WorldWideScience

Sample records for surface coat protein

  1. Bacterial surface layer proteins as a novel capillary coating material for capillary electrophoretic separations

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Gordaliza, Estefanía, E-mail: emorenog@ucm.es [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid (Spain); Stigter, Edwin C.A. [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands); Department of Molecular Cancer Research, Universitair Medisch Centrum Utrecht, Wilhelmina Kinder Ziekenhuis, Lundlaan 6, 3584, EA Utrecht (Netherlands); Lindenburg, Petrus W.; Hankemeier, Thomas [Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Universiteit Leiden, Einsteinweg 55, 2300, RA, Leiden (Netherlands)

    2016-06-07

    A novel concept for stable coating in capillary electrophoresis, based on recrystallization of surface layer proteins on hydrophobized fused silica capillaries, was demonstrated. Surface layer protein A (SlpA) from Lactobacillus acidophilus bacteria was extracted, purified and used for coating pre-silanized glass substrates presenting different surface wettabilities (either hydrophobic or hydrophilic). Contact angle determination on SlpA-coated hydrophobic silica slides showed that the surfaces turned to hydrophilic after coating (53 ± 5°), due to a protein monolayer formation by protein-surface hydrophobic interactions. Visualization by atomic force microscopy demonstrated the presence of a SlpA layer on methylated silica slides displaying a surface roughness of 0.44 ± 0.02 nm. Additionally, a protein layer was visualized by fluorescence microscopy in methylated silica capillaries coated with SlpA and fluorescein isothiocyanate-labeled. The SlpA-coating showed an outstanding stability, even after treatment with 20 mM NaOH (pH 12.3). The electroosmotic flow in coated capillaries showed a partial suppression at pH 7.50 (3.8 ± 0.5 10{sup −9} m{sup 2} V{sup −1} s{sup −1}) when compared with unmodified fused silica (5.9 ± 0.1 10{sup −8} m{sup 2} V{sup −1} s{sup −1}). To demonstrate the potential of this novel coating, the SlpA-coated capillaries were applied for the first time for electrophoretic separation, and proved to be very suitable for the isotachophoretic separation of lipoproteins in human serum. The separations showed a high degree of repeatability (absolute migration times with 1.1–1.8% coefficient-of-variation (CV) within a day) and 2–3% CV inter-capillary reproducibility. The capillaries were stable for more than 100 runs at pH 9.40, and showed to be an exceptional alternative for challenging electrophoretic separations at long-term use. - Highlights: • New coating using recrystallized surface-layer proteins on

  2. Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study

    Science.gov (United States)

    Strauss, Joshua; Liu, Yatao; Camesano, Terri A.

    2009-09-01

    Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.

  3. Interactions between protein coated particles and polymer surfaces studied with the rotating particles probe.

    Science.gov (United States)

    Kemper, M; Spridon, D; van IJzendoorn, L J; Prins, M W J

    2012-05-29

    Nonspecific interactions between proteins and polymer surfaces have to be minimized in order to control the performance of biosensors based on immunoassays with particle labels. In this paper we investigate these nonspecific interactions by analyzing the response of protein coated magnetic particles to a rotating magnetic field while the particles are in nanometer vicinity to a polymer surface. We use the fraction of nonrotating (bound) particles as a probe for the interaction between the particles and the surface. As a model system, we study the interaction of myoglobin coated particles with oxidized polystyrene surfaces. We measure the interaction as a function of the ionic strength of the solution, varying the oxidation time of the polystyrene and the pH of the solution. To describe the data we propose a model in which particles bind to the polymer by crossing an energy barrier. The height of this barrier depends on the ionic strength of the solution and two interaction parameters. The fraction of nonrotating particles as a function of ionic strength shows a characteristic shape that can be explained with a normal distribution of energy barrier heights. This method to determine interaction parameters paves the way for further studies to quantify the roles of protein coated particles and polymers in their mutual nonspecific interactions in different matrixes.

  4. Impact of surface coating and food-mimicking media on nanosilver-protein interaction

    Energy Technology Data Exchange (ETDEWEB)

    Burcza, Anna, E-mail: anna.burcza@mri.bund.de; Gräf, Volker; Walz, Elke; Greiner, Ralf [Max Rubner-Institute, Department of Food Technology and Bioprocess Engineering (Germany)

    2015-11-15

    The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated.

  5. Impact of surface coating and food-mimicking media on nanosilver-protein interaction

    International Nuclear Information System (INIS)

    Burcza, Anna; Gräf, Volker; Walz, Elke; Greiner, Ralf

    2015-01-01

    The application of silver nanoparticles (AgNPs) in food contact materials has recently become a subject of dispute due to the possible migration of silver in nanoform into foods and beverages. Therefore, the analysis of the interaction of AgNPs with food components, especially proteins, is of high importance in order to increase our knowledge of the behavior of nanoparticles in food matrices. AgPURE™ W10 (20 nm), an industrially applied nanomaterial, was compared with AgNPs of similar size frequently investigated for scientific purposes differing in the surface capping agent (spherical AgNP coated with either PVP or citrate). The interactions of the AgNPs with whey proteins (BSA, α-lactalbumin and β-lactoglobulin) at different pH values (4.2, 7 or 7.4) were investigated using surface plasmon resonance, SDS-PAGE, and asymmetric flow field-flow fractionation. The data obtained by the three different methods correlated well. Besides the nature of the protein and the nanoparticle coating, the environment was shown to affect the interaction significantly. The strongest interaction was obtained with BSA and AgNPs in an acidic environment. Neutral and slightly alkaline conditions however, seemed to prevent the AgNP-protein interaction almost completely. Furthermore, the interaction of whey proteins with AgPURE™ W10 was found to be weaker compared to the interaction with the other two AgNPs under all conditions investigated

  6. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS

    DEFF Research Database (Denmark)

    Boyd, A. R.; Burke, G. A.; Duffy, H.

    2011-01-01

    Protein adsorption onto calcium phosphate (Ca–P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation ...

  7. Bone Morphogenetic Protein Coating on Titanium Implant Surface: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Haim Haimov

    2017-06-01

    Full Text Available Objectives: The purpose of the study is to systematically review the osseointegration process improvement by bone morphogenetic protein coating on titanium implant surface. Material and Methods: An electronic literature search was conducted through the MEDLINE (PubMed and EMBASE databases. The search was restricted for articles published during the last 10 years from October 2006 to September 2016 and articles were limited to English language. Results: A total of 41 articles were reviewed, and 8 of the most relevant articles that are suitable to the criteria were selected. Articles were analysed regarding concentration of bone morphogenetic protein (BMP, delivery systems, adverse reactions and the influence of the BMP on the bone and peri-implant surface in vivo. Finally, the present data included 340 implants and 236 models. Conclusions: It’s clearly shown from most of the examined studies that bone morphogenetic protein increases bone regeneration. Further studies should be done in order to induce and sustain bone formation activity. Osteogenic agent should be gradually liberated and not rapidly released with priority to three-dimension reservoir (incorporated titanium implant surface in order to avoid following severe side effects: inflammation, bleeding, haematoma, oedema, erythema, and graft failure.

  8. Influence of coating properties on the adhesion of proteins to atmospheric plasma modified surfaces

    OpenAIRE

    Stallard, Charlie P.; McDonnell, Kevin; Donegan, Mick; Dowling, Denis P.

    2010-01-01

    Protein adhesion is of key importance for the biocompatibility of medical devices. This study investigates the adsorption of protein, bovine serum albumin (BSA), onto both uncoated silicon wafers and nanometre thick fluorosiloxane coated wafers. A plasma polymerised coating was deposited from a mixture of tetramethylcyclotetrasiloxane (TC) and perfluorooctyltriethoxysilane (FS) (1:1 by vol. ratio). The liquid precursor mixture was nebulised into an atmospheric plasma jet formed...

  9. Surface properties of nanocrystalline TiO2 coatings in relation to the in vitro plasma protein adsorption

    International Nuclear Information System (INIS)

    Lorenzetti, M; Kobe, S; Novak, S; Bernardini, G; Santucci, A; Luxbacher, T

    2015-01-01

    This study reports on the selective adsorption of whole plasma proteins on hydrothermally (HT) grown TiO 2 -anatase coatings and its dependence on the three main surface properties: surface charge, wettability and roughness. The influence of the photo-activation of TiO 2 by UV irradiation was also evaluated. Even though the protein adhesion onto Ti-based substrates was only moderate, better adsorption of any protein (at pH = 7.4) occurred for the most negatively charged and hydrophobic substrate (Ti non-treated) and for the most nanorough and hydrophilic surface (HT Ti3), indicating that the mutual action of the surface characteristics is responsible for the attraction and adhesion of the proteins. The HT coatings showed a higher adsorption of certain proteins (albumin ‘passivation’ layer, apolipoproteins, vitamin D-binding protein, ceruloplasmin, α-2-HS-glycoprotein) and higher ratios of albumin to fibrinogen and albumin to immunoglobulin γ-chains. The UV pre-irradiation affected the surface properties and strongly reduced the adsorption of the proteins. These results provide in-depth knowledge about the characterization of nanocrystalline TiO 2 coatings for body implants and provide a basis for future studies on the hemocompatibility and biocompatibility of such surfaces. (paper)

  10. The promotion of osseointegration of titanium surfaces by coating with silk protein sericin.

    Science.gov (United States)

    Nayak, Sunita; Dey, Tuli; Naskar, Deboki; Kundu, Subhas C

    2013-04-01

    A promising strategy to influence the osseointegration process around orthopaedic titanium implants is the immobilization of bioactive molecules. This recruits appropriate interaction between the surface and the tissue by directing cells adhesion, proliferation, differentiation and active matrix remodelling. In this study, we aimed to investigate the functionalization of metallic implant titanium with silk protein sericin. Titanium surface was immobilized with non-mulberry Antheraea mylitta sericin using glutaraldehyde as crosslinker. To analyse combinatorial effects the sericin immobilized titanium was further conjugated with integrin binding peptide sequence Arg-Gly-Asp (RGD) using ethyl (dimethylaminopropyl) carbodiimide and N-hydroxysulfosuccinimide as coupling agents. The surface of sericin immobilized titanium was characterized biophysically. Osteoblast-like cells were cultured on sericin and sericin/RGD functionalized titanium and found to be more viable than those on pristine titanium. The enhanced adhesion, proliferation, and differentiation of osteoblast cells were observed. RT-PCR analysis showed that mRNA expressions of bone sialoprotein, osteocalcin and alkaline phosphatase were upregulated in osteoblast cells cultured on sericin and sericin/RGD immobilized titanium substrates. Additionally, no significant amount of pro-inflammatory cytokines TNF-α, IL-1β and nitric oxide production were recorded when macrophages cells and osteoblast-macrophages co culture cells were grown on sericin immobilized titanium. The findings demonstrate that the sericin immobilized titanium surfaces are potentially useful bioactive coated materials for titanium-based medical implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Transfer of Fas (CD95 protein from the cell surface to the surface of polystyrene beads coated with anti-Fas antibody clone CH-11

    Directory of Open Access Journals (Sweden)

    H. Sawai

    2010-02-01

    Full Text Available Mouse monoclonal anti-Fas (CD95 antibody clone CH-11 has been widely used in research on apoptosis. CH-11 has the ability to bind to Fas protein on cell surface and induce apoptosis. Here, we used polystyrene beads coated with CH-11 to investigate the role of lipid rafts in Fas-mediated apoptosis in SKW6.4 cells. Unexpectedly, by treatment of the cells with CH-11-coated beads Fas protein was detached from cell surface and transferred to the surface of CH-11-coated beads. Western blot analysis showed that Fas protein containing both extracellular and intracellular domains was attached to the beads. Fas protein was not transferred from the cells to the surface of the beads coated with other anti-Fas antibodies or Fas ligand. Similar phenomenon was observed in Jurkat T cells. Furthermore, CH-11-induced apoptosis was suppressed by pretreatment with CH-11-coated beads in Jurkat cells. These results suggest that CH-11 might possess distinct properties on Fas protein compared with other anti-Fas antibodies or Fas ligand, and also suggest that caution should be needed to use polystyrene beads coated with antibodies such as CH-11.

  12. Surface-modified nanoparticles as a new, versatile, and mechanically robust nonadhesive coating : Suppression of protein adsorption and bacterial adhesion

    NARCIS (Netherlands)

    Holmes, P. F.; Currie, E. P. K.; Thies, J. C.; van der Mei, H. C.; Busscher, H. J.; Norde, W.

    2009-01-01

    The synthesis of surface-modified silica nanoparticles, chemically grafted with acrylate and poly(ethylene glycol) (PEG) groups, and the ability of the resulting crosslinked coatings to inhibit protein adsorption and bacterial adhesion are explored. Water contact angles, nanoindentation, and atomic

  13. Coating of nanoparticles on cryogel surface and subsequent double-modification for enhanced ion-exchange capacity of protein.

    Science.gov (United States)

    Tao, Shi-Peng; Wang, Chuan; Sun, Yan

    2014-09-12

    A novel composite cryogel monolith was developed by coating poly(glycidyl methacrylate) nanoparticles (NPs) onto the pore wall surface of poly(acrylamide) cryogel. The NPs-coated column was double-modified with poly(ethylenimine) (PEI) and diethylaminoethyl in sequence. Scanning electron microscopy revealed the dense coating of the NPs on the cryogel surface, but the NPs-coating did not result in distinct changes of the column porosity and permeability. The rough pore wall surface and extended polymer chains offered more binding sites, so the dynamic binding capacity of the composite cryogel bed for bovine serum albumin reached 11.7mg/mL bed volume at a flow rate of 6cm/min, which was 4.2 times higher than that of the cryogel bed modified with PEI without coating NPs (2.8mg/mL). The binding capacity as well as column efficiency decreased only slightly with increasing flow rate from 0.6 to 12cm/min. The results indicated that the strategy of NPs-coating incorporating with double ion-exchanger modifications is promising for enhancing cryogel capacities, and the novel material would be useful for high-speed protein chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms.

    Science.gov (United States)

    Banerjee, Indrani; Pangule, Ravindra C; Kane, Ravi S

    2011-02-08

    The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Friction surfaced Stellite6 coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  16. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  17. Rational Design of Thermodynamic and Kinetic Binding Profiles by Optimizing Surface Water Networks Coating Protein-Bound Ligands.

    Science.gov (United States)

    Krimmer, Stefan G; Cramer, Jonathan; Betz, Michael; Fridh, Veronica; Karlsson, Robert; Heine, Andreas; Klebe, Gerhard

    2016-12-08

    A previously studied congeneric series of thermolysin inhibitors addressing the solvent-accessible S 2 ' pocket with different hydrophobic substituents showed modulations of the surface water layers coating the protein-bound inhibitors. Increasing stabilization of water molecules resulted in an enthalpically more favorable binding signature, overall enhancing affinity. Based on this observation, we optimized the series by designing tailored P 2 ' substituents to improve and further stabilize the surface water network. MD simulations were applied to predict the putative water pattern around the bound ligands. Subsequently, the inhibitors were synthesized and characterized by high-resolution crystallography, microcalorimetry, and surface plasmon resonance. One of the designed inhibitors established the most pronounced water network of all inhibitors tested so far, composed of several fused water polygons, and showed 50-fold affinity enhancement with respect to the original methylated parent ligand. Notably, the inhibitor forming the most perfect water network also showed significantly prolonged residence time compared to the other tested inhibitors.

  18. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.

  19. Biomimetic coating of organic polymers with a protein-functionalized layer of calcium phosphate: the surface properties of the carrier influence neither the coating characteristics nor the incorporation mechanism or release kinetics of the protein.

    Science.gov (United States)

    Wu, Gang; Liu, Yuelian; Iizuka, Tateyuki; Hunziker, Ernst B

    2010-12-01

    Polymers that are used in clinical practice as bone-defect-filling materials possess many essential qualities, such as moldability, mechanical strength and biodegradability, but they are neither osteoconductive nor osteoinductive. Osteoconductivity can be conferred by coating the material with a layer of calcium phosphate, which can be rendered osteoinductive by functionalizing it with an osteogenic agent. We wished to ascertain whether the morphological and physicochemical characteristics of unfunctionalized and bovine-serum-albumin (BSA)-functionalized calcium-phosphate coatings were influenced by the surface properties of polymeric carriers. The release kinetics of the protein were also investigated. Two sponge-like materials (Helistat® and Polyactive®) and two fibrous ones (Ethisorb™ and poly[lactic-co-glycolic acid]) were tested. The coating characteristics were evaluated using state-of-the-art methodologies. The release kinetics of BSA were monitored spectrophotometrically. The characteristics of the amorphous and the crystalline phases of the coatings were not influenced by either the surface chemistry or the surface geometry of the underlying polymer. The mechanism whereby BSA was incorporated into the crystalline layer and the rate of release of the truly incorporated depot were likewise unaffected by the nature of the polymeric carrier. Our biomimetic coating technique could be applied to either spongy or fibrous bone-defect-filling organic polymers, with a view to rendering them osteoconductive and osteoinductive.

  20. Ethylene glycol assisted preparation of Ti(4+)-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins.

    Science.gov (United States)

    Ma, Xiangdong; Ding, Chun; Yao, Xin; Jia, Li

    2016-07-27

    The reversible protein phosphorylation is very important in regulating almost all aspects of cell life, while the enrichment of phosphorylated proteins still remains a technical challenge. In this work, polydopamine (PDA) modified magnetic particles with rough surface (rPDA@Fe3O4) were synthesized by introduction of ethylene glycol in aqueous solution. The PDA coating possessing a wealth of catechol hydroxyl groups could serve as an active medium to immobilize titanium ions through the metal-catechol chelation, which makes the fabrication of titanium ions modified rPDA@Fe3O4 particles (Ti(4+)-rPDA@Fe3O4) simple and very convenient. The spherical Ti(4+)-rPDA@Fe3O4 particles have a surface area of 37.7 m(2) g(-1) and superparamagnetism with a saturation magnetization value of 38.4 emu g(-1). The amount of Ti element in the particle was measured to be 3.93%. And the particles demonstrated good water dispersibility. The particles were used as adsorbents for capture of phosphorylated proteins and they demonstrated affinity and specificity for phosphorylated proteins due to the specific binding sites (Ti(4+)). Factors affecting the adsorption of phosphorylated proteins on Ti(4+)-rPDA@Fe3O4 particles were investigated. The adsorption capacity of Ti(4+)-rPDA@Fe3O4 particles for κ-casein was 1105.6 mg g(-1). Furthermore, the particles were successfully applied to isolate phosphorylated proteins in milk samples, which demonstrated that Ti(4+)-rPDA@Fe3O4 particles had potential application in selective separation of phosphorylated proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nature Inspired Surface Coatings

    Science.gov (United States)

    Rubner, Michael

    2011-04-01

    Materials Scientists more and more are looking to nature for clues on how to create highly functional surface coatings with exceptional properties. The fog harvesting capabilities of the Namib Desert beetle, the beautiful iridescent colors of the hummingbird, and the super water repellant abilities of the Lotus leaf are but a few examples of the amazing properties developed over many years in the natural world. Nature also makes extensive use of the pH-dependent behavior of weak functional groups such as carboxylic acid and amine functional groups. This presentation will explore synthetic mimics to the nano- and microstructures responsible for these fascinating properties. For example, we have demonstrated a pH-induced porosity transition that can be used to create porous films with pore sizes that are tunable from the nanometer scale to the multiple micron scale. The pores of these films, either nano- or micropores, can be reversibly opened and closed by changes in solution pH. The ability to engineer pH-gated porosity transitions in heterostructured thin films has led to the demonstration of broadband anti-reflection coatings that mimic the anti-reflection properties of the moth eye and pH-tunable Bragg reflectors with a structure and function similar to that found in hummingbird wings and the Longhorn beetle. In addition, the highly textured honeycomb-like surfaces created by the formation of micron-scale pores are ideally suited for the creation of superhydrophobic surfaces that mimic the behavior of the self-cleaning lotus leaf. The development of synthetic "backbacks" on immune system cells that may one day ferry drugs to disease sites will also be discussed.

  2. Adhesion of Porphyromonas gingivalis and Tannerella forsythia to dentin and titanium with sandblasted and acid etched surface coated with serum and serum proteins - An in vitro study.

    Science.gov (United States)

    Eick, Sigrun; Kindblom, Christian; Mizgalska, Danuta; Magdoń, Anna; Jurczyk, Karolina; Sculean, Anton; Stavropoulos, Andreas

    2017-03-01

    To evaluate the adhesion of selected bacterial strains incl. expression of important virulence factors at dentin and titanium SLA surfaces coated with layers of serum proteins. Dentin- and moderately rough SLA titanium-discs were coated overnight with human serum, or IgG, or human serum albumin (HSA). Thereafter, Porphyromonas gingivalis, Tannerella forsythia, or a six-species mixture were added for 4h and 24h. The number of adhered bacteria (colony forming units; CFU) was determined. Arg-gingipain activity of P. gingivalis and mRNA expressions of P. gingivalis and T. forsythia proteases and T. forsythia protease inhibitor were measured. Coating specimens never resulted in differences exceeding 1.1 log10 CFU, comparing to controls, irrespective the substrate. Counts of T. forsythia were statistically significantly higher at titanium than dentin, the difference was up to 3.7 log10 CFU after 24h (p=0.002). No statistically significant variation regarding adhesion of the mixed culture was detected between surfaces or among coatings. Arg-gingipain activity of P. gingivalis was associated with log10 CFU but not with the surface or the coating. Titanium negatively influenced mRNA expression of T. forsythia protease inhibitor at 24h (p=0.026 uncoated, p=0.009 with serum). The present findings indicate that: a) single bacterial species (T. forsythia) can adhere more readily to titanium SLA than to dentin, b) low expression of T. forsythia protease inhibitor may influence the virulence of the species on titanium SLA surfaces in comparison with teeth, and c) surface properties (e.g. material and/or protein layers) do not appear to significantly influence multi-species adhesion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A neutral polyacrylate copolymer coating for surface modification of thiol-ene microchannels for improved performance of protein separation by microchip electrophoresis

    DEFF Research Database (Denmark)

    Mesbah, Kiarach; Mai, T.D.; Jensen, Thomas Glasdam

    2016-01-01

    We have investigated the behavior of thiol-ene substrates that is a class of promising materials for lab-on-a-chip electrophoresis applications. Two polymeric materials were prepared by copolymerization of N, N-dimethylacrylamide (DMA), (3-(methacryloyl-oxy)propyl)trimethoxysilane (PMA) and 3......-(DMA-PMAMAPS) copolymer were evaluated in terms of surface hydrophilicity, suppression and stability of electro-osmotic flow and prevention of protein adsorption. Surface modification of thiol-ene containing a 20 % excess of thiols with the terpolymer p-(DMA-PMA-MAPS) was found to offer the most stable coating and most...

  4. Simple Coatings to Render Polystyrene Protein Resistant

    Directory of Open Access Journals (Sweden)

    Marcelle Hecker

    2018-02-01

    Full Text Available Non-specific protein adsorption is detrimental to the performance of many biomedical devices. Polystyrene is a commonly used material in devices and thin films. Simple reliable surface modification of polystyrene to render it protein resistant is desired in particular for device fabrication and orthogonal functionalisation schemes. This report details modifications carried out on a polystyrene surface to prevent protein adsorption. The trialed surfaces included Pluronic F127 and PLL-g-PEG, adsorbed on polystyrene, using a polydopamine-assisted approach. Quartz crystal microbalance with dissipation (QCM-D results showed only short-term anti-fouling success of the polystyrene surface modified with F127, and the subsequent failure of the polydopamine intermediary layer in improving its stability. In stark contrast, QCM-D analysis proved the success of the polydopamine assisted PLL-g-PEG coating in preventing bovine serum albumin adsorption. This modified surface is equally as protein-rejecting after 24 h in buffer, and thus a promising simple coating for long term protein rejection of polystyrene.

  5. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    International Nuclear Information System (INIS)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Park, Jong-Chul; Jin Lee, Seung; Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok

    2013-01-01

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH 2 (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH 3 + (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic

  6. Plasma treatment induces internal surface modifications of electrospun poly(L-lactic) acid scaffold to enhance protein coating

    Energy Technology Data Exchange (ETDEWEB)

    Jin Seo, Hyok; Hee Lee, Mi; Kwon, Byeong-Ju; Kim, Hye-Lee; Park, Jong-Chul [Cellbiocontrol Laboratory, Department of Medical Engineering, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752 (Korea, Republic of); Jin Lee, Seung [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Kim, Bong-Jin; Wang, Kang-Kyun; Kim, Yong-Rok [Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2013-08-21

    Advanced biomaterials should also be bioactive with regard to desirable cellular responses, such as selective protein adsorption and cell attachment, proliferation, and differentiation. To enhance cell-material interactions, surface modifications have commonly been performed. Among the various surface modification approaches, atmospheric pressure glow discharge plasma has been used to change a hydrophobic polymer surface to a hydrophilic surface. Poly(L-lactic acid) (PLLA)-derived scaffolds lack cell recognition signals and the hydrophobic nature of PLLA hinders cell seeding. To make PLLA surfaces more conducive to cell attachment and spreading, surface modifications may be used to create cell-biomaterial interfaces that elicit controlled cell adhesion and maintain differentiated phenotypes. In this study, (He) gaseous atmospheric plasma glow discharge was used to change the characteristics of a 3D-type polymeric scaffold from hydrophobic to hydrophilic on both the outer and inner surfaces of the scaffold and the penetration efficiency with fibronectin was investigated. Field-emission scanning electron microscope images showed that some grooves were formed on the PLLA fibers after plasma treatment. X-ray photoelectron spectroscopy data also showed chemical changes in the PLLA structure. After plasma treatment, -CN (285.76 eV) was increased in C1s and -NH{sub 2} (399.70 eV) was increased significantly and –N=CH (400.80 eV) and –NH{sub 3}{sup +} (402.05 eV) were newly appeared in N1s. These changes allowed fibronectin to penetrate into the PLLA scaffold; this could be observed by confocal microscopy. In conclusion, helium atmospheric pressure plasma treatment was effective in modifying the polymeric scaffold, making it hydrophilic, and this treatment can also be used in tissue engineering research as needed to make polymers hydrophilic.

  7. Dual function of novel pollen coat (surface proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial barrier.

    Directory of Open Access Journals (Sweden)

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND: The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., "de-fatted", and, as a result, their involvement in allergy has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass pollen (BGP by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP and endoxylanase (EXY. The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. CONCLUSIONS/SIGNIFICANCE: Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic

  8. Self-assembled hemocompatible coating on poly (vinyl chloride) surface

    Energy Technology Data Exchange (ETDEWEB)

    Zha Zhengbao; Ma Yan; Yue Xiuli; Liu Meng [Nanobiotechnology Division, State Key Laboratory of Urban Water Resources and Environment, School of Sciences, Harbin Institute of Technology, Harbin 150001 (China); Dai Zhifei, E-mail: zhifei.dai@hit.edu.cn [Nanobiotechnology Division, State Key Laboratory of Urban Water Resources and Environment, School of Sciences, Harbin Institute of Technology, Harbin 150001 (China)

    2009-11-15

    A stable hemocompatible coating was fabricated by consecutive alternating adsorption of iron (III) and two kinds of polysaccharides, heparin (Hep) and dextran sulfate (DS), onto poly (vinyl chloride) (PVC) surfaces via electrostatic interaction. The fluctuation of contact angles with the alternative deposition of iron (III) and polysaccharides verified the progressive buildup of the mulitilayer coating onto the PVC surface. Atomic force microscopy (AFM) analysis revealed that the PVC surfaces were completely masked by iron-polysaccharides multilayer coatings. The activated partial thromboplastin time (APTT) assay showed that both Hep/Fe{sup 3+}/Hep and DS/Fe{sup 3+}/Hep coated PVC were less thrombogenic than the uncoated one. Chromogenic assay for heparin activity proved definitively that the inhibition of locally produced thrombin was ascribed to the thromboresistance of the surface-bound heparin. Compared with the unmodified PVC surfaces, iron-polysaccharide multilayer coating presented a drastically reduced adhesion in vitro of platelets, polymorphonuclear neutrophil leukocytes (PMN) and peripheral blood mononuclear cells (PBMC). Interestingly, the DS/Fe{sup 3+}/Hep coating was found to exhibit higher hydrophilicity and stability, hence lower non-specific protein adsorption in comparison with Hep/Fe{sup 3+}/Hep coating due to the incorporation of dextran sulfate into the multilayer coating.

  9. Induction surface hardening of hard coated steels

    DEFF Research Database (Denmark)

    Pantleon, Karen; Kessler, Olaf; Hoffmann, Franz

    1999-01-01

    after the deposition of TiN hard coatings on steel substrates. Influences of both the coating properties and the substrate properties are discussed in dependence on the parameters of induction heating. Thereby the heating time, heating atmosphere and the power input into the specimen are changed......The deposition of hard coatings with CVD-processes is commonly used to improve the wear resistance e.g. of tool steels in forming. The advantages of CVD are undisputed (high deposition rates with simple equipment, excellent coating properties). Nevertheless, the disadvantage of the CVD....... The effect of induction surface hardening on the properties of the coating-substrate-systems is mainly characterized using investigations of microstructure and chemical composition as well as measurements of hardness and residual stresses in dependence on the distance from the surface. Furthermore...

  10. Nanocomposite tribological coatings with 'chameleon' surface adaptation

    International Nuclear Information System (INIS)

    Voevodin, A.A.; Fitz, T.A.; Hu, J.J.; Zabinski, J.S.

    2002-01-01

    Nanocomposite tribological coatings were designed to respond to changing environmental conditions by self-adjustment of their surface properties to maintain good tribological performance in any environment. These smart coatings have been dubbed 'chameleon' because, analogous to a chameleon changing its skin color to avoid predators, the coating changes its 'skin' chemistry and structure to avoid wear. The concept was originally developed using WC, diamondlike carbon, and WS 2 material combination for adaptation to a humid/dry environment cycling. In order to address temperature variation, nanocomposite coatings made of yttria-stabilized zirconia (YSZ) in a gold matrix were developed with encapsulated nanosized reservoirs of MoS 2 and diamondlike carbon (DLC). Coatings were produced using a combination of laser ablation and magnetron sputtering. They were characterized by x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, x-ray energy dispersive spectroscopy, and micro-Raman spectroscopy. Results were correlated with mechanical and tribological characterization. Coating hardness was evaluated using nanoindentation, while coating adhesion and toughness were estimated using scratch and Vickers indentation tests. Friction and wear endurance measurements of YSZ/Au/MoS 2 /DLC coatings against steel and Si 3 N 4 balls were performed at room temperature in controlled humidity air, dry nitrogen, and vacuum environments, as well as at 500 deg. C in air. Depending on the environment, coating friction surface changed its chemistry and structure between (i) graphitic carbon for sliding in humid air [coating friction coefficients (c.o.f. 0.10-0.15)], (ii) hexagonal MoS 2 for sliding in dry N 2 and vacuum (c.o.f. 0.02-0.05), and (iii) metallic Au for sliding in air at 500 deg. C (c.o.f. 0.10-0.20). The unique coating skin adaptation realized with YSZ/Au/MoS 2 /DLC and WC/DLC/WS composites proves a universal applicability of the chameleon design

  11. Physisorbed surface coatings for poly(dimethylsiloxane) and quartz microfluidic devices

    Science.gov (United States)

    Viefhues, M.; Manchanda, S.; Chao, T.-C.; Anselmetti, D.; Regtmeier, J.; Ros, A.

    2011-01-01

    Surface modifications of microfluidic devices are of essential importance for successful bioanalytical applications. Here, we investigate three different coatings for quartz and poly(dimethylsiloxane) (PDMS) surfaces. We employed a triblock copolymer with trade name F108, poly (l-lysine)-g-poly(ethylene glycol) (PLL-PEG), as well as the hybrid coating n-dodecyl-β-d-maltoside and methyl cellulose (DDM/MC). The impact of these coatings was characterized by measuring the electroosmotic flow (EOF), contact angle, and prevention of protein adsorption. Furthermore, we investigated the influence of static coatings, i.e., the incubation with the coating agent prior to measurements, and dynamic coatings, where the coating agent was present during the measurement. We found that all coatings on PDMS as well as quartz reduced EOF, increased reproducibility of EOF, reduced protein adsorption, and improved the wettability of the surfaces. Among the coating strategies tested, the dynamic coatings with DDM/MC and F108 demonstrated maximal reduction of EOF and protein adsorption and simultaneously best long-term stability concerning EOF. For PLL-PEG, a reversal in the EOF direction was observed. Interestingly, the static surface coating strategy with F108 proved to be as effective to prevent protein adsorption as dynamic coating with this block copolymer. These findings will allow optimized parameter choices for coating strategies on PDMS and quartz microfluidic devices in which control of EOF and reduced biofouling are indispensable. PMID:21847528

  12. Reducing protein adsorption with polymer-grafted hyaluronic acid coatings.

    Science.gov (United States)

    Ramadan, Mohamed H; Prata, Joseph E; Karácsony, Orsolya; Dunér, Gunnar; Washburn, Newell R

    2014-07-01

    We report a thermoresponsive chemical modification strategy of hyaluronic acid (HA) for coating onto a broad range of biomaterials without relying on chemical functionalization of the surface. Poly(di(ethylene glycol) methyl ether methacrylate) (PMEO2MA), a polymer with a lower critical solution temperature of 26 °C in water, was grafted onto HA to allow facile formation of biopolymer coatings. While the mechanism for film formation appears to involve a complex combination of homogeneous nucleation followed by heterogeneous film growth, we demonstrate that it resulted in hydrophilic coatings that significantly reduce protein adsorption despite the high fraction of hydrophobic (PMEO2MA). Structural characterization was performed using atomic force microscopy (AFM), which showed the formation of a dense, continuous coating based on 200 nm domains that were stable in protein solutions for at least 15 days. The coatings had a water contact angle of 16°, suggesting the formation of hydrophilic but not fully wetting films. Quartz crystal microbalance with dissipation monitoring (QCM-D) as well as biolayer interferometry (BLI) techniques were used to measure adsorption of bovine serum albumin (BSA), fibrinogen (Fbg), and human immunoglobulin (IgG), with results indicating that HA-PMEO2MA-coated surfaces effectively inhibited adsorption of all three serum proteins. These results are consistent with previous studies demonstrating that this degree of hydrophilicity is sufficient to generate an effectively nonfouling surface and suggest that segregation during the solubility transition resulted in a surface that presented the hydrophilic HA component of the hybrid biopolymer. We conclude that PMEO2MA-grafted HA is a versatile platform for the passivation of hydrophobic biomaterial surfaces without need for substrate functionalization.

  13. Coatings and Surface Treatments for Reusable Entry Systems

    Science.gov (United States)

    Johnson, Sylvia M.

    2016-01-01

    This talk outlines work in coatings for TPS done at NASA Ames. coatings and surface treatments on reusable TPS are critical for controlling the behavior of the materials. coatings discussed include RCG, TUFI and HETC. TUFROc is also discussed.

  14. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States); Qin, Ying [Alabama Innovation and Mentoring of Entrepreneurs, The University of Alabama, Tuscaloosa, AL 35487 (United States); Bao, Yuping, E-mail: ybao@eng.ua.edu [Chemical and Biological Engineering, The University of Alabama, Tuscaloosa , AL 35487 (United States)

    2017-04-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  15. Surface functionalization of dopamine coated iron oxide nanoparticles for various surface functionalities

    International Nuclear Information System (INIS)

    Sherwood, Jennifer; Xu, Yaolin; Lovas, Kira; Qin, Ying; Bao, Yuping

    2017-01-01

    We present effective conjugation of four small molecules (glutathione, cysteine, lysine, and Tris(hydroxymethyl)aminomethane) onto dopamine-coated iron oxide nanoparticles. Conjugation of these molecules could improve the surface functionality of nanoparticles for more neutral surface charge at physiological pH and potentially reduce non-specific adsorption of proteins to nanoparticles surfaces. The success of conjugation was evaluated with dynamic light scattering by measuring the surface charge changes and Fourier transform infrared spectroscopy for surface chemistry analysis. The stability of dopamine-coated nanoparticles and the ability of conjugated nanoparticles to reduce the formation of protein corona were evaluated by measuring the size and charge of the nanoparticles in biological medium. This facile conjugation method opens up possibilities for attaching various surface functionalities onto iron oxide nanoparticle surfaces for biomedical applications.

  16. Surface coating for prevention of crust formation

    Energy Technology Data Exchange (ETDEWEB)

    Kronberg, J.W.

    1994-05-24

    A flexible surface coating which promotes the removal of deposits as they reach the surface by preventing adhesion and crust formation is disclosed. Flexible layers are attached to each side of a flexible mesh substrate comprising of a plurality of zones composed of one or more neighboring cells, each zone having a different compressibility than its adjacent zones. The substrate is composed of a mesh made of strands and open cells. The cells may be filled with foam. Studs or bearings may also be positioned in the cells to increase the variation in compressibility and thus the degree of flexing of the coating. Surface loading produces varying amounts of compression from point to point causing the coating to flex as deposits reach it, breaking up any hardening deposits before a continuous crust forms. Preferably one or more additional layers are also used, such as an outer layer of a non-stick material such as TEFLON, which may be pigmented, and an inner, adhesive layer to facilitate applying the coating to a surface. 5 figs.

  17. Radiation curable coatings having nonadherent surfaces

    International Nuclear Information System (INIS)

    Gaske, J.E.; Georgas, N.T.

    1977-01-01

    Radiation polymerizable coatings having nonadherent surfaces are provided utilizing nonaqueous emulsions of a liquid alkyl hydrogen polysiloxane in a radiation polymerizable polyethylenic liquid. Polyacrylates in combination with amines, and ultraviolet photosensitizers are particularly contemplated for rapid nonair inhibited ultraviolet cure. 13 claims

  18. Electrowetting of Weak Polyelectrolyte-Coated Surfaces.

    Science.gov (United States)

    Sénéchal, Vincent; Saadaoui, Hassan; Rodriguez-Hernandez, Juan; Drummond, Carlos

    2017-05-23

    Polymer coatings are commonly used to modify interfacial properties like wettability, lubrication, or biocompatibility. These properties are determined by the conformation of polymer molecules at the interface. Polyelectrolytes are convenient elementary bricks to build smart materials, given that polyion chain conformation is very sensitive to different environmental variables. Here we discuss the effect of an applied electric field on the properties of surfaces coated with poly(acrylic acid) brushes. By combining atomic force microscopy, quartz crystal microbalance, and contact angle experiments, we show that it is possible to precisely tune polyion chain conformation, surface adhesion, and surface wettability using very low applied voltages if the polymer grafting density and environmental conditions (pH and ionic strength) are properly formulated. Our results indicate that the effective ionization degree of the grafted weak polyacid can be finely controlled with the externally applied field, with important consequences for the macroscopic surface properties.

  19. Surface Coating of Plastic Parts for Business Machines (Industrial Surface Coating): New Source Performance Standards (NSPS)

    Science.gov (United States)

    Learn more about the new source performance standards (NSPS) for surface coating of plastic parts for business machines by reading the rule summary and history and finding the code of federal regulations as well as related rules.

  20. Surface coating for blood-contacting devices

    Science.gov (United States)

    Nair, Ajit Kumar Balakrishnan

    The major problems always encountered with the blood-contacting surfaces are their compatibility, contact blood damage, and thrombogenicity. Titanium nitride (TiN) is a hard, inert, ceramic material that is widely used in the engineering industry. TiN has been proven to be a good biomaterial in its crystalline form, in orthopedic, and in tissue implant applications. This dissertation describes a method to coat amorphous TiN on the blood-contacting surfaces of certain medical devices using the room-temperature sputtering process and to characterize, to test, and to evaluate the coating for a reliable, durable, and compatible blood-contacting surface The blood-compatibility aspects were evaluated with standard, established protocols and procedures to prove the feasibility. An amorphous TiN coating is developed, characterized, tested, and blood compatibility evaluated by applying to the blood-contacting surfaces of stainless steel, catheters, and blood filters. The flexibility characteristics were proven by applying it to the diaphragms of the pulsatile pneumatic ventricular assist device. The results show that amorphous titanium nitride is flexible and adherent to polymeric substrates like polyurethane and polyester. Blood compatibility evaluation showed comparable results with catheters and superior behavior with stainless steel and polyester filters. It is concluded that amorphous titanium nitride can be considered to be applied to the surfaces of some of the medical devices in order to improve blood compatibility.

  1. LANTHANUM STAINING OF THE SURFACE COAT OF CELLS

    Science.gov (United States)

    Shea, Stephen M.

    1971-01-01

    Among the techniques which have been reported to stain the surface coat of cells, for electron microscopy, is lanthanum staining en bloc. Similarly, the presence of the cationic dye, Alcian blue 8GX, in a primary glutaraldehyde fixative has been reported to improve the preservation of the surface coat of cells of many types; however, the preserved coat is not very electron opaque unless thin sections are counterstained. The present paper shows that for several rat tissues lanthanum staining en bloc is an effective electron stain for the cell surface, giving excellent contrast, if combined sequentially with prefixation in an aldehyde fixative containing Alcian blue. The cationic substance cetylpyridinium chloride was found to have a similar effect to that of Alcian blue in enhancing the lanthanum staining of the surface coat material of the brush border of intestinal epithelial cells. The patterns of lanthanum staining obtained for the tissues studied strikingly resemble those reported in the literature where tissues are stained by several standard methods for demonstrating mucosubstances at the ultrastructural level. This fact and the reproduction of the effect of Alcian blue by cetylpyridinium chloride constitute a persuasive empirical argument that the material visualized is a mucopolysaccharide or mucopolysaccharide-protein complex. PMID:4108476

  2. Effects of surface treatment on the properties of UV coating

    OpenAIRE

    Guo, Xiaolei; Li, Rongrong; Teng, Yu; Cao, Pingxiang; Wang, Xiaodong (Alice); Ji, Futang

    2015-01-01

    The influence of the surface treatment of raw medium-density fiberboard on the properties of 1st ultraviolet putty coating film and the effects of primer coating arrangement on the qualities of 1st ultraviolet primer film were investigated. With regard to surface roughness and the recorded adhesion of the coating film, there were significant variations when the surface treatment was modified or when the coating arrangement was changed. The findings led to the conclusion that there was a close...

  3. Formation of protein-coated iron minerals.

    Science.gov (United States)

    Lewin, Allison; Moore, Geoffrey R; Le Brun, Nick E

    2005-11-21

    The ability of iron to cycle between Fe(2+) and Fe(3+) forms has led to the evolution, in different forms, of several iron-containing protein cofactors that are essential for a wide variety of cellular processes, to the extent that virtually all cells require iron for survival and prosperity. The redox properties of iron, however, also mean that this metal is potentially highly toxic and this, coupled with the extreme insolubility of Fe(3+), presents the cell with the significant problem of how to maintain this essential metal in a safe and bioavailable form. This has been overcome through the evolution of proteins capable of reversibly storing iron in the form of a Fe(3+) mineral. For several decades the ferritins have been synonymous with the function of iron storage. Within this family are subfamilies of mammalian, plant and bacterial ferritins which are all composed of 24 subunits assembled to form an essentially spherical protein with a central cavity in which the mineral is laid down. In the past few years it has become clear that other proteins, belonging to the family of DNA-binding proteins from starved cells (the Dps family), which are oligomers of 12 subunits, and to the frataxin family, which may contain up to 48 subunits, are also able to lay down a Fe(3+) mineral core. Here we present an overview of the formation of protein-coated iron minerals, with particular emphasis on the structures of the protein coats and the mechanisms by which they promote core formation. We show on the one hand that significant mechanistic similarities exist between structurally dissimilar proteins, while on the other that relatively small structural differences between otherwise similar proteins result in quite dramatic mechanistic differences.

  4. Protein surface shielding agents in protein crystallization

    International Nuclear Information System (INIS)

    Hašek, J.

    2011-01-01

    The crystallization process can be controlled by protein surface shielding agents blocking undesirable competitive adhesion modes during non-equilibrium processes of deposition of protein molecules on the surface of growing crystalline blocks. The hypothesis is based on a number of experimental proofs from diffraction experiments and also retrieved from the Protein Data Bank. The molecules adhering temporarily on the surface of protein molecules change the propensity of protein molecules to deposit on the crystal surface in a definite position and orientation. The concepts of competitive adhesion modes and protein surface shielding agents acting on the surface of molecules in a non-equilibrium process of protein crystallization provide a useful platform for the control of crystallization. The desirable goal, i.e. a transient preference of a single dominating adhesion mode between protein molecules during crystallization, leads to uniform deposition of proteins in a crystal. This condition is the most important factor for diffraction quality and thus also for the accuracy of protein structure determination. The presented hypothesis is a generalization of the experimentally well proven behaviour of hydrophilic polymers on the surface of protein molecules of other compounds

  5. Role of Charge Regulation and Size Polydispersity in Nanoparticle Encapsulation by Viral Coat Proteins

    NARCIS (Netherlands)

    Kusters, Remy; Lin, Hsiang-Ku; Zandi, Roya; Tsvetkova, Irina; Dragnea, Bogdan; van der Schoot, Paul

    2015-01-01

    Nanoparticles can be encapsulated by virus coat proteins if their surfaces are functionalized to acquire a sufficiently large negative charge. A minimal surface charge is required to overcome (i) repulsive interactions between the positively charged RNA-binding domains on the proteins and (ii) the

  6. Characterization of novel silane coatings on titanium implant surfaces

    NARCIS (Netherlands)

    Matinlinna, Jukka P; Tsoi, James Kit‐Hon; de Vries, Jacob; Busscher, Hendrik

    Objectives This in vitro study describes and characterizes a developed novel method to produce coatings on Ti. Hydrophobic coatings on substrates are needed in prosthetic dentistry to promote durable adhesion between luting resin cements and coated Ti surfaces. In implant dentistry the hydrophobic

  7. Surface analysis of DLC coating on cam-tappet system

    OpenAIRE

    FOUVRY, Siegfried; PAGNOUX, Geoffrey; PEIGNEY, Michael; DELATTRE, Benoit; MERMAT-ROLLET, Guillaume

    2013-01-01

    Tribomechanical properties of diamond-like carbon (DLC) coatings make them particularly interesting for numerous applications, like automotive ones. But although DLC coatings show a generally high wear resistance, they sometimes can exhibit severe multiple wear. In this study, a surface analysis of worn coated tappets is performed, leading to a complete coupled wear scenario.

  8. Surface Roughness Reduction of Additive Manufactured Products by Applying a Functional Coating Using Ultrasonic Spray Coating

    OpenAIRE

    Deferme, Wim; Reddy, Naveen; D'Haen, Jan; Drijkoningen, Jeroen

    2017-01-01

    To reduce the high surface roughness of additive manufactured (AM) products, typically a post-treatment is required. Subtractive post-treatments are often performed by hand and are therefore expensive and time consuming, whereas conventional additive post-treatments, such as pneumatic spray coating, require large quantities of coating material. Ultrasonic spray coating, in contrast, is an additive post-treatment technology capable of applying coatings in an efficient way, resulting in less ma...

  9. Electro-responsive polyelectrolyte-coated surfaces.

    Science.gov (United States)

    Sénéchal, V; Saadaoui, H; Rodriguez-Hernandez, J; Drummond, C

    2017-07-01

    The anchoring of polymer chains at solid surfaces is an efficient way to modify interfacial properties like the stability and rheology of colloidal dispersions, lubrication and biocompatibility. Polyelectrolytes are good candidates for the building of smart materials, as the polyion chain conformation can often be tuned by manipulation of different physico-chemical variables. However, achieving efficient and reversible control of this process represents an important technological challenge. In this regard, the application of an external electrical stimulus on polyelectrolytes seems to be a convenient control strategy, for several reasons. First, it is relatively easy to apply an electric field to the material with adequate spatiotemporal control. In addition, in contrast to chemically induced changes, the molecular response to a changing electric field occurs relatively quickly. If the system is properly designed, this response can then be used to control the magnitude of surface properties. In this work we discuss the effect of an external electric field on the adhesion and lubrication properties of several polyelectrolyte-coated surfaces. The influence of the applied field is investigated at different pH and salt conditions, as the polyelectrolyte conformation is sensitive to these variables. We show that it is possible to fine tune friction and adhesion using relatively low applied fields.

  10. Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces.

    Science.gov (United States)

    Mwenifumbo, Steven; Li, Mingwei; Chen, Jianbo; Beye, Aboubaker; Soboyejo, Wolé

    2007-01-01

    This paper examines the effects of nano-scale titanium coatings, and micro-groove/micro-grid patterns on cell/surface interactions on silicon surfaces. The nature of the cellular attachment and adhesion to the coated/uncoated micro-textured surfaces was elucidated by the visualization of the cells and relevant cytoskeletal & focal adhesion proteins through scanning electron microscopy and immunofluorescence staining. Increased cell spreading and proliferation rates are observed on surfaces with 50 nm thick Ti coatings. The micro-groove geometries have been shown to promote contact guidance, which leads to reduced scar tissue formation. In contrast, smooth surfaces result in random cell orientations and the increased possibility of scar tissue formation. Immunofluorescence cell staining experiments also reveal that the actin stress fibers are aligned along the groove dimensions, with discrete focal adhesions occurring along the ridges, within the grooves and at the ends of the cell extensions. The implications of the observed cell/surface interactions are discussed for possible applications of silicon in implantable biomedical systems.

  11. Enhanced protein adsorption and patterning on nanostructured latex-coated paper.

    Science.gov (United States)

    Juvonen, Helka; Määttänen, Anni; Ihalainen, Petri; Viitala, Tapani; Sarfraz, Jawad; Peltonen, Jouko

    2014-06-01

    Specific interactions of extracellular matrix proteins with cells and their adhesion to the substrate are important for cell growth. A nanopatterned latex-coated paper substrate previously shown to be an excellent substrate for cell adhesion and 2D growth was studied for directed immobilization of proteins. The nanostructured latex surface was formed by short-wavelength IR irradiation of a two-component latex coating consisting of a hydrophilic film-forming styrene butadiene acrylonitrile copolymer and hydrophobic polystyrene particles. The hydrophobic regions of the IR-treated latex coating showed strong adhesion of bovine serum albumin (cell repelling protein), fibronectin (cell adhesive protein) and streptavidin. Opposite to the IR-treated surface, fibronectin and streptavidin had a poor affinity toward the untreated pristine latex coating. Detailed characterization of the physicochemical surface properties of the latex-coated substrates revealed that the observed differences in protein affinity were mainly due to the presence or absence of the protein repelling polar and charged surface groups. The protein adsorption was assisted by hydrophobic (dehydration) interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Long-term stable surface modification of DLC coatings

    Directory of Open Access Journals (Sweden)

    Gotzmann Gaby

    2017-09-01

    Full Text Available The use of coatings based on diamond like carbon (DLC for medical applications was established during the last years. Main advantages of these coatings are its high hardness, good wear and friction behavior and its biocompatibility. Using low-energy electron-beam treatment, we addressed the surface modification of DLC coatings. The aim was to generate new biofunctional surface characteristics that are long-term stable.

  13. Method and coating composition for protecting and decontaminating surfaces

    Science.gov (United States)

    Overhold, D C; Peterson, M D

    1959-03-10

    A protective coating useful in the decontamination of surfaces exposed to radioactive substances is described. This coating is placed on the surface before use and is soluble in water, allowing its easy removal in the event decontamination becomes necessary. Suitable coating compositions may be prepared by mixing a water soluble carbohydrate such as sucrose or dextrin, together with a hygroscopic agent such as calcium chloride or zinc chloride.

  14. Expression and purification of coat protein of citrus tristeza virus ...

    African Journals Online (AJOL)

    Citrus tristeza virus (CTV) polyclonal antibodies produced either from the recombinant coat protein (CP) of CTV or extracted virus from midrib used for the detection of virus. Compared with intact virion procedure, the use of CP antigen resulted in highly specific polyclonal antibodies. CTV coat protein gene (CTV-cp) cloned ...

  15. Molecular characterization, cloning and sequencing of coat protein ...

    African Journals Online (AJOL)

    Belal

    2013-03-13

    Mar 13, 2013 ... of barley yellow dwarf luteovirus-PAV are contained in the coat protein readthrough and 17kDa, respectively. Virology 219:57-65. El-Attar AK, Riad BY, Saad A, Soliman AM, Mazyad HM (2010). Expression of the coat protein gene of potato leaf roll virus in. Escherichia coli and development of polyclonal ...

  16. Superhydrophobic coatings for aluminium surfaces synthesized by chemical etching process

    Directory of Open Access Journals (Sweden)

    Priya Varshney

    2016-10-01

    Full Text Available In this paper, the superhydrophobic coatings on aluminium surfaces were prepared by two-step (chemical etching followed by coating and one-step (chemical etching and coating in a single step processes using potassium hydroxide and lauric acid. Besides, surface immersion time in solutions was varied in both processes. Wettability and surface morphologies of treated aluminium surfaces were characterized using contact angle measurement technique and scanning electron microscopy, respectively. Microstructures are formed on the treated aluminium surfaces which lead to increase in contact angle of the surface (>150°. Also on increasing immersion time, contact angle further increases due to increase in size and depth of microstructures. Additionally, these superhydrophobic coatings show excellent self-cleaning and corrosion-resistant behavior. Water jet impact, floatation on water surface, and low temperature condensation tests assert the excellent water-repellent nature of coatings. Further, coatings are to be found mechanically, thermally, and ultraviolet stable. Along with, these coatings are found to be excellent regeneration ability as verified experimentally. Although aforesaid both processes generate durable and regenerable superhydrophobic aluminium surfaces with excellent self-cleaning, corrosion-resistant, and water-repellent characteristics, but one-step process is proved more efficient and less time consuming than two-step process and promises to produce superhydrophobic coatings for industrial applications.

  17. Method for Qualification of Coatings Applied to Wet Surfaces

    Science.gov (United States)

    2009-12-16

    The field application of a pipeline repair or rehabilitation coating usually cannot wait until ambient conditions become optimal. In a humid environment, water can condense on the pipe surface because the pipe surface is usually cooler than the ambie...

  18. Surface coating metrology of carbides of cutting tools

    Science.gov (United States)

    Parfenov, V. D.; Basova, G. D.

    2017-10-01

    The coatings were studied by their main sign of the micrometric thickness by means of coating destruction and electron microscopical study of cleavage surfaces. Shock stress ruptures of heated carbides of cutting tools were performed. The discovery of the coating technology and creation of the coating structure for nonuniform and nonequilibrium conditions of the cutting process were dealt with. Multifracture microdestruction of nitride coatings, caused by complex external influences, was analysed to reveal the mechanism of interaction of elementary failures. Positive results were obtained in the form of improving the strength and wear resistance of the product, crack resistance increasing.

  19. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Eric D.; Singh, Seema [Sandia National Laboratories, Livermore, CA; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements

  20. Naturally acquired antibodies against the major merozoite surface coat protein (MSP-1 of Plasmodium falciparum acquired by residents in an endemic area of Colombia

    Directory of Open Access Journals (Sweden)

    Zillka I. Terrientes

    1994-01-01

    Full Text Available A preliminary baseline epidemiological malaria survey was conducted in the village of Punta Soldado, Colombia. Parasite prevalence and density as well as serological data were obtained from 151 asymptomatic children and adults. Fifty individuals were infected with Plasmodium falciparum. The mean parasite density was 184 parasites/mm3. Greater than 90 of the sample population were P. falciparum antibody positive as detected by the indirect immunofluorescent antibody test (IFAT. The enzyme-linked immunosorbent assay (ELISA was used to detect antibodies against the major merozoite surface protein (MSP-1 of P. falciparum. In this population, anti-MSP-1 antibody concentration is acquired in an age dependent manner with equal immunogenicity to both the N- and C-terminal regions of the molecule. Infection at the time of sampling was associated with a higher anti-MSP-1 antibody concentration than that found in non-infected individuals. Further studies are planned to assess the role of immune and non-immune factors in limiting the number of cases of severe malaria seen in this population.

  1. Surface coatings deposited by CVD and PVD

    International Nuclear Information System (INIS)

    Gabriel, H.M.

    1982-01-01

    The demand for wear and corrosion protective coatings is increasing due to economic facts. Deposition processes in gas atmospheres like the CVD and PVD processes attained a tremendous importance especially in the field of the deposition of thin hard refractory and ceramic coatings. CVD and PVD processes are reviewed in detail. Some examples of coating installations are shown and numerous applications are given to demonstrate the present state of the art. (orig.) [de

  2. The surface properties of biopolymer-coated fruit: A review

    Directory of Open Access Journals (Sweden)

    Diana Cristina Moncayo Martinez

    2013-09-01

    Full Text Available Environmental conservation concerns have led to research and development regarding biodegradable materials from biopolymers, leading to new formulations for edible films and coatings for preserving the quality of fresh fruit and vegetables. Determining fruit skin surface properties for a given coating solution has led to predicting coating efficiency. Wetting was studied by considering spreading, adhesion and cohesion and measuring the contact angle, thus optimising the coating formulation in terms of biopolymer, plasticiser, surfactant, antimicrobial and antioxidant concentration. This work reviews the equations for determining fruit surface properties by using polar and dispersive interaction calculations and by determining the contact angle.

  3. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  4. Quantitation of Surface Coating on Nanoparticles Using Thermogravimetric Analysis.

    Science.gov (United States)

    Dongargaonkar, Alpana A; Clogston, Jeffrey D

    2018-01-01

    Nanoparticles are critical components in nanomedicine and nanotherapeutic applications. Some nanoparticles, such as metallic nanoparticles, consist of a surface coating or surface modification to aid in its dispersion and stability. This surface coating may affect the behavior of nanoparticles in a biological environment, thus it is important to measure. Thermogravimetric analysis (TGA) can be used to determine the amount of coating on the surface of the nanoparticle. TGA experiments run under inert atmosphere can also be used to determine residual metal content present in the sample. In this chapter, the TGA technique and experimental method are described.

  5. Surface protection of austenitic steels by carbon nanotube coatings

    Science.gov (United States)

    MacLucas, T.; Schütz, S.; Suarez, S.; Mücklich, F.

    2018-03-01

    In the present study, surface protection properties of multiwall carbon nanotubes (CNTs) deposited on polished austenitic stainless steel are evaluated. Electrophoretic deposition is used as a coating technique. Contact angle measurements reveal hydrophilic as well as hydrophobic wetting characteristics of the carbon nanotube coating depending on the additive used for the deposition. Tribological properties of carbon nanotube coatings on steel substrate are determined with a ball-on-disc tribometer. Effective lubrication can be achieved by adding magnesium nitrate as an additive due to the formation of a holding layer detaining CNTs in the contact area. Furthermore, wear track analysis reveals minimal wear on the coated substrate as well as carbon residues providing lubrication. Energy dispersive x-ray spectroscopy is used to qualitatively analyse the elemental composition of the coating and the underlying substrate. The results explain the observed wetting characteristics of each coating. Finally, merely minimal oxidation is detected on the CNT-coated substrate as opposed to the uncoated sample.

  6. Proteins at surfaces

    NARCIS (Netherlands)

    Efimova, Y.M.

    2006-01-01

    Understanding protein adsorption is of vital importance in many fields of medicine and industry that can be divided into two categories: those in which it is desired to minimize adsorption, and those in which protein adsorption is desired. The first category covers materials for kidney dialysis

  7. Surface treatment of zinc coatings by molybdate solutions

    International Nuclear Information System (INIS)

    Fachikov, L.; Ivanova, D.

    2012-01-01

    Highlights: ► Molybdate conversion treatments on zinc coatings. ► Zn, Mo, P, O and Ni are basic elements in the coatings. ► Better corrosion resistance of zinc coatings after molybdate surface treatment. - Abstract: The influence of different factors such as concentration, temperature, pH and cathodic polarization on formation, properties and composition of coatings obtained under treatment of zinc surfaces by molybdate solutions has been investigated by gravimetric, electrochemical and physical methods. Coatings obtained at pH 4 are distinguished for the best uniformity and density of color. The thicknesses of coatings raise by increasing the cathode current density under other equal conditions. Molybdenum, zinc and phosphorus are the basic components of the passive films.

  8. Surface coated polyurethane with improved bioactivity and cytocompatability

    CSIR Research Space (South Africa)

    Chetty, AS

    2006-02-01

    Full Text Available -ray-diffraction spectroscopy (XRD) (Figure 1B). The HA layer appeared well bonded to the underlying PU surface as the coating remained intact even after vigorous scrubbing and sticky tape adhesion testing. Average HA coating thickness observed by SEM cross... coating, via precipitation and ion exchange between the SBF and the HA layer. 3 Cytocompatibility testing The crystal violet assay was employed to stain cellular DNA, which is directly related to the number of cells attached onto the substrates...

  9. Antibacterial effect of doxycycline-coated dental abutment surfaces

    International Nuclear Information System (INIS)

    Xing, Rui; Tiainen, Hanna; Shabestari, Maziar; Lyngstadaas, Ståle P; Haugen, Håvard J; Witsø, Ingun L; Lönn-Stensrud, Jessica; Jugowiec, Dawid

    2015-01-01

    Biofilm formation on dental abutment may lead to peri-implant mucositis and subsequent peri-implantitis. These cases are clinically treated with antibiotics such as doxycycline (Doxy). Here we used an electrochemical method of cathodic polarization to coat Doxy onto the outer surface of a dental abutment material. The Doxy-coated surface showed a burst release in phosphate-buffered saline during the first 24 h. However, a significant amount of Doxy remained on the surface for at least 2 weeks especially on a 5 mA–3 h sample with a higher Doxy amount, suggesting both an initial and a long-term bacteriostatic potential of the coated surface. Surface chemistry was analyzed by x-ray photoelectron spectroscopy and secondary ion mass spectrometry. Surface topography was evaluated by field emission scanning electron microscopy and blue-light profilometry. Longer polarization time from 1 h to 5 h and higher current density from 1 to 15 mA cm −2 resulted in a higher amount of Doxy on the surface. The surface was covered by a layer of Doxy less than 100 nm without significant changes in surface topography. The antibacterial property of the Doxy-coated surface was analyzed by biofilm and planktonic growth assays using Staphylococcus epidermidis. Doxy-coated samples reduced both biofilm accumulation and planktonic growth in broth culture, and also inhibited bacterial growth on agar plates. The antibacterial effect was stronger for samples of 5 mA–3 h coated with a higher amount of Doxy compared to that of 1 mA–1 h. Accordingly, an abutment surface coated with Doxy has potential for preventing bacterial colonization when exposed to the oral cavity. Doxy-coating could be a viable way to control peri-implant mucositis and prevent its progression into peri-implantitis. (paper)

  10. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film......The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...

  11. Stresses and Cracks in Surface Coatings

    DEFF Research Database (Denmark)

    Horsewell, Andy

    2000-01-01

    This extended abstract of the talk to be given at the Danish Metallurgical Society, Winter Meeting 1999, gives an outline of the areas of interest in current projects in wear and corrosion resistant coatings at Materials Technology, Technical University of Denmark (IPT, Materialeteknologi, DTU......). It also briefly describes our method of approach in analysing new coating / substrate combinations or new materials processing techniques for producing a given coating. We strive to combine, often in collaboration with others, a fundamental understanding of microstructure, mechanical properties...

  12. INFLUENCE OF WORKPIECE SURFACE PREPARATION ON THERMAL BARRIER COATING DURABILITY

    Directory of Open Access Journals (Sweden)

    M. A. Petrova

    2014-01-01

    Full Text Available Article deals with the impact of workpiece surface quality on adhesive strength and durability of thermal barrier coating. The result revealed that the roughness of metal layer influences on the adhesion of ceramic coating and depends the thickness of ceramic crystals when using method of Electron beam deposition.

  13. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...

  14. Possibilities of surface coating for thermal insulation. [zirconium dioxide, titanium dioxide, and zircon coatings

    Science.gov (United States)

    Poeschel, E.; Weisser, G.

    1979-01-01

    Calculations performed for pulsating heat sources indicate a relatively thin (200-1000 micron) coating can lower temperature both inside and on the surface of a construction material. Various coating materials (including zirconium dioxide) are discussed, together with possible thermic stresses and ways to deal with the latter.

  15. A study on the surface roughness of a thin HSQ coating on a fine milled surface

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Hansen, Hans Nørgaard; Pranov, Henrik

    2014-01-01

    The paper discusses a novel application of a thin layer coating on a metallic machined surface with particular attention to roughness of the coating compared to the original surface before coating. The coating is a nominally 1 μm film of Hydrogen Silsesquioxane (HSQ) which is commonly used...... in the semiconductor industry in the manufacture of integrated circuits. The work piece is a fine peripheral-milled tool steel surface which is widely used in industrial applications. Roughness improvement after the application of HSQ coating is reported....

  16. Surface cracking in resistance seam welding of coated steels

    Energy Technology Data Exchange (ETDEWEB)

    Adonyi, Y.; Kimchi, M.

    1994-12-31

    In this experimental work, the focus was on the understanding the electrode-wheel/coated steel surface phenomena by building operational lobes and by correlating the weld quality with static-and dynamic-contact-resistance variation during welding. Conventional AC, DC, and electrode-wire resistance-seam weldability of printed zinc-coated and hot-dipped tin-coated steel was performed in this work, as compared with traditional lead-tin (terne) coating used as reference material. Variables included steel substrate type, welding equipment type, electrode-wheel cleaning practice, and electrode-wire geometry. Optic and electron microscopy were used for the evaluation of specimens extracted from longitudinal cross-sections of representative welds. The size and morphology of surface cracks was characterized and correlated with variations in the above-mentioned parameters. It was found that the tin-coated (unpainted) steel sheet had a superior all-together performance to the zinc-coated steel and terne-coated steel, both in terms of wider weldability lobes and lesser surface cracking. The extent of surface cracking was greatly reduced by using the electrode-wire seam welding process using a longitudinally grooved wire profile, which also widened the corresponding weldability lobes. It was also found that the extent of cracking depended on the electrode knurl geometry, substrate type, and the presence of conductive paint applied on top of the metallic coating. An attempt was made to characterize the specific mechanisms governing the LME phenomenon for the lead-, zinc and tin-based coating systems and to assess the potential for crack propagation in the welds. The dynamic contact resistance was found to be a good measure of the welding process stability and an indicator of defect formation. It was found that the ratio between the static and dynamic contact resistances of the tin-coated sheet was considerably lower than similar ratios for bare and zinc-coated sheet.

  17. Surface coating for prevention of metallic seed migration in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyunseok; Park, Jong In [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Won Seok; Park, Min [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 151-742 (Korea, Republic of); Son, Kwang-Jae [Hanaro Applications Research, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Bang, Young-bong [Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Choy, Young Bin, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul 110-744 (Korea, Republic of); Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 110-744 (Korea, Republic of); Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 110-744 (Korea, Republic of); Ye, Sung-Joon, E-mail: ybchoy@snu.ac.kr, E-mail: sye@snu.ac.kr [Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Suwon 443-270 (Korea, Republic of); Department of Radiation Oncology, Seoul National University Hospital, Seoul 110-744 (Korea, Republic of)

    2015-06-15

    Purpose: In radiotherapy, metallic implants often detach from their deposited sites and migrate to other locations. This undesirable migration could cause inadequate dose coverage for permanent brachytherapy and difficulties in image-guided radiation delivery for patients. To prevent migration of implanted seeds, the authors propose a potential strategy to use a biocompatible and tissue-adhesive material called polydopamine. Methods: In this study, nonradioactive dummy seeds that have the same geometry and composition as commercial I-125 seeds were coated in polydopamine. Using scanning electron microscopy and x-ray photoelectron spectroscopy, the surface of the polydopamine-coated and noncoated seeds was characterized. The detachment stress between the two types of seeds and the tissue was measured. The efficacy of polydopamine-coated seed was investigated through in vitro migration tests by tracing the seed location after tissue implantation and shaking for given times. The cytotoxicity of the polydopamine coating was also evaluated. Results: The results of the coating characterization have shown that polydopamine was successfully coated on the surface of the seeds. In the adhesion test, the polydopamine-coated seeds had 2.1-fold greater detachment stress than noncoated seeds. From the in vitro test, it was determined that the polydopamine-coated seed migrated shorter distances than the noncoated seed. This difference was increased with a greater length of time after implantation. Conclusions: The authors suggest that polydopamine coating is an effective technique to prevent migration of implanted seeds, especially for permanent prostate brachytherapy.

  18. Epoxy coatings electrodeposited on aluminium and modified aluminium surfaces

    Directory of Open Access Journals (Sweden)

    Lazarević Zorica Ž.

    2002-01-01

    Full Text Available The corrosion behaviour and thermal stability of epoxy coatings electrodeposited on modified aluminum surfaces (anodized, phosphatized and chromatized-phosphatized aluminium were monitored during exposure to 3% NaCl solution, using electrochemical impedance spectroscopy (EIS and thermogravimetric analysis (TGA. Better protective properties of the epoxy coatings on anodized and chromatized-phosphatized aluminum with respect to the same epoxy coatings on aluminum and phosphatized aluminum were obtained: higher values of Rp and Rct and smaller values of Cc and Cd, from EIS, and a smaller amount of absorbed water inside the coating, from TGA. On the other hand, a somewhat lower thermal stability of these coatings was obtained (smaller values of the ipdt temperature. This behavior can be explained by the less porous structure of epoxy coatings on anodized and chromatized-phosphatized aluminum, caused by a lower rate of H2 evolution and better wet ability.

  19. Polydopamine-coated open tubular column for the separation of proteins by capillary electrochromatography.

    Science.gov (United States)

    Xiao, Xing; Wang, Wentao; Chen, Jia; Jia, Li

    2015-08-01

    The separation and determination of proteins in food is an important aspect in food industry. Inspired by the self-polymerization of dopamine under alkaline conditions and the natural adhesive properties of polydopamine, in this paper, a simple and economical method was developed for the preparation of polydopamine-coated open tubular column, in which ammonium persulfate was used as the source of oxygen to induce and facilitate the polymerization of dopamine to form polydopamine. In comparison with a naked fused-silica capillary, the direction and magnitude of the electro-osmotic flow of the as-prepared polydopamine-coated open tubular column could be manipulated by varying the pH values of background solutions due to the existence of amine and phenolic hydroxyl groups on polydopamine coating. The surface morphology of the polydopamine-coated open tubular column was studied by scanning electron microscopy, and the thickness of polydopamine coating was 106 nm. The performance of the polydopamine-coated open tubular column was validated by analysis of proteins. The relative standard deviations of migration times of proteins representing run-to-run, day-to-day, and column-to-column were less than 3.5%. In addition, the feasibility of the polydopamine-coated open tubular column for real samples was verified by the separation of proteins in chicken egg white and pure milk. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of surface topological structure and chemical modification of flame sprayed aluminum coatings on the colonization of Cylindrotheca closterium on their surfaces

    Science.gov (United States)

    Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua

    2016-12-01

    Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.

  1. Protein-adsorption and Ca-phosphate formation on chitosan-bioactive glass composite coatings

    Science.gov (United States)

    Wagener, V.; Boccaccini, A. R.; Virtanen, S.

    2017-09-01

    In the last years, chitosan-bioactive glass (BG) composites have been developed and investigated as bioactive coatings for orthopedic applications. The increase of bioactivity occurs due to the stimulation of calcium-phosphate/hydroxyapatite formation on the surface while the coating is degrading. In the present work, protein adsorption and its influence on calcium-phosphate precipitation was studied for the first time on such composite coatings. The experiments involved coating of 316L stainless steel substrates with chitosan (Ch) and chitosan-bioactive glass (Ch-BG) and immersion of the coated samples in two different bovine serum albumin (BSA) containing solutions, namely DI H2O (with pH adjusted to about 7.2 with diluted NaOH) and simulated body fluid (SBF). In order to investigate the influence of protein adsorption on calcium-phosphate precipitation, samples were also immersed in DI H2O and in SBF without BSA. Samples were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Surface analysis revealed that adsorption of BSA takes place on all studied samples and that protein adsorption is influenced by the presence of Ca2+ and PO43- ions. Bioactivity in the form of hydroxyapatite pre-stage formation is significantly increased on Ch-BG composite coating as compared with bare stainless steel surface. However, calcium-phosphate precipitation in SBF is reduced by the presence of BSA.

  2. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  3. Surface functionalization with strontium-containing nanocomposite coatings via EPD.

    Science.gov (United States)

    Ma, Kena; Huang, Dan; Cai, Jing; Cai, Xinjie; Gong, Lingling; Huang, Pin; Wang, Yining; Jiang, Tao

    2016-10-01

    Metal orthopedic implants still face challenges in some compromised conditions, partly due to bio-inertness. The present study aimed to functionalize metallic implants with organic-inorganic nanocomposite (strontium-containing chitosan/gelatin) coatings through a simple single-step electrophoretic deposition under mild conditions. The surface characterization and in vitro cellular response were studied and compared with chitosan/gelatin (CS/G) coatings. SEM images suggested the inorganic nanoparticles may be encapsulated within or mixed with organic polymers. The XRD patterns showed that strontium carbonate was generated in the coatings. The TEM images revealed strontium-containing nanoparticles were released from the coatings in PBS. The continuous release after the initial burst release ensured the enduring effects of the functionalized surface. The tensile bond strength of the coatings to the substrates increased after the addition of strontium. In vitro cellular study confirmed that strontium-containing coatings supported the proliferation of MC3T3-E1 cells and exhibited excellent ability to enhance the differentiation of such pre-osteoblasts. Therefore, such organic-inorganic nanocomposite coatings are a promising candidate to functionalize orthopedic implant surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Surface modification of TiO2 coatings by Zn ion implantation for ...

    Indian Academy of Sciences (India)

    to the PIII-treated TiO2 coatings than E. coli. Surface chemical composition of TiO2-based implants plays a crucial role in biological interaction because it is in direct contact with the biological environment. Zn is an important trace element for enhancing cell proliferation,. ALP activity, collagen synthesis, and protein synthesis.

  5. Coating nanoparticles with tunable surfactants facilitates control over the protein corona.

    Science.gov (United States)

    Müller, J; Bauer, K N; Prozeller, D; Simon, J; Mailänder, V; Wurm, F R; Winzen, S; Landfester, K

    2017-01-01

    Nanoparticles with long blood circulation time are a prerequisite for targeted drug delivery. To make the nanoparticles invisible for phagocytizing cells, functional moieties on the particle surface are believed to be necessary to attract specific so-called 'stealth' proteins forming a protein 'corona'. Currently, covalent attachment of those moieties represents the only way to achieve that attraction. However, that approach requires a high synthetic effort and is difficult to control. Therefore, we present the coating of model nanoparticles with biodegradable polymeric surfactants as an alternative method. The thermodynamic parameters of the coating process can be tuned by adjusting the surfactants' block lengths and hydrophilicity. Consequently, the unspecific protein adsorption and aggregation tendency of the particles can be controlled, and stealth proteins inhibiting cell uptake are enriched on their surface. This non-covalent approach could be applied to any particle type and thus facilitates tuning the protein corona and its biological impact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Proteomics Analysis Reveals Distinct Corona Composition on Magnetic Nanoparticles with Different Surface Coatings: Implications for Interactions with Primary Human Macrophages.

    Directory of Open Access Journals (Sweden)

    Carmen Vogt

    Full Text Available Superparamagnetic iron oxide nanoparticles (SPIONs have emerged as promising contrast agents for magnetic resonance imaging. The influence of different surface coatings on the biocompatibility of SPIONs has been addressed, but the potential impact of the so-called corona of adsorbed proteins on the surface of SPIONs on their biological behavior is less well studied. Here, we determined the composition of the plasma protein corona on silica-coated versus dextran-coated SPIONs using mass spectrometry-based proteomics approaches. Notably, gene ontology (GO enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway analysis revealed distinct protein corona compositions for the two different SPIONs. Relaxivity of silica-coated SPIONs was modulated by the presence of a protein corona. Moreover, the viability of primary human monocyte-derived macrophages was influenced by the protein corona on silica-coated, but not dextran-coated SPIONs, and the protein corona promoted cellular uptake of silica-coated SPIONs, but did not affect internalization of dextran-coated SPIONs.

  7. Inflammatory response to titanium surfaces with fibrinogen and catalase coatings: an in vitro study.

    Science.gov (United States)

    Göransson, A; Gretzer, C; Tengvall, P; Wennerberg, A

    2007-03-01

    The aim of the present study was to evaluate the possibility to modulate the early inflammatory response in vitro by coating titanium surfaces with candidate proinflammatory (fibrinogen coated turned titanium "Fib") and antiinflammatory proteins (catalase on top of fibrinogen coated turned titanium "Cat"). Additionally, turned titanium surfaces (Ti) were used as controls. The discs were incubated with human mononuclear cells. Adhered cells were investigated with respect to number, viability, differentiation (acute marker 27E10 vs. chronic marker RM3/1), and cytokine production (TNF-alpha and IL-10), after 24 and 72 h. The results indicated that it is possible to modulate the inflammatory response with protein coatings. However, the strongest inflammatory response, indicated by increased number of adhered cells and release of pro and antiinflammatory mediators, was induced by Cat. Furthermore, the cytokine production on this surface was not sensitive to LPS stimulation. Differentiation measured as the expression of the chronic cell surface marker, dominated after 72 h for all surface modifications and Cat displayed an increased number compared to the others. A decrease in the total number of adhered cells and amounts of TNF-alpha were observed on all surfaces over time. The cell viability was, in general, high for all tested surfaces. In conclusion, the study proved it possible to influence the early inflammatory response in vitro by immobilizing protein coatings to titanium surfaces. However, the catalase surface demonstrated the strongest inflammatory response, and the possibility to selectively use the potent antiinflammatory capacity of catalase needs to be further evaluated.

  8. Computer analysis of transient heat transfer from coated surfaces

    International Nuclear Information System (INIS)

    Menard, A.; Holmes, D.

    1983-01-01

    The transient thermal response of internally heated, coated surfaces in contact with liquid helium was investigated with a previously developed computer model. The coatings were found to affect the time required to initiate film boiling or to quench a superconductor in the substrate. The energy which can be absorbed without an unacceptably large temperature rise depends most strongly upon the coating thermal property group (kpC /SUB p/ ) /SUP 1/2/ and on the peak nucleate boiling heat flux. Dielectric materials for electrical insulation usually have low thermal property group values, but a new class of ceramic materials shows great promise for application with superconducting devices as electrical insulations with good thermal properties. Coating materials with thermal property group values greater than that of OFHC copper at liquid helium temperatures provide the same thermal stability as a bare copper surface exposed to the helium bath. Possible applications of the new materials to potted windings are also discussed

  9. Removable coating for contamination protection of concrete surface

    International Nuclear Information System (INIS)

    Brambilla, G.; Beaulardi, L.

    1985-01-01

    In order to research protective coatings for concrete surfaces, assuring an effective protection against contamination and that it be easily removed before dismantling the structures, commercial stripping paints have been characterized for their conventional and nuclear properties: water and chemicals, abrasion, impact, tensile stress resistance, stripping capacity, decontaminability. The protective power of the coatings against contamination has been checked by recording the surface activity before and after stripping the paint film: the activity filtered through the coating was, in any case, very low (< 1% of the deposited activity). Indications from large scale application of a stripping paint in NUCLEO (Rome) establishments and technical evaluation of the possible utilization of removable coatings in the CAORSO Nuclear Power Station, are also reported

  10. RF surface resistance study of non-evaporable getter coatings

    Energy Technology Data Exchange (ETDEWEB)

    Malyshev, Oleg B., E-mail: oleg.malyshev@stfc.ac.uk [ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Gurran, Lewis [ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Engineering, Lancaster University, Cockcroft Institute, Lancaster (United Kingdom); Goudket, Philippe; Marinov, Kiril [ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Wilde, Stuart [ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Loughborough University, Loughborough (United Kingdom); Valizadeh, Reza [ASTeC, STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Burt, Graeme [Cockcroft Institute, Daresbury, Warrington, WA4 4AD Cheshire (United Kingdom); Engineering, Lancaster University, Cockcroft Institute, Lancaster (United Kingdom)

    2017-02-01

    In many particle accelerators the beam parameters could be affected by the beam pipe wakefield impedance. It is vital to understand how the wakefield impedance might vary due to various coatings on the surface of the vacuum chamber, and this can be derived from surface resistance measurements. The bulk conductivity of two types of NEG films (dense and columnar) is determined. This is achieved by measuring the surface resistance of NEG-coated samples using an RF test cavity and fitting the experimental data to a standard theoretical model. The conductivity values obtained are then used to compare resistive wall wakefield effects in beam pipes coated with either of the two types of film. - Highlights: • The surface resistance two types of non-evaporable getter film was measured. • The bulk conductivity of two types of NEG films (dense and columnar) was determined. • The obtained conductivity values were applied for various RF frequencies.

  11. [Formation of microbial populations on the surface of protective coatings].

    Science.gov (United States)

    Kopteva, Zh P; Zanina, V V; Piliashenko-Novokhatnyĭ, A I; Kopteva, A E; Kozlova, I A

    2001-01-01

    Formation of microbial cenosis on the surface of polyethylene-, polyurethane- and oil-bitumen-based protective coatings was studied in dynamics during 1, 3, 7, 14 and 21 days. It has been shown that the biofilm was formed on the protective materials during 14 days and consisted of ammonifying, denitrifying, hydrocarbon-oxidizing and sulphate-reducing bacteria referred to Pseudomonas, Arthrobacter, Bacillus and Kesulfovibrio genera. The bacteria which form the biofilm on coatings possess high denitrifying and sulphate-reducing activities. Corrosion inhibitors-biocydes, introduced in composition of oil-bitumen coatings suppressed growth and metabolic activity of corrosion-active bacteria.

  12. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    Science.gov (United States)

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p silicone elastomers processed against coated gypsum materials (p silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  13. Antibacterial and Bioactive Coatings on Titanium Implant Surfaces

    OpenAIRE

    Aranya, Anupama Kulkarni; Pushalkar, Smruti; Zhao, Minglei; LeGeros, Racquel Z.; Zhang, Yu; Saxena, Deepak

    2017-01-01

    Various surface modifications have been tried for enhancing osseointegration of the dental implants like mechanical and/or chemical treatments and deposition of calcium phosphate coatings. The objective of this research was to develop calcium-phosphate based thin coatings with antibacterial and bioactive properties for potential application in dental implants. Titanium (Ti) discs were immersed in different calcifying solutions: CaP (positive control), F-CaP, Zn-CaP and FZn-CaP and incubated f...

  14. Current Developments in Antimicrobial Surface Coatings for Biomedical Applications

    NARCIS (Netherlands)

    Swartjes, J. J. T. M.; Sharma, P. K.; van Kooten, T. G.; van der Mei, H. C.; Mahmoudi, M.; Busscher, H. J.; Rochford, E. T. J.

    2015-01-01

    Bacterial adhesion and subsequent biofilm formation on material surfaces represent a serious problem in society from both an economical and health perspective. Surface coating approaches to prevent bacterial adhesion and biofilm formation are of increased importance due to the increasing prevalence

  15. Technology of Strengthening Steel Details by Surfacing Composite Coatings

    Science.gov (United States)

    Burov, V. G.; Bataev, A. A.; Rakhimyanov, Kh M.; Mul, D. O.

    2016-04-01

    The article considers the problem of forming wear resistant meal ceramic coatings on steel surfaces using the results of our own investigations and the analysis of achievements made in the country and abroad. Increasing the wear resistance of surface layers of steel details is achieved by surfacing composite coatings with carbides or borides of metals as disperse particles in the strengthening phase. The use of surfacing on wearing machine details and mechanisms has a history of more than 100 years. But still engineering investigations in this field are being conducted up to now. The use of heating sources which provide a high density of power allows ensuring temperature and time conditions of surfacing under which composites with peculiar service and functional properties are formed. High concentration of energy in the zone of melt, which is created from powder mixtures and the hardened surface layer, allows producing the transition zone between the main material and surfaced coating. Surfacing by the electron beam directed from vacuum to the atmosphere is of considerable technological advantages. They give the possibility of strengthening surface layers of large-sized details by surfacing powder mixtures without their preliminary compacting. A modified layer of the main metal with ceramic particles distributed in it is created as a result of heating surfaced powders and the detail surface layer by the electron beam. Technology of surfacing allows using powders of refractory metals and graphite in the composition of powder mixtures. They interact with one another and form the particles of the hardening phase of the composition coating. The chemical composition of the main and surfaced materials is considered to be the main factor which determines the character of metallurgical processes in local zones of melt as well as the structure and properties of surfaced composition.

  16. GRINDING OF SURFACES WITH COATINGS FORMED BY ELECTROMAGNETIC FACING WITH SURFACE PLASTIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    Zh. A. Mrochek

    2011-01-01

    Full Text Available The paper presents investigation results on machining of surfaces having a coating formed by electromagnetic facing with surface plastic deformation and using abrasive and diamond wheels having a porous metal binder with orientated drains.

  17. Maintenance Solutions for Bleeding and Flushed Pavements Surfaced with a Seal Coat or Surface Treatment

    Science.gov (United States)

    2007-02-01

    This report summarizes the findings of research directed at identifying maintenance solutions for bleeding and : flushed asphalt pavements surfaced with seal coats or surface treatments. Although the basic mechanism associated with : both bleeding an...

  18. Haemocompatibility evaluation of DLC- and SiC-coated surfaces

    Directory of Open Access Journals (Sweden)

    Nurdin N.

    2003-06-01

    Full Text Available Diamond-like carbon (DLC and silicon carbide (SiC coatings are attractive because of low friction coefficient, high hardness, chemical inertness and smooth finish, which they provide to biomedical devices. Silicon wafers (Siwaf and silicone rubber (Sirub plates were coated using plasma-enhanced chemical vapour deposition (PE-CVD techniques. This article describes: 1- the characterization of modified surfaces using attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FTIR and contact angle measurements, 2- the results of three in-vitro haemocompatibility assays. Coated surfaces were compared to uncoated materials and various substrates such as polymethylmethacrylate (PMMA, polyethylene (LDPE, polydimethylsiloxane (PDMS and medical steel (MS. Thrombin generation, blood platelet adhesion and complement convertase activity tests revealed the following classification, from the most to the least heamocompatible surface: Sirub/ DLC-Sirub/ DLC-Siwaf/ LDPE/ PDMS/ SiC-Siwaf/ Siwaf/ PMMA/ MS. The DLC coating surfaces delayed the clotting time, tended to inhibit the platelet and complement convertase activation, whereas SiC-coated silicon wafer can be considered as thrombogenic. This study has taken into account three events of the blood activation: coagulation, platelet activation and inflammation. The response to those events is an indicator of the in vitro haemocompatibility of the different surfaces and it allows us to select biomaterials for further in vivo blood contacting investigations.

  19. Antibacterial and bioactive coatings on titanium implant surfaces.

    Science.gov (United States)

    Kulkarni Aranya, Anupama; Pushalkar, Smruti; Zhao, Minglei; LeGeros, Racquel Z; Zhang, Yu; Saxena, Deepak

    2017-08-01

    Various surface modifications have been tried for enhancing osseointegration of the dental implants like mechanical and/or chemical treatments and deposition of calcium phosphate coatings. The objective of this research was to develop calcium-phosphate based thin coatings with antibacterial and bioactive properties for potential application in dental implants. Titanium (Ti) discs were immersed in different calcifying solutions: CaP (positive control), F-CaP, Zn-CaP, and FZn-CaP and incubated for 24 h. Negative control was uncoated Ti discs. Coated surfaces were characterized using X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. Antibacterial properties were tested using Porphyromonas gingivalis because of its strong association with periodontal and peri-implant infections. Bacterial adhesion and colonization were studied at different timepoints. The coated surfaces had compositional characteristics similar to that of bone mineral and they inhibited the growth, colonization and adherence of P. gingivalis, resulted in reduced thickness of biofilms and bacterial inhibition in the culture medium as compared to the positive and negative controls (p  0.05). It has been previously demonstrated that these coatings have excellent in vitro bioactivity (formed carbonate hydroxyapatite when immersed in a simulated body fluid). Such coatings can enhance osseointegration and prevent infection in implants, thereby improving the success rates of implants. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2218-2227, 2017. © 2017 Wiley Periodicals, Inc.

  20. Laminin coatings on implant surfaces promote osseointegration: Fact or fiction?

    Science.gov (United States)

    Javed, Fawad; Al Amri, Mohammad D; Kellesarian, Sergio Varela; Al-Askar, Mansour; Al-Kheraif, Abdulaziz A; Romanos, Georgios E

    2016-08-01

    To our knowledge from indexed literature, the role of laminins in the expression of osteogenic biomarkers and osseointegration enhancement has not been systematically reviewed. The aim of the present systematic review was to assess the role of laminin coatings on implant surfaces in promoting osseointegration. To address the focused question, "Do laminin coatings on implant surfaces influence osseointegration?", indexed databases were searched from 1965 up to and including November 2015 using various combination of the following keywords: "Bone to implant contact"; "implant"; "laminins"; and "osseointegration". Letters to the Editor, case-reports/case-series, historic reviews, and commentaries were excluded. The pattern of the present systematic review was customized to primarily summarize the pertinent data. Nine studies were included. Six studies were prospective and were performed in animals and 5 studies were in vitro. Results from 8 studies showed that laminin coatings enhanced new bone formation around implants and/or bone-to-implant contact. One study showed that laminin coated implants surfaces did not improve osseointegration. On experimental grounds, laminin coatings seem to enhance osteogenic biomarkers expression and/or osseointegration; however, from a clinical perspective, further randomized control trials are needed to assess the role of laminin coatings in promoting osseointegration around dental implants. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Micro patterning of cell and protein non-adhesive plasma polymerized coatings for biochip applications

    DEFF Research Database (Denmark)

    Bouaidat, Salim; Berendsen, C.; Thomsen, P.

    2004-01-01

    Micro scale patterning of bioactive surfaces is desirable for numerous biochip applications. Polyethyleneoxide-like (PEO-like) coating with non-fouling functionality has been deposited using low frequency AC plasma polymerization. The non-fouling properties of the coating were tested with human...... conventional cleanroom photolithography and lift-off. Single cell arrays showed sharp contrast in cell adhesion between the untreated glass surface and the ppCrown layer. Similarly, proteins adsorbed selectively to untreated glass but not to ppCrown. The simplicity of the liftoff technique and the sturdiness...

  2. Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow

    Science.gov (United States)

    Cech, Jiri; Pranov, Henrik; Kofod, Guggi; Matschuk, Maria; Murthy, Swathi; Taboryski, Rafael

    2013-09-01

    Surface roughness or texture is the most visible property of any object, including injection molded plastic parts. Roughness of the injection molding (IM) tool cavity directly affects not only appearance and perception of quality, but often also the function of all manufactured plastic parts. So called “optically smooth” plastic surfaces is one example, where low roughness of a tool cavity is desirable. Such tool surfaces can be very expensive to fabricate using conventional means, such as abrasive diamond polishing or diamond turning. We present a novel process to coat machined metal parts with hydrogen silsesquioxane (HSQ) to reduce their surface roughness. Results from the testing of surfaces made from two starting roughnesses are presented; one polished with grit 2500 sandpaper, another with grit 11.000 diamond polishing paste. We characterize the two surfaces with AFM, SEM and optical profilometry before and after coating. We show that the HSQ coating is able to reduce peak-to-valley roughness more than 20 times on the sandpaper polished sample, from 2.44(±0.99) μm to 104(±22) nm and more than 10 times for the paste polished sample from 1.85(±0.63) μm to 162(±28) nm while roughness averages are reduced 10 and 3 times respectively. We completed more than 10,000 injection molding cycles without detectable degradation of the HSQ coating. This result opens new possibilities for molding of affordable plastic parts with perfect surface finish.

  3. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants.

    Science.gov (United States)

    Raphel, Jordan; Karlsson, Johan; Galli, Silvia; Wennerberg, Ann; Lindsay, Christopher; Haugh, Matthew G; Pajarinen, Jukka; Goodman, Stuart B; Jimbo, Ryo; Andersson, Martin; Heilshorn, Sarah C

    2016-03-01

    Here we present the design of an engineered, elastin-like protein (ELP) that is chemically modified to enable stable coatings on the surfaces of titanium-based dental and orthopaedic implants by novel photocrosslinking and solution processing steps. The ELP includes an extended RGD sequence to confer bio-signaling and an elastin-like sequence for mechanical stability. ELP thin films were fabricated on cp-Ti and Ti6Al4V surfaces using scalable spin and dip coating processes with photoactive covalent crosslinking through a carbene insertion mechanism. The coatings withstood procedures mimicking dental screw and hip replacement stem implantations, a key metric for clinical translation. They promoted rapid adhesion of MG63 osteoblast-like cells, with over 80% adhesion after 24 h, compared to 38% adhesion on uncoated Ti6Al4V. MG63 cells produced significantly more mineralization on ELP coatings compared to uncoated Ti6Al4V. Human bone marrow mesenchymal stem cells (hMSCs) had an earlier increase in alkaline phosphatase activity, indicating more rapid osteogenic differentiation and mineral deposition on adhesive ELP coatings. Rat tibia and femur in vivo studies demonstrated that cell-adhesive ELP-coated implants increased bone-implant contact area and interfacial strength after one week. These results suggest that ELP coatings withstand surgical implantation and promote rapid osseointegration, enabling earlier implant loading and potentially preventing micromotion that leads to aseptic loosening and premature implant failure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Protein-resistant properties of a chemical vapor deposited alkyl-functional carboxysilane coating characterized using quartz crystal microbalance

    Science.gov (United States)

    Vaidya, Shyam V.; Yuan, Min; Narváez, Alfredo R.; Daghfal, David; Mattzela, James; Smith, David

    2016-02-01

    The protein-resistant properties of a chemical vapor deposited alkyl-functional carboxysilane coating (Dursan®) were compared to that of an amorphous fluoropolymer (AF1600) coating and bare 316L grade stainless steel by studying non-specific adsorption of various proteins onto these surfaces using quartz crystal microbalance with dissipation monitoring (QCM-D). A wash solution with nonionic surfactant, polyoxyethyleneglycol dodecyl ether (or Brij 35), facilitated 100% removal of the adsorbed bovine serum albumin (BSA), mouse immunoglobulin G (IgG), and normal human plasma proteins from the Dursan surface and of the adsorbed normal human plasma proteins from the AF1600 surface, whereas these proteins remained adsorbed on the bare stainless steel surface. Mechanical stress in the form of sonication demonstrated durability of the Dursan coating to mechanical wear and showed no negative impact on the coating's ability to prevent adsorption of plasma proteins. Surface delamination was observed in case of the sonicated AF1600 coating, which further led to adsorption of normal human plasma proteins.

  5. Wetting of polymer melts on coated and uncoated steel surfaces

    Science.gov (United States)

    Vera, Julie; Contraires, Elise; Brulez, Anne-Catherine; Larochette, Mathieu; Valette, Stéphane; Benayoun, Stéphane

    2017-07-01

    A comparative study of the wetting of three different commercial polymer melts on various coated and uncoated steel surfaces is described in this report. The wettability of steel and coatings (three different titanium nitride coatings, TiN, TiNOx, TiNOy, a chromium coating, CrN, and a diamond-like carbon coating, DLC) used for mold in polymer processing is determined at different temperatures between 25 °C and 120 °C. Contact angle measurements of melted polypropylene (PP), Acrylonitrile Butadiene Styrene (ABS) and Polycarbonate (PC) on steel and on the different coatings were performed to investigate the wetting behavior under closer-to-processing conditions. Recommendations for good measurement conditions were proposed. Moreover, the surface free energy of each melt polymer was determined. The works of adhesion between all polymers and all substrates were established. Among all tested polymers, the lowest value of the works of adhesion is calculated for ABS and for PC thereafter, and the highest value is calculated for PP. These results will be particularly important for such applications as determining the extent to which these polymers can contribute to the replication quality in injection molding.

  6. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansson, Petra M; Claesson, Per M.; Swerin, Agne

    2013-01-01

    Friction forces have long been associated with the famous Amontons' rule that states that the friction force is linearly dependent on the applied normal load, with the proportionality constant being known as the friction coefficient. Amontons' rule is however purely phenomenological and does...... not in itself provide any information on why the friction coefficient is different for different material combinations. In this study, friction forces between a colloidal probe and nanostructured particle coated surfaces in an aqueous environment exhibiting different roughness length scales were measured...... by utilizing the atomic force microscope (AFM). The chemistry of the surfaces and the probe was varied between hydrophilic silica and hydrophobized silica. For hydrophilic silica surfaces, the friction coefficient was significantly higher for the particle coated surfaces than on the flat reference surface. All...

  7. Protein-Coated Microcrystals, Combi-Protein-Coated Microcrystals, and Cross-Linked Protein-Coated Microcrystals of Enzymes for Use in Low-Water Media.

    Science.gov (United States)

    Mukherjee, Joyeeta; Gupta, Munishwar N

    2017-01-01

    Protein-coated microcrystals (PCMC) are a high-activity preparation of enzymes for use in low-water media. The protocols for the preparation of PCMCs of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. The combi-PCMC concept is useful both for cascade and non-cascade reactions. It can also be beneficial to combine two different specificities of a lipase when the substrate requires it. Combi-PCMC of CALB and Palatase used for the conversion of coffee oil present in spent coffee grounds to biodiesel is described. Cross-linked protein-coated microcrystals (CL-PCMC) in some cases can give better results than PCMC. Protocols for the CLPCMC of Subtilisin Carlsberg and Candida antarctica lipase B (CAL B) are described. A discussion of their applications is also provided.

  8. Hydroxyapatite coating on damaged tooth surfaces by immersion

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Byoung-Ki; Ryu, Su-Chak [Department of Nanomaterials Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Miryang, 607-706 (Korea, Republic of); Sun, Fangfang; Koh, Kwangnak; Han, Dong-Wook; Lee, Jaebeom, E-mail: jaebeom@pusan.ac.k [Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Miryang, 607-706 (Korea, Republic of)

    2009-04-15

    Hydroxyapatite (HAp) was coated on scratched areas of a human tooth and HAp disks by the immersion method in a HAp colloidal solution (<=20{mu}m of average diameter dispersed in DI water). The surface morphologies of the scratched area after immersion for 1-3 months were investigated showing that the damaged surfaces were remarkably recovered. Then, the mechanical property and chemical stability of the HAp coating layers on both specimens were determined via the Vickers hardness test and concentration measurement of extracted Ca{sup 2+} ions, respectively, after strong acidic treatment. The cellular behavior of mouse calvaria-derived pre-osteoblastic cells (MC3T3-E1) was also examined on the HAp layers regenerated on micro-scratched HAp disks for the purpose of their potential applications on maxillofacial bone conservation and reconstruction for prosthetic dentistry, and artificial disk preparation of a vertebral column. The notable loss of Ca{sup 2+} ions under a highly acidic condition was not observed in the layers coated by HAp adsorption, indicating that the coating surface was well adhered with the original surfaces of the respective specimen. Moreover, the HAp adsorption did not adversely affect the adhesion, growth and proliferation of MC3T3-E1 cells on the coated HAp layers for up to 21 days. These results suggest that the HAp coating on the scratched areas of the tooth would be effectively applicable for the development of long-term prevention of micro-cleavage and tooth health supporters to reduce discoloration and further maxillofacial and orthopedic applications.

  9. Surface property modification of coatings via self-stratification

    Science.gov (United States)

    Pieper, Robert Joseph

    Biological fouling occurs everywhere in the marine environment and is a significant problem for marine vessels. Anti-fouling coatings have been used effectively to prevent fouling; however, these coatings harm non-targeted sea-life. Fouling-release coatings (FRC) appear to be an alternative way to combat fouling. FRC do not necessarily prevent the settlement of marine organisms but rather allow their easy removal with application of shear to the coatings surface. These coatings must be non-toxic, non-leaching, have low surface energy, low modulus, and durability to provide easy removal of marine organisms. Here the goal is to develop FRC based on thermosetting siloxane-polyurethane, amphiphilic polyurethane, and zwitterionic/amphiphilic polyurethane systems. A combinatorial high-throughput approach has been taken in order to explore the variables that may affect the performance of the final coatings. Libraries of acrylic polyols were synthesized using combinatorial high-throughput techniques by either batch or semi-batch processes. The design of the experiments for the batch and semi-batch processes were done combinatorially to explore a range of compositions and various reaction process variables that cannot be accomplished or are not suitable for single reaction experiments. Characterization of Rapid-GPC, high-throughput DSC, and gravimetrically calculated percent solids verified the effects of different reaction conditions on the MW, glass transition temperatures, and percent conversion of the different compositions of acrylic polyols. Coatings were characterized for their surface energy, pseudobarnacle pull-off adhesion, and were subjected to bioassays including marine bacteria, algae, and barnacles. From the performance properties results the acrylic polyol containing 20% hydroxyethyl acrylate and 80% butyl acrylate was selected for further siloxane-polyurethane formulations and were subjected to the same physical, mechanical, and performance testing

  10. Preventing protein adsorption from a range of surfaces using an aqueous fish protein extract

    DEFF Research Database (Denmark)

    Pillai, Saju; Arpanaei, Ayyoob; Meyer, Rikke L.

    2009-01-01

    We utilize an aqueous extract of fish proteins (FPs) as a coating for minimizing the adsorption of fibrinogen (Fg) and human serum albumin (HSA). The surfaces include stainless steel (SS), gold (Au), silicon dioxide (SiO2), and poly(styrene) (PS). The adsorption processes (kinetics and adsorbed...

  11. Performance of waterborne acrylic surface coatings on wood ...

    Indian Academy of Sciences (India)

    1, February 2011, pp. 113–119. c Indian Academy of Sciences. Performance of waterborne acrylic surface coatings on wood impregnated with Cu-ethanolamine preservatives. M HUMAR, M PAVLI ˇC, D ŽLINDRA†, M TOMAŽI ˇC†† and M PETRI ˇC. ∗. Department of Wood Science and Technology, University of Ljubljana, ...

  12. Metal-coated magnetic nanoparticles for surface enhanced Raman ...

    Indian Academy of Sciences (India)

    We report the optimization and usage of surfactantless, water dispersible Ag and Au-coated γ–Fe2O3 nanoparticles for applications in surface-enhanced .... After the solvent evaporated, 2 μL of analyte of ∼1 μM concentration was ..... dry soil, and comprised of smooth, distinct, rectangular and square shaped islands, whose ...

  13. Efficiency of surface modified Ti coated with copper nanoparticles to ...

    Indian Academy of Sciences (India)

    various fields like medical instruments and devices, water treatment and food processing. For better utilization of antimicrobial activity the metal nanoparticles may be com- bined with polymers to form composites [23]. Our pre- vious study also proved the anti-biofouling property of surface modified Ti coated with silver ...

  14. Fe3Si surface coating on SiFe steel

    International Nuclear Information System (INIS)

    Schneeweiss, O.; Pizurova, N.; Jiraskova, Y.; Zak, T.; Cornut, B.

    2000-01-01

    Fe 3 Si layers were prepared using chemical vapor deposition of Si on the surface of Go steel and its subsequent heat treatment. The changes in the structure and phase composition after different heat treatment conditions have been analyzed. The coating is characterized by high hardness, good corrosion resistance, high electrical resistivity, and the spin texture which differs from the steel substrate

  15. Coat protein sequence shows that Cucumber mosaic virus isolate ...

    Indian Academy of Sciences (India)

    Madhu

    CMV subgroup I has recently been subdivided into IA and. IB on the basis of gene sequences available for CMV strains. Coat protein sequence shows that Cucumber mosaic virus isolate from geraniums (Pelargonium spp.) belongs to subgroup II†. NEERAJ VERMA*, B K MAHINGHARA, RAJA RAM and A A ZAIDI.

  16. Expression and Purification of Coat Protein of Citrus Tristeza Virus ...

    African Journals Online (AJOL)

    detection of virus. Compared with intact virion procedure, the use of CP antigen resulted in highly specific polyclonal antibodies. CTV coat protein gene (CTV-cp) cloned in pQE30 vector and transformed to DH5α containing 666bp long from. Thailand MK-50 isolate was amplified with a forward primer CTV-CP1 (5' CAC.

  17. Surface roughness reduction using spray-coated hydrogen silsesquioxane reflow

    DEFF Research Database (Denmark)

    Cech, Jiri; Pranov, Henrik; Kofod, Guggi

    2013-01-01

    Surface roughness or texture is the most visible property of any object, including injection molded plastic parts. Roughness of the injection molding (IM) tool cavity directly affects not only appearance and perception of quality, but often also the function of all manufactured plastic parts. So...... are reduced 10 and 3 times respectively. We completed more than 10,000 injection molding cycles without detectable degradation of the HSQ coating. This result opens new possibilities for molding of affordable plastic parts with perfect surface finish....... called “optically smooth” plastic surfaces is one example, where low roughness of a tool cavity is desirable. Such tool surfaces can be very expensive to fabricate using conventional means, such as abrasive diamond polishing or diamond turning. We present a novel process to coat machined metal parts...

  18. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    Science.gov (United States)

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  19. Current Developments in Antimicrobial Surface Coatings for Biomedical Applications.

    Science.gov (United States)

    Swartjes, J J T M; Sharma, P K; van Kooten, T G; van der Mei, H C; Mahmoudi, M; Busscher, H J; Rochford, E T J

    2015-01-01

    Bacterial adhesion and subsequent biofilm formation on material surfaces represent a serious problem in society from both an economical and health perspective. Surface coating approaches to prevent bacterial adhesion and biofilm formation are of increased importance due to the increasing prevalence of antibiotic resistant bacterial strains. Effective antimicrobial surface coatings can be based on an anti-adhesive principle that prevents bacteria to adhere, or on bactericidal strategies, killing organisms either before or after contact is made with the surface. Many strategies, however, implement a multifunctional approach that incorporates both of these mechanisms. For anti-adhesive strategies, the use of polymer chains, or hydrogels is preferred, although recently a new class of super-hydrophobic surfaces has been described which demonstrate improved anti-adhesive activity. In addition, bacterial killing can be achieved using antimicrobial peptides, antibiotics, chitosan or enzymes directly bound, tethered through spacer-molecules or encased in biodegradable matrices, nanoparticles and quaternary ammonium compounds. Notwithstanding the ubiquitous nature of the problem of microbial colonization of material surfaces, this review focuses on the recent developments in antimicrobial surface coatings with respect to biomaterial implants and devices. In this biomedical arena, to rank the different coating strategies in order of increasing efficacy is impossible, since this depends on the clinical application aimed for and whether expectations are short- or long term. Considering that the era of antibiotics to control infectious biofilms will eventually come to an end, the future for biofilm control on biomaterial implants and devices is likely with surface-associated modifications that are non-antibiotic related.

  20. Thermal repellent properties of surface coating using silica

    Science.gov (United States)

    Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.

    2017-11-01

    Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.

  1. Preparation and characterization of TiO2/silicate hierarchical coating on titanium surface for biomedical applications.

    Science.gov (United States)

    Huang, Qianli; Liu, Xujie; Elkhooly, Tarek A; Zhang, Ranran; Yang, Xing; Shen, Zhijian; Feng, Qingling

    2016-03-01

    In the current work, TiO2/silicate hierarchical coatings with various nanostructure morphologies were successfully prepared on titanium substrates through micro-arc oxidation (MAO) and subsequent hydrothermal treatment (HT). Moreover, the nucleation mechanism and growth behavior of the nanostructures, hydrophilicity, protein adsorption and apatite-inducing ability of various coatings were also explored. The novel TiO2/silicate hierarchical coatings comprised calcium silicate hydrate (CSH) as an outer-layer and TiO2 matrix as an inner-layer. According to the morphological features, the nanostructures were classified as nanorod, nanoplate and nanoleaf. The morphology, degree of crystallinity and crystalline phases of CSH nanostructures could be controlled by optimizing the HT conditions. The nucleation of CSH nanostructures is caused by release and re-precipitation mechanism. The TiO2/CSH hierarchical coatings exhibited some enhanced physical and biological performances compared to MAO-fabricated coating. The improvement of the hydrophilicity, fibronectin adsorption and apatite-inducing ability was found to be morphological dependent according to the following trend: nanoleaf coating>nanoplate coating>nanorod coating>MAO coating. The results indicate that the tuning of physical and morphological properties of nanostructures coated on biomaterial surface could significantly influence the hydrophilicity, protein adsorption and in vitro bioactivity of biomaterial. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Fabrication of Calixarene Based Protein Scaffold by Electrospin Coating for Tissue Engineering.

    Science.gov (United States)

    Cagil, Esra Maltas; Ozcan, Fatih; Ertul, Seref

    2018-08-01

    In this study, calixarene was synthesized by using different functional groups as p-tert-butyl-Calix[4]arene ester and amides. Calixarene nanofibers were produced by electrospin coating. Protein immobilization onto the calixarene nanofibers was carried out with human serum albumin (HSA). The maximum amount of binding on produced three different calixarene nanofibers (DE, 2-AMP and 3-AMP) was compared by using a fluorescence technique for protein analysis. Result showed that maximum binding amount was found to be as 177.85 mg cm-2 for 3-AMP surface. The protein binding was also characterized by using SEM, TEM, AFM and FT-IR. From obtained results, calixarene-albumin nanofiber was also fabricated by spin coating using 3-AMP which has ability max binding of protein.

  3. Effect of cathodic polarization on coating doxycycline on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J., E-mail: h.j.haugen@odont.uio.no

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. - Highlights: • Titanium hydride was found not to be involved in immobilization of doxycycline. • Doxycycline coating was strongly bound to a modified surface oxide layer. • Effect of coatings tested using a dynamic bacteria assay based on bioluminescence. • Topmost layer of adsorbed doxycycline was shown to have strong antibacterial effect.

  4. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...... of tin tetrachloride on industrial soda glass at ~800K to thicknesses of ~3×10-8 and 3×10 -7 m, commercially by the `titanising' process on industrial soda glass at ~800K to a thickness of ~3.10-9 m, and in the laboratory by radio frequency sputtering from tin oxide powder over a range of glass...

  5. The movement protein and coat protein of alfalfa mosaic virus accumulate in structurally modified plasmodesmata

    NARCIS (Netherlands)

    van der Wel, N. N.; Goldbach, R. W.; van Lent, J. W.

    1998-01-01

    In systemically infected tissues of Nicotiana benthamiana, alfalfa mosaic virus (AMV) coat protein (CP) and movement protein (MP) are detected in plasmodesmata in a layer of three to four cells at the progressing front of infection. Besides the presence of these viral proteins, the plasmodesmata are

  6. Wear of Shaped Surfaces of PVD Coated Dies for Clinching

    Directory of Open Access Journals (Sweden)

    Miroslav Džupon

    2017-11-01

    Full Text Available A clinching method that uses a simple toolset consisting of a punch and a die, is utilized for joining lightweight materials. This paper is aimed at investigating the wear of the die cavity of a clinching tool. A clinching tool with a specially shaped cavity was used for joining thin hot-dip galvanized steel sheets. Various types of physical vapour deposition (PVD coatings such as ZrN, CrN and TiCN were deposited on the shaped surface of the die using Lateral Rotating Arc-Cathodes technology. Hot-dip galvanized steel sheets were used for testing the clinching tool. The material properties of PVD coatings that were deposited on the shaped part of the clinching die were evaluated. Finite Element Analysis was used to localize the area of the shaped part of the die and the part of surface area of the cylindrical die cavity of ϕ 5.0 mm, in which high contact pressure values were predicted. The prediction of the start of the wear cycle was verified experimentally by the clinching of 300 samples of hot-dip galvanized steel sheets. Unlike the CrN and ZrN coatings, the TiCN coating remained intact on the entire surface of the die.

  7. Effects of Surface Coating Preparation and Sliding Modes on Titanium Oxide Coated Titanium Alloy for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Bo Yuan Peng

    2014-01-01

    electrolytic oxidation (PEO. During the PEO procedure, a composition of silicate and phosphate was used as the electrolyte. In order to evaluate the coating, pin-on-disk (POD tribology tests and cyclic inclined sliding tests were used under dry room conditions. Furthermore, scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS were utilized to examine the morphology and composition of the coating surfaces. The results of the POD tests revealed that the PEO coating could have a low coefficient of friction and suggested that high silicon concentrations in the PEO coatings take away oxygen from stoichiometric Ti oxides to create lubricating oxides. In addition, cyclic inclined sliding tests showed that smaller pores on the surface of the coating could permit a higher coating cohesive strength and allow the coated Ti alloy surface to perform better under high inclined sliding forces.

  8. Surface self-organization in multilayer film coatings

    Science.gov (United States)

    Shuvalov, Gleb M.; Kostyrko, Sergey A.

    2017-12-01

    It is a recognized fact that during film deposition and subsequent thermal processing the film surface evolves into an undulating profile. Surface roughness affects many important aspects in the engineering application of thin film materials such as wetting, heat transfer, mechanical, electromagnetic and optical properties. To accurately control the morphological surface modifications at the micro- and nanoscale and improve manufacturing techniques, we design a mathematical model of the surface self-organization process in multilayer film materials. In this paper, we consider a solid film coating with an arbitrary number of layers under plane strain conditions. The film surface has a small initial perturbation described by a periodic function. It is assumed that the evolution of the surface relief is governed by surface and volume diffusion. Based on Gibbs thermodynamics and linear theory of elasticity, we present a procedure for constructing a governing equation that gives the amplitude change of the surface perturbation with time. A parametric study of the evolution equation leads to the definition of a critical undulation wavelength that stabilizes the surface. As a numerical result, the influence of geometrical and physical parameters on the morphological stability of an isotropic two-layered film coating is analyzed.

  9. Photoemission from Coated Surfaces A Comparison of Theory to Experiment

    CERN Document Server

    Jensen, K

    2005-01-01

    Photocathodes for FELs and accelerators will benefit from rugged and self-rejuvenating photocathodes with high QE at the longest possible wavelength. The needs of a high power FEL are not met at present by existing photocathode-drive laser combinations: requirements generally necessitate barrier-lowering coatings which are degraded by operation. We seek to develop a controlled porosity dispenser cathode, and shall report on our coordinated experimental and theoretical studies. Our models account for field, thermal, and surface effects of cesium monolayers on photoemission, and compare well with concurrent experiments examining the QE, patchiness, and evolution of the coatings. Field enhancement, thermal variation of specific heat and electron relaxation rates and their relation to high laser intensity and/or short pulse-to-pulse separation, variations in work function effects due to coating non-uniformity, and the dependence on the wavelength of the incident light are included. The status of methods by which ...

  10. Pipeline coating inspection in Mexico applying surface electromagnetic technology

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, O.; Mousatov, A.; Nakamura, E.; Villarreal, J.M. [Instituto Mexicano del Petroleo (IMP), Mexico City (Mexico); Shevnin, V. [Moscow State University (Russian Federation); Cano, B. [Petroleos Mexicanos (PEMEX), Mexico City (Mexico)

    2009-07-01

    The main problems in the pipeline systems in Mexico include: extremely aggressive soil characterized by a high clay content and low resistivity, interconnection between several pipes, including electrical contacts of active pipelines with out of service pipes, and short distances between pipes in comparison with their depths which reduce the resolution of coating inspection. The results presented in this work show the efficiency of the Surface Electromagnetic Pipeline Inspection (SEMPI) technology to determine the technical condition of pipelines in situations before mentioned. The SEMPI technology includes two stages: regional and detailed measurements. The regional stage consists of magnetic field measurements along the pipeline using large distances (10 - 100 m) between observation points to delimit zones with damaged coating. For quantitative assessing the leakage and coating resistances along pipeline, additional measurements of voltage and soil resistivity measurements are performed. The second stage includes detailed measurements of the electric field on the pipe intervals with anomalous technical conditions identified in the regional stage. Based on the distribution of the coating electric resistance and the subsoil resistivity values, the delimitation of the zones with different grade of coating quality and soil aggressiveness are performed. (author)

  11. Advances in surface engineering. V. 1. Fundamentals of coatings. Proceedings

    International Nuclear Information System (INIS)

    Datta, P.K.; Burnell-Gray, J.S.

    1997-01-01

    The scientific and technical research papers in these three volumes, on advances in surface engineering, cover the fundamentals of coatings, process technology and engineering applications, and are based on the proceedings of the May 1996 conference of the same name, held at the University of Northumbria. High temperature corrosion, aqueous corrosion, wear and fatigue are covered in Volume 1. Volume 2 includes papers on various surface engineering technologies including physical and chemical vapour deposition, thermal methods, plasmas and welds, lasers, peening and electrochemistry. Applications of surface engineering to the biomedical, aerospace, automotive, cutting tools and manufacturing, power generation and marine industries are discussed in Volume 3. (UK)

  12. Enhanced propellant performance via environmentally friendly curable surface coating

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2017-06-01

    Full Text Available Surface coating of granular propellants is widely used in a multiplicity of propellants for small, medium and large caliber ammunition. All small caliber ball propellants exhibit burning progressivity due to application of effective deterrent coatings. Large perforated propellant grains have also begun utilizing plasticizing and impregnated deterrent coatings with the purpose of increasing charge weights for greater energy and velocity for the projectile. The deterrent coating and impregnation process utilizes volatile organic compounds (VOCs and hazardous air pollutants (HAPs which results in propellants that need to be forced air dried which impacts air quality. Propellants undergo temperature fluctuations during their life. Diffusion coefficients vary exponentially with variations in temperature. A small temperature increase can induce a faster migration, even over a short period of time, which can lead to large deviations in the concentration. This large concentration change in the ammunition becomes a safety or performance liability. The presence of both polymeric deterrents and nitroglycerin(NG in the nitrocellulose matrix and organic solvents leads to higher diffusion rates. This results in continued emissions of VOCs and HAPs. Conventional polymers tend to partition within the propellant matrix. In other words, localized mixing can occur between the polymer and underlying propellant. This is due to solvent induced softening of the polymer vehicle over the propellant grain. In effect this creates a path where migration can occur. Since nitrate esters, like NG, are relatively small, it can exude to the surface and create a highly unstable and dangerous situation for the warfighter. Curable polymers do not suffer from this partitioning due to “melting” because no VOC solvents are present. They remain surface coated. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and

  13. Coating of hydroxyapatite doped Ag on commercially pure titanium surface

    International Nuclear Information System (INIS)

    Vieira, Jonas de Oliveira; Vercik, Luci Cristina de Oliveira; Rigo, Eliana Cristina da Silva

    2012-01-01

    This paper presents results of bioactive coating on commercially pure titanium surface (CpTi) doped with Ag ions. The coating consists of 3 steps, in step 1- surface chemical treatment of the samples with NaOH, step 2 - immersing the substrate in question in a sodium silicate solution (SS) to the nucleation and step 3 - reimmersion these substrates in synthetic solution that simulates the blood serum for precipitation and growth of apatite layer. After the coating step the AgNO 3 substrates were immersed in solutions with concentrations of 20 ppm and 100 ppm at 37 ° C for 48h. The substrates were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). By the results verified the formation of an apatite layer with aspects of cells, on the surface of CpTi. The increase in Ag concentration causes an increase in Ag amount doped in apatite layer. With the results we concluded that it is possible to obtain an apatite layer on a metal surface as the CpTi doped with Ag ions

  14. Porous polymer coatings: a versatile approach to superhydrophobic surfaces**

    Science.gov (United States)

    Levkin, Pavel A.; Svec, Frantisek

    2009-01-01

    We present a facile and inexpensive approach to superhydrophobic polymer coatings. The method involves the in-situ polymerization of common monomers in the presence of a porogenic solvent to afford superhydrophobic surfaces with the desired combination of micro- and nano-scale roughness. The method is applicable to a variety of substrates and is not limited to small areas or flat surfaces. The polymerized material can be ground into a superhydrophobic powder, which, once applied to a surface, renders it superhydrophobic. The morphology of the porous polymer structure can be efficiently controlled by composition of the polymerization mixture, while surface chemistry can be adjusted by photografting. Morphology control is used to reduce the globule size of the porous architecture from micro down to nanoscale thereby affording a transparent material. The influence of both surface chemistry as well as the length scale of surface roughness on the superhydrophobicity is discussed. PMID:20160978

  15. Novel negatively charged tentacle-type polymer coating for on-line preconcentration of proteins in CE.

    Science.gov (United States)

    Xu, Liang; Dong, Xiao-Yan; Sun, Yan

    2009-02-01

    A novel negatively charged tentacle-type polymer-coated capillary column was fabricated and applied for on-line extraction and preconcentration of proteins. The polymer coating was prepared by glycidyl-methacrylate graft polymerization in a silanized capillary column and the following sulfonic acid group functionalization. It had high surface area and offered high phase ratio for protein adsorption. In addition, the polymer-coated capillary column provided more stable EOF than a bare uncoated capillary. These features of the polymer coating facilitated the extraction of proteins through electrostatic interactions. This was used to extract proteins. The extracted analytes were then desorbed and focused by EOF in the direction opposite to the sample injection flow for subsequent CE. With this procedure, over 1500-fold sensitivity enhancement was realized for myoglobin (MB) as compared with a normal capillary zone electrophoresis. By comparison of the peak areas of the enriched protein, it was found that the polymer-coated column could capture proteins about 30 times more than the uncoated column. In addition, the separation of a protein mixture containing 0.4 microg/mL of MB and 0.4 microg/mL of insulin was demonstrated by the on-line preconcentration and electrophoretic separation with the polymer-coated column.

  16. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles.

    Science.gov (United States)

    Winuprasith, Thunnalin; Chantarak, Sirinya; Suphantharika, Manop; He, Lili; McClements, David Julian

    2014-07-15

    The impact of biological surfactants (bile salts) on the protein (β-lactoglobulin) corona surrounding gold nanoparticles (200 nm) was studied using a variety of analytical techniques at pH 7: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); UV-visible (UV) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The bile salts adsorbed to the protein-coated nanoparticle surfaces and altered their interfacial composition, charge, and structure. SERS spectra of protein-coated nanoparticles after bile salt addition contained bands from both protein and bile salts, indicating that the protein was not fully displaced by the bile salts. UV, DLS and TEM techniques also indicated that the protein coating was not fully displaced from the nanoparticle surfaces. The impact of bile salts could be described by an orogenic mechanism: mixed interfaces were formed that consisted of islands of aggregated proteins surrounded by a sea of bile salts. This knowledge is useful for understanding the interactions of bile salts with protein-coated colloidal particles, which may be important for controlling the fate of colloidal delivery systems in the human gastrointestinal tract, or the gastrointestinal fate of ingested inorganic nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Interaction of phosphorylcholine with fibronectin coatings: Surface characterization and biological performances

    Energy Technology Data Exchange (ETDEWEB)

    Montaño-Machado, Vanessa, E-mail: vanessa.montano-machado.1@ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); ERRMECe, University of Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France); Noël, Céline, E-mail: celine.noel@unamur.be [Research Centre in Physics of Matter and Radiation (PMR), Université de Namur, 61 rue de Bruxelles, B-5000 Namur (Belgium); Chevallier, Pascale, E-mail: pascale.chevallier@crchudequebec.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); Turgeon, Stéphane, E-mail: stephane.turgeon@crchudequebec.ulaval.ca [Laboratory for Biomaterials and Bioengineering, Dept. of Min-Met-Materials Eng., & University Hospital Research Center, Laval University, University Campus, PLT-1745G, Québec, Québec, G1 V 0A6 (Canada); Houssiau, Laurent, E-mail: laurent.houssiau@unamur.be [Research Centre in Physics of Matter and Radiation (PMR), Université de Namur, 61 rue de Bruxelles, B-5000 Namur (Belgium); Pauthe, Emmanuel, E-mail: emmanuel.pauthe@u-cergy.fr [ERRMECe, University of Cergy-Pontoise, Site Saint-Martin, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex (France); and others

    2017-02-28

    Highlights: • Fibronectin/phosphorylcholine coatings on plasma deposited fluorocarbon films were created. • The effect of several coating techniques on the surface biological performances was evaluated. • XPS, DWCA, immunostaining and ToF-SIMS (imaging and depth profiling) techniques were applied. • Potential for cardiovascular applications was showed by endothelial cell and blood interactions. - Abstract: Coating medical devices with several bioactive molecules is an interesting approach to achieve specific biological targets upon the interaction of the biomaterial with the living environment. In this work, a fluorocarbon polymer (CF{sub x}) was first deposited by plasma treatment on stainless steel (SS) substrate and thereafter, coatings containing fibronectin (FN) and phosphorylcholine (PRC) were created for cardiovascular applications. These two biomolecules were chosen to promote endothelialization and to avoid thrombus formation, respectively. Adsorption and grafting techniques were applied – and combined – to accomplish 4 different coatings containing both molecules. However, big challenge was found to characterize a small molecule (PRC: 184 g/mol) interacting with a protein (FN: 450 kD). For the first time XPS, dynamic water contact angle, immunostaining and ToF-SIMS (imaging and depth profiling) analyses were combined to accomplish the characterization of such a coating. The most encouraging biological performances were obtained for samples where FN was grafted to the CF{sub x} film followed by the adsorption of PRC: proliferation of endothelial cells and hemocompatibility properties were observed. Promising coatings for cardiovascular applications were developed. The relevance of characterizing the coatings with high sensitive techniques and the further correlation with their biological performances were evidenced.

  18. Bacterial resistance control on mineral surfaces of hydroxyapatite and human teeth via surface charge-driven antifouling coatings.

    Science.gov (United States)

    Venault, Antoine; Yang, Hui-Shan; Chiang, Yen-Che; Lee, Bor-Shuinn; Ruaan, Ruoh-Chyu; Chang, Yung

    2014-03-12

    This works reports a set of new functionalized polyethyleneimine (PEI) polymers, including a neutral PEGylated polymer PEI-g-PEGMA, a negatively charged polymer PEI-g-SA, and a zwitterionic polymer PEI-g-SBMA, and their use as antibiofouling coating agent for human teeth protection. Polymers were synthesized by Michael addition, XPS analysis revealed that each polymer could be efficiently coated onto hydroxyapatite, ceramic material used as a model tooth. Polymers carrying a negative net charge were more efficiently adsorbed, because of the establishment of electrostatic interactions with calcium ions. Protein adsorption tests revealed that two factors were important in the reduction of protein adsorption. Both the surface charge and the surface ability to bind and entrap water molecules had to be considered. PEI-g-SBMA, which zeta potential in PBS solution was negative, was efficient to inhibit the adsorption of BSA, a negative protein. On the other hand, it also resisted the adsorption of lysozyme, a positive protein, because zwitterionic molecules can easily entrap water and provide a very hydrophilic environment. Streptococcus mutans attachment tests performed unveiled that all modified polymers were efficient to resist this type of bacteria responsible for dental carries. Best results were also obtained with PEI-g-SBMA coating. This polymer was also shown to efficiently resist the adsorption of positively charged bacteria (Stenotrophomonas maltophilia). Tests performed on real human tooth showed that PEI-g-SBMA could inhibit up to 70% of bacteria adhesion, which constitutes a major result considering that surface of teeth is very rough, therefore physically promoting the attachment of proteins and bacteria.

  19. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch

    Science.gov (United States)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.

    2012-04-01

    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  20. Ultrasensitive probing of the protein resistance of PEG surfaces by secondary ion mass spectrometry

    DEFF Research Database (Denmark)

    Kingshott, P.; McArthur, S.; Thissen, H.

    2002-01-01

    The highly sensitive surface analytical techniques X-ray photoelectron spectroscopy (XPS) and time-of-flight static secondary ion mass spectrometry (ToF-SIMS) were used to test the resistance of poly(ethylene glycol) (PEG) coatings towards adsorption of lysozyme (LYS) and fibronectin (FN). PEG...... temperature to maximise the graft density of the PEG chains. XPS showed that the grafted density of PEG chains was slightly higher on the allylamine surface. XPS detected no adsorption of either protein on either PEG coating. ToF-SIMS analysis, on the other hand, found, in the positive ion spectra, minute...... but statistically significant signals assignable to amino acid fragment ions from both proteins adsorbed to the lower density PEG coating and from LYS but not FN on the higher density PEG coating. Negative ion spectra contained relatively more intense protein fragment ion signals for the lower density PEG coating...

  1. COATING OF POLYMERIC SUBSTRATE CATALYSTS ON METALLIC SURFACES

    Directory of Open Access Journals (Sweden)

    H. HOSSEINI

    2010-12-01

    Full Text Available This article presents results of a study on coating of a polymeric substrate ca-talyst on metallic surface. Stability of coating on metallic surfaces is a proper specification. Sol-gel technology was used to synthesize adhesion promoters of polysilane compounds that act as a mediator. The intermediate layer was coated by synthesized sulfonated polystyrene-divinylbenzene as a catalyst for production of MTBE in catalytic distillation process. Swelling of catalyst and its separation from the metal surface was improved by i increasing the quantity of divinylbenzene in the resin’s production process and ii applying adhesion pro¬moters based on the sol-gel process. The rate of ethyl silicate hydrolysis was intensified by increasing the concentration of utilized acid while the conden¬sation polymerization was enhanced in the presence of OH–. Sol was formed at pH 2, while the pH should be 8 for the formation of gel. By setting the ratio of the initial concentrations of water to ethyl silicate to 8, the gel formation time was minimized.

  2. Laser surface sealing and strenghtening of zirconia coatings

    International Nuclear Information System (INIS)

    Petitbon, A.; Boquet, L.; Delsart, D.

    1991-01-01

    Plasma-sprayed zirconia coatings are of general interest as thermal barriers in diesel and gas turbine engines. However, their residual porosity and poor mechanical properties require surface sealing and strengthening. Moreover, dense zirconia is not impervious to oxygen at high temperatures (ionic conductivity). Surface densification was achieved by melting a thin layer, using a continuous wave CO 2 laser. The cracks induced by shrinkage and differential stresses were controlled by spraying alumina powder in the laser beam during surface melting. The formation of alumina-zirconia composites, or possibly eutectics, generates improved chemical resistance and mechanical properties. Both laser-sealed and as-sprayed coatings were tested for bond strength, wear, corrosion and thermal cycling up to 900degC. The bond strength and thermal barrier efficiency of as-sprayed coatings were retained after laser treatment, whilst wear, corrosion and thermal shock resistances were clearly improved. Future works include thermal cycling up to 1200degC and erosion tests. The main objective is to lower the operating and maintenance costs of gas turbine engines for electric power generation. (orig.)

  3. The phospholipid vesicles coating on metal chelated inorganic surfaces

    International Nuclear Information System (INIS)

    Chang, Jeong Ho; Cho, Min Ae; Son, Hong Ha; Lee, Cheon Koo; Kim, Kyung Ja

    2007-01-01

    This work showed the formation of phospholipid vesicle coating on inorganic sericite surface with characterization by combining electron microscopy of FE-SEM, TEM, AFM, and qualitatively evaluated the coated phospholipid vesicle by XPS as a function of etching time. The possibility of phospholipid vesicle mobility on the surface was restrained by the chelation effect of magnesium cation. The stabilization properties of phospholipid vesicles on sericite surface were demonstrated by the various concentration of magnesium cation. The presence of magnesium was found to have a much more pronounced influence on the lipid deposition process. The Mg cation plays an important role for attaching the phospholipids with optimum concentration of 7 mM. Totally, the phospholipid vesicles coating on inorganic powder could be useful for bio-related fields such as cosmetics and drug delivery system as the key functional compounds. We hope this basic result lead to a general and simple approach to prepare a wide a range of controlled releasing materials including an encapsulation with cosmetics or drugs

  4. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  5. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pospiech, Doris, E-mail: pospiech@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Jehnichen, Dieter [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Starke, Sandra; Müller, Felix [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Bünker, Tobias [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Wollenberg, Anne [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Technische Universität Dresden, Organic Chemistry of Polymers, Dresden (Germany); Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich [Leibniz-Institut für Polymerforschung Dresden e. V., Dresden (Germany); Opitz, Michael; Kruspe, Rainer [IDUS Biologisch Analytisches Umweltlabor GmbH, Ottendorf-Okrilla (Germany)

    2017-03-31

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  6. Multifunctional methacrylate-based coatings for glass and metal surfaces

    International Nuclear Information System (INIS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-01-01

    Highlights: • New methacrylate-based copolymers synthesized by free radical polymerization. • Comonomer AAMA was able to complex Cu (II) ions in solvent annealing procedure. • Coatings had efficient anti-biofouling efficacy. - Abstract: In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating’s upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  7. Characterization of magnetron sputtered surface coatings by AES

    International Nuclear Information System (INIS)

    Kahler, C.; Endstrasser, N.; Jaksch, S.; Scheier, P.

    2008-01-01

    Full text: Surface coatings produced by magnetron sputtering are investigated by STM and AES. Thin films of silicon nanoparticles are deposited on highly oriented pyrolytic graphite (HOPG) surfaces by magnetron sputtering. These silicon nanoparticle films are manipulated by means of a variable temperature UHV-STM, to realize lithography on the nanometer scale. Several factors affect the stability of the films and thereby the lifetime of the produced surface structures. To investigate the influence of these parameters, various methods like AFM, AES and XPS have to be applied. The dependence of the surface stability on the grade of oxidation is determined from the ratio between silicon and oxygen. This can be achieved by Auger electron spectroscopy. Our Auger spectrometer was modified in order to allow measuring the time development of the Auger spectrum during the oxidation process. Chemical images are generated by collecting an Auger spectrum at every spot as the primary electron beam is rastered across the sample surface. (author)

  8. Multivalent anchoring and cross-linking of mussel-inspired antifouling surface coatings.

    Science.gov (United States)

    Wei, Qiang; Becherer, Tobias; Mutihac, Radu-Cristian; Noeske, Paul-Ludwig Michael; Paulus, Florian; Haag, Rainer; Grunwald, Ingo

    2014-08-11

    In this work, we combine nature's amazing bioadhesive catechol with the excellent bioinert synthetic macromolecule hyperbranched polyglycerol (hPG) to prepare antifouling surfaces. hPG can be functionalized by different amounts of catechol groups for multivalent anchoring and cross-linking because of its highly branched architecture. The catecholic hPGs can be immobilized on various surfaces including metal oxides, noble metals, ceramics, and polymers via simple incubation procedures. The effect of the catechol amount on the immobilization, surface morphology, stability, and antifouling performance of the coatings was studied. Both anchoring and cross-linking interactions provided by catechols can enhance the stability of the coatings. When the catechol groups on the hPG are underrepresented, the tethering of the coating is not effective; while an overrepresentation of catechol groups leads to protein adsorption and cell adhesion. Thus, only a well-balanced amount of catechols as optimized and described in this work can supply the coatings with both good stability and antifouling ability.

  9. Surface analysis of thin film coatings on container glass

    International Nuclear Information System (INIS)

    Bhargava, A.; Wood, B.

    1999-01-01

    Full text: Container glass is generally coated with a tin oxide layer followed by a coating of polymer. These coatings are believed to improve the mechanical properties of container glass as well as aid in the application of advertising labels to glass. The tin oxide layer on commercial beer bottles has a total thickness of about 15-20nm which consists of an interfacial layer comprising 70-85% of the total thickness. The polymer coating is about 2-5nm thick and also possesses an interfacial layer with tin oxide. A PHI Model 560 XPS/ SAM/ SIMS multi-technique system Is used to estimate concentration profiles of Sn, O, C, Si, Ca, Na and O. A combination of XPS, AES and SIMS is necessary to describe the coatings. Instrumental conditions and sample preparation methods are developed to optimize the analysis of thin films on glass. The coating comprises of three areas, namely (A) where polymer and tin co-exist (B) a pure tin oxide layer and (C) where tin co-exists with glass. By varying the chemical source of tin, it is possible to systematically vary the thickness of the interface and the concentration profile of Sn. Using XRD, crystalline phase(s) could be detected in tin oxide films as thin as 15nm. While the principle phase is cassiterite, a second phase is also detected which is believed to originate from the interface. Using a UMIS 2000 nanoindentor system, instrumental parameters are optimized for measurement of elastic modulus of films at varying depths, i.e. from surface of coating to the bulk of the glass. A sharp rise is observed at depth corresponding to the interface which is indicative of the significance of the interfacial layer. Samples are prepared by systematic ion-milling which are representative of various regions of the coating, namely (A), (B) and (C). These samples are analyzed by XRD and TEM. Based on these studies, a structural model of tin oxide layer and interface is presented to explain increase in elastic modulus at the interface. Copyright

  10. Surface and Sliding Wear Behaviour of Different Coatings and Steels

    Directory of Open Access Journals (Sweden)

    Vera-Cárdenas E.E.

    2012-01-01

    Full Text Available In this work, the sliding wear behaviour of the coatings TiN, CrN and WC/C applied on steel substrates was studied using a reciprocating wear test machine. All tests were carried out in dry conditions, at room temperature (20-23 C and 45% - 50% relative humidity. The average sliding velocity was 0.08 m/s and an amplitude of 2 mm was used. The applied loads were 11.76 N (Po = 1.74 GPa and 7.84 N (Po = 1.52 GPa. Optical microscopy was used to observe the characteristics of wear scars and spalls and possible causes of their formation. The variation of the friction coefficient against the number of cycles was obtained. This was used to determine more precisely the time (number of cycles where the coating presented the first signs of wear, in addition Energy Dispersive X-ray analysis (EDS was performed, as well as Scanning Electron Microscopy (SEM and hardness tests on the wear traces, which reinforced the previous observations. Thus it was possible to know the wear life of different coatings and possible causes of variation. Increasing the load was an important factor in the variation of wear life results. But it is also important to consider other factors such as surface roughness and thickness of coatings.

  11. Chitosan coating as an antibacterial surface for biomedical applications.

    Directory of Open Access Journals (Sweden)

    Mélanie D'Almeida

    Full Text Available A current public health issue is preventing post-surgical complications by designing antibacterial implants. To achieve this goal, in this study we evaluated the antibacterial activity of an animal-free chitosan grafted onto a titanium alloy.Animal-free chitosan binding on the substrate was performed by covalent link via a two-step process using TriEthoxySilylPropyl Succinic Anhydride (TESPSA as the coupling agent. All grafting steps were studied and validated by means of X-ray Photoelectron Spectroscopy (XPS, Time-of-Flight secondary ion mass spectrometry (ToF-SIMS analyses and Dynamic-mode Secondary Ion Mass Spectrometry (DSIMS. The antibacterial activity against Escherichia coli and Staphylococcus aureus strains of the developed coating was assessed using the number of colony forming units (CFU.XPS showed a significant increase in the C and N atomic percentages assigned to the presence of chitosan. A thick layer of polymer deposit was detected by ToF-SIMS and the results obtained by DSIMS measurements are in agreement with ToF-SIMS and XPS analyses and confirms that the coating synthesis was a success. The developed coating was active against both gram negative and gram positive tested bacteria.The success of the chitosan immobilization was proven using the surface characterization techniques applied in this study. The coating was found to be effective against Escherichia coli and Staphylococcus aureus strains.

  12. Protective coatings of metal surfaces by cold plasma treatment

    Science.gov (United States)

    Manory, R.; Grill, A.

    1985-01-01

    The cold plasma techniques for deposition of various types of protective coatings are reviewed. The main advantage of these techniques for deposition of ceramic films is the lower process temperature, which enables heat treating of the metal prior to deposition. In the field of surface hardening of steel, significant reduction of treatment time and energy consumption were obtained. A simple model for the plasma - surface reactions in a cold plasma system is presented, and the plasma deposition techniques are discussed in view of this model.

  13. Effect of ion irradiation on the surface energy of deposited coatings

    Science.gov (United States)

    Eremin, E. N.; Guchenko, S. A.; Kasymov, S. S.; Yurov, V. M.; Vedyashkin, M. V.

    2017-01-01

    We investigated multi-element coatings exposed to argon ion bombardment. The coatings were irradiated using a multi-ampere hollow-cathode ion source. The arc current was 1 A, and the potential of the substrate was maintained equal to 300 V. The surface tension (surface energy) of the coatings was measured before and after irradiation through the size-dependence of the microhardness and electrical resistivity of coatings on their thickness. Ion irradiation was found to affect the surface energy of the coatings in different ways. This is due to both the structure of the coating and its elemental composition.

  14. Cobalt Porphyrin-Polypyridyl Surface Coatings for Photoelectrosynthetic Hydrogen Production.

    Science.gov (United States)

    Beiler, A M; Khusnutdinova, D; Wadsworth, B L; Moore, G F

    2017-10-16

    Hybrid materials that link light capture and conversion technologies with the ability to drive reductive chemical transformations are attractive as components in photoelectrosynthetic cells. We show that thin-film polypyridine surface coatings provide a molecular interface to assemble cobalt porphyrin catalysts for hydrogen evolution onto a visible-light-absorbing p-type gallium phosphide semiconductor. Spectroscopic techniques, including grazing angle attenuated total reflection Fourier transform infrared spectroscopy, confirm that the cobalt centers of the porphyrin macrocycles coordinate to pyridyl nitrogen sites of the organic surface coating. The cobalt porphyrin surface concentration and fraction of pyridyl sites coordinated to a cobalt center are quantified using complementary methods of ellipsometry, inductively coupled plasma mass spectrometry, and X-ray photoelectron spectroscopy. In aqueous solutions under simulated solar illumination the modified cathode is photochemically active for hydrogen production, generating the product gas with near-unity Faradaic efficiency at a rate of ≈10 μL min -1 cm -2 when studied in a three-electrode configuration and polarized at the equilibrium potential of the H + /H 2 couple. This equates to a photoelectrochemical hydrogen evolution reaction activity of 17.6 H 2 molecules s -1 Co -1 , the highest value reported to date for a molecular-modified semiconductor. Key features of the functionalized photocathode include (1) the relative ease of synthetic preparation made possible by application of an organic surface coating that provides molecular recognition sites for immobilizing the cobalt porphyrin complexes at the semiconductor surface and (2) the use of visible light to drive cathodic fuel-forming reactions in aqueous solutions with no added organic acids or sacrificial chemical reductants.

  15. Electron beam processed plasticized epoxy coatings for surface protection

    International Nuclear Information System (INIS)

    Ibrahim, Mervat S.; Mohamed, Heba A.; Kandile, Nadia G.; Said, Hossam M.; Mohamed, Issa M.

    2011-01-01

    Highlights: · Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass -1 irradiation dose showed the best adhesion and passed bending tests. · The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. · The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass -1 ) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass -1 irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion protection for carbon steel and compete the

  16. Influence of surface preparation on the corrosion performance of epoxy coatings for ship ballast tank

    NARCIS (Netherlands)

    Zhang, X.; Buter, S.J.; Ferrari, G.M.

    2011-01-01

    The surface preparation has influence on the adhesion for coatings and consequently affect the corrosion performance of the coatings. The international Maritime Organization (IMO) has adopted a Performance Standard for Protective Coatings (PSPC) on the surface preparation for ballast tanks. However,

  17. Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces.

    Science.gov (United States)

    Wei, Qiang; Schlaich, Christoph; Prévost, Sylvain; Schulz, Andrea; Böttcher, Christoph; Gradzielski, Michael; Qi, Zhenhui; Haag, Rainer; Schalley, Christoph A

    2014-11-19

    Supramolecular polymerization for non-wetting surface coatings is described. The self-assembly of low-molecular-weight gelators (LMWGs) with perfluorinated side chains can be utilized to rapidly construct superhydrophobic, as well as liquid-infused slippery surfaces within minutes. The lubricated slippery surface exhibits impressive repellency to biological li-quids, such as human serum and blood, and very fast self-healing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nanocomposited coatings produced by laser-assisted process to prevent silicone hydogels from protein fouling and bacterial contamination

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guobang; Chen, Yi; Zhang, Jin, E-mail: jzhang@eng.uwo.ca

    2016-01-01

    Graphical abstract: Nanocomposited-coating was deposited on silicone hydrogel by using the matrix-assisted pulsed laser evaporation (MAPLE) process. The ZnO–PEG nanocomposited coating reduces over 50% protein absorption on silicone hydrogel, and can inhibit the bacterial growth efficiently. - Highlights: • We developed a nanocomposited coating to prevent silicone hydrogel from biofouling. • Matrix-assisted pulsed laser evaporation can deposit inorganic–organic nanomaterials. • The designed nanocomposited coating reduces protein absorption by over 50%. • The designed nanocomposited coating shows significant antimicrobial efficiency. - Abstract: Zinc oxide (ZnO) nanoparticles incorporating with polyethylene glycol (PEG) were deposited together on the surface of silicone hydrogel through matrix-assisted pulsed laser evaporation (MAPLE). In this process, frozen nanocomposites (ZnO–PEG) in isopropanol were irradiated under a pulsed Nd:YAG laser at 532 nm for 1 h. Our results indicate that the MAPLE process is able to maintain the chemical backbone of polymer and prevent the nanocomposite coating from contamination. The ZnO–PEG nanocomposited coating reduces over 50% protein absorption on silicone hydrogel. The cytotoxicity study shows that the ZnO–PEG nanocomposites deposited on silicone hydrogels do not impose the toxic effect on mouse NIH/3T3 cells. In addition, MAPLE-deposited ZnO–PEG nanocomposites can inhibit the bacterial growth significantly.

  19. Structural basis of cargo membrane protein discrimination by the human COPII coat machinery

    Energy Technology Data Exchange (ETDEWEB)

    Mancias, Joseph D.; Goldberg, Jonathan (MSKCC)

    2008-11-18

    Genomic analysis shows that the increased complexity of trafficking pathways in mammalian cells involves an expansion of the number of SNARE, Rab and COP proteins. Thus, the human genome encodes four forms of Sec24, the cargo selection subunit of the COPII vesicular coat, and this is proposed to increase the range of cargo accommodated by human COPII-coated vesicles. In this study, we combined X-ray crystallographic and biochemical analysis with functional assays of cargo packaging into COPII vesicles to establish molecular mechanisms for cargo discrimination by human Sec24 subunits. A conserved IxM packaging signal binds in a surface groove of Sec24c and Sec24d, but the groove is occluded in the Sec24a and Sec24b subunits. Conversely, LxxLE class transport signals and the DxE signal of VSV glycoprotein are selectively bound by Sec24a and Sec24b subunits. A comparative analysis of crystal structures of the four human Sec24 isoforms establishes the structural determinants for discrimination among these transport signals, and provides a framework to understand how an expansion of coat subunits extends the range of cargo proteins packaged into COPII-coated vesicles.

  20. Attachment of mycobacteria to fibronectin-coated surfaces.

    Science.gov (United States)

    Ratliff, T L; McGarr, J A; Abou-Zeid, C; Rook, G A; Stanford, J L; Aslanzadeh, J; Brown, E J

    1988-05-01

    This report investigates the extent of the expression of fibronectin (FN) binding properties among the mycobacteria and provides preliminary characteristics of the bacterial molecule(s) mediating attachment. Eight BCG substrains, three Mycobacterium tuberculosis strains and four other mycobacterial species all expressed FN-binding capacity. Treatment of organisms with detergent prior to the binding assay destroyed the FN-binding capacity of BCG but not that of Staphylococcus aureus. Trypsin pretreatment eliminated the FN-binding capacity of both BCG and S. aureus. [35S]Methionine-labelled material in supernatants from BCG and M. tuberculosis cultures attached to FN-coated surfaces. These culture supernatants inhibited the attachment of BCG but not S. aureus to FN-coated surfaces. This inhibitory activity of the supernatants was removed by affinity chromatography on FN-Sepharose but was not affected by similar passage over a control column (human serum albumin attached to Sepharose). These results demonstrate that the ability to bind FN is present in all mycobacterial species tested and suggest that attachment is mediated by trypsin-sensitive cell-surface component(s).

  1. Analyzing surface coatings in situ: High-temperature surface film analyzer developed

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Scientists at Argonne National Laboratory (ANL) have devised a new instrument that can analyze surface coatings under operating conditions. The High-Temperature Surface Film Analyzer is the first such instrument to analyze the molecular composition and structure of surface coatings on metals and solids under conditions of high temperature and pressure in liquid environments. Corrosion layers, oxide coatings, polymers or paint films, or adsorbed molecules are examples of conditions that can be analyzed using this instrument. Film thicknesses may vary from a few molecular layers to several microns or thicker. The instrument was originally developed to study metal corrosion in aqueous solutions similar to the cooling water systems of light-water nuclear reactors. The instrument may have use for the nuclear power industry where coolant pipes degrade due to stress corrosion cracking, which often leads to plant shutdown. Key determinants in the occurrence of stress corrosion cracking are the properties and composition of corrosion scales that form inside pipes. The High-Temperature Surface Analyzer can analyze these coatings under laboratory conditions that simulate the same hostile environment of high temperature, pressure, and solution that exist during plant operations. The ability to analyze these scales in hostile liquid environments is unique to the instrument. Other applications include analyzing paint composition, corrosion of materials in geothermal power systems, integrity of canisters for radioactive waste storage, corrosion inhibitor films on piping and drilling systems, and surface scales on condenser tubes in industrial hot water heat exchangers. The device is not patented

  2. Protein Adsorption Properties on Titanium with and without Calcium Titanate-coating

    Energy Technology Data Exchange (ETDEWEB)

    Ueta, J; Kanno, T; Tada, K; Horiuchi, J [Department Biotechnology and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido Pref. (Japan); Ohtsu, N, E-mail: kannotr@mail.kitami-it.ac.jp [Instrumental Analysis Center, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Hokkaido Pref. (Japan)

    2011-10-29

    Adsorption properties of bovine serum albumin (BSA) and egg white lysozyme (LSZ) were examined at pH 5.15 on titanium coated with and without calcium titanate (CT). One CT-coated (CT-Ti), and two none-coated titaniums with different surface roughness (mirror-like-polished; Mi-Ti and mechanically-polished; Me-Ti) were prepared. The adsorbed amounts of both BSA and LSZ were in the order of Me-Ti > Mi-Ti > CT-Ti. Surface roughnes was in the order of Me-Ti > CT-Ti >> Mi-Ti, showing that Me-Ti had the most preferable for protein adsorption. Contact angle of water was Mi-Ti > Me-Ti > CT-Ti, suggesting that Mi-Ti was the most hydrophobic and being more available for adsorption. Therefore, the order of the adsorbed amounts was ascribed to complexation of these two factors; surface roughness and hydrophobicity. The molar adsorbed amounts of LSZ were larger than those of BSA by 3{approx}5 times for the three Ti plates, which was partly due to stronger electrostatic attraction between LSZ and the surface.

  3. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  4. Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating

    International Nuclear Information System (INIS)

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho

    2014-01-01

    In the present work, we describe the surface modification of commercially pure titanium (CP-Ti) by a composite/multilayer coating approach for biomedical applications. CP-Ti samples were treated by micro-arc oxidation (MAO) and subsequently some of the samples were coated with chitosan (Chi) by dip coating method, while others were subjected to hydrothermal treatment (HT) followed by chitosan coating. The MAO, MAO/Chi, and MAO/HT/Chi coated Ti were characterized and their characteristics were compared with CP-Ti. X-ray diffraction and scanning electron microscopy were used to assess the structural and morphological characteristics. The average surface roughness was determined using a surface profilometer. The corrosion resistance of untreated and surface modified Ti in commercial saline at 298 K was evaluated by potentiodynamic polarization test. The results indicated that the chitosan coating is very well integrated with the MAO and MAO/HT coating by physically interlocking itself with the coated layer and almost sealed all the pores. The surface roughness of hydrothermally treated and chitosan coated MAO film was superior evidently to that with other sample groups. The corrosion studies demonstrated that the MAO, hydrothermally treated and chitosan coated sample enhanced the corrosion resistance of titanium. The result indicates that fabrication of hydrothermally treated MAO surface coatings with chitosan is a significant approach to protect the titanium from corrosion, hence enhancing the potential use of titanium as bio-implants. - Highlights: • Micro-arc oxidized (MAO) and hydrothermally treated (HT) Ti surfaces are coated with chitosan (Chi). • The MAO/HT/Chi surface exhibits pores sealing and enhanced the surface roughness. • The MAO/HT/Chi surface significantly increase the corrosion resistance. • The MAO/HT/Chi can be a potential surface of titanium for bio-implants

  5. Study the polymer coating for detecting and surface decontamination of uranium

    International Nuclear Information System (INIS)

    Pham Thi Quynh Luong; Nguyen Van Chinh

    2011-01-01

    Strippable polymer coating is one of the methods for effective surface decontamination. It has been developed in both detecting and removing the radioactive isotope and heavy metal elements from contaminated surfaces. A polymer coating is produced to be sprayed or brushed on contaminated material of uranium. The places of U contamination is shown by color change of polymer coating. As the polymer coating is dried up to form a strong film, the contaminations are absorbed in to the coating and contaminated surfaces are cleaned by removing the film. (author)

  6. Surface properties of semi-synthetic enteric coating films: Opportunities to develop bio-based enteric coating films for colon- targeted delivery

    Science.gov (United States)

    This study investigated the surface properties of the semi-synthetic enteric coating materials for potential colon- targeted bioactive delivery. The enteric coating materials were produced by combining nanoscale resistant starch, pectin, and carboxymethylcellulose. The surface properties of the co...

  7. How Does the VSG Coat of Bloodstream Form African Trypanosomes Interact with External Proteins?

    Directory of Open Access Journals (Sweden)

    Angela Schwede

    2015-12-01

    Full Text Available Variations on the statement "the variant surface glycoprotein (VSG coat that covers the external face of the mammalian bloodstream form of Trypanosoma brucei acts a physical barrier" appear regularly in research articles and reviews. The concept of the impenetrable VSG coat is an attractive one, as it provides a clear model for understanding how a trypanosome population persists; each successive VSG protects the plasma membrane and is immunologically distinct from previous VSGs. What is the evidence that the VSG coat is an impenetrable barrier, and how do antibodies and other extracellular proteins interact with it? In this review, the nature of the extracellular surface of the bloodstream form trypanosome is described, and past experiments that investigated binding of antibodies and lectins to trypanosomes are analysed using knowledge of VSG sequence and structure that was unavailable when the experiments were performed. Epitopes for some VSG monoclonal antibodies are mapped as far as possible from previous experimental data, onto models of VSG structures. The binding of lectins to some, but not to other, VSGs is revisited with more recent knowledge of the location and nature of N-linked oligosaccharides. The conclusions are: (i Much of the variation observed in earlier experiments can be explained by the identity of the individual VSGs. (ii Much of an individual VSG is accessible to antibodies, and the barrier that prevents access to the cell surface is probably at the base of the VSG N-terminal domain, approximately 5 nm from the plasma membrane. This second conclusion highlights a gap in our understanding of how the VSG coat works, as several plasma membrane proteins with large extracellular domains are very unlikely to be hidden from host antibodies by VSG.

  8. Electron beam processed plasticized epoxy coatings for surface protection

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Mervat S. [National Center for Radiation Research and Technology, Nasr City (Egypt); Mohamed, Heba A., E-mail: hebaamohamed@gmail.com [National Research Center, Dokki (Egypt); Kandile, Nadia G. [University College for Girls, Ain Shams University (Egypt); Said, Hossam M.; Mohamed, Issa M. [National Center for Radiation Research and Technology, Nasr City (Egypt)

    2011-10-17

    Highlights: {center_dot} Coating formulations with EA 70%, HD 20%, and castor oil 10% under 1 Mrad pass{sup -1} irradiation dose showed the best adhesion and passed bending tests. {center_dot} The prepared EP-SF-An adduct improve anti-corrosion properties of coatings without any significant effect on physical, mechanical and chemical properties of the cured film. The optimum amount of aniline adduct as corrosion inhibitor was found to be 0.4 g for 100 g of coating formulation. {center_dot} The corrosion inhibition efficiency of the prepared adduct competed the commercial efficiency. - Abstract: Epoxy acrylate oligomer (EA) was plasticized by adding different plasticizers such as epoxidized soybean oil, glycerol and castor oil and cured by electron beam (EB). Different irradiation doses (1, 2.5 and 5 Mrad pass{sup -1}) were used in the curing process. The effect of both different irradiation doses and plasticizers on the end use performance properties of epoxy acrylate coating namely, pencil hardness, bending test, adhesion test, acid and alkali resistance test were studied. It was observed that incorporation of castor oil in epoxy acrylate diluted by 1,6-hexanediol diacrylate (HD) monomer with a ratio (EA 70%, HD 20%, castor oil 10%) under 1 Mrad pass{sup -1} irradiation dose improved the physical, chemical and mechanical properties of cured films than the other plasticizer. Sunflower free fatty acid was epoxidized in situ under well established conditions. The epoxidized sunflower free fatty acids (ESFA) were subjected to react with aniline in sealed ampoules under inert atmosphere at 140 deg. C. The produced adducts were added at different concentrations to epoxy acrylate coatings under certain EB irradiation dose and then evaluated as corrosion inhibitors for carbon steel surfaces in terms of weight loss measurements and corrosion resistance tests. It was found that, addition of 0.4 g of aniline adduct to 100 g epoxy acrylate formula may give the best corrosion

  9. Effect of Surface Coatings on Cylinders Exposed to Underwater Shock

    Directory of Open Access Journals (Sweden)

    Y.W. Kwon

    1994-01-01

    Full Text Available The response of a coated cylinder (metallic cylinder coated with a rubber material subjected to an underwater explosion is analyzed numerically. The dynamic response of the coated cylinder appears to be adversely affected when impacted by an underwater shock wave under certain conditions of geometry and material properties of the coating. When adversely affected, significant deviations in values of axial stress, hoop stress, and strain are observed. The coated cylinder exhibits a larger deformation and higher internal energy in the metallic material. Rubber coatings appeared to inhibit energy dissipation from the metallic material to the surrounding water medium. A parametric study of various coatings was performed on both aluminum and steel cylinders. The adverse effect of the coating decreased when the stiffness of the rubber layer increased, indicating the existence of a threshold value. The results of this study indicate that the stiffness of the coating is a critical factor to the shock hardening of the coated cylinder.

  10. Characterizing the statistical properties of protein surfaces

    Science.gov (United States)

    Bak, Ji Hyun; Bitbol, Anne-Florence; Bialek, William

    Proteins and their interactions form the body of the signaling transduction pathway in many living systems. In order to ensure the accuracy as well as the specificity of signaling, it is crucial that proteins recognize their correct interaction partners. How difficult, then, is it for a protein to discriminate its correct interaction partner(s) from the possibly large set of other proteins it may encounter in the cell? An important ingredient of recognition is shape complementarity. The ensemble of protein shapes should be constrained by the need for maintaining functional interactions while avoiding spurious ones. To address this aspect of protein recognition, we consider the ensemble of proteins in terms of the shapes of their surfaces. We take into account the high-resolution structures of E.coli non-DNA-binding cytoplasmic proteins, retrieved from the Protein Data Bank. We aim to characterize the statistical properties of the protein surfaces at two levels: First, we study the intrinsic dimensionality at the level of the ensemble of the surface objects. Second, at the level of the individual surfaces, we determine the scale of shape variation. We further discuss how the dimensionality of the shape space is linked to the statistical properties of individual protein surfaces. Jhb and WB acknowledge support from National Science Foundation Grants PHY-1305525 and PHY-1521553. AFB acknowledges support from the Human Frontier Science Program.

  11. Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures

    Directory of Open Access Journals (Sweden)

    Srinivasan Narayanaswamy

    2010-06-01

    Full Text Available Abstract Background Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results In the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.

  12. Surface modification of reverse osmosis desalination membranes by thin-film coatings deposited by initiated chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ozaydin-Ince, Gozde, E-mail: gozdeince@sabanciuniv.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Matin, Asif, E-mail: amatin@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Khan, Zafarullah, E-mail: zukhan@mit.edu [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Zaidi, S.M. Javaid, E-mail: zaidismj@kfupm.edu.sa [Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gleason, Karen K., E-mail: kkgleasn@mit.edu [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-07-31

    Thin-film polymeric reverse osmosis membranes, due to their high permeation rates and good salt rejection capabilities, are widely used for seawater desalination. However, these membranes are prone to biofouling, which affects their performance and efficiency. In this work, we report a method to modify the membrane surface without damaging the active layer or significantly affecting the performance of the membrane. Amphiphilic copolymer films of hydrophilic hydroxyethylmethacrylate and hydrophobic perfluorodecylacrylate (PFA) were synthesized and deposited on commercial RO membranes using an initiated chemical vapor deposition technique which is a polymer deposition technique that involves free-radical polymerization initiated by gas-phase radicals. Relevant surface characteristics such as hydrophilicity and roughness could be systematically controlled by varying the polymer chemistry. Increasing the hydrophobic PFA content in the films leads to an increase in the surface roughness and hydrophobicity. Furthermore, the surface morphology studies performed using the atomic force microscopy show that as the thickness of the coating increases average surface roughness increases. Using this knowledge, the coating thickness and chemistry were optimized to achieve high permeate flux and to reduce cell attachment. Results of the static bacterial adhesion tests show that the attachment of bacterial cells is significantly reduced on the coated membranes. - Highlights: • Thin films are deposited on reverse osmosis membranes. • Amphiphilic thin films are resistant to protein attachment. • The permeation performance of the membranes is not affected by the coating. • The thin film coatings delayed the biofouling.

  13. Effect of Surface Contaminants Remained on the Blasted Surface on Epoxy Coating Performance and Corrosion Resistance

    International Nuclear Information System (INIS)

    Baek, Kwang Ki; Park, Chung Seo; Kim, Ki Hong; Chung, Mong Kyu; Park, Jin Hwan

    2006-01-01

    One of the critical issues in the coating specification is the allowable limit of surface contaminant(s) - such as soluble salt(s), grit dust, and rust - after grit blasting. Yet, there is no universally accepted data supporting the relationship between the long-term coating performance and the amount of various surface contaminants allowed after grit blasting. In this study, it was attempted to prepare epoxy coatings applied on grit-blasted steel substrate dosed with controlled amount of surface contaminants - such as soluble salt(s), grit dust, and rust. Then, coating samples were subjected to 4,200 hours of cyclic test(NORSOK M-501), which were then evaluated in terms of resistance to rust creepage, blistering, chalking, rusting, cracking and adhesion strength. Additional investigations on the possible damage at the paint/steel interface were carried out using an Electrochemical Impedance Spectroscopy(EIS) and observations of under-film-corrosion. Test results suggested that the current industrial specifications were well matched with the allowable degree of rust, whereas the allowable amount of soluble salt and grit dust after grit blasting showed a certain deviation from the specifications currently employed for fabrication of marine vessels and offshore facilities

  14. Microstructure Analysis of Laser Remelting for Thermal Barrier Coatings on the Surface of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Lu Bin

    2016-01-01

    Full Text Available In this paper, the preparation and organization performance of thermal barrier coatings (TCBs on the surface of titanium were studied experimentally. Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. The microstructure of nanostructured and the conventional coating was studied after laser remelting. It has shown that formed a network of micro-cracks and pits after laser remelting on nanostructured coatings. With the decrease of the laser scanning speed, mesh distribution of micro cracks was gradually thinning on nanostructured coatings. Compared with conventional ceramic layers, the mesh cracks of nanostructured coating is dense and the crack width is small.

  15. Carbohydrate Coating Reduces Adhesion of Biofilm-Forming Bacillus subtilis to Gold Surfaces

    Science.gov (United States)

    Kesel, S.; Mader, A.; Seeberger, P. H.; Lieleg, O.

    2014-01-01

    The growth of bacterial biofilms in pipes and food tanks causes severe problems in industry. Biofilms growing on medical implants or catheters are of great concern, as they can cause serious infections and decrease the functionality of the medical device. The prevention of bacterial adhesion—the first step in colonization and biofilm formation—is therefore very important. Current research comprises alterations in surface properties, the prevention of adhesin biosynthesis, inhibition with receptor analogs, or the development of anti-adhesive vaccines. We present a new approach that allows us to study bacterial adhesion with high sensitivity in real-time while testing several different surfaces in parallel. Using the cantilever-array technique we demonstrate that coating of gold surfaces with mono- or disaccharides results in a reduction of the bacterial adhesion of the biofilm-forming bacterium Bacillus subtilis NCIB 3610 to these gold surfaces. This reduction in bacterial adhesion is independent of the studied carbohydrate. Using several mutant strains, we investigate the underlying molecular interactions, and our results suggest that adhesion to gold surfaces is mediated by thiol groups present in proteins of the bacterial cell membrane or biofilm matrix proteins expressed at low levels by the wild-type strain. Furthermore, our data indicate that the adhesion of B. subtilis NCIB 3610 to carbohydrate-coated gold surfaces is facilitated by interactions between carbohydrates installed on the cantilever gold surface and an exopolysaccharide expressed by this strain. Understanding general and specific contributions of molecular interactions mediating bacterial adhesion will enable its prevention in the future. PMID:25038098

  16. Antisoiling technology: Theories of surface soiling and performance of antisoiling surface coatings

    Science.gov (United States)

    Cuddihy, E. F.; Willis, P. B.

    1984-11-01

    Physical examination of surfaces undergoing natural outdoor soiling suggests that soil matter accumulates in up to three distinct layers. The first layer involves strong chemical attachment or strong chemisorption of soil matter on the primary surface. The second layer is physical, consisting of a highly organized arrangement of soil creating a gradation in surface energy from a high associated with the energetic first layer to the lowest possible state on the outer surfce of the second layer. The lowest possible energy state is dictated by the physical nature of the regional atmospheric soiling materials. These first two layers are resistant to removal by rain. The third layer constitutes a settling of loose soil matter, accumulating in dry periods and being removed during rainy periods. Theories and evidence suggest that surfaces that should be naturally resistant to the formation of the first two-resistant layers should be hard, smooth, hydrophobic, free of first-period elements, and have the lowest possible surface energy. These characteristics, evolving as requirements for low-soiling surfaces, suggest that surfaces or surface coatings should be of fluorocarbon chemistry. Evidence for the three-soil-layer concept, and data on the positive performance of candidate fluorocarbon coatings on glass and transparent plastic films after 28 months of outdoor exposure, are presented.

  17. Surface and sliding wear behaviour of different coatings and steels

    Energy Technology Data Exchange (ETDEWEB)

    Vera-Cardenas, E.E. [Universidad Politecnica de Pachuca, Zempoala, Hidalgo (Mexico)]. E-mail: evera@upp.edu.mx; Vite-Torres, M. [Instituto Politecnico Nacional, Mexico D.F. (Mexico)]. E-mail: drmanulvite9@hotmail.com; Lewis, R. [University of Sheffield (United Kingdom)]. E-mail: roger.lewis@sheffield.ac.uk

    2012-01-15

    In this work, the sliding wear behaviour of the coatings TiN, CrN and WC/C applied on steel substrates was studied using a reciprocating wear test machine. All tests were carried out in dry conditions, at room temperature (20-23 degrees Celsius and 45% - 50% relative humidity). The average sliding velocity was 0.08 m/s and an amplitude of 2 mm was used. The applied loads were 11.76 N (Po = 1.74 GPa) and 7.84 N (Po = 1.52 GPa). Optical microscopy was used to observe the characteristics of wear scars and spalls and possible causes of their formation. The variation of the friction coefficient against the number of cycles was obtained. This was used to determine more precisely the time (number of cycles) where the coating presented the first signs of wear, in addition Energy Dispersive X-ray analysis (EDS) was performed, as well as Scanning Electron Microscopy (SEM) and hardness tests on the wear traces, which reinforced the previous observations. Thus it was possible to know the wear life of different coatings and possible causes of variation. Increasing the load was an important factor in the variation of wear life results. But it is also important to consider other factors such as surface roughness and thickness of coatings. [Spanish] En este trabajo se estudio el comportamiento en desgaste por deslizamiento de los recubrimientos de TiN, CrN y WC/C aplicados sobre sustratos de acero. Las pruebas se realizaron con una maquina reciprocante en condiciones secas a temperatura ambiente (20-23 grados centigrados y 45% - 50% de humedad relativa). Se empleo una velocidad promedio de 0.08 m/s y una amplitud de 2 mm. Las cargas aplicadas fueron de 11.76N (Po = 1.74 GPa) y de 7.84 N (Po = 1.52 GPa). Se realizo microscopia optica para observar las caracteristicas de las zonas de desgaste y sus posibles causas de formacion. Se obtuvo graficamente la variacion del coeficiente de friccion con el numero de ciclos. Estos datos se emplearon para determinar con mayor precision el

  18. Interactions between whey proteins and kaolinite surfaces

    International Nuclear Information System (INIS)

    Barral, S.; Villa-Garcia, M.A.; Rendueles, M.; Diaz, M.

    2008-01-01

    The nature of the interactions between whey proteins and kaolinite surfaces was investigated by adsorption-desorption experiments at room temperature, performed at the isoelectric point (IEP) of the proteins and at pH 7. It was found that kaolinite is a strong adsorbent for proteins, reaching the maximum adsorption capacity at the IEP of each protein. At pH 7.0, the retention capacity decreased considerably. The adsorption isotherms showed typical Langmuir characteristics. X-ray diffraction data for the protein-kaolinite complexes showed that protein molecules were not intercalated in the mineral structure, but immobilized at the external surfaces and the edges of the kaolinite. Fourier transform IR results indicate the absence of hydrogen bonding between kaolinite surfaces and the polypeptide chain. The adsorption patterns appear to be related to electrostatic interactions, although steric effects should be also considered

  19. Evaluation of Surface Characteristics of Denture Base Using Organic-Inorganic Hybrid Coating: An SEM Study.

    Science.gov (United States)

    Aa, Jafari; Mh, Lotfi-Kamran; M, Ghafoorzadeh; Sm, Shaddel

    2017-06-01

    Despite the numerous positive features of acrylic denture base, there are a number of undeniable associated disadvantages. The properties of denture base have been improved through various interventions including application of different types of filler and coatings. This study aimed to evaluate the surface roughness, thickness and coating quality of organic-inorganic coating on the denture base through scanning electron microscopy. Moreover, the colour change was evaluated visually. The organic-inorganic hybrid coatings were prepared. Acrylic discs of 10×10 mm were fabricated. The test discs were dipped in the hybrid coating and cured. In order to evaluate the surface roughness and coating thickness, the surface and cross-section of the samples in both coated and control groups were subjected to scanning electron microscopy. The colour change and transparency were visually evaluated with naked eyes. The data were statistically analyzed by student's t test. The hybrid materials perfectly covered all the surfaces of acrylic resin and established proper thickness. The coated group seemed smoother and flatter than the control group; however, the difference was not statistically significant ( for all parameters p > 0.05). It was quite a thin coating and no perceptible colour change was observed. The hybrid coating maintained good binding, caused no noticeable discoloration, and thoroughly covered the acrylic resin surface with uniform delicate thickness. It also slightly improved the acrylic resin surface roughness.

  20. Surface modification of commercial tin coatings by carbon ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L.J.; Sood, D.K.; Manory, R.R. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Commercial TiN coatings of about 2 {mu}m thickness on high speed steel substrates were implanted at room temperature with 95 keV carbon ions at nominal doses between 1 x 10{sup 17} - 8x10{sup 17} ions cm{sup -2}. Carbon ion implantation induced a significant improvement in ultramicrohardness, friction coefficient and wear properties. The surface microhardness increases monotonically by up to 115% until a critical dose is reached. Beyond this dose the hardness decreases, but remains higher than that of unimplanted sample. A lower friction coefficient and a longer transition period towards a steady state condition were obtained by carbon ion implantation. The changes in tribomechanical properties are discussed in terms of radiation damage and possible formation of a second phase rich in carbon. 6 refs., 3 figs.

  1. Development of sustainable paper coatings using nanoscale industrial surface processing

    DEFF Research Database (Denmark)

    Markert, Frank; Breedveld, Leo; Lahti, Johanna

    to inform the public about the processes and benefits of the prototype products, and partly to give feedback to the project partners on the environmental and safety aspects of the different material, processing, use and waste stages. By that being a link between the industrial project partners developing...... products, and the process and material developers providing new coatings with specific properties. The combination of RA and LCA/LCC within the early stages of product development provide a more holistic approach, It is commonly believed to be also economical beneficial as changes are easier to implement...... developers, production industries, consumers and authorities. Part of the consideration is the public perception of the new product and the processes to manufacture it, which is an important aspect for products being developed using nanoscale surface processing. Such considerations are integrated...

  2. Impact-Free Measurement of Microtubule Rotations on Kinesin and Cytoplasmic-Dynein Coated Surfaces.

    Directory of Open Access Journals (Sweden)

    Aniruddha Mitra

    Full Text Available Knowledge about the three-dimensional stepping of motor proteins on the surface of microtubules (MTs as well as the torsional components in their power strokes can be inferred from longitudinal MT rotations in gliding motility assays. In previous studies, optical detection of these rotations relied on the tracking of rather large optical probes present on the outer MT surface. However, these probes may act as obstacles for motor stepping and may prevent the unhindered rotation of the gliding MTs. To overcome these limitations, we devised a novel, impact-free method to detect MT rotations based on fluorescent speckles within the MT structure in combination with fluorescence-interference contrast microscopy. We (i confirmed the rotational pitches of MTs gliding on surfaces coated by kinesin-1 and kinesin-8 motors, (ii demonstrated the superiority of our method over previous approaches on kinesin-8 coated surfaces at low ATP concentration, and (iii identified MT rotations driven by mammalian cytoplasmic dynein, indicating that during collective motion cytoplasmic dynein side-steps with a bias in one direction. Our novel method is easy to implement on any state-of-the-art fluorescence microscope and allows for high-throughput experiments.

  3. Advanced portrayal of SMIL coating by allying CZE performance with in-capillary topographic and charge-related surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Stock, Lorenz G. [Division of Chemistry and Bioanalytics, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Leitner, Michael; Traxler, Lukas [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Bonazza, Klaus [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna (Austria); Leclercq, Laurent; Cottet, Hervé [Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, Place Eugène Bataillon, CC 1706, 34095 Montpellier (France); Friedbacher, Gernot [Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, 1060 Vienna (Austria); Ebner, Andreas [Institute of Biophysics, Johannes Kepler University Linz, Gruberstrasse 40, 4020 Linz (Austria); Stutz, Hanno, E-mail: hanno.stutz@sbg.ac.at [Division of Chemistry and Bioanalytics, University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg (Austria); Christian Doppler Laboratory for Innovative Tools for the Characterization of Biosimilars, Hellbrunnerstrasse 34, 5020 Salzburg (Austria)

    2017-01-25

    A successive multiple ionic polymer layer (SMIL) coating composed of four layers improved the capillary electrophoretic separation of a recombinant major birch pollen allergen and closely related variants when poly(acrylamide-co-2-acrylamido-2-methyl-1-propansulfonate) (55% PAMAMPS) replaced dextran sulfate as terminal SMIL layer. 55% PAMAMPS decelerated the electroosmotic flow (EOF) due to its lower charge density. Atomic force microscopy (AFM) was used to investigate SMIL properties directly on the inner capillary surface and to relate them to EOF measurements and results of associated CZE separations of a mixture of model proteins and peptides that were performed in the same capillary. For the first time, AFM-based biosensing topography and recognition imaging mode (TREC) under liquid conditions was applied for a sequential characterization of the inner surface of a SMIL coated capillary after selected treatments including pristine SMIL, SMIL after contact with the model mixture, after alkaline rinsing, and the replenishment of the terminal polyelectrolyte layer. A cantilever with tip-tethered avidin was used to determine the charge homogeneity of the SMIL surface in the TREC mode. SMIL coated rectangular capillaries with 100 μm internal diameter assured accessibility of the inner surface for this cantilever type. Observed changes in CZE performance and EOF mobility during capillary treatment were also reflected by alterations in surface roughness and charge distribution of the SMIL coating. A renewal of the terminal SMIL layer restored the original surface properties of SMIL and the separation performance. The alliance of the novel TREC approach and CZE results allows for an improved understanding and a comprehensive insight in effects occurring on capillary coatings. - Highlights: • SMIL coating with a terminal layer of reduced charge density improves CZE separation. • Capillaries with rectangular diameter allow for in-capillary TREC-AFM measurement.

  4. Boron nitride protective coating of beryllium window surfaces

    International Nuclear Information System (INIS)

    Gmuer, N.F.

    1991-12-01

    The use of beryllium windows on white synchrotron radiation beamlines is constrained by the fact that the downstream surfaces of these windows should not be exposed to ambient atmosphere. They should, rather, be protected by a tail-piece under vacuum or containing helium atmosphere. This tailpiece is typically capped by Kapton (3M Corporation, St. Paul, MN) or aluminum foil. The reason for such an arrangement is due to the health risk associated with contaminants (BeO) which from on the exposed beryllium window surfaces and due to possible loss of integrity of the windows. Such a tail-piece may, however, add unwanted complications to the beamline in the form of vacuum pumps or helium supplies and their related monitoring systems. The Kapton windows may burn through in the case of high intensity beams and lower energy radiation may be absorbed in the case of aluminum foil windows. A more ideal situation would be to provide a coating for the exposed beryllium window surface, sealing it off from the atmosphere, thus preventing contamination and/or degradation of the window, and eliminating the need for helium or vacuum equipment

  5. Metabolic behavior of cell surface biotinylated proteins

    International Nuclear Information System (INIS)

    Hare, J.F.; Lee, E.

    1989-01-01

    The turnover of proteins on the surface of cultured mammalian cells was measured by a new approach. Reactive free amino or sulfhydryl groups on surface-accessible proteins were derivatized with biotinyl reagents and the proteins solubilized from culture dishes with detergent. Solubilized, biotinylated proteins were then adsorbed onto streptavidin-agarose, released with sodium dodecyl sulfate and mercaptoethanol, and separated on polyacrylamide gels. Biotin-epsilon-aminocaproic acid N-hydroxysuccinimide ester (BNHS) or N-biotinoyl-N'-(maleimidohexanoyl)hydrazine (BM) were the derivatizing agents. Only 10-12 bands were adsorbed onto streptavidin-agarose from undervatized cells or from derivatized cells treated with free avidin at 4 degrees C. Two-dimensional isoelectric focusing-sodium dodecyl sulfate gel electrophoresis resolved greater than 100 BNHS-derivatized proteins and greater than 40 BM-derivatized proteins. There appeared to be little overlap between the two groups of derivatized proteins. Short-term pulse-chase studies showed an accumulation of label into both groups of biotinylated proteins up until 1-2 h of chase and a rapid decrease over the next 1-5 h. Delayed appearance of labeled protein at the cell surface was attributed to transit time from site of synthesis. The unexpected and unexplained rapid disappearance of pulse-labeled proteins from the cell surface was invariant for all two-dimensionally resolved proteins and was sensitive to temperature reduction to 18 degrees C. Long-term pulse-chase experiments beginning 4-8 h after the initiation of chase showed the disappearance of derivatized proteins to be a simple first-order process having a half-life of 115 h in the case of BNHS-derivatized proteins and 30 h in the case of BM-derivatized proteins

  6. Modification of implant material surface properties by means of oxide nano-structured coatings deposition

    Science.gov (United States)

    Safonov, Vladimir; Zykova, Anna; Smolik, Jerzy; Rogowska, Renata; Lukyanchenko, Vladimir; Kolesnikov, Dmitrii

    2014-08-01

    The deposition of functional coatings on the metal surface of artificial joints is an effective way of enhancing joint tribological characteristics. It is well-known that nanostructured oxide coatings have specific properties advantageous for future implant applications. In the present study, we measured the high hardness parameters, the adhesion strength and the low friction coefficient of the oxide magnetron sputtered coatings. The corrosion test results show that the oxide coating deposition had improved the corrosion resistance by a factor of ten for both stainless steel and titanium alloy substrates. Moreover, the hydrophilic nature of coated surfaces in comparison with the metal ones was investigated in the tensiometric tests. The surfaces with nanostructured oxide coatings demonstrated improved biocompatibility for in vitro and in vivo tests, attributed to the high dielectric constants and the high values of the surface free energy parameters.

  7. Controlled reactions between chromia and coating on alloy surface

    DEFF Research Database (Denmark)

    Linderoth, Søren

    1996-01-01

    An electrically conducting Sr-doped lanthanum chromite (LSC) coating has been produced by reacting a coating of fine particles of La oxide and Sr oxide with chromia formed as an external scale on a metallic alloy. In addition to the formation of LSC the coating also resulted in much reduced...

  8. Behavior of osteoblasts on TI surface with two different coating designed for orthodontic devices.

    Science.gov (United States)

    Fleischmann, Leonardo; Crismani, Adriano; Falkensammer, Frank; Bantleon, Hans-Peter; Rausch-Fan, Xiaohui; Andrukhov, Oleh

    2015-01-01

    In the present study we coated Ti surfaces with polytetrafluorethylene (PTFE) and titanium nitride (TiN) and investigated in vitro the behavior of osteoblasts on these surfaces. MG-63 osteoblasts were cultured on titanium discs with different surface treatment: uncoated Ti6Al4V, TiN-coated, PTFE-coated. Cell viability/proliferation was detected by MTT assay. Gene-expression levels of alkaline phosphatase (ALP), osteocalcin (OC), type I collagen, receptor activator of nuclear factor-kappa-B ligand (RANKL), and osteoprotegerin (OPG) were determined by qPCR. Cell behavior on different surfaces was observed by time-lapse microscopy. Cells grown on PTFE-coated Ti surface exhibited delayed surface attachment and decreased proliferation after 48 h. However, after 168 h of culture cells grown on PTFE-coated surface exhibited higher viability/proliferation, higher expression levels of ALP and OC, and higher OPG/RANKL ratio compared to uncoated surface. No effect of TiN-coating on any investigated parameter was found. Our results shows that PTFE coating exhibits no toxic effect on MG-63 cells and slightly stimulates expression of several genes associated with osteogenesis. We propose that PTFE coating could be considered as a possible choice for a surface treatment of temporary skeletal anchorage devices in orthodontics.

  9. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    and that the outcome of IgG adsorption is much more sensitive to surface characteristics than the outcome of albumin adsorption. Using high concentrations of protein solution and hydrophobic polymer surfaces during adsorption can induce IgG aggregation, which is observed as extremely high IgG adsorptions. Besides......In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...

  10. The interaction of M13 coat protein with lipid bilayers : a spectroscopic study

    NARCIS (Netherlands)

    Sanders, J.C.

    1992-01-01

    In this thesis a small part of the reproductive cycle of the M13 bacteriophage is studied in more detail, namely the interaction of the major coat protein (MW 5240) with lipid bilayers. During the infection process is the major coat protein of M13 bacteriophage stored in the cytoplasm

  11. Kinetic Effects on Self-Assembly and Function of Protein-Polymer Bioconjugates in Thin Films Prepared by Flow Coating

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dongsook [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Huang, Aaron [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Olsen, Bradley D. [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA

    2016-11-04

    The self-assembly of nanostructured globular protein arrays in thin films is demonstrated using protein–polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self-assembled cylindrical nanostructures with POEGA domains selectively segregating to the air–film interface. Long-range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long-range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state.

  12. Antimicrobial activity and cytocompatibility of silver nanoparticles coated catheters via a biomimetic surface functionalization strategy

    Directory of Open Access Journals (Sweden)

    Wu K

    2015-12-01

    Full Text Available Ke Wu,1 Yun Yang,2,3 Yanmei Zhang,2,3 Jiexi Deng,1 Changjian Lin2,31Department of Cardiology, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, 2Department of Medical Materials, Beijing Medical Implant Engineering Research Center, Beijing Naton Technology Group, Beijing, 3State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People’s Republic of ChinaAbstract: Catheter-related bloodstream infections are a significant problem in the clinic and may result in a serious infection. Here, we developed a facile and green procedure for buildup of silver nanoparticles (AgNPs on the central venous catheters (CVCs surface. Inspired by mussel adhesive proteins, dopamine was used to form a thin polydopamine layer and induce AgNPs formation without additional reductants or stabilizers. The chemical and physicochemical properties of AgNPs coated CVCs were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and water contact angle. The Staphylococcus aureus culture experiment was used to study the antibacterial properties. The cytocompatibility was assessed by water soluble tetrazolium salts (WST-1 assay, fluorescence staining, and scanning electron microscopy analysis. The results indicated that the CVCs surface was successfully coated with compact AgNPs. AgNPs were significantly well separated and spherical with a size of 30–50 nm. The density of AgNPs could be modulated by the concentration of silver nitrate solution. The antibacterial activity was dependent on the AgNPs dose. The high dose of AgNPs showed excellent antibacterial activity while associated with increased cytotoxicity. The appropriate density of AgNPs coated CVCs could exhibit improved biocompatibility and maintained evident sterilization effect. It is promising to design mussel-inspired silver releasing CVCs with both

  13. Electrochemical corrosion behaviours of pulsed bias MSIP aluminum coating on depleted uranium surface

    International Nuclear Information System (INIS)

    Wang Qingfu; Zhang Pengcheng; Chen Lin; Liu Qinghe; Lang Dingmu; Wang Xiaohong

    2009-01-01

    Aluminum coating was prepared by magnetron sputtering ion plating (MSIP) with pulsed bias on depleted uranium surface. Its electrochemical corrosion behaviours were studied by electrochemical technology, scanning electron microscope (SEM) and X-ray energy dispersive spectroscope (EDS). The corrosion potential of aluminum coating (-534.8 mV) is higher than that of depleted uranium (-641.2 mV). The aluminum coating is a cathodic deposit to depleted uranium. Depleted uranium coated aluminum has much higher polarization resistance,greater magnitude of electrochemical impedance and much lower corrosion current than that of depleted uranium. The aluminum coating has a good corrosion resistance to depleted uranium. Corrosion characteristic of depleted uranium coated aluminum is a typical local corrosion. Meanwhile,the aluminum coating cracks and flakes off from depleted uranium substrate, which deteriorates its anti-corrosion property. Pseudo-diffusion layer on interface between aluminum coating and uranium substrate has some degree of anti-corrosion effect. (authors)

  14. Remanufacture of Zirconium-Based Conversion Coatings on the Surface of Magnesium Alloy

    Science.gov (United States)

    Liu, Zhe; Jin, Guo; Song, Jiahui; Cui, Xiufang; Cai, Zhaobing

    2017-04-01

    Brush plating provides an effective method for creating a coating on substrates of various shapes. A corroded zirconium-based conversion coating was removed from the surface of a magnesium alloy and then replaced with new coatings prepared via brush plating. The structure and composition of the remanufactured coating were determined via x-ray photoelectron spectroscopy, x-ray diffraction, and Fourier transform infrared spectroscopy. The results revealed that the coatings consist of oxide, fluoride, and tannin-related organics. The composition of the coatings varied with the voltage. Furthermore, as revealed via potentiodynamic polarization spectroscopy, these coatings yielded a significant increase in the corrosion resistance of the magnesium alloy. The friction coefficient remained constant for almost 300s during wear resistance measurements performed under a 1-N load and dry sliding conditions, indicating that the remanufactured coatings provide effective inhibition to corrosion.

  15. Hard Coat Layers by PE-CVD Process for the Top Surface of Touch Panel

    International Nuclear Information System (INIS)

    Okunishi, T; Sato, N; Yazawa, K

    2013-01-01

    In order to protect surface from damages, the high pencil hardness and the high abrasion resistance are required for the hard coat layers on polyethylene telephthalate (PET) films for the application of touch panel surface. We have already found that the UV-curing-hard-coat-polymer (UHP) coated PET films show the poor abrasion resistance, while they have the high pencil hardness. It reveals that the abrasion resistance of hard coat layers of the UHP is not simply dependent on the pencil hardness. In this work, we have studied to improve the abrasion resistance of SiOC films as hard coat layers, which were formed by PE-CVD process on UHP coated PET. The abrasion resistance was evaluated by Taber abrasion test. PE-CVD hard coat layers which formed on UHP coater PET films have showed the better abrasion resistance and have the possibility of substitution to the thin glass sheets for touch panel application.

  16. Surface Microstructure of Nanoaluminized CoCrAlY Coating Irradiated by HCPEB

    Directory of Open Access Journals (Sweden)

    Zhiyong Han

    2016-01-01

    Full Text Available A thermal sprayed CoCrAlY coating was prepared by air plasma spray on the surface of Ni-based superalloy GH4169; then, a nanoscale aluminum film was deposited with electron beam vacuum deposition on it. The coatings irradiated by high-current pulsed electron beam were investigated. After HCPEB treatment, the Al film was remelted into the bond coat. XRD result shows that Al and Al2O3 phase were recorded in the irradiated and aluminized coatings, while Co-based oxides which originally existed in the initial samples disappeared. Microstructure observations reveal that the original coating with porosity, cavities, and inclusions was significantly changed after HCPEB treatment as compact appearance of interconnected bulged nodules. Moreover, the grains on the irradiated coating were very refined and homogeneously dispersed on the surface, which could effectively inhibit the corrosive gases and improve the coating oxidation resistance.

  17. Tailoring the Surface Properties of Coatings Through Self-Stratification

    Science.gov (United States)

    2016-10-13

    Introduction Marine biofouling is the unwanted accumulation, attachment and growth of microorganisms , plants and animals on surfaces submerged in...like proteins and polysaccharides,1 accumulation of microorganisms like diatoms and bacteria, settlement of algal species and finally attachment of...Abrasion experiment The abrasion set up was made up of a long plastic plank, with a handle on one end and sponge attached to it on the opposite side

  18. Durable hydrophobic coating composition for metallic surfaces and method for the preparation of the composition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiong

    2017-02-14

    A durable hydrophobic coating composition containing fluorinated silanes for metallic surfaces, such as stainless steel surfaces. The composition includes at least one fluorine-containing silane compound, at least one phosphorus-containing silane compound, and at least one hydrolysable compound. This coating is suitable for condenser tubes, among other applications, to promote dropwise condensation.

  19. The HIE-ISOLDE Superconducting Cavities: Surface Treatment and Niobium Thin Film Coating

    CERN Document Server

    Lanza, G; Ferreira, L M A; Gustafsson, A E; Pasini, M; Trilhe, P; Palmieri, V

    2010-01-01

    CERN has designed and prepared new facilities for the surface treatment and niobium sputter coating of the HIE-ISOLDE superconducting cavities. We describe here the design choices, as well as the results of the first surface treatments and test coatings.

  20. Prospects of DLC coating as environment friendly surface treatment process.

    Science.gov (United States)

    Kim, S W; Kim, S G

    2011-06-01

    After first commercialization in 90's, the applications of diamond-like carbon (DLC) have been significantly expanded to tool, automobile parts, machineries and moulds to enhance wear and friction properties. Although DLC has many advantages like high hardness, low friction electrical insulating and chemical stability and has the possible market, its application in the field is still very limited due to the gaps of understanding between end-user and developer of its advantage of costing. Recently, one of the most popular issues in the surface modification is providing the long lasting super-hydrophilic or -hydrophobic properties on the material surface for the outdoor usage. A lot of material loss is caused due to water corrosion which has to do with the flow and contacts of water like fuel cell separator and air conditioner parts. The consequence of development of functional surface based on the hydrophilic or hydrophobic design for the important parts would be really helpful for materials to be cleaner and more energy effective. Here, we first reviewed the DLC technology and then examined the kind of surface modification as well as its merits and disadvantage. We also looked at how we can improve super-hydrophilic and super hydrophobic for the DLC coating layer as well as current status of technology and arts of DLC. In the end, we would like to suggest it as one of the environmental friendly industrial technology. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  1. REMR Management System - Coatings for Use on Wet or Damp Steel Surfaces

    National Research Council Canada - National Science Library

    Beitelman, Alfred

    1997-01-01

    .... The surfaces of these structures normally can be blast cleaned to a white metal grade, but condensation and/or water leaking around seals immediately make the surfaces too wet for the application of many coatings...

  2. The outer membrane, not a coat of host proteins, limits antigenicity of virulent Treponema pallidum.

    Science.gov (United States)

    Cox, D L; Chang, P; McDowall, A W; Radolf, J D

    1992-01-01

    Virulent Treponema pallidum reacts poorly with the specific antibodies present in human and rabbit syphilitic sera, a phenomenon often attributed to an outer coat of host serum proteins. Here we present additional evidence that the limited antigenicity of virulent organisms actually is due to a paucity of proteins in the outer membrane. Initially, we used electron microscopy to demonstrate that the outer membrane is highly susceptible to damage from physical manipulation (i.e., centrifugation and resuspension) and nonionic detergents. Organisms with disrupted outer membranes were markedly more antigenic than intact treponemes as determined by immunoelectron microscopy (IEM) with rabbit syphilitic and antiendoflagellar antisera. Data obtained with a new radioimmunoassay, designated the T. pallidum surface-specific radioimmunoassay, corroborated these IEM findings by demonstrating that the major T. pallidum immunogens are not surface exposed; the assay also was unable to detect serum proteins, including fibronectin, on the surfaces of intact organisms. Furthermore, IEM of T. pallidum on ultrathin cryosections with monospecific anti-47-kDa-immunogen antiserum confirmed the intracellular location of the 47-kDa immunogen. On the basis of these and previous findings, we proposed a new model for T. pallidum ultrastructure in which the outer membrane contains a small number of transmembrane proteins and the major membrane immunogens are anchored by lipids to the periplasmic leaflet of the cytoplasmic membrane. This unique ultrastructure explains the remarkable ability of virulent organisms to evade the humoral immune response of the T. pallidum-infected host. Images PMID:1541522

  3. Nano-coating of beta-galactosidase onto the surface of lactose by using an ultrasound-assisted technique

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2010-01-01

    We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D-galactose us......We nano-coated powdered lactose particles with the enzyme beta-galactosidase using an ultrasound-assisted technique. Atomization of the enzyme solution did not change its activity. The amount of surface-attached beta-galactosidase was measured through its enzymatic reaction product D......-galactose using a standardized method. A near-linear increase was obtained in the thickness of the enzyme coat as the treatment proceeded. Interestingly, lactose, which is a substrate for beta-galactosidase, did not undergo enzymatic degradation during processing and remained unchanged for at least 1 month....... Stability of protein-coated lactose was due to the absence of water within the powder, as it was dry after the treatment procedure. In conclusion, we were able to attach the polypeptide to the core particles and determine precisely the coating efficiency of the surface-treated powder using a simple approach....

  4. Coating polypropylene surfaces with protease weakens the adhesion and increases the dispersion of Candida albicans cells.

    Science.gov (United States)

    Andreani, Eugenio Spadoni; Villa, Federica; Cappitelli, Francesca; Krasowska, Anna; Biniarz, Piotr; Łukaszewicz, Marcin; Secundo, Francesco

    2017-03-01

    To investigate the ability of the proteases, subtilisin and α-chymotrypsin (aCT), to inhibit the adhesion of Candida albicans biofilm to a polypropylene surface. The proteases were immobilized on plasma-treated polypropylene by covalently linking them with either glutaraldehyde (GA) or N'-diisopropylcarbodiimide (DIC) and N-hydroxysuccinimide (NHS). The immobilization did not negatively affect the enzyme activity and in the case of subtilisin, the activity was up to 640% higher than that of the free enzyme when using N-acetyl phenylalanine ethyl ester as the substrate. The efficacies against biofilm dispersal for the GA-linked SubC and aCT coatings were 41 and 55% higher than the control (polypropylene coated with only GA), respectively, whereas no effect was observed with enzymes immobilized with DIC and NHS. The higher dispersion efficacy observed for the proteases immobilized with GA could be both steric (proper orientation of the active site) and dynamic (higher protein mobility/flexibility). Proteases immobilized on a polypropylene surface reduced the adhesion of C. albicans biofilms and therefore may be useful in developing anti-biofilm surfaces based on non-toxic molecules and sustainable strategies.

  5. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  6. Systems and methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    Science.gov (United States)

    Moore, Karen A.; Zatorski, Raymond A.

    2005-07-12

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  7. Development of Scaffolds for Light Harvesting and Photocatalysis from the Coat Protein of Tobacco Mosaic Virus

    Science.gov (United States)

    Dedeo, Michel Toussaint

    The utility of a previously developed TMV-based light harvesting system has been dramatically expanded through the introduction of reactive handles for the site-specific modification of the interior and exterior surfaces. Further experiments to reengineer the coat protein have produced structures with unique, unexpected, and useful assembly properties that complement the newly available surface modifications. Energy transfer from chromophores in the RNA channel of self-assembled TMV structures to the exterior was made possible by conjugation of acceptor dyes and porphyrins to the N-terminus. By repositioning the N-terminus to the pore through circular permutation, this process was repeated to create structures that mimic the light harvesting 1 complex of photosynthetic bacteria. To study and improve upon natural photosynthesis, closely packed chromophore arrays and gold nanoparticles were tethered to the pore of stabilized TMV disks through introduction of a uniquely reactive lysine. Finally, a dimeric TMV coat protein was produced to control the distribution and arrangement of synthetic groups with synergistic activity.

  8. Novel surface coating materials for endodontic dental implant

    International Nuclear Information System (INIS)

    Fathi, M.H.; Mortazavi, V.; Moosavi, S.B.

    2003-01-01

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  9. Novel surface coating materials for endodontic dental implant

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, M.H. [Isfahan Univ. of Technology, Materials Engineering Dept., Isfahan (Iran, Islamic Republic of); Mortazavi, V.; Moosavi, S.B. [Isfahan Univ. of Medical Sciences, Faculty of Dentistry, Isfahan (Iran, Islamic Republic of)

    2003-07-01

    The aim of this study was to design and produce novel coating materials in order to obtain two goals including; improvement of the corrosion behavior of metallic dental endodontic implant and the bone osteointegration simultaneously. Stainless steel 316L (SS) was used as a metallic substrate and a novel Hydroxyapatite/Titanium (HA/Ti) composite coating was prepared on it. Structural characterization techniques including XRD, SEM and EDX were utilized to investigate the microstructure and morphology of the coating. Electrochemical tests were performed in physiological solutions in order to determine and compare the corrosion behavior of the coated and uncoated specimens as an indication of biocompatibility. Two types of endodontic implants including; SS with and without (HA/Ti) composite coating were prepared and subsequently implanted in the mandibular canine of 20 cats after completion of root canal treatment and osseous preparation. After a healing period of 4 months, osteointegration evaluation and histopathological interpretation was carried out using SEM and optical microscopy. Results indicate that the novel HA/Ti composite coating improves the corrosion behavior and biocompatibility of SS endodontic dental implant. The clinical evaluation (in vivo test) results showed that there was significant difference in osteointegration between coated and uncoated endodontic dental implants and average bone osteointegration of coated implants were more than uncoated implants. The histopathological results and bone tissue response to the coated implants was acceptable and it was concluded that HA/Ti composite coated SS could be used as well as an endodontic dental implant. (author)

  10. Preparation of aluminide coatings on the inner surface of tubes by heat treatment of Al coatings electrodeposited from an ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dongpeng; Chen, Yimin [School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ling, Guoping, E-mail: linggp@zju.edu.cn [School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Liu, Kezhao; Chen, Chang’an; Zhang, Guikai [National Key Laboratory of Surface Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-12-15

    Highlights: • Al coating is prepared on the inner surface of one-meter tube. • Al coating shows good adherence to the substrate. • The thickness of Al coating is uniform along the tube. • Aluminide coating is obtained by heat treating Al coating. • Structure of aluminide coating is regulated by different thickness of Al coating. - Abstract: Aluminide coatings were prepared on the inner surface of 316L stainless steel tubes with size of Ø 12 mm × 1000 mm by heat-treating Al coatings electrodeposited from AlCl{sub 3}-1-ethyl-3-methyl-imidazolium chloride (AlCl{sub 3}–EMIC) ionic liquid at room temperature. Studies on the electrolytic etching pretreatment of stainless tubes before Al coating electrodeposition were carried out. The Al coating showed good adherence to the substrate after electrolytic etching at 10 mA/cm{sup 2} for 10 min. The thickness of Al coatings was uniform along the tube. The structure of prepared aluminide coatings can be regulated by different thickness of Al coating. The outer layer of aluminide coatings was FeAl, Fe{sub 2}Al{sub 5} and FeAl{sub 3} for the samples of 1-μm, 5-μm and 10-μm thick Al coatings, respectively.

  11. Surface-Enhanced Raman Scattering Nanoparticles as Optical Labels for Imaging Cell Surface Proteins

    Science.gov (United States)

    MacLaughlin, Christina M.

    Assaying the expression of cell surface proteins has widespread application for characterizing cell type, developmental stage, and monitoring disease transformation. Immunophenotyping is conducted by treating cells with labelled targeting moieties that have high affinity for relevant surface protein(s). The sensitivity and specificity of immunophenotyping is defined by the choice of contrast agent and therefore, the number of resolvable signals that can be used to simultaneously label cells. Narrow band width surface-enhanced Raman scattering (SERS) nanoparticles are proposed as optical labels for multiplexed immunophenotying. Two types of surface coatings were investigated to passivate the gold nanoparticles, incorporate SERS functionality, and to facilitate attachment of targeting antibodies. Thiolated poly(ethylene glycol) forms dative bonds with the gold surface and is compatible with multiple physisorbed Raman-active reporter molecules. Ternary lipid bilayers are used to encapsulate the gold nanoparticles particles, and incorporate three different classes of Raman reporters. TEM, UV-Visible absorbance spectroscopy, DLS, and electrophoretic light scattering were used characterize the particle coating. Colourimetric protein assay, and secondary antibody labelling were used to quantify the antibody conjugation. Three different in vitromodels were used to investigate the binding efficacy and specificity of SERS labels for their biomarker targets. Primary human CLL cells, LY10 B lymphoma, and A549 adenocarcinoma lines were targeted. Dark field imaging was used to visualize the colocalization of SERS labels with cells, and evidence of receptor clustering was obtained based on colour shifts of the particles' Rayleigh scattering. Widefield, and spatially-resolved Raman spectra were used to detect labels singly, and in combination from labelled cells. Fluorescence flow cytometry was used to test the particles' binding specificity, and SERS from labelled cells was also

  12. Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, J.S.G.; Trust, T.J.

    1988-02-01

    The surface protein composition of members of a serogroup of Aeromonas hydrophila was examined. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed a 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase /sup 125/I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size required for A. hydrophila S-layer anchoring. The native S layer was permeable to /sup 125/I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behavior characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein.

  13. Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein

    International Nuclear Information System (INIS)

    Dooley, J.S.G.; Trust, T.J.

    1988-01-01

    The surface protein composition of members of a serogroup of Aeromonas hydrophila was examined. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed a 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase 125 I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size required for A. hydrophila S-layer anchoring. The native S layer was permeable to 125 I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behavior characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein

  14. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  15. Roughness of the globular protein surface

    International Nuclear Information System (INIS)

    Timchenko, A.A.; Galzitskaya, O.V.; Serdyuk, I.N.

    1998-01-01

    Protein surface analysis using high resolution X ray shows that this surface has a two-level organization, on the micro- and macro-scales. On the micro-scale (2-7 Angstroem), the surface is characterized by the d = 2.1 fractal dimension which is intrinsic to surface with weak deformation and reflects the local atomic group packing. On the macro-scale the large scale surface defects are revealed which are interpreted as the result of secondary structure elements packing

  16. Electrochemical Behavior Of Bioactive Coatings On Cp-ti Surface For Dental Application.

    OpenAIRE

    Marques, Isabella da Silva Vieira; Barão, Valentim Adelino Ricardo; da Cruz, Nilson Cristino; Yuan, Judy Chia-Chun; Mesquita, Marcelo Ferraz; Ricomini-Filho, Antonio Pedro; Sukotjo, Cortino; Mathew, Mathew T

    2016-01-01

    The surface characteristics and electrochemical properties of bioactive coatings produced by plasma electrolytic oxidation (PEO) with calcium, phosphorous, silicon and silver on commercially pure titanium were evaluated. PEO treatment produced a porous oxide layer, which improved the surface topography, and enriched the surface chemistry with bioactive elements, responsible for mimicking bone surface. The surfaces with higher calcium concentration presented antibacterial and biocompatibility ...

  17. Protein crystallization on polymeric film surfaces

    Science.gov (United States)

    Fermani, Simona; Falini, Giuseppe; Minnucci, Massimiliano; Ripamonti, Alberto

    2001-04-01

    Polymeric films containing ionizable groups, such as sulfonated polystyrene, cross-linked gelatin films with adsorbed poly- L-lysine or entrapped poly- L-aspartate and silk fibroin with entrapped poly- L-lysine or poly- L-aspartate, have been tested as heterogeneous nucleant surfaces for proteins. Concanavalin A from jack bean and chicken egg-white lysozyme were used as models. It was found that the crystallization of concanavalin A by the vapor diffusion technique, is strongly influenced by the presence of ionizable groups on the film surface. Both the induction time and protein concentration necessary for the crystal nucleation decrease whereas the nucleation density increases on going from the reference siliconized cover slip to the uncharged polymeric surfaces and even more to the charged ones. Non-specific attractive and local interactions between the protein and the film surface might promote molecular collisions and the clustering with the due symmetry for the formation of the crystal nuclei. The results suggest that the studied polymeric film surfaces could be particularly useful for the crystallization of proteins from solutions at low starting concentration, thus using small quantities of protein, and for proteins with very long crystallization time.

  18. Poly(vinyl alcohol) hydrogel coatings with tunable surface exposure of hydroxyapatite.

    Science.gov (United States)

    Moreau, David; Villain, Arthur; Ku, David N; Corté, Laurent

    2014-01-01

    Insufficient bone anchoring is a major limitation of artificial substitutes for connective osteoarticular tissues. The use of coatings containing osseoconductive ceramic particles is one of the actively explored strategies to improve osseointegration and strengthen the bone-implant interface for general tissue engineering. Our hypothesis is that hydroxyapatite (HA) particles can be coated robustly on specific assemblies of PVA hydrogel fibers for the potential anchoring of ligament replacements. A simple dip-coating method is described to produce composite coatings made of microscopic hydroxyapatite (HA) particles dispersed in a poly(vinyl alcohol) (PVA) matrix. The materials are compatible with the requirements for implant Good Manufacturing Practices. They are applied to coat bundles of PVA hydrogel fibers used for the development of ligament implants. By means of optical and electronic microscopy, we show that the coating thickness and surface state can be adjusted by varying the composition of the dipping solution. Quantitative analysis based on backscattered electron microscopy show that the exposure of HA at the coating surface can be tuned from 0 to over 55% by decreasing the weight ratio of PVA over HA from 0.4 to 0.1. Abrasion experiments simulating bone-implant contact illustrate how the coating cohesion and wear resistance increase by increasing the content of PVA relative to HA. Using pullout experiments, we find that these coatings adhere well to the fiber bundles and detach by propagation of a crack inside the coating. These results provide a guide to select coated implants for anchoring artificial ligaments.

  19. Proteins in solution: Fractal surfaces in solutions

    Directory of Open Access Journals (Sweden)

    R. Tscheliessnig

    2016-02-01

    Full Text Available The concept of the surface of a protein in solution, as well of the interface between protein and 'bulk solution', is introduced. The experimental technique of small angle X-ray and neutron scattering is introduced and described briefly. Molecular dynamics simulation, as an appropriate computational tool for studying the hydration shell of proteins, is also discussed. The concept of protein surfaces with fractal dimensions is elaborated. We finish by exposing an experimental (using small angle X-ray scattering and a computer simulation case study, which are meant as demonstrations of the possibilities we have at hand for investigating the delicate interfaces that connect (and divide protein molecules and the neighboring electrolyte solution.

  20. Behavior of Ag nanoparticles in soil: Effects of particle surface coating, aging and sewage sludge amendment

    International Nuclear Information System (INIS)

    Whitley, Annie R.; Levard, Clément; Oostveen, Emily; Bertsch, Paul M.; Matocha, Chris J.; Kammer, Frank von der; Unrine, Jason M.

    2013-01-01

    This study addressed the relative importance of particle coating, sewage sludge amendment, and aging on aggregation and dissolution of manufactured Ag nanoparticles (Ag MNPs) in soil pore water. Ag MNPs with citrate (CIT) or polyvinylpyrrolidone (PVP) coatings were incubated with soil or municipal sewage sludge which was then amended to soil (1% or 3% sludge (w/w)). Pore waters were extracted after 1 week and 2 and 6 months and analyzed for chemical speciation, aggregation state and dissolution. Ag MNP coating had profound effects on aggregation state and partitioning to pore water in the absence of sewage sludge, but pre-incubation with sewage sludge negated these effects. This suggests that Ag MNP coating does not need to be taken into account to understand fate of AgMNPs applied to soil through biosolids amendment. Aging of soil also had profound effects that depended on Ag MNP coating and sludge amendment. -- Highlights: •Silver nanoparticle coating affects fate in unamended soils. •Citrated coated silver nanoparticles could be found in pore water for up to six months. •Pre-incubation of silver nanoparticles in sewage sludge negated effects of surface coating. •Weathered or reprecipitated particles found in pore water for up to two months in sludge amended soils. •Particle surface coating, sewage sludge amendment and aging all have important impacts. -- Behavior of manufactured silver nanoparticles in soil depends on surface coating, contact with sewage sludge, and aging

  1. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Litong, E-mail: guolitong810104@163.com [China University of Mining and Technology, Xuzhou 221116 (China); ustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 (Australia); Chen, Xiaoyuan; Liu, Xuemei; Feng, Wei [China University of Mining and Technology, Xuzhou 221116 (China); Li, Baoe [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Lin, Cheng; Tao, Xueyu; Qiang, Yinghuai [China University of Mining and Technology, Xuzhou 221116 (China)

    2016-04-01

    Surface modifications of Ti and nano-composite coatings were employed to simultaneously improve the surface roughness, corrosion resistance and chemical bonding between porclain-Ti. The specimens were studied by field-emission scanning electron microscopy, surface roughness, differential scanning calorimetry, Fourier transform infrared spectroscopy, corrosion resistance and bonding strength tests. The SEM results showed that hybrid structures with micro-stripes, nano-pores and nano-protuberances were prepared by surface modification of Ti, which significantly enhanced the surface roughness and corrosion resistance of Ti. Porous nano-composite coatings were synthesized on Ti anodized with pre-treatment in 40% HF acid. TiO{sub 2} nanoparticles were added into the hybrid coating to increase the solid phase content of the sols and avoid the formation of microcracks. With the TiO{sub 2} content increasing from 45 wt% to 60 wt%, the quantities of the microcracks on the coating surface gradually decreased. The optimal TiO{sub 2} content for the nanocomposite coatings is 60 wt% in this research. Compared to the uncoated group, the bonding strength of the coated groups showed a bonding strength improvement of 23.96%. The cytotoxicity of the 4# coating group was ranked as zero, which corresponds to non-cytotoxicity. - Highlights: • Surface roughness of Ti was increased by surface modification of Ti. • Corrosion resistance was enhanced by surface modification of Ti. • Porous nano-composite coatings were synthesized on Ti by sol–gel process. • TiO{sub 2} nanoparticles were added into the coating to avoid formation of cracks. • The nano-composite coatings increased the bonding strength of about 24%.

  2. Prime surface coating: A novel method for making thick ceramic coatings

    Science.gov (United States)

    Kashefi, Mehrdad

    The use of coatings to protect or enhance the performance of a component manufactured from a different material is well recognised as a cost effective solution in many engineering situations. This approach is particularly appropriate for ceramic materials deposited as coatings. However, in general such coatings are either relatively thin (determined that ceramic powders could be well dispersed in an alkoxyethyl cyanoacrylate binder to a maximum volume fraction of 0.45 for uni-modal powders with mean particle sizes 8 mum, and 0.58 for a bi-modal alumina powder, Para-toluene sulphonic acid and caffeine have been identified as suitable polymerization inhibitors and initiators respectively. Coatings with controlled thicknesses between 0.4 and 1.0 mm have been successfully deposited onto metallic and ceramic substrates. SEM micrographs show good uniformity of the coating and that successful adhesion can be achieved, as also shown by the joint shear strength test results. The versatile properties of the cyanoacrylates suggest that there are potential applications for the coatings at the cured stage. This study also describes and discusses the debinding and sintering of alumina and zirconia coatings. Using 96% alumina substrates resulted in successful sintering of the debonded layers to full density. The microstructural studies show good uniformity in the coatings with good adhesion to the substrate. The indentation hardness and toughness values measured in the sintered coatings were comparable with the results obtained on the commercial alumina used as the substrate.

  3. 40 CFR 174.515 - Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Papaya Ringspot Virus...-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.515 Coat Protein of Papaya Ringspot Virus; exemption from the requirement of a tolerance. Residues of Coat Protein of Papaya Ringspot Virus are exempt...

  4. 40 CFR 174.514 - Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Coat Protein of Watermelon Mosaic... Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic Virus; exemption from the requirement for a tolerance. Residues of Coat Protein of Watermelon Mosaic Virus-2 and Zucchini Yellow Mosaic...

  5. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    Science.gov (United States)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  6. Measurements of long-range interactions between protein-functionalized surfaces by total internal reflection microscopy.

    Science.gov (United States)

    Wang, Zhaohui; Gong, Xiangjun; Ngai, To

    2015-03-17

    Understanding the interaction between protein-functionalized surfaces is an important subject in a variety of protein-related processes, ranging from coatings for biomedical implants to targeted drug carriers and biosensors. In this work, utilizing a total internal reflection microscope (TIRM), we have directly measured the interactions between micron-sized particles decorated with three types of common proteins concanavalin A (ConA), bovine serum albumin (BSA), lysozyme (LYZ), and glass surface coated with soy proteins (SP). Our results show that the protein adsorption greatly affects the charge property of the surfaces, and the interactions between those protein-functionalized surfaces depend on solution pH values. At pH 7.5-10.0, all these three protein-functionalized particles are highly negatively charged, and they move freely above the negatively charged SP-functionalized surface. The net interaction between protein-functionalized surfaces captured by TIRM was found as a long-range, nonspecific double-layer repulsion. When pH was decreased to 5.0, both protein-functionalized surfaces became neutral and double-layer repulsion was greatly reduced, resulting in adhesion of all three protein-functionalized particles to the SP-functionalized surface due to the hydrophobic attraction. The situation is very different at pH = 4.0: BSA-decorated particles, which are highly charged, can move freely above the SP-functionalized surfaces, while ConA- and LYZ-decorated particles can only move restrictively in a limited range. Our results quantify these nonspecific kT-scale interactions between protein-functionalized surfaces, which will enable the design of surfaces for use in biomedical applications and study of biomolecular interactions.

  7. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    Science.gov (United States)

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Reflectance variability of surface coatings reveals characteristic eigenvalue spectra

    Science.gov (United States)

    Medina, José M.; Díaz, José A.; Barros, Rui

    2012-10-01

    We have examined the trial-to-trial variability of the reflectance spectra of surface coatings containing effect pigments. Principal component analysis of reflectances was done at each detection angle separately. A method for classification of principal components is applied based on the eigenvalue spectra. It was found that the eigenvalue spectra follow characteristic power laws and depend on the detection angle. Three different subsets of principal components were examined to separate the relevant spectral features related to the pigments from other noise sources. Reconstruction of the reflectance spectra by taking only the first subset indicated that reflectance variability was higher at near-specular reflection, suggesting a correlation with the trial-to-trial deposition of effect pigments. Reconstruction by using the second subset indicates that variability was higher at short wavelengths. Finally, reconstruction by using only the third subset indicates that reflectance variability was not totally random as a function of the wavelength. The methods employed can be useful in the evaluation of color variability in industrial paint application processes.

  9. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    International Nuclear Information System (INIS)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-01-01

    Highlights: • DLC coatings were modified by Ar + ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp 2 content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar + ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ S p )

  10. Protein arrangement on modified diamond-like carbon surfaces – An ARXPS study

    Energy Technology Data Exchange (ETDEWEB)

    Oosterbeek, Reece N., E-mail: reece.oosterbeek@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand); Seal, Christopher K. [Light Metals Research Centre, The University of Auckland, Private Bag 92019 (New Zealand); Hyland, Margaret M. [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019 (New Zealand)

    2014-12-01

    Highlights: • DLC coatings were modified by Ar{sup +} ion sputtering and laser graphitisation. • The surface properties of the coatings were measured, and it was found that the above methods increased sp{sup 2} content and altered surface energy. • ARXPS was used to observe protein arrangement on the surface. • Polar CO/CN groups were seen to be segregated towards the interface, indicating they play an important role in bonding. • This segregation increased with increasing polar surface energy, indicating an increased net attraction between polar groups. - Abstract: Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar{sup +} ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC–protein interface; at increasing takeoff angle (further from to DLC–protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC–protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γ{sub S}{sup p})

  11. Microstructure, bioactivity and osteoblast behavior of monoclinic zirconia coating with nanostructured surface.

    Science.gov (United States)

    Wang, Guocheng; Meng, Fanhao; Ding, Chuanxian; Chu, Paul K; Liu, Xuanyong

    2010-03-01

    A monoclinic zirconia coating with a nanostructural surface was prepared on the Ti-6Al-4V substrate by an atmospheric plasma-spraying technique, and its microstructure and composition, as well as mechanical and biological properties, were investigated to explore potential application as a bioactive coating on bone implants. X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Raman spectroscopy revealed that the zirconia coating was composed of monoclinic zirconia which was stable at low temperature, and its surface consists of nano-size grains 30-50 nm in size. The bond strength between the coating and the Ti-6Al-4V substrate was 48.4 + or - 6.1 MPa, which is higher than that of plasma-sprayed HA coatings. Hydrothermal experiments indicated that the coating was stable in a water environment and the phase composition and Vickers hardness were independent of the hydrothermal treatment time. Bone-like apatite is observed to precipitate on the surface of the coating after soaking in simulated body fluid for 6 days, indicating excellent bioactivity in vitro. The nanostructured surface composed of monoclinic zirconia is believed to be crucial to its bioactivity. Morphological observation and the cell proliferation test demonstrated that osteoblast-like MG63 cells could attach to, adhere to and proliferate well on the surface of the monoclinic zirconia coating, suggesting possible applications in hard tissue replacements. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Titanium Surface Coating with a Laminin-Derived Functional Peptide Promotes Bone Cell Adhesion

    Directory of Open Access Journals (Sweden)

    Seung-Ki Min

    2013-01-01

    Full Text Available Laminin-derived peptide coatings can enhance epithelial cell adhesion to implants, and the positive effect of these peptides on bone cell adhesion has been anticipated. The purpose of this study was to evaluate the improvement in bone cell attachment to and activity on titanium (Ti scaffolds coated with a laminin-derived functional peptide, Ln2-P3 (the DLTIDDSYWYRI motif. Four Ti disc surfaces were prepared, and a human osteosarcoma (HOS cell attachment test was performed to select two candidate surfaces for peptide coating. These two candidates were then coated with Ln2-P3 peptide, a scrambled peptide, or left uncoated to measure cell attachment to each surface, following which one surface was chosen to assess alkaline phosphatase (ALP activity and osteogenic marker gene expression with quantitative real-time PCR. On the commercially pure Ti surface, the Ln2-P3 coating significantly increased cellular ALP activity and the expression levels of ALP and bone sialoprotein mRNA as compared with the scrambled peptide-coated and uncoated surfaces. In conclusion, although further in vivo studies are needed, the findings of this in vitro study indicate that the Ln2-P3-coated implant surface promotes bone cell adhesion, which has clinical implications for reducing the overall treatment time of dental implant therapy.

  13. 40 CFR 63.5743 - What standards must I meet for aluminum recreational boat surface coating operations?

    Science.gov (United States)

    2010-07-01

    ... recreational boat surface coating operations? 63.5743 Section 63.5743 Protection of Environment ENVIRONMENTAL... Manufacturing Standards for Aluminum Recreational Boat Surface Coating Operations § 63.5743 What standards must I meet for aluminum recreational boat surface coating operations? (a) For aluminum wipedown solvent...

  14. Effects of photochemically immobilized polymer coatings on protein adsorption, cell adhesion, and the foreign body reaction to silicone rubber.

    Science.gov (United States)

    DeFife, K M; Shive, M S; Hagen, K M; Clapper, D L; Anderson, J M

    1999-03-05

    Photochemical immobilization technology was utilized to covalently couple polymers to silicone rubber either at multiple points along a polymer backbone or at the endpoint of an amphiphilic chain. The coating variants then were tested in vitro and in vivo for improvement of desired responses compared to uncoated silicone rubber. All coating variants suppressed the adsorption of fibrinogen and immunoglobulin G, and most also inhibited fibroblast growth by 90-99%. None of the coating variants inhibited monocyte or neutrophil adhesion in vitro. However, the surfaces that supported the highest levels of monocyte adhesion also elicited the lowest secretion of pro-inflammatory cytokines. None of the materials elicited a strong inflammatory response or significantly (p< 0.05) reduced the thickness of the fibrous capsule when implanted subcutaneously in rats. Overall, the most passivating coating variant was an endpoint immobilized polypeptide that reduced protein adsorption, inhibited fibroblast growth by 90%, elicited low cytokine secretion from monocytes, and reduced fibrous encapsulation by 33%. In general, although some coating variants modified the adsorption of proteins and the behavior of leukocytes or fibroblasts in vitro, none abolished the development of a fibrous capsule in vivo. Copyright 1999 John Wiley & Sons, Inc.

  15. Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms

    Science.gov (United States)

    Wang, Zhong; Kang, Haijiao; Zhang, Wei; Zhang, Shifeng; Li, Jianzhang

    2017-04-01

    In this study, a novel and economic surface modification technique for montmorillonite (MMT) nanosheets, a biocompatible coupling cross-linking agent, was developed on an attempt at improving the interfacial adhesion with soy protein isolate (SPI) matrix. Inspired by natural polyphenol, the "green dip-coating" method using tannic acid (TA) to surface-modify MMT (TA@MMT). SPI nanocomposite films modified with MMT or TA@MMT, as well as the control ones, were prepared via the casting method. The TA layer was successfully coated on the MMT surface through the (FeIII) ions coordination chemistry and the synthetic samples were characterized by the Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The compatibility and interfacial interactions between modified MMT and SPI matrix were greatly enhanced by the TA-FeIII coating on the MMT surface. The mechanical properties, water resistance, and thermal stability of the resultant biofilm were increased accordingly. Compared with that of the unmodified SPI film, the tensile strength of the nanocomposite films modified by the green dip-coating was increased by 113.3%. These SPI-based nanocomposite films showed the favorable potential in terms of food packing applications due to their efficient barriers to water vapor and UV and/or visible light.

  16. Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli; Zhao, Peng; Yang, Hui; Liu, Borui; Zhang, Jiguang; Cui, Yi; Yu, Guihua; Zhang, Sulin; Wang, Chong M.

    2015-10-01

    One of the key challenges of Si-based anodes for lithium ion batteries is the large volume change upon lithiation and delithiation, which commonly leads to electrochemo-mechanical degradation and subsequent fast capacity fading. Recent studies have shown that applying nanometer-thick coating layers on Si nanoparticle (SiNPs) enhances cyclability and capacity retention. However, it is far from clear how the coating layer function from the point of view of both surface chemistry and electrochemo-mechanical effect. Herein, we use in situ transmission electron microscopy to investigate the lithiation/delithiation kinetics of SiNPs coated with a conductive polymer, polypyrrole (PPy). We discovered that this coating layer can lead to “self-delithiation” or “self-discharging” at different stages of lithiation. We rationalized that the self-discharging is driven by the internal compressive stress generated inside the lithiated SiNPs due to the constraint effect of the coating layer. We also noticed that the critical size of lithiation-induced fracture of SiNPs is increased from ~ 150 nm for bare SiNPs to ~ 380 nm for the PPy-coated SiNPs, showing a mechanically protective role of the coating layer. These observations demonstrate both beneficial and detrimental roles of the surface coatings, shedding light on rational design of surface coatings for silicon to retain high-power and high capacity as anode for lithium ion batteries.

  17. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.X., E-mail: cxwang@mail.dhu.edu.cn [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Lv, J.C. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Ren, Y. [School of Textile and Clothing, Nantong University, Jiangsu 226019 (China); Zhi, T.; Chen, J.Y.; Zhou, Q.Q. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Lu, Z.Q.; Gao, D.W. [College of Textiles and Clothing, Yancheng Institute of Technology, Jiangsu 224051 (China); Collaborative Innovation Center for Ecological Building Materials and Environmental Protection Equipments, Jiangsu 224051 (China); Key Laboratory for Advanced Technology in Environmental Protection, Jiangsu 224051 (China); Jin, L.M. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204 (China)

    2015-12-30

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O{sub 2} plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O{sub 2} plasma treated and SWCNT coated PET fabric was better and worse than that of N{sub 2} or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the

  18. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement

    International Nuclear Information System (INIS)

    Wang, C.X.; Lv, J.C.; Ren, Y.; Zhi, T.; Chen, J.Y.; Zhou, Q.Q.; Lu, Z.Q.; Gao, D.W.; Jin, L.M.

    2015-01-01

    Graphical abstract: - Highlights: • PET was finished by plasma treatment and SWCNT coating to improve antistatic property. • Plasma modification had a positive effect on SWCNT coating on PET fiber surface. • O 2 plasma was more effective in SWCNT coating than Ar plasma in the shorter time. • Antistatic enhanced and then declined with enhancing treatment time and output power. • Antistatic increased with increasing concentration, curing time, curing temperature. - Abstract: This study introduced a green method to prepare antistatic polyester (PET) fabrics by plasma pretreatment and single-walled carbon nanotube (SWCNT) coating. The influences of plasma conditions and SWCNT coating parameters on antistatic property of PET fabrics were investigated. PET fabrics were pretreated under various plasma conditions such as different treatment times, output powers and working gases, and then SWCNT coating on the plasma treated PET fabrics was carried out by coating-dry-cure using various coating parameters including different SWCNT concentrations, curing times and curing temperatures. PET fabrics were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and volume resistivity. SEM and XPS analysis of the plasma treated PET fabrics revealed the increase in surface roughness and oxygen/nitrogen containing groups on the PET fiber surface. SEM and XPS analysis of the plasma treated and SWCNT coated PET fabrics indicated the SWCNT coating on PET fiber surface. The plasma treated and SWCNT coated PET fabrics exhibited a good antistatic property, which increased and then decreased with the increasing plasma treatment time and output power. The antistatic property of the O 2 plasma treated and SWCNT coated PET fabric was better and worse than that of N 2 or Ar plasma treated and SWCNT coated PET fabric in the shorter treatment time and the longer treatment time, respectively. In addition, the antistatic property of the plasma treated

  19. The influence of surface topography of UV coated and printed cardboard on the print gloss

    Directory of Open Access Journals (Sweden)

    Igor Karlović

    2010-09-01

    Full Text Available The incident light on the printed surface undergoes through several processes of scattering, absorbtion and reflectiondepending on the surface topography and structure of the material. The specular part of the surface reflection is commonlyattributed as the geometric component of the reflection, and when measured is associated with specular gloss.The diffuse part of the surface reflection contains the chromatic part of the reflection and is commonly calculatedthrough colorimetric values. Using UV coatings as surface enhacement materials which affect the optical propertiesof coated surfaces and final appearance of the printed product forms new surface topography over the existingone. We have investigated the influence of three different amounts of UV glossy and matte oveprint coating on themeasured specular gloss of printed cardboard samples. The different amount of coatings on the printed samples wereachived using three different screen stencils of 180 threads/cm, 150 threads/cm and 120 threads/cm thread count.The cardboard samples were analysed with AFM and SEM microscopes to obtain surface topography and roughnessvalues which were evaluated with the measured geometric values speficied as instrumental gloss. The surfaceswith a specific amount of UV coatings showed a new formed topography which influences the reflection of light.The changes in topography were evaluated through surface roughness parameters which showed a decline of surfaceroughness with tht additional ammount of glossy and matte coatings. The obtained and calculated correlations showthere is a high correlation between coating ammount and surface roughness change and gloss for the glossy UVcoating. The results for the matte UV coatings showed lower correlation for the gloss and surface roughness.

  20. Understanding the wetting properties of nanostructured selenium coatings: the role of nanostructured surface roughness and air-pocket formation

    Directory of Open Access Journals (Sweden)

    Tran PA

    2013-05-01

    Full Text Available Phong A Tran,1,2 Thomas J Webster31Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, VIC, Australia; 2The Particulate Fluid Processing Centre, University of Melbourne, Melbourne, VIC, Australia; 3Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USAAbstract: Wetting properties of biomaterials, in particular nanomaterials, play an important role, as these influence interactions with biological elements, such as proteins, bacteria, and cells. In this study, the wetting phenomenon of titanium substrates coated with selenium nanoparticles was studied using experimental and mathematical modeling tools. Importantly, these selenium-coated titanium substrates were previously reported to increase select protein adsorption (such as vitronectin and fibronectin, to decrease bacteria growth, and increase bone cell growth. Increased selenium nanoparticle coating density resulted in higher contact angles but remained within the hydrophilic regime. This trend was found in disagreement with the Wenzel model, which is widely used to understand the wetting properties of rough surfaces. The trend also did not fit well with the Cassie–Baxter model, which was developed to understand the wetting properties of composite surfaces. A modified wetting model was thus proposed in this study, to understand the contributing factors of material properties to the hydrophilicity/hydrophobicity of these nanostructured selenium-coated surfaces. The analysis and model created in this study can be useful in designing and/or understanding the wetting behavior of numerous biomedical materials and in turn, biological events (such as protein adsorption as well as bacteria and mammalian cell functions.Keywords: hydrophilicity, hydrophobicity, Wenzel model, Cassie–Baxter model, free energy, implant material, proteins, cells, bacteria

  1. Surface modifications and Nano-composite coatings to improve the bonding strength of titanium-porcelain.

    Science.gov (United States)

    Guo, Litong; Chen, Xiaoyuan; Liu, Xuemei; Feng, Wei; Li, Baoe; Lin, Cheng; Tao, Xueyu; Qiang, Yinghuai

    2016-04-01

    Surface modifications of Ti and nano-composite coatings were employed to simultaneously improve the surface roughness, corrosion resistance and chemical bonding between porclain-Ti. The specimens were studied by field-emission scanning electron microscopy, surface roughness, differential scanning calorimetry, Fourier transform infrared spectroscopy, corrosion resistance and bonding strength tests. The SEM results showed that hybrid structures with micro-stripes, nano-pores and nano-protuberances were prepared by surface modification of Ti, which significantly enhanced the surface roughness and corrosion resistance of Ti. Porous nano-composite coatings were synthesized on Ti anodized with pre-treatment in 40% HF acid. TiO2 nanoparticles were added into the hybrid coating to increase the solid phase content of the sols and avoid the formation of microcracks. With the TiO2 content increasing from 45 wt% to 60 wt%, the quantities of the microcracks on the coating surface gradually decreased. The optimal TiO2 content for the nanocomposite coatings is 60 wt% in this research. Compared to the uncoated group, the bonding strength of the coated groups showed a bonding strength improvement of 23.96%. The cytotoxicity of the 4# coating group was ranked as zero, which corresponds to non-cytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Experimental investigation on carbon nano tubes coated brass rectangular extended surfaces

    International Nuclear Information System (INIS)

    Senthilkumar, Rajendran; Prabhu, Sethuramalingam; Cheralathan, Marimuthu

    2013-01-01

    Finned surface has been extensively used for free convection cooling of internal combustion engines and several electronic kits etc. Here rectangular brass fin was preferred for analysis. Thermocouples were attached all over the surface of the fin in equal distances. The measurement of surface temperature and calculated convective heat transfer rate were reported for several heat input values. The overall system performance can be improved by enhancing heat transfer rate of extended surfaces. Based on the above requirement, brass surface was coated by carbon nano tubes. The temperature and heat transfer characteristics were investigated using Taguchi method for experimental design. Finally the performances of coated and non-coated rectangular brass fins were compared. The average percentage of increase in heat transfer rate was proved around 12% for carbon nanocoated rectangular brass fins. - Graphical abstract: The designed Natural and Forced convection Heat Transfer Test Rig measures the enhanced rate of heat transfer for nano coated rectangular fins than in non-coated fins. Highlights: ► Rectangular brass fins were preferred for convective heat transfer process. ► The rectangular brass fins are coated with multi wall carbon nano tubes in EBPVD process with nanometer thickness. ► Temperature and heat transfer rate were investigated for nanocoated and non-coated fins by using Taguchi method. ► Multi wall carbon nanotubes act as a pin fin to enhance surface area for effective convective heat transfer rate.

  3. Polymethyl methacrylate-co-methacrylic acid coatings with controllable concentration of surface carboxyl groups: A novel approach in fabrication of polymeric platforms for potential bio-diagnostic devices

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samira; Ibrahim, Fatimah [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Djordjevic, Ivan, E-mail: ivan.djordjevic@um.edu.my [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Koole, Leo H. [Center for Innovation in Medical Engineering, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Department of Biomedical Engineering, Faculty of Health. Medicine and Life Science, Maastricht University, PO Box 616, NL 6200 MD Maastricht (Netherlands)

    2014-05-01

    Highlights: • Synthesis and processing of PMMA-co-MAA spin-coatings on silicon wafers. • Surface chemistry and morphology as a function of tailored co-polymer structure. • Polymer coatings with controlled number of surface carboxyl groups. - Abstract: The generally accepted strategy in development of bio-diagnostic devices is to immobilize proteins on polymeric surfaces as a part of detection process for diseases and viruses through antibody/antigen coupling. In that perspective, polymer surface properties such as concentration of functional groups must be closely controlled in order to preserve the protein activity. In order to improve the surface characteristics of transparent polymethacrylate plastics that are used for diagnostic devices, we have developed an effective fabrication procedure of polymethylmetacrylate-co-metacrylic acid (PMMA-co-MAA) coatings with controlled number of surface carboxyl groups. The polymers were processed effectively with the spin-coating technique and the detailed control over surface properties is here by demonstrated through the variation of a single synthesis reaction parameter. The chemical structure of synthesized and processed co-polymers has been investigated with nuclear magnetic resonance spectroscopy (NMR) and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-ToF-MS). The surface morphology of polymer coatings have been analyzed with atomic force microscopy (AFM) and scanning electron microscopy (SEM). We demonstrate that the surface morphology and the concentration of surface –COOH groups (determined with UV–vis surface titration) on the processed PMMA-co-MAA coatings can be precisely controlled by variation of initial molar ratio of reactants in the free-radical polymerization reaction. The wettability of developed polymer surfaces also varies with macromolecular structure.

  4. Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetry

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim

    2007-01-01

    In this work BET surface area measurements and mercury porosimetry are used to characterize leached layers formed when seawater-soluble pigments (Cu2O and ZnO) dissolve during accelerated leaching of simple antifouling coatings. Measurements on single-pigment coatings show that an increasing...

  5. Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires

    NARCIS (Netherlands)

    Van der Valk, N.C.J.; Planken, P.C.M.

    2005-01-01

    The authors present measurements and calculations on the effect of thin dielectric coatings on the propagation of terahertz pulses along the surface of metal wires. Our measurements show that propagation over only a few centimeters of wire having a thin dielectric coating, strongly distorts the

  6. Conformal surface coatings to enable high volume expansion Li-ion anode materials.

    Science.gov (United States)

    Riley, Leah A; Cavanagh, Andrew S; George, Steven M; Jung, Yoon Seok; Yan, Yanfa; Lee, Se-Hee; Dillon, Anne C

    2010-07-12

    An alumina surface coating is demonstrated to improve electrochemical performance of MoO(3) nanoparticles as high capacity/high-volume expansion anodes for Li-ion batteries. Thin, conformal surface coatings were grown using atomic layer deposition (ALD) that relies on self-limiting surface reactions. ALD coatings were tested on both individual nanoparticles and prefabricated electrodes containing conductive additive and binder. The coated and non-coated materials were characterized using transmission electron microscopy, energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy, and galvanostatic charge/discharge cycling. Importantly, increased stability and capacity retention was only observed when the fully fabricated electrode was coated. The alumina layer both improves the adhesion of the entire electrode, during volume expansion/contraction and protects the nanoparticle surfaces. Coating the entire electrode also allows for an important carbothermal reduction process that occurs during electrode pre-heat treatment. ALD is thus demonstrated as a novel and necessary method that may be employed to coat the tortuous network of a battery electrode.

  7. Crack resistance of pvd coatings : Influence of surface treatment prior to deposition

    NARCIS (Netherlands)

    Zoestbergen, E; de Hosson, J.T.M.

    The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack

  8. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  9. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP...... or AGET SI ATRP and uses of said polymer coating....

  10. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    , this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition...

  11. The coat protein complex II, COPII, protein Sec13 directly interacts with presenilin-1

    International Nuclear Information System (INIS)

    Nielsen, Anders Lade

    2009-01-01

    Mutations in the human gene encoding presenilin-1, PS1, account for most cases of early-onset familial Alzheimer's disease. PS1 has nine transmembrane domains and a large loop orientated towards the cytoplasm. PS1 locates to cellular compartments as endoplasmic reticulum (ER), Golgi apparatus, vesicular structures, and plasma membrane, and is an integral member of γ-secretase, a protein protease complex with specificity for intra-membranous cleavage of substrates such as β-amyloid precursor protein. Here, an interaction between PS1 and the Sec13 protein is described. Sec13 takes part in coat protein complex II, COPII, vesicular trafficking, nuclear pore function, and ER directed protein sequestering and degradation control. The interaction maps to the N-terminal part of the large hydrophilic PS1 loop and the first of the six WD40-repeats present in Sec13. The identified Sec13 interaction to PS1 is a new candidate interaction for linking PS1 to secretory and protein degrading vesicular circuits.

  12. Mechanical analysis of surface-coated zircaloy cladding

    Directory of Open Access Journals (Sweden)

    Youho Lee

    2017-08-01

    Full Text Available A structural model for stress distributions of coated Zircaloy subjected to realistic incore pressure difference, thermal expansion, irradiation-induced axial growth, and creep has been developed in this study. In normal operation, the structural integrity of coating layers is anticipated to be significantly challenged with increasing burnup. Strain mismatch between the zircaloy and the coated layer, due to their different irradiation-induced axial growth, and creep deformation are found to be the most dominant causes of stress. This study suggests that the compatibility of the high temperature irradiation-induced strains (axial growth and creep between zircaloy and the coating layer and the capability to undergo plastic strain should be taken as key metrics, along with the traditional focus on chemical protectiveness.

  13. Surface Treatments of Fillers to Improve Dielectric Coatings

    National Research Council Canada - National Science Library

    Kindley, Lee M

    1960-01-01

    The inability of present dielectric coatings to meet stringent reliability requirements under adverse moisture conditions and broad temperature ranges is one of the major problems facing the electronics industry...

  14. Mechanical analysis of surface-coated zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, You Ho; Lee, Jeong Ik; No, Hee Cheon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-08-15

    A structural model for stress distributions of coated Zircaloy subjected to realistic incore pressure difference, thermal expansion, irradiation-induced axial growth, and creep has been developed in this study. In normal operation, the structural integrity of coating layers is anticipated to be significantly challenged with increasing burnup. Strain mismatch between the zircaloy and the coated layer, due to their different irradiation-induced axial growth, and creep deformation are found to be the most dominant causes of stress. This study suggests that the compatibility of the high temperature irradiation-induced strains (axial growth and creep) between zircaloy and the coating layer and the capability to undergo plastic strain should be taken as key metrics, along with the traditional focus on chemical protectiveness.

  15. Selective formation of diamond-like carbon coating by surface catalyst patterning

    DEFF Research Database (Denmark)

    Palnichenko, A.V.; Mátéfi-Tempfli, M.; Mátéfi-Tempfli, Stefan

    2004-01-01

    The selective formation of diamond-like carbon coating by surface catalyst patterning was studied. DLC films was deposited using plasma enhanced chemical vapor deposition, filtered vacuum arc deposition, laser ablation, magnetron sputtering and ion-beam lithography methods. The DLC coatings were...... obtained by means of a single short and intensive carbon plasma deposition pulse. The deposited DLC coating was characterized by micro-Raman spectroscopy measurements. The DLC coating process gave rise to wide potential possibilities in micro-devices manufacturing productions....

  16. Unlubricated Gross Slip Fretting Wear of Metallic Plasma Sprayed Coatings for Ti6A14V Surfaces

    National Research Council Canada - National Science Library

    Hager, Jr., Carl H; Sanders, Jeffrey H; Sharma, Shashi K

    2006-01-01

    .... The combination of scanning electron microscopy (SEM), surface profilometry, surface chemistry (EDS), and friction analysis were used to study coating performance and evaluate the interfacial wear mechanisms...

  17. Robust Trypsin Coating on Electrospun Polymer Nanofibers in Rigorous Conditions and Its Uses for Protein Digestion

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hye-Kyung; Kim, Byoung Chan; Jun, Seung-Hyun; Chang, Mun Seock; Lopez-Ferrer, Daniel; Smith, Richard D.; Gu, Man Bock; Lee, Sang-Won; Kim, Beom S.; Kim, Jungbae

    2010-12-15

    An efficient protein digestion in proteomic analysis requires the stabilization of proteases such as trypsin. In the present work, trypsin was stabilized in the form of enzyme coating on electrospun polymer nanofibers (EC-TR), which crosslinks additional trypsin molecules onto covalently-attached trypsin (CA-TR). EC-TR showed better stability than CA-TR in rigorous conditions, such as at high temperatures of 40 °C and 50 °C, in the presence of organic co-solvents, and at various pH's. For example, the half-lives of CA-TR and EC-TR were 0.24 and 163.20 hours at 40 ºC, respectively. The improved stability of EC-TR can be explained by covalent-linkages on the surface of trypsin molecules, which effectively inhibits the denaturation, autolysis, and leaching of trypsin. The protein digestion was performed at 40 °C by using both CA-TR and EC-TR in digesting a model protein, enolase. EC-TR showed better performance and stability than CA-TR by maintaining good performance of enolase digestion under recycled uses for a period of one week. In the same condition, CA-TR showed poor performance from the beginning, and could not be used for digestion at all after a few usages. The enzyme coating approach is anticipated to be successfully employed not only for protein digestion in proteomic analysis, but also for various other fields where the poor enzyme stability presently hampers the practical applications of enzymes.

  18. Asymmetric dipping of bacteriophage M13 coat protein with increasing lipid bilayer thickness

    NARCIS (Netherlands)

    Stopar, D.; Koehorst, R.B.M.; Spruijt, R.B.; Hemminga, M.A.

    2009-01-01

    Knowledge about the vertical movement of a protein with respect to the lipid bilayer plane is important to understand protein functionality in the biological membrane. In this work, the vertical displacement of bacteriophage M13 major coat protein in a lipid bilayer is used as a model system to

  19. Biomimetic electroactive polyimide with rose petal-like surface structure for anticorrosive coating application

    Directory of Open Access Journals (Sweden)

    W. F. Ji

    2017-08-01

    Full Text Available In this work, an electroactive polyimide (EPI coating with biomimetic surface structure of rose petal used in anticorrosion application was first presented. First of all, amino-capped aniline trimer (ACAT was synthesized by oxidative coupling reaction, followed by characterized through Fourier transform infrared spectroscooy (FTIR, liquid chromatography – mass spcerometry (LC-MS and proton nuclear magnetic resonance (1H-NMR spectroscopy. Subsequently, as-prepared ACAT was reacted with isopropylidenediphenoxy-bis(phthalic anhydride (BPADA to give electroactive poly(amic acid (EPAA. Moreover, poly(dimethylsiloxane (PDMS was used to be the soft negative template for pattern transfer from the surface of rose petal to the surface of polymer coating. The EPI coating with biomimetic structure was obtained by programmed heating the EPAA slurry casting onto the negative PDMS template. The anticorrosive performance of as-prepared biomimetic EPI coating was demonstrated by performing a series of electrochemical measurements (Tafel, Nyquist, and Bode plots upon cold-rolled steel (CRS electrode in a NaCl aqueous solution. It should be noted that the biomimetic EPI coating with rose petal-like structure was found to exhibit better anticorrosion than that of EPI without biomimetic structure. Moreover, the surface contact angle of water droplets for biomimetic EPI coating was found to be ~150°, which is significantly higher than that of EPI coating with smooth structure (~87°, indicating that the EPI coating with biomimetic structure reveals better hydrophobicity. The apparent mechanism for improved anticorrosive properties is twofold: (1 the biomimetic structure of EPI coating can repel water droplets. (2 electroactivity of EPI coating promotes the formation of densely passive layer of metal oxide on metallic surface.

  20. Improved adherence and spreading of Saos-2 cells on polypropylene surfaces achieved by surface texturing and carbon nitride coating.

    Science.gov (United States)

    Myllymaa, Katja; Myllymaa, Sami; Korhonen, Hannu; Lammi, Mikko J; Saarenpää, Hanna; Suvanto, Mika; Pakkanen, Tapani A; Tiitu, Virpi; Lappalainen, Reijo

    2009-11-01

    The adhesion and contact guidance of human primary osteogenic sarcoma cells (Saos-2) were characterized on smooth, microstructured (MST) and micro- and nano-structured (MNST) polypropylene (PP) and on the same samples with a silicon-doped carbon nitride (C(3)N(4)-Si) coating. Injection molding was used to pattern the PP surfaces and the coating was obtained by using ultra-short pulsed laser deposition (USPLD). Surfaces were characterized using atomic force microscopy and surface energy components were calculated according to the Owens-Wendt model. The results showed C(3)N(4)-Si coated surfaces to be significantly more hydrophilic than uncoated ones. In addition, there were 86% more cells in the smooth C(3)N(4)-Si coated PP compared to smooth uncoated PP and 551%/476% more cells with MST/MNST C(3)N(4)-Si coated PP than could be obtained with MST/MNST uncoated PP. Thus the adhesion, spreading and contact guidance of osteoblast-like cells was effectively improved by combining surface texturing and deposition of osteocompatible C(3)N(4)-Si coating.

  1. [Biological properties of Lactobacillus surface proteins].

    Science.gov (United States)

    Buda, Barbara; Dylus, Ewa; Górska-Frączek, Sabina; Brzozowska, Ewa; Gamian, Andrzej

    2013-04-04

    Lactobacillus, a genus of Gram-positive bacteria, includes many strains of probiotic microflora. Probiotics, by definition, are living microorganisms that exert beneficial effects on the host organism. The morphology and physiology of the Lactobacillus bacterial genus are described. The structure of the cell wall of Gram-positive bacteria is discussed. The surface S-layer of Lactobacillus composed of proteins (SLP) with low molecular mass is presented. Cell surface proteins participating in the regulation of growth and survival of the intestinal epithelium cells are characterized. The influence of stress factors such as increased temperature, pH, and enzymes of gastric and pancreatic juice on SLP expression is described. The ability of binding of heavy metal ions by S-layer proteins is discussed. The characteristics of these structures, including the ability to adhere to epithelial cells, and the inhibition of invasion of pathogenic microflora of type Shigella, Salmonella, Escherichia coli and Clostridium and their toxins, are presented. 

  2. Optically and biologically active mussel protein-coated double-walled carbon nanotubes.

    Science.gov (United States)

    Jung, Yong Chae; Muramatsu, Hiroyuki; Fujisawa, Kazunori; Kim, Jin Hee; Hayashi, Takuya; Kim, Yoong Ahm; Endo, Morinobu; Terrones, Mauricio; Dresselhaus, Mildred S

    2011-12-02

    A method of dispersing strongly bundled double-walled carbon nanotubes (DWNTs) via a homogeneous coating of mussel protein in an aqueous solution is presented. Optical activity, mechanical strength, as well as electrical conductivity coming from the nanotubes and the versatile biological activity from the mussel protein make mussel-coated DWNTs promising as a multifunctional scaffold and for anti-fouling materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene

    Science.gov (United States)

    Jaritz, Montgomery; Hopmann, Christian; Behm, Henrik; Kirchheim, Dennis; Wilski, Stefan; Grochla, Dario; Banko, Lars; Ludwig, Alfred; Böke, Marc; Winter, Jörg; Bahre, Hendrik; Dahlmann, Rainer

    2017-11-01

    The properties of plasma-enhanced chemical vapour deposition (PECVD) coatings on polymer materials depend to some extent on the surface and material properties of the substrate. Here, isotactic polypropylene (PP) substrates are coated with silicon oxide (SiO x ) films. Plasmas for the deposition of SiO x are energetic and oxidative due to the high amount of oxygen in the gas mixture. Residual stress measurements using single Si cantilever stress sensors showed that these coatings contain high compressive stress. To investigate the influence of the plasma and the coatings, residual stress, silicon organic (SiOCH) coatings with different thicknesses between the PP and the SiO x coating are used as a means to protect the substrate from the oxidative SiO x coating process. Pull-off tests are performed to analyse differences in the adhesion of these coating systems. It could be shown that the adhesion of the PECVD coatings on PP depends on the coatings’ residual stress. In a PP/SiOCH/SiO x -multilayer system the residual stress can be significantly reduced by increasing the thickness of the SiOCH coating, resulting in enhanced adhesion.

  4. Utilization of Sanitizing Wipes on Selected Coated Nonstick Food Contact Surfaces

    National Research Council Canada - National Science Library

    Powers, Edmund

    2002-01-01

    ... of field sanitation. The cleaning and bactericidal efficacy of commercial-off-the-shelf (COTS) sanitizing wipes was tested on specially coated non-stick food contact surfaces, also under investigation by the Army...

  5. TiO2 Surface Coating of Mn-Zn Dopped Ferrites Study

    DEFF Research Database (Denmark)

    Solný, Tomáš; Ptacek, Petr; Másilko, Jiří

    2016-01-01

    This study deals with TiO2 coating of powder Mn-Zn ferrite in order to recieve photocatalytic layer on the top of these particles, forming core-shell catalyst. Powder catalysts are of great advance over the world due to the high surface area, considering the kinetics proceeds through heterogenous...... phase boundary catalysis. However their withdrawal from cleaning systems often requires energetically and economically demanding processes such as filtration and ultrafiltration. Since the ferrite is magnetic, the advantage of such formed core-shell photocatalyst is easibility of removing from...... photocatalytic decomposition system using external magnetic field. In this study the surface coating is performed, using Ti alkoxides mixtures with nanosized TiO2 particles and C and Au coating to form film layer of TiO2 on the surface of ferrite. XRD, SEM – EDS analyses are employed to study surface coating....

  6. Surface Coating of Wood Building Products National Emission Standards for Hazardous Air Pollutants (NESHAP) Applicability Flowchart

    Science.gov (United States)

    This page contains a January 2005 document that has a flow chart to help you determine if this National Emission Standards for Hazardous Air Pollutants (NESHAP) rule for Surface Coating of Wood Building Products applies to your facility.

  7. FORMING A PARTING LAYER OF COATING ON THE SURFACE OF THE MOULD DURING DIE-CASTING

    Directory of Open Access Journals (Sweden)

    A. Pivovarchik

    2015-01-01

    Full Text Available The paper presents the results of research on the study of the possibility of accumulation of the lubricating layer coating on the surface of the separation process of foundry equipment with high pressure die casting aluminum alloys.

  8. Double Lap Shear Testing of Coating-Modified Ice Adhesion to Specific Shuttle Component Surfaces

    National Research Council Canada - National Science Library

    Ferrick, M. G; Mulherin, Nathan D; Coutermarsh, Barry A; Durell, Glenn D; Curtis, Leslie A; St. Clair, Terry L; Weiser, Erik S; Cano, Roberto J; Smith, Trent M; Stevenson, Charles G; Martinez, Eloy C

    2006-01-01

    The goals of this experimental program were to optimize the effectiveness of an icephobic coating for use on several Space Shuttle surfaces, to evaluate the effects of adding an ultraviolet light absorber (UVA...

  9. Effect of Surface Pretreatment on the Corrosion Resistance of Epoxy-Coated Carbon Steel

    International Nuclear Information System (INIS)

    Lee, Dongho; Park, Jinhwan; Shon, Minyoung

    2012-01-01

    The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting with different size, steel shot ball blasting and power tool treatment. To study the effect of the treatments, the topology of the treated surface was observed by optical 3D microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with hygrothermal cyclic testing. The results of EIS indicated that the epoxy-coated carbon steel treated with steel grit blasting showed an improved corrosion resistance compared to untreated epoxy-coated surfaces or surfaces subjected to shot ball blasting and power tool treatments

  10. Tribological Behavior of Coating Cr Layer on 40Cr after Surface Electron Beam Pretreatment

    Science.gov (United States)

    Hu, J. J.; Wang, J.; Jiang, P.; Xu, H. B.; Li, H.; Hou, T. F.

    2017-12-01

    In this study,the friction and wear behavior of PVD coatings which were treated by 5 different processes,based on gear material-40Cr. Analyzing the effects of treating the gear material with electron beam in combination with magnetron sputtering on it,for dry friction and wear properties.The result showed that the electron beam pretreated substrate was useful to improve the tribological performance of coating material.Furthermore, the surface roughness of coating, the bonding force between substrate and coating as well as the load are the main factors affecting the tribological performance of this coating. Most importantly, the contribution of plowing effect on friction coefficient should be considered when the surface roughness is high.

  11. Pulse electrodeposition of self-lubricating Ni–W/PTFE nanocomposite coatings on mild steel surface

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, S. [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Kalaignan, G. Paruthimal, E-mail: pkalaignan@yahoo.com [Advanced Nanocomposite Coatings Laboratory, Department of Industrial Chemistry, Alagappa University, Karaikudi 630 003 (India); Anthuvan, J. Tennis [M. Kumarasamy College of Engineering, Karur, Tamil Nadu (India)

    2015-12-30

    Graphical abstract: - Highlights: • PTFE polymer inclusion on Ni–W alloy matrix was electrodeposited by pulse current method. • Tribological properties and electrochemical characterizations of the nanocomposite coatings were analyzed. • The hydrophobic behaviour of Ni–W/PTFE nanocomposite coating was measured. • Ni–W/PTFE nanocomposite coatings have showed superior tribological properties and corrosion resistance relative to that of the Ni–W alloy matrix. - Abstract: Ni–W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni–W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni–W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni–W/PTFE nanocomposite coating has better corrosion resistance than the Ni–W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni–W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  12. Surface dispersive energy determined with IGC-ID in anti-graffiti-coated building materials

    OpenAIRE

    Carmona-Quiroga, Paula María; Rubio, J.; Sánchez, M. Jesús; Martínez-Ramírez, S.; Blanco-Varela, María Teresa

    2011-01-01

    Coating building materials with anti-graffiti treatments hinders or prevents spray paint adherence by generating low energy surfaces. This paper describes the effect of coating cement paste, lime mortar, granite, limestone and brick with two anti-graffiti agents (a water-base fluoroalkylsiloxane, “Protectosil Antigraffiti®”, and a Zr ormosil) on the dispersive component of the surface energy of these five construction materials. The agents were rediluted in their respective solvents at concen...

  13. Process for Non-Contact Removal of Organic Coatings from the Surface of Paintings

    Science.gov (United States)

    Banks, Bruce A. (Inventor); Rutledge, Sharon K. (Inventor)

    1996-01-01

    The present invention discloses a method of removing organic protective coatings from a painting. In the present invention degraded protective coatings such as lacquers, acrylics, natural resins, carbons, soot, and polyurethane are safely removed from the surface of a painting without contact to the surface of the painting. This method can be used for restoration of paintings when they have been damaged, through age, fire, etc.

  14. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane.

    Science.gov (United States)

    Long, Mengying; Peng, Shan; Deng, Wanshun; Yang, Xiaojun; Miao, Kai; Wen, Ni; Miao, Xinrui; Deng, Wenli

    2017-12-15

    Superhydrophobic surfaces easily lose their excellent water-repellency after damages, which limit their broad applications in practice. Thus, the fabrication of superhydrophobic surfaces with excellent durability and thermal healing should be taken into consideration. In this work, robust superhydrophobic surfaces with thermal healing were successfully fabricated by spin-coating method. To achieve superhydrophobicity, cost-less and fluoride-free polydimethylsiloxane (PDMS) was spin-coated on rough aluminum substrates. After being spin-coated for one cycle, the superhydrophobic PDMS coated hierarchical aluminum (PDMS-H-Al) surfaces showed excellent tolerance to various chemical and mechanical damages in lab, and outdoor damages for 90days. When the PDMS-H-Al surfaces underwent severe damages such as oil contamination (peanut oil with high boiling point) or sandpaper abrasion (500g of force for 60cm), their superhydrophobicity would lose. Interestingly, through a heating process, cyclic oligomers generating from the partially decomposed PDMS acted as low-surface-energy substance on the damaged rough surfaces, leading to the recovery of superhydrophobicity. The relationship between the spin-coating cycles and surface wettability was also investigated. This paper provides a facile, fluoride-free and efficient method to fabricate superhydrophobic surfaces with thermal healing. Copyright © 2017. Published by Elsevier Inc.

  15. Albumen foam stability and s-ovalbumin contents in eggs coated with whey protein concentrate

    Directory of Open Access Journals (Sweden)

    ACC Alleoni

    2004-06-01

    Full Text Available Food products such as breads, cakes, crackers, meringues, ice creams and several bakery items depend on air incorporation to maintain their texture and structure during or after processing. Proteins are utilized in the food industry since they improve texture attributes through their ability to encapsulate and retain air. The objectives of this work were to quantify s-ovalbumin contents in albumen and to determine alterations in egg white foam stability in fresh eggs, and in eggs coated and non-coated with a whey protein-based concentrate film (WPC, stored at 25°C for 28 days. The volume of drained liquid was higher in non-coated eggs than in coated eggs stored at 25°C at all storage periods. The difference on the third day of storage was in the order of 59% between coated and non-coated eggs, while on the twenty-eighth day it was 202%. During the storage period, an increase in pH and drainage volume was observed for non-coated eggs. After three days, the non-coated eggs showed a s-ovalbumin content 33% higher than coated eggs; this increase jumped to 205% at 28 days of storage. There was a positive correlation between s-ovalbumin content and the volume of drained liquid for coated and non-coated eggs; in other words, when the s-ovalbumin content increased, there was an increase in the volume of drained liquid and a decrease in foam stability. WPC coating maintain egg quality, since it is an effective barrier against the loss of CO2, avoiding changes in the pH of egg white.

  16. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-01-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable

  17. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    International Nuclear Information System (INIS)

    Khan, A. A.; Labbe, J. C.

    2013-01-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable. (author)

  18. Increased acellular and cellular surface mineralization induced by nanogrooves in combination with a calcium-phosphate coating.

    Science.gov (United States)

    Klymov, Alexey; Song, Jiankang; Cai, Xinjie; Te Riet, Joost; Leeuwenburgh, Sander; Jansen, John A; Walboomers, X Frank

    2016-02-01

    The current work evaluated the influence of nanoscale surface-topographies in combination with a calcium phosphate (CaP) coating on acellular and cellular surface mineralization. Four groups of substrates were produced, including smooth, grooved (940nm pitch, 430nm groove width, 185nm depth), smooth coated, and grooved coated. The substrates were characterized by scanning/transmission electron microscopy and atomic force microscopy. Osteoblast-like MC3T3 cells were cultured on the substrates for a period up to 35days under osteogenic conditions. Differentiation was observed by alkaline phosphatase assay and PCR of collagen I (COLI), osteopontin (OPN), osteocalcin (OC), bone-morphogenic protein 2 (BMP2), and bone sialoprotein (BSP). Mineralization was quantified by a calcium assay and Alizarin Red staining. In addition, acellular mineralization was determined after incubation of substrates in just cell culture medium without cells. Results showed that a reproducible nano-metric (∼50nm) CaP-layer could be applied on the substrates, without losing the integrity of the topographical features. While no relevant differences were found for cell viability, cells on smooth surfaces proliferated for a longer period than cells on grooved substrates. In addition, differentiation was affected by topographies, as indicated by an increased expression of OC, OPN and ALP activity. Deposition of a CaP coating significantly increased the acellular mineralization of smooth as well grooved substrate-surfaces. However, this mineralizing effect was strongly reduced in the presence of cells. In the cell seeded situation, mineralization was significantly increased by the substrate topography, while only a minor additive effect of the coating was observed. In conclusion, the model presented herein can be exploited for experimental evaluation of cell-surface interaction processes and optimization of bone-anchoring capability of implants. The model showed that substrates modified with CaP-coated

  19. Adhesion enhancement of Al coatings on carbon/epoxy composite surfaces by atmospheric plasma

    International Nuclear Information System (INIS)

    Coulon, J.F.; Tournerie, N.; Maillard, H.

    2013-01-01

    Adhesion strengths between aluminium thin film coatings and manufactured carbon/epoxy composite surfaces were measured by assessing fracture tensile strengths using pull-off tests. The effect of the substrate roughness (nm to μm) of these composite surfaces on adhesion was studied by examining the surface free energies and adhesion strengths. The adhesion strengths of the coatings varied significantly. To improve the coating adhesion, each composite surface was treated with atmospheric plasma prior to deposition, which resulted in an increase in the surface free energy from approximately 40 mJ/m 2 to 70 mJ/m 2 because the plasma pretreatment led to the formation of hydrophilic C-O and C=O bonds on the composite surfaces, as demonstrated by X-ray photoelectron spectroscopy analyses. The adhesion strengths of the coatings were enhanced for all surface roughnesses studied. In our study, the effect of mechanical adhesion due to roughness was separated from the effect of modifying the chemical bonds with plasma activation. The adhesion ability of the pure resin was relatively weak. Increasing the surface roughness largely improved the adhesion of the resin surface. Plasma treatment of the pure resin also increased the surface adhesion. Our study shows that plasma activation effectively enhances the adhesion of manufactured composites, even when the surface roughness is on the order of microns. The ageing of the surface activation was also investigated, and the results demonstrate that atmospheric plasma has potential for use in the pretreatment of composite materials.

  20. Surface coating-modulated toxic responses to silver nanoparticles in Wolffia globosa.

    Science.gov (United States)

    Zou, Xiaoyan; Li, Penghui; Lou, Jie; Zhang, Hongwu

    2017-08-01

    With the omnipresence of silver nanoparticles (AgNPs) in our daily consumer products, their release has raised serious concerns. However, the biochemical mechanisms by which plants counteract the toxicity of nanoparticles are largely unknown. This study investigated the exposure of aquatic Wolffia globosa to ATP-nAg (AgNPs coated with adenosine triphosphate), cit-nAg (AgNPs coated with citrate), and Ag + . Hill reaction activity was basically lost in W. globosa treated with 10mg/L ATP-nAg and Ag + , while the activity was still maintained at 38.7%-38.9% of the respective controls at 10mg/L cit-nAg. The reduction of amounts of chlorophyll and soluble protein were shown in response to the Ag stresses. This was accompanied by the accumulation of sugar in W. globosa treated with cit-nAg. By contrast, the depletion of sugar was recorded after 10mg/L ATP-nAg and Ag + treatments. The superoxide dismutase and peroxidase activities were significantly increased after exposure to 10mg/L ATP-nAg and Ag + , which did not occurred in W. globosa treated with cit-nAg. The ratio between NADPH/NADP + was higher after cit-nAg and Ag + stresses than the respective controls. The accumulation of Ag was found to increase in a concentration-dependent manner. Ag + and ATP-nAg inhibited the uptake of P and K, and promoted the uptake of Fe and Cu. In contrast, cit-nAg only promoted the uptake of Cu. Our results implied that surface coating induced different physiological responses of W. globosa to AgNPs. Based on above results, we speculated that after exposure to cit-nAg, citrate possibly could serve as the substrate for the tricarboxylic acid cycle and accumulated sugar may promote pentose phosphate pathways. For ATP-nAg treatments, ATP would act as an exogenous energy source of plant metabolisms. Our findings demonstrate that surface coating regulates the physiological responses of plants to AgNPs through distinct mechanisms. Copyright © 2017. Published by Elsevier B.V.

  1. The coating of surfaces for use in the nuclear industry

    International Nuclear Information System (INIS)

    1984-01-01

    This Code of Practice provides general advice to designers and others on the factors affecting the choice of coating for use within the nuclear industry. It itemises those design features, which are pertinent to facilitating decontamination and specifies the optimum generic types of coating for a variety of working conditions. Data sheets on commercially available products are included in Section 6 of the Code under the appropriate generic type. Information provided on the data sheets includes a measure of the ease of decontamination of the coating using the accepted method of testing (currently as specified in BS 4247 Part 1) and other nuclear information, where available, i.e. radiation resistance, exhalation rate for radionuclide gases radon and thoron. It also indicates the more important conventional properties of the product. (author)

  2. Lithium Surface Coatings for Improved Plasma Performance in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

    2008-02-19

    NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

  3. Qualitative Assessments via Infrared Vision of Sub-surface Defects Present Beneath Decorative Surface Coatings

    Science.gov (United States)

    Sfarra, Stefano; Fernandes, Henrique C.; López, Fernando; Ibarra-Castanedo, Clemente; Zhang, Hai; Maldague, Xavier

    2018-01-01

    In this work, the potentialities of the infrared vision to explore sub-superficial defects in polychromatic statues were investigated. In particular, it was possible to understand how the reflector effect of the exterior golden layers could be minimized, applying advanced statistical algorithms to thermal images. Since this noble metal is present as external coating in both artworks, an in-depth discussion concerning its physicochemical properties is also added. In this context, the principal component thermography technique and, the more recent, partial least squares thermography technique were used on three different datasets recorded, providing long thermal stimuli. The main images were compared both to phasegrams and to the thermographic signal reconstruction results in order to have a clear outline of the situation to be debated. The effects of view factors on the radiation transfer linked to the specular reflections from the surface did not falsely highlight certain features inadvertently. Indeed, the raw thermograms were analyzed one by one. Reflectograms were used to pinpoint emissivity variations due to, e. g., possible repainting. The paper concludes that, as it is possible to understand from a physical point of view, the near-infrared reflectography technique is able to examine the state of conservation of the upper layers in cultural heritage objects, while the infrared thermography technique explores them more in-depth. The thesis statement is based on the thermal and nonthermal parts of the infrared region, therefore, indicating what can be detected by heating the surface and what can be visualized by illuminating the surface, bearing in mind the nature of the external coating.

  4. Protein-mediated surface structuring in biomembranes

    Directory of Open Access Journals (Sweden)

    Maggio B.

    2005-01-01

    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  5. 40 CFR 63.5755 - How do I demonstrate compliance with the aluminum recreational boat surface coating spray gun...

    Science.gov (United States)

    2010-07-01

    ... the aluminum recreational boat surface coating spray gun cleaning work practice standards? 63.5755... surface coating spray gun cleaning work practice standards? You must demonstrate compliance with the aluminum coating spray gun cleaning work practice standards by meeting the requirements of paragraph (a) or...

  6. Coating compositions and method for the treatment of metal surfaces

    International Nuclear Information System (INIS)

    Das, N.; Stastny, P.M.

    1984-01-01

    An aqeuous acidic composition provides improved coating for aluminum. The composition comprises from about 10 to about 150 ppm zirconium, from about 20 to about 250 ppm fluoride, from 30 to about 125 ppm tannin, from about about 15 to about 100 ppm phosphate and from about 5 to about 50 ppm zinc, said coating solution having a tannin to phosphate ratio in the range of at least about 1:1 to about 2:1 and a pH in the range of about 2.3 to about 2.95

  7. Bio-polymer coatings on neural probe surfaces: Influence of the initial sample composition

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Winnie W.Y. [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Herwik, Stanislav; Ruther, Patrick [Department of Microsystems Engineering (IMTEK), University of Freiburg (Germany); Goethelid, Emmanuelle [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Oscarsson, Sven, E-mail: sven@svenoscarsson.com [Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory, SE-106 91 Stockholm (Sweden)

    2012-08-01

    This paper presents the results of the study of hyaluronic acid (HyA) coating on two structural materials, silicon oxide (dielectric) surface and platinum (Pt) surface used for fabrication of probes developed for neurological investigations in the framework of the EU-project NeuroProbes. The silicon-based neural probes consist of multiple Pt electrodes on the probe shafts for neural recording applications. HyA coatings were proposed to apply on the probe surfaces to enhance the biocompatibility. This study aims at understanding the influence of the initial composition of the probe surface on the structure and morphology of HyA coating. HyA was chemically functionalized by SS-pyridin using (N-Succinimidyl 3-[2-pyridyldithio]-propionate) (SPDP) and was immobilized on the surfaces via a covalent bond. The dielectric and Pt surfaces were derivatized by use of (3-mercaptopropyl) methyldimethoxysilane (MPMDMS). The silanol groups in MPMDMS bind to the dielectric surface, leaving the thiol groups at the uppermost surface and the thiol groups then bind covalently to the functionalized HyA. On the Pt surface, it is the thiol group which binds on the Pt surface. The coated surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). A well-defined HyA layer was observed on both dielectric and Pt surfaces. The coating of two molecular weights (340 kDa and 1.3 MDa) of HyA was examined. The influence of the silanized layer on the HyA coating was also investigated.

  8. Reciprocating Sliding Behaviour of Solid Lubricant Coating over Modified Titanium Alloy Surfaces

    Science.gov (United States)

    Jothi Prakash, V. M.; Sathish, S.; Gopalakrishnan, T.; Venugopal, S.

    2017-03-01

    Tribological behaviour of contacting surfaces rigid sphere is using flat plate the with influence of normal and tangential loading (shear traction) is analysed using FEA model and surfaces being coated on flat plate by Titanium Alloy, Aluminium Alloy Molybdenum Di-sulphide. The finite element model facilitates to Evaluating the surface variables like contact stress distribution with the surface level and surface, contact pressure, shear stress and displacement. The finite element solution is validated through the hertz solution and on the successful verification.

  9. Effect of denture-coating composite on Candida albicans biofilm and surface degradation after disinfection protocol.

    Science.gov (United States)

    Silva, Matheus Jacobina; de Oliveira, Denise G; Marcillo, Oscar O; Neppelenbroek, Karin H; Lara, Vanessa S; Porto, Vinícius C

    2016-04-01

    Denture stomatitis is the most common pathology affecting denture wearers and its main cause is colonisation of dentures with Candida albicans. This study investigated the effectiveness of two commercial composite surface sealants (Biscover(®) LV and Surface Coat(®)) to reduce C. albicans biofilm colonisation on denture resin, as well as their surface integrity after disinfection cycles with 1% sodium hypochlorite solution. Heat-cured acrylic resin specimens were manufactured (10 mm × 10 mm × 1 mm). The specimen surfaces were mechanically polished to simulate rough or smooth denture surfaces. Four surface-treatment groups were tested: smooth surfaces [0.3 μm of mean roughness (Ra)]; rough surfaces (3 μm of Ra); rough surfaces treated with Biscover(®) LV; and rough surfaces treated with Surface Coat(®). Specimens of each group were randomly divided to undergo immersion in distilled water or 1% sodium hypochlorite for 30 or 90 cycles each. Specimens of all groups in each immersion solution were tested using a crystal violet (CV) staining assay for biofilm quantification and by scanning electron microscopy for visual analyses of surface integrity and biofilm structure. CV assay data were analysed using one-way analysis of variance (ANOVA) followed by Tukey's multiple comparison test (P surface integrity of Biscover(®) LV-treated surfaces were similar to those of smooth surfaces, whereas Surface Coat(®) -treated surfaces presented a similar performance to rough surfaces in all solutions and cycles. These results suggest the possibility of clinical use of Biscover(®) LV for denture coating on surfaces in which mechanical polish is not indicated, such as the fitting surface. © 2016 FDI World Dental Federation.

  10. The Role of the Coat Protein A-Domain in P22 Bacteriophage Maturation

    Directory of Open Access Journals (Sweden)

    David S. Morris

    2014-07-01

    Full Text Available Bacteriophage P22 has long been considered a hallmark model for virus assembly and maturation. Repurposing of P22 and other similar virus structures for nanotechnology and nanomedicine has reinvigorated the need to further understand the protein-protein interactions that allow for the assembly, as well as the conformational shifts required for maturation. In this work, gp5, the major coat structural protein of P22, has been manipulated in order to examine the mutational effects on procapsid stability and maturation. Insertions to the P22 coat protein A-domain, while widely permissive of procapsid assembly, destabilize the interactions necessary for virus maturation and potentially allow for the tunable adjustment of procapsid stability. Future manipulation of this region of the coat protein subunit can potentially be used to alter the stability of the capsid for controllable disassembly.

  11. Failure modes observed on worn surfaces of W-C-Co sputtered coatings

    International Nuclear Information System (INIS)

    Ramalho, A.; Cavaleiro, A.; Miranda, A.S.; Vieira, M.T.

    1993-01-01

    During scratch testing, the indenter gives rise to a distribution of stresses similar to that observed in tribocontacts. In this work, r.f.-sputtered W-C-Co coatings deposited from sintered WC + Co (6, 10 and 15 wt.% Co) at various substrate biases were scratched and tested tribologically and the morphology of the damaged surfaces was analysed. The cobalt content of the coatings is the main factor determining their tribological characteristics. The failure modes observed on the worn pin-on-disc tested surfaces are explained and compared with those obtained by scratch testing. In spite of it not being possible to establish quantitative results for the wear resistance of W-C-Co coatings from scratch testing, an estimation can be performed based on the observation of the failure modes in the scratch track. Thus scratch testing can be used to predict the tribological behaviour of coated surfaces. This possibility can reduce the number and cost of tribological tests. (orig.)

  12. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    Science.gov (United States)

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-01-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature. PMID:27010967

  13. Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition.

    Science.gov (United States)

    Lu, Xiong; Zhang, Bailin; Wang, Yingbo; Zhou, Xianli; Weng, Jie; Qu, Shuxin; Feng, Bo; Watari, Fumio; Ding, Yonghui; Leng, Yang

    2011-04-06

    Hydroxyapatite (HA) coatings on titanium (Ti) substrates have attracted much attention owing to the combination of good mechanical properties of Ti and superior biocompatibility of HA. Incorporating silver (Ag) into HA coatings is an effective method to impart the coatings with antibacterial properties. However, the uniform distribution of Ag is still a challenge and Ag particles in the coatings are easy to agglomerate, which in turn affects the applications of the coatings. In this study, we employed pulsed electrochemical deposition to co-deposit HA and Ag simultaneously, which realized the uniform distribution of Ag particles in the coatings. This method was based on the use of a well-designed electrolyte containing Ag ions, calcium ions and l-cysteine, in which cysteine acted as the coordination agent to stabilize Ag ions. The antibacterial and cell culture tests were used to evaluate the antibacterial properties and biocompatibility of HA/Ag composite coatings, respectively. The results indicated the as-prepared coatings had good antibacterial properties and biocompatibility. However, an appropriate silver content should be chosen to balance the biocompatibility and antibacterial properties. Heat treatments promoted the adhesive strength and enhanced the biocompatibility without sacrificing the antibacterial properties of the HA/Ag coatings. In summary, this study provided an alternative method to prepare bioactive surfaces with bactericidal ability for biomedical devices.

  14. Characterization of Modified and Polymer Coated Alumina Surfaces by Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashraf Yehia El-Naggar

    2013-01-01

    Full Text Available The prepared, modified, and coated alumina surfaces were characterized by infrared spectroscopy (FTIR to investigate the surface properties of the individual and double modified samples. FTIR helps in reporting the changes occurred in hydroxyl groups as well as the structure changes as a result of thermal treating, hydrothermal treating, silylation treating, alkali metal treating, coating, and bonding with polymer. FTIR spectroscopy represents the strength and abundance of surface acidic OH which determine the adsorption properties of polar and nonpolar sorbents. Generally, all treated samples exhibit decrease of OH groups compared with those of parent ones producing alumina surfaces of different adsorptive powers.

  15. Oxidative stability and quality characteristics of whey protein coated rohu (Labeo rohita) fillets.

    Science.gov (United States)

    Khan, Muhammad Issa; Adrees, Muhammad Nawaz; Arshad, Muhammad Sajid; Anjum, Faqir Muhammad; Jo, Cheorun; Sameen, Aysha

    2015-06-23

    Edible coatings have beneficial effect on quality of fish and act as barrier against moisture transfer and uptake of oxygen. Edible coating made up of biodegradable materials is helpful to control the quality deterioration and enhance the shelf life. The present study was designed to elucidate the effects of whey based protein using two plasticizers i.e. sorbitol and glycerol on oxidative stability and quality characteristics of Rohu (Labeo rohita). Coating solutions were prepared by incorporating whey (8% protein; w/ w) in distilled water followed addition of sorbitol and glycerol. Dipping method was used to apply coating on fish fillets. The coated fillets were subjected to quality characteristics, pH, color, TBARS, peroxide value, volatile basic nitrogen (TVBN) and sensory evaluation during 40 days of storage. The results showed significant impact on different quality attributes of fish fillets. Highest (TVBN) and TBARS were observed in control samples (T0) (12.60 ± 0.25, mg/100 g, 0.820 ± 0.02 mg MDA/kg) while lowest in T3 coated samples (8.81 ± 0.18 mg/100 g., 0.352 ± 0.01 mg MDA/kg of meat). Moreover, sensorial findings did not showed adverse effects and T3 coated samples were ranked higher by consumers. In conclusion, coating fish with Whey: Glycerol: Sorbitol (1:1:1) in current investigation enhances the storage life and quality of fish fillets.

  16. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation ...

    Indian Academy of Sciences (India)

    TECS

    V V NARULKAR*, S PRAKASH and K CHANDRA. Metallurgical and Materials Engineering Department, Indian Institute of Technology, Roorkee 247 667, India .... The microarc oxidation ceramic coating is mainly composed of cubic MgO, and MgAl2O4 sharp spinels as well as a little amount of MgSiO3, which di-. Figure 2.

  17. Erosive wear of a surface coated hydroturbine steel

    Indian Academy of Sciences (India)

    Administrator

    turbines, pipelines and valves used in slurry transporta- tion of matter, and fluidized bed combustion systems. (Kosel 1992). Coatings of wide variety of materials ... design of test rig can be found in an earlier paper (Chau- han et al 2008). The erodents were accelerated down a. 16 mm diameter stainless steel tube, 1 m in ...

  18. Erosive wear of a surface coated hydroturbine steel

    Indian Academy of Sciences (India)

    Administrator

    Gun on a hot rolled 21Cr–4Ni–N steel meant for fabrication of hydro turbine underwater parts. The coatings have been characterized for microstructure, porosity, microhardness and crystalline nature. The erosion experiments were carried out using an air jet erosion test rig at a velocity of 120 ms. –1 and impingement angles.

  19. Performance of waterborne acrylic surface coatings on wood ...

    Indian Academy of Sciences (India)

    Two waterborne acrylic coatings were applied on spruce wood, impregnated with two copperethanolamine containing preservatives (CuE and CuEQ), one of them (CuEQ) containing a boron compound, octanoic acid and a quaternary ammonium compound as additives. Lower contact angles and deeper penetration of both ...

  20. Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface.

    Science.gov (United States)

    Bedair, Tarek M; Cho, Youngjin; Joung, Yoon Ki; Han, Dong Keun

    2014-10-01

    Metal-based drug-eluting stents (DESs) have severe drawbacks such as peeling-off and cracking of the coated polymer. To prevent the fracture of polymer-coated layer and improve the durability of DES, poly(l-lactide) (PLLA) brushes were synthesized onto cobalt-chromium (Co-Cr or CC) surface through atom transfer radical polymerization (ATRP) of 2-hydroxyethylmethacrylate (HEMA) followed by surface-initiated ring opening polymerization (SI-ROP) of l-lactide. The polymer brushes were then characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR), water contact angle, ellipsometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All of the unmodified and modified Co-Cr surfaces were coated with a matrix of poly(d,l-lactide) (PDLLA) and sirolimus (SRL). The in vitro drug release profile was measured for 70 days. The PLLA-modified Co-Cr showed a biphasic release pattern in the initial burst followed by a slow release. On the other hand, the unmodified Co-Cr showed fast drug release and detachment of the coated polymer layer due to the instability of the polymer layer on Co-Cr surface. In comparison, the PLLA-modified Co-Cr preserved a uniform coating without detachment even after 6 weeks of degradation test. The platelet morphology and low density of platelet adhered on the modified layer and the SRL-in-PDLLA coated Co-Cr surfaces demonstrated that these samples would be blood compatible. Therefore, the introduction of PLLA brush onto Co-Cr surface is proved to dramatically improve the durability of the coating layer, and it is a promising strategy to prevent the coating defects found in DESs. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Surface coatings of unsaturated polyester resin Kamper wood (Dry obalan ops spp.) by using UV radiation

    International Nuclear Information System (INIS)

    Sugiarto Danu; Yusuf Sudo Hadi; Novi Eka Putri

    1999-01-01

    Kamper wood (Dryobalanops spp.) has high contribution in wood working industry and most of them need surface coating process. Radiation curing of surface coating, especially the use of ultra-violet (UV) light have potential to give contribution in the wood finishing. The experiment on surface coating of kamper wood has been conducted by using UV-radiation. Unsaturated polyester resin with the commercial name of Yucalac type 157 was used as coating materials after being added with styrene monomer, some fillers and radical photoinitiator of 2-hydroxy-2-2-methyl-l- phenyl propanone. Four photoinitiator concentration levels of 1.5 ; 2 ; 2.5 and 3 % by weight of resin were used. The coating materials were coated onto the wood panel samples by using high pressure sprayer. The wood samples were then exposed to irradiation by using 80 Watts/cm UV-source with variable conveyor speed of 3 ; 4 ; 5 and 5.8 m/min. Formulation of coating materials, pendulum hardness, adhesion, and gloss of cured films were evaluated

  2. Peri- and intra-implant bone response to microporous Ti coatings with surface modification.

    Science.gov (United States)

    Braem, Annabel; Chaudhari, Amol; Vivan Cardoso, Marcio; Schrooten, Jan; Duyck, Joke; Vleugels, Jozef

    2014-02-01

    Bone growth on and into implants exhibiting substantial surface porosity is a promising strategy in order to improve the long-term stable fixation of bone implants. However, the reliability in clinical applications remains a point of discussion. Most attention has been dedicated to the role of macroporosity, leading to the general consensus of a minimal pore size of 50-100 μm in order to allow bone ingrowth. In this in vivo study, we assessed the feasibility of early bone ingrowth into a predominantly microporous Ti coating with an average thickness of 150 μm and the hypothesis of improving the bone response through surface modification of the porous coating. Implants were placed in the cortical bone of rabbit tibiae for periods of 2 and 4 weeks and evaluated histologically and histomorphometrically using light microscopy and scanning electron microscopy. Bone with osteocytes encased in the mineralized matrix was found throughout the porous Ti coating up to the coating/substrate interface, highlighting that osseointegration of microporosities (coating in the host bone in the long term is possible. When surface modifications inside the porous structure further reduced the interconnective pore size to the submicrometer level, bone ingrowth was impaired. On the other hand, application of a sol-gel-derived bioactive glass-ceramic coating without altering the pore characteristics was found to significantly improve bone regeneration around the coating, while still supporting bone ingrowth. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Molecular characterization and coat protein serology of watermelon leaf mottle virus (Potyvirus).

    Science.gov (United States)

    De Sa, P B; Hiebert, E; Purcifull, D E

    2000-01-01

    A cDNA library was generated from purified RNA of watermelon leaf mottle virus (WLMV) (Genus Potyvirus). Two overlapping clones totaling 2,316 nucleotides at the 3' terminus of the virus were identified by immunoscreening with coat protein antiserum. The sequence analyses of the clones indicated an open reading frame (ORF) of 2,050 nucleotides which encoded part of the replicase and the coat protein, a 243-nucleotide non-coding region (3'UTR), and 23 adenine residues of the poly (A) tail. The taxonomic status of WLMV was determined by comparisons of the sequence of the cloned coat protein gene and 3'UTR with potyvirus sequences obtained from GenBank. The nucleotide sequence identities of WLMV compared with 17 other potyviruses ranged from 55.6 to 63.5% for the coat protein, and from 37.2 to 48.3% for the 3'UTR. Phylogenetic analyses of the coat protein region and the 3'UTR indicated that WLMV did not cluster with other potyviruses in a clade with high bootstrap support. The coat protein gene was expressed in Escherichia coli and a polyclonal antiserum was prepared to the expressed coat protein. In immunodiffusion tests, WLMV was found to be serologically distinct from papaya ringspot virus type W, watermelon mosaic virus 2, zucchini yellow mosaic virus, and Moroccan watermelon mosaic virus. In Western blots and ELISA, serological cross-reactivity with other cucurbit potyviruses was observed. Serological and sequence comparisons indicated that watermelon leaf mottle virus is a distinct member of the Potyvirus genus.

  4. Satellite panicum mosaic virus coat protein enhances the performance of plant virus gene vectors.

    Science.gov (United States)

    Everett, Anthany L; Scholthof, Herman B; Scholthof, Karen-Beth G

    2010-01-05

    The coat protein of satellite panicum mosaic virus (SPCP) is known to effectively protect its cognate RNA from deleterious events, and here, we tested its stabilizing potential for heterologous virus-based gene vectors in planta. In support of this, a Potato virus X (PVX) vector carrying the SPMV capsid protein (PVX-SPCP) gene was stable for at least three serial systemic passages through Nicotiana benthamiana. To test the effect of SPCP in trans, PVX-SPCP was co-inoculated onto N. benthamiana together with a Tomato bushy stunt virus (TBSV) vector carrying a green fluorescent protein (GFP) gene that normally does not support systemic GFP expression. In contrast, co-inoculation of TBSV-GFP plus PVX-SPCP resulted in GFP accumulation and concomitant green fluorescent spots in upper, non-inoculated leaves in a temperature-responsive manner. These results suggest that the multifaceted SPMV CP has intriguing effects on virus-host interactions that surface in heterologous systems.

  5. Surface spins disorder in uncoated and SiO{sub 2} coated maghemite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zeb, F. [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Nadeem, K., E-mail: kashif.nadeem@iiu.edu.pk [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Shah, S. Kamran Ali; Kamran, M. [Nanoscience and Technology Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan); Gul, I. Hussain [School of Chemical & Materials Engineering, National University of Sciences and Technology (NUST), H-12, 44000 Islamabad, Pakistan (Pakistan); Ali, L. [Materials Research Laboratory, International Islamic University, H-10, 44000 Islamabad (Pakistan)

    2017-05-01

    We studied the surface spins disorder in uncoated and silica (SiO{sub 2}) coated maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles using temperature and time dependent magnetization. The average crystallite size for SiO{sub 2} coated and uncoated nanoparticles was about 12 and 29 nm, respectively. Scanning electron microscopy (SEM) showed that the nanoparticles are spherical in shape and well separated. Temperature scans of zero field cooled (ZFC)/field cooled (FC) magnetization measurements showed lower average blocking temperature (T{sub B}) for SiO{sub 2} coated maghemite nanoparticles as compared to uncoated nanoparticles. The saturation magnetization (M{sub s}) of SiO{sub 2} coated maghemite nanoparticles was also lower than the uncoated nanoparticles and is attributed to smaller average crystallite size of SiO{sub 2} coated nanoparticles. For saturation magnetization vs. temperature data, Bloch's law (M(T)= M(0).(1− BT{sup b})) was fitted well for both uncoated and SiO{sub 2} coated nanoparticles and yields: B =3×10{sup −7} K{sup -b}, b=2.22 and B=0.0127 K{sup -b}, b=0.57 for uncoated and SiO{sub 2} coated nanoparticles, respectively. Higher value of B for SiO{sub 2} coated nanoparticles depicts decrease in exchange coupling due to enhanced surface spins disorder (broken surface bonds) as compared to uncoated nanoparticles. The Bloch's exponent b was decreased for SiO{sub 2} coated nanoparticles which is due to their smaller average crystallite size or finite size effects. Furthermore, a sharp increase of coercivity at low temperatures (<25 K) was observed for SiO{sub 2} coated nanoparticles which is also due to contribution of increased surface anisotropy or frozen surface spins in these smaller nanoparticles. The FC magnetic relaxation data was fitted to stretched exponential law which revealed slower magnetic relaxation for SiO{sub 2} coated nanoparticles. All these measurements revealed smaller average crystallite size and enhanced surface

  6. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    International Nuclear Information System (INIS)

    Lin, Naiming; Guo, Junwen; Xie, Faqin; Zou, Jiaojuan; Tian, Wei; Yao, Xiaofei; Zhang, Hongyan; Tang, Bin

    2014-01-01

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance

  7. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G

    Science.gov (United States)

    A surface enhanced Raman scattering (SERS) immunoassay for antibody detection in serum is described in the present work. The developed assay is conducted in solution and utilizes Au nanoparticles coated with the envelope (E) protein of West Nile Virus (WNV) as the SERS-active substrate and malachite...

  8. Erosion behavior of hard surface coatings/inserts

    International Nuclear Information System (INIS)

    Levy, A.V.; Bakker, T.W.

    1983-01-01

    This chapter attempts to determine the basic erosion behavior of several of the most promising refractory hard metal coatings and bodies that are currently either in development or commercial use. Discusses experimental conditions and metallographic analysis. Concludes that all of the materials tested eroded in a brittle manner, undergoing more erosion at a 90 0 impingement angle than a 30 0 angle; the CNTD SiC (hard) had the best erosion resistance; the coating materials had a peak erosion rate at the beginning of erosion; the amount of apparent plastic deformation that occurred in some of the materials can be related to the amount and condition of the metallic phases in the materials; and the large grain size near the coatingsubstrate interface of the CNTD SiC (hard) that eroded preferentially could be related to an instability in the deposition process that occurred near the initiation of deposition

  9. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    International Nuclear Information System (INIS)

    Laranjeira, Marta S; Carvalho, Ângela; Ferraz, Maria Pia; Monteiro, Fernando Jorge; Pelaez-Vargas, Alejandro; Hansford, Derek; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena

    2014-01-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol–gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior. (paper)

  10. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications

    Science.gov (United States)

    Laranjeira, Marta S.; Carvalho, Ângela; Pelaez-Vargas, Alejandro; Hansford, Derek; Ferraz, Maria Pia; Coimbra, Susana; Costa, Elísio; Santos-Silva, Alice; Fernandes, Maria Helena; Monteiro, Fernando Jorge

    2014-04-01

    Dental ceramic implants have shown superior esthetic behavior and the absence of induced allergic disorders when compared to titanium implants. Zirconia may become a potential candidate to be used as an alternative to titanium dental implants if surface modifications are introduced. In this work, bioactive micropatterned silica coatings were produced on zirconia substrates, using a combined methodology of sol-gel processing and soft lithography. The aim of the work was to compare the in vitro behavior of human gingival fibroblasts (HGFs) and human dermal microvascular endothelial cells (HDMECs) on three types of silica-coated zirconia surfaces: flat and micropatterned (with pillars and with parallel grooves). Our results showed that cells had a higher metabolic activity (HGF, HDMEC) and increased gene expression levels of fibroblast-specific protein-1 (FSP-1) and collagen type I (COL I) on surfaces with pillars. Nevertheless, parallel grooved surfaces were able to guide cell growth. Even capillary tube-like networks of HDMEC were oriented according to the surface geometry. Zirconia and silica with different topographies have shown to be blood compatible and silica coating reduced bacteria adhesion. All together, the results indicated that microstructured bioactive coating seems to be an efficient strategy to improve soft tissue integration on zirconia implants, protecting implants from peri-implant inflammation and improving long-term implant stabilization. This new approach of micropatterned silica coating on zirconia substrates can generate promising novel dental implants, with surfaces that provide physical cues to guide cells and enhance their behavior.

  11. In vitro study on the osteogenesis enhancement effect of BMP-2 incorporated biomimetic apatite coating on titanium surfaces.

    Science.gov (United States)

    Zhu, Xiaojing; Zhang, Hui; Zhang, Xinchun; Ning, Chengyun; Wang, Yan

    2017-09-26

    To fabricate a sustained-release delivery system of bone morphogenetic protein (BMP-2) on titanium surface, explore the effect of BMP-2 concentration on the loading/release behavior of BMP-2 and evaluate the cell compatibility of the system in vitro, pure titanium specimens were immersed into supersaturated calcium phosphate solutions (SCP) containing 4 different concentrations of BMP-2: 0, 50, 100, 200 and 400 ng/mL. Biomimetic calcium phosphate coating was formed on titanium surface and BMP-2 was incorporated into the coating through co-deposition. The release profile of BMP-2 suggested that BMP-2 were delivered sustainably up to 20 days. CCK-8 and ALP assay showed that 200 group and 400 ng/mL BMP-2 group have significant effect on promoting MC3T3-E1 cell proliferation and differentiation. The BMP-2 incorporated into the hybrid coating released in a sustained manner and significantly promoted the proliferation and differentiation of MC3T3-E1 on the titanium surface.

  12. State of the Art in the Development and Properties of Protein-Based Films and Coatings and Their Applicability to Cellulose Based Products: An Extensive Review

    Directory of Open Access Journals (Sweden)

    Maria-Beatrice Coltelli

    2015-12-01

    Full Text Available There is increasing research towards the substitution of petrochemicals by sustainable components. Biopolymers such as proteins, polysaccharides, and lipids derive from a variety of crop sources and most promisingly from waste streams generated during their processing by the agro food industry. Among those, proteins of different types such as whey, casein, gelatin, wheat gluten, soy protein or zein present a potential beyond the food and feed industry for the application in packaging. The general protein hydrophilicity promotes a good compatibility to polar surfaces, such as paper, and a good barrier to apolar gases, such as oxygen and carbon dioxide. The present review deals with the development of protein-based coatings and films. It includes relevant discussion for application in paper or board products, as well as an outlook on its future industrial potential. Proteins with suitable functionalities as food packaging materials are described as well as the different technologies for processing the coatings and the current state of the art about the coating formulations for selectively modulating barrier, mechanical, surface and end of life properties. Some insights onto regulations about packaging use, end of life and perspectives of such natural coating for decreasing the environmental impact of packages are given.

  13. Galvanic Liquid Applied Coating System for Protection of Embedded Steel Surfaces from Corrosion

    Science.gov (United States)

    Curran, Joseph; MacDowell, Louis; Voska, N. (Technical Monitor)

    2002-01-01

    The corrosion of reinforcing steel in concrete is an insidious problem for the Kennedy Space Center, government agencies, and the general public. Existing corrosion protection systems on the market are costly, complex, and time-consuming to install, require continuous maintenance and monitoring, and require specialized skills for installation. NASA's galvanic liquid-applied coating offers companies the ability to conveniently protect embedded steel rebar surfaces from corrosion. Liquid-applied inorganic galvanic coating contains one ore more of the following metallic particles: magnesium, zinc, or indium and may contain moisture attracting compounds that facilitate the protection process. The coating is applied to the outer surface of reinforced concrete so that electrical current is established between metallic particles and surfaces of embedded steel rebar; and electric (ionic) current is responsible for providing the necessary cathodic protection for embedded rebar surfaces.

  14. Durable Superomniphobic Surface on Cotton Fabrics via Coating of Silicone Rubber and Fluoropolymers

    Directory of Open Access Journals (Sweden)

    Arsheen Moiz

    2018-03-01

    Full Text Available Performance textiles that protect human from different threats and dangers from environment are in high demand, and the advancement in functionalization technology together with employing advanced materials have made this an area of research focus. In this work, silicone rubber and environmentally friendly fluoropolymers have been employed to explore superomniphobic surface on cotton fabrics without compromising comfort much. It has been found that a cross-linked network between the rubber membrane and the fluoropolymers has been formed. The surface appearance, morphology, handle, thickness and chemical components of the surface of cotton fabrics have been changed. The coated fabrics showed resistance to water, aqueous liquid, oil, chemicals and soil. The comfort of the coated fabrics is different to uncoated cotton fabrics due to the existence of coated layers on the surface of cotton fabrics. This work would benefit the development and design of the next generation of performance textiles with balanced performance and comfort.

  15. Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing

    Science.gov (United States)

    Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.

    2017-09-01

    The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.

  16. Membrane-bound conformation of M13 major coat protein : a structure validation through FRET-derived constraints

    NARCIS (Netherlands)

    Vos, W.L.; Koehorst, R.B.M.; Spruijt, R.B.; Hemminga, M.A.

    2005-01-01

    M13 major coat protein, a 50-amino-acid-long protein, was incorporated into DOPC/DOPG (80/20 molar ratio) unilamellar vesicles. Over 60% of all amino acid residues was replaced with cysteine residues, and the single cysteine mutants were labeled with the fluorescent label I-AEDANS. The coat protein

  17. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    International Nuclear Information System (INIS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-01-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  18. Surface Functionalization of Metal-Organic Framework Crystals with Catechol Coatings for Enhanced Moisture Tolerance.

    Science.gov (United States)

    Castells-Gil, Javier; Novio, Fernando; Padial, Natalia M; Tatay, Sergio; Ruíz-Molina, Daniel; Martí-Gastaldo, Carlos

    2017-12-27

    Robust catechol coatings for enhanced moisture tolerance were produced in one step by direct reaction of Hong Kong University of Science and Technology (HKUST) with synthetic catechols. We ascribe the rapid formation of homogeneous coatings around the metal-organic framework particles to the biomimetic catalytic activity of Cu(II) dimers in the external surface of the crystals. Use of fluorinated catechols results in hydrophobic, permeable coatings that protect HKUST from water degradation while retaining close to 100% of its original sorption capacity.

  19. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    Science.gov (United States)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-03-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  20. Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface

    Directory of Open Access Journals (Sweden)

    Xiaohua Yu

    2013-01-01

    Full Text Available The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8 on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT and biomimetic calcium phosphate coated ATT (CaP. The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation.

  1. Cellular Performance Comparison of Biomimetic Calcium Phosphate Coating and Alkaline-Treated Titanium Surface

    Science.gov (United States)

    Wei, Mei

    2013-01-01

    The influence of biomimetic calcium phosphate coating on osteoblasts behavior in vitro is not well established yet. In this study, we investigated the behavior of osteoblastic rat osteosarcoma 17/2.8 cells (ROS17/2.8) on two groups of biomaterial surfaces: alkaline-treated titanium surface (ATT) and biomimetic calcium phosphate coated ATT (CaP). The cell attachment, proliferation, differentiation, and morphology on these surfaces were extensively evaluated to reveal the impact of substrate surface on osteoblastic cell responses. It was found that the ROS17/2.8 cells cultured on the ATT surface had higher attachment and proliferation rates compared to those on the CaP surface. Our results also showed that the calcium phosphate coatings generated in this work have an inhibiting effect on osteoblast adhesion and further influenced the proliferation and differentiation of osteoblast compared to the ATT surface in vitro. Cells on the ATT surface also exhibited a higher alkaline phosphatase activity than on the CaP surface after two weeks of culture. Immunofluorescence staining and scanning electron microscopy results showed that the cells adhered and spread faster on the ATT surface than on the CaP surface. These results collectively suggested that substrate surface properties directly influence cell adhesion on different biomaterials, which would result in further influence on the cell proliferation and differentiation. PMID:24455730

  2. Investigation of antimicrobial activity and morphological properties of metal coated textile surfaces

    International Nuclear Information System (INIS)

    Aslan, Necdet; Sen, Tuba; Senturk, Kenan; Corukhlu, Turgay; Varturk, Ipek; Seker, S.; Shahidi, S.; Korachi, May; Dobrovolskiy, A.M.; Tsiolko, V.V.; Matsevich, S.V.; Keskin, S.S.

    2014-01-01

    The results of investigation antimicrobial and surface properties of the textiles metal coated by means of magnetron or the cleaning-deposition system, which is based on sequentially arranged DC anode layer accelerator and hollow cathode, are presented. The antimicrobial properties against bacteria E. coli and S. aureus of cotton and polyester/cotton textiles coated by Cu, Ti and Ag with the use of two different systems were examined and compared.

  3. Deposition of Coatings for Raising the Wear Resistance of Friction Surfaces of Spherical Sliding Bearings

    Science.gov (United States)

    Gorlenko, A. O.; Davydov, S. V.

    2018-01-01

    The process of finishing plasma hardening with deposition of a multilayer amorphous coating of the Si - O - C - N system is considered as applied to hardening of the friction surfaces of spherical sliding bearings. The microrelief, the submicrorelief, and the tribological characteristics of the deposited wear-resistant antifriction amorphous coating, which are responsible for the elevated wear resistance of spherical sliding bearings, are investigated.

  4. Surface hydrophobic co-modification of hollow silica nanoparticles toward large-area transparent superhydrophobic coatings.

    Science.gov (United States)

    Gao, Liangjuan; He, Junhui

    2013-04-15

    The present paper reports a novel, simple, and efficient approach to fabricate transparent superhydrophobic coatings on glass substrates by spray-coating stearic acid (STA) and 1H,1H,2H,2H-perflurooctyltriethoxysilane (POTS) co-modified hollow silica nanoparticles (SPHSNs), the surfaces of which were hydrophobic. The surface wettability of coatings was dependent on the conditions of post-treatment: the water contact angle of coating increased and then leveled off with increase in either the drying temperature or the drying time. When the coating was treated at 150°C for 5h, the water contact angle was as high as 160° and the sliding angle was lower than 1°, reaching excellent superhydrophobicity. They remained 159° and ≤1°, respectively, even after 3months storage under indoor conditions (20°C, 20%RH), demonstrating the long time stability of coating superhydrophobicity. The coating was robust both to the impact of water droplets (297 cm/s) and to acidic (pH=1) and basic (pH=14) droplets. It showed good transparency in the visible-near infrared spectral range, and the maximum transmittance reached as high as 89%. Fourier transform infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, and thermogravimetric analysis were used to investigate the interactions among STA, POTS, and hollow silica nanoparticles (HSNs). Scanning electron microscopy and atomic force microscopy were used to observe and estimate the morphology and surface roughness of coatings. Optical properties were characterized by a UV-visible-near infrared spectrophotometer. Surface wettability was studied by a contact angle/interface system. The enhancement of hydrophobicity to superhydrophobicity by post-treatment was discussed based on the transition from the Wenzel state to the Cassie state. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Surface Coating of Polyester Fabrics by Sol Gel Synthesized ZnO Particles

    OpenAIRE

    Merve Küçük; M. Lütfi Öveçoğlu

    2016-01-01

    Zinc oxide particles were synthesized using the sol-gel method and dip coated on polyester fabric. X-ray diffraction (XRD) analysis revealed a single crystal phase of ZnO particles. Chemical characteristics of the polyester fabric surface were investigated using attenuated total reflection-Fourier transform infrared (ATR-FTIR) measurements. Morphology of ZnO coated fabric was analyzed using field emission scanning electron microscopy (FESEM). After particle analysis, the aqueous ZnO solution ...

  6. Coatings and claddings for the reduction of plasma contamination and surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1980-01-01

    For the successful operation of plasma devices and future fusion reactors it is necessary to control plasma impurity release and surface erosion. Effective methods to obtain such controls include the application of protective coatings to, and the use of clad materials for, certain first wall components. Major features of the development programs for coatings and claddings for fusion applications will be described together with an outline of the testing program. A discussion of some pertinent test results will be included

  7. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form......-factor, mechanical stability and low cost when combined with a monolithically integrated photodiode detector....

  8. Matrix Pre-coated Targets for High Throughput MALDI Imaging of Proteins

    OpenAIRE

    Yang, Junhai; Caprioli, Richard M.

    2014-01-01

    We have developed matrix pre-coated targets for imaging proteins in thin tissue sections by MALDI MS (matrix-assisted laser desorption/ionization mass spectrometry). Gold covered microscope slides were coated with sinapinic acid (SA) in batches in advance and were shown to be stable for over 6 months when kept in the dark. The sample preparation protocol using these SA pre-coated targets involves treatment with diisopropylethylamine (DIEA)-H2O vapor, transforming the matrix layer to a viscous...

  9. Ag coated microneedle based surface enhanced Raman scattering probe for intradermal measurements

    Science.gov (United States)

    Yuen, Clement; Liu, Quan

    2013-06-01

    We propose a silver coated microneedle to detect test molecules, including R6G and glucose, positioned at a depth of more than 700 μm below a skin phantom surface for mimicking intradermal surface-enhanced Raman scattering measurements.

  10. One-step surface selective modification of UV-curable hard coatings with photochemical metal organics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Kwang; Park, Chang-Sun; Park, Hyung-Ho, E-mail: hhpark@yonsei.ac.kr

    2016-12-15

    Graphical abstract: This study demonstrates suitable for exceptional hybrid film under UV exposure. A small quantity of the dispersive photochemical precursor Sr 2-ethylhexanoate was mixed and the composition altered from the surface to the bottom, forming an organic layer and a densely concentrated SrO surface layer. The surface-selective SrO strongly enhanced the surface flatness and hardness of the UV-curable organic coating film. - Highlights: • Hybrid bi-layer coating was synthesized through one-pot UV exposure chemical route. • The influence of additive and different reactivity formed densely concentrated SrO surface layer. • Chemical composition and continuous interface between organic and inorganic were analyzed. • Surface flatness and mechanical property were improved by inorganic material. - Abstract: An organic–inorganic hybrid bi-layer film with a selective distribution of inorganic components was synthesized from a one-pot process of UV irradiation. A photochemical metal oxide precursor (Sr 2-ethylhexanoate) varying from 0 to 4 wt% was dispersed in UV-curable coating materials. Under UV exposure, the bi-layer started reacting simultaneously but at different rates due to differences in the two UV-condensable components’ reactivity. The effects of the dispersed inorganic component on the surface morphology and mechanical properties were investigated by atomic force microscopy and nanoindentation, respectively. The reaction process and rates were studied from linkage change using Fourier transform infrared spectroscopy at various UV exposure times (0–30 min). The elemental distribution and the interface on the coating layer were characterized by X-ray photoelectron spectroscopy from Ar etching, revealing continuous and gradual composition changes in depth. The results showed that a flattened and surface-selectively hardened SrO containing the coating film could be obtained by this simple process. Consequently, a small ratio of photochemical

  11. Characterizing and modeling protein-surface interactions in lab-on-chip devices

    Science.gov (United States)

    Katira, Parag

    Protein adsorption on surfaces determines the response of other biological species present in the surrounding solution. This phenomenon plays a major role in the design of biomedical and biotechnological devices. While specific protein adsorption is essential for device function, non-specific protein adsorption leads to the loss of device function. For example, non-specific protein adsorption on bioimplants triggers foreign body response, in biosensors it leads to reduced signal to noise ratios, and in hybrid bionanodevices it results in the loss of confinement and directionality of molecular shuttles. Novel surface coatings are being developed to reduce or completely prevent the non-specific adsorption of proteins to surfaces. A novel quantification technique for extremely low protein coverage on surfaces has been developed. This technique utilizes measurement of the landing rate of microtubule filaments on kinesin proteins adsorbed on a surface to determine the kinesin density. Ultra-low limits of detection, dynamic range, ease of detection and availability of a ready-made kinesin-microtubule kit makes this technique highly suitable for detecting protein adsorption below the detection limits of standard techniques. Secondly, a random sequential adsorption model is presented for protein adsorption to PEO-coated surfaces. The derived analytical expressions accurately predict the observed experimental results from various research groups, suggesting that PEO chains act as almost perfect steric barriers to protein adsorption. These expressions can be used to predict the performance of a variety of systems towards resisting protein adsorption and can help in the design of better non-fouling surface coatings. Finally, in biosensing systems, target analytes are captured and concentrated on specifically adsorbed proteins for detection. Non-specific adsorption of proteins results in the loss of signal, and an increase in the background. The use of nanoscale transducers as

  12. Impact of surface coated magnetite used in magnetic drug delivery system on immune response

    Science.gov (United States)

    Oaku, Yoshihiro; Tamada, Junya; Mishima, Fumihito; Akiyama, Yoko; Osako, Mariana Kiomy; Koriyama, Hiroshi; Nakagami, Hironori; Nishijima, Shigehiro

    2015-05-01

    Magnetic drug delivery system (MDDS) is a technique to effectively accumulate drugs, which are combined with ferromagnetic particles, into the affected area using magnetic force control. This study intends to apply MDDS for immunotherapy by enhancing immune responses by a surface treatment of a ferromagnetic particle. The objective of this study is to give the adjuvant effect to a ferromagnetic particle by the surface treatment with alum, which is known as one of the common adjuvants that activates inflammasome pathway. First, magnetite was prepared as a ferromagnetic particle and coated with alum. Alum-coated magnetite increased the expression of caspase-1, which is an activated indicator of inflammasome, in the culture of human monocyte cell (THP-1 cell). To evaluate the potential of the surface coated particles, the particles were subcutaneously injected to mice with a peptide vaccine. As a result, the antibody titer was increased by the surface coated particles as assessed by ELISA. Although a magnetic force has not yet applied in this study, the administration experiment to mice using magnetic force control is our next step. In conclusion, we modified the immune response to magnetite by coating the surface with alum. This can lead to a clinical application for vaccine therapy in future.

  13. Meso-scale wrinkled coatings to improve heat transfers of surfaces facing ambient air

    International Nuclear Information System (INIS)

    Kakiuchida, Hiroshi; Tajiri, Koji; Tazawa, Masato; Yoshimura, Kazuki; Shimono, Kazuaki; Nakagawa, Yukio; Takahashi, Kazuhiro; Fujita, Keisuke; Myoko, Masumi

    2015-01-01

    Meso-scale (micrometer-to submillimeter-scale) wrinkled surfaces coated on steel sheets used in outdoor storage and transport facilities for industrial low-temperature liquids were discovered to efficiently increase convective heat transfer between ambient air and the surface. The radiative and convective heat transfer coefficients of various wrinkled surfaces, which were formed by coating steel sheets with several types of shrinkable paints, were examined. The convective heat transfer coefficient of a surface colder than ambient air monotonically changed with average height difference and interval distance of the wrinkle undulation, where the proportions were 0.0254 and 0.0054 W/m 2 /K/μm, respectively. With this wrinkled coating, users can lower the possibility of condensation and reduce rust and maintenance cost of facilities for industrial low-temperature liquids. From the point of view of manufacturers, this coating method can be easily adapted to conventional manufacturing processes. - Highlights: • Various wrinkled surfaces were fabricated by a practical process. • Topographical effect on convection was parameterized separately from radiation. • Meso-scale wrinkled coatings increased convective heat transfer with ambient air. • Maintenance cost of outdoor steel sheets due to condensation can be reduced

  14. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    Science.gov (United States)

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-01-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces. PMID:26996815

  15. Development of bioactive coatings based on γ-irradiated proteins to preserve strawberries

    International Nuclear Information System (INIS)

    Vu, K.D.; Hollingsworth, R.G.; Salmieri, S.; Takala, P.N.; Lacroix, M.

    2012-01-01

    Gamma irradiation was applied for creating cross-linked proteins to enhance the physicochemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. The characteristics of γ irradiated cross-linked proteins were analyzed by Fourier Transform Infrared spectroscopy. A second derivative spectra exhibited changes in band intensities that were correlated to an increase of β-sheet structure and a decrease of α-helix and unordered fractions of γ irradiated-cross-linked proteins as compared to the control without irradiation. Furthermore, on addition of methylcellulose to the irradiated protein matrix it was found that it has potential in enhancing the puncture strength and has no detrimental effect on water vapor permeability of protein based films. Finally, these film formulations were used as bioactive edible coatings containing natural antimicrobial agents (limonene and peppermint) to preserve the shelf life of fresh strawberries during storage. The bioactive coatings containing peppermint was found to be more efficient as preserving coatings than the formulations containing limonene. Irradiated proteins/methylcellulose/peppermint formulation had only 40% of decay at day 8 while it was 65% for the control. - Highlights: ► Crosslinked proteins and antimicrobials agents was able to preserve strawberries. ► Crosslinked protein structure was more ordered. ► Films based on crosslinked proteins and methylcellulose enhanced puncture strength.

  16. Differential scanning calorimetry and surface morphology studies on coated pellets using aqueous dispersions.

    Science.gov (United States)

    Nisar-ur-Rahman; K H, Yuen; Jia Woei, Wong; Khan, Nurzalina A k

    2005-04-01

    The present study was conducted to examine the physicochemical changes during passage of drug through polymeric membranes and observe the surface morphology features of the coated pellets using scanning electron microscopy (SEM). Drug solution was first sprayed around inert pellets to form drug-layered pellets that were coated with two commercial aqueous dispersions namely, Eudragit NE30 and Kollicoat SR30 using bottom-spray fluidized bed technique. Differential scanning calorimetry (DSC) confirmed that no interactions existed between drug and polymers. Small peak of drug was observed in the DSC thermograms of Eudragit NE30 coated pellets indicating that small amount of drug was still present in the polymeric membrane after dissolution. Views of SEM revealed as the coating levels of two types of aqueous dispersions were increased the surface of the pellets become more uniform and compact. Therefore, the diffusion length for dissolution medium to enter the drug layer and dissolved drug to diffuse out would be increased at higher coating levels. The polymer surface of coated pellets after 12 hours dissolution testing seemed to be shrunk and size of the pellets were also reduced indicating the depletion of reservoir layer.

  17. Effects of silica-coating on surface topography and bond strength of porcelain fused to CAD/CAM pure titanium.

    Science.gov (United States)

    Fukuyama, Takushi; Hamano, Naho; Ino, Satoshi

    2016-01-01

    The aim of this study was to evaluate the shear bond strength of porcelain fusing to titanium and the effects of surface treatment on surface structure of titanium. In the shear bond strength test, titanium surface treatments were: conventional, silica-coating without bonding agent, and silica-coating with bonding agent. Titanium surface treatments for analysis by the atomic force microscope (AFM) were: polishing, alumina sandblasting and silica-coating. The shear bond strength value of silica-coating with bonding agent group showed significantly higher than that of other groups. In AFM observation results, regular foamy structure which is effective for wetting was only observed in silica-coating. Therefore, this structure might indicate silicon. Silica-coating renders forms a nanoscopic regular foamy structure, involved in superhydrophilicity, to titanium surface, which is markedly different from the irregular surface generated by alumina sandblasting.

  18. Effect of Surface Coating with Magnesium Stearate via Mechanical Dry Powder Coating Approach on the Aerosol Performance of Micronized Drug Powders from Dry Powder Inhalers

    OpenAIRE

    Zhou, Qi (Tony); Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J.; Morton, David A. V.

    2012-01-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by las...

  19. Biocides from facade coatings in urban surface waters

    DEFF Research Database (Denmark)

    Bollmann, Ulla E; Styszko, Katarzyna; Ou, Yi

    2015-01-01

    Leaching of biocides from façade coatings attracts more and more attention within recent years. In-can as well as film preserving biocides are added to polymer resin based renders and paints in order protect from microbial spoilage. However, several studies revealed that biocides leach from......-water partitioning constant in comparison to render-water distribution constants. This was done based on the hypothesis that the render-water distribution constant can be described as the sum of the partitioning to polyacrylate, carbonates, sand particles and other render ingredients....

  20. Protein arrangement on modified diamond-like carbon surfaces - An ARXPS study

    Science.gov (United States)

    Oosterbeek, Reece N.; Seal, Christopher K.; Hyland, Margaret M.

    2014-12-01

    Understanding the nature of the interface between a biomaterial implant and the biological fluid is an essential step towards creating improved implant materials. This study examined a diamond-like carbon coating biomaterial, the surface energy of which was modified by Ar+ ion sputtering and laser graphitisation. The arrangement of proteins was analysed by angle resolved X-ray photoelectron spectroscopy, and the effects of the polar component of surface energy on this arrangement were observed. It was seen that polar groups (such as CN, CO) are more attracted to the coating surface due to the stronger polar interactions. This results in a segregation of these groups to the DLC-protein interface; at increasing takeoff angle (further from to DLC-protein interface) fewer of these polar groups are seen. Correspondingly, groups that interact mainly by dispersive forces (CC, CH) were found to increase in intensity as takeoff angle increased, indicating they are segregated away from the DLC-protein interface. The magnitude of the segregation was seen to increase with increasing polar surface energy, this was attributed to an increased net attraction between the solid surface and polar groups at higher polar surface energy (γSp).

  1. Identification and characterization of the surface proteins of Clostridium difficile

    Energy Technology Data Exchange (ETDEWEB)

    Dailey, D.C.

    1988-01-01

    Several clostridial proteins were detected on the clostridial cell surface by sensitive radioiodination techniques. Two major proteins and six minor proteins comprised the radioiodinated proteins on the clostridial cell surface. Cellular fractionation of surface radiolabeled C. difficile determined that the radioiodinated proteins were found in the cell wall fraction of C. difficile and surprisingly were also present in the clostridial membrane. Furthermore, an interesting phenomenon of disulfide-crosslinking of the cell surface proteins of C. difficile was observed. Disulfide-linked protein complexes were found in both the membrane and cell wall fractions. In addition, the cell surface proteins of C. difficile were found to be released into the culture medium. In attempts to further characterize the clostridial proteins recombinant DNA techniques were employed. In addition, the role of the clostridial cell surface proteins in the interactions of C. difficile with human PMNs was also investigated.

  2. Influence of calcium-induced droplet heteroaggregation on the physicochemical properties of oppositely charged lactoferrin coated lutein droplets and whey protein isolate-coated DHA droplets.

    Science.gov (United States)

    Li, Xin; Wang, Xu; Xu, Duoxia; Cao, Yanping; Wang, Shaojia; Wang, Bei; Wang, Chengtao; Sun, Baoguo

    2017-08-01

    The influence of calcium-induced droplet heteroaggregation on the formation and physicochemical stability of mixed lutein and DHA emulsions was studied. Heteroaggregation was induced by mixing oppositely charged lactoferrin (LF)-coated lutein and whey protein isolate (WPI)-coated DHA emulsions with different CaCl 2 concentrations at pH 6.0. The droplet size, zeta-potential, transmission-physical stability and microstructure behavior (CLSM and Cryo-SEM) of single-protein emulsions and mixed emulsions were measured as a function of different CaCl 2 concentrations. Lutein degradation and DHA oxidation by measurement of lipid hydroperoxides and thiobarbituric acid reactive substances were determined during storage. The physical stability of the mixed emulsions could be modulated by controlling CaCl 2 concentrations. Microstructure behavior indicated that a mixed emulsion with 30 mM CaCl 2 promoted more droplets to form a special three-dimensional network and microcluster structures. The chemical stability of the mixed lutein and DHA emulsions was obviously enhanced by the addition of 30 mM CaCl 2 . The decreased surface areas of the DHA and lutein droplets and the physical barrier of the network of heteroaggregates against transition metals and free radicals could mainly explain the improvement in chemical stability. Calcium-induced droplet aggregation may be useful for creating specific food structures that lead to desirable physicochemical properties of multiple functional components.

  3. Improvement of interfacial interactions using natural polyphenol-inspired tannic acid-coated nanoclay enhancement of soy protein isolate biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong; Kang, Haijiao; Zhang, Wei [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083 (China); Zhang, Shifeng, E-mail: shifeng.zhang@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083 (China); Li, Jianzhang, E-mail: lijzh@bjfu.edu.cn [MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing, 100083 (China); Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing, 100083 (China)

    2017-04-15

    Highlights: • A novel interface of MMT was fabricated by natural polyphenol (TA)-inspired chemistry. • The resultant biomimetic surface exhibited good interface and surface compatibility. • TA can act as a bridge between MMT and SPI to enhance the interfacial interaction. • Surface-modified MMT gets the potential to be used in the modification of SPI biofilms for improving the mechanical properties and water resistance apparently. - Abstract: In this study, a novel and economic surface modification technique for montmorillonite (MMT) nanosheets, a biocompatible coupling cross-linking agent, was developed on an attempt at improving the interfacial adhesion with soy protein isolate (SPI) matrix. Inspired by natural polyphenol, the “green dip-coating” method using tannic acid (TA) to surface-modify MMT (TA@MMT). SPI nanocomposite films modified with MMT or TA@MMT, as well as the control ones, were prepared via the casting method. The TA layer was successfully coated on the MMT surface through the (Fe{sup III}) ions coordination chemistry and the synthetic samples were characterized by the Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The compatibility and interfacial interactions between modified MMT and SPI matrix were greatly enhanced by the TA-Fe{sup III} coating on the MMT surface. The mechanical properties, water resistance, and thermal stability of the resultant biofilm were increased accordingly. Compared with that of the unmodified SPI film, the tensile strength of the nanocomposite films modified by the green dip-coating was increased by 113.3%. These SPI-based nanocomposite films showed the favorable potential in terms of food packing applications due to their efficient barriers to water vapor and UV and/or visible light.

  4. Interaction of Solid Lipid Nanoparticles and Specific Proteins of the Corona Studied by Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Mauricio E. Di Ianni

    2017-01-01

    Full Text Available The applications of pharmaceutical and medical nanosystems are among the most intensively investigated fields in nanotechnology. A relevant point to be considered in the design and development of nanovehicles intended for medical use is the formation of the “protein corona” around the nanoparticle, that is, a complex biomolecular layer formed when the nanovehicle is exposed to biological fluids. The chemical nature of the protein corona determines the biological identity of the nanoparticle and influences, among others, the recognition of the nanocarrier by the mononuclear phagocytic system and, thus, its clearance from the blood. Recent works suggest that Surface Plasmon Resonance (SPR, extensively employed for the analysis of biomolecular interactions, can shed light on the formation of the protein corona and its interaction with the surroundings. The synthesis and characterization of solid lipid nanoparticles (SLN coated with polymers of different chemical nature (e.g., polyvinyl alcohol, chitosans are reported. The proof-of-concept for the use of SPR technique in characterizing protein-nanoparticle interactions of surface-immobilized proteins (immunoglobulin G and bovine serum albumin, both involved in the formation of the corona subjected to flowing SLN is demonstrated for non-chitosan-coated nanoparticles. All assayed nanosystems show more preference for IgG than for BSA, such preference being more pronounced in the case of polyvinyl-alcohol-coated SLN.

  5. Sensing of heavy metal ions by intrinsic TMV coat protein fluorescence

    Science.gov (United States)

    Bayram, Serene S.; Green, Philippe; Blum, Amy Szuchmacher

    2018-04-01

    We propose the use of a cysteine mutant of TMV coat protein as a signal transducer for the selective sensing and quantification of the heavy metal ions, Cd2+, Pb2+, Zn2+ and Ni2+ based on intrinsic tryptophan quenching. TMV coat protein is inexpensive, can be mass-produced since it is expressed and extracted from E-coli. It also displays several different functional groups, enabling a wide repertoire of bioconjugation chemistries; thus it can be easily integrated into functional devices. In addition, TMV-ion interactions have been widely reported and utilized for metallization to generate organic-inorganic hybrid composite novel materials. Building on these previous observations, we herein determine, for the first time, the TMV-ion binding constants assuming the static fluorescence quenching model. We also show that by comparing TMV-ion interactions between native and denatured coat protein, we can distinguish between chemically similar heavy metal ions such as cadmium and zinc ions.

  6. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface

    International Nuclear Information System (INIS)

    Das, Sudev; Kumar, D.S.; Bhaumik, Swapan

    2016-01-01

    Highlights: • EBPVD approach was employed for fabrication of well-ordered nanoparticle coated micro/nanostructure on metal surface. • Nucleate boiling heat transfer performance on nanoparticle coated micro/nanostructure surface was experimentally studied. • Stability of nanoparticle coated surface under boiling environment was systematically studied. • 58% enhancement of boiling heat transfer coefficient was found. • Present experimental results are validated with well known boiling correlations. - Abstract: Electron beam physical vapor deposition (EBPVD) coating approach was employed for fabrication of well-ordered of nanoparticle coated micronanostructures on metal surfaces. This paper reports the experimental study of augmentation of pool boiling heat transfer performance and stabilities of silicon oxide nanoparticle coated surfaces with water at atmospheric pressure. The surfaces were characterized with respect to dynamic contact angle, surface roughness, topography, and morphology. The results were found that there is a reduction of about 36% in the incipience superheat and 58% enhancement in heat transfer coefficient for silicon oxide coated surface over the untreated surface. This enhancement might be the reason of enhanced wettability, enhanced surface roughness and increased number of a small artificial cavity on a heating surface. The performance and stability of nanoparticle coated micro/nanostructure surfaces were examined and found that after three runs of experiment the heat transfer coefficient with heat flux almost remain constant.

  7. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  8. Surface characteristics and bioactivity of a novel natural HA/zircon nanocomposite coated on dental implants.

    Science.gov (United States)

    Karamian, Ebrahim; Khandan, Amirsalar; Motamedi, Mahmood Reza Kalantar; Mirmohammadi, Hesam

    2014-01-01

    The surface characteristics of implant which influence the speed and strength of osseointegration include surface chemistry, crystal structure and crystallinity, roughness, strain hardening, and presence of impurities. The aim of this study was to evaluate the bioactivity and roughness of a novel natural hydroxyapatite/zircon (NHA/zircon) nanobiocomposite, coated on 316L stainless steel (SS) soaked in simulated body fluid (SBF). NHA/zircon nanobiocomposite was fabricated with 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon in NHA using ball mill for 20 minutes. The composite mixture was coated on 316L SS using plasma spray method. The results are estimated using the scanning electron microscopy (SEM) observation to evaluate surface morphology, X-ray diffraction (XRD) to analyze phase composition, and transmission electron microscopy (TEM) technique to evaluate the shape and size of prepared NHA. Surfaces roughness tester was performed to characterize the coated nanocomposite samples. The maximum average R a (14.54 μm) was found in the NHA 10 wt.% of zircon coating. In addition, crystallinity (X c ) was measured by XRD data, which indicated the minimum value (X c = 41.1%) for the sample containing 10 wt.% of zircon. Maximum bioactivity occurred in the sample containing 10 wt.% of zircon, which was due to two reasons: first, the maximum roughness and, second, the minimum crystallinity of nanobiocomposite coating.

  9. Bacterial adherence on fluorinated carbon based coatings deposited on polyethylene surfaces

    International Nuclear Information System (INIS)

    Terriza, A; Del Prado, G; Perez, A Ortiz; Martinez, M J; Puertolas, J A; Manso, D Molina; Gonzalez-Elipe, A R; Yubero, F; Barrena, E Gomez; Esteban, J

    2010-01-01

    Development of intrinsically antibacterial surfaces is of key importance in the context of prostheses used in orthopaedic surgery. In this work we present a thorough study of several plasma based coatings that may be used with this functionality: diamond like carbon (DLC), fluorine doped DLC (F-DLC) and a high fluorine content carbon-fluor polymer (CF X ). The study correlates the surface chemistry and hydrophobicity of the coating surfaces with their antibacterial performance. The coatings were deposited by RF-plasma assisted deposition at room temperature on ultra high molecular weight polyethylene (UHMWPE) samples. Fluorine content and relative amount of C-C and C-F bond types was monitored by X-ray photoelectron spectroscopy and hydrophobicity by water contact angle measurements. Adherence of Staphylococcus aureus and Staphylococcus epidermidis to non-coated and coated UHMWPE samples was evaluated. Comparisons of the adherence performance were evaluated using a paired t test (two materials) and a Kruskall Wallis test (all the materials). S. aureus was statistically significant (p< 0.001) less adherent to DLC and F-DLC surfaces than S. epidermidis. Both bacteria showed reduction of adherence on DLC/UHMWPE. For S. aureus, reduction of bacterial adherence on F-DLC/UHMWPE was statistically significant respect to all other materials.

  10. Plasma Sprayed Bondable Stainless Surface (BOSS) Coatings for Corrosion Protection and Adhesion Treatments

    Science.gov (United States)

    Davis, G. D.; Groff, G. B.; Rooney, M.; Cooke, A. V.; Boothe, R.

    1995-01-01

    Plasma-sprayed Bondable Stainless Surface (BOSS) coatings are being developed under the Solid Propulsion Integrity Program's (SPIP) Bondlines Package. These coatings are designed as a steel case preparation treatment prior to insulation lay-up. Other uses include the exterior of steel cases and bonding surfaces of nozzle components. They provide excellent bondability - rubber insulation and epoxy bonds fail cohesively within the polymer - for both fresh surfaces and surfaces having undergone natural and accelerated environmental aging. They have passed the MSFC requirements for protection of inland and sea coast environment. Because BOSS coatings are inherently corrosion resistant, they do not require preservation by greases or oils. The reduction/elimination of greases and oils, known bondline degraders, can increase SRM reliability, decrease costs by reducing the number of process steps, and decrease environmental pollution by reducing the amount of methyl chloroform used for degreasing and thus reduce release of the ozone-depleting chemical in accordance with the Clean Air Act and the Montreal Protocol. The coatings can potential extend the life of RSRM case segments and nozzle components by eliminating erosion due to multiple grit blasting during each use cycle and corrosion damage during marine recovery. Concurrent work for the Air Force show that other BOSS coatings give excellent bondline strength and durability for high-performance structures of aluminum and titanium.

  11. Electrochemical behavior of bioactive coatings on cp-Ti surface for dental application.

    Science.gov (United States)

    Marques, Isabella da Silva Vieira; Barão, Valentim Adelino Ricardo; da Cruz, Nilson Cristino; Yuan, Judy Chia-Chun; Mesquita, Marcelo Ferraz; Ricomini-Filho, Antonio Pedro; Sukotjo, Cortino; Mathew, Mathew T

    2015-11-01

    The surface characteristics and electrochemical properties of bioactive coatings produced by plasma electrolytic oxidation (PEO) with calcium, phosphorous, silicon and silver on commercially pure titanium were evaluated. PEO treatment produced a porous oxide layer, which improved the surface topography, and enriched the surface chemistry with bioactive elements, responsible for mimicking bone surface. The surfaces with higher calcium concentration presented antibacterial and biocompability properties with better responses for corrosion and barrier properties, due to the presence of rutile crystalline structure. PEO may be a promising surface treatment option to improve the electrochemical behavior of dental implants mitigating treatment failures.

  12. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings

    KAUST Repository

    Hsu, Chin-Chi

    2012-06-01

    This study investigates the effects of surface wettability on pool boiling heat transfer. Nano-silica particle coatings were used to vary the wettability of the copper surface from superhydrophilic to superhydrophobic by modifying surface topography and chemistry. Experimental results show that critical heat flux (CHF) values are higher in the hydrophilic region. Conversely, CHF values are lower in the hydrophobic region. The experimental CHF data of the modified surface do not fit the classical models. Therefore, this study proposes a simple model to build the nexus between the surface wettability and the growth of bubbles on the heating surface. © 2012 Elsevier Ltd. All rights reserved.

  13. Surface ultrastructure and mechanical properties of three different white-coated NiTi archwires.

    Science.gov (United States)

    Ryu, Seong-Hee; Lim, Byung-Suh; Kwak, Eun Joo; Lee, Gi-Ja; Choi, Samjin; Park, Ki-Ho

    2015-01-01

    The recent trend in orthodontic treatment is to apply esthetic materials to orthodontic appliances with adequate clinical performance. The aim of this study was to investigate the ultrastructure (surface roughness) and mechanical properties (load-deflection curve) of three as-received, white-coated superelastic nickel-titanium (NiTi) archwires using atomic force microscopy (AFM) and modified three-point bending test assessments, respectively. Three representative esthetic NiTi archwires were used, silver-platinum- and polymer-coated NiTi Natural Dany (Dany group), epoxy resin-coated Orthoforce Ultraesthetic™ (Ultra group), and Teflon®-coated Perfect (Perfect group). Uncoated metallic areas of each wire were used as controls. The diameter of the Perfect archwire was significantly larger than that of other archwires. The Dany and Ultra groups showed more deflection than the Perfect group. The hysteresis area of the Dany and Ultra groups showed approximately two- and fourfold increases compared to the control and the Perfect group. The Dany group (2037.5 ± 527.3 nm) had the highest peak-to-peak surface roughness in the coated areas, followed by the Ultra group (811.1 ± 407.5 nm) and the Perfect group (362.7 ± 195.8 nm). However, reverse nanostructural changes in the surface roughness were observed in the uncoated metallic areas. The results suggested that the load-deflection properties and the surface roughness of superelastic NiTi archwires were affected directly by the coating materials. Although the efficiency of orthodontic treatment was affected by various factors, when only considering the frictional force and mechanostructural properties, the epoxy resin-coated Orthoforce Ultraesthetic™ archwires were the most effective for orthodontic treatment. © Wiley Periodicals, Inc.

  14. Evaluation of four surface coating treatments for resin to zirconia bonding.

    Science.gov (United States)

    Liu, Dan; Pow, Edmond H N; Tsoi, James Kit-Hon; Matinlinna, Jukka P

    2014-04-01

    To compare the effects of four surface coating methods on resin to zirconia shear bond strength. Eighty pre-sintered zirconia discs were prepared and randomly divided into five study groups according to the corresponding methods of surface treatments as follows: group C (control group, fully sintered without any surface treatment), group S (fully sintered and then sandblasted with silica coated alumina powder), group G (fully sintered and then coated with glazing porcelain followed by acid etching), group Si (pre-coated with silica slurry then fully sintered), and group Z (coated with zirconia particles and then fully sintered). The observation of surface morphology and elemental composition analysis were conducted by SEM and EDX. Self-adhesive resin cement stubs (diameter 3.6mm and height 3mm) were then bonded on the zirconia discs with a cylindrical shape. Both initial and artificial aged (including 30-day water storage, thermal cycling for 3000 and 6000 cycles) shear bond strengths were then evaluated. All the tested coating methods showed significantly higher shear bond strengths than the control group, in both dry and aged conditions. Group S produced the strongest initial zirconia/resin bonding (19.7MPa) and the control group had the lowest value (8.8MPa). However, after thermal cycling, group Z exhibited the highest mean value. All the samples in the control group failed in the thermal cycling. Both different coating methods (ptreatments (pcoating might be a reliable way in enhancing adhesion between resin and zirconia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The Electrophoretic Mobility of Proteins near Surfaces

    Science.gov (United States)

    Ramasamy, Perumal; Singh, Avtar; Rafailovich, Miriam; Sokolov, Jonathan

    2004-03-01

    We have attempted to apply the methods developed for surface DNA electrophoresis (1) for proteomics. Droplets of FITC stained Abumin, Poly- L-Lysine, or Casein purchased from Sigma were deposited on glass cover slips. The droplets were then place in contact with a TBE buffer solution contained in a cell molded from PDMS. Pt electrodes were inserted into the cell and a voltage was a applied. The motion of the protein was then imaged with a Leica Confocal microscope as a function of buffer concentration, distance from the surface, and applied voltage. The mobilities were then compared with those of uncharged one micron florescent Polystyrene beads. References: 1)Henzel WJ, Watanabe C, Stults JT., !0 Protein Identification: The Origins of Peptide Mass Fingerprinting. !1 J. American Society for Mass Spectrometry. 14 (September 2003): 931-942 2)Mathesius U, Imin N, Natera SH, Rolfe BG., !0 Proteomics as a functional genomics tool. !1 Methods of Molecular Biology 236: 395-414. *Work supported in part by the NSF-MRSEC program

  16. Binding constants of Southern rice black-streaked dwarf virus Coat Protein with ferulic acid derivatives

    Directory of Open Access Journals (Sweden)

    Longlu Ran

    2018-04-01

    Full Text Available The data present binding constants between ferulic acid derivatives and the Coat Protein (P10 by fluorescence titration in this article, which is hosted in the research article entitled “Interaction Research on an Antiviral Molecule that Targets the Coat Protein of Southern rice black-streaked dwarf virus’’ (Ran et al., 2017 [1]. The data include fluorescence quenching spectrum, Stern–Volmer quenching constants, and binding parameters. In this article, a more comprehensive data interpretation and analysis is explained.

  17. Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(L-lactic acid) fibers.

    Science.gov (United States)

    Peng, Fei; Shaw, Montgomery T; Olson, James R; Wei, Mei

    2013-02-01

    Poly(L-lactic acid) (PLLA) micro-fibers have been coated with hydroxyapatite (HA) using a quick biomimetic method to form a precursor for bone repair composites. To increase the coating content within a coating time as short as 1-2.5 h, PLLA fibers have been treated by soaking in NaOH or NaOCl solutions at mild conditions. Although different surface hydrolysis and coating methods have been used to prepare bioceramic/polymer composites, it is for the first time that the influences of the surface treatment and HA coating process on the mechanical properties of the polymer and HA/polymer composite fibers were investigated systemically.

  18. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    Energy Technology Data Exchange (ETDEWEB)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  19. On Degradation of Cast Iron Surface-Protective Paint Coat Joint

    Directory of Open Access Journals (Sweden)

    Tupaj M.

    2016-09-01

    Full Text Available The paper is a presentation of a study on issues concerning degradation of protective paint coat having an adverse impact on aesthetic qualities of thin-walled cast-iron castings fabricated in furan resin sand. Microscopic examination and microanalyses of chemistry indicated that under the coat of paint covering the surface of a thin-walled casting, layers of oxides could be found presence of which can be most probably attributed to careless cleaning of the casting surface before the paint application process, as well as corrosion pits evidencing existence of damp residues under the paint layers contributing to creation of corrosion micro-cells

  20. Effectiveness of Protective Action of Coatings from Moisture Sorption into Surface Layer of Sand Moulds

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2016-12-01

    Full Text Available The results of investigations of the sorption process of surface layers of sand moulds covered by zirconium and zirconium - graphite alcohol coatings are presented in the paper. Investigations comprised two kinds of sand grains (silica sand and reclaimed sand of moulding sand with furan resin. Tests were performed under conditions of a high relative air humidity 75 - 85% and a constant temperature within the range 28 – 33°C. To evaluate the effectiveness of coatings protective action from moisture penetration into surface layers of sand moulds gravimetric method of quantitavie moisture sorption and ultrasonic method were applied in measurements.

  1. Expression analysis of the type I keratin protein keratin 33A in goat coat hair.

    Science.gov (United States)

    Seki, Yuta; Yokohama, Michinari; Wada, Kenta; Fujita, Masaru; Kotani, Mai; Nagura, Yoshio; Kanno, Masako; Nomura, Kou; Amano, Takashi; Kikkawa, Yoshiaki

    2011-12-01

    The coat of a goat, like that of many mammalian species, consists of an outer coat of coarse hairs and an under coat of fine, downy hairs. The coarse guard hairs are produced by primary follicles and the finer cashmere hairs by secondary follicles. We previously reported that hair keratins are components of cashmere hair, and proteomic analysis revealed that their expression is elevated in winter coat hair. To determine detailed characterization, we have cloned keratin 33A gene, a major highly expressed keratin in winter, and then analyzed the expression of goat hair coat. By Western analysis, we detected that keratin 33A protein is expressed only in hair coat among the various goat tissues. Moreover, the expression level in winter has increased in cashmere high-producing Korean native breed, whereas the expression levels between summer and winter had not changed in cashmere low-producing Saanen. In addition, by immunohistochemistry we determined that keratin 33A is localized in the major cortex portion of cashmere fiber. These results confirm that keratin 33A is a structural protein of goat cashmere hair fiber. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  2. Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion

    Science.gov (United States)

    Treter, Janine; Bonatto, Fernando; Krug, Cristiano; Soares, Gabriel Vieira; Baumvol, Israel Jacob Rabin; Macedo, Alexandre José

    2014-06-01

    Surface-active substances, which are able to organize themselves spontaneously on surfaces, triggering changes in the nature of the solid-liquid interface, are likely to influence microorganism adhesion and biofilm formation. Therefore, this study aimed to evaluate chemical non-ionic surfactants activity against pathogenic microbial biofilms and to cover biomaterial surfaces in order to obtain an anti-infective surface. After testing 11 different surfactants, Pluronic F127 was selected for further studies due to its non-biocidal properties and capability to inhibit up to 90% of biofilm formation of Gram-positive pathogen and its clinical isolates. The coating technique using direct impregnation on the surface showed important antibiofilm formation characteristics, even after extensive washes. Surface roughness and bacterial surface polarity does not influence the adhesion of Staphylococcus epidermidis, however, the material coated surface became extremely hydrophilic. The phenotype of S. epidermidis does not seem to have been affected by the contact with surfactant, reinforcing the evidence that a physical phenomenon is responsible for the activity. This paper presents a simple method of surface coating employing a synthetic surfactant to prevent S. epidermidis biofilm formation.

  3. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    in their newly applied conditions. The effects of water absorption of newly applied antifouling coatings on frictional resistance were measured. A flexible rotor with artificial welding seams on its periphery has been designed and constructed to estimate the influence of welding seams on drag resistance. Both......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...... the density of welding seams (number per 5 m ship side) and the height of welding seams had a significant effect on drag resistance....

  4. Platelet adhesion studies on dipyridamole coated polyurethane surfaces

    Directory of Open Access Journals (Sweden)

    Aldenhoff Y. B.J.

    2003-06-01

    Full Text Available Surface modification of polyurethanes (PUs by covalent attachment of dipyridamole (Persantinregistered is known to reduce adherence of blood platelets upon exposure to human platelet rich plasma (PRP. This effect was investigated in further detail. First platelet adhesion under static conditions was studied with four different biomaterial surfaces: untreated PU, PU immobilised with conjugate molecule 1, PU immobilised with conjugate molecule 2, and PU immobilised with conjugate molecule 3. In PU immobilised with 1 dipyridamole is directly linked to the surface, in PU immobilised with 2 there is a short hydrophilic spacer chain in between the surface and the dipyridamole, while conjugate molecule 3 is merely the spacer chain. Scanning electron microscopy (SEM was used to characterise platelet adhesion from human PRP under static conditions, and fluorescence imaging microscopy was used to study platelet adhesion from whole blood under flow. SEM experiments encompassed both density measurements and analysis of the morphology of adherent platelets. In the static experiments the surface immobilised with 2 showed the lowest platelet adherence. No difference between the three modified surfaces emerged from the flow experiments. The surfaces were also incubated with washed blood platelets and labeled with Oregon-Green Annexin V. No capture of Oregon-Green Annexin V was seen, implying that the adhered platelets did not expose any phosphatidyl serine at their exteriour surface.

  5. Candida albicans aspects of novel silane system-coated titanium and zirconia implant surfaces.

    Science.gov (United States)

    Villard, Nicolas; Seneviratne, Chaminda; Tsoi, James Kit Hon; Heinonen, Markku; Matinlinna, Jukka

    2015-03-01

    The aim of the present study was to evaluate the effect of novel silane system coatings on zirconia and titanium implant surfaces and the attachment of the fungal pathogen Candida albicans. Titanium and zirconia specimens were silica-coated and silanized either with a commercial silane primer (RelyX Ceramic Primer™, 3M ESPE) or a novel silane system primer. The novel silane system primer was a blend of 1.0 vol% 3-acryloxypropyltrimethoxysilane and 0.3 vol% bis-1,2-(triethoxysilyl)ethane diluted in acidified ethanol-water solvent. The surface roughness (Ra ), the surface free energy and the chemical composition of substrate surfaces after treatments were evaluated. C. albcans biofilms were developed on silica-coated + silanized surfaces during 48 h of incubation time. Colony forming units (CFU) and real-time PCR (RT-PCR) quantified the cells on the material surfaces. Statistical analyses were carried out by 1-way ANOVA, Tukey post hoc and Games Howell post hoc test at 5% significance level (p). On zirconia and titanium surfaces, the Ra and the chemical composition of the specimens were equal (P silanization. CFU of C. albicans was significantly lower on zirconia coated with RelyX Ceramic Primer™, (P silanes (P = 0.002). RT-PCR revealed no differences between the mean quantities of C. albicans (P ≥ 0.067). Silica-coating and silanization had modified the titanium and zirconia surfaces significantly. Both the control and experimental silane primers might inhibit the biofilm formation of C. albicans. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Faria, Amanda N. [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Departamento de Bioquímica e Imunologia-Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil); Ramos, Ana P., E-mail: anapr@ffclrp.usp.br [Departamento de Química-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP (Brazil)

    2016-05-01

    Graphical abstract: - Highlights: • CaCO{sub 3} continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO{sub 3} particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO{sub 3} deposited as thin films for this propose is unknown. Here, we report the growth of CaCO{sub 3} continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca{sup 2+}, exposed to CO{sub 2} (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO{sub 3} film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ{sub s}) were accessed. The presence of HAp increased the wettability and γ{sub s} of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO{sub 3} thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  7. Calcium carbonate hybrid coating promotes the formation of biomimetic hydroxyapatite on titanium surfaces

    International Nuclear Information System (INIS)

    Cruz, Marcos Antônio E.; Ruiz, Gilia C.M.; Faria, Amanda N.; Zancanela, Daniela C.; Pereira, Lourivaldo S.; Ciancaglini, Pietro; Ramos, Ana P.

    2016-01-01

    Graphical abstract: - Highlights: • CaCO 3 continuous films were deposited on titanium discs using a biomimetic approach. • The coatings origin hydroxyapatite when immersed in simulated body fluid. • The wettability and the free energy of the surfaces were increased after the treatment. • The coated titanium discs are bioactive and non-toxic to osteoblasts. - Abstract: CaCO 3 particles dispersed in liquid media have proven to be good inductors of hydroxyapatite (HAp) growth. However, the use of CaCO 3 deposited as thin films for this propose is unknown. Here, we report the growth of CaCO 3 continuous films on Langmuir–Blodgett (LB) modified titanium surfaces and its use as HAp growth inductor. The Ti surfaces were modified with two, four, and six layers of dihexadecylphosphate (DHP)-LB films containing Ca 2+ , exposed to CO 2 (g) for 12 h. The modified surfaces were immersed in simulated body fluid (SBF) at 37 °C for 36 h and submitted to bioactivity studies. This procedure originates bioactive coatings composed by non-stoichiometric HAp as evidenced by Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS). The presence of the CaCO 3 film as pre-coating diminished the time necessary to growth continuous and homogeneous HAp films using a biomimetic approach. The surface properties of the films regarding their roughness, composition, charge, wettability, and surface free energy (γ s ) were accessed. The presence of HAp increased the wettability and γ s of the surfaces. The coatings are not toxic for osteoblasts as observed for cell viability assays obtained after 7 and 14 days of culture. Moreover, the CaCO 3 thin films promote the recovery of the osteoblasts viability more than the Ti surfaces themselves.

  8. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review.

    Science.gov (United States)

    Hassan, Bilal; Chatha, Shahzad Ali Shahid; Hussain, Abdullah Ijaz; Zia, Khalid Mahmood; Akhtar, Naseem

    2018-04-01

    Food is a vital product for the survival of human beings and with passage of time quality concerns of consumers are rising. Edible films and coatings are thin layers applied on food products to protect them and improve their quality. Films/coatings are prepared from naturally occurring renewable sources (polysaccharides, proteins, lipids and composites) which we can eat without disposing them. These films are environment friendly and contain antioxidants, anti-browning agents and colorants. Various methods (spraying, brushing, electro-spraying) are used to apply a coating on food material to protect them from microbial growth, prolonging their shelf life and improving other quality aspects like sensory attributes, appearance, originality and freshness of ingredients. In addition to edible films, some special additives like glycerol, sorbitol etc. is used to improve the efficiency of edible films and coatings. Chemistry and nature of these films and coatings vary in the vast range of hydrophilic and hydrophobic boundaries to cover the whole range of food products. In recent times, herbal coatings are widely used for the coating purposes e.g. Aloe Vera, citral and eugenol essential oils. However, some challenges presented are focusing the scientific attention for viable solution. Copyright © 2017. Published by Elsevier B.V.

  9. Impact of whey protein coating incorporated with Bifidobacterium and Lactobacillus on sliced ham properties.

    Science.gov (United States)

    Odila Pereira, Joana; Soares, José; J P Monteiro, Maria; Gomes, Ana; Pintado, Manuela

    2018-05-01

    Edible coatings/films with functional ingredients may be a solution to consumers' demands for high-quality food products and an extended shelf-life. The aim of this work was to evaluate the antimicrobial efficiency of edible coatings incorporated with probiotics on sliced ham preservation. Coatings was developed based on whey protein isolates with incorporation of Bifidobacterium animalis Bb-12® or Lactobacillus casei-01. The physicochemical analyses showed that coating decreased water and weight loss on the ham. Furthermore, color analysis showed that coated sliced ham, exhibited no color change, comparatively to uncoated slices. The edible coatings incorporating the probiotic strains inhibited detectable growth of Staphylococcus spp., Pseudomonas spp., Enterobacteriaceae and yeasts/molds, at least, for 45days of storage at 4°C. The sensory evaluation demonstrated that there was a preference for the sliced coated ham. Probiotic bacteria viable cell numbers were maintained at ca. 10 8 CFU/g throughout storage time, enabling the slice of ham to act as a suitable carrier for the beneficial bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface

    Directory of Open Access Journals (Sweden)

    Nie Yining

    2010-09-01

    Full Text Available Abstract Background Aluminum-made settings are widely used in healthcare, schools, public facilities and transit systems. Frequently-touched surfaces of those settings are likely to harbour bacteria and be a potential source of infection. One method to utilize the effectiveness of copper (Cu in eliminating pathogens for these surfaces would be to coat the aluminum (Al items with a Cu coating. However, such a combination of Cu and Al metals is susceptible to galvanic corrosion because of their different electrochemical potentials. Methods In this work, a new approach was proposed in which electrolytic plasma oxidation (EPO of Al was used to form an oxide surface layer followed by electroplating of Cu metal on the top of the oxide layer. The oxide was designed to function as a corrosion protective and biocompatible layer, and the Cu in the form of dots was utilized as an antibacterial material. The antibacterial property enhanced by superhydrophilicity of the Cu-dotted oxide coating was evaluated. Results A superhydrophilic surface was successfully prepared using electrolytic plasma oxidation of aluminum (Al followed by electroplating of copper (Cu in a Cu-dotted form. Both Cu plate and Cu-dotted oxide surfaces had excellent antimicrobial activities against E. coli ATCC 25922, methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300 and vancomycin-resistant Enterococcus faecium (VRE ATCC 51299. However, its Cu-dotted surface morphology allowed the Cu-dotted oxide surface to be more antibacterial than the smooth Cu plate surface. The enhanced antibacterial property was attributed to the superhydrophilic behaviour of the Cu-dotted oxide surface that allowed the bacteria to have a more effective killing contact with Cu due to spreading of the bacterial suspension media. Conclusion The superhydrophilic Cu-dotted oxide coating surface provided an effective method of controlling bacterial growth and survival on contact surfaces and thus reduces the

  11. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Chol-Ho [Sangji University, Wonju (Korea, Republic of)

    2016-02-15

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm.

  12. Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology

    International Nuclear Information System (INIS)

    Sim, Chol-Ho

    2016-01-01

    The powder core, conventionally fabricated from iron particles coated with insulator, showed large eddy current loss under high frequency, because of small specific resistance. To overcome the eddy current loss, the increase in the specific resistance of powder cores was needed. In this study, copper oxide coating onto electrically conductive iron particles was performed using a planetary ball mill to increase the specific resistance. Coating factors were optimized by the Response surface methodology. The independent variables were the CuO mass fraction, mill revolution number, coating time, ball size, ball mass and sample mass. The response variable was the specific resistance. The optimization of six factors by the fractional factorial design indicated that CuO mass fraction, mill revolution number, and coating time were the key factors. The levels of these three factors were selected by the three-factors full factorial design and steepest ascent method. The steepest ascent method was used to approach the optimum range for maximum specific resistance. The Box-Behnken design was finally used to analyze the response surfaces of the screened factors for further optimization. The results of the Box-Behnken design showed that the CuO mass fraction and mill revolution number were the main factors affecting the efficiency of coating process. As the CuO mass fraction increased, the specific resistance increased. In contrast, the specific resistance increased with decreasing mill revolution number. The process optimization results revealed a high agreement between the experimental and the predicted data (Adj-R2=0.944). The optimized CuO mass fraction, mill revolution number, and coating time were 0.4, 200 rpm, and 15 min, respectively. The measured value of the specific resistance of the coated pellet under the optimized conditions of the maximum specific resistance was 530 kΩ·cm

  13. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    Science.gov (United States)

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  14. Expression and Purification of Coat Protein of Citrus Tristeza Virus ...

    African Journals Online (AJOL)

    transformed to BL21™ star (DE3) of E. coli expression competent cell were also compared using discontinues SDS-PAGE. Large scale recombinant protein production and purification. Large scale recombinant protein production was conducted using four one liter flask containing 250 ml 2xYT broth media consists of 100 ...

  15. Drag resistance of ship hulls: Effects of surface roughness of newly applied fouling control coatings, coating water absorption, and welding seams

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, Stefan Møller; Andrés, Eduardo

    2018-01-01

    to the effects of coating water absorption on skin friction. Furthermore, to investigate the effects of welding seam height and density (number of welding seams per five meters of ship side) on drag resistance, a new flexible rotor was designed and used for experimentation. It was found, under the conditions...... selected, that a so-called fouling release (FR) coating caused approximately 5.6 % less skin friction (torque) over time than traditional biocide-based antifouling (AF) coatings at a tangential speed of 12 knots. Furthermore, results of immersion experiments and supporting “standard” water absorption...... experiments showed that water absorption of the FR coating did not result in any significant impacts on skin friction. On the other hand, water absorption was found to actually lower the skin friction of AF coatings. This may be attributed to a smoothening of the coating surface. The effects of welding seam...

  16. Activation of Osteoblastic Function on Titanium Surface with Titanium-Doped Hydroxyapatite Nanoparticle Coating: An In Vitro Study.

    Science.gov (United States)

    Nakazawa, Masahiro; Yamada, Masahiro; Wakamura, Masato; Egusa, Hiroshi; Sakurai, Kaoru

    Titanium-doped hydroxyapatite (TiHA) nanoparticles contain titanium atoms in the hydroxyapatite lattice, which can physicochemically functionalize the titanium surface without modification of the surface topography. This study aimed to evaluate the physicochemical properties of machined or microroughened titanium surfaces coated with TiHA nanoparticles and the functions of osteoblasts cultured on them. Titanium disks with commercially available surface topography, such as machined or sandblasted, large-grit, and acid-etched (SLA) surfaces, were coated with TiHA. The disks with original or TiHA-coated surfaces were evaluated in topography, wettability, and chemical composition. Osteoblastic cells from rat femurs were cultured on the disks and evaluated in proliferation and differentiation. TiHA coating changed from hydrophobicity to hydrophilicity on both machined and SLA surfaces. Calcium and phosphate atoms were detected all over the surface with TiHA coating regardless of the surface topography. However, the considerable change in the inherent surface topographies was not observed on both types of surfaces after TiHA coating. Osteoblastic proliferative activity at day 4 was increased by TiHA coating on both types of surfaces. TiHA coating did not enhance expressions of bone matrix-related genes such as osteocalcin, osteopontin, bone sialoprotein, alkaline phosphatase, and collagen I. However, depositions of collagen, osteocalcin, and calcium in the culture at days 7 and 20 were increased on both types of surface topographies with TiHA coating. TiHA coating enhanced extracellular matrix formation on smooth and microroughened titanium surfaces by increasing osteoblastic proliferative activity without the deterioration of differentiation through hydrophilic and chemical functionalization.

  17. Determination of elastic mechanical characteristics of surface coatings from analysis of signals obtained by impulse excitation

    Science.gov (United States)

    Nyaguly, E.; Craştiu, I.; Deac, S.; Gozman-Pop, C.; Drăgănescu, G.; Bereteu, L.

    2018-01-01

    Most of the surface coatings are based on the synthetic polymers, which are substances composed from very large molecules that form tough, flexible, adhesive films when applied to surfaces. The other components of surface coverings materials are pigments that provide colour, opacity, gloss and other properties. Surface coatings are two-phase composite materials: constitute a polymer matrix on the one side, and on the other side of the pigments and additives dispersed in the matrix. Their role is not only aesthetically but also to ensure anticorrosive protection or even improve some mechanical properties of coated surfaces. In this paper it will follow, starting from the mechanical properties of the substrate, the metallic sheet in general, to determine the new properties of the assembly of substrate and the two coating layers, also the determination of mechanical properties of the layers. From the analysis of vibroacoustic signals obtained by the impulse excitation of the sample, one can determine the elasticity modulus. These results come to validate the results based on finite element analysis (FEA) of the same samples.

  18. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment

    Science.gov (United States)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-06-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  19. Tuning Surface Chemistry of Polyetheretherketone by Gold Coating and Plasma Treatment.

    Science.gov (United States)

    Novotná, Zdeňka; Rimpelová, Silvie; Juřík, Petr; Veselý, Martin; Kolská, Zdeňka; Hubáček, Tomáš; Borovec, Jakub; Švorčík, Václav

    2017-12-01

    Polyetheretherketone (PEEK) has good chemical and biomechanical properties that are excellent for biomedical applications. However, PEEK exhibits hydrophobic and other surface characteristics which cause limited cell adhesion. We have investigated the potential of Ar plasma treatment for the formation of a nanostructured PEEK surface in order to enhance cell adhesion. The specific aim of this study was to reveal the effect of the interface of plasma-treated and gold-coated PEEK matrices on adhesion and spreading of mouse embryonic fibroblasts. The surface characteristics (polarity, surface chemistry, and structure) before and after treatment were evaluated by various experimental techniques (gravimetry, goniometry, X-ray photoelectron spectroscopy (XPS), and electrokinetic analysis). Further, atomic force microscopy (AFM) was employed to examine PEEK surface morphology and roughness. The biological response of cells towards nanostructured PEEK was evaluated in terms of cell adhesion, spreading, and proliferation. Detailed cell morphology was evaluated by scanning electron microscopy (SEM). Compared to plasma treatment, gold coating improved PEEK wettability. The XPS method showed a decrease in the carbon concentration with increasing time of plasma treatment. Cell adhesion determined on the interface between plasma-treated and gold-coated PEEK matrices was directly proportional to the thickness of a gold layer on a sample. Our results suggest that plasma treatment in a combination with gold coating could be used in biomedical applications requiring enhanced cell adhesion.

  20. Multifunctional Coating for Crew Cabin Surfaces and Fabrics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's crewed spacecrafts require routine cleaning of particulate, moisture, organic, and salt contaminants on the crew cabin surfaces and fabrics. Self-cleaning...

  1. Establishment of Epithelial Attachment on Titanium Surface Coated with Platelet Activating Peptide.

    Directory of Open Access Journals (Sweden)

    Shiho Sugawara

    Full Text Available The aim of this study was to produce epithelial attachment on a typical implant abutment surface of smooth titanium. A challenging complication that hinders the success of dental implants is peri-implantitis. A common cause of peri-implantitis may results from the lack of epithelial sealing at the peri-implant collar. Histologically, epithelial sealing is recognized as the attachment of the basement membrane (BM. BM-attachment is promoted by activated platelet aggregates at surgical wound sites. On the other hand, platelets did not aggregate on smooth titanium, the surface typical of the implant abutment. We then hypothesized that epithelial BM-attachment was produced when titanium surface was modified to allow platelet aggregation. Titanium surfaces were coated with a protease activated receptor 4-activating peptide (PAR4-AP. PAR4-AP coating yielded rapid aggregation of platelets on the titanium surface. Platelet aggregates released robust amount of epithelial chemoattractants (IGF-I, TGF-β and growth factors (EGF, VEGF on the titanium surface. Human gingival epithelial cells, when they were co-cultured on the platelet aggregates, successfully attached to the PAR4-AP coated titanium surface with spread laminin5 positive BM and consecutive staining of the epithelial tight junction component ZO1, indicating the formation of complete epithelial sheet. These in-vitro results indicate the establishment of epithelial BM-attachment to the titanium surface.

  2. In vitro study of Streptococcus mutans adhesion on composite resin coated with three surface sealants

    Directory of Open Access Journals (Sweden)

    Da Hye Kim

    2017-02-01

    Full Text Available Objectives Although the coating of surface sealants to dental composite resin may potentially reduce bacterial adhesion, there seems to be little information regarding this issue. This preliminary in vitro study investigated the adhesion of Streptococcus mutans (S. mutans on the dental composite resins coated with three commercial surface sealants. Materials and Methods Composite resin (Filtek Z250 discs (8 mm in diameter, 1 mm in thickness were fabricated in a mold covered with a Mylar strip (control. In group PoGo, the surfaces were polished with PoGo. In groups PS, OG, and FP, the surfaces polished with PoGo were coated with the corresponding surface sealants (PermaSeal, PS; OptiGuard, OG; Fortify Plus, FP. The surfaces of the materials and S. mutans cells were characterized by various methods. S. mutans adhesion to the surfaces was quantitatively evaluated using flow cytometry (n = 9. Results Group OG achieved the lowest water contact angle among all groups tested (p 0.05 or significantly lower (group OG, p < 0.001 bacterial adhesion when compared with the control group. Conclusions The application of the surface sealants significantly reduced S. mutans adhesion to the composite resin polished with the PoGo.

  3. Control of surface wettability for inkjet printing by combining hydrophobic coating and plasma treatment

    International Nuclear Information System (INIS)

    Park, Heung Yeol; Kang, Byung Ju; Lee, Dohyung; Oh, Je Hoon

    2013-01-01

    We have obtained a wide range of surface wettabilities of PI substrate for inkjet printing by combining hydrophobic solution coating and O 2 or Ar plasma treatments. Experiments were conducted to investigate the variation in inkjet-printed dot diameters with different surface treatments. The change in chemical and physical characteristics of treated surfaces was evaluated using static contact angle measurements, field emission scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Only hydrophobic coated surface produces the smallest dot diameter and the largest contact angle. Dot diameter increases and contact angle decreases as the plasma treatment time increases. Since the removal of hydrophobic layer from the surface occurs due to the etching effect of O 2 and Ar plasma during the plasma treatments, F/C ratio decreases with increasing the plasma treatment time. Surface roughness variations are also observed after plasma treatments. The ranges of printed dot sizes for O 2 and Ar plasma treatments are 38 μm–70 μm and 38 μm–92 μm, respectively. Ar plasma treatment shows a wider range of surface wettability because of higher removal rate of the hydrophobic layer. This combination of hydrophobic coating and plasma treatment can offer an effective way to obtain a wide range of surface wettabilities for high quality inkjet-printed patterns. - Highlights: • Hydrophobic coating and plasma treatments were used to control surface wettability. • Inkjet-printed dot diameters increase with O 2 or Ar plasma treatment time. • Contact angles of Ag ink agree well with the variation tendency of dot diameters. • The removal of hydrophobic layer occurs during the plasma treatments. • Ar plasma treatment shows a wider range of surface wettability than O 2 plasma

  4. Enhanced water repellency of surfaces coated with multiscale carbon structures

    Science.gov (United States)

    Marchalot, Julien; Ramos, Stella. M. M.; Pirat, Christophe; Journet, Catherine

    2018-01-01

    Low cost and well characterized superhydrophobic surfaces are frequently required for industrial applications. Materials are commonly structured at the micro or nano scale. Surfaces decorated with nanotube derivatives synthesized by plasma enhanced chemical vapor deposition (PECVD) are of particular interest, since suitable modifications in the growth parameters can lead to numerous designs. In this article, we present surfaces that are selected for their specific wetting features with patterns ranging from dense forests to jungles with concave (re-entrant) surface such as flake-like multiscale roughness. Once these surfaces are functionalized adequately, their wetting properties are investigated. Their ability to sustain a superhydrophobic state for sessile water drops is examined. Finally, we propose a design to achieve a robust so-called ;Fakir; state, even for micrometer-sized drops, whereas with classic nanotubes forests it is not achievable. Thus, the drop remains on the apex of the protrusions with a high contact angle and a low contact angle hysteresis, while the surface features demonstrate good mechanical resistance against capillary forces.

  5. Development of bioactive coatings based on γ-irradiated proteins to preserve strawberries

    Science.gov (United States)

    Vu, K. D.; Hollingsworth, R. G.; Salmieri, S.; Takala, P. N.; Lacroix, M.

    2012-08-01

    Gamma irradiation was applied for creating cross-linked proteins to enhance the physicochemical properties of edible films made of calcium caseinate, whey protein isolate and glycerol. The characteristics of γ irradiated cross-linked proteins were analyzed by Fourier Transform Infrared spectroscopy. A second derivative spectra exhibited changes in band intensities that were correlated to an increase of β-sheet structure and a decrease of α-helix and unordered fractions of γ irradiated-cross-linked proteins as compared to the control without irradiation. Furthermore, on addition of methylcellulose to the irradiated protein matrix it was found that it has potential in enhancing the puncture strength and has no detrimental effect on water vapor permeability of protein based films. Finally, these film formulations were used as bioactive edible coatings containing natural antimicrobial agents (limonene and peppermint) to preserve the shelf life of fresh strawberries during storage. The bioactive coatings containing peppermint was found to be more efficient as preserving coatings than the formulations containing limonene. Irradiated proteins/methylcellulose/peppermint formulation had only 40% of decay at day 8 while it was 65% for the control.

  6. Surface characterization of insulin-coated Ti6Al4V medical implants conditioned in cell culture medium: An XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Shchukarev, Andrey, E-mail: andrey.shchukarev@umu.se [Department of Chemistry, Umeå University, Umeå SE-90187 (Sweden); Malekzadeh, Behnosh Öhrnell [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Ransjö, Maria [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Tengvall, Pentti [Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden); Westerlund, Anna [Department of Orthodontics, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-40530 (Sweden)

    2017-04-15

    Highlights: • In the absence of FBS, chemically immobilized insulin layer remains intact; • The immobilized insulin expose hydrophobic domains outward the implant; • In the presence of FBS, a partial replacement of insulin occurs; • The immobilized insulin stabilizes the secondary structure of adsorbed proteins. - Abstract: Surface characterization of insulin-coated Ti6Al4V medical implants, after incubation in α-minimum essential medium (α-MEM), was done by X-ray photoelectron spectroscopy (XPS), in order to analyze the insulin behavior at the implant – α-MEM interface. In the absence of serum proteins in cell culture medium, the coated insulin layer remained intact, but experienced a time-dependent structural transformation exposing hydrophobic parts of the protein toward the solution. The presence of fetal bovine serum (FBS) in the medium resulted in partial substitution of insulin by serum proteins. In spite of some insulin release, the remaining coated layer demonstrated a direct surface effect by stabilizing the structure of protein competitors, and by supporting the accumulation of calcium and phosphate ions at the interface. A structurally stable protein layer with incorporated calcium and phosphate ions at the implant–tissue interface could be an important prerequisite for enhanced bone formation.

  7. Surface characterization of insulin-coated Ti6Al4V medical implants conditioned in cell culture medium: An XPS study

    International Nuclear Information System (INIS)

    Shchukarev, Andrey; Malekzadeh, Behnosh Öhrnell; Ransjö, Maria; Tengvall, Pentti; Westerlund, Anna

    2017-01-01

    Highlights: • In the absence of FBS, chemically immobilized insulin layer remains intact; • The immobilized insulin expose hydrophobic domains outward the implant; • In the presence of FBS, a partial replacement of insulin occurs; • The immobilized insulin stabilizes the secondary structure of adsorbed proteins. - Abstract: Surface characterization of insulin-coated Ti6Al4V medical implants, after incubation in α-minimum essential medium (α-MEM), was done by X-ray photoelectron spectroscopy (XPS), in order to analyze the insulin behavior at the implant – α-MEM interface. In the absence of serum proteins in cell culture medium, the coated insulin layer remained intact, but experienced a time-dependent structural transformation exposing hydrophobic parts of the protein toward the solution. The presence of fetal bovine serum (FBS) in the medium resulted in partial substitution of insulin by serum proteins. In spite of some insulin release, the remaining coated layer demonstrated a direct surface effect by stabilizing the structure of protein competitors, and by supporting the accumulation of calcium and phosphate ions at the interface. A structurally stable protein layer with incorporated calcium and phosphate ions at the implant–tissue interface could be an important prerequisite for enhanced bone formation.

  8. Influence of surface morphology and microstructure on performance of CVD tungsten coating under fusion transient thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Youyun, E-mail: lianyy@swip.ac.cn [Southwestern Institute of Physics, Chengdu (China); Liu, Xiang; Wang, Jianbao; Feng, Fan [Southwestern Institute of Physics, Chengdu (China); Lv, Yanwei; Song, Jiupeng [China National R& D Center for Tungsten Technology, Xiamen Tungsten Co. Ltd, 361026 Xiamen (China); Chen, Jiming [Southwestern Institute of Physics, Chengdu (China)

    2016-12-30

    Highlights: • Thick CVD-W coatingswere deposited at a rapid growth rate. • The polished CVD-W coatings have highly textured structure and exhibited a very strong preferred orientation. • The polished CVD tungsten coatings show superior thermal shock resistance as compared with that of the as-deposited coatings. • The crack formation of the polished CVD-W was almost suppressed at an elevated temperature. - Abstract: Thick tungsten coatings have been deposited by chemical vapor deposition (CVD) at a rapid growth rate. A series of tungsten coatings with different thickness and surface morphology were prepared. The surface morphology, microstructure and preferred orientation of the CVD tungsten coatings were investigated. Thermal shock analyses were performed by using an electron beam facility to study the influence of the surface morphology and the microstructure on the thermal shock resistance of the CVD tungsten coatings. Repetitive (100 pulses) ELMs-like thermal shock loads were applied at various temperatures between room temperature and 600 °C with pulse duration of 1 ms and an absorbed power density of up to 1 GW/m{sup 2}. The results of the tests demonstrated that the specific surface morphology and columnar crystal structure of the CVD tungsten have significant influence on the surface cracking threshold and crack propagation of the materials. The CVD tungsten coatings with a polished surface show superior thermal shock resistance as compared with that of the as-deposited coatings with a rough surface.

  9. Potential Release of Manufactured Nano Objects During Sanding of Nano-Coated Wood Surfaces.

    Science.gov (United States)

    Fransman, Wouter; Bekker, Cindy; Tromp, Peter; Duis, Willem B

    2016-08-01

    Increasing production and applications of manufactured nano objects (MNOs) have become a source for human exposure and therefore raise concerns and questions about the possible health effects. In this study, the potential release of nano objects, their agglomerates, and aggregates (NOAA) as a result of sanding of hardwood treated with MNOs-containing coating was examined. Two types of MNO-containing coating were compared with untreated hardwood that allowed the evaluation of the influence of the chemical composition on the release of particles. Furthermore, the rotation speed of the sander and the grit size of the sanding paper were varied in order to assess their influence on the release of particles.Measurements were conducted in a gas-tight chamber with a volume of 19.5 m(3) in which ventilation was minimized during experiments. Particle size distributions were assessed by scanning mobility particle sizer , aerodynamic particle sizer, and electrical low pressure impactor. Furthermore, aerosol number concentrations (Nanotracer), active surface area (LQ1), and fractionated mass (Cascade Impactor) were measured before, during, and after sanding. Scanning electron microscope/energy dispersive X-ray (SEM/EDX) analysis was performed to adequately characterize the morphology, size, and chemical composition of released particles.SEM/EDX analysis indicated that sanding surfaces treated with MNO-containing coating did not release the designated MNO as free primary particles. In both coatings, clusters of MNO were perceived embedded in and attached to micro-sized wood and/or coating particles created by sanding the coated surface. Real-time measurements indicated a lower release of micro-sized particles from sanding of surfaces treated with Coating I than from sanding untreated surfaces or surfaces treated with Coating II. A substantial increase in nanosized and a slight increase in micro-sized particles was perceived as the rotation speed of the sander increased. However

  10. Strategies for specifically directing metal functionalization of protein nanotubes: constructing protein coated silver nanowires.

    Science.gov (United States)

    Carreño-Fuentes, Liliana; Ascencio, Jorge A; Medina, Ariosto; Aguila, Sergio; Palomares, Laura A; Ramírez, Octavio T

    2013-06-14

    Biological molecules that self-assemble in the nanoscale range are useful multifunctional materials. Rotavirus VP6 protein self-assembles into tubular structures in the absence of other rotavirus proteins. Here, we present strategies for selectively directing metal functionalization to the lumen of VP6 nanotubes. The specific in situ metal reduction in the inner surface of nanotube walls was achieved by the simple modification of a method previously reported to functionalize the nanotube outer surface. Silver nanorods and nanowires as long as 1.5 μm were formed inside the nanotubes by coalescence of nanoparticles. Such one-dimensional structures were longer than others previously obtained using bioscaffolds. The interactions between silver ions and the nanotube were simulated to understand the conditions that allowed nanowire formation. Molecular docking showed that a naturally occurring arrangement of aspartate residues enabled the stabilization of silver ions on the internal surface of the VP6 nanotubes. This is the first time that such a spatial arrangement has been proposed for the nucleation of silver nanoparticles, opening the possibility of using such an array to direct functionalization of other biomolecules. These results demonstrate the natural capabilities of VP6 nanotubes to function as a versatile biotemplate for nanomaterials.

  11. Improvement of Surface Properties of Inconel718 by HVOF Coating with WC-Metal Powder and by Laser Heat Treatment of the Coating

    OpenAIRE

    Chun, Hui Gon; Cho, Tong Yul; Yoon, Jae Hong; Lee, Gun Hwan

    2015-01-01

    High-velocity oxygen-fuel (HVOF) thermal spray coating with WC-metal powder was carried out by using optimal coating process on an Inconel718 surface for improvement of the surface properties, friction, wear, and corrosion resistance. Binder metals such as Cr and Ni were completely melted and WC was decomposed partially to W2C and graphite during the high temperature (up to 3500°C) thermal spraying. The melted metals were bonded with WC and other carbides and were formed as WC-metal coating. ...

  12. Preparation of homogeneous titania coatings on the surface of MWNTs

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Zoltan; Reti, Balazs; Kukovecz, Akos; Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bela ter 1, Szeged 6720 (Hungary); Dieker, Christel; Alexander, Duncan T.L.; Forro, Laszlo [Laboratoire de Physique de la Matiere Complexe, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne (Switzerland); Seo, Jin Won [Department of Metallurgy and Materials Engineering, Katholieke Universitet Leuven, Kasteelpark Arenberg 44-bus, 2450 Heverlee (Belgium)

    2010-12-15

    The aim of this work was to develop a controllable route to produce a stable and inorganic layer on the surface of multi-wall carbon nanotubes. Precursor compounds such as TiBr{sub 4}, TiCl{sub 4}, Ti(OiPr){sub 4}, and Ti(OEt){sub 4} were used to cover the surface of carbon nanotubes (CNTs) under either solvent free or solution conditions. Various titania precursors were compared in the formation of homogeneous layers on the surface of CNTs. As-prepared titania coverages were characterized by transmission electron microscopy (TEM), high resolution TEM, scanning electron microscopy, electron energy loss spectroscopy, and X-ray diffraction techniques. Results revealed that homogeneous coverage can be achieved in a controllable way. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Functional improvement of antibody fragments using a novel phage coat protein III fusion system

    DEFF Research Database (Denmark)

    Jensen, Kim Bak; Larsen, Martin; Pedersen, Jesper Søndergaard

    2002-01-01

    Functional expressions of proteins often depend on the presence of host specific factors. Frequently recombinant expression strategies of proteins in foreign hosts, such as bacteria, have been associated with poor yields or significant loss of functionality. Improvements in the performance...... of heterologous expression systems will benefit present-day quests in structural and functional genomics where high amounts of active protein are required. One example, which has been the subject of considerable interest, is recombinant antibodies or fragments thereof as expressions of these in bacteria......(s) of the filamentous phage coat protein III. Furthermore, it will be shown that the observed effect is neither due to improved stability nor increased avidity....

  14. pH and redox responsive polymer for antifouling surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Seok [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); In, Insik, E-mail: in1@ut.ac.kr [Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of)

    2014-09-15

    Graphical abstract: Dual responsive surface with highly fouling resistance with the formation of a pH-dependent benzoic imine and redox-sensitive disulfide bond has been developed using a catechol/benzoic acid conjugated polymer and disulfide containing amine end-capped Pluronic. - Highlights: • Stimuli-responsive antifouling surface was prepared by layer-by-layer method. • The surface contact angle showed responsive behavior via pH and redox environments. • Simply coated polymer completely prevented cell adhesion onto surfaces. - Abstract: A dual environmentally responsive polymer with a highly fouling-resistant surface has been developed using poly[(hydroxyethyl methacrylate-g-benzoic acid)-co-(dimethylaminoethyl methacrylate-g-2-chloro-3′, 4′-dihydroxyacetophenone)] [poly[(HEMA-BA)-co-(DMAEMA-CCDP)], P1] as a coating material. The redox-sensitive disulfide containing amine end-capped Pluronic [(Plu-S-S-NH{sub 2}), P2] was then introduced over the P1 surface via the formation of a pH-dependent benzoic imine bond, where the polyethylene glycol (PEG) acts as an antifouling agent. The successful adhesion of P1 and the deposition of P2 onto the P1-coated substrate were ascertained with X-ray photoelectron spectroscopy (XPS). In vitro cell adhesion followed by scanning electron microscopy (SEM) indicated an excellent antifouling nature of the P2 layer. Consequently, the reattachment of Hela cells was strongly observed when P2 layered on P1-coated substrates (P1–P2) was pretreated at lower pH and high redox conditions. The P1–P2 bilayer-coated substrate has exhibited a great advantage in its effective antifouling behaviors with well-tuned cell attachment and detachment.

  15. PROCESSES PROCEEDING ON CONCRETE COATING SURFACES IN CASE OF THEIR CHEMICAL PROTECTION AGAINST WINTER SLIPPERINESS

    Directory of Open Access Journals (Sweden)

    M. K. Pshembaev

    2016-01-01

    Full Text Available Concrete coatings of road traffic highways along with operational loadings caused by flow of traffic are subjected to weather and climate impacts. These are the following impacts: changes in temperature and air humidity, solar radiation,surface wind speed which is participating in formation of active heat-and-mass transfer in a surface layer of the concrete coating. One of the most complicated and important periods in the road traffic highway operation is so called transitional nature period (from Summer to Autumn and from Winter to Spring. These periods are accompanied by intensive rain and snow fall and possible formation of ice loading on the surface of cement and concrete coatings. These impacts significantly deteriorate friction properties of road pavement (friction factor φ is decreased up to 0.4 and less that can be a prerequisite to creation of various accident situations due to sharp increase in braking distance. For example, while having dry pavement the friction factor φ is equal to 0.80–0.85, and during icy condition of the road the factor φ constitutes 0.08–0.15 that consequently entails an increase in braking distance from 7.5 up to 20.0 m and more. It is quite possible that ice layer appears on the surface of concrete coatings when road traffic highways are used in winter season. Various methods are applicable to remove ice from the surface they can include also ice-melting chemicals and sodium chloride NaCl in particular. The chemical decreases freezing temperature of the formed brine and causes ice melting at negative temperature. Processes of NaCl dissolution and ice melting have an endothermic character, in other words these processes are accompanied by heat ingress and due to it temperature is sharply decreasing in the surface layer of the concrete coating which is under the melting ice and in this case phenomenon of thermal shock is observed.

  16. Coat protein-mediated resistance against an Indian isolate of the ...

    Indian Academy of Sciences (India)

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were ...

  17. 75 FR 29431 - Coat Protein of Plum Pox Virus; Exemption from the Requirement of a Tolerance

    Science.gov (United States)

    2010-05-26

    ... in these food commodities by the plant-incorporated protectant, coat protein gene of plum pox virus... from biotechnology (Ref. 2). Therefore, these data demonstrated that no food allergenicity, toxicity... requests. When considering registrations for plant-incorporated protectants to be used in food commodities...

  18. The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria

    NARCIS (Netherlands)

    Bosma, M.; Minnaard, R.; Sparks, L.M.; Schaart, G.; Losen, M.; Baets, de M.H.; Duimel, H.; Kersten, A.H.; Bickel, P.E.; Schrauwen, P.; Hesselink, M.K.C.

    2012-01-01

    Perilipin 5 (PLIN5/OXPAT) is a lipid droplet (LD) coat protein mainly present in tissues with a high fat-oxidative capacity, suggesting a role for PLIN5 in facilitating fatty acid oxidation. Here, we investigated the role of PLIN5 in fat oxidation in skeletal muscle. In human skeletal muscle, we

  19. Polyclonal Antibodies to a Recombinant Coat Protein of Potato Virus A

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Velemínský, Jiří

    2002-01-01

    Roč. 46, - (2002), s. 147-151 ISSN 0001-723X R&D Projects: GA ČR GA310/00/0381 Institutional research plan: CEZ:AV0Z5038910 Keywords : Potato virus A * recombinant coat protein * Escherichia coli Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.660, year: 2002

  20. High genetic diversity in the coat protein and 3'untranslated regions ...

    Indian Academy of Sciences (India)

    Six distinct subgroups were derived based on their symptomatology and host range from the sixty isolates collected. The serological variability between the virus isolates was analysed by ELISA and Western blotting. The 3′ terminal region consisting of the coat protein (CP) coding sequence and 3′ untranslated region ...

  1. Generation of PVY coat protein siRNAs in transgenic potatoes resistant to PVY.

    Science.gov (United States)

    Transgenic potatoes expressing the potato virus Y coat protein (PVY-CP) inverted hairpin RNA (ihRNA) construct driven by the Solanum bulbocastanum ubiquitin 409s promoter exhibited resistance to PVY in glass house studies using PVYNTN and PVYO as inocula and in field studies using naturally occurrin...

  2. Production of Polyclonal Antibodies to a Recombinant Coat Protein of Potato mop-top virus

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Rosecká, Pavla; Dědič, P.; Filigarová, Marie

    2003-01-01

    Roč. 151, č. 4 (2003), s. 195-200 ISSN 0931-1785 R&D Projects: GA ČR GA522/01/1121 Institutional research plan: CEZ:AV0Z5038910 Keywords : potato mop-top virus * recombinant coat protein * Escherichia Coli Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.557, year: 2003

  3. Nucleotide sequences of coat protein coding regions of six potato mop-top virus isolates

    Czech Academy of Sciences Publication Activity Database

    Čeřovská, Noemi; Moravec, Tomáš; Rosecká, Pavla; Filigarová, Marie; Pečenková, Tamara

    2003-01-01

    Roč. 47, č. 1 (2003), s. 37-40 ISSN 0001-723X R&D Projects: GA ČR GA522/01/1121 Institutional research plan: CEZ:AV0Z5038910 Keywords : Potato mop-top virus * virus isolates * coat protein Subject RIV: EE - Microbiology, Virology Impact factor: 0.683, year: 2003

  4. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi Golru, S., E-mail: samanesharifi@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Attar, M.M., E-mail: attar@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Ramezanzadeh, B. [Department of Surface Coating and Corrosion, Institute for Color Science and Technology, No. 59,Vafamanesh St, Hosainabad Sq, Lavizan, Tehran (Iran, Islamic Republic of)

    2015-08-01

    Highlights: • Aluminium alloy 1050 was treated by zirconium-based (Zr) conversion coating. • The surface morphology and surface free energy of the samples were obtained. • The adhesion properties of the epoxy coating was studied on the treated samples. • The corrosion resistance of the epoxy coating was enhanced on treated samples. - Abstract: The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly.

  5. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    International Nuclear Information System (INIS)

    Sharifi Golru, S.; Attar, M.M.; Ramezanzadeh, B.

    2015-01-01

    Highlights: • Aluminium alloy 1050 was treated by zirconium-based (Zr) conversion coating. • The surface morphology and surface free energy of the samples were obtained. • The adhesion properties of the epoxy coating was studied on the treated samples. • The corrosion resistance of the epoxy coating was enhanced on treated samples. - Abstract: The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly

  6. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    Science.gov (United States)

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  7. Cytotoxicity of organic surface coating agents used for nanoparticles synthesis and stability.

    Science.gov (United States)

    Zhang, Ying; Newton, Brandon; Lewis, Eybriunna; Fu, Peter P; Kafoury, Ramzi; Ray, Paresh C; Yu, Hongtao

    2015-06-01

    Impact on health by nanomaterials has become a public concern with the great advances of nanomaterials for various applications. Surface coating agents are an integral part of nanoparticles, but not enough attention has been paid during toxicity tests of nanoparticles. As a result, there are inconsistent toxicity results for certain nanomaterials. In this study, we explored the cytotoxicity of eleven commonly used surface coating agents in two cell lines, human epidermal keratinocyte (HaCaT) and lung fibroblast (CRL-1490) cells, at surface coating agent concentrations of 3, 10, 30, and 100 μM. Two exposure time points, 2 h and 24 h, were employed for the study. Six of the eleven surface coating agents are cytotoxic, especially those surfactants with long aliphatic chains, both cationic (cetyltrimethylammonium bromide, oleylamine, tetraoctylammonium bromide, and hexadecylamine) and anionic (sodium dodecylsulfate). In addition, exposure time and the use of different cell lines also affect the cytotoxicity results. Therefore, factors such as cell lines used and exposure times must be considered when conducting toxicity tests or comparing cytotoxicity results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Wear rate and surface coating optimization of coconut coir-based ...

    Indian Academy of Sciences (India)

    The use of fuzzy logic for modeling surface parameters of coconut coir-based composite is the focus of this research paper. Natural fiber–polymer composite has been developed by combining coconut coir as a stimulator and polyester as a fixative. This sturdy material is resistant to scratches in the coating process on the ...

  9. Interaction of human mesenchymal stem cells with osteopontin coated hydroxyapatite surfaces

    DEFF Research Database (Denmark)

    Jensen, Thomas; Dolatshahi-Pirouz, Alireza; Foss, Morten

    2010-01-01

    In vitro studies of the initial attachment, spreading and motility of human bone mesenchymal stem cells have been carried out on bovine osteopontin (OPN) coated hydroxyapatite (HA) and gold (Au) model surfaces. The adsorption of OPN extracted from bovine milk was monitored by the quartz crystal...

  10. Improved performance of TiC-coated graphite limiters by surface texturing

    International Nuclear Information System (INIS)

    Whitley, J.B.; Mattox, D.M.; Trester, P.W.; Emerson, L.C.

    1983-01-01

    TicC-coated graphite limiters are currently in wide use as tokamak limiters. These limiters usually suffer a groove type of damage caused by plasma disruptions. A surface texturing treatment is described that reduces the occurrence of this type of damage

  11. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    DEFF Research Database (Denmark)

    Yu, X; Zhang, Y.; Pan, S.S.

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensi...

  12. Surface characterization and effectiveness evaluation of anti-graffiti coatings on highly porous stone materials

    Science.gov (United States)

    Lettieri, Mariateresa; Masieri, Maurizio

    2014-01-01

    In this study, two commercial sacrificial anti-graffiti systems, provided as water emulsion, were applied on a highly porous stone. The behavior of the anti-graffiti treatments was investigated by means of differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy in attenuated total reflectance mode (ATR-FTIR), colorimetric tests, and water static contact angle measurements. The presence of a protective coating enhanced the removal of paint sprayed on the stone. However, penetration of the staining agent below the surface, due to the high porosity of the substrate, caused difficulties in eliminating the paint. In fact, repeated cleaning procedures, involving hot water, mechanical action, and chemical removers, did not allow a complete removal of the paint. The examined systems behaved against graffiti in different ways. No affinity between the wax-based product and the paint was observed; nevertheless, this behavior did not result in good anti-graffiti performances. On the contrary, the penetration of the paint into the fluorine-based coating yielded a good anti-graffiti effectiveness, since the stain was easily eliminated from the surfaces. The anti-graffiti coatings survived in limited areas after the cleaning processes, although the studied compounds are suggested as sacrificial products. Such behavior may affect the maintenance activities, when the surface is no longer protected and the coating need to be renewed, since compatibility problems, as well as harmful accumulation, could occur because of further treatments on these surfaces.

  13. Visualization of the distribution of surface-active block copolymers in PDMS-based coatings

    DEFF Research Database (Denmark)

    Noguer, A. Camós; Latipov, R.; Madsen, F. B.

    2018-01-01

    and added to a PDMS coating for visualization purposes. The surface-activity and biofouling resistance of the synthesized copolymer was confirmed by water contact angle measurements and seawater immersion experiments. Confocal laser scanning microscopy (CLSM) images showed that the triblock copolymer...

  14. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface

    Science.gov (United States)

    Hu, Jianlin; Xu, Ke; Wu, Yao; Lan, Binhuan; Jiang, Xingliang; Shu, Lichun

    2014-10-01

    This study conducted experiments on freezing process of water droplets on glass slides covered with superhydrophobic coatings under the continuous water spray condition in the artificial climatic chamber which could simulate low temperature and high humidity environments. The freezing mechanism and freezing time of water droplets under the condition of continuous spray were observed by the microscope and were compared with those of the single static droplet. Then, differences of freezing process between continuously sprayed droplets and single static droplet were analyzed. Furthermore, the effects of static contact angle (CA), contact angle hysteresis (CAH) and roughness of the superhydrophobic coating surface on the freezing time of continuously sprayed droplets were explored. Results show that the freezing process of the continuously sprayed droplets on the superhydrophobic coating started with the homogeneous nucleation at gas-liquid interfaces. In addition, the temperature difference between the location near the solid-liquid interface and the location near the gas-liquid interface was the key factor that influenced the ice crystallization mechanism of water droplets. Moreover, with the larger CA, the smaller CAH and the greater roughness of the surface, droplets were more likely to roll down the surface and the freezing duration on the surface was delayed. Based on the findings, continuous water spray is suggested in the anti-icing superhydrophobic coatings research.

  15. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  16. Metal-coated magnetic nanoparticles for surface enhanced Raman ...

    Indian Academy of Sciences (India)

    magnetic properties of these nanoparticles combined with SERS provide a wide range of applications. Keywords. Surface-enhanced Raman scattering; magnetic nanoparticles; core-shell nanostructure; bio-diagnosis. 1. Introduction. In recent years, plasmonic nanostructures exhibiting novel optical properties have attracted ...

  17. ZnO nanowires coated hydrophobic surfaces for various biomedical ...

    Indian Academy of Sciences (India)

    71

    which is typically found in water and can cause special type of pneumonia known as. Legionnaries disease. Because, if the material surface is hydrophilic the bacteria's present in water may adhere to the biomaterial resulting in bio-film formation, which may cause pathogenesis [8-10]. For achieving antibacterial activity, ...

  18. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment ...

  19. Microbial deterioration of surface paint coatings. | Ogbulie | Global ...

    African Journals Online (AJOL)

    Bacterial and fungal species associated with the normal and deteriorated painted surface in Owerri, Imo State were isolated and identified. The bacteria genera isolated were Pseudomonas, Bacillus, Micrococcus, Staphylococcus, Enterobacter and Streptomces, whereas the fungal genera isolated were Rhizopus, ...

  20. Efficiency of surface modified Ti coated with copper nanoparticles to ...

    Indian Academy of Sciences (India)

    Abstract. Titanium (Ti) used as condenser material in nuclear power plants encounter severe biofouling in marine environment which in turn affects the efficiency of the metal. To reduce the biofouling by marine microorganisms, surface modification of the Ti was carried out by anodization process to obtain nanotubes ...

  1. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation ...

    Indian Academy of Sciences (India)

    The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under ...

  2. Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation

    Indian Academy of Sciences (India)

    The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under ...

  3. Novel surface coating strategies for better battery materials

    CSIR Research Space (South Africa)

    Wen, L

    2018-03-01

    Full Text Available concepts of ‘ultrathin conformal coating’, ‘continuous phase coating’ and ‘multifunctional coating’ are proposed and discussed, followed by the authors’ rational perspectives on the future development and potential research hot spot in the surface...

  4. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    Science.gov (United States)

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-02

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  5. Antimicrobial characterization of silver nanoparticle-coated surfaces by “touch test” method

    Directory of Open Access Journals (Sweden)

    Gunell M

    2017-11-01

    Full Text Available Marianne Gunell,1,2 Janne Haapanen,3 Kofi J Brobbey,4 Jarkko J Saarinen,4 Martti Toivakka,4 Jyrki M Mäkelä,3 Pentti Huovinen,1 Erkki Eerola1,2 1Department of Medical Microbiology and Immunology, University of Turku, 2Department of Clinical Microbiology and Immunology, Microbiology and Genetics Service Area, Turku University Hospital, Turku, 3Aerosol Physics Laboratory, Department of Physics, Tampere University of Technology, Tampere, 4Laboratory of Paper Coating and Converting, Center for Functional Materials, Åbo Akademi University, Turku, Finland Abstract: Bacterial infections, especially by antimicrobial resistant (AMR bacteria, are an increasing problem worldwide. AMR is especially a problem with health care-associated infections due to bacteria in hospital environments being easily transferred from patient to patient and from patient to environment, and thus, solutions to prevent bacterial transmission are needed. Hand washing is an effective tool for preventing bacterial infections, but other approaches such as nanoparticle-coated surfaces are also needed. In the current study, direct and indirect liquid flame spray (LFS method was used to produce silver nanoparticle-coated surfaces. The antimicrobial properties of these nanoparticle surfaces were evaluated with the “touch test” method against Escherichia coli and Staphylococcus aureus. It was shown in this study that in glass samples one silver nanoparticle-coating cycle can inhibit E. coli growth, whereas at least two coating cycles were needed to inhibit S. aureus growth. Silver nanoparticle-coated polyethylene (PE and PE terephthalate samples did not inhibit bacterial growth as effectively as glass samples: three nanoparticle-coating cycles were needed to inhibit E. coli growth, and more than 30 coating cycles were needed until S. aureus growth was inhibited. To conclude, with the LFS method, it is possible to produce nanostructured large-area antibacterial surfaces which show

  6. 16 CFR 1145.2 - Paint (and other similar surface-coating materials) containing lead; toys, children's articles...

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Paint (and other similar surface-coating materials) containing lead; toys, children's articles, and articles of furniture bearing such paint (or... TO OTHER ACTS UNDER THE CONSUMER PRODUCT SAFETY ACT § 1145.2 Paint (and other similar surface-coating...

  7. Alternative Surface Coatings and Surface Treatments for Hazardous Cadmium Plating of Small Parts

    National Research Council Canada - National Science Library

    Thomas, K

    1995-01-01

    .... Conclusions resulting from mechanical testing and two-month exposure tests are provided. Several alternative coatings appear to provide corrosion resistance comparable to cadmium on non-complex shapes...

  8. Photochemically immobilized polymer coatings: effects on protein adsorption, cell adhesion, and leukocyte activation.

    Science.gov (United States)

    Defife, K M; Hagen, K M; Clapper, D L; Anderson, J M

    1999-01-01

    Amphiphilic chains of 4-benzoylbenzoic acid moieties and polymer were photochemically immobilized onto silicone rubber to ask whether the covalently coupled polymers would passivate the silicone rubber by inhibiting protein adsorption and subsequent cell adhesion and activation. Three groups of polymers were utilized: the hydrophilic synthetic polymers of polyacrylamide, polyethylene glycol, and polyvinylpyrrolidone; the glycosaminoglycan, hyaluronic acid; and poly(glycine-valine-glycine-valine-proline), a polypeptide derived from the sequence of elastin. Each coating variant decreased the adsorption of fibrinogen and immunoglobulin G compared to uncoated silicone rubber. All except the methoxy-polyethylene glycol coating nearly abolished fibroblast growth, but none of the coating variants inhibited monocyte or polymorphonuclear leukocyte adhesion. Interleukin-1beta, interleukin-1 receptor antagonist, and tumor necrosis factor-alpha secretion by leukocytes were not statistically different between any of the coating variants and uncoated silicone rubber. However, the methoxy-polyethylene glycol and elastin-based polypeptide coatings, which supported the highest numbers of adherent monocytes, also elicited the lowest levels of proinflammatory cytokine secretion. When these in vitro data were collectively evaluated, the coating that most effectively passivated silicone rubber was the polypeptide derived from elastin.

  9. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: Thin film metallic glass coating

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chi

    2017-05-01

    Conclusion: The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure.

  10. THE SIZE AND SURFACE COATING OF NANOSILVER DIFFERENTIALLY AFFECTS BIOLOGICAL ACTIVITY IN BLOOD BRAIN BARRIER (RBEC4) CELLS.

    Science.gov (United States)

    Linking the physical properties of nanoparticles with differences in their biological activity is critical for understanding their potential toxicity and mode of action. The influence of aggregate size, surface coating, and surface charge on nanosilver's (nanoAg) movement through...

  11. Impact of nanosilver on various DNA lesions and HPRT gene mutations - effects of charge and surface coating

    Czech Academy of Sciences Publication Activity Database

    Huk, A.; Izak-Nau, E.; el Yamani, N.; Uggerud, H.; Vadset, M.; Zasońska, Beata Anna; Duschl, A.; Dusinska, M.

    2015-01-01

    Roč. 12, 24 July (2015), 25_1-25_20 ISSN 1743-8977 Institutional support: RVO:61389013 Keywords : silver nanomaterials * surface charge * surface coating Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.649, year: 2015

  12. A study of the deposition process of multilayer coatings on the inner tube surface with the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lozovan, A.A., E-mail: loz-plasma@ya.ru; Alexandrova, S.S.; Mishnev, M.A.; Prishepov, S.V.

    2014-02-15

    Highlights: • Submitted laser bench for coatings, deposited on the inner surfaces of tubes by PLD. • Sprayed multilayered Ti/TiN coatings on the inner surfaces of tubes of small diameter. • We study this of coatings by method RBS and X-ray fluorescence spectroscopy (TXRF). • Shown a significant mixing of the layers thickness of 90 μm. -- Abstract: The multilayer Ti/TiN/Ti coatings (consisting of nano-scale layers) on the inner surface of stainless steel tubes of small diameter were studied. The coatings were deposited by using the pulsed laser deposition (PLD) technique (in the reactive and non-reactive deposition modes). The coatings were analyzed using the X-ray fluorescence analysis with total external reflection (TXRF) and the Rutherford backscattering spectroscopy (RBS). It was found that the deposition of multilayer Ti/TiN/Ti coatings leads to the essential mixing of coating layers due to sputtering of coatings with fast atoms and ions from the laser plume and the evaporation of the coating under the laser radiation reflected from the target surface.

  13. PPS-PEG surface coating to reduce thrombogenicity of small diameter ePTFE vascular grafts.

    Science.gov (United States)

    Karrer, L; Duwe, J; Zisch, A H; Khabiri, E; Cikirikcioglu, M; Napoli, A; Goessl, A; Schaffner, T; Hess, O M; Carrel, T; Kalangos, A; Hubbell, J A; Walpoth, B H

    2005-10-01

    Patency failure of small vascular synthetic grafts is still a major problem for coronary and peripheral revascularization. Thus, three new surface coatings of small synthetic grafts were tested in an acute pig model to evaluate their thrombogenicity (extracorporeal arterio-venous shunt) and in a chronic rat model to evaluate the tissue reaction they induced (subcutaneous implantation). In five domestic pigs (25-30 kg) an extracorporeal femoro-femoral arterio-venous shunt model was used. The study protocol included first a non-heparinized perfusion sequence followed by graft perfusion after 10,000 UI iv heparin. Grafts were perfused for 3 and 9 minutes. The following coatings were tested on ePTFE grafts: poly-propylene sulphide (PPS)--poly-ethylene glycol (PEG) (wet and dry applications) as well as carbon. Two sets of control were used, one dry and one wet (vehicle only). After perfusion grafts were examined by scanning electron microscopy for semi-quantitative assessment (score 0-3) of cellular and microthrombi deposition. To assess tissue compatibility, pieces of each material were implanted subcutaneously in 16 Wistar rats. At 2, 4, 8, 12 weeks four animals each were sacrificed for semi-quantitative (score 0-3) histologic evaluation of tissue reaction. In the pig model, cellular deposition and microthrombi formation increased over time. In non- heparinized animals, the coatings did not improve the surface characteristics, since they did not prevent microthrombi formation and cellular deposition. In heparinized animals, thrombogenicity was lowest in coated grafts,especially in PPS -PEG dry (pPPS-PEG dry, but this difference was not statistically significant vs.controls. In the rat model,no significant differences of the tissue reaction could be shown between materials. While all coatings failed to add any benefit for lowering tissue reaction, surface coating with PPS -PEG (dry application) reduced thrombogenicity significantly (in heparinized animals) and thus

  14. Surface characteristics of coated polyester fabric with reduced graphene oxide and polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Berendjchi, Amirhosein [Department of Textile Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khajavi, Ramin, E-mail: khajavi@azad.ac.ir [Nano Technology Research Center, South Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Yousefi, Ali Akbar [Faculty of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohammad Esmail [Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd (Iran, Islamic Republic of)

    2016-03-30

    Graphical abstract: - Highlights: • PET in form of film or membrane is hydrophobic and its wetting behavior follows the Wenzel wetting theory. In the form of textile materials it shows hydrophilicity. • rGO coated PET fabric shows hydrophobicity and its wetting behavior places between Wenzel and Cassie–Baxter models. • PET coated fabric by PPy shows superhydrophobicity and its wetting behavior is consistence with Cassie–Baxter model. • Due to oxidation of the rGO during in situ synthesis of PPy the rGO–PPy coated PET shows hydrophilicity. - Abstract: In this study, the influence of coating polyethylene terephthalate (PET) fabric with reduced graphene oxide (rGO) and polypyrrole (PPy), individually or in combination (rGO–PPy), on surface chemistry and roughness (focusing on wetting behavior), were analyzed systematically. Characterization was carried out by observing the topography (atomic force microscopy – AFM) and stating surface analysis (X-ray photoelectron spectroscopy – XPS), contact angles (goniometry), water shedding angles, and surface energy values of the samples. The results showed that the contact angles of pristine (uncoated), GO and rGO–PPy coated samples were 0°, while it was 92°, 123° and 151° for hot pressed (2nd pristine sample), rGO and PPy samples, respectively. A zero contact angle for PET sample was due to its wicking ability. Results were interpreted with Young, Wenzel and Cassie Baxter equations. It was found that PPy coated samples were consistent with Cassie–Baxter equation, while rGO placed between Wenzel and Cassie–Baxter wetting models.

  15. Effect of surface organic coatings of cellulose nanocrystals on the viability of mammalian cell lines.

    Science.gov (United States)

    Jimenez, Ambar S; Jaramillo, Francesca; Hemraz, Usha D; Boluk, Yaman; Ckless, Karina; Sunasee, Rajesh

    2017-01-01

    Cellulose nanocrystals (CNCs) have emerged as promising candidates for a number of bio-applications. Surface modification of CNCs continues to gain significant research interest as it imparts new properties to the surface of the nanocrystals for the design of multifunctional CNCs-based materials. A small chemical surface modification can potentially lead to drastic behavioral changes of cell-material interactions thereby affecting the intended bio-application. In this work, unmodified CNCs were covalently decorated with four different organic moieties such as a diaminobutane fragment, a cyclic oligosaccharide ( β -cyclodextrin), a thermoresponsive polymer (poly[ N -isopropylacrylamide]), and a cationic aminomethacrylamide-based polymer using different synthetic covalent methods. The effect of surface coatings of CNCs and the respective dose-response of the above organic moieties on the cell viability were evaluated on mammalian cell cultures (J774A.1 and MFC-7), using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-nyltetrazolium bromide and lactate dehydrogenase assays. Overall, the results indicated that cells exposed to surface-coated CNCs for 24 h did not display major changes in cell viability, membrane permeability as well as cell morphology. However, with longer exposure, all these parameters were somewhat affected, which appears not to be correlated with either anionic or cationic surface coatings of CNCs used in this study.

  16. Characterization of serum proteins attached to distinct sol-gel hybrid surfaces.

    Science.gov (United States)

    Araújo-Gomes, Nuno; Romero-Gavilán, Francisco; Sánchez-Pérez, Ana M; Gurruchaga, Marilo; Azkargorta, Mikel; Elortza, Felix; Martinez-Ibañez, María; Iloro, Ibon; Suay, Julio; Goñi, Isabel

    2017-07-04

    The success of a dental implant depends on its osseointegration, an important feature of the implant biocompatibility. In this study, two distinct sol-gel hybrid coating formulations [50% methyltrimethoxysilane: 50% 3-glycidoxypropyl-trimethoxysilane (50M50G) and 70% methyltrimethoxysilane with 30% tetraethyl orthosilicate (70M30T)] were applied onto titanium implants. To evaluate their osseointegration, in vitro and in vivo assays were performed. Cell proliferation and differentiation in vitro did not show any differences between the coatings. However, four and eight weeks after in vivo implantation, the fibrous capsule area surrounding 50M50G-implant was 10 and 4 times, respectively, bigger than the area of connective tissue surrounding the 70M30T treated implant. Thus, the in vitro results gave no prediction or explanation for the 50M50G-implant failure in vivo. We hypothesized that the first protein layer adhered to the surface may have direct implication in implant osseointegration, and perhaps correlate with the in vivo outcome. Human serum was used for adsorption analysis on the biomaterials, the first layer of serum proteins adhered to the implant surface was analyzed by proteomic analysis, using mass spectrometry (LC-MS/MS). From the 171 proteins identified; 30 proteins were significantly enriched on the 50M50G implant surface. This group comprised numerous proteins of the immune complement system, including several subcomponents of the C1 complement, complement factor H, C4b-binding protein alpha chain, complement C5 and C-reactive protein. This result suggests that these proteins enriched in 50M50G surface might trigger the cascade leading to the formation of the fibrous capsule observed. The implications of these results could open up future possibilities to predict the biocompatibility problems in vivo. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  17. Preparation and Surface Modification of Silica Nanoparticles for Superhydrophopic Coating

    Directory of Open Access Journals (Sweden)

    Noor Hadi Aysa

    2017-12-01

    Full Text Available Silica  nanoparticles are well-known to be one of the multifunctional inorganic compounds which are widely used in medical applications. The aim of this study is to prepare the particles of nano silica oxide with particle size ranging from 20-25 nm. In the present study, surface modification of Silica nanoparticles was performed, and influence of modification on the structure and morphological properties was investigated. The resulting  nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscopy (AFM.  Silica nanoparticles with the average diameter of about 20 nm were modified with oleic acid, as coupling agents, in order to modify their surface properties and make them more waterproof dispersible in the organic area. Among the results is that the  surface modification of the   Silica nano-particles leads to more dispersion in the organic medium which indicates better organic synthesis.One of the results obtained,is that modified silica-nanoparticles can be used effectively in environmental and safety applications and can be used in future medical applications as wound stick that prevent water from reaching the wound and then prevent  an inflamation.

  18. Mussel adhesive protein coating: A potential therapeutic method for self-healing of cracked teeth

    Directory of Open Access Journals (Sweden)

    Li Bo-Lin

    2015-01-01

    Full Text Available Introduction: Nowadays, cracked tooth syndrome is the third main cause of tooth extraction, following caries and periodontal diseases, done in almost all the dental clinics. Nevertheless, the diagnosis and treatment of this condition remain controversial. All candidate therapeutics, such as occlusal adjustment, preventive filling, root canal therapy (RCT, and crown restoration, provide unpredictable outcomes. As such, methods to prevent further crack development and to induce crack self-healing must be developed. The Hypothesis: Mussels secreting adhesive foot protein (Mafp can attach to various surfaces under aqueous conditions. In nature, mussels adhere to stones and deposit layer by layer through mineralization, thereby forming mussel-stone composites with excellent mechanical property. Given the natural process of mussel-stone complex formation, we hypothesize that application of Mafp coating at the crack interface may mineralize the cracks by capturing calcium and phosphate ions from the saliva. This process consequently leads to crack self-healing and complete restoration of the tooth structure. Evaluation of the Hypothesis: To test our hypothesis, we need to develop a model in vivo. Cracked teeth disks are adhered together using Mafp solution. Then, the tooth disks are sutured on the interior side of the cheeks. After regular intervals, the disks are removed and characterized. Scanning electron microscopy is performed to evaluate the morphology of the crack interface. Microhardness and shear bond strength are used to evaluate the mechanical property of the healing cracked zone. Transmission electron microscopy is also conducted to evaluate the crystallinity of the crack interface.

  19. Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface

    Science.gov (United States)

    Momen, Gelareh; Farzaneh, Masoud; Jafari, Reza

    2011-05-01

    A nanostructutered superhydrophobic surface was elaborated by applying an RTV silicone rubber coating on electrochemically processed aluminium substrates. Study of anodisation voltage on surface morphology showed that higher anodising voltage led to larger pore sizes. Scanning electron microscopy image analysis showed bird's nest and beehive structures formed on anodised surfaces at 50 V and 80 V. Water static contact angle on the treated surfaces reached up to 160° at room temperature. Study of superhydrophobic surfaces at super cooled temperature showed important delayed freezing time for RTV hydrophobic surfaces when compared to non-treated aluminium. However, lower wettability was observed when surface temperature went down from 20 °C to -10 °C. Also, it was found that the capacitance of superhydrophobic surfaces decreased with increasing anodising voltage.

  20. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications

    International Nuclear Information System (INIS)

    Nagarajan, S.; Rajendran, N.

    2009-01-01

    Porous titanium dioxide was coated on surgical grade 316L stainless steel (SS) and its role on the corrosion protection and enhanced biocompatibility of the materials was studied. X-ray diffraction analysis (XRD), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX) were carried out to characterise the surface morphology and also to understand the structure of the as synthesised coating on the substrates. The corrosion behaviour of titanium dioxide coated samples in simulated body fluid was evaluated using polarisation and impedance spectroscopy studies. The results reveal that the titanium dioxide coated 316L SS exhibit a higher corrosion resistance than the uncoated 316L SS. The titanium dioxide coated surface is porous, uniform and also it acts as a barrier layer to metallic substrate and the porous titanium dioxide coating induces the formation of hydroxyapatite layer on the metal surface.

  1. Surface enhanced 316L/SiC nano-composite coatings via laser cladding and following cold-swaging process

    Science.gov (United States)

    Li, Yuhang; Gao, Shiyou

    2017-10-01

    Cold-swaging is one of a cold deformation processes, and ceramic-reinforcement nano-composite coatings can effectively improve the performance of metal matrix surface. Therefore, the two processes are innovatively combined to further improve the surface properties of the metal matrix in this paper. The microstructure and surface properties of the laser cladding 316L + 10 wt% SiC nano-composite coatings were examined through designed experiments after cold-swaging by self-developed hydraulic machine. Furthermore, the coatings were compared with those without cold-swaging coatings at the same time. The result shows that the cold-swaging process can further enhance the tensile strength, micro-hardness and the wear resistance of the composite coating. This study can be used as a reference for further strengthening of laser cladding nano-composite coatings in future research.

  2. Surface coating influence on elastic properties of spruce wood by means of holographic vibration mode visualization

    Science.gov (United States)

    Bongova, M.; Urgela, Stanislav

    1999-07-01

    Physicoacoustical properties of wood influenced by surface coating are studied by modal analysis. Resonant spruce plates were coated by stain, nitrocellulose varnish, special violin paint and shellac. The modal testing was performed by electronic speckle pattern interferometry. For this purpose, equipment called VIBROVIZER was used. The collected values of physicoacoustical characteristics (density, Young's modulus, acoustic constant) were compared using the graphic plots of data. The 3D plots help to evaluate wooden plates from a viewpoint of the quality control. This fact offers new opportunity for musical instrument manufacturers.

  3. Effect of surface organic coatings of cellulose nanocrystals on the viability of mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Jimenez AS

    2017-09-01

    Full Text Available Ambar S Jimenez,1 Francesca Jaramillo,1 Usha D Hemraz,2 Yaman Boluk,3 Karina Ckless,1 Rajesh Sunasee1 1Department of Chemistry, State University of New York at Plattsburgh, Plattsburgh, NY, USA; 2National Research Council, Montreal, QC, Canada, 3Department of Civil & Environmental Engineering, University of Alberta and National Institute for Nanotechnology, National Research Council, Edmonton, AB, Canada Abstract: Cellulose nanocrystals (CNCs have emerged as promising candidates for a number of bio-applications. Surface modification of CNCs continues to gain significant research interest as it imparts new properties to the surface of the nanocrystals for the design of multifunctional CNCs-based materials. A small chemical surface modification can potentially lead to drastic behavioral changes of cell-material interactions thereby affecting the intended bio-application. In this work, unmodified CNCs were covalently decorated with four different organic moieties such as a diaminobutane fragment, a cyclic oligosaccharide (β-cyclodextrin, a thermoresponsive polymer (poly[N-isopropylacrylamide], and a cationic aminomethacrylamide-based polymer using different synthetic covalent methods. The effect of surface coatings of CNCs and the respective dose-response of the above organic moieties on the cell viability were evaluated on mammalian cell cultures (J774A.1 and MFC-7, using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays. Overall, the results indicated that cells exposed to surface-coated CNCs for 24 h did not display major changes in cell viability, membrane permeability as well as cell morphology. However, with longer exposure, all these parameters were somewhat affected, which appears not to be correlated with either anionic or cationic surface coatings of CNCs used in this study. Keywords: cellulose nanocrystals, surface coating, cell viability, MTT, LDH

  4. Surface characterization and cytotoxicity analysis of plasma sprayed coatings on titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Zia ur; Shabib, Ishraq [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States); Haider, Waseem, E-mail: haide1w@cmich.edu [School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859 (United States); Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI 48859 (United States)

    2016-10-01

    In the realm of biomaterials, metallic materials are widely used for load bearing joints due to their superior mechanical properties. Despite the necessity for long term metallic implants, there are limitations to their prolonged use. Naturally, oxides of titanium have low solubilities and form passive oxide film spontaneously. However, some inclusion and discontinuity spots in oxide film make implant to adopt the decisive nature. These defects heighten the dissolution of metal ions from the implant surface, which results in diminishing bio-integration of titanium implant. To increase the long-term metallic implant stability, surface modifications of titanium alloys are being carried out. In the present study, biomimetic coatings of plasma sprayed hydroxyapatite and titanium were applied to the surface of commercially pure titanium and Ti6Al4V. Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. Cyclic potentiodynamic polarization and electrochemical impedance spectroscopy were carried out in order to study their electrochemical behavior. Moreover, cytotoxicity analysis was conducted for osteoblast cells by performing MTS assay. It is concluded that both hydroxyapatite and titanium coatings enhance corrosion resistance and improve cytocompatibility. - Highlights: • Surface morphology and surface chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy. • The cyclic polarization tests revealed noticeable improvement towards the positive potentials for both Tip coatings. • CpTi-Hap and Ti6Al4V-Hap both demonstrate similar corrosion rate. • High cytotoxicity was observed for Mp when compared with Tip and Hap after 21 days of immersion. • Both Tip and Hap coatings promoted the osteoblast cell adhesion and exhibited stellar morphology.

  5. Sol-gel network silica/modified montmorillonite clay hybrid nanocomposites for hydrophobic surface coatings.

    Science.gov (United States)

    Meera, Kamal Mohamed Seeni; Sankar, Rajavelu Murali; Murali, Adhigan; Jaisankar, Sellamuthu N; Mandal, Asit Baran

    2012-02-01

    Sol-gel silica/nanoclay composites were prepared through sol-gel polymerization technique using tetraethylorthosilicate precursor and montmorillonite (MMT) clay in aqueous media. In this study, both montmorillonite-K(+) and organically modified MMT (OMMT) clays were used. The prepared composites were coated on glass substrate by making 1 wt% solution in ethyltrichlorosilane. The incorporation of nanoclay does not alter the intensity of characteristic Si-O-Si peak of silica network. Thermogravimetric studies show that increasing clay content increased the degradation temperature of the composites. Differential scanning calorimetry (DSC) results of organically modified MMT nanoclay incorporated composite show a shift in the melting behavior up to 38°C. From DSC thermograms, we observed that the ΔH value decreased with increasing clay loading. X-ray diffraction patterns prove the presence of nanoclay in the composite and increase in the concentration of organically modified nanoclay from 3 to 5 wt% increases the intensity of the peak at 2θ=8° corresponds to OMMT. Morphology of the control silica gel composite was greatly influenced by the incorporation of OMMT. The presence of nanoclay changed the surface of control silica gel composite into cleaved surface with brittle in nature. Contact angle measurements were done for the coatings to study their surface behavior. These hybrid coatings on glass substrate may have applications for hydrophobic coatings on leather substrate. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications.

    Science.gov (United States)

    Han, Kook In; Kim, Seungdu; Lee, In Gyu; Kim, Jong Pil; Kim, Jung-Ha; Hong, Suck Won; Cho, Byung Jin; Hwang, Wan Sik

    2017-02-19

    Cylindrical silk fiber (SF) was coated with Graphene oxide (GO) for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF's positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH) and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO's excellent sensing properties and SF's flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  7. Compliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications

    Directory of Open Access Journals (Sweden)

    Kook In Han

    2017-02-01

    Full Text Available Cylindrical silk fiber (SF was coated with Graphene oxide (GO for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surface. The GO coating ability on the SF improved as the SF’s positive charge increased. The GO-coated SFs at various conditions were characterized using an optical microscope, scanning electron microscopy (SEM, energy-dispersive X-ray spectroscopy (EDS, Raman spectroscopy, and LCR meter. Unlike the intact SF, the GO-coated SF showed clear response-recovery behavior and well-behaved repeatability when it was exposed to 20% relative humidity (RH and 90% RH alternatively in a capacitive mode. This approach allows humidity sensors to take advantage of GO’s excellent sensing properties and SF’s flexibility, expediting the production of flexible, low power consumption devices at relatively low costs.

  8. Manufacture of nanosized apatite coatings on titanium with different surface treatments using a supersaturated calcification solution

    Directory of Open Access Journals (Sweden)

    Adrian Paz Ramos

    Full Text Available The biomimetic method is used for the deposition of calcium phosphate coatings (Ca - P on the surface of different biomaterials. However, the application of this method requires long exposure times in order to obtain a suitable layer thickness for its use in medical devices. In this paper, we present a fast approach to obtain apatite coatings on titanium, using a combination of supersaturated calcification solution (SCS with chemical modification of the titanium surface. Also, it was evaluated the effect of four different surface treatments on the apatite deposition rate. Commercially pure titanium plates were activated by chemical or thermochemical treatments. Then, the activated samples were immersed in a solution with high content of calcium and phosphate ions at 37 ºC for 24 h, mimicking the physiological conditions. The coatings were studied by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDX. The use of SCS solutions allowed the formation of crystalline hydroxyapatite coatings within a period of 24 h with a thickness between 1 and 5.3 µm. Besides, precipitates of hydroxyapatite nanoparticles with a globular configuration, forming aggregates with submicrometer size, were found in SCS solutions.

  9. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Pour-Ali, Sadegh, E-mail: pourali2020@ut.ac.ir; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-15

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  10. Quantitative analysis of visible surface defect risk in tablets during film coating using terahertz pulsed imaging.

    Science.gov (United States)

    Niwa, Masahiro; Hiraishi, Yasuhiro

    2014-01-30

    Tablets are the most common form of solid oral dosage produced by pharmaceutical industries. There are several challenges to successful and consistent tablet manufacturing. One well-known quality issue is visible surface defects, which generally occur due to insufficient physical strength, causing breakage or abrasion during processing, packaging, or shipping. Techniques that allow quantitative evaluation of surface strength and the risk of surface defect would greatly aid in quality control. Here terahertz pulsed imaging (TPI) was employed to evaluate the surface properties of core tablets with visible surface defects of varying severity after film coating. Other analytical methods, such as tensile strength measurements, friability testing, and scanning electron microscopy (SEM), were used to validate TPI results. Tensile strength and friability provided no information on visible surface defect risk, whereas the TPI-derived unique parameter terahertz electric field peak strength (TEFPS) provided spatial distribution of surface density/roughness information on core tablets, which helped in estimating tablet abrasion risk prior to film coating and predicting the location of the defects. TPI also revealed the relationship between surface strength and blending condition and is a nondestructive, quantitative approach to aid formulation development and quality control that can reduce visible surface defect risk in tablets. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Forward impact extrusion of surface textured steel blanks using coated tooling

    Science.gov (United States)

    Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz

    2017-10-01

    A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.

  12. Materials selection of surface coatings in an advanced size reduction facility

    International Nuclear Information System (INIS)

    Briggs, J.L.; Younger, A.F.

    1980-01-01

    A materials selection test program was conducted to characterize optimum interior surface coatings for an advanced size reduction facility. The equipment to be processed by this facility consists of stainless steel apparatus (e.g., glove boxes, piping, and tanks) used for the chemical recovery of plutonium. Test results showed that a primary requirement for a satisfactory coating is ease of decontamination. A closely related concern is the resistance of paint films to nitric acid - plutonium environments. A vinyl copolymer base paint was the only coating, of eight paints tested, with properties that permitted satisfactory decontamination of plutonium and also performed equal to or better than the other paints in the chemical resistance, radiation stability, and impact tests

  13. Fabrication of slender elastic shells by the coating of curved surfaces

    Science.gov (United States)

    Lee, A.; Brun, P.-T.; Marthelot, J.; Balestra, G.; Gallaire, F.; Reis, P. M.

    2016-04-01

    Various manufacturing techniques exist to produce double-curvature shells, including injection, rotational and blow molding, as well as dip coating. However, these industrial processes are typically geared for mass production and are not directly applicable to laboratory research settings, where adaptable, inexpensive and predictable prototyping tools are desirable. Here, we study the rapid fabrication of hemispherical elastic shells by coating a curved surface with a polymer solution that yields a nearly uniform shell, upon polymerization of the resulting thin film. We experimentally characterize how the curing of the polymer affects its drainage dynamics and eventually selects the shell thickness. The coating process is then rationalized through a theoretical analysis that predicts the final thickness, in quantitative agreement with experiments and numerical simulations of the lubrication flow field. This robust fabrication framework should be invaluable for future studies on the mechanics of thin elastic shells and their intrinsic geometric nonlinearities.

  14. Review on Electroless Plating Ni-P Coatings for Improving Surface Performance of Steel

    Science.gov (United States)

    Zhang, Hongyan; Zou, Jiaojuan; Lin, Naiming; Tang, Bin

    2014-04-01

    Electroless plating has been considered as an effective approach to provide protection and enhancement for metallic materials with many excellent properties in engineering field. This paper begins with a brief introduction of the fundamental aspects underlying the technological principles and conventional process of electroless nickel-phosphorus (Ni-P) coatings. Then this paper discusses different electroless nickel plating, including binary plating, ternary composite plating and nickel plating with nanoparticles and rare earth, with the intention of improving the surface performance on steel substrate in recent years in detail. Based on different coating process, the varied features depending on the processing parameters are highlighted. Separately, diverse preparation techniques aiming at improvement of plating efficiency are summarized. Moreover, in view of the outstanding performance, such as corrosion resistance, abrasive resistance and fatigue resistance, this paper critically reviews the behaviors and features of various electroless coatings under different conditions.

  15. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    International Nuclear Information System (INIS)

    Yu, Xia; Zhang, Ying; Pan, Shanshan; Shum, Ping; Yan, Min; Leviatan, Yehuda; Li, Changming

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensitivity as high as 5500 nm/RIU (refractive index unit) can be achieved in the proposed structure. Compared with the entirely coated structure, the selectively coated sensor design demonstrates narrower resonance spectral width. Moreover, the greater resonance depth can improve the sensing performance in terms of signal to noise ratio (SNR). The improvements in spectral width and SNR can both contribute to a better detection limit for this refractive index sensor

  16. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    Science.gov (United States)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  17. Effect of surface coating on the screw loosening of dental abutment screws

    Science.gov (United States)

    Park, Chan-Ik; Choe, Han-Cheol; Chung, Chae-Heon

    2004-12-01

    Regardless of the type of performed restoration, in most cases, a screw connection is employed between the abutment and implant. For this reason, implant screw loosening has remained a problem in restorative practices. The purpose of this study was to compare the surface of coated/plated screws with titanium and gold alloy screws and to evaluate the physical properties of coated/plated material after scratch tests via FE-SEM (field emission scanning electron microscopy) investigation. GoldTite, titanium screws provided by 3i (Implant Innovation, USA) and TorqTite, titanium screws by Steri-Oss (Nobel Biocare, USA) and gold screws and titanium screws by AVANA (Osstem Implant, Korea) were selected for this study. The surface, crest, and root of the abutment screws were observed by FE-SEM. A micro-diamond needle was also prepared for the scratch test. Each abutment screw was fixed, and a scratch on the surface of the head region was made at constant load and thereafter the fine trace was observed with FE-SEM. The surface of GoldTite was smoother than that of other screws and it also had abundant ductility and malleability compared with titanium and gold screws. The scratch tests also revealed that teflon particles were exfoliated easily in the screw coated with teflon. The titanium screw had rough surface and low ductility. The clinical use of gold-plated screws is recommended as a means of preventing screw loosening.

  18. Atomic Oxygen Treatment for Non-Contact Removal of Organic Protective Coatings from Painting Surfaces

    Science.gov (United States)

    Rutledge, Sharon K.; Banks, Bruce A.; Cales, Michael

    1994-01-01

    Current techniques for removal of varnish (lacquer) and other organic protective coatings from paintings involve contact with the surface. This contact can remove pigment, or alter the shape and location of paint on the canvas surface. A thermal energy atomic oxygen plasma, developed to simulate the space environment in low Earth orbit, easily removes these organic materials. Uniform removal of organic protective coatings from the surfaces of paintings is accomplished through chemical reaction. Atomic oxygen will not react with oxides so that most paint pigments will not be affected by the reaction. For paintings containing organic pigments, the exposure can be carefully timed so that the removal stops just short of the pigment. Color samples of Alizarin Crimson, Sap Green, and Zinc White coated with Damar lacquer were exposed to atomic oxygen. The lacquer was easily removed from all of the samples. Additionally, no noticeable change in appearance was observed after the lacquer was reapplied. The same observations were made on a painted canvas test sample obtained from the Cleveland Museum of Art. Scanning electron microscope photographs showed a slight microscopic texturing of the vehicle after exposure. However, there was no removal or disturbance of the paint pigment on the surface. It appears that noncontact cleaning using atomic oxygen may provide a viable alternative to other cleaning techniques. It is especially attractive in cases where the organic protective surface cannot be acceptably or safely removed by conventional techniques.

  19. Analyses of Biofilm on Implant Abutment Surfaces Coating with Diamond-Like Carbon and Biocompatibility.

    Science.gov (United States)

    Huacho, Patricia Milagros Maquera; Nogueira, Marianne N Marques; Basso, Fernanda G; Jafelicci Junior, Miguel; Francisconi, Renata S; Spolidorio, Denise M P

    2017-01-01

    The aim of this study was to evaluate the surface free energy (SFE), wetting and surface properties as well as antimicrobial, adhesion and biocompatibility properties of diamond-like carbon (DLC)-coated surfaces. In addition, the leakage of Escherichia coli through the abutment-dental implant interface was also calculated. SFE was calculated from contact angle values; R a was measured before and after DLC coating. Antimicrobial and adhesion properties against E. coli and cytotoxicity of DLC with human keratinocytes (HaCaT) were evaluated. Further, the ability of DLC-coated surfaces to prevent the migration of E. coli into the external hexagonal implant interface was also evaluated. A sterile technique was used for the semi-quantitative polymerase chain reaction (semi-quantitative PCR). The surfaces showed slight decreases in cell viability (p0.05). It was concluded that DLC was shown to be a biocompatible material with mild cytotoxicity that did not show changes in R a, SFE, bacterial adhesion or antimicrobial properties and did not inhibit the infiltration of E. coli into the abutment-dental implant interface.

  20. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces

    International Nuclear Information System (INIS)

    Doktycz, M.J.; Sullivan, C.J.; Hoyt, P.R.; Pelletier, D.A.; Wu, S.; Allison, D.P.

    2003-01-01

    Immobilization of particulates, especially biomolecules and cells, onto surfaces is critical for imaging with the atomic force microscope (AFM). In this paper, gelatin coated mica surfaces are shown to be suitable for immobilizing and imaging both gram positive, Staphylococcus aureus, and gram negative, Escherichia coli, bacteria in both air and liquid environments. Gelatin coated surfaces are shown to be superior to poly-L-lysine coated surfaces that are commonly used for the immobilization of cells. This cell immobilization technique is being developed primarily for live cell imaging of Rhodopseudomonas palustris. The genome of R. palustris has been sequenced and the organism is the target of intensive studies aimed at understanding genome function. Images of R. palustris grown both aerobically and anaerobically in liquid media are presented. Images in liquid media show the bacteria is rod shaped and smooth while images in air show marked irregularity and folding of the surface. Significant differences in the vertical dimension are also apparent with the height of the bacteria in liquid being substantially greater than images taken in air. In air immobilized bacterial flagella are clearly seen while in liquid this structure is not visible. Additionally, significant morphological differences are observed that depend on the method of bacterial growth

  1. Antifungal coatings by caspofungin immobilization onto biomaterials surfaces via a plasma polymer interlayer.

    Science.gov (United States)

    Griesser, Stefani S; Jasieniak, Marek; Coad, Bryan R; Griesser, Hans J

    2015-12-14

    Not only bacteria but also fungal pathogens, particularly Candida species, can lead to biofilm infections on biomedical devices. By covalent grafting of the antifungal drug caspofungin, which targets the fungal cell wall, onto solid biomaterials, a surface layer can be created that might be able to provide long-term protection against fungal biofilm formation. Plasma polymerization of propionaldehyde (propanal) was used to deposit a thin (∼20 nm) interfacial bonding layer bearing aldehyde surface groups that can react with amine groups of caspofungin to form covalent interfacial bonds for immobilization. Surface analyses by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed the intended grafting and uniformity of the coatings, and durability upon extended washing. Testing for fungal cell attachment and ensuing biofilm formation showed that caspofungin retained activity when covalently bound onto surfaces, disrupting colonizing Candida cells. Mammalian cytotoxicity studies using human primary fibroblasts indicated that the caspofungin-grafted surfaces were selective in eliminating fungal cells while allowing attachment and spreading of mammalian cells. These in vitro data suggest promise for use as antifungal coatings, for example, on catheters, and the use of a plasma polymer interlayer enables facile transfer of the coating method onto a wide variety of biomaterials and biomedical devices.

  2. Combinatorial materials research applied to the development of new surface coatings XIII: an investigation of polysiloxane antimicrobial coatings containing tethered quaternary ammonium salt groups.

    Science.gov (United States)

    Majumdar, Partha; Lee, Elizabeth; Gubbins, Nathan; Christianson, David A; Stafslien, Shane J; Daniels, Justin; Vanderwal, Lyndsi; Bahr, James; Chisholm, Bret J

    2009-01-01

    High-throughput biological assays were used to develop structure - antimicrobial relationships for polysiloxane coatings containing chemically bound (tethered) quaternary ammonium salt (QAS) moieties. The QAS-functional polysiloxanes were derived from solution blends of a silanol-terminated polydimethylsiloxane, a trimethoxysilane-functional QAS (QAS-TMS), and methylacetoxysilane. Since the QAS moieties provide antimicrobial activity through interaction with the microorganism cell wall, most of the compositional variables that were investigated were associated with the chemical structure of the QAS-TMS. Twenty different QAS-TMS were synthesized for the study and the antimicrobial activity of sixty unique polysiloxane coatings derived from these QAS-TMS determined toward Escherichia coli , Staphylococcus aureus , and Candida albicans . The results of the study showed that essentially all of the compositional variables significantly influenced antimicrobial activity. Surface characterization of these moisture-cured coatings using atomic force microscopy as well as water contact angle and water contact angle hysteresis measurements indicated that the compositional variables significantly affected coating surface morphology and surface chemistry. Overall, compositional variables that produced heterogeneous surface morphologies provided the highest antimicrobial activity suggesting that the antimicrobial activity was primarily derived from the relationship between coating chemical composition and self-assembly of QAS moieties at the coating/air interface. Using data modeling software, a narrow region of the compositional space was identified that provided broad-spectrum antimicrobial activity.

  3. Simulation, microstructure and microhardness of the nano-SiC coating formed on Al surface via laser shock processing

    International Nuclear Information System (INIS)

    Cui, C.Y.; Cui, X.G.; Zhao, Q.; Ren, X.D.; Zhou, J.Z.; Liu, Z.; Wang, Y.M.

    2014-01-01

    Highlights: • Nano-SiC coating is successfully fabricated on pure Al surface via LSPC. • Movement states of the nano-SiC particles are analyzed by FEM. • Formation mechanism of the nano-SiC coating is put forward and discussed. • Microhardness of the Al is significantly improved due to the nano-SiC coating. - Abstract: A novel method, laser shock processing coating (LSPC), has been developed to fabricate a particle-reinforced coating based on laser shock processing (LSP). In this study, a nano-SiC coating is successfully prepared on pure Al surface via LSPC. The surface and cross section morphologies as well as the compositions of nano-SiC coating are investigated. Moreover, a finite element method (FEM) is employed to clarify the formation process of nano-SiC coating. On the basis of the above analyzed results, a possible formation mechanism of the nano-SiC coating is tentatively put forward and discussed. Furthermore, the nano-SiC coating shows superior microhardness over the Al substrate

  4. ASYMPTOTICAL CALCULATION OF ELECTROMAGNETIC WAVES SCATTERED FROM A DIELECTRIC COATED CYLINDRICAL SURFACE WITH PHYSICAL OPTICS APPROACH

    Directory of Open Access Journals (Sweden)

    Uğur YALÇIN

    2004-02-01

    Full Text Available In this study, quasi-optical scattering of finite source electromagnetic waves from a dielectric coated cylindrical surface is analysed with Physical Optics (PO approach. A linear electrical current source is chosen as the finite source. Reflection coefficient of the cylindrical surface is derived by using Geometrical Theory of Diffraction (GTD. Then, with the help of this coefficient, fields scattered from the surface are obtained. These field expressions are used in PO approach and surface scattering integral is determined. Evaluating this integral asymptotically, fields reflected from the surface and surface divergence coefficient are calculated. Finally, results obtained in this study are evaluated numerically and effects of the surface impedance to scattered fields are analysed. The time factor is taken as j te? in this study.

  5. The Effectiveness of Surface Coatings on Preventing Interfacial Reaction During Ultrasonic Welding of Aluminum to Magnesium

    Science.gov (United States)

    Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.

    2013-12-01

    High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.

  6. Bacteriomimetic poly-γ-glutamic acid surface coating for hemocompatibility and safety of nanomaterials.

    Science.gov (United States)

    Shim, Gayong; Kim, Dongyoon; Kim, Jinyoung; Suh, Min Sung; Kim, Youn Kyu; Oh, Yu-Kyoung

    2017-08-01

    Poly-γ-glutamic acid (PGA), a major component of the bacterial capsule, is known to confer hydrophilicity to bacterial surfaces and protect bacteria from interactions with blood cells. We tested whether applying a bacteriomimetic surface coating of PGA modulates interactions of nanomaterials with blood cells or affects their safety and photothermal antitumor efficacy. Amphiphilic PGA (APGA), prepared by grafting phenylalanine residues to PGA, was used to anchor PGA to reduced graphene oxide (rGO) nanosheets, a model of hydrophobic nanomaterials. Surface coating of rGO with bacterial capsule-like APGA yielded APGA-tethered rGO nanosheets (ArGO). ArGO nanosheets remained stable in serum over 4 weeks, whereas rGO in plain form precipitated in serum within 5 minutes. Moreover, ArGO did not interact with blood cells, whereas rGO in plain form or as a physical mixture with PGA formed aggregates with blood cells. Mice administered ArGO at a dose of 50 mg/kg showed 100% survival and no hepatic or renal toxicity. No mice survived exposure at the same dose of rGO or a PGA/rGO mixture. Following intravenous administration, ArGO showed a greater distribution to tumors and prolonged tumor retention compared with other nanosheet formulations. Irradiation with near-infrared light completely ablated tumors in mice treated with ArGO. Our results indicate that a bacteriomimetic surface modification of nanomaterials with bacterial capsule-like APGA improves the stability in blood, biocompatibility, tumor distribution, and photothermal antitumor efficacy of rGO. Although APGA was used here to coat the surfaces of rGO, it could be applicable to coat surfaces of other hydrophobic nanomaterials.

  7. Surface properties and water treatment capacity of surface engineered silica coated with 3-(2-aminoethyl) aminopropyltrimethoxysilane

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Peter, E-mail: peter.majewski@unisa.edu.au [School of Advanced Manufacturing and Mechanical Engineering, Mawson Institute, University of South Australia, Adelaide (Australia); Keegan, Alexandra [Microbiology Research, Australian Water Quality Centre, South Australian Water Corporation, Adelaide (Australia)

    2012-01-15

    This study's focus was on the water-based, one-pot preparation and characterisation of silica particles coated with 3-(2-aminoethyl)aminopropyltrimethoxysilane (Diamo) and the efficiency of the material in removing the pathogens Escherichia coli, Pseudomonas aeruginosa, Mycobacterium immunogenum, Vibrio cholerae, poliovirus, and Cryptosporidium parvum. The water-based processing resulted in Diamo coated silica particles with significantly increased positive surface charge as determined by zeta potential measurements. In addition, X-ray photoelectron spectrometry of pure and Diamo coated silica confirmed the presence of Diamo on the surface of the particles. Thermogravimetric measurements and chemical analysis of the silica indicated a surface concentration of amine groups of about 1 mmol/g{sub silica}. Water treatment tests with the pathogens showed that a dose of about 10 g appeared to be sufficient to remove pathogens from pure water samples which were spiked with pathogen concentrations between about 10{sup 2} and 10{sup 4} cfu/mL.

  8. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  9. Examination of the surface coatings removed from K-East Basin fuel elements

    International Nuclear Information System (INIS)

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage

  10. Examination of the surface coating removed from K-East Basin fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Abrefah, J.; Marschman, S.C.; Jenson, E.D.

    1998-05-01

    This report provides the results of studies conducted on coatings discovered on the surfaces of some N-Reactor spent nuclear fuel (SNF) elements stored at the Hanford K-East Basin. These elements had been removed from the canisters and visually examined in-basin during FY 1996 as part of a series of characterization tests. The characterization tests are being performed to support the Integrated Process Strategy developed to package, dry, transport, and store the SNF in an interim storage facility on the Hanford site. Samples of coating materials were removed from K-East canister elements 2350E and 2540E, which had been sent, along with nine other elements, to the Postirradiation Testing Laboratory (327 Building) for further characterization following the in-basin examinations. These coating samples were evaluated by Pacific Northwest National Laboratory using various analytical methods. This report is part of the overall studies to determine the drying behavior of corrosion products associated with the K-Basin fuel elements. Altogether, five samples of coating materials were analyzed. These analyses suggest that hydration of the coating materials could be an additional source of moisture in the Multi-Canister Overpacks being used to contain the fuel for storage.

  11. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method

    Science.gov (United States)

    Cao, Jiliang; Wang, Chaoxia

    2017-05-01

    Multifunctional silk fabrics with electrical conductive, anti-ultraviolet and water repellent were successfully prepared by surface modification with graphene oxide (GO). The yellow-brown GO deposited on the surface of silk fabric was converted into graphitic black reduced graphene (RGO) by sodium hydrosulfite. The surface properties of silk fabrics were changed by repeatedly RGO coating process, which have been proved by SEM and XPS. The SEM results showed that the RGO sheets were successive form a continuously thin film on the surface of silk fabrics, and the deposition of GO or RGO also can be proved by XPS. The electrical conductivity was tested by electrical surface resistance value of the silk fabric, the surface resistance decreased with increasing of RGO surface modification times, and a low surface resistance value reached to 3.24 KΩ cm-1 after 9 times of modification, indicating the silk obtained excellent conductivity. The UPF value of one time GO modification silk fabric (silk-1RGO) was enhanced significantly to 24.45 in comparison to 10.40 of original silk. The contact angle of RGO coating silk samples was all above of 120°. The durability of RGO coated silk fabrics was tested by laundering. The electrical surface resistance of silk-4RGO (65.74 KΩ cm-1), silk-6RGO (15.54 KΩ cm-1) and silk-8RGO (3.86 KΩ cm-1) fabrics was up to 86.82, 22.30 and 6.57 KΩ cm-1 after 10 times of standard washing, respectively. The UPF value, contact angle and color differences of RGO modified silk fabric slightly changed before and after 10 times of standard washing. Therefore, the washing fastness of electric conduction, anti-ultraviolet and water repellent multifunctional silk fabrics was excellent.

  12. Circumvention of Immunity to the Adenovirus Major Coat Protein Hexon

    Science.gov (United States)

    Roy, Soumitra; Shirley, Pamela S.; McClelland, Alan; Kaleko, Michael

    1998-01-01

    Immunity to adenoviruses is an important hurdle to be overcome for successful gene therapy. The presence of antibodies to the capsid proteins prevents efficacious adenovirus vector administration in vivo. We tested whether immunity to a particular serotype of adenovirus (Ad5) may be overcome with a vector that encodes the hexon sequences from a different adenovirus serotype (Ad12). We successfully constructed an adenovirus vector with a chimeric Ad5-Ad12 hexon which was not neutralized by plasma from C57BL/6 mice immunized with Ad5. The vector was also capable of transducing the livers of C57BL/6 mice previously immunized with Ad5. PMID:9658137

  13. A baculovirus-mediated strategy for full-length plant virus coat protein expression and purification.

    Science.gov (United States)

    Ardisson-Araújo, Daniel Mendes Pereira; Rocha, Juliana Ribeiro; da Costa, Márcio Hedil Oliveira; Bocca, Anamélia Lorenzetti; Dusi, André Nepomuceno; de Oliveira Resende, Renato; Ribeiro, Bergmann Morais

    2013-08-15

    Garlic production is severely affected by virus infection, causing a decrease in productivity and quality. There are no virus-free cultivars and garlic-infecting viruses are difficult to purify, which make specific antibody production very laborious. Since high quality antisera against plant viruses are important tools for serological detection, we have developed a method to express and purify full-length plant virus coat proteins using baculovirus expression system and insects as bioreactors. In this work, we have fused the full-length coat protein (cp) gene from the Garlic Mite-borne Filamentous Virus (GarMbFV) to the 3'-end of the Polyhedrin (polh) gene of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The recombinant baculovirus was amplified in insect cell culture and the virus was used to infect Spodoptera frugiperda larvae. Thus, the recombinant fused protein was easily purified from insect cadavers using sucrose gradient centrifugation and analyzed by Western Blotting. Interestingly, amorphous crystals were produced in the cytoplasm of cells infected with the recombinant virus containing the chimeric-protein gene but not in cells infected with the wild type and recombinant virus containing the hexa histidine tagged Polh. Moreover, the chimeric protein was used to immunize rats and generate antibodies against the target protein. The antiserum produced was able to detect plants infected with GarMbFV, which had been initially confirmed by RT-PCR. The expression of a plant virus full-length coat protein fused to the baculovirus Polyhedrin in recombinant baculovirus-infected insects was shown to produce high amounts of the recombinant protein which was easily purified and efficiently used to generate specific antibodies. Therefore, this strategy can potentially be used for the development of plant virus diagnostic kits for those viruses that are difficult to purify, are present in low titers or are present in mix infection in

  14. Surface and interface analysis of poly-hydroxyethylmethacrylate-coated anodic aluminium oxide membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Nurshahidah [School of Engineering and Information Technology, Murdoch University, WA 6150 (Australia); Murdoch Applied Nanotechnology Research Group, Murdoch University, WA 6150 (Australia); Duan, Xiaofei [School of Chemistry, The University of Melbourne, VIC 3010 (Australia); Jiang, Zhong-Tao, E-mail: Z.Jiang@murdoch.edu.au [School of Engineering and Information Technology, Murdoch University, WA 6150 (Australia); Goh, Bee Min [School of Engineering and Information Technology, Murdoch University, WA 6150 (Australia); Lamb, Robert [School of Chemistry, The University of Melbourne, VIC 3010 (Australia); Tadich, Anton [Australian Synchrotron, Clayton, VIC 3086 (Australia); Poinern, Gérrard Eddy Jai; Fawcett, Derek [Murdoch Applied Nanotechnology Research Group, Murdoch University, WA 6150 (Australia); Chapman, Peter [Department of Chemistry, Curtin University, WA 6102 (Australia); Singh, Pritam [School of Engineering and Information Technology, Murdoch University, WA 6150 (Australia)

    2014-01-15

    The surface and interface of poly (2-hydroxyethylmethacrylate) (PHEMA) and anodic aluminium oxide (AAO) membranes were comprehensively investigated using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. It was found that 1s→π* (C=O) and 1s→σ* (C-O) transitions were dominant on the surface of both bulk PHEMA polymer and PHEMA-surface coated AAO (AAO–PHEMA) composite. Findings from NEXAFS, Fourier-Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS) analyses suggest the possibility of chemical interaction between carbon from the ester group of polymer and AAO membrane.

  15. Gliding arc surface modification of carrot nanofibre coating - perspective for composite processing

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Berglund, L; Aitomäki, Y

    2016-01-01

    Surfaces of carrot nanofibre coatings were modified by a gliding arc in atmospheric pressure air. The treatment strengthened wetting of deionized water and glycerol, increased an oxygen content, C-O and C=O, and moderately roughened the surfaces. In the perspective of composite materials......, these changes to the nanofibres can potentially improve their processability when they are to be impregnated with a polymeric matrix. However, longer exposure to the gliding arc reduced oxidation and roughness of the surface, and thus there exists an optimum condition to achieve good wetting to solvents....

  16. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  17. RPE cell surface proteins in normal and dystrophic rats

    International Nuclear Information System (INIS)

    Clark, V.M.; Hall, M.O.

    1986-01-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  18. Surface structuring and coating performance: novel biocidefree nanocomposite coatings with anti-fouling and fouling-release properties

    NARCIS (Netherlands)

    Wouters, M.E.L.; Rentrop, C.H.A.; Willemsen, P.R.

    2010-01-01

    State-of-the-art coatings consist of all kinds of ingredients amongst which (inorganic) filler particles are important additives. Knowledge of particle modification and chemistry of the coating formulation allows tailoring the coating properties and thus its performance and applicability. Recently

  19. Yttria coating on quartz mould inner surface for fabrication of metal fuel slug using injection casting process

    International Nuclear Information System (INIS)

    Vinod, A.V.; Hemanth Kumar, S.; Manivannan, A.; Muralidaran, P.; Anthonysamy, S.; Sudha, R.

    2016-01-01

    Quartz moulds are used for casting metal alloy of U-Zr slugs by injection casting process. Ceramic (Y 2 O 3 ) coating on inner surface of the quartz mould is provided to avoid silica contamination in the fuel slugs during casting. Experiments were carried out to standardise the coating process and optimising various parameters such as particle size of Y 2 O 3 , choice of suitable binder, method for application of coating, drying and sintering at high temperature to ensure uniformity and strength of coating. Required Coating thickness of ∼40 μm was achieved on a quartz mould of inner diameter of 4.98±0.01mm. Experimental procedure for coating on inner surface of the quartz tubes using yttrium oxide is described in this work. (author)

  20. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    Science.gov (United Sta