roads of Republic of Tajikistan are determined

  16. 38 CFR 4.116 - Schedule of ratings-gynecological conditions and disorders of the breast.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Schedule of ratings-gynecological conditions and disorders of the breast. 4.116 Section 4.116 Pensions, Bonuses, and Veterans... wearing of pad 100 Vaginal fecal leakage four or more times per week, but less than daily, requiring...

  17. Does multimorbidity influence the occurrence rates of chronic conditions? A claims data based comparison of expected and observed prevalence rates.

    Directory of Open Access Journals (Sweden)

    Ingmar Schäfer

    Full Text Available OBJECTIVE: Multimorbidity is a complex phenomenon with an almost endless number of possible disease combinations with unclear implications. One important aspect in analyzing the clustering of diseases is to distinguish between random coexistence and statistical dependency. We developed a model to account for random coexistence based on stochastic distribution. We analyzed if the number of diseases of the patients influences the occurrence rates of chronic conditions. METHODS: We analyzed claims data of 121,389 persons aged 65+ using a list of 46 chronic conditions. Expected prevalences were simulated by drawing without replacement from all observed diseases using observed overall prevalences as initial probability weights. To determine if a disease occurs more or less frequently than expected by chance we calculated observed-minus-expected deltas for each disease. We defined clinical relevance as |delta| ≥ 5.0%. 18 conditions were excluded because of a prevalence < 5.0%. RESULTS: We found that (1 two chronic conditions (e.g. hypertension were more frequent than expected in patients with a low number of comorbidities; (2 four conditions (e.g. renal insufficiency were more frequent in patients with many comorbidities; (3 six conditions (e.g. cancer were less frequent with many comorbidities; and (4 16 conditions had an average course of prevalences. CONCLUSION: A growing extent of multimorbidity goes along with a rapid growth of prevalences. This is for the largest part merely a stochastic effect. If we account for this effect we find that only few diseases deviate from the expected prevalence curves. Causes for these deviations are discussed. Our approach also has methodological implications: Naive analyses of multimorbidity might easily be affected by bias, because the prevalence of all chronic conditions necessarily increases with a growing extent of multimorbidity. We should therefore always examine and discuss the stochastic interrelations

  18. Plasticity of noddy parents and offspring to sea-surface temperature anomalies.

    Directory of Open Access Journals (Sweden)

    Carol A Devney

    Full Text Available Behavioral and/or developmental plasticity is crucial for resisting the impacts of environmental stressors. We investigated the plasticity of adult foraging behavior and chick development in an offshore foraging seabird, the black noddy (Anous minutus, during two breeding seasons. The first season had anomalously high sea-surface temperatures and 'low' prey availability, while the second was a season of below average sea-surface temperatures and 'normal' food availability. During the second season, supplementary feeding of chicks was used to manipulate offspring nutritional status in order to mimic conditions of high prey availability. When sea-surface temperatures were hotter than average, provisioning rates were significantly and negatively impacted at the day-to-day scale. Adults fed chicks during this low-food season smaller meals but at the same rate as chicks in the unfed treatment the following season. Supplementary feeding of chicks during the second season also resulted in delivery of smaller meals by adults, but did not influence feeding rate. Chick begging and parental responses to cessation of food supplementation suggested smaller meals fed to artificially supplemented chicks resulted from a decrease in chick demands associated with satiation, rather than adult behavioral responses to chick condition. During periods of low prey abundance, chicks maintained structural growth while sacrificing body condition and were unable to take advantage of periods of high prey abundance by increasing growth rates. These results suggest that this species expresses limited plasticity in provisioning behavior and offspring development. Consequently, responses to future changes in sea-surface temperature and other environmental variation may be limited.

  19. Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology

    International Nuclear Information System (INIS)

    Liu, Junhai; Zhuang, Yingbin; Li, Yan; Chen, Limei; Guo, Jingxue; Li, Demao; Ye, Naihao

    2013-01-01

    Microwave-assisted direct liquefaction (MADL) of Ulva prolifera was performed in ethylene glycol (EG) using sulfuric acid (H 2 SO 4 ) as a catalyst. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was employed to optimize the conditions of three independent variables (catalyst content, solvent-to-feedstock ratio and temperature) for the liquefaction yield. And the bio-oil was analyzed by elementary analysis, Fourier transform infrared spectroscopic analysis (FT-IR) and gas chromatography–mass spectrometry (GC–MS). The maximum liquefaction yield was 93.17%, which was obtained under a microwave power of 600 W for 30 min at 165 °C with a solvent-to-feedstock ratio of 18.87:1 and 4.93% sulfuric acid. The bio-oil was mainly composed of phthalic acid esters, alkenes and a fatty acid methyl ester with a long chain from C 16 to C 20 . - Highlights: • Ulva prolifera was converted to bio-oil through microwave-assisted direct liquefaction. • Response surface methodology was used to optimize the liquefaction technology. • A maximum liquefaction rate of 93.17 wt% bio-oil was obtained. • The bio-oil was composed of carboxylic acids and esters

  20. Effects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Wiswall, J.T.; Li, J.; Wooldridge, M.S.; Im, H.G. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States)

    2011-01-15

    A stagnation flow reactor was used to study the effects of platinum on the lean flammability limits of atmospheric pressure premixed methane/air flames at moderate stagnation surface temperatures. Experimental and computational methods were used to quantify the equivalence ratio at the lean extinction limit ({phi}{sub ext}) and the corresponding stagnation surface temperature (T{sub s}). A range of flow rates (57-90 cm/s) and corresponding strain rates were considered. The results indicate that the gas-phase methane/air flames are sufficiently strong relative to the heterogeneous chemistry for T{sub s} conditions less than 750 K that the platinum does not affect {phi}{sub ext}. The computational results are in good agreement with the experimentally observed trends and further indicate that higher reactant flow rates (>139 cm/s) and levels of dilution (>{proportional_to}10% N{sub 2}) are required to weaken the gas-phase flame sufficiently for surface reaction to play a positive role on extending the lean flammability limits. (author)

  1. A comparison between decomposition rates of buried and surface remains in a temperate region of South Africa.

    Science.gov (United States)

    Marais-Werner, Anátulie; Myburgh, J; Becker, P J; Steyn, M

    2018-01-01

    Several studies have been conducted on decomposition patterns and rates of surface remains; however, much less are known about this process for buried remains. Understanding the process of decomposition in buried remains is extremely important and aids in criminal investigations, especially when attempting to estimate the post mortem interval (PMI). The aim of this study was to compare the rates of decomposition between buried and surface remains. For this purpose, 25 pigs (Sus scrofa; 45-80 kg) were buried and excavated at different post mortem intervals (7, 14, 33, 92, and 183 days). The observed total body scores were then compared to those of surface remains decomposing at the same location. Stages of decomposition were scored according to separate categories for different anatomical regions based on standardised methods. Variation in the degree of decomposition was considerable especially with the buried 7-day interval pigs that displayed different degrees of discolouration in the lower abdomen and trunk. At 14 and 33 days, buried pigs displayed features commonly associated with the early stages of decomposition, but with less variation. A state of advanced decomposition was reached where little change was observed in the next ±90-183 days after interment. Although the patterns of decomposition for buried and surface remains were very similar, the rates differed considerably. Based on the observations made in this study, guidelines for the estimation of PMI are proposed. This pertains to buried remains found at a depth of approximately 0.75 m in the Central Highveld of South Africa.

  2. High-flux He+ irradiation effects on surface damages of tungsten under ITER relevant conditions

    International Nuclear Information System (INIS)

    Liu, Lu; Liu, Dongping; Hong, Yi; Fan, Hongyu; Ni, Weiyuan; Yang, Qi; Bi, Zhenhua; Benstetter, Günther; Li, Shouzhe

    2016-01-01

    A large-power inductively coupled plasma source was designed to perform the continuous helium ions (He + ) irradiations of polycrystalline tungsten (W) under International Thermonuclear Experimental Reactor (ITER) relevant conditions. He + irradiations were performed at He + fluxes of 2.3 × 10 21 –1.6 × 10 22 /m 2  s and He + energies of 12–220 eV. Surface damages and microstructures of irradiated W were observed by scanning electron microscopy. This study showed the growth of nano-fuzzes with their lengths of 1.3–2.0 μm at He + energies of >70 eV or He + fluxes of >1.3 × 10 22 /m 2  s. Nanometer-sized defects or columnar microstructures were formed in W surface layer due to low-energy He + irradiations at an elevated temperature (>1300 K). The diffusion and coalescence of He atoms in W surface layers led to the growth and structures of nano-fuzzes. This study indicated that a reduction of He + energy below 12–30 eV may greatly decrease the surface damage of tungsten diverter in the fusion reactor.

  3. Physico-chemical changes of ZnO nanoparticles with different size and surface chemistry under physiological pH conditions.

    Science.gov (United States)

    Gwak, Gyeong-Hyeon; Lee, Won-Jae; Paek, Seung-Min; Oh, Jae-Min

    2015-03-01

    We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The Potential of Using Landsat 7 Data for the Classification of Sea Ice Surface Conditions During Summer

    Science.gov (United States)

    Markus, Thorsten; Cavalieri, Donald J.; Ivanoff, Alvaro; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    During spring and summer, the Surface of the Arctic sea ice cover undergoes rapid changes that greatly affect the surface albedo and significantly impact the further decay of the sea ice. These changes are primarily the development of a wet snow cover and the development of melt ponds. As melt pond diameters generally do not exceed a couple of meters, the spatial resolutions of sensors like AVHRR and MODIS are too coarse for their identification. Landsat 7, on the other hand, has a spatial resolution of 30 m (15 m for the pan-chromatic band). The different wavelengths (bands) from blue to near-infrared offer the potential to distinguish among different surface conditions. Landsat 7 data for the Baffin Bay region for June 2000 have been analyzed. The analysis shows that different surface conditions, such as wet snow and meltponded areas, have different signatures in the individual Landsat bands. Consistent with in-situ albedo measurements, melt ponds show up as blueish whereas dry and wet ice have a white to gray appearance in the Landsat true-color image. These spectral differences enable the distinction of melt ponds. The melt pond fraction for the scene studied in this paper was 37%.

  5. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Science.gov (United States)

    Kowalski, Andrew S.

    2017-07-01

    The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux-gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube - with vapour transport into an overlying, horizontal airstream - was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  6. HF Surface Wave Radar Operation in Adverse Conditions

    National Research Council Canada - National Science Library

    Ponsford, Anthony M; Dizaji, Reza M; McKerracher, Richard

    2005-01-01

    ...) system based on HF Surface Wave Radar (HFSWR). the primary objective behind the programme was to demonstrate the capability of HFSWR to continuously detect and track surface targets (ships and icebergs...

  7. Experimental and numerical study on inlet and outlet conditions of a bulb turbine with considering free surface

    International Nuclear Information System (INIS)

    Zhao, Y P; Liao, W L; Feng, H D; Ruan, H; Luo, X Q

    2012-01-01

    For a bulb turbine, it has a low head and a big runner diameter, and the free surface influences the flow at the inlet and outlet of the turbine, which bring many problems such as vibration, cracks and cavitation to the turbine. Therefore, it is difficult to get the precise internal flow characteristics through a numerical simulation with conventional ideal flow conditions. In this paper, both numerical and experimental methods are adopted to investigate the flow characteristics at the inlet and outlet of the bulb turbine with considering free surface. Firstly, experimental and numerical studies in a low head pressure pipeline are conducted, and the corresponding boundary condition according with reality is obtained through the comparison between the model test result and the CFD simulation result. Then, through an analysis of the velocity and pressure fields at the inlet of the bulb turbine at different heads, the flow characteristics and rules at the entrance of the bulb turbine have been revealed with considering free surface; Finally, the performance predictions for a bulb turbine have been conducted by using the obtained flow rules at the inlet as the boundary condition of a turbine, and the causes that lead to non-uniform forces on blades, cavitation and vibration have been illustrated in this paper, which also provide a theory basis for an accurate numerical simulation and optimization design of a bulb turbine.

  8. Photoelectron spectroscopy of surfaces under humid conditions

    International Nuclear Information System (INIS)

    Bluhm, Hendrik

    2010-01-01

    The interaction of water with surfaces plays a major role in many processes in the environment, atmosphere and technology. Weathering of rocks, adhesion between surfaces, and ionic conductance along surfaces are among many phenomena that are governed by the adsorption of molecularly thin water layers under ambient humidities. The properties of these thin water films, in particular their thickness, structure and hydrogen-bonding to the substrate as well as within the water film are up to now not very well understood. Ambient pressure photoelectron spectroscopy (APXPS) is a promising technique for the investigation of the properties of thin water films. In this article we will discuss the basics of APXPS as well as the particular challenges that are posed by investigations in water vapor at Torr pressures. We will also show examples of the application of APXPS to the study of water films on metals and oxides.

  9. Application-Ready Expedited MODIS Data for Operational Land Surface Monitoring of Vegetation Condition

    Directory of Open Access Journals (Sweden)

    Jesslyn F. Brown

    2015-12-01

    Full Text Available Monitoring systems benefit from high temporal frequency image data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS system. Because of near-daily global coverage, MODIS data are beneficial to applications that require timely information about vegetation condition related to drought, flooding, or fire danger. Rapid satellite data streams in operational applications have clear benefits for monitoring vegetation, especially when information can be delivered as fast as changing surface conditions. An “expedited” processing system called “eMODIS” operated by the U.S. Geological Survey provides rapid MODIS surface reflectance data to operational applications in less than 24 h offering tailored, consistently-processed information products that complement standard MODIS products. We assessed eMODIS quality and consistency by comparing to standard MODIS data. Only land data with known high quality were analyzed in a central U.S. study area. When compared to standard MODIS (MOD/MYD09Q1, the eMODIS Normalized Difference Vegetation Index (NDVI maintained a strong, significant relationship to standard MODIS NDVI, whether from morning (Terra or afternoon (Aqua orbits. The Aqua eMODIS data were more prone to noise than the Terra data, likely due to differences in the internal cloud mask used in MOD/MYD09Q1 or compositing rules. Post-processing temporal smoothing decreased noise in eMODIS data.

  10. Effect of seeding rate on lentil (lens culinaris medik) seed yield under rainfed conditions

    International Nuclear Information System (INIS)

    Saleem, A.; Zahid, M.A.; Javed, H.I.; Ansar, A.; Saleem, N.

    2012-01-01

    The objective of this study was to investigate the effect of various sowing rates on seed yield of lentil. Field experiments were conducted for three consecutive years (2001-02 to 2003-04) at the National Agricultural Research Centre (NARC), Islamabad, Pakistan during the lentil growing season. An improved medium-grain size (1000-grain weight. around 25 g) variety Masoor 93 (18-12 x ILLP 4400) was used in these experiments. Eleven seeding rates i.e., 14.0, 21.25, 28.50, 35.75, 43.0, 50.25, 57.50, 64.75, 72.0, 79.25 and 86.50 kgha were evaluated in the study. Results of the three-year study showed that grain yield kept on increasing up to a seed rate of 43 kgha and remained static thereafter with a non-significant difference for any further increase in seed sown. The existing seed rate of 20 kgha in lentil is seemingly not sufficient to obtain optimum yield. On average, about 2-2.5-fold increase in seed rate of lentil under rainfed conditions can be safely recommended. (author)

  11. Measurements of dry deposition rates of 212Pb from aerosols on various natural and artificial surfaces

    International Nuclear Information System (INIS)

    Osaki, S.; Sugihara, S.; Maeda, Y.; Osaki, T.

    2007-01-01

    The dry deposition rates on various grass fields and two forests have been measured by the use of 212 Pb (T 1/2 = 10.6 hours). The deposition rate on grass fields (average: 7 mm x s -1 ) roughly depends on the logarithms of the heights or densities of the grasses. The dry deposition rates on a broadleaved forest (Lithocarpus edulis) and a coniferous forest (Cryptomeria Japonica) were also measured. The highest (ave. 26 mm x s -1 ) was on the forest of C. Japonica because of the dense and adhesive surfaces of the leaves. (author)

  12. Escaping the correction for body surface area when calculating glomerular filtration rate in children

    Energy Technology Data Exchange (ETDEWEB)

    Piepsz, Amy; Tondeur, Marianne [CHU St. Pierre, Department of Radioisotopes, Brussels (Belgium); Ham, Hamphrey [University Hospital Ghent, Department of Nuclear Medicine, Ghent (Belgium)

    2008-09-15

    {sup 51}Cr ethylene diamine tetraacetic acid ({sup 51}Cr EDTA) clearance is nowadays considered as an accurate and reproducible method for measuring glomerular filtration rate (GFR) in children. Normal values in function of age, corrected for body surface area, have been recently updated. However, much criticism has been expressed about the validity of body surface area correction. The aim of the present paper was to present the normal GFR values, not corrected for body surface area, with the associated percentile curves. For that purpose, the same patients as in the previous paper were selected, namely those with no recent urinary tract infection, having a normal left to right {sup 99m}Tc MAG3 uptake ratio and a normal kidney morphology on the early parenchymal images. A single blood sample method was used for {sup 51}Cr EDTA clearance measurement. Clearance values, not corrected for body surface area, increased progressively up to the adolescence. The percentile curves were determined and allow, for a single patient, to estimate accurately the level of non-corrected clearance and the evolution with time, whatever the age. (orig.)

  13. Reconstructing Sea Surface Conditions in the Bay of Bengal during the Mid-Pleistocene Transition

    Science.gov (United States)

    Lagos, A. D.; Dekens, P.; Reilly, B. T.; Selkin, P. A.; Meynadier, L.; Savian, J. F.

    2017-12-01

    During the Mid-Pleistocene Transition (MPT, 0.8-1.2Ma) Earth's glacial cycles transitioned from responding primarily to 41kyr obliquity cycles to responding to 100kyr eccentricity cycles. In the tropics, sea surface temperature (SST) in the eastern tropical Pacific cooled through the MPT, suggesting a strengthening of the equatorial Pacific zonal temperature gradient (Medina-Elizalde & Lea, 2005). The strong SST gradient would have intensified Walker Cell convection during the MPT and built up latent heat in the western Pacific, which could cause cold SST anomalies in the northern Indian Ocean (Liu et al., 2015). Due to a scarcity of records, it is unclear how climate and oceanic conditions evolved in the Indian Ocean during the MPT. A set of recent IODP expeditions, including 353 and 354, cored sediment from the Bay of Bengal. Several sites recovered by expedition 353 will be ideal for reconstructing monsoon intensity through time, while the expedition 354 cores from a longitudinal transect at 8°N are in a region not directly impacted by changes in freshwater input due to direct precipitation or run off. The sites are influenced by the northeastern migration of equatorial Indian Ocean water via the Southwest Monsoon Current, which supplies significant moisture to the monsoon. Expedition 354's southern Bay of Bengal sites are well situated for better understanding the link between the tropical Indian Ocean and the northern Bay of Bengal. We reconstructed sea surface conditions at IODP site 1452 (8°N, 87°E, 3670m water depth) in the distal Bengal Fan. A 3 meter long section of the core has been identified as the MPT using the Bruhnes/Matuyama, Jaramillo, and Cobb Mountain paleomagnetic reversals (France-Lanord et al., 2016). This section of site 1452 was sampled every 2cm ( 2kyr resolution). Approximately 30 G. sacculifer, a surface dwelling planktonic foraminifera, were picked from the 355-425μm size fraction. We measured Mg/Ca and δ18O on splits of the same

  14. EFFECT OF SURFACE CONDTIONINGON BOND STRENGTH TO ENAMEL AND DENTIN

    Directory of Open Access Journals (Sweden)

    M MOUSAVINASAB

    2002-09-01

    Full Text Available Introduction. Compoglass is a trade mark of dental compomers and because of its partially resinus structure, surface conditioning of dental surfaces is needed for a better bonding process. In this study, the effect of enamel and dentin conditioning procedure on shear bond strength (SBS of compoglass to tooth surfaces was studied. Methods. four groups each one including 11 sound premolars were chosen and their surfaces were prepared as following groups: group1, unconitioned dentin; group 2, dentin conditioning with phosphoric acid 35%; group 3, dentin conditioning with polyacrylic acid 20% group 4, unconditioning enamel; group 5, enamel conditioning with phosphoric acid 35%; and group 6, enamel conditioning with polyacrylic acid 20%. Compoglass was bonded to prepared surfaces and after fixation of the samples in acrylic molds, all samples were tested under shear force of instron testing machine at a rate of 1 mm/min speed. Results. The mean SBS obtained in these 6 groups were 6.207, 8.057, 10.146, 25.939 and 11.827 mpa. the mode of fracture also studied using a streomicroscope. Statistical analysis of the results showed that the maximum SBS obtained in group 5 and the lowest SBS about 6.207 mpa obtained in group 1. Despite increase in SBS group 2 and 3, there was no statistical differncies between group 1, 2 and 3. Discussion. Based on results of this study, conditioning of enamel and dentin surface due to improve SBS is recommeneded.

  15. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.

    Science.gov (United States)

    Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S

    2016-10-01

    A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  16. In-situ buildup of cosmogenic isotopes at the earth's surface: measurement of erosion rates and exposure times

    International Nuclear Information System (INIS)

    Fifield, L.K.; Allan, G.L.; Stone, J.O.H.; Evans, J.M.; Cresswell, R.G.; Ophel, T.R.

    1993-01-01

    Cosmic rays produce a number of nuclides in rocks that can be used to determine the geomorphic history of surfaces. The most useful are the radioactive isotopes 10 Be (t 1/2 = 1.5Ma), 26 Al (0.7Ma) and 36 Cl (0.3Ma). Within the top 2m of the surface, these are produced principally by fast neutrons. At greater depths, production is dominated by the capture of negative muons. Measurements of a single nuclide produced in situ can be used to determine total exposure times or erosion rates. The use of multiple nuclides with different half-lives makes it possible to determine more complex histories, such as exposures interrupted by periods of burial. At the ANU, all three of the isotopes above are being used to study a variety of problems in geomorphology and paleoclimatology, although to date, most of the work has concentrated on 36 Cl. The accumulation of cosmogenic 36 Cl in calcite (CaCO 3 ) provides a means of measuring erosion rates on limestone surfaces. Sensitivity is achieved over a wide range of erosion rates due to the high production rate of 36 Cl in calcite (typically greater than 30 atoms/g/yr) and a detection limit of ca. 5000 atoms/g attainable with the ANU AMS system. The method is simplified by the predominance of Ca reactions (principally spallation) over other sources of 36 Cl in calcite, and the ease of sample preparation. This presentation discuss the results of measurements of 36 Cl in calcite from limestone samples from Australia and Papua New Guinea. Erosion rates derived from these measurements range from 3 microns per year (Australia) to over 200 microns per year in the New Guinea highlands. 3 refs

  17. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions.

    Science.gov (United States)

    Poch, Olivier; Jaber, Maguy; Stalport, Fabien; Nowak, Sophie; Georgelin, Thomas; Lambert, Jean-François; Szopa, Cyril; Coll, Patrice

    2015-03-01

    Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe(3+)-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 ± 2 K), and pressure (6 ± 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6 × 10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate.

  18. Electron Conditioning of Technical Aluminium Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, F

    2004-09-02

    The effect of electron conditioning on commercially aluminium alloys 1100 and 6063 were investigated. Contrary to the assumption that electron conditioning, if performed long enough, can reduce and stabilize the SEY to low values (= 1.3, value of many pure elements [1]), the SEY of aluminium did not go lower than 1.8. In fact, it reincreases with continued electron exposure dose.

  19. Erosion of graphite surface exposed to hot supersonic hydrogen gas

    Science.gov (United States)

    Sharma, O. P.

    1972-01-01

    A theoretical model based on laminar boundary layer flow equations was developed to predict the erosion rate of a graphite (AGCarb-101) surface exposed to a hot supersonic stream of hydrogen gas. The supersonic flow in the nozzle outside the boundary layer formed over the surface of the specimen was determined by assuming one-dimensional isentropic conditions. An overall surface reaction rate expression based on experimental studies was used to describe the interaction of hydrogen with graphite. A satisfactory agreement was found between the results of the computation, and the available experimental data. Some shortcomings of the model and further possible improvements are discussed.

  20. Flat friction tests applied to austenic stainless steels with several surface finish. Analysis of adhesion conditions in friction

    International Nuclear Information System (INIS)

    Coello, J.; Miguel, V.; Ferrer, C.; Calatatyd, A.; Martinez, A.

    2008-01-01

    The main purpose of this work is to evaluate the tribological behaviour of austenic stainless steels AISI 304 with bright surface finishing (B). The assays have been carried out in flat faced dies system with mineral oil of 200 cts viscosity, S 2 Mo grease and in dry conditions. The relationship between friction coefficient and pressure and velocity has been established for the mineral oil as lubricant. In these conditions, a strong adhesive tendency has been found in boundary lubrication regime. The results obtained here, show us that S 2 Mo grease leads to lowest values for the friction coefficient. A minor adhesive behaviour tendency for AISI 316 steel, harder than 304 grades, has been found. A relevant plowing phenomena has been observed for the more critical friction conditions tried out. A surface hardener is produced as a consequence of that. (Author) 19 refs

  1. Free surface flows under compensated gravity conditions

    CERN Document Server

    Dreyer, Miachel E

    2007-01-01

    This book considers the behavior of fluids in a low-gravity environment with special emphasis on application in PMD (propellant management device) systems . In the compensated gravity environment of a spacecraft, the hydrostatic pressure decreases to very low values depending on the residual acceleration, and surface tension forces become dominant. Consequently, surface tension can be used to transport and position liquids if the residual acceleration and the resulting hydrostatic pressure are small compared to the capillary pressure. One prominent application is the use of PMDs in surface-tension satellite tanks. PMDs must ensure that the tank outlet is covered with liquid whenever outflow is demanded. Furthermore, PMDs are used to ensure expulsion and refilling of tanks for liquids and gases for life support, reactants, and experiment supplies. Since most of the PMD designs are not testable on ground and thus rely on analytical or numerical concepts, this book treats three different flow problems with analy...

  2. 224Ra distribution in surface and deep water of Long Island Sound: sources and horizontal transport rates

    International Nuclear Information System (INIS)

    Torgersen, T.; O'Donnell, J.; DeAngelo, E.; Turekian, K.K.; Turekian, V.C.; Tanaka, N.

    1997-01-01

    Measurements of surface water and deep water 224 Ra(half-life 3.64 days) distributions in Long Island Sound (LIS) were conducted in July 1991. Because the pycnocline structure of LIS had been in place for about 50 days in July (long compared to the half-life of 224 Ra) in the surface water and the deep water operate as separate systems. In the surface water, the fine-grain sediments of nearshore and saltmarsh environments provide a strong source of 224 Ra, which is horizontally mixed away from the short to central LIS. A one-dimensional model of 224 Ra distribution suggests a cross-LIS horizontal eddy dispersivity of 5-50 m 2 s -1 . In the deep water, the mid-LIS sediment flux of 224 Ra is enhanced by ∼ 2x relative to the periphery, and the horizontal eddy flux is from central LIS to the periphery. A second one-dimensional model suggests a cross-LIS horizontal eddy dispersivity below the thermocline of 5-50 m 2 -1 . 224 Ra fluxes into the deep water of the central LIS are likely enhanced by (1) inhomogeneous sediment or (2) a reduced scavenging of 224 Ra in the sediments of central LIS brought about by low oxygen conditions (hypoxia) and the loss of the MnO 2 scavenging layer in the sediments. These rates of horizontal eddy dispersivity are significantly less than the estimate of 100-650 m 2 s -1 (Riley, 1967) but are consistent with the transport necessary to explain the dynamics of oxygen depletion in summer LIS. These results demonstrate the use of 224 Ra for quantifying the parameters needed to describe estuarine mixing and transport. (Author)

  3. Affinity functions for modeling glass dissolution rates

    Energy Technology Data Exchange (ETDEWEB)

    Bourcier, W.L. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01

    Glass dissolution rates decrease dramatically as glass approach ''saturation'' with respect to the leachate solution. Most repository sites are chosen where water fluxes are minimal, and therefore the waste glass is most likely to dissolve under conditions close to ''saturation''. The key term in the rate expression used to predict glass dissolution rates close to ''saturation'' is the affinity term, which accounts for saturation effects on dissolution rates. Interpretations of recent experimental data on the dissolution behaviour of silicate glasses and silicate minerals indicate the following: 1) simple affinity control does not explain the observed dissolution rate for silicate minerals or glasses; 2) dissolution rates can be significantly modified by dissolved cations even under conditions far from saturation where the affinity term is near unity; 3) the effects of dissolved species such as Al and Si on the dissolution rate vary with pH, temperature, and saturation state; and 4) as temperature is increased, the effect of both pH and temperature on glass and mineral dissolution rates decrease, which strongly suggests a switch in rate control from surface reaction-based to diffusion control. Borosilicate glass dissolution models need to be upgraded to account for these recent experimental observations. (A.C.)

  4. Stability analysis of a pressure-solution surface

    Science.gov (United States)

    Gal, Doron; Nur, Amos; Aharonov, Einat

    We present a linear stability analysis of a dissolution surface subjected to non-hydrostatic stress. A sinusoidal perturbation is imposed on an initially flat solid/fluid interface, and the consequent changes in elastic strain energy and surface energy are calculated. Our results demonstrate that if the far-field lateral stresses are either greater, or much smaller than the fluid pressure, the perturbed configuration has a lower strain energy than the initial one. For wavelengths greater than a critical wavelength this energy decrease may be large enough to offset the increased surface energy. Under these conditions, the perturbation grows unstably. If these conditions are not met, the surface becomes flat. The growth rate and wavelength of the maximally unstable mode depend on the mechanism of matter transport. We conclude that the instability discussed in this paper may account for the formation of stylolites and other pressure-solution phenomena, such as roughening of grain contacts.

  5. A Finite-Rate-Catalytic Model For Hypersonic Flows Informed By Molecular Dynamics

    Science.gov (United States)

    Schwartzentruber, T. E.; Valentini, P.; Norman, P.; Sorensen, C.

    2011-05-01

    The implementation of a finite-rate catalytic (FRC) wall boundary condition within a general 3D unstructured CFD solver is described. A set of one-step gas-surface chemical equations and atomistic parameters that deter- mine the reaction rates must be prescribed as input to the model. The chemical rate equations are solved at each wall face in the CFD simulation and result in a net production of species at the wall. In order for a finite- rate gas-surface reaction model to be consistent at equilibrium, it is determined that not all forward and back- ward rates can be specified arbitrarily. Provided that the forward rates for each surface recombination are as- signed, the backward rates must be determined using equilibrium constants that are consistent with the gas- phase chemistry model and thermodynamics. Reactive molecular dynamics (MD) simulations are performed us- ing the ReaxFFSiO potential to investigate oxygen-silica interactions. β-quartz and amorphous SiO2 surfaces are accommodated to a high temperature gas via MD simulation and reach a steady-state surface coverage. In addition to stable surface reconstructions a number of active sites are observed on which recombination occurs. Single collision MD simulations are performed where gas-phase oxygen atoms interact with the most dominant active site. Probabilities of recombination are found to have an exponential trend with gas-surface system temperature. The MD simulations are used to determine the activation energy for Eley-Rideal recombination of oxygen on a specific silica active site which is an important input parameter for the FRC model.

  6. Conception rate of artificially inseminated Holstein cows affected by cloudy vaginal mucus, under intense heat conditions

    Directory of Open Access Journals (Sweden)

    Miguel Mellado

    2015-06-01

    Full Text Available The objective of this work was to obtain prevalence estimates of cloudy vaginal mucus in artificially inseminated Holstein cows raised under intense heat, in order to assess the effect of meteorological conditions on its occurrence during estrus and to determine its effect on conception rate. In a first study, an association was established between the occurrence of cloudy vaginal mucus during estrus and the conception rate of inseminated cows (18,620 services, raised under intense heat (mean annual temperature of 22°C, at highly technified farms, in the arid region of northern Mexico. In a second study, data from these large dairy operations were used to assess the effect of meteorological conditions throughout the year on the occurrence of cloudy vaginal mucus during artificial insemination (76,899 estruses. The overall rate of estruses with cloudy vaginal mucus was 21.4% (16,470/76,899; 95% confidence interval = 21.1-21.7%. The conception rate of cows with clean vaginal mucus was higher than that of cows with abnormal mucus (30.6 vs. 22%. Prevalence of estruses with cloudy vaginal mucus was strongly dependent on high ambient temperature and markedly higher in May and June. Acceptable conception rates in high milk-yielding Holstein cows can only be obtained with cows showing clear and translucid mucus at artificial insemination.

  7. Standard test method for damage to contacting solid surfaces under fretting conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the studying or ranking the susceptibility of candidate materials to fretting corrosion or fretting wear for the purposes of material selection for applications where fretting corrosion or fretting wear can limit serviceability. 1.2 This test method uses a tribological bench test apparatus with a mechanism or device that will produce the necessary relative motion between a contacting hemispherical rider and a flat counterface. The rider is pressed against the flat counterface with a loading mass. The test method is intended for use in room temperature air, but future editions could include fretting in the presence of lubricants or other environments. 1.3 The purpose of this test method is to rub two solid surfaces together under controlled fretting conditions and to quantify the damage to both surfaces in units of volume loss for the test method. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5...

  8. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy.

    LENUS (Irish Health Repository)

    McGinley, Emma Louise

    2011-07-01

    To assess the effects of surface finishing condition (polished or alumina particle air abraded) on the biocompatibility of direct and indirect exposure to a nickel-chromium (Ni-Cr) d.Sign®10 dental casting alloy on oral keratinocytes. Biocompatibility was performed by assessing cellular viability and morphology, metabolic activity, cellular toxicity and presence of inflammatory cytokine markers.

  9. Statistical analysis of surface roughness in turning based on cutting parameters and tool vibrations with response surface methodology (RSM)

    Science.gov (United States)

    Touati, Soufiane; Mekhilef, Slimane

    2018-03-01

    In this paper, we present an experimental study to determine the effect of the cutting conditions and tool vibration on the surface roughness in finish turning of 32CrMoV12-28 steel, using carbide cutting tool YT15. For these purposes, a linear quadratic model in interaction of connecting surface roughness (Ra, Rz) with different combinations of cutting parameters such as cutting speed, feed rate, depth of cut and tool vibration, in radial and in tangential cutting force directions (Vy) and (Vz) is elaborated. In order to express the degree of interaction of cutting parameters and tool vibration, a multiple linear regression and response surface methodology are adopted. The application of this statistical technique for predicting the surface roughness shows that the feed rate is the most dominant factor followed by the cutting speed. However, the depth of the cut and tool vibrations have secondary effect. The presented models have some interest since they are used in the cutting process optimization.

  10. The Influence of As-Built Surface Conditions on Mechanical Properties of Ti-6Al-4V Additively Manufactured by Selective Electron Beam Melting

    Science.gov (United States)

    Sun, Y. Y.; Gulizia, S.; Oh, C. H.; Fraser, D.; Leary, M.; Yang, Y. F.; Qian, M.

    2016-03-01

    Achieving a high surface finish is a major challenge for most current metal additive manufacturing processes. We report the first quantitative study of the influence of as-built surface conditions on the tensile properties of Ti-6Al-4V produced by selective electron beam melting (SEBM) in order to better understand the SEBM process. Tensile ductility was doubled along with noticeable improvements in tensile strengths after surface modification of the SEBM-fabricated Ti-6Al-4V by chemical etching. The fracture surfaces of tensile specimens with different surface conditions were characterised and correlated with the tensile properties obtained. The removal of a 650- μm-thick surface layer by chemical etching was shown to be necessary to eliminate the detrimental influence of surface defects on mechanical properties. The experimental results and analyses underline the necessity to modify the surfaces of SEBM-fabricated components for structural applications, particularly for those components which contain complex internal concave and convex surfaces and channels.

  11. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.

    Science.gov (United States)

    Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L

    2016-09-06

    Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.

  12. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    Science.gov (United States)

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  13. On the application of response surface methodology for predicting and optimizing surface roughness and cutting forces in hard turning by PVD coated insert

    Directory of Open Access Journals (Sweden)

    Hessainia Zahia

    2015-04-01

    Full Text Available This paper focuses on the exploitation of the response surface methodology (RSM to determine optimum cutting conditions leading to minimum surface roughness and cutting force components. The technique of RSM helps to create an efficient statistical model for studying the evolution of surface roughness and cutting forces according to cutting parameters: cutting speed, feed rate and depth of cut. For this purpose, turning tests of hardened steel alloy (AISI 4140 (56 HRC were carried out using PVD – coated ceramic insert under different cutting conditions. The equations of surface roughness and cutting forces were achieved by using the experimental data and the technique of the analysis of variance (ANOVA. The obtained results are presented in terms of mean values and confidence levels. It is shown that feed rate and depth of cut are the most influential factors on surface roughness and cutting forces, respectively. In addition, it is underlined that the surface roughness is mainly related to the cutting speed, whereas depth of cut has the greatest effect on the evolution of cutting forces. The optimal machining parameters obtained in this study represent reductions about 6.88%, 3.65%, 19.05% in cutting force components (Fa, Fr, Ft, respectively. The latters are compared with the results of initial cutting parameters for machining AISI 4140 steel in the hard turning process.

  14. The boundary condition for vertical velocity and its interdependence with surface gas exchange

    Directory of Open Access Journals (Sweden)

    A. S. Kowalski

    2017-07-01

    Full Text Available The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface. This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.

  15. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.

    2016-09-24

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  16. Nocturnal surface ozone enhancement over Portugal during winter: Influence of different atmospheric conditions

    KAUST Repository

    Kulkarni, Pavan S.; Dasari, Hari Prasad; Sharma, Ashish; Bortoli, D.; Salgado, Rui; Silva, A.M.

    2016-01-01

    Four distinct nocturnal surface ozone (NSO) enhancement events were observed, with NSO concentration exceeding 80μg/m3, at multiple ozone (O3) monitoring stations (32 sites) in January, November and December between year 2000–2010, in Portugal. The reasonable explanation for the observed bimodal pattern of surface ozone with enhanced NSO concentration during nighttime has to be transport processes, as the surface ozone production ceases at nighttime. Simultaneous measurements of O3 at multiple stations during the study period in Portugal suggest that horizontal advection alone cannot explain the observed NSO enhancement. Thus, detailed analysis of the atmospheric conditions, simulated with the Weather Research and Forecasting (WRF) model, were performed to evaluate the atmospheric mechanisms responsible for NSO enhancement in the region. Simulations revealed that each event occurred as a result of one or the combination of different atmospheric processes such as, passage of a cold front followed by a subsidence zone; passage of a moving surface trough, with associated strong horizontal wind speed and vertical shear; combination of vertical and horizontal transport at the synoptic scale; formation of a low level jet with associated vertical mixing below the jet stream. The study confirmed that large-scale flow pattern resulting in enhanced vertical mixing in the nocturnal boundary layer, plays a key role in the NSO enhancement events, which frequently occur over Portugal during winter months. © 2016 Elsevier Ltd

  17. Relation between the Atmospheric Boundary Layer and Impact Factors under Severe Surface Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Yinhuan Ao

    2017-01-01

    Full Text Available This paper reported a comprehensive analysis on the diurnal variation of the Atmospheric Boundary Layer (ABL in summer of Badain Jaran Desert and discussed deeply the effect of surface thermal to ABL, including the Difference in Surface-Air Temperature (DSAT, net radiation, and sensible heat, based on limited GPS radiosonde and surface observation data during two intense observation periods of experiments. The results showed that (1 affected by topography of the Tibetan Plateau, the climate provided favorable external conditions for the development of Convective Boundary Layer (CBL, (2 deep CBL showed a diurnal variation of three- to five-layer structure in clear days and five-layer ABL structure often occurred about sunset or sunrise, (3 the diurnal variation of DSAT influenced thickness of ABL through changes of turbulent heat flux, (4 integral value of sensible heat which rapidly converted by surface net radiation had a significant influence on the growth of CBL throughout daytime. The cumulative effect of thick RML dominated the role after CBL got through SBL in the development stage, especially in late summer, and (5 the development of CBL was promoted and accelerated by the variation of wind field and distribution of warm advection in high and low altitude.

  18. Effects of surface cracks and strain rate on the tensile behavior of Balmoral Red granite

    Directory of Open Access Journals (Sweden)

    Mardoukhi Ahmad

    2015-01-01

    Full Text Available This paper presents an experimental procedure for studying the effects of surface cracks on the mechanical behavior of Balmoral Red granite under dynamic and quasi-static loading. Three different thermal shocks were applied on the surface of the Brazilian Disc test samples by keeping a flame torch at a fixed distance from the sample surface for 10, 30, and 60 seconds. Microscopy clearly shows that the number of the surface cracks increases with the duration of the thermal shock. After the thermal shock, the Brazilian Disc tests were performed using a servohydraulic materials testing machine and a compression Split Hopkinson Pressure Bar (SHPB device. The results show that the tensile strength of the rock decreases and the rate sensitivity of the rock increases as more cracks are introduced to the structure. The DIC analysis of the Brazilian disc tests shows that the fracture of the sample initiates at the center of the samples or slightly closer to the incident bar contact point. This is followed by crushing of the samples at both contact points with the stress bars.

  19. Optimization on Preparation Condition of Propolis Flavonoids Liposome by Response Surface Methodology and Research of Its Immunoenhancement Activity

    Directory of Open Access Journals (Sweden)

    Ju Yuan

    2013-01-01

    Full Text Available The aim of this study is to prepare propolis flavonoids liposome (PFL and optimize the preparation condition and to investigate further whether liposome could promote the immunoenhancement activity of propolis flavonoids (PF. PFL was prepared with ethanol injection method, and the preparation conditions of PFL were optimized with response surface methodology (RSM. Moreover, the immunoenhancement activity of PFL and PF in vitro was determined. The result showed that the optimal preparation conditions for PFL by response surface methodology were as follows: ratio of lipid to drug (w/w 9.6 : 1, ratio of soybean phospholipid to cholesterol (w/w 8.5 : 1, and speed of injection 0.8 mL·min−1. Under these conditions, the experimental encapsulation efficiency of PFL was 91.67 ± 0.21%, which was close to the predicted value. Therefore, the optimized preparation condition is very reliable. Moreover, the results indicated that PFL could not only significantly promote lymphocytes proliferation singly or synergistically with PHA, but also increase expression level of IL-2 and IFN-γ mRNA. These indicated that liposome could significantly improve the immunoenhancement activity of PF. PFL demonstrates the significant immunoenhancement activity, which provides the theoretical basis for the further experiment in vivo.

  20. [Optimization of prokaryotic expression conditions of Leptospira interrogans trigeminy genus-specific protein antigen based on surface response analysis].

    Science.gov (United States)

    Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie

    2008-07-01

    Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.